d3d9: Fix DrawIndexedPrimitiveUP with non-zero min_vertex_idx.
[wine.git] / dlls / oleaut32 / variant.c
blob17f753af70fdae4d5bb0428a2b815082bee97850
1 /*
2 * VARIANT
4 * Copyright 1998 Jean-Claude Cote
5 * Copyright 2003 Jon Griffiths
6 * Copyright 2005 Daniel Remenak
7 * Copyright 2006 Google (Benjamin Arai)
9 * The algorithm for conversion from Julian days to day/month/year is based on
10 * that devised by Henry Fliegel, as implemented in PostgreSQL, which is
11 * Copyright 1994-7 Regents of the University of California
13 * This library is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU Lesser General Public
15 * License as published by the Free Software Foundation; either
16 * version 2.1 of the License, or (at your option) any later version.
18 * This library is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * Lesser General Public License for more details.
23 * You should have received a copy of the GNU Lesser General Public
24 * License along with this library; if not, write to the Free Software
25 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
28 #include "config.h"
30 #include <string.h>
31 #include <stdlib.h>
32 #include <stdarg.h>
34 #define COBJMACROS
35 #define NONAMELESSUNION
36 #define NONAMELESSSTRUCT
38 #include "windef.h"
39 #include "winbase.h"
40 #include "wine/unicode.h"
41 #include "winerror.h"
42 #include "variant.h"
43 #include "resource.h"
44 #include "wine/debug.h"
46 WINE_DEFAULT_DEBUG_CHANNEL(variant);
48 static CRITICAL_SECTION cache_cs;
49 static CRITICAL_SECTION_DEBUG critsect_debug =
51 0, 0, &cache_cs,
52 { &critsect_debug.ProcessLocksList, &critsect_debug.ProcessLocksList },
53 0, 0, { (DWORD_PTR)(__FILE__ ": cache_cs") }
55 static CRITICAL_SECTION cache_cs = { &critsect_debug, -1, 0, 0, 0, 0 };
57 /* Convert a variant from one type to another */
58 static inline HRESULT VARIANT_Coerce(VARIANTARG* pd, LCID lcid, USHORT wFlags,
59 VARIANTARG* ps, VARTYPE vt)
61 HRESULT res = DISP_E_TYPEMISMATCH;
62 VARTYPE vtFrom = V_TYPE(ps);
63 DWORD dwFlags = 0;
65 TRACE("(%s,0x%08x,0x%04x,%s,%s)\n", debugstr_variant(pd), lcid, wFlags,
66 debugstr_variant(ps), debugstr_vt(vt));
68 if (vt == VT_BSTR || vtFrom == VT_BSTR)
70 /* All flags passed to low level function are only used for
71 * changing to or from strings. Map these here.
73 if (wFlags & VARIANT_LOCALBOOL)
74 dwFlags |= VAR_LOCALBOOL;
75 if (wFlags & VARIANT_CALENDAR_HIJRI)
76 dwFlags |= VAR_CALENDAR_HIJRI;
77 if (wFlags & VARIANT_CALENDAR_THAI)
78 dwFlags |= VAR_CALENDAR_THAI;
79 if (wFlags & VARIANT_CALENDAR_GREGORIAN)
80 dwFlags |= VAR_CALENDAR_GREGORIAN;
81 if (wFlags & VARIANT_NOUSEROVERRIDE)
82 dwFlags |= LOCALE_NOUSEROVERRIDE;
83 if (wFlags & VARIANT_USE_NLS)
84 dwFlags |= LOCALE_USE_NLS;
87 /* Map int/uint to i4/ui4 */
88 if (vt == VT_INT)
89 vt = VT_I4;
90 else if (vt == VT_UINT)
91 vt = VT_UI4;
93 if (vtFrom == VT_INT)
94 vtFrom = VT_I4;
95 else if (vtFrom == VT_UINT)
96 vtFrom = VT_UI4;
98 if (vt == vtFrom)
99 return VariantCopy(pd, ps);
101 if (wFlags & VARIANT_NOVALUEPROP && vtFrom == VT_DISPATCH && vt != VT_UNKNOWN)
103 /* VARIANT_NOVALUEPROP prevents IDispatch objects from being coerced by
104 * accessing the default object property.
106 return DISP_E_TYPEMISMATCH;
109 switch (vt)
111 case VT_EMPTY:
112 if (vtFrom == VT_NULL)
113 return DISP_E_TYPEMISMATCH;
114 /* ... Fall through */
115 case VT_NULL:
116 if (vtFrom <= VT_UINT && vtFrom != (VARTYPE)15 && vtFrom != VT_ERROR)
118 res = VariantClear( pd );
119 if (vt == VT_NULL && SUCCEEDED(res))
120 V_VT(pd) = VT_NULL;
122 return res;
124 case VT_I1:
125 switch (vtFrom)
127 case VT_EMPTY: V_I1(pd) = 0; return S_OK;
128 case VT_I2: return VarI1FromI2(V_I2(ps), &V_I1(pd));
129 case VT_I4: return VarI1FromI4(V_I4(ps), &V_I1(pd));
130 case VT_UI1: V_I1(pd) = V_UI1(ps); return S_OK;
131 case VT_UI2: return VarI1FromUI2(V_UI2(ps), &V_I1(pd));
132 case VT_UI4: return VarI1FromUI4(V_UI4(ps), &V_I1(pd));
133 case VT_I8: return VarI1FromI8(V_I8(ps), &V_I1(pd));
134 case VT_UI8: return VarI1FromUI8(V_UI8(ps), &V_I1(pd));
135 case VT_R4: return VarI1FromR4(V_R4(ps), &V_I1(pd));
136 case VT_R8: return VarI1FromR8(V_R8(ps), &V_I1(pd));
137 case VT_DATE: return VarI1FromDate(V_DATE(ps), &V_I1(pd));
138 case VT_BOOL: return VarI1FromBool(V_BOOL(ps), &V_I1(pd));
139 case VT_CY: return VarI1FromCy(V_CY(ps), &V_I1(pd));
140 case VT_DECIMAL: return VarI1FromDec(&V_DECIMAL(ps), &V_I1(pd) );
141 case VT_DISPATCH: return VarI1FromDisp(V_DISPATCH(ps), lcid, &V_I1(pd) );
142 case VT_BSTR: return VarI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_I1(pd) );
144 break;
146 case VT_I2:
147 switch (vtFrom)
149 case VT_EMPTY: V_I2(pd) = 0; return S_OK;
150 case VT_I1: return VarI2FromI1(V_I1(ps), &V_I2(pd));
151 case VT_I4: return VarI2FromI4(V_I4(ps), &V_I2(pd));
152 case VT_UI1: return VarI2FromUI1(V_UI1(ps), &V_I2(pd));
153 case VT_UI2: V_I2(pd) = V_UI2(ps); return S_OK;
154 case VT_UI4: return VarI2FromUI4(V_UI4(ps), &V_I2(pd));
155 case VT_I8: return VarI2FromI8(V_I8(ps), &V_I2(pd));
156 case VT_UI8: return VarI2FromUI8(V_UI8(ps), &V_I2(pd));
157 case VT_R4: return VarI2FromR4(V_R4(ps), &V_I2(pd));
158 case VT_R8: return VarI2FromR8(V_R8(ps), &V_I2(pd));
159 case VT_DATE: return VarI2FromDate(V_DATE(ps), &V_I2(pd));
160 case VT_BOOL: return VarI2FromBool(V_BOOL(ps), &V_I2(pd));
161 case VT_CY: return VarI2FromCy(V_CY(ps), &V_I2(pd));
162 case VT_DECIMAL: return VarI2FromDec(&V_DECIMAL(ps), &V_I2(pd));
163 case VT_DISPATCH: return VarI2FromDisp(V_DISPATCH(ps), lcid, &V_I2(pd));
164 case VT_BSTR: return VarI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_I2(pd));
166 break;
168 case VT_I4:
169 switch (vtFrom)
171 case VT_EMPTY: V_I4(pd) = 0; return S_OK;
172 case VT_I1: return VarI4FromI1(V_I1(ps), &V_I4(pd));
173 case VT_I2: return VarI4FromI2(V_I2(ps), &V_I4(pd));
174 case VT_UI1: return VarI4FromUI1(V_UI1(ps), &V_I4(pd));
175 case VT_UI2: return VarI4FromUI2(V_UI2(ps), &V_I4(pd));
176 case VT_UI4: V_I4(pd) = V_UI4(ps); return S_OK;
177 case VT_I8: return VarI4FromI8(V_I8(ps), &V_I4(pd));
178 case VT_UI8: return VarI4FromUI8(V_UI8(ps), &V_I4(pd));
179 case VT_R4: return VarI4FromR4(V_R4(ps), &V_I4(pd));
180 case VT_R8: return VarI4FromR8(V_R8(ps), &V_I4(pd));
181 case VT_DATE: return VarI4FromDate(V_DATE(ps), &V_I4(pd));
182 case VT_BOOL: return VarI4FromBool(V_BOOL(ps), &V_I4(pd));
183 case VT_CY: return VarI4FromCy(V_CY(ps), &V_I4(pd));
184 case VT_DECIMAL: return VarI4FromDec(&V_DECIMAL(ps), &V_I4(pd));
185 case VT_DISPATCH: return VarI4FromDisp(V_DISPATCH(ps), lcid, &V_I4(pd));
186 case VT_BSTR: return VarI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_I4(pd));
188 break;
190 case VT_UI1:
191 switch (vtFrom)
193 case VT_EMPTY: V_UI1(pd) = 0; return S_OK;
194 case VT_I1: V_UI1(pd) = V_I1(ps); return S_OK;
195 case VT_I2: return VarUI1FromI2(V_I2(ps), &V_UI1(pd));
196 case VT_I4: return VarUI1FromI4(V_I4(ps), &V_UI1(pd));
197 case VT_UI2: return VarUI1FromUI2(V_UI2(ps), &V_UI1(pd));
198 case VT_UI4: return VarUI1FromUI4(V_UI4(ps), &V_UI1(pd));
199 case VT_I8: return VarUI1FromI8(V_I8(ps), &V_UI1(pd));
200 case VT_UI8: return VarUI1FromUI8(V_UI8(ps), &V_UI1(pd));
201 case VT_R4: return VarUI1FromR4(V_R4(ps), &V_UI1(pd));
202 case VT_R8: return VarUI1FromR8(V_R8(ps), &V_UI1(pd));
203 case VT_DATE: return VarUI1FromDate(V_DATE(ps), &V_UI1(pd));
204 case VT_BOOL: return VarUI1FromBool(V_BOOL(ps), &V_UI1(pd));
205 case VT_CY: return VarUI1FromCy(V_CY(ps), &V_UI1(pd));
206 case VT_DECIMAL: return VarUI1FromDec(&V_DECIMAL(ps), &V_UI1(pd));
207 case VT_DISPATCH: return VarUI1FromDisp(V_DISPATCH(ps), lcid, &V_UI1(pd));
208 case VT_BSTR: return VarUI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI1(pd));
210 break;
212 case VT_UI2:
213 switch (vtFrom)
215 case VT_EMPTY: V_UI2(pd) = 0; return S_OK;
216 case VT_I1: return VarUI2FromI1(V_I1(ps), &V_UI2(pd));
217 case VT_I2: V_UI2(pd) = V_I2(ps); return S_OK;
218 case VT_I4: return VarUI2FromI4(V_I4(ps), &V_UI2(pd));
219 case VT_UI1: return VarUI2FromUI1(V_UI1(ps), &V_UI2(pd));
220 case VT_UI4: return VarUI2FromUI4(V_UI4(ps), &V_UI2(pd));
221 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
222 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
223 case VT_R4: return VarUI2FromR4(V_R4(ps), &V_UI2(pd));
224 case VT_R8: return VarUI2FromR8(V_R8(ps), &V_UI2(pd));
225 case VT_DATE: return VarUI2FromDate(V_DATE(ps), &V_UI2(pd));
226 case VT_BOOL: return VarUI2FromBool(V_BOOL(ps), &V_UI2(pd));
227 case VT_CY: return VarUI2FromCy(V_CY(ps), &V_UI2(pd));
228 case VT_DECIMAL: return VarUI2FromDec(&V_DECIMAL(ps), &V_UI2(pd));
229 case VT_DISPATCH: return VarUI2FromDisp(V_DISPATCH(ps), lcid, &V_UI2(pd));
230 case VT_BSTR: return VarUI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI2(pd));
232 break;
234 case VT_UI4:
235 switch (vtFrom)
237 case VT_EMPTY: V_UI4(pd) = 0; return S_OK;
238 case VT_I1: return VarUI4FromI1(V_I1(ps), &V_UI4(pd));
239 case VT_I2: return VarUI4FromI2(V_I2(ps), &V_UI4(pd));
240 case VT_I4: V_UI4(pd) = V_I4(ps); return S_OK;
241 case VT_UI1: return VarUI4FromUI1(V_UI1(ps), &V_UI4(pd));
242 case VT_UI2: return VarUI4FromUI2(V_UI2(ps), &V_UI4(pd));
243 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
244 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
245 case VT_R4: return VarUI4FromR4(V_R4(ps), &V_UI4(pd));
246 case VT_R8: return VarUI4FromR8(V_R8(ps), &V_UI4(pd));
247 case VT_DATE: return VarUI4FromDate(V_DATE(ps), &V_UI4(pd));
248 case VT_BOOL: return VarUI4FromBool(V_BOOL(ps), &V_UI4(pd));
249 case VT_CY: return VarUI4FromCy(V_CY(ps), &V_UI4(pd));
250 case VT_DECIMAL: return VarUI4FromDec(&V_DECIMAL(ps), &V_UI4(pd));
251 case VT_DISPATCH: return VarUI4FromDisp(V_DISPATCH(ps), lcid, &V_UI4(pd));
252 case VT_BSTR: return VarUI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI4(pd));
254 break;
256 case VT_UI8:
257 switch (vtFrom)
259 case VT_EMPTY: V_UI8(pd) = 0; return S_OK;
260 case VT_I4: if (V_I4(ps) < 0) return DISP_E_OVERFLOW; V_UI8(pd) = V_I4(ps); return S_OK;
261 case VT_I1: return VarUI8FromI1(V_I1(ps), &V_UI8(pd));
262 case VT_I2: return VarUI8FromI2(V_I2(ps), &V_UI8(pd));
263 case VT_UI1: return VarUI8FromUI1(V_UI1(ps), &V_UI8(pd));
264 case VT_UI2: return VarUI8FromUI2(V_UI2(ps), &V_UI8(pd));
265 case VT_UI4: return VarUI8FromUI4(V_UI4(ps), &V_UI8(pd));
266 case VT_I8: V_UI8(pd) = V_I8(ps); return S_OK;
267 case VT_R4: return VarUI8FromR4(V_R4(ps), &V_UI8(pd));
268 case VT_R8: return VarUI8FromR8(V_R8(ps), &V_UI8(pd));
269 case VT_DATE: return VarUI8FromDate(V_DATE(ps), &V_UI8(pd));
270 case VT_BOOL: return VarUI8FromBool(V_BOOL(ps), &V_UI8(pd));
271 case VT_CY: return VarUI8FromCy(V_CY(ps), &V_UI8(pd));
272 case VT_DECIMAL: return VarUI8FromDec(&V_DECIMAL(ps), &V_UI8(pd));
273 case VT_DISPATCH: return VarUI8FromDisp(V_DISPATCH(ps), lcid, &V_UI8(pd));
274 case VT_BSTR: return VarUI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI8(pd));
276 break;
278 case VT_I8:
279 switch (vtFrom)
281 case VT_EMPTY: V_I8(pd) = 0; return S_OK;
282 case VT_I4: V_I8(pd) = V_I4(ps); return S_OK;
283 case VT_I1: return VarI8FromI1(V_I1(ps), &V_I8(pd));
284 case VT_I2: return VarI8FromI2(V_I2(ps), &V_I8(pd));
285 case VT_UI1: return VarI8FromUI1(V_UI1(ps), &V_I8(pd));
286 case VT_UI2: return VarI8FromUI2(V_UI2(ps), &V_I8(pd));
287 case VT_UI4: return VarI8FromUI4(V_UI4(ps), &V_I8(pd));
288 case VT_UI8: V_I8(pd) = V_UI8(ps); return S_OK;
289 case VT_R4: return VarI8FromR4(V_R4(ps), &V_I8(pd));
290 case VT_R8: return VarI8FromR8(V_R8(ps), &V_I8(pd));
291 case VT_DATE: return VarI8FromDate(V_DATE(ps), &V_I8(pd));
292 case VT_BOOL: return VarI8FromBool(V_BOOL(ps), &V_I8(pd));
293 case VT_CY: return VarI8FromCy(V_CY(ps), &V_I8(pd));
294 case VT_DECIMAL: return VarI8FromDec(&V_DECIMAL(ps), &V_I8(pd));
295 case VT_DISPATCH: return VarI8FromDisp(V_DISPATCH(ps), lcid, &V_I8(pd));
296 case VT_BSTR: return VarI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_I8(pd));
298 break;
300 case VT_R4:
301 switch (vtFrom)
303 case VT_EMPTY: V_R4(pd) = 0.0f; return S_OK;
304 case VT_I1: return VarR4FromI1(V_I1(ps), &V_R4(pd));
305 case VT_I2: return VarR4FromI2(V_I2(ps), &V_R4(pd));
306 case VT_I4: return VarR4FromI4(V_I4(ps), &V_R4(pd));
307 case VT_UI1: return VarR4FromUI1(V_UI1(ps), &V_R4(pd));
308 case VT_UI2: return VarR4FromUI2(V_UI2(ps), &V_R4(pd));
309 case VT_UI4: return VarR4FromUI4(V_UI4(ps), &V_R4(pd));
310 case VT_I8: return VarR4FromI8(V_I8(ps), &V_R4(pd));
311 case VT_UI8: return VarR4FromUI8(V_UI8(ps), &V_R4(pd));
312 case VT_R8: return VarR4FromR8(V_R8(ps), &V_R4(pd));
313 case VT_DATE: return VarR4FromDate(V_DATE(ps), &V_R4(pd));
314 case VT_BOOL: return VarR4FromBool(V_BOOL(ps), &V_R4(pd));
315 case VT_CY: return VarR4FromCy(V_CY(ps), &V_R4(pd));
316 case VT_DECIMAL: return VarR4FromDec(&V_DECIMAL(ps), &V_R4(pd));
317 case VT_DISPATCH: return VarR4FromDisp(V_DISPATCH(ps), lcid, &V_R4(pd));
318 case VT_BSTR: return VarR4FromStr(V_BSTR(ps), lcid, dwFlags, &V_R4(pd));
320 break;
322 case VT_R8:
323 switch (vtFrom)
325 case VT_EMPTY: V_R8(pd) = 0.0; return S_OK;
326 case VT_I1: return VarR8FromI1(V_I1(ps), &V_R8(pd));
327 case VT_I2: return VarR8FromI2(V_I2(ps), &V_R8(pd));
328 case VT_I4: return VarR8FromI4(V_I4(ps), &V_R8(pd));
329 case VT_UI1: return VarR8FromUI1(V_UI1(ps), &V_R8(pd));
330 case VT_UI2: return VarR8FromUI2(V_UI2(ps), &V_R8(pd));
331 case VT_UI4: return VarR8FromUI4(V_UI4(ps), &V_R8(pd));
332 case VT_I8: return VarR8FromI8(V_I8(ps), &V_R8(pd));
333 case VT_UI8: return VarR8FromUI8(V_UI8(ps), &V_R8(pd));
334 case VT_R4: return VarR8FromR4(V_R4(ps), &V_R8(pd));
335 case VT_DATE: return VarR8FromDate(V_DATE(ps), &V_R8(pd));
336 case VT_BOOL: return VarR8FromBool(V_BOOL(ps), &V_R8(pd));
337 case VT_CY: return VarR8FromCy(V_CY(ps), &V_R8(pd));
338 case VT_DECIMAL: return VarR8FromDec(&V_DECIMAL(ps), &V_R8(pd));
339 case VT_DISPATCH: return VarR8FromDisp(V_DISPATCH(ps), lcid, &V_R8(pd));
340 case VT_BSTR: return VarR8FromStr(V_BSTR(ps), lcid, dwFlags, &V_R8(pd));
342 break;
344 case VT_DATE:
345 switch (vtFrom)
347 case VT_EMPTY: V_DATE(pd) = 0.0; return S_OK;
348 case VT_I1: return VarDateFromI1(V_I1(ps), &V_DATE(pd));
349 case VT_I2: return VarDateFromI2(V_I2(ps), &V_DATE(pd));
350 case VT_I4: return VarDateFromI4(V_I4(ps), &V_DATE(pd));
351 case VT_UI1: return VarDateFromUI1(V_UI1(ps), &V_DATE(pd));
352 case VT_UI2: return VarDateFromUI2(V_UI2(ps), &V_DATE(pd));
353 case VT_UI4: return VarDateFromUI4(V_UI4(ps), &V_DATE(pd));
354 case VT_I8: return VarDateFromI8(V_I8(ps), &V_DATE(pd));
355 case VT_UI8: return VarDateFromUI8(V_UI8(ps), &V_DATE(pd));
356 case VT_R4: return VarDateFromR4(V_R4(ps), &V_DATE(pd));
357 case VT_R8: return VarDateFromR8(V_R8(ps), &V_DATE(pd));
358 case VT_BOOL: return VarDateFromBool(V_BOOL(ps), &V_DATE(pd));
359 case VT_CY: return VarDateFromCy(V_CY(ps), &V_DATE(pd));
360 case VT_DECIMAL: return VarDateFromDec(&V_DECIMAL(ps), &V_DATE(pd));
361 case VT_DISPATCH: return VarDateFromDisp(V_DISPATCH(ps), lcid, &V_DATE(pd));
362 case VT_BSTR: return VarDateFromStr(V_BSTR(ps), lcid, dwFlags, &V_DATE(pd));
364 break;
366 case VT_BOOL:
367 switch (vtFrom)
369 case VT_EMPTY: V_BOOL(pd) = 0; return S_OK;
370 case VT_I1: return VarBoolFromI1(V_I1(ps), &V_BOOL(pd));
371 case VT_I2: return VarBoolFromI2(V_I2(ps), &V_BOOL(pd));
372 case VT_I4: return VarBoolFromI4(V_I4(ps), &V_BOOL(pd));
373 case VT_UI1: return VarBoolFromUI1(V_UI1(ps), &V_BOOL(pd));
374 case VT_UI2: return VarBoolFromUI2(V_UI2(ps), &V_BOOL(pd));
375 case VT_UI4: return VarBoolFromUI4(V_UI4(ps), &V_BOOL(pd));
376 case VT_I8: return VarBoolFromI8(V_I8(ps), &V_BOOL(pd));
377 case VT_UI8: return VarBoolFromUI8(V_UI8(ps), &V_BOOL(pd));
378 case VT_R4: return VarBoolFromR4(V_R4(ps), &V_BOOL(pd));
379 case VT_R8: return VarBoolFromR8(V_R8(ps), &V_BOOL(pd));
380 case VT_DATE: return VarBoolFromDate(V_DATE(ps), &V_BOOL(pd));
381 case VT_CY: return VarBoolFromCy(V_CY(ps), &V_BOOL(pd));
382 case VT_DECIMAL: return VarBoolFromDec(&V_DECIMAL(ps), &V_BOOL(pd));
383 case VT_DISPATCH: return VarBoolFromDisp(V_DISPATCH(ps), lcid, &V_BOOL(pd));
384 case VT_BSTR: return VarBoolFromStr(V_BSTR(ps), lcid, dwFlags, &V_BOOL(pd));
386 break;
388 case VT_BSTR:
389 switch (vtFrom)
391 case VT_EMPTY:
392 V_BSTR(pd) = SysAllocStringLen(NULL, 0);
393 return V_BSTR(pd) ? S_OK : E_OUTOFMEMORY;
394 case VT_BOOL:
395 if (wFlags & (VARIANT_ALPHABOOL|VARIANT_LOCALBOOL))
396 return VarBstrFromBool(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
397 return VarBstrFromI2(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
398 case VT_I1: return VarBstrFromI1(V_I1(ps), lcid, dwFlags, &V_BSTR(pd));
399 case VT_I2: return VarBstrFromI2(V_I2(ps), lcid, dwFlags, &V_BSTR(pd));
400 case VT_I4: return VarBstrFromI4(V_I4(ps), lcid, dwFlags, &V_BSTR(pd));
401 case VT_UI1: return VarBstrFromUI1(V_UI1(ps), lcid, dwFlags, &V_BSTR(pd));
402 case VT_UI2: return VarBstrFromUI2(V_UI2(ps), lcid, dwFlags, &V_BSTR(pd));
403 case VT_UI4: return VarBstrFromUI4(V_UI4(ps), lcid, dwFlags, &V_BSTR(pd));
404 case VT_I8: return VarBstrFromI8(V_I8(ps), lcid, dwFlags, &V_BSTR(pd));
405 case VT_UI8: return VarBstrFromUI8(V_UI8(ps), lcid, dwFlags, &V_BSTR(pd));
406 case VT_R4: return VarBstrFromR4(V_R4(ps), lcid, dwFlags, &V_BSTR(pd));
407 case VT_R8: return VarBstrFromR8(V_R8(ps), lcid, dwFlags, &V_BSTR(pd));
408 case VT_DATE: return VarBstrFromDate(V_DATE(ps), lcid, dwFlags, &V_BSTR(pd));
409 case VT_CY: return VarBstrFromCy(V_CY(ps), lcid, dwFlags, &V_BSTR(pd));
410 case VT_DECIMAL: return VarBstrFromDec(&V_DECIMAL(ps), lcid, dwFlags, &V_BSTR(pd));
411 case VT_DISPATCH: return VarBstrFromDisp(V_DISPATCH(ps), lcid, dwFlags, &V_BSTR(pd));
413 break;
415 case VT_CY:
416 switch (vtFrom)
418 case VT_EMPTY: V_CY(pd).int64 = 0; return S_OK;
419 case VT_I1: return VarCyFromI1(V_I1(ps), &V_CY(pd));
420 case VT_I2: return VarCyFromI2(V_I2(ps), &V_CY(pd));
421 case VT_I4: return VarCyFromI4(V_I4(ps), &V_CY(pd));
422 case VT_UI1: return VarCyFromUI1(V_UI1(ps), &V_CY(pd));
423 case VT_UI2: return VarCyFromUI2(V_UI2(ps), &V_CY(pd));
424 case VT_UI4: return VarCyFromUI4(V_UI4(ps), &V_CY(pd));
425 case VT_I8: return VarCyFromI8(V_I8(ps), &V_CY(pd));
426 case VT_UI8: return VarCyFromUI8(V_UI8(ps), &V_CY(pd));
427 case VT_R4: return VarCyFromR4(V_R4(ps), &V_CY(pd));
428 case VT_R8: return VarCyFromR8(V_R8(ps), &V_CY(pd));
429 case VT_DATE: return VarCyFromDate(V_DATE(ps), &V_CY(pd));
430 case VT_BOOL: return VarCyFromBool(V_BOOL(ps), &V_CY(pd));
431 case VT_DECIMAL: return VarCyFromDec(&V_DECIMAL(ps), &V_CY(pd));
432 case VT_DISPATCH: return VarCyFromDisp(V_DISPATCH(ps), lcid, &V_CY(pd));
433 case VT_BSTR: return VarCyFromStr(V_BSTR(ps), lcid, dwFlags, &V_CY(pd));
435 break;
437 case VT_DECIMAL:
438 switch (vtFrom)
440 case VT_EMPTY:
441 case VT_BOOL:
442 DEC_SIGNSCALE(&V_DECIMAL(pd)) = SIGNSCALE(DECIMAL_POS,0);
443 DEC_HI32(&V_DECIMAL(pd)) = 0;
444 DEC_MID32(&V_DECIMAL(pd)) = 0;
445 /* VarDecFromBool() coerces to -1/0, ChangeTypeEx() coerces to 1/0.
446 * VT_NULL and VT_EMPTY always give a 0 value.
448 DEC_LO32(&V_DECIMAL(pd)) = vtFrom == VT_BOOL && V_BOOL(ps) ? 1 : 0;
449 return S_OK;
450 case VT_I1: return VarDecFromI1(V_I1(ps), &V_DECIMAL(pd));
451 case VT_I2: return VarDecFromI2(V_I2(ps), &V_DECIMAL(pd));
452 case VT_I4: return VarDecFromI4(V_I4(ps), &V_DECIMAL(pd));
453 case VT_UI1: return VarDecFromUI1(V_UI1(ps), &V_DECIMAL(pd));
454 case VT_UI2: return VarDecFromUI2(V_UI2(ps), &V_DECIMAL(pd));
455 case VT_UI4: return VarDecFromUI4(V_UI4(ps), &V_DECIMAL(pd));
456 case VT_I8: return VarDecFromI8(V_I8(ps), &V_DECIMAL(pd));
457 case VT_UI8: return VarDecFromUI8(V_UI8(ps), &V_DECIMAL(pd));
458 case VT_R4: return VarDecFromR4(V_R4(ps), &V_DECIMAL(pd));
459 case VT_R8: return VarDecFromR8(V_R8(ps), &V_DECIMAL(pd));
460 case VT_DATE: return VarDecFromDate(V_DATE(ps), &V_DECIMAL(pd));
461 case VT_CY: return VarDecFromCy(V_CY(ps), &V_DECIMAL(pd));
462 case VT_DISPATCH: return VarDecFromDisp(V_DISPATCH(ps), lcid, &V_DECIMAL(pd));
463 case VT_BSTR: return VarDecFromStr(V_BSTR(ps), lcid, dwFlags, &V_DECIMAL(pd));
465 break;
467 case VT_UNKNOWN:
468 switch (vtFrom)
470 case VT_DISPATCH:
471 if (V_DISPATCH(ps) == NULL)
473 V_UNKNOWN(pd) = NULL;
474 res = S_OK;
476 else
477 res = IDispatch_QueryInterface(V_DISPATCH(ps), &IID_IUnknown, (LPVOID*)&V_UNKNOWN(pd));
478 break;
480 break;
482 case VT_DISPATCH:
483 switch (vtFrom)
485 case VT_UNKNOWN:
486 if (V_UNKNOWN(ps) == NULL)
488 V_DISPATCH(pd) = NULL;
489 res = S_OK;
491 else
492 res = IUnknown_QueryInterface(V_UNKNOWN(ps), &IID_IDispatch, (LPVOID*)&V_DISPATCH(pd));
493 break;
495 break;
497 case VT_RECORD:
498 break;
500 return res;
503 /* Coerce to/from an array */
504 static inline HRESULT VARIANT_CoerceArray(VARIANTARG* pd, VARIANTARG* ps, VARTYPE vt)
506 if (vt == VT_BSTR && V_VT(ps) == (VT_ARRAY|VT_UI1))
507 return BstrFromVector(V_ARRAY(ps), &V_BSTR(pd));
509 if (V_VT(ps) == VT_BSTR && vt == (VT_ARRAY|VT_UI1))
510 return VectorFromBstr(V_BSTR(ps), &V_ARRAY(pd));
512 if (V_VT(ps) == vt)
513 return SafeArrayCopy(V_ARRAY(ps), &V_ARRAY(pd));
515 return DISP_E_TYPEMISMATCH;
518 /******************************************************************************
519 * Check if a variants type is valid.
521 static inline HRESULT VARIANT_ValidateType(VARTYPE vt)
523 VARTYPE vtExtra = vt & VT_EXTRA_TYPE;
525 vt &= VT_TYPEMASK;
527 if (!(vtExtra & (VT_VECTOR|VT_RESERVED)))
529 if (vt < VT_VOID || vt == VT_RECORD || vt == VT_CLSID)
531 if ((vtExtra & (VT_BYREF|VT_ARRAY)) && vt <= VT_NULL)
532 return DISP_E_BADVARTYPE;
533 if (vt != (VARTYPE)15)
534 return S_OK;
537 return DISP_E_BADVARTYPE;
540 /******************************************************************************
541 * VariantInit [OLEAUT32.8]
543 * Initialise a variant.
545 * PARAMS
546 * pVarg [O] Variant to initialise
548 * RETURNS
549 * Nothing.
551 * NOTES
552 * This function simply sets the type of the variant to VT_EMPTY. It does not
553 * free any existing value, use VariantClear() for that.
555 void WINAPI VariantInit(VARIANTARG* pVarg)
557 TRACE("(%p)\n", pVarg);
559 /* Win8.1 zeroes whole struct. Previous implementations don't set any other fields. */
560 V_VT(pVarg) = VT_EMPTY;
563 HRESULT VARIANT_ClearInd(VARIANTARG *pVarg)
565 HRESULT hres;
567 TRACE("(%s)\n", debugstr_variant(pVarg));
569 hres = VARIANT_ValidateType(V_VT(pVarg));
570 if (FAILED(hres))
571 return hres;
573 switch (V_VT(pVarg))
575 case VT_DISPATCH:
576 case VT_UNKNOWN:
577 if (V_UNKNOWN(pVarg))
578 IUnknown_Release(V_UNKNOWN(pVarg));
579 break;
580 case VT_UNKNOWN | VT_BYREF:
581 case VT_DISPATCH | VT_BYREF:
582 if(*V_UNKNOWNREF(pVarg))
583 IUnknown_Release(*V_UNKNOWNREF(pVarg));
584 break;
585 case VT_BSTR:
586 SysFreeString(V_BSTR(pVarg));
587 break;
588 case VT_BSTR | VT_BYREF:
589 SysFreeString(*V_BSTRREF(pVarg));
590 break;
591 case VT_VARIANT | VT_BYREF:
592 VariantClear(V_VARIANTREF(pVarg));
593 break;
594 case VT_RECORD:
595 case VT_RECORD | VT_BYREF:
597 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
598 if (pBr->pRecInfo)
600 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
601 IRecordInfo_Release(pBr->pRecInfo);
603 break;
605 default:
606 if (V_ISARRAY(pVarg) || (V_VT(pVarg) & ~VT_BYREF) == VT_SAFEARRAY)
608 if (V_ISBYREF(pVarg))
610 if (*V_ARRAYREF(pVarg))
611 hres = SafeArrayDestroy(*V_ARRAYREF(pVarg));
613 else if (V_ARRAY(pVarg))
614 hres = SafeArrayDestroy(V_ARRAY(pVarg));
616 break;
619 V_VT(pVarg) = VT_EMPTY;
620 return hres;
623 /******************************************************************************
624 * VariantClear [OLEAUT32.9]
626 * Clear a variant.
628 * PARAMS
629 * pVarg [I/O] Variant to clear
631 * RETURNS
632 * Success: S_OK. Any previous value in pVarg is freed and its type is set to VT_EMPTY.
633 * Failure: DISP_E_BADVARTYPE, if the variant is not a valid variant type.
635 HRESULT WINAPI VariantClear(VARIANTARG* pVarg)
637 HRESULT hres;
639 TRACE("(%s)\n", debugstr_variant(pVarg));
641 hres = VARIANT_ValidateType(V_VT(pVarg));
643 if (SUCCEEDED(hres))
645 if (!V_ISBYREF(pVarg))
647 if (V_ISARRAY(pVarg) || V_VT(pVarg) == VT_SAFEARRAY)
649 hres = SafeArrayDestroy(V_ARRAY(pVarg));
651 else if (V_VT(pVarg) == VT_BSTR)
653 SysFreeString(V_BSTR(pVarg));
655 else if (V_VT(pVarg) == VT_RECORD)
657 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
658 if (pBr->pRecInfo)
660 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
661 IRecordInfo_Release(pBr->pRecInfo);
664 else if (V_VT(pVarg) == VT_DISPATCH ||
665 V_VT(pVarg) == VT_UNKNOWN)
667 if (V_UNKNOWN(pVarg))
668 IUnknown_Release(V_UNKNOWN(pVarg));
671 V_VT(pVarg) = VT_EMPTY;
673 return hres;
676 /******************************************************************************
677 * Copy an IRecordInfo object contained in a variant.
679 static HRESULT VARIANT_CopyIRecordInfo(VARIANT *dest, VARIANT *src)
681 struct __tagBRECORD *dest_rec = &V_UNION(dest, brecVal);
682 struct __tagBRECORD *src_rec = &V_UNION(src, brecVal);
683 HRESULT hr = S_OK;
684 ULONG size;
686 if (!src_rec->pRecInfo)
688 if (src_rec->pvRecord) return E_INVALIDARG;
689 return S_OK;
692 hr = IRecordInfo_GetSize(src_rec->pRecInfo, &size);
693 if (FAILED(hr)) return hr;
695 /* This could look cleaner if only RecordCreate() was used, but native doesn't use it.
696 Memory should be allocated in a same way as RecordCreate() does, so RecordDestroy()
697 could free it later. */
698 dest_rec->pvRecord = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, size);
699 if (!dest_rec->pvRecord) return E_OUTOFMEMORY;
701 dest_rec->pRecInfo = src_rec->pRecInfo;
702 IRecordInfo_AddRef(src_rec->pRecInfo);
704 return IRecordInfo_RecordCopy(src_rec->pRecInfo, src_rec->pvRecord, dest_rec->pvRecord);
707 /******************************************************************************
708 * VariantCopy [OLEAUT32.10]
710 * Copy a variant.
712 * PARAMS
713 * pvargDest [O] Destination for copy
714 * pvargSrc [I] Source variant to copy
716 * RETURNS
717 * Success: S_OK. pvargDest contains a copy of pvargSrc.
718 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid type.
719 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
720 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
721 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
723 * NOTES
724 * - If pvargSrc == pvargDest, this function does nothing, and succeeds if
725 * pvargSrc is valid. Otherwise, pvargDest is always cleared using
726 * VariantClear() before pvargSrc is copied to it. If clearing pvargDest
727 * fails, so does this function.
728 * - VT_CLSID is a valid type type for pvargSrc, but not for pvargDest.
729 * - For by-value non-intrinsic types, a deep copy is made, i.e. The whole value
730 * is copied rather than just any pointers to it.
731 * - For by-value object types the object pointer is copied and the objects
732 * reference count increased using IUnknown_AddRef().
733 * - For all by-reference types, only the referencing pointer is copied.
735 HRESULT WINAPI VariantCopy(VARIANTARG* pvargDest, VARIANTARG* pvargSrc)
737 HRESULT hres = S_OK;
739 TRACE("(%s,%s)\n", debugstr_variant(pvargDest), debugstr_variant(pvargSrc));
741 if (V_TYPE(pvargSrc) == VT_CLSID || /* VT_CLSID is a special case */
742 FAILED(VARIANT_ValidateType(V_VT(pvargSrc))))
743 return DISP_E_BADVARTYPE;
745 if (pvargSrc != pvargDest &&
746 SUCCEEDED(hres = VariantClear(pvargDest)))
748 *pvargDest = *pvargSrc; /* Shallow copy the value */
750 if (!V_ISBYREF(pvargSrc))
752 switch (V_VT(pvargSrc))
754 case VT_BSTR:
755 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)V_BSTR(pvargSrc), SysStringByteLen(V_BSTR(pvargSrc)));
756 if (!V_BSTR(pvargDest))
757 hres = E_OUTOFMEMORY;
758 break;
759 case VT_RECORD:
760 hres = VARIANT_CopyIRecordInfo(pvargDest, pvargSrc);
761 break;
762 case VT_DISPATCH:
763 case VT_UNKNOWN:
764 V_UNKNOWN(pvargDest) = V_UNKNOWN(pvargSrc);
765 if (V_UNKNOWN(pvargSrc))
766 IUnknown_AddRef(V_UNKNOWN(pvargSrc));
767 break;
768 default:
769 if (V_ISARRAY(pvargSrc))
770 hres = SafeArrayCopy(V_ARRAY(pvargSrc), &V_ARRAY(pvargDest));
774 return hres;
777 /* Return the byte size of a variants data */
778 static inline size_t VARIANT_DataSize(const VARIANT* pv)
780 switch (V_TYPE(pv))
782 case VT_I1:
783 case VT_UI1: return sizeof(BYTE);
784 case VT_I2:
785 case VT_UI2: return sizeof(SHORT);
786 case VT_INT:
787 case VT_UINT:
788 case VT_I4:
789 case VT_UI4: return sizeof(LONG);
790 case VT_I8:
791 case VT_UI8: return sizeof(LONGLONG);
792 case VT_R4: return sizeof(float);
793 case VT_R8: return sizeof(double);
794 case VT_DATE: return sizeof(DATE);
795 case VT_BOOL: return sizeof(VARIANT_BOOL);
796 case VT_DISPATCH:
797 case VT_UNKNOWN:
798 case VT_BSTR: return sizeof(void*);
799 case VT_CY: return sizeof(CY);
800 case VT_ERROR: return sizeof(SCODE);
802 TRACE("Shouldn't be called for variant %s!\n", debugstr_variant(pv));
803 return 0;
806 /******************************************************************************
807 * VariantCopyInd [OLEAUT32.11]
809 * Copy a variant, dereferencing it if it is by-reference.
811 * PARAMS
812 * pvargDest [O] Destination for copy
813 * pvargSrc [I] Source variant to copy
815 * RETURNS
816 * Success: S_OK. pvargDest contains a copy of pvargSrc.
817 * Failure: An HRESULT error code indicating the error.
819 * NOTES
820 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid by-value type.
821 * E_INVALIDARG, if pvargSrc is an invalid by-reference type.
822 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
823 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
824 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
826 * NOTES
827 * - If pvargSrc is by-value, this function behaves exactly as VariantCopy().
828 * - If pvargSrc is by-reference, the value copied to pvargDest is the pointed-to
829 * value.
830 * - if pvargSrc == pvargDest, this function dereferences in place. Otherwise,
831 * pvargDest is always cleared using VariantClear() before pvargSrc is copied
832 * to it. If clearing pvargDest fails, so does this function.
834 HRESULT WINAPI VariantCopyInd(VARIANT* pvargDest, VARIANTARG* pvargSrc)
836 VARIANTARG vTmp, *pSrc = pvargSrc;
837 VARTYPE vt;
838 HRESULT hres = S_OK;
840 TRACE("(%s,%s)\n", debugstr_variant(pvargDest), debugstr_variant(pvargSrc));
842 if (!V_ISBYREF(pvargSrc))
843 return VariantCopy(pvargDest, pvargSrc);
845 /* Argument checking is more lax than VariantCopy()... */
846 vt = V_TYPE(pvargSrc);
847 if (V_ISARRAY(pvargSrc) || (V_VT(pvargSrc) == (VT_RECORD|VT_BYREF)) ||
848 (vt > VT_NULL && vt != (VARTYPE)15 && vt < VT_VOID &&
849 !(V_VT(pvargSrc) & (VT_VECTOR|VT_RESERVED))))
851 /* OK */
853 else
854 return E_INVALIDARG; /* ...And the return value for invalid types differs too */
856 if (pvargSrc == pvargDest)
858 /* In place copy. Use a shallow copy of pvargSrc & init pvargDest.
859 * This avoids an expensive VariantCopy() call - e.g. SafeArrayCopy().
861 vTmp = *pvargSrc;
862 pSrc = &vTmp;
863 V_VT(pvargDest) = VT_EMPTY;
865 else
867 /* Copy into another variant. Free the variant in pvargDest */
868 if (FAILED(hres = VariantClear(pvargDest)))
870 TRACE("VariantClear() of destination failed\n");
871 return hres;
875 if (V_ISARRAY(pSrc))
877 /* Native doesn't check that *V_ARRAYREF(pSrc) is valid */
878 hres = SafeArrayCopy(*V_ARRAYREF(pSrc), &V_ARRAY(pvargDest));
880 else if (V_VT(pSrc) == (VT_BSTR|VT_BYREF))
882 /* Native doesn't check that *V_BSTRREF(pSrc) is valid */
883 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)*V_BSTRREF(pSrc), SysStringByteLen(*V_BSTRREF(pSrc)));
885 else if (V_VT(pSrc) == (VT_RECORD|VT_BYREF))
887 hres = VARIANT_CopyIRecordInfo(pvargDest, pvargSrc);
889 else if (V_VT(pSrc) == (VT_DISPATCH|VT_BYREF) ||
890 V_VT(pSrc) == (VT_UNKNOWN|VT_BYREF))
892 /* Native doesn't check that *V_UNKNOWNREF(pSrc) is valid */
893 V_UNKNOWN(pvargDest) = *V_UNKNOWNREF(pSrc);
894 if (*V_UNKNOWNREF(pSrc))
895 IUnknown_AddRef(*V_UNKNOWNREF(pSrc));
897 else if (V_VT(pSrc) == (VT_VARIANT|VT_BYREF))
899 /* Native doesn't check that *V_VARIANTREF(pSrc) is valid */
900 if (V_VT(V_VARIANTREF(pSrc)) == (VT_VARIANT|VT_BYREF))
901 hres = E_INVALIDARG; /* Don't dereference more than one level */
902 else
903 hres = VariantCopyInd(pvargDest, V_VARIANTREF(pSrc));
905 /* Use the dereferenced variants type value, not VT_VARIANT */
906 goto VariantCopyInd_Return;
908 else if (V_VT(pSrc) == (VT_DECIMAL|VT_BYREF))
910 memcpy(&DEC_SCALE(&V_DECIMAL(pvargDest)), &DEC_SCALE(V_DECIMALREF(pSrc)),
911 sizeof(DECIMAL) - sizeof(USHORT));
913 else
915 /* Copy the pointed to data into this variant */
916 memcpy(&V_BYREF(pvargDest), V_BYREF(pSrc), VARIANT_DataSize(pSrc));
919 V_VT(pvargDest) = V_VT(pSrc) & ~VT_BYREF;
921 VariantCopyInd_Return:
923 if (pSrc != pvargSrc)
924 VariantClear(pSrc);
926 TRACE("returning 0x%08x, %s\n", hres, debugstr_variant(pvargDest));
927 return hres;
930 /******************************************************************************
931 * VariantChangeType [OLEAUT32.12]
933 * Change the type of a variant.
935 * PARAMS
936 * pvargDest [O] Destination for the converted variant
937 * pvargSrc [O] Source variant to change the type of
938 * wFlags [I] VARIANT_ flags from "oleauto.h"
939 * vt [I] Variant type to change pvargSrc into
941 * RETURNS
942 * Success: S_OK. pvargDest contains the converted value.
943 * Failure: An HRESULT error code describing the failure.
945 * NOTES
946 * The LCID used for the conversion is LOCALE_USER_DEFAULT.
947 * See VariantChangeTypeEx.
949 HRESULT WINAPI VariantChangeType(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
950 USHORT wFlags, VARTYPE vt)
952 return VariantChangeTypeEx( pvargDest, pvargSrc, LOCALE_USER_DEFAULT, wFlags, vt );
955 /******************************************************************************
956 * VariantChangeTypeEx [OLEAUT32.147]
958 * Change the type of a variant.
960 * PARAMS
961 * pvargDest [O] Destination for the converted variant
962 * pvargSrc [O] Source variant to change the type of
963 * lcid [I] LCID for the conversion
964 * wFlags [I] VARIANT_ flags from "oleauto.h"
965 * vt [I] Variant type to change pvargSrc into
967 * RETURNS
968 * Success: S_OK. pvargDest contains the converted value.
969 * Failure: An HRESULT error code describing the failure.
971 * NOTES
972 * pvargDest and pvargSrc can point to the same variant to perform an in-place
973 * conversion. If the conversion is successful, pvargSrc will be freed.
975 HRESULT WINAPI VariantChangeTypeEx(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
976 LCID lcid, USHORT wFlags, VARTYPE vt)
978 HRESULT res = S_OK;
980 TRACE("(%s,%s,0x%08x,0x%04x,%s)\n", debugstr_variant(pvargDest),
981 debugstr_variant(pvargSrc), lcid, wFlags, debugstr_vt(vt));
983 if (vt == VT_CLSID)
984 res = DISP_E_BADVARTYPE;
985 else
987 res = VARIANT_ValidateType(V_VT(pvargSrc));
989 if (SUCCEEDED(res))
991 res = VARIANT_ValidateType(vt);
993 if (SUCCEEDED(res))
995 VARIANTARG vTmp, vSrcDeref;
997 if(V_ISBYREF(pvargSrc) && !V_BYREF(pvargSrc))
998 res = DISP_E_TYPEMISMATCH;
999 else
1001 V_VT(&vTmp) = VT_EMPTY;
1002 V_VT(&vSrcDeref) = VT_EMPTY;
1003 VariantClear(&vTmp);
1004 VariantClear(&vSrcDeref);
1007 if (SUCCEEDED(res))
1009 res = VariantCopyInd(&vSrcDeref, pvargSrc);
1010 if (SUCCEEDED(res))
1012 if (V_ISARRAY(&vSrcDeref) || (vt & VT_ARRAY))
1013 res = VARIANT_CoerceArray(&vTmp, &vSrcDeref, vt);
1014 else
1015 res = VARIANT_Coerce(&vTmp, lcid, wFlags, &vSrcDeref, vt);
1017 if (SUCCEEDED(res)) {
1018 V_VT(&vTmp) = vt;
1019 res = VariantCopy(pvargDest, &vTmp);
1021 VariantClear(&vTmp);
1022 VariantClear(&vSrcDeref);
1029 TRACE("returning 0x%08x, %s\n", res, debugstr_variant(pvargDest));
1030 return res;
1033 /* Date Conversions */
1035 #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
1037 /* Convert a VT_DATE value to a Julian Date */
1038 static inline int VARIANT_JulianFromDate(int dateIn)
1040 int julianDays = dateIn;
1042 julianDays -= DATE_MIN; /* Convert to + days from 1 Jan 100 AD */
1043 julianDays += 1757585; /* Convert to + days from 23 Nov 4713 BC (Julian) */
1044 return julianDays;
1047 /* Convert a Julian Date to a VT_DATE value */
1048 static inline int VARIANT_DateFromJulian(int dateIn)
1050 int julianDays = dateIn;
1052 julianDays -= 1757585; /* Convert to + days from 1 Jan 100 AD */
1053 julianDays += DATE_MIN; /* Convert to +/- days from 1 Jan 1899 AD */
1054 return julianDays;
1057 /* Convert a Julian date to Day/Month/Year - from PostgreSQL */
1058 static inline void VARIANT_DMYFromJulian(int jd, USHORT *year, USHORT *month, USHORT *day)
1060 int j, i, l, n;
1062 l = jd + 68569;
1063 n = l * 4 / 146097;
1064 l -= (n * 146097 + 3) / 4;
1065 i = (4000 * (l + 1)) / 1461001;
1066 l += 31 - (i * 1461) / 4;
1067 j = (l * 80) / 2447;
1068 *day = l - (j * 2447) / 80;
1069 l = j / 11;
1070 *month = (j + 2) - (12 * l);
1071 *year = 100 * (n - 49) + i + l;
1074 /* Convert Day/Month/Year to a Julian date - from PostgreSQL */
1075 static inline double VARIANT_JulianFromDMY(USHORT year, USHORT month, USHORT day)
1077 int m12 = (month - 14) / 12;
1079 return ((1461 * (year + 4800 + m12)) / 4 + (367 * (month - 2 - 12 * m12)) / 12 -
1080 (3 * ((year + 4900 + m12) / 100)) / 4 + day - 32075);
1083 /* Macros for accessing DOS format date/time fields */
1084 #define DOS_YEAR(x) (1980 + (x >> 9))
1085 #define DOS_MONTH(x) ((x >> 5) & 0xf)
1086 #define DOS_DAY(x) (x & 0x1f)
1087 #define DOS_HOUR(x) (x >> 11)
1088 #define DOS_MINUTE(x) ((x >> 5) & 0x3f)
1089 #define DOS_SECOND(x) ((x & 0x1f) << 1)
1090 /* Create a DOS format date/time */
1091 #define DOS_DATE(d,m,y) (d | (m << 5) | ((y-1980) << 9))
1092 #define DOS_TIME(h,m,s) ((s >> 1) | (m << 5) | (h << 11))
1094 /* Roll a date forwards or backwards to correct it */
1095 static HRESULT VARIANT_RollUdate(UDATE *lpUd)
1097 static const BYTE days[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
1098 short iYear, iMonth, iDay, iHour, iMinute, iSecond;
1100 /* interpret values signed */
1101 iYear = lpUd->st.wYear;
1102 iMonth = lpUd->st.wMonth;
1103 iDay = lpUd->st.wDay;
1104 iHour = lpUd->st.wHour;
1105 iMinute = lpUd->st.wMinute;
1106 iSecond = lpUd->st.wSecond;
1108 TRACE("Raw date: %d/%d/%d %d:%d:%d\n", iDay, iMonth,
1109 iYear, iHour, iMinute, iSecond);
1111 if (iYear > 9999 || iYear < -9999)
1112 return E_INVALIDARG; /* Invalid value */
1113 /* Year 0 to 29 are treated as 2000 + year */
1114 if (iYear >= 0 && iYear < 30)
1115 iYear += 2000;
1116 /* Remaining years < 100 are treated as 1900 + year */
1117 else if (iYear >= 30 && iYear < 100)
1118 iYear += 1900;
1120 iMinute += iSecond / 60;
1121 iSecond = iSecond % 60;
1122 iHour += iMinute / 60;
1123 iMinute = iMinute % 60;
1124 iDay += iHour / 24;
1125 iHour = iHour % 24;
1126 iYear += iMonth / 12;
1127 iMonth = iMonth % 12;
1128 if (iMonth<=0) {iMonth+=12; iYear--;}
1129 while (iDay > days[iMonth])
1131 if (iMonth == 2 && IsLeapYear(iYear))
1132 iDay -= 29;
1133 else
1134 iDay -= days[iMonth];
1135 iMonth++;
1136 iYear += iMonth / 12;
1137 iMonth = iMonth % 12;
1139 while (iDay <= 0)
1141 iMonth--;
1142 if (iMonth<=0) {iMonth+=12; iYear--;}
1143 if (iMonth == 2 && IsLeapYear(iYear))
1144 iDay += 29;
1145 else
1146 iDay += days[iMonth];
1149 if (iSecond<0){iSecond+=60; iMinute--;}
1150 if (iMinute<0){iMinute+=60; iHour--;}
1151 if (iHour<0) {iHour+=24; iDay--;}
1152 if (iYear<=0) iYear+=2000;
1154 lpUd->st.wYear = iYear;
1155 lpUd->st.wMonth = iMonth;
1156 lpUd->st.wDay = iDay;
1157 lpUd->st.wHour = iHour;
1158 lpUd->st.wMinute = iMinute;
1159 lpUd->st.wSecond = iSecond;
1161 TRACE("Rolled date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth,
1162 lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond);
1163 return S_OK;
1166 /**********************************************************************
1167 * DosDateTimeToVariantTime [OLEAUT32.14]
1169 * Convert a Dos format date and time into variant VT_DATE format.
1171 * PARAMS
1172 * wDosDate [I] Dos format date
1173 * wDosTime [I] Dos format time
1174 * pDateOut [O] Destination for VT_DATE format
1176 * RETURNS
1177 * Success: TRUE. pDateOut contains the converted time.
1178 * Failure: FALSE, if wDosDate or wDosTime are invalid (see notes).
1180 * NOTES
1181 * - Dos format dates can only hold dates from 1-Jan-1980 to 31-Dec-2099.
1182 * - Dos format times are accurate to only 2 second precision.
1183 * - The format of a Dos Date is:
1184 *| Bits Values Meaning
1185 *| ---- ------ -------
1186 *| 0-4 1-31 Day of the week. 0 rolls back one day. A value greater than
1187 *| the days in the month rolls forward the extra days.
1188 *| 5-8 1-12 Month of the year. 0 rolls back to December of the previous
1189 *| year. 13-15 are invalid.
1190 *| 9-15 0-119 Year based from 1980 (Max 2099). 120-127 are invalid.
1191 * - The format of a Dos Time is:
1192 *| Bits Values Meaning
1193 *| ---- ------ -------
1194 *| 0-4 0-29 Seconds/2. 30 and 31 are invalid.
1195 *| 5-10 0-59 Minutes. 60-63 are invalid.
1196 *| 11-15 0-23 Hours (24 hour clock). 24-32 are invalid.
1198 INT WINAPI DosDateTimeToVariantTime(USHORT wDosDate, USHORT wDosTime,
1199 double *pDateOut)
1201 UDATE ud;
1203 TRACE("(0x%x(%d/%d/%d),0x%x(%d:%d:%d),%p)\n",
1204 wDosDate, DOS_YEAR(wDosDate), DOS_MONTH(wDosDate), DOS_DAY(wDosDate),
1205 wDosTime, DOS_HOUR(wDosTime), DOS_MINUTE(wDosTime), DOS_SECOND(wDosTime),
1206 pDateOut);
1208 ud.st.wYear = DOS_YEAR(wDosDate);
1209 ud.st.wMonth = DOS_MONTH(wDosDate);
1210 if (ud.st.wYear > 2099 || ud.st.wMonth > 12)
1211 return FALSE;
1212 ud.st.wDay = DOS_DAY(wDosDate);
1213 ud.st.wHour = DOS_HOUR(wDosTime);
1214 ud.st.wMinute = DOS_MINUTE(wDosTime);
1215 ud.st.wSecond = DOS_SECOND(wDosTime);
1216 ud.st.wDayOfWeek = ud.st.wMilliseconds = 0;
1217 if (ud.st.wHour > 23 || ud.st.wMinute > 59 || ud.st.wSecond > 59)
1218 return FALSE; /* Invalid values in Dos*/
1220 return VarDateFromUdate(&ud, 0, pDateOut) == S_OK;
1223 /**********************************************************************
1224 * VariantTimeToDosDateTime [OLEAUT32.13]
1226 * Convert a variant format date into a Dos format date and time.
1228 * dateIn [I] VT_DATE time format
1229 * pwDosDate [O] Destination for Dos format date
1230 * pwDosTime [O] Destination for Dos format time
1232 * RETURNS
1233 * Success: TRUE. pwDosDate and pwDosTime contains the converted values.
1234 * Failure: FALSE, if dateIn cannot be represented in Dos format.
1236 * NOTES
1237 * See DosDateTimeToVariantTime() for Dos format details and bugs.
1239 INT WINAPI VariantTimeToDosDateTime(double dateIn, USHORT *pwDosDate, USHORT *pwDosTime)
1241 UDATE ud;
1243 TRACE("(%g,%p,%p)\n", dateIn, pwDosDate, pwDosTime);
1245 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1246 return FALSE;
1248 if (ud.st.wYear < 1980 || ud.st.wYear > 2099)
1249 return FALSE;
1251 *pwDosDate = DOS_DATE(ud.st.wDay, ud.st.wMonth, ud.st.wYear);
1252 *pwDosTime = DOS_TIME(ud.st.wHour, ud.st.wMinute, ud.st.wSecond);
1254 TRACE("Returning 0x%x(%d/%d/%d), 0x%x(%d:%d:%d)\n",
1255 *pwDosDate, DOS_YEAR(*pwDosDate), DOS_MONTH(*pwDosDate), DOS_DAY(*pwDosDate),
1256 *pwDosTime, DOS_HOUR(*pwDosTime), DOS_MINUTE(*pwDosTime), DOS_SECOND(*pwDosTime));
1257 return TRUE;
1260 /***********************************************************************
1261 * SystemTimeToVariantTime [OLEAUT32.184]
1263 * Convert a System format date and time into variant VT_DATE format.
1265 * PARAMS
1266 * lpSt [I] System format date and time
1267 * pDateOut [O] Destination for VT_DATE format date
1269 * RETURNS
1270 * Success: TRUE. *pDateOut contains the converted value.
1271 * Failure: FALSE, if lpSt cannot be represented in VT_DATE format.
1273 INT WINAPI SystemTimeToVariantTime(LPSYSTEMTIME lpSt, double *pDateOut)
1275 UDATE ud;
1277 TRACE("(%p->%d/%d/%d %d:%d:%d,%p)\n", lpSt, lpSt->wDay, lpSt->wMonth,
1278 lpSt->wYear, lpSt->wHour, lpSt->wMinute, lpSt->wSecond, pDateOut);
1280 if (lpSt->wMonth > 12)
1281 return FALSE;
1282 if (lpSt->wDay > 31)
1283 return FALSE;
1284 if ((short)lpSt->wYear < 0)
1285 return FALSE;
1287 ud.st = *lpSt;
1288 return VarDateFromUdate(&ud, 0, pDateOut) == S_OK;
1291 /***********************************************************************
1292 * VariantTimeToSystemTime [OLEAUT32.185]
1294 * Convert a variant VT_DATE into a System format date and time.
1296 * PARAMS
1297 * datein [I] Variant VT_DATE format date
1298 * lpSt [O] Destination for System format date and time
1300 * RETURNS
1301 * Success: TRUE. *lpSt contains the converted value.
1302 * Failure: FALSE, if dateIn is too large or small.
1304 INT WINAPI VariantTimeToSystemTime(double dateIn, LPSYSTEMTIME lpSt)
1306 UDATE ud;
1308 TRACE("(%g,%p)\n", dateIn, lpSt);
1310 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1311 return FALSE;
1313 *lpSt = ud.st;
1314 return TRUE;
1317 /***********************************************************************
1318 * VarDateFromUdateEx [OLEAUT32.319]
1320 * Convert an unpacked format date and time to a variant VT_DATE.
1322 * PARAMS
1323 * pUdateIn [I] Unpacked format date and time to convert
1324 * lcid [I] Locale identifier for the conversion
1325 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1326 * pDateOut [O] Destination for variant VT_DATE.
1328 * RETURNS
1329 * Success: S_OK. *pDateOut contains the converted value.
1330 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1332 HRESULT WINAPI VarDateFromUdateEx(UDATE *pUdateIn, LCID lcid, ULONG dwFlags, DATE *pDateOut)
1334 UDATE ud;
1335 double dateVal = 0;
1337 TRACE("(%p->%d/%d/%d %d:%d:%d:%d %d %d,0x%08x,0x%08x,%p)\n", pUdateIn,
1338 pUdateIn->st.wMonth, pUdateIn->st.wDay, pUdateIn->st.wYear,
1339 pUdateIn->st.wHour, pUdateIn->st.wMinute, pUdateIn->st.wSecond,
1340 pUdateIn->st.wMilliseconds, pUdateIn->st.wDayOfWeek,
1341 pUdateIn->wDayOfYear, lcid, dwFlags, pDateOut);
1343 if (lcid != MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT))
1344 FIXME("lcid possibly not handled, treating as en-us\n");
1345 if (dwFlags & ~(VAR_TIMEVALUEONLY|VAR_DATEVALUEONLY))
1346 FIXME("unsupported flags: %x\n", dwFlags);
1348 ud = *pUdateIn;
1350 if (dwFlags & VAR_VALIDDATE)
1351 WARN("Ignoring VAR_VALIDDATE\n");
1353 if (FAILED(VARIANT_RollUdate(&ud)))
1354 return E_INVALIDARG;
1356 /* Date */
1357 if (!(dwFlags & VAR_TIMEVALUEONLY))
1358 dateVal = VARIANT_DateFromJulian(VARIANT_JulianFromDMY(ud.st.wYear, ud.st.wMonth, ud.st.wDay));
1360 if ((dwFlags & VAR_TIMEVALUEONLY) || !(dwFlags & VAR_DATEVALUEONLY))
1362 double dateSign = (dateVal < 0.0) ? -1.0 : 1.0;
1364 /* Time */
1365 dateVal += ud.st.wHour / 24.0 * dateSign;
1366 dateVal += ud.st.wMinute / 1440.0 * dateSign;
1367 dateVal += ud.st.wSecond / 86400.0 * dateSign;
1370 TRACE("Returning %g\n", dateVal);
1371 *pDateOut = dateVal;
1372 return S_OK;
1375 /***********************************************************************
1376 * VarDateFromUdate [OLEAUT32.330]
1378 * Convert an unpacked format date and time to a variant VT_DATE.
1380 * PARAMS
1381 * pUdateIn [I] Unpacked format date and time to convert
1382 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1383 * pDateOut [O] Destination for variant VT_DATE.
1385 * RETURNS
1386 * Success: S_OK. *pDateOut contains the converted value.
1387 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1389 * NOTES
1390 * This function uses the United States English locale for the conversion. Use
1391 * VarDateFromUdateEx() for alternate locales.
1393 HRESULT WINAPI VarDateFromUdate(UDATE *pUdateIn, ULONG dwFlags, DATE *pDateOut)
1395 LCID lcid = MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT);
1397 return VarDateFromUdateEx(pUdateIn, lcid, dwFlags, pDateOut);
1400 /***********************************************************************
1401 * VarUdateFromDate [OLEAUT32.331]
1403 * Convert a variant VT_DATE into an unpacked format date and time.
1405 * PARAMS
1406 * datein [I] Variant VT_DATE format date
1407 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1408 * lpUdate [O] Destination for unpacked format date and time
1410 * RETURNS
1411 * Success: S_OK. *lpUdate contains the converted value.
1412 * Failure: E_INVALIDARG, if dateIn is too large or small.
1414 HRESULT WINAPI VarUdateFromDate(DATE dateIn, ULONG dwFlags, UDATE *lpUdate)
1416 /* Cumulative totals of days per month */
1417 static const USHORT cumulativeDays[] =
1419 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
1421 double datePart, timePart;
1422 int julianDays;
1424 TRACE("(%g,0x%08x,%p)\n", dateIn, dwFlags, lpUdate);
1426 if (dateIn <= (DATE_MIN - 1.0) || dateIn >= (DATE_MAX + 1.0))
1427 return E_INVALIDARG;
1429 datePart = dateIn < 0.0 ? ceil(dateIn) : floor(dateIn);
1430 /* Compensate for int truncation (always downwards) */
1431 timePart = fabs(dateIn - datePart) + 0.00000000001;
1432 if (timePart >= 1.0)
1433 timePart -= 0.00000000001;
1435 /* Date */
1436 julianDays = VARIANT_JulianFromDate(dateIn);
1437 VARIANT_DMYFromJulian(julianDays, &lpUdate->st.wYear, &lpUdate->st.wMonth,
1438 &lpUdate->st.wDay);
1440 datePart = (datePart + 1.5) / 7.0;
1441 lpUdate->st.wDayOfWeek = (datePart - floor(datePart)) * 7;
1442 if (lpUdate->st.wDayOfWeek == 0)
1443 lpUdate->st.wDayOfWeek = 5;
1444 else if (lpUdate->st.wDayOfWeek == 1)
1445 lpUdate->st.wDayOfWeek = 6;
1446 else
1447 lpUdate->st.wDayOfWeek -= 2;
1449 if (lpUdate->st.wMonth > 2 && IsLeapYear(lpUdate->st.wYear))
1450 lpUdate->wDayOfYear = 1; /* After February, in a leap year */
1451 else
1452 lpUdate->wDayOfYear = 0;
1454 lpUdate->wDayOfYear += cumulativeDays[lpUdate->st.wMonth];
1455 lpUdate->wDayOfYear += lpUdate->st.wDay;
1457 /* Time */
1458 timePart *= 24.0;
1459 lpUdate->st.wHour = timePart;
1460 timePart -= lpUdate->st.wHour;
1461 timePart *= 60.0;
1462 lpUdate->st.wMinute = timePart;
1463 timePart -= lpUdate->st.wMinute;
1464 timePart *= 60.0;
1465 lpUdate->st.wSecond = timePart;
1466 timePart -= lpUdate->st.wSecond;
1467 lpUdate->st.wMilliseconds = 0;
1468 if (timePart > 0.5)
1470 /* Round the milliseconds, adjusting the time/date forward if needed */
1471 if (lpUdate->st.wSecond < 59)
1472 lpUdate->st.wSecond++;
1473 else
1475 lpUdate->st.wSecond = 0;
1476 if (lpUdate->st.wMinute < 59)
1477 lpUdate->st.wMinute++;
1478 else
1480 lpUdate->st.wMinute = 0;
1481 if (lpUdate->st.wHour < 23)
1482 lpUdate->st.wHour++;
1483 else
1485 lpUdate->st.wHour = 0;
1486 /* Roll over a whole day */
1487 if (++lpUdate->st.wDay > 28)
1488 VARIANT_RollUdate(lpUdate);
1493 return S_OK;
1496 #define GET_NUMBER_TEXT(fld,name) \
1497 buff[0] = 0; \
1498 if (!GetLocaleInfoW(lcid, lctype|fld, buff, 2)) \
1499 WARN("buffer too small for " #fld "\n"); \
1500 else \
1501 if (buff[0]) lpChars->name = buff[0]; \
1502 TRACE("lcid 0x%x, " #name "=%d '%c'\n", lcid, lpChars->name, lpChars->name)
1504 /* Get the valid number characters for an lcid */
1505 static void VARIANT_GetLocalisedNumberChars(VARIANT_NUMBER_CHARS *lpChars, LCID lcid, DWORD dwFlags)
1507 static const VARIANT_NUMBER_CHARS defaultChars = { '-','+','.',',','$',0,'.',',' };
1508 static VARIANT_NUMBER_CHARS lastChars;
1509 static LCID lastLcid = -1;
1510 static DWORD lastFlags = 0;
1511 LCTYPE lctype = dwFlags & LOCALE_NOUSEROVERRIDE;
1512 WCHAR buff[4];
1514 /* To make caching thread-safe, a critical section is needed */
1515 EnterCriticalSection(&cache_cs);
1517 /* Asking for default locale entries is very expensive: It is a registry
1518 server call. So cache one locally, as Microsoft does it too */
1519 if(lcid == lastLcid && dwFlags == lastFlags)
1521 memcpy(lpChars, &lastChars, sizeof(defaultChars));
1522 LeaveCriticalSection(&cache_cs);
1523 return;
1526 memcpy(lpChars, &defaultChars, sizeof(defaultChars));
1527 GET_NUMBER_TEXT(LOCALE_SNEGATIVESIGN, cNegativeSymbol);
1528 GET_NUMBER_TEXT(LOCALE_SPOSITIVESIGN, cPositiveSymbol);
1529 GET_NUMBER_TEXT(LOCALE_SDECIMAL, cDecimalPoint);
1530 GET_NUMBER_TEXT(LOCALE_STHOUSAND, cDigitSeparator);
1531 GET_NUMBER_TEXT(LOCALE_SMONDECIMALSEP, cCurrencyDecimalPoint);
1532 GET_NUMBER_TEXT(LOCALE_SMONTHOUSANDSEP, cCurrencyDigitSeparator);
1534 /* Local currency symbols are often 2 characters */
1535 lpChars->cCurrencyLocal2 = '\0';
1536 switch(GetLocaleInfoW(lcid, lctype|LOCALE_SCURRENCY, buff, sizeof(buff)/sizeof(WCHAR)))
1538 case 3: lpChars->cCurrencyLocal2 = buff[1]; /* Fall through */
1539 case 2: lpChars->cCurrencyLocal = buff[0];
1540 break;
1541 default: WARN("buffer too small for LOCALE_SCURRENCY\n");
1543 TRACE("lcid 0x%x, cCurrencyLocal =%d,%d '%c','%c'\n", lcid, lpChars->cCurrencyLocal,
1544 lpChars->cCurrencyLocal2, lpChars->cCurrencyLocal, lpChars->cCurrencyLocal2);
1546 memcpy(&lastChars, lpChars, sizeof(defaultChars));
1547 lastLcid = lcid;
1548 lastFlags = dwFlags;
1549 LeaveCriticalSection(&cache_cs);
1552 /* Number Parsing States */
1553 #define B_PROCESSING_EXPONENT 0x1
1554 #define B_NEGATIVE_EXPONENT 0x2
1555 #define B_EXPONENT_START 0x4
1556 #define B_INEXACT_ZEROS 0x8
1557 #define B_LEADING_ZERO 0x10
1558 #define B_PROCESSING_HEX 0x20
1559 #define B_PROCESSING_OCT 0x40
1561 /**********************************************************************
1562 * VarParseNumFromStr [OLEAUT32.46]
1564 * Parse a string containing a number into a NUMPARSE structure.
1566 * PARAMS
1567 * lpszStr [I] String to parse number from
1568 * lcid [I] Locale Id for the conversion
1569 * dwFlags [I] 0, or LOCALE_NOUSEROVERRIDE to use system default number chars
1570 * pNumprs [I/O] Destination for parsed number
1571 * rgbDig [O] Destination for digits read in
1573 * RETURNS
1574 * Success: S_OK. pNumprs and rgbDig contain the parsed representation of
1575 * the number.
1576 * Failure: E_INVALIDARG, if any parameter is invalid.
1577 * DISP_E_TYPEMISMATCH, if the string is not a number or is formatted
1578 * incorrectly.
1579 * DISP_E_OVERFLOW, if rgbDig is too small to hold the number.
1581 * NOTES
1582 * pNumprs must have the following fields set:
1583 * cDig: Set to the size of rgbDig.
1584 * dwInFlags: Set to the allowable syntax of the number using NUMPRS_ flags
1585 * from "oleauto.h".
1587 * FIXME
1588 * - I am unsure if this function should parse non-Arabic (e.g. Thai)
1589 * numerals, so this has not been implemented.
1591 HRESULT WINAPI VarParseNumFromStr(OLECHAR *lpszStr, LCID lcid, ULONG dwFlags,
1592 NUMPARSE *pNumprs, BYTE *rgbDig)
1594 VARIANT_NUMBER_CHARS chars;
1595 BYTE rgbTmp[1024];
1596 DWORD dwState = B_EXPONENT_START|B_INEXACT_ZEROS;
1597 int iMaxDigits = sizeof(rgbTmp) / sizeof(BYTE);
1598 int cchUsed = 0;
1600 TRACE("(%s,%d,0x%08x,%p,%p)\n", debugstr_w(lpszStr), lcid, dwFlags, pNumprs, rgbDig);
1602 if (!pNumprs || !rgbDig)
1603 return E_INVALIDARG;
1605 if (pNumprs->cDig < iMaxDigits)
1606 iMaxDigits = pNumprs->cDig;
1608 pNumprs->cDig = 0;
1609 pNumprs->dwOutFlags = 0;
1610 pNumprs->cchUsed = 0;
1611 pNumprs->nBaseShift = 0;
1612 pNumprs->nPwr10 = 0;
1614 if (!lpszStr)
1615 return DISP_E_TYPEMISMATCH;
1617 VARIANT_GetLocalisedNumberChars(&chars, lcid, dwFlags);
1619 /* First consume all the leading symbols and space from the string */
1620 while (1)
1622 if (pNumprs->dwInFlags & NUMPRS_LEADING_WHITE && isspaceW(*lpszStr))
1624 pNumprs->dwOutFlags |= NUMPRS_LEADING_WHITE;
1627 cchUsed++;
1628 lpszStr++;
1629 } while (isspaceW(*lpszStr));
1631 else if (pNumprs->dwInFlags & NUMPRS_LEADING_PLUS &&
1632 *lpszStr == chars.cPositiveSymbol &&
1633 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS))
1635 pNumprs->dwOutFlags |= NUMPRS_LEADING_PLUS;
1636 cchUsed++;
1637 lpszStr++;
1639 else if (pNumprs->dwInFlags & NUMPRS_LEADING_MINUS &&
1640 *lpszStr == chars.cNegativeSymbol &&
1641 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS))
1643 pNumprs->dwOutFlags |= (NUMPRS_LEADING_MINUS|NUMPRS_NEG);
1644 cchUsed++;
1645 lpszStr++;
1647 else if (pNumprs->dwInFlags & NUMPRS_CURRENCY &&
1648 !(pNumprs->dwOutFlags & NUMPRS_CURRENCY) &&
1649 *lpszStr == chars.cCurrencyLocal &&
1650 (!chars.cCurrencyLocal2 || lpszStr[1] == chars.cCurrencyLocal2))
1652 pNumprs->dwOutFlags |= NUMPRS_CURRENCY;
1653 cchUsed++;
1654 lpszStr++;
1655 /* Only accept currency characters */
1656 chars.cDecimalPoint = chars.cCurrencyDecimalPoint;
1657 chars.cDigitSeparator = chars.cCurrencyDigitSeparator;
1659 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == '(' &&
1660 !(pNumprs->dwOutFlags & NUMPRS_PARENS))
1662 pNumprs->dwOutFlags |= NUMPRS_PARENS;
1663 cchUsed++;
1664 lpszStr++;
1666 else
1667 break;
1670 if (!(pNumprs->dwOutFlags & NUMPRS_CURRENCY))
1672 /* Only accept non-currency characters */
1673 chars.cCurrencyDecimalPoint = chars.cDecimalPoint;
1674 chars.cCurrencyDigitSeparator = chars.cDigitSeparator;
1677 if ((*lpszStr == '&' && (*(lpszStr+1) == 'H' || *(lpszStr+1) == 'h')) &&
1678 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1680 dwState |= B_PROCESSING_HEX;
1681 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1682 cchUsed=cchUsed+2;
1683 lpszStr=lpszStr+2;
1685 else if ((*lpszStr == '&' && (*(lpszStr+1) == 'O' || *(lpszStr+1) == 'o')) &&
1686 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1688 dwState |= B_PROCESSING_OCT;
1689 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1690 cchUsed=cchUsed+2;
1691 lpszStr=lpszStr+2;
1694 /* Strip Leading zeros */
1695 while (*lpszStr == '0')
1697 dwState |= B_LEADING_ZERO;
1698 cchUsed++;
1699 lpszStr++;
1702 while (*lpszStr)
1704 if (isdigitW(*lpszStr))
1706 if (dwState & B_PROCESSING_EXPONENT)
1708 int exponentSize = 0;
1709 if (dwState & B_EXPONENT_START)
1711 if (!isdigitW(*lpszStr))
1712 break; /* No exponent digits - invalid */
1713 while (*lpszStr == '0')
1715 /* Skip leading zero's in the exponent */
1716 cchUsed++;
1717 lpszStr++;
1721 while (isdigitW(*lpszStr))
1723 exponentSize *= 10;
1724 exponentSize += *lpszStr - '0';
1725 cchUsed++;
1726 lpszStr++;
1728 if (dwState & B_NEGATIVE_EXPONENT)
1729 exponentSize = -exponentSize;
1730 /* Add the exponent into the powers of 10 */
1731 pNumprs->nPwr10 += exponentSize;
1732 dwState &= ~(B_PROCESSING_EXPONENT|B_EXPONENT_START);
1733 lpszStr--; /* back up to allow processing of next char */
1735 else
1737 if ((pNumprs->cDig >= iMaxDigits) && !(dwState & B_PROCESSING_HEX)
1738 && !(dwState & B_PROCESSING_OCT))
1740 pNumprs->dwOutFlags |= NUMPRS_INEXACT;
1742 if (*lpszStr != '0')
1743 dwState &= ~B_INEXACT_ZEROS; /* Inexact number with non-trailing zeros */
1745 /* This digit can't be represented, but count it in nPwr10 */
1746 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1747 pNumprs->nPwr10--;
1748 else
1749 pNumprs->nPwr10++;
1751 else
1753 if ((dwState & B_PROCESSING_OCT) && ((*lpszStr == '8') || (*lpszStr == '9')))
1754 break;
1756 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1757 pNumprs->nPwr10--; /* Count decimal points in nPwr10 */
1759 rgbTmp[pNumprs->cDig] = *lpszStr - '0';
1761 pNumprs->cDig++;
1762 cchUsed++;
1765 else if (*lpszStr == chars.cDigitSeparator && pNumprs->dwInFlags & NUMPRS_THOUSANDS)
1767 pNumprs->dwOutFlags |= NUMPRS_THOUSANDS;
1768 cchUsed++;
1770 else if (*lpszStr == chars.cDecimalPoint &&
1771 pNumprs->dwInFlags & NUMPRS_DECIMAL &&
1772 !(pNumprs->dwOutFlags & (NUMPRS_DECIMAL|NUMPRS_EXPONENT)))
1774 pNumprs->dwOutFlags |= NUMPRS_DECIMAL;
1775 cchUsed++;
1777 /* If we have no digits so far, skip leading zeros */
1778 if (!pNumprs->cDig)
1780 while (lpszStr[1] == '0')
1782 dwState |= B_LEADING_ZERO;
1783 cchUsed++;
1784 lpszStr++;
1785 pNumprs->nPwr10--;
1789 else if (((*lpszStr >= 'a' && *lpszStr <= 'f') ||
1790 (*lpszStr >= 'A' && *lpszStr <= 'F')) &&
1791 dwState & B_PROCESSING_HEX)
1793 if (pNumprs->cDig >= iMaxDigits)
1795 return DISP_E_OVERFLOW;
1797 else
1799 if (*lpszStr >= 'a')
1800 rgbTmp[pNumprs->cDig] = *lpszStr - 'a' + 10;
1801 else
1802 rgbTmp[pNumprs->cDig] = *lpszStr - 'A' + 10;
1804 pNumprs->cDig++;
1805 cchUsed++;
1807 else if ((*lpszStr == 'e' || *lpszStr == 'E') &&
1808 pNumprs->dwInFlags & NUMPRS_EXPONENT &&
1809 !(pNumprs->dwOutFlags & NUMPRS_EXPONENT))
1811 dwState |= B_PROCESSING_EXPONENT;
1812 pNumprs->dwOutFlags |= NUMPRS_EXPONENT;
1813 cchUsed++;
1815 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cPositiveSymbol)
1817 cchUsed++; /* Ignore positive exponent */
1819 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cNegativeSymbol)
1821 dwState |= B_NEGATIVE_EXPONENT;
1822 cchUsed++;
1824 else
1825 break; /* Stop at an unrecognised character */
1827 lpszStr++;
1830 if (!pNumprs->cDig && dwState & B_LEADING_ZERO)
1832 /* Ensure a 0 on its own gets stored */
1833 pNumprs->cDig = 1;
1834 rgbTmp[0] = 0;
1837 if (pNumprs->dwOutFlags & NUMPRS_EXPONENT && dwState & B_PROCESSING_EXPONENT)
1839 pNumprs->cchUsed = cchUsed;
1840 WARN("didn't completely parse exponent\n");
1841 return DISP_E_TYPEMISMATCH; /* Failed to completely parse the exponent */
1844 if (pNumprs->dwOutFlags & NUMPRS_INEXACT)
1846 if (dwState & B_INEXACT_ZEROS)
1847 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* All zeros doesn't set NUMPRS_INEXACT */
1848 } else if(pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1850 /* copy all of the digits into the output digit buffer */
1851 /* this is exactly what windows does although it also returns */
1852 /* cDig of X and writes X+Y where Y>=0 number of digits to rgbDig */
1853 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1855 if (dwState & B_PROCESSING_HEX) {
1856 /* hex numbers have always the same format */
1857 pNumprs->nPwr10=0;
1858 pNumprs->nBaseShift=4;
1859 } else {
1860 if (dwState & B_PROCESSING_OCT) {
1861 /* oct numbers have always the same format */
1862 pNumprs->nPwr10=0;
1863 pNumprs->nBaseShift=3;
1864 } else {
1865 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1867 pNumprs->nPwr10++;
1868 pNumprs->cDig--;
1872 } else
1874 /* Remove trailing zeros from the last (whole number or decimal) part */
1875 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1877 pNumprs->nPwr10++;
1878 pNumprs->cDig--;
1882 if (pNumprs->cDig <= iMaxDigits)
1883 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* Ignore stripped zeros for NUMPRS_INEXACT */
1884 else
1885 pNumprs->cDig = iMaxDigits; /* Only return iMaxDigits worth of digits */
1887 /* Copy the digits we processed into rgbDig */
1888 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1890 /* Consume any trailing symbols and space */
1891 while (1)
1893 if ((pNumprs->dwInFlags & NUMPRS_TRAILING_WHITE) && isspaceW(*lpszStr))
1895 pNumprs->dwOutFlags |= NUMPRS_TRAILING_WHITE;
1898 cchUsed++;
1899 lpszStr++;
1900 } while (isspaceW(*lpszStr));
1902 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_PLUS &&
1903 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS) &&
1904 *lpszStr == chars.cPositiveSymbol)
1906 pNumprs->dwOutFlags |= NUMPRS_TRAILING_PLUS;
1907 cchUsed++;
1908 lpszStr++;
1910 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_MINUS &&
1911 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS) &&
1912 *lpszStr == chars.cNegativeSymbol)
1914 pNumprs->dwOutFlags |= (NUMPRS_TRAILING_MINUS|NUMPRS_NEG);
1915 cchUsed++;
1916 lpszStr++;
1918 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == ')' &&
1919 pNumprs->dwOutFlags & NUMPRS_PARENS)
1921 cchUsed++;
1922 lpszStr++;
1923 pNumprs->dwOutFlags |= NUMPRS_NEG;
1925 else
1926 break;
1929 if (pNumprs->dwOutFlags & NUMPRS_PARENS && !(pNumprs->dwOutFlags & NUMPRS_NEG))
1931 pNumprs->cchUsed = cchUsed;
1932 return DISP_E_TYPEMISMATCH; /* Opening parenthesis not matched */
1935 if (pNumprs->dwInFlags & NUMPRS_USE_ALL && *lpszStr != '\0')
1936 return DISP_E_TYPEMISMATCH; /* Not all chars were consumed */
1938 if (!pNumprs->cDig)
1939 return DISP_E_TYPEMISMATCH; /* No Number found */
1941 pNumprs->cchUsed = cchUsed;
1942 return S_OK;
1945 /* VTBIT flags indicating an integer value */
1946 #define INTEGER_VTBITS (VTBIT_I1|VTBIT_UI1|VTBIT_I2|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_I8|VTBIT_UI8)
1947 /* VTBIT flags indicating a real number value */
1948 #define REAL_VTBITS (VTBIT_R4|VTBIT_R8|VTBIT_CY)
1950 /* Helper macros to check whether bit pattern fits in VARIANT (x is a ULONG64 ) */
1951 #define FITS_AS_I1(x) ((x) >> 8 == 0)
1952 #define FITS_AS_I2(x) ((x) >> 16 == 0)
1953 #define FITS_AS_I4(x) ((x) >> 32 == 0)
1955 /**********************************************************************
1956 * VarNumFromParseNum [OLEAUT32.47]
1958 * Convert a NUMPARSE structure into a numeric Variant type.
1960 * PARAMS
1961 * pNumprs [I] Source for parsed number. cDig must be set to the size of rgbDig
1962 * rgbDig [I] Source for the numbers digits
1963 * dwVtBits [I] VTBIT_ flags from "oleauto.h" indicating the acceptable dest types
1964 * pVarDst [O] Destination for the converted Variant value.
1966 * RETURNS
1967 * Success: S_OK. pVarDst contains the converted value.
1968 * Failure: E_INVALIDARG, if any parameter is invalid.
1969 * DISP_E_OVERFLOW, if the number is too big for the types set in dwVtBits.
1971 * NOTES
1972 * - The smallest favoured type present in dwVtBits that can represent the
1973 * number in pNumprs without losing precision is used.
1974 * - Signed types are preferred over unsigned types of the same size.
1975 * - Preferred types in order are: integer, float, double, currency then decimal.
1976 * - Rounding (dropping of decimal points) occurs without error. See VarI8FromR8()
1977 * for details of the rounding method.
1978 * - pVarDst is not cleared before the result is stored in it.
1979 * - WinXP and Win2003 support VTBIT_I8, VTBIT_UI8 but that's buggy (by
1980 * design?): If some other VTBIT's for integers are specified together
1981 * with VTBIT_I8 and the number will fit only in a VT_I8 Windows will "cast"
1982 * the number to the smallest requested integer truncating this way the
1983 * number. Wine doesn't implement this "feature" (yet?).
1985 HRESULT WINAPI VarNumFromParseNum(NUMPARSE *pNumprs, BYTE *rgbDig,
1986 ULONG dwVtBits, VARIANT *pVarDst)
1988 /* Scale factors and limits for double arithmetic */
1989 static const double dblMultipliers[11] = {
1990 1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0,
1991 1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0
1993 static const double dblMinimums[11] = {
1994 R8_MIN, R8_MIN*10.0, R8_MIN*100.0, R8_MIN*1000.0, R8_MIN*10000.0,
1995 R8_MIN*100000.0, R8_MIN*1000000.0, R8_MIN*10000000.0,
1996 R8_MIN*100000000.0, R8_MIN*1000000000.0, R8_MIN*10000000000.0
1998 static const double dblMaximums[11] = {
1999 R8_MAX, R8_MAX/10.0, R8_MAX/100.0, R8_MAX/1000.0, R8_MAX/10000.0,
2000 R8_MAX/100000.0, R8_MAX/1000000.0, R8_MAX/10000000.0,
2001 R8_MAX/100000000.0, R8_MAX/1000000000.0, R8_MAX/10000000000.0
2004 int wholeNumberDigits, fractionalDigits, divisor10 = 0, multiplier10 = 0;
2006 TRACE("(%p,%p,0x%x,%p)\n", pNumprs, rgbDig, dwVtBits, pVarDst);
2008 if (pNumprs->nBaseShift)
2010 /* nBaseShift indicates a hex or octal number */
2011 ULONG64 ul64 = 0;
2012 LONG64 l64;
2013 int i;
2015 /* Convert the hex or octal number string into a UI64 */
2016 for (i = 0; i < pNumprs->cDig; i++)
2018 if (ul64 > ((UI8_MAX>>pNumprs->nBaseShift) - rgbDig[i]))
2020 TRACE("Overflow multiplying digits\n");
2021 return DISP_E_OVERFLOW;
2023 ul64 = (ul64<<pNumprs->nBaseShift) + rgbDig[i];
2026 /* also make a negative representation */
2027 l64=-ul64;
2029 /* Try signed and unsigned types in size order */
2030 if (dwVtBits & VTBIT_I1 && FITS_AS_I1(ul64))
2032 V_VT(pVarDst) = VT_I1;
2033 V_I1(pVarDst) = ul64;
2034 return S_OK;
2036 else if (dwVtBits & VTBIT_UI1 && FITS_AS_I1(ul64))
2038 V_VT(pVarDst) = VT_UI1;
2039 V_UI1(pVarDst) = ul64;
2040 return S_OK;
2042 else if (dwVtBits & VTBIT_I2 && FITS_AS_I2(ul64))
2044 V_VT(pVarDst) = VT_I2;
2045 V_I2(pVarDst) = ul64;
2046 return S_OK;
2048 else if (dwVtBits & VTBIT_UI2 && FITS_AS_I2(ul64))
2050 V_VT(pVarDst) = VT_UI2;
2051 V_UI2(pVarDst) = ul64;
2052 return S_OK;
2054 else if (dwVtBits & VTBIT_I4 && FITS_AS_I4(ul64))
2056 V_VT(pVarDst) = VT_I4;
2057 V_I4(pVarDst) = ul64;
2058 return S_OK;
2060 else if (dwVtBits & VTBIT_UI4 && FITS_AS_I4(ul64))
2062 V_VT(pVarDst) = VT_UI4;
2063 V_UI4(pVarDst) = ul64;
2064 return S_OK;
2066 else if (dwVtBits & VTBIT_I8 && ((ul64 <= I8_MAX)||(l64>=I8_MIN)))
2068 V_VT(pVarDst) = VT_I8;
2069 V_I8(pVarDst) = ul64;
2070 return S_OK;
2072 else if (dwVtBits & VTBIT_UI8)
2074 V_VT(pVarDst) = VT_UI8;
2075 V_UI8(pVarDst) = ul64;
2076 return S_OK;
2078 else if ((dwVtBits & VTBIT_DECIMAL) == VTBIT_DECIMAL)
2080 V_VT(pVarDst) = VT_DECIMAL;
2081 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2082 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2083 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2084 return S_OK;
2086 else if (dwVtBits & VTBIT_R4 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2088 V_VT(pVarDst) = VT_R4;
2089 if (ul64 <= I4_MAX)
2090 V_R4(pVarDst) = ul64;
2091 else
2092 V_R4(pVarDst) = l64;
2093 return S_OK;
2095 else if (dwVtBits & VTBIT_R8 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2097 V_VT(pVarDst) = VT_R8;
2098 if (ul64 <= I4_MAX)
2099 V_R8(pVarDst) = ul64;
2100 else
2101 V_R8(pVarDst) = l64;
2102 return S_OK;
2105 TRACE("Overflow: possible return types: 0x%x, value: %s\n", dwVtBits, wine_dbgstr_longlong(ul64));
2106 return DISP_E_OVERFLOW;
2109 /* Count the number of relevant fractional and whole digits stored,
2110 * And compute the divisor/multiplier to scale the number by.
2112 if (pNumprs->nPwr10 < 0)
2114 if (-pNumprs->nPwr10 >= pNumprs->cDig)
2116 /* A real number < +/- 1.0 e.g. 0.1024 or 0.01024 */
2117 wholeNumberDigits = 0;
2118 fractionalDigits = pNumprs->cDig;
2119 divisor10 = -pNumprs->nPwr10;
2121 else
2123 /* An exactly represented real number e.g. 1.024 */
2124 wholeNumberDigits = pNumprs->cDig + pNumprs->nPwr10;
2125 fractionalDigits = pNumprs->cDig - wholeNumberDigits;
2126 divisor10 = pNumprs->cDig - wholeNumberDigits;
2129 else if (pNumprs->nPwr10 == 0)
2131 /* An exactly represented whole number e.g. 1024 */
2132 wholeNumberDigits = pNumprs->cDig;
2133 fractionalDigits = 0;
2135 else /* pNumprs->nPwr10 > 0 */
2137 /* A whole number followed by nPwr10 0's e.g. 102400 */
2138 wholeNumberDigits = pNumprs->cDig;
2139 fractionalDigits = 0;
2140 multiplier10 = pNumprs->nPwr10;
2143 TRACE("cDig %d; nPwr10 %d, whole %d, frac %d mult %d; div %d\n",
2144 pNumprs->cDig, pNumprs->nPwr10, wholeNumberDigits, fractionalDigits,
2145 multiplier10, divisor10);
2147 if (dwVtBits & (INTEGER_VTBITS|VTBIT_DECIMAL) &&
2148 (!fractionalDigits || !(dwVtBits & (REAL_VTBITS|VTBIT_CY|VTBIT_DECIMAL))))
2150 /* We have one or more integer output choices, and either:
2151 * 1) An integer input value, or
2152 * 2) A real number input value but no floating output choices.
2153 * Alternately, we have a DECIMAL output available and an integer input.
2155 * So, place the integer value into pVarDst, using the smallest type
2156 * possible and preferring signed over unsigned types.
2158 BOOL bOverflow = FALSE, bNegative;
2159 ULONG64 ul64 = 0;
2160 int i;
2162 /* Convert the integer part of the number into a UI8 */
2163 for (i = 0; i < wholeNumberDigits; i++)
2165 if (ul64 > UI8_MAX / 10 || (ul64 == UI8_MAX / 10 && rgbDig[i] > UI8_MAX % 10))
2167 TRACE("Overflow multiplying digits\n");
2168 bOverflow = TRUE;
2169 break;
2171 ul64 = ul64 * 10 + rgbDig[i];
2174 /* Account for the scale of the number */
2175 if (!bOverflow && multiplier10)
2177 for (i = 0; i < multiplier10; i++)
2179 if (ul64 > (UI8_MAX / 10))
2181 TRACE("Overflow scaling number\n");
2182 bOverflow = TRUE;
2183 break;
2185 ul64 = ul64 * 10;
2189 /* If we have any fractional digits, round the value.
2190 * Note we don't have to do this if divisor10 is < 1,
2191 * because this means the fractional part must be < 0.5
2193 if (!bOverflow && fractionalDigits && divisor10 > 0)
2195 const BYTE* fracDig = rgbDig + wholeNumberDigits;
2196 BOOL bAdjust = FALSE;
2198 TRACE("first decimal value is %d\n", *fracDig);
2200 if (*fracDig > 5)
2201 bAdjust = TRUE; /* > 0.5 */
2202 else if (*fracDig == 5)
2204 for (i = 1; i < fractionalDigits; i++)
2206 if (fracDig[i])
2208 bAdjust = TRUE; /* > 0.5 */
2209 break;
2212 /* If exactly 0.5, round only odd values */
2213 if (i == fractionalDigits && (ul64 & 1))
2214 bAdjust = TRUE;
2217 if (bAdjust)
2219 if (ul64 == UI8_MAX)
2221 TRACE("Overflow after rounding\n");
2222 bOverflow = TRUE;
2224 ul64++;
2228 /* Zero is not a negative number */
2229 bNegative = pNumprs->dwOutFlags & NUMPRS_NEG && ul64;
2231 TRACE("Integer value is 0x%s, bNeg %d\n", wine_dbgstr_longlong(ul64), bNegative);
2233 /* For negative integers, try the signed types in size order */
2234 if (!bOverflow && bNegative)
2236 if (dwVtBits & (VTBIT_I1|VTBIT_I2|VTBIT_I4|VTBIT_I8))
2238 if (dwVtBits & VTBIT_I1 && ul64 <= -I1_MIN)
2240 V_VT(pVarDst) = VT_I1;
2241 V_I1(pVarDst) = -ul64;
2242 return S_OK;
2244 else if (dwVtBits & VTBIT_I2 && ul64 <= -I2_MIN)
2246 V_VT(pVarDst) = VT_I2;
2247 V_I2(pVarDst) = -ul64;
2248 return S_OK;
2250 else if (dwVtBits & VTBIT_I4 && ul64 <= -((LONGLONG)I4_MIN))
2252 V_VT(pVarDst) = VT_I4;
2253 V_I4(pVarDst) = -ul64;
2254 return S_OK;
2256 else if (dwVtBits & VTBIT_I8 && ul64 <= (ULONGLONG)I8_MAX + 1)
2258 V_VT(pVarDst) = VT_I8;
2259 V_I8(pVarDst) = -ul64;
2260 return S_OK;
2262 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2264 /* Decimal is only output choice left - fast path */
2265 V_VT(pVarDst) = VT_DECIMAL;
2266 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_NEG,0);
2267 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2268 DEC_LO64(&V_DECIMAL(pVarDst)) = -ul64;
2269 return S_OK;
2273 else if (!bOverflow)
2275 /* For positive integers, try signed then unsigned types in size order */
2276 if (dwVtBits & VTBIT_I1 && ul64 <= I1_MAX)
2278 V_VT(pVarDst) = VT_I1;
2279 V_I1(pVarDst) = ul64;
2280 return S_OK;
2282 else if (dwVtBits & VTBIT_UI1 && ul64 <= UI1_MAX)
2284 V_VT(pVarDst) = VT_UI1;
2285 V_UI1(pVarDst) = ul64;
2286 return S_OK;
2288 else if (dwVtBits & VTBIT_I2 && ul64 <= I2_MAX)
2290 V_VT(pVarDst) = VT_I2;
2291 V_I2(pVarDst) = ul64;
2292 return S_OK;
2294 else if (dwVtBits & VTBIT_UI2 && ul64 <= UI2_MAX)
2296 V_VT(pVarDst) = VT_UI2;
2297 V_UI2(pVarDst) = ul64;
2298 return S_OK;
2300 else if (dwVtBits & VTBIT_I4 && ul64 <= I4_MAX)
2302 V_VT(pVarDst) = VT_I4;
2303 V_I4(pVarDst) = ul64;
2304 return S_OK;
2306 else if (dwVtBits & VTBIT_UI4 && ul64 <= UI4_MAX)
2308 V_VT(pVarDst) = VT_UI4;
2309 V_UI4(pVarDst) = ul64;
2310 return S_OK;
2312 else if (dwVtBits & VTBIT_I8 && ul64 <= I8_MAX)
2314 V_VT(pVarDst) = VT_I8;
2315 V_I8(pVarDst) = ul64;
2316 return S_OK;
2318 else if (dwVtBits & VTBIT_UI8)
2320 V_VT(pVarDst) = VT_UI8;
2321 V_UI8(pVarDst) = ul64;
2322 return S_OK;
2324 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2326 /* Decimal is only output choice left - fast path */
2327 V_VT(pVarDst) = VT_DECIMAL;
2328 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2329 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2330 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2331 return S_OK;
2336 if (dwVtBits & REAL_VTBITS)
2338 /* Try to put the number into a float or real */
2339 BOOL bOverflow = FALSE, bNegative = pNumprs->dwOutFlags & NUMPRS_NEG;
2340 double whole = 0.0;
2341 int i;
2343 /* Convert the number into a double */
2344 for (i = 0; i < pNumprs->cDig; i++)
2345 whole = whole * 10.0 + rgbDig[i];
2347 TRACE("Whole double value is %16.16g\n", whole);
2349 /* Account for the scale */
2350 while (multiplier10 > 10)
2352 if (whole > dblMaximums[10])
2354 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2355 bOverflow = TRUE;
2356 break;
2358 whole = whole * dblMultipliers[10];
2359 multiplier10 -= 10;
2361 if (multiplier10 && !bOverflow)
2363 if (whole > dblMaximums[multiplier10])
2365 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2366 bOverflow = TRUE;
2368 else
2369 whole = whole * dblMultipliers[multiplier10];
2372 if (!bOverflow)
2373 TRACE("Scaled double value is %16.16g\n", whole);
2375 while (divisor10 > 10 && !bOverflow)
2377 if (whole < dblMinimums[10] && whole != 0)
2379 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2380 bOverflow = TRUE;
2381 break;
2383 whole = whole / dblMultipliers[10];
2384 divisor10 -= 10;
2386 if (divisor10 && !bOverflow)
2388 if (whole < dblMinimums[divisor10] && whole != 0)
2390 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2391 bOverflow = TRUE;
2393 else
2394 whole = whole / dblMultipliers[divisor10];
2396 if (!bOverflow)
2397 TRACE("Final double value is %16.16g\n", whole);
2399 if (dwVtBits & VTBIT_R4 &&
2400 ((whole <= R4_MAX && whole >= R4_MIN) || whole == 0.0))
2402 TRACE("Set R4 to final value\n");
2403 V_VT(pVarDst) = VT_R4; /* Fits into a float */
2404 V_R4(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2405 return S_OK;
2408 if (dwVtBits & VTBIT_R8)
2410 TRACE("Set R8 to final value\n");
2411 V_VT(pVarDst) = VT_R8; /* Fits into a double */
2412 V_R8(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2413 return S_OK;
2416 if (dwVtBits & VTBIT_CY)
2418 if (SUCCEEDED(VarCyFromR8(bNegative ? -whole : whole, &V_CY(pVarDst))))
2420 V_VT(pVarDst) = VT_CY; /* Fits into a currency */
2421 TRACE("Set CY to final value\n");
2422 return S_OK;
2424 TRACE("Value Overflows CY\n");
2428 if (dwVtBits & VTBIT_DECIMAL)
2430 int i;
2431 ULONG carry;
2432 ULONG64 tmp;
2433 DECIMAL* pDec = &V_DECIMAL(pVarDst);
2435 DECIMAL_SETZERO(*pDec);
2436 DEC_LO32(pDec) = 0;
2438 if (pNumprs->dwOutFlags & NUMPRS_NEG)
2439 DEC_SIGN(pDec) = DECIMAL_NEG;
2440 else
2441 DEC_SIGN(pDec) = DECIMAL_POS;
2443 /* Factor the significant digits */
2444 for (i = 0; i < pNumprs->cDig; i++)
2446 tmp = (ULONG64)DEC_LO32(pDec) * 10 + rgbDig[i];
2447 carry = (ULONG)(tmp >> 32);
2448 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2449 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2450 carry = (ULONG)(tmp >> 32);
2451 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2452 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2453 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2455 if (tmp >> 32 & UI4_MAX)
2457 VarNumFromParseNum_DecOverflow:
2458 TRACE("Overflow\n");
2459 DEC_LO32(pDec) = DEC_MID32(pDec) = DEC_HI32(pDec) = UI4_MAX;
2460 return DISP_E_OVERFLOW;
2464 /* Account for the scale of the number */
2465 while (multiplier10 > 0)
2467 tmp = (ULONG64)DEC_LO32(pDec) * 10;
2468 carry = (ULONG)(tmp >> 32);
2469 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2470 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2471 carry = (ULONG)(tmp >> 32);
2472 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2473 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2474 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2476 if (tmp >> 32 & UI4_MAX)
2477 goto VarNumFromParseNum_DecOverflow;
2478 multiplier10--;
2480 DEC_SCALE(pDec) = divisor10;
2482 V_VT(pVarDst) = VT_DECIMAL;
2483 return S_OK;
2485 return DISP_E_OVERFLOW; /* No more output choices */
2488 /**********************************************************************
2489 * VarCat [OLEAUT32.318]
2491 * Concatenates one variant onto another.
2493 * PARAMS
2494 * left [I] First variant
2495 * right [I] Second variant
2496 * result [O] Result variant
2498 * RETURNS
2499 * Success: S_OK.
2500 * Failure: An HRESULT error code indicating the error.
2502 HRESULT WINAPI VarCat(LPVARIANT left, LPVARIANT right, LPVARIANT out)
2504 VARTYPE leftvt,rightvt,resultvt;
2505 HRESULT hres;
2506 static WCHAR str_true[32];
2507 static WCHAR str_false[32];
2508 static const WCHAR sz_empty[] = {'\0'};
2509 leftvt = V_VT(left);
2510 rightvt = V_VT(right);
2512 TRACE("%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), out);
2514 if (!str_true[0]) {
2515 VARIANT_GetLocalisedText(LOCALE_USER_DEFAULT, IDS_FALSE, str_false);
2516 VARIANT_GetLocalisedText(LOCALE_USER_DEFAULT, IDS_TRUE, str_true);
2519 /* when both left and right are NULL the result is NULL */
2520 if (leftvt == VT_NULL && rightvt == VT_NULL)
2522 V_VT(out) = VT_NULL;
2523 return S_OK;
2526 hres = S_OK;
2527 resultvt = VT_EMPTY;
2529 /* There are many special case for errors and return types */
2530 if (leftvt == VT_VARIANT && (rightvt == VT_ERROR ||
2531 rightvt == VT_DATE || rightvt == VT_DECIMAL))
2532 hres = DISP_E_TYPEMISMATCH;
2533 else if ((leftvt == VT_I2 || leftvt == VT_I4 ||
2534 leftvt == VT_R4 || leftvt == VT_R8 ||
2535 leftvt == VT_CY || leftvt == VT_BOOL ||
2536 leftvt == VT_BSTR || leftvt == VT_I1 ||
2537 leftvt == VT_UI1 || leftvt == VT_UI2 ||
2538 leftvt == VT_UI4 || leftvt == VT_I8 ||
2539 leftvt == VT_UI8 || leftvt == VT_INT ||
2540 leftvt == VT_UINT || leftvt == VT_EMPTY ||
2541 leftvt == VT_NULL || leftvt == VT_DATE ||
2542 leftvt == VT_DECIMAL || leftvt == VT_DISPATCH)
2544 (rightvt == VT_I2 || rightvt == VT_I4 ||
2545 rightvt == VT_R4 || rightvt == VT_R8 ||
2546 rightvt == VT_CY || rightvt == VT_BOOL ||
2547 rightvt == VT_BSTR || rightvt == VT_I1 ||
2548 rightvt == VT_UI1 || rightvt == VT_UI2 ||
2549 rightvt == VT_UI4 || rightvt == VT_I8 ||
2550 rightvt == VT_UI8 || rightvt == VT_INT ||
2551 rightvt == VT_UINT || rightvt == VT_EMPTY ||
2552 rightvt == VT_NULL || rightvt == VT_DATE ||
2553 rightvt == VT_DECIMAL || rightvt == VT_DISPATCH))
2554 resultvt = VT_BSTR;
2555 else if (rightvt == VT_ERROR && leftvt < VT_VOID)
2556 hres = DISP_E_TYPEMISMATCH;
2557 else if (leftvt == VT_ERROR && (rightvt == VT_DATE ||
2558 rightvt == VT_ERROR || rightvt == VT_DECIMAL))
2559 hres = DISP_E_TYPEMISMATCH;
2560 else if (rightvt == VT_DATE || rightvt == VT_ERROR ||
2561 rightvt == VT_DECIMAL)
2562 hres = DISP_E_BADVARTYPE;
2563 else if (leftvt == VT_ERROR || rightvt == VT_ERROR)
2564 hres = DISP_E_TYPEMISMATCH;
2565 else if (leftvt == VT_VARIANT)
2566 hres = DISP_E_TYPEMISMATCH;
2567 else if (rightvt == VT_VARIANT && (leftvt == VT_EMPTY ||
2568 leftvt == VT_NULL || leftvt == VT_I2 ||
2569 leftvt == VT_I4 || leftvt == VT_R4 ||
2570 leftvt == VT_R8 || leftvt == VT_CY ||
2571 leftvt == VT_DATE || leftvt == VT_BSTR ||
2572 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
2573 leftvt == VT_I1 || leftvt == VT_UI1 ||
2574 leftvt == VT_UI2 || leftvt == VT_UI4 ||
2575 leftvt == VT_I8 || leftvt == VT_UI8 ||
2576 leftvt == VT_INT || leftvt == VT_UINT))
2577 hres = DISP_E_TYPEMISMATCH;
2578 else
2579 hres = DISP_E_BADVARTYPE;
2581 /* if result type is not S_OK, then no need to go further */
2582 if (hres != S_OK)
2584 V_VT(out) = resultvt;
2585 return hres;
2587 /* Else proceed with formatting inputs to strings */
2588 else
2590 VARIANT bstrvar_left, bstrvar_right;
2591 V_VT(out) = VT_BSTR;
2593 VariantInit(&bstrvar_left);
2594 VariantInit(&bstrvar_right);
2596 /* Convert left side variant to string */
2597 if (leftvt != VT_BSTR)
2599 if (leftvt == VT_BOOL)
2601 /* Bools are handled as localized True/False strings instead of 0/-1 as in MSDN */
2602 V_VT(&bstrvar_left) = VT_BSTR;
2603 if (V_BOOL(left))
2604 V_BSTR(&bstrvar_left) = SysAllocString(str_true);
2605 else
2606 V_BSTR(&bstrvar_left) = SysAllocString(str_false);
2608 /* Fill with empty string for later concat with right side */
2609 else if (leftvt == VT_NULL)
2611 V_VT(&bstrvar_left) = VT_BSTR;
2612 V_BSTR(&bstrvar_left) = SysAllocString(sz_empty);
2614 else
2616 hres = VariantChangeTypeEx(&bstrvar_left,left,0,0,VT_BSTR);
2617 if (hres != S_OK) {
2618 VariantClear(&bstrvar_left);
2619 VariantClear(&bstrvar_right);
2620 if (leftvt == VT_NULL && (rightvt == VT_EMPTY ||
2621 rightvt == VT_NULL || rightvt == VT_I2 ||
2622 rightvt == VT_I4 || rightvt == VT_R4 ||
2623 rightvt == VT_R8 || rightvt == VT_CY ||
2624 rightvt == VT_DATE || rightvt == VT_BSTR ||
2625 rightvt == VT_BOOL || rightvt == VT_DECIMAL ||
2626 rightvt == VT_I1 || rightvt == VT_UI1 ||
2627 rightvt == VT_UI2 || rightvt == VT_UI4 ||
2628 rightvt == VT_I8 || rightvt == VT_UI8 ||
2629 rightvt == VT_INT || rightvt == VT_UINT))
2630 return DISP_E_BADVARTYPE;
2631 return hres;
2636 /* convert right side variant to string */
2637 if (rightvt != VT_BSTR)
2639 if (rightvt == VT_BOOL)
2641 /* Bools are handled as localized True/False strings instead of 0/-1 as in MSDN */
2642 V_VT(&bstrvar_right) = VT_BSTR;
2643 if (V_BOOL(right))
2644 V_BSTR(&bstrvar_right) = SysAllocString(str_true);
2645 else
2646 V_BSTR(&bstrvar_right) = SysAllocString(str_false);
2648 /* Fill with empty string for later concat with right side */
2649 else if (rightvt == VT_NULL)
2651 V_VT(&bstrvar_right) = VT_BSTR;
2652 V_BSTR(&bstrvar_right) = SysAllocString(sz_empty);
2654 else
2656 hres = VariantChangeTypeEx(&bstrvar_right,right,0,0,VT_BSTR);
2657 if (hres != S_OK) {
2658 VariantClear(&bstrvar_left);
2659 VariantClear(&bstrvar_right);
2660 if (rightvt == VT_NULL && (leftvt == VT_EMPTY ||
2661 leftvt == VT_NULL || leftvt == VT_I2 ||
2662 leftvt == VT_I4 || leftvt == VT_R4 ||
2663 leftvt == VT_R8 || leftvt == VT_CY ||
2664 leftvt == VT_DATE || leftvt == VT_BSTR ||
2665 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
2666 leftvt == VT_I1 || leftvt == VT_UI1 ||
2667 leftvt == VT_UI2 || leftvt == VT_UI4 ||
2668 leftvt == VT_I8 || leftvt == VT_UI8 ||
2669 leftvt == VT_INT || leftvt == VT_UINT))
2670 return DISP_E_BADVARTYPE;
2671 return hres;
2676 /* Concat the resulting strings together */
2677 if (leftvt == VT_BSTR && rightvt == VT_BSTR)
2678 VarBstrCat (V_BSTR(left), V_BSTR(right), &V_BSTR(out));
2679 else if (leftvt != VT_BSTR && rightvt != VT_BSTR)
2680 VarBstrCat (V_BSTR(&bstrvar_left), V_BSTR(&bstrvar_right), &V_BSTR(out));
2681 else if (leftvt != VT_BSTR && rightvt == VT_BSTR)
2682 VarBstrCat (V_BSTR(&bstrvar_left), V_BSTR(right), &V_BSTR(out));
2683 else if (leftvt == VT_BSTR && rightvt != VT_BSTR)
2684 VarBstrCat (V_BSTR(left), V_BSTR(&bstrvar_right), &V_BSTR(out));
2686 VariantClear(&bstrvar_left);
2687 VariantClear(&bstrvar_right);
2688 return S_OK;
2693 /* Wrapper around VariantChangeTypeEx() which permits changing a
2694 variant with VT_RESERVED flag set. Needed by VarCmp. */
2695 static HRESULT _VarChangeTypeExWrap (VARIANTARG* pvargDest,
2696 VARIANTARG* pvargSrc, LCID lcid, USHORT wFlags, VARTYPE vt)
2698 VARIANTARG vtmpsrc = *pvargSrc;
2700 V_VT(&vtmpsrc) &= ~VT_RESERVED;
2701 return VariantChangeTypeEx(pvargDest,&vtmpsrc,lcid,wFlags,vt);
2704 /**********************************************************************
2705 * VarCmp [OLEAUT32.176]
2707 * Compare two variants.
2709 * PARAMS
2710 * left [I] First variant
2711 * right [I] Second variant
2712 * lcid [I] LCID (locale identifier) for the comparison
2713 * flags [I] Flags to be used in the comparison:
2714 * NORM_IGNORECASE, NORM_IGNORENONSPACE, NORM_IGNORESYMBOLS,
2715 * NORM_IGNOREWIDTH, NORM_IGNOREKANATYPE, NORM_IGNOREKASHIDA
2717 * RETURNS
2718 * VARCMP_LT: left variant is less than right variant.
2719 * VARCMP_EQ: input variants are equal.
2720 * VARCMP_GT: left variant is greater than right variant.
2721 * VARCMP_NULL: either one of the input variants is NULL.
2722 * Failure: An HRESULT error code indicating the error.
2724 * NOTES
2725 * Native VarCmp up to and including WinXP doesn't like I1, UI2, VT_UI4,
2726 * UI8 and UINT as input variants. INT is accepted only as left variant.
2728 * If both input variants are ERROR then VARCMP_EQ will be returned, else
2729 * an ERROR variant will trigger an error.
2731 * Both input variants can have VT_RESERVED flag set which is ignored
2732 * unless one and only one of the variants is a BSTR and the other one
2733 * is not an EMPTY variant. All four VT_RESERVED combinations have a
2734 * different meaning:
2735 * - BSTR and other: BSTR is always greater than the other variant.
2736 * - BSTR|VT_RESERVED and other: a string comparison is performed.
2737 * - BSTR and other|VT_RESERVED: If the BSTR is a number a numeric
2738 * comparison will take place else the BSTR is always greater.
2739 * - BSTR|VT_RESERVED and other|VT_RESERVED: It seems that the other
2740 * variant is ignored and the return value depends only on the sign
2741 * of the BSTR if it is a number else the BSTR is always greater. A
2742 * positive BSTR is greater, a negative one is smaller than the other
2743 * variant.
2745 * SEE
2746 * VarBstrCmp for the lcid and flags usage.
2748 HRESULT WINAPI VarCmp(LPVARIANT left, LPVARIANT right, LCID lcid, DWORD flags)
2750 VARTYPE lvt, rvt, vt;
2751 VARIANT rv,lv;
2752 DWORD xmask;
2753 HRESULT rc;
2755 TRACE("(%s,%s,0x%08x,0x%08x)\n", debugstr_variant(left), debugstr_variant(right), lcid, flags);
2757 lvt = V_VT(left) & VT_TYPEMASK;
2758 rvt = V_VT(right) & VT_TYPEMASK;
2759 xmask = (1 << lvt) | (1 << rvt);
2761 /* If we have any flag set except VT_RESERVED bail out.
2762 Same for the left input variant type > VT_INT and for the
2763 right input variant type > VT_I8. Yes, VT_INT is only supported
2764 as left variant. Go figure */
2765 if (((V_VT(left) | V_VT(right)) & ~VT_TYPEMASK & ~VT_RESERVED) ||
2766 lvt > VT_INT || rvt > VT_I8) {
2767 return DISP_E_BADVARTYPE;
2770 /* Don't ask me why but native VarCmp cannot handle: VT_I1, VT_UI2, VT_UI4,
2771 VT_UINT and VT_UI8. Tested with DCOM98, Win2k, WinXP */
2772 if (rvt == VT_INT || xmask & (VTBIT_I1 | VTBIT_UI2 | VTBIT_UI4 | VTBIT_UI8 |
2773 VTBIT_DISPATCH | VTBIT_VARIANT | VTBIT_UNKNOWN | VTBIT_15))
2774 return DISP_E_TYPEMISMATCH;
2776 /* If both variants are VT_ERROR return VARCMP_EQ */
2777 if (xmask == VTBIT_ERROR)
2778 return VARCMP_EQ;
2779 else if (xmask & VTBIT_ERROR)
2780 return DISP_E_TYPEMISMATCH;
2782 if (xmask & VTBIT_NULL)
2783 return VARCMP_NULL;
2785 VariantInit(&lv);
2786 VariantInit(&rv);
2788 /* Two BSTRs, ignore VT_RESERVED */
2789 if (xmask == VTBIT_BSTR)
2790 return VarBstrCmp(V_BSTR(left), V_BSTR(right), lcid, flags);
2792 /* A BSTR and another variant; we have to take care of VT_RESERVED */
2793 if (xmask & VTBIT_BSTR) {
2794 VARIANT *bstrv, *nonbv;
2795 VARTYPE nonbvt;
2796 int swap = 0;
2798 /* Swap the variants so the BSTR is always on the left */
2799 if (lvt == VT_BSTR) {
2800 bstrv = left;
2801 nonbv = right;
2802 nonbvt = rvt;
2803 } else {
2804 swap = 1;
2805 bstrv = right;
2806 nonbv = left;
2807 nonbvt = lvt;
2810 /* BSTR and EMPTY: ignore VT_RESERVED */
2811 if (nonbvt == VT_EMPTY)
2812 rc = (!V_BSTR(bstrv) || !*V_BSTR(bstrv)) ? VARCMP_EQ : VARCMP_GT;
2813 else {
2814 VARTYPE breserv = V_VT(bstrv) & ~VT_TYPEMASK;
2815 VARTYPE nreserv = V_VT(nonbv) & ~VT_TYPEMASK;
2817 if (!breserv && !nreserv)
2818 /* No VT_RESERVED set ==> BSTR always greater */
2819 rc = VARCMP_GT;
2820 else if (breserv && !nreserv) {
2821 /* BSTR has VT_RESERVED set. Do a string comparison */
2822 rc = VariantChangeTypeEx(&rv,nonbv,lcid,0,VT_BSTR);
2823 if (FAILED(rc))
2824 return rc;
2825 rc = VarBstrCmp(V_BSTR(bstrv), V_BSTR(&rv), lcid, flags);
2826 VariantClear(&rv);
2827 } else if (V_BSTR(bstrv) && *V_BSTR(bstrv)) {
2828 /* Non NULL nor empty BSTR */
2829 /* If the BSTR is not a number the BSTR is greater */
2830 rc = _VarChangeTypeExWrap(&lv,bstrv,lcid,0,VT_R8);
2831 if (FAILED(rc))
2832 rc = VARCMP_GT;
2833 else if (breserv && nreserv)
2834 /* FIXME: This is strange: with both VT_RESERVED set it
2835 looks like the result depends only on the sign of
2836 the BSTR number */
2837 rc = (V_R8(&lv) >= 0) ? VARCMP_GT : VARCMP_LT;
2838 else
2839 /* Numeric comparison, will be handled below.
2840 VARCMP_NULL used only to break out. */
2841 rc = VARCMP_NULL;
2842 VariantClear(&lv);
2843 VariantClear(&rv);
2844 } else
2845 /* Empty or NULL BSTR */
2846 rc = VARCMP_GT;
2848 /* Fixup the return code if we swapped left and right */
2849 if (swap) {
2850 if (rc == VARCMP_GT)
2851 rc = VARCMP_LT;
2852 else if (rc == VARCMP_LT)
2853 rc = VARCMP_GT;
2855 if (rc != VARCMP_NULL)
2856 return rc;
2859 if (xmask & VTBIT_DECIMAL)
2860 vt = VT_DECIMAL;
2861 else if (xmask & VTBIT_BSTR)
2862 vt = VT_R8;
2863 else if (xmask & VTBIT_R4)
2864 vt = VT_R4;
2865 else if (xmask & (VTBIT_R8 | VTBIT_DATE))
2866 vt = VT_R8;
2867 else if (xmask & VTBIT_CY)
2868 vt = VT_CY;
2869 else
2870 /* default to I8 */
2871 vt = VT_I8;
2873 /* Coerce the variants */
2874 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2875 if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2876 /* Overflow, change to R8 */
2877 vt = VT_R8;
2878 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2880 if (FAILED(rc))
2881 return rc;
2882 rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2883 if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2884 /* Overflow, change to R8 */
2885 vt = VT_R8;
2886 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2887 if (FAILED(rc))
2888 return rc;
2889 rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2891 if (FAILED(rc))
2892 return rc;
2894 #define _VARCMP(a,b) \
2895 (((a) == (b)) ? VARCMP_EQ : (((a) < (b)) ? VARCMP_LT : VARCMP_GT))
2897 switch (vt) {
2898 case VT_CY:
2899 return VarCyCmp(V_CY(&lv), V_CY(&rv));
2900 case VT_DECIMAL:
2901 return VarDecCmp(&V_DECIMAL(&lv), &V_DECIMAL(&rv));
2902 case VT_I8:
2903 return _VARCMP(V_I8(&lv), V_I8(&rv));
2904 case VT_R4:
2905 return _VARCMP(V_R4(&lv), V_R4(&rv));
2906 case VT_R8:
2907 return _VARCMP(V_R8(&lv), V_R8(&rv));
2908 default:
2909 /* We should never get here */
2910 return E_FAIL;
2912 #undef _VARCMP
2915 static HRESULT VARIANT_FetchDispatchValue(LPVARIANT pvDispatch, LPVARIANT pValue)
2917 HRESULT hres;
2918 static DISPPARAMS emptyParams = { NULL, NULL, 0, 0 };
2920 if ((V_VT(pvDispatch) & VT_TYPEMASK) == VT_DISPATCH) {
2921 if (NULL == V_DISPATCH(pvDispatch)) return DISP_E_TYPEMISMATCH;
2922 hres = IDispatch_Invoke(V_DISPATCH(pvDispatch), DISPID_VALUE, &IID_NULL,
2923 LOCALE_USER_DEFAULT, DISPATCH_PROPERTYGET, &emptyParams, pValue,
2924 NULL, NULL);
2925 } else {
2926 hres = DISP_E_TYPEMISMATCH;
2928 return hres;
2931 /**********************************************************************
2932 * VarAnd [OLEAUT32.142]
2934 * Computes the logical AND of two variants.
2936 * PARAMS
2937 * left [I] First variant
2938 * right [I] Second variant
2939 * result [O] Result variant
2941 * RETURNS
2942 * Success: S_OK.
2943 * Failure: An HRESULT error code indicating the error.
2945 HRESULT WINAPI VarAnd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2947 HRESULT hres = S_OK;
2948 VARTYPE resvt = VT_EMPTY;
2949 VARTYPE leftvt,rightvt;
2950 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
2951 VARIANT varLeft, varRight;
2952 VARIANT tempLeft, tempRight;
2954 VariantInit(&varLeft);
2955 VariantInit(&varRight);
2956 VariantInit(&tempLeft);
2957 VariantInit(&tempRight);
2959 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
2961 /* Handle VT_DISPATCH by storing and taking address of returned value */
2962 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
2964 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
2965 if (FAILED(hres)) goto VarAnd_Exit;
2966 left = &tempLeft;
2968 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
2970 hres = VARIANT_FetchDispatchValue(right, &tempRight);
2971 if (FAILED(hres)) goto VarAnd_Exit;
2972 right = &tempRight;
2975 leftvt = V_VT(left)&VT_TYPEMASK;
2976 rightvt = V_VT(right)&VT_TYPEMASK;
2977 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
2978 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
2980 if (leftExtraFlags != rightExtraFlags)
2982 hres = DISP_E_BADVARTYPE;
2983 goto VarAnd_Exit;
2985 ExtraFlags = leftExtraFlags;
2987 /* Native VarAnd always returns an error when using extra
2988 * flags or if the variant combination is I8 and INT.
2990 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
2991 (leftvt == VT_INT && rightvt == VT_I8) ||
2992 ExtraFlags != 0)
2994 hres = DISP_E_BADVARTYPE;
2995 goto VarAnd_Exit;
2998 /* Determine return type */
2999 else if (leftvt == VT_I8 || rightvt == VT_I8)
3000 resvt = VT_I8;
3001 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
3002 leftvt == VT_UINT || rightvt == VT_UINT ||
3003 leftvt == VT_INT || rightvt == VT_INT ||
3004 leftvt == VT_R4 || rightvt == VT_R4 ||
3005 leftvt == VT_R8 || rightvt == VT_R8 ||
3006 leftvt == VT_CY || rightvt == VT_CY ||
3007 leftvt == VT_DATE || rightvt == VT_DATE ||
3008 leftvt == VT_I1 || rightvt == VT_I1 ||
3009 leftvt == VT_UI2 || rightvt == VT_UI2 ||
3010 leftvt == VT_UI4 || rightvt == VT_UI4 ||
3011 leftvt == VT_UI8 || rightvt == VT_UI8 ||
3012 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3013 resvt = VT_I4;
3014 else if (leftvt == VT_UI1 || rightvt == VT_UI1 ||
3015 leftvt == VT_I2 || rightvt == VT_I2 ||
3016 leftvt == VT_EMPTY || rightvt == VT_EMPTY)
3017 if ((leftvt == VT_NULL && rightvt == VT_UI1) ||
3018 (leftvt == VT_UI1 && rightvt == VT_NULL) ||
3019 (leftvt == VT_UI1 && rightvt == VT_UI1))
3020 resvt = VT_UI1;
3021 else
3022 resvt = VT_I2;
3023 else if (leftvt == VT_BOOL || rightvt == VT_BOOL ||
3024 (leftvt == VT_BSTR && rightvt == VT_BSTR))
3025 resvt = VT_BOOL;
3026 else if (leftvt == VT_NULL || rightvt == VT_NULL ||
3027 leftvt == VT_BSTR || rightvt == VT_BSTR)
3028 resvt = VT_NULL;
3029 else
3031 hres = DISP_E_BADVARTYPE;
3032 goto VarAnd_Exit;
3035 if (leftvt == VT_NULL || rightvt == VT_NULL)
3038 * Special cases for when left variant is VT_NULL
3039 * (VT_NULL & 0 = VT_NULL, VT_NULL & value = value)
3041 if (leftvt == VT_NULL)
3043 VARIANT_BOOL b;
3044 switch(rightvt)
3046 case VT_I1: if (V_I1(right)) resvt = VT_NULL; break;
3047 case VT_UI1: if (V_UI1(right)) resvt = VT_NULL; break;
3048 case VT_I2: if (V_I2(right)) resvt = VT_NULL; break;
3049 case VT_UI2: if (V_UI2(right)) resvt = VT_NULL; break;
3050 case VT_I4: if (V_I4(right)) resvt = VT_NULL; break;
3051 case VT_UI4: if (V_UI4(right)) resvt = VT_NULL; break;
3052 case VT_I8: if (V_I8(right)) resvt = VT_NULL; break;
3053 case VT_UI8: if (V_UI8(right)) resvt = VT_NULL; break;
3054 case VT_INT: if (V_INT(right)) resvt = VT_NULL; break;
3055 case VT_UINT: if (V_UINT(right)) resvt = VT_NULL; break;
3056 case VT_BOOL: if (V_BOOL(right)) resvt = VT_NULL; break;
3057 case VT_R4: if (V_R4(right)) resvt = VT_NULL; break;
3058 case VT_R8: if (V_R8(right)) resvt = VT_NULL; break;
3059 case VT_CY:
3060 if(V_CY(right).int64)
3061 resvt = VT_NULL;
3062 break;
3063 case VT_DECIMAL:
3064 if (DEC_HI32(&V_DECIMAL(right)) ||
3065 DEC_LO64(&V_DECIMAL(right)))
3066 resvt = VT_NULL;
3067 break;
3068 case VT_BSTR:
3069 hres = VarBoolFromStr(V_BSTR(right),
3070 LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
3071 if (FAILED(hres))
3072 return hres;
3073 else if (b)
3074 V_VT(result) = VT_NULL;
3075 else
3077 V_VT(result) = VT_BOOL;
3078 V_BOOL(result) = b;
3080 goto VarAnd_Exit;
3083 V_VT(result) = resvt;
3084 goto VarAnd_Exit;
3087 hres = VariantCopy(&varLeft, left);
3088 if (FAILED(hres)) goto VarAnd_Exit;
3090 hres = VariantCopy(&varRight, right);
3091 if (FAILED(hres)) goto VarAnd_Exit;
3093 if (resvt == VT_I4 && V_VT(&varLeft) == VT_UI4)
3094 V_VT(&varLeft) = VT_I4; /* Don't overflow */
3095 else
3097 double d;
3099 if (V_VT(&varLeft) == VT_BSTR &&
3100 FAILED(VarR8FromStr(V_BSTR(&varLeft),
3101 LOCALE_USER_DEFAULT, 0, &d)))
3102 hres = VariantChangeType(&varLeft,&varLeft,
3103 VARIANT_LOCALBOOL, VT_BOOL);
3104 if (SUCCEEDED(hres) && V_VT(&varLeft) != resvt)
3105 hres = VariantChangeType(&varLeft,&varLeft,0,resvt);
3106 if (FAILED(hres)) goto VarAnd_Exit;
3109 if (resvt == VT_I4 && V_VT(&varRight) == VT_UI4)
3110 V_VT(&varRight) = VT_I4; /* Don't overflow */
3111 else
3113 double d;
3115 if (V_VT(&varRight) == VT_BSTR &&
3116 FAILED(VarR8FromStr(V_BSTR(&varRight),
3117 LOCALE_USER_DEFAULT, 0, &d)))
3118 hres = VariantChangeType(&varRight, &varRight,
3119 VARIANT_LOCALBOOL, VT_BOOL);
3120 if (SUCCEEDED(hres) && V_VT(&varRight) != resvt)
3121 hres = VariantChangeType(&varRight, &varRight, 0, resvt);
3122 if (FAILED(hres)) goto VarAnd_Exit;
3125 V_VT(result) = resvt;
3126 switch(resvt)
3128 case VT_I8:
3129 V_I8(result) = V_I8(&varLeft) & V_I8(&varRight);
3130 break;
3131 case VT_I4:
3132 V_I4(result) = V_I4(&varLeft) & V_I4(&varRight);
3133 break;
3134 case VT_I2:
3135 V_I2(result) = V_I2(&varLeft) & V_I2(&varRight);
3136 break;
3137 case VT_UI1:
3138 V_UI1(result) = V_UI1(&varLeft) & V_UI1(&varRight);
3139 break;
3140 case VT_BOOL:
3141 V_BOOL(result) = V_BOOL(&varLeft) & V_BOOL(&varRight);
3142 break;
3143 default:
3144 FIXME("Couldn't bitwise AND variant types %d,%d\n",
3145 leftvt,rightvt);
3148 VarAnd_Exit:
3149 VariantClear(&varLeft);
3150 VariantClear(&varRight);
3151 VariantClear(&tempLeft);
3152 VariantClear(&tempRight);
3154 return hres;
3157 /**********************************************************************
3158 * VarAdd [OLEAUT32.141]
3160 * Add two variants.
3162 * PARAMS
3163 * left [I] First variant
3164 * right [I] Second variant
3165 * result [O] Result variant
3167 * RETURNS
3168 * Success: S_OK.
3169 * Failure: An HRESULT error code indicating the error.
3171 * NOTES
3172 * Native VarAdd up to and including WinXP doesn't like I1, UI2, UI4,
3173 * UI8, INT and UINT as input variants.
3175 * Native VarAdd doesn't check for NULL in/out pointers and crashes. We do the
3176 * same here.
3178 * FIXME
3179 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3180 * case.
3182 HRESULT WINAPI VarAdd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3184 HRESULT hres;
3185 VARTYPE lvt, rvt, resvt, tvt;
3186 VARIANT lv, rv, tv;
3187 VARIANT tempLeft, tempRight;
3188 double r8res;
3190 /* Variant priority for coercion. Sorted from lowest to highest.
3191 VT_ERROR shows an invalid input variant type. */
3192 enum coerceprio { vt_EMPTY, vt_UI1, vt_I2, vt_I4, vt_I8, vt_BSTR,vt_R4,
3193 vt_R8, vt_CY, vt_DATE, vt_DECIMAL, vt_DISPATCH, vt_NULL,
3194 vt_ERROR };
3195 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3196 static const VARTYPE prio2vt[] = { VT_EMPTY, VT_UI1, VT_I2, VT_I4, VT_I8, VT_BSTR, VT_R4,
3197 VT_R8, VT_CY, VT_DATE, VT_DECIMAL, VT_DISPATCH,
3198 VT_NULL, VT_ERROR };
3200 /* Mapping for coercion from input variant to priority of result variant. */
3201 static const VARTYPE coerce[] = {
3202 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3203 vt_EMPTY, vt_NULL, vt_I2, vt_I4, vt_R4,
3204 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3205 vt_R8, vt_CY, vt_DATE, vt_BSTR, vt_DISPATCH,
3206 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3207 vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3208 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3209 vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3212 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3214 VariantInit(&lv);
3215 VariantInit(&rv);
3216 VariantInit(&tv);
3217 VariantInit(&tempLeft);
3218 VariantInit(&tempRight);
3220 /* Handle VT_DISPATCH by storing and taking address of returned value */
3221 if ((V_VT(left) & VT_TYPEMASK) != VT_NULL && (V_VT(right) & VT_TYPEMASK) != VT_NULL)
3223 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3225 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3226 if (FAILED(hres)) goto end;
3227 left = &tempLeft;
3229 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3231 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3232 if (FAILED(hres)) goto end;
3233 right = &tempRight;
3237 lvt = V_VT(left)&VT_TYPEMASK;
3238 rvt = V_VT(right)&VT_TYPEMASK;
3240 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3241 Same for any input variant type > VT_I8 */
3242 if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3243 lvt > VT_I8 || rvt > VT_I8) {
3244 hres = DISP_E_BADVARTYPE;
3245 goto end;
3248 /* Determine the variant type to coerce to. */
3249 if (coerce[lvt] > coerce[rvt]) {
3250 resvt = prio2vt[coerce[lvt]];
3251 tvt = prio2vt[coerce[rvt]];
3252 } else {
3253 resvt = prio2vt[coerce[rvt]];
3254 tvt = prio2vt[coerce[lvt]];
3257 /* Special cases where the result variant type is defined by both
3258 input variants and not only that with the highest priority */
3259 if (resvt == VT_BSTR) {
3260 if (tvt == VT_EMPTY || tvt == VT_BSTR)
3261 resvt = VT_BSTR;
3262 else
3263 resvt = VT_R8;
3265 if (resvt == VT_R4 && (tvt == VT_BSTR || tvt == VT_I8 || tvt == VT_I4))
3266 resvt = VT_R8;
3268 /* For overflow detection use the biggest compatible type for the
3269 addition */
3270 switch (resvt) {
3271 case VT_ERROR:
3272 hres = DISP_E_BADVARTYPE;
3273 goto end;
3274 case VT_NULL:
3275 hres = S_OK;
3276 V_VT(result) = VT_NULL;
3277 goto end;
3278 case VT_DISPATCH:
3279 FIXME("cannot handle variant type VT_DISPATCH\n");
3280 hres = DISP_E_TYPEMISMATCH;
3281 goto end;
3282 case VT_EMPTY:
3283 resvt = VT_I2;
3284 /* Fall through */
3285 case VT_UI1:
3286 case VT_I2:
3287 case VT_I4:
3288 case VT_I8:
3289 tvt = VT_I8;
3290 break;
3291 case VT_DATE:
3292 case VT_R4:
3293 tvt = VT_R8;
3294 break;
3295 default:
3296 tvt = resvt;
3299 /* Now coerce the variants */
3300 hres = VariantChangeType(&lv, left, 0, tvt);
3301 if (FAILED(hres))
3302 goto end;
3303 hres = VariantChangeType(&rv, right, 0, tvt);
3304 if (FAILED(hres))
3305 goto end;
3307 /* Do the math */
3308 hres = S_OK;
3309 V_VT(result) = resvt;
3310 switch (tvt) {
3311 case VT_DECIMAL:
3312 hres = VarDecAdd(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3313 &V_DECIMAL(result));
3314 goto end;
3315 case VT_CY:
3316 hres = VarCyAdd(V_CY(&lv), V_CY(&rv), &V_CY(result));
3317 goto end;
3318 case VT_BSTR:
3319 /* We do not add those, we concatenate them. */
3320 hres = VarBstrCat(V_BSTR(&lv), V_BSTR(&rv), &V_BSTR(result));
3321 goto end;
3322 case VT_I8:
3323 /* Overflow detection */
3324 r8res = (double)V_I8(&lv) + (double)V_I8(&rv);
3325 if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3326 V_VT(result) = VT_R8;
3327 V_R8(result) = r8res;
3328 goto end;
3329 } else {
3330 V_VT(&tv) = tvt;
3331 V_I8(&tv) = V_I8(&lv) + V_I8(&rv);
3333 break;
3334 case VT_R8:
3335 V_VT(&tv) = tvt;
3336 /* FIXME: overflow detection */
3337 V_R8(&tv) = V_R8(&lv) + V_R8(&rv);
3338 break;
3339 default:
3340 ERR("We shouldn't get here! tvt = %d!\n", tvt);
3341 break;
3343 if (resvt != tvt) {
3344 if ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3345 /* Overflow! Change to the vartype with the next higher priority.
3346 With one exception: I4 ==> R8 even if it would fit in I8 */
3347 if (resvt == VT_I4)
3348 resvt = VT_R8;
3349 else
3350 resvt = prio2vt[coerce[resvt] + 1];
3351 hres = VariantChangeType(result, &tv, 0, resvt);
3353 } else
3354 hres = VariantCopy(result, &tv);
3356 end:
3357 if (hres != S_OK) {
3358 V_VT(result) = VT_EMPTY;
3359 V_I4(result) = 0; /* No V_EMPTY */
3361 VariantClear(&lv);
3362 VariantClear(&rv);
3363 VariantClear(&tv);
3364 VariantClear(&tempLeft);
3365 VariantClear(&tempRight);
3366 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3367 return hres;
3370 /**********************************************************************
3371 * VarMul [OLEAUT32.156]
3373 * Multiply two variants.
3375 * PARAMS
3376 * left [I] First variant
3377 * right [I] Second variant
3378 * result [O] Result variant
3380 * RETURNS
3381 * Success: S_OK.
3382 * Failure: An HRESULT error code indicating the error.
3384 * NOTES
3385 * Native VarMul up to and including WinXP doesn't like I1, UI2, UI4,
3386 * UI8, INT and UINT as input variants. But it can multiply apples with oranges.
3388 * Native VarMul doesn't check for NULL in/out pointers and crashes. We do the
3389 * same here.
3391 * FIXME
3392 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3393 * case.
3395 HRESULT WINAPI VarMul(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3397 HRESULT hres;
3398 VARTYPE lvt, rvt, resvt, tvt;
3399 VARIANT lv, rv, tv;
3400 VARIANT tempLeft, tempRight;
3401 double r8res;
3403 /* Variant priority for coercion. Sorted from lowest to highest.
3404 VT_ERROR shows an invalid input variant type. */
3405 enum coerceprio { vt_UI1 = 0, vt_I2, vt_I4, vt_I8, vt_CY, vt_R4, vt_R8,
3406 vt_DECIMAL, vt_NULL, vt_ERROR };
3407 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3408 static const VARTYPE prio2vt[] = { VT_UI1, VT_I2, VT_I4, VT_I8, VT_CY, VT_R4, VT_R8,
3409 VT_DECIMAL, VT_NULL, VT_ERROR };
3411 /* Mapping for coercion from input variant to priority of result variant. */
3412 static const VARTYPE coerce[] = {
3413 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3414 vt_UI1, vt_NULL, vt_I2, vt_I4, vt_R4,
3415 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3416 vt_R8, vt_CY, vt_R8, vt_R8, vt_ERROR,
3417 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3418 vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3419 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3420 vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3423 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3425 VariantInit(&lv);
3426 VariantInit(&rv);
3427 VariantInit(&tv);
3428 VariantInit(&tempLeft);
3429 VariantInit(&tempRight);
3431 /* Handle VT_DISPATCH by storing and taking address of returned value */
3432 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3434 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3435 if (FAILED(hres)) goto end;
3436 left = &tempLeft;
3438 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3440 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3441 if (FAILED(hres)) goto end;
3442 right = &tempRight;
3445 lvt = V_VT(left)&VT_TYPEMASK;
3446 rvt = V_VT(right)&VT_TYPEMASK;
3448 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3449 Same for any input variant type > VT_I8 */
3450 if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3451 lvt > VT_I8 || rvt > VT_I8) {
3452 hres = DISP_E_BADVARTYPE;
3453 goto end;
3456 /* Determine the variant type to coerce to. */
3457 if (coerce[lvt] > coerce[rvt]) {
3458 resvt = prio2vt[coerce[lvt]];
3459 tvt = prio2vt[coerce[rvt]];
3460 } else {
3461 resvt = prio2vt[coerce[rvt]];
3462 tvt = prio2vt[coerce[lvt]];
3465 /* Special cases where the result variant type is defined by both
3466 input variants and not only that with the highest priority */
3467 if (resvt == VT_R4 && (tvt == VT_CY || tvt == VT_I8 || tvt == VT_I4))
3468 resvt = VT_R8;
3469 if (lvt == VT_EMPTY && rvt == VT_EMPTY)
3470 resvt = VT_I2;
3472 /* For overflow detection use the biggest compatible type for the
3473 multiplication */
3474 switch (resvt) {
3475 case VT_ERROR:
3476 hres = DISP_E_BADVARTYPE;
3477 goto end;
3478 case VT_NULL:
3479 hres = S_OK;
3480 V_VT(result) = VT_NULL;
3481 goto end;
3482 case VT_UI1:
3483 case VT_I2:
3484 case VT_I4:
3485 case VT_I8:
3486 tvt = VT_I8;
3487 break;
3488 case VT_R4:
3489 tvt = VT_R8;
3490 break;
3491 default:
3492 tvt = resvt;
3495 /* Now coerce the variants */
3496 hres = VariantChangeType(&lv, left, 0, tvt);
3497 if (FAILED(hres))
3498 goto end;
3499 hres = VariantChangeType(&rv, right, 0, tvt);
3500 if (FAILED(hres))
3501 goto end;
3503 /* Do the math */
3504 hres = S_OK;
3505 V_VT(&tv) = tvt;
3506 V_VT(result) = resvt;
3507 switch (tvt) {
3508 case VT_DECIMAL:
3509 hres = VarDecMul(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3510 &V_DECIMAL(result));
3511 goto end;
3512 case VT_CY:
3513 hres = VarCyMul(V_CY(&lv), V_CY(&rv), &V_CY(result));
3514 goto end;
3515 case VT_I8:
3516 /* Overflow detection */
3517 r8res = (double)V_I8(&lv) * (double)V_I8(&rv);
3518 if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3519 V_VT(result) = VT_R8;
3520 V_R8(result) = r8res;
3521 goto end;
3522 } else
3523 V_I8(&tv) = V_I8(&lv) * V_I8(&rv);
3524 break;
3525 case VT_R8:
3526 /* FIXME: overflow detection */
3527 V_R8(&tv) = V_R8(&lv) * V_R8(&rv);
3528 break;
3529 default:
3530 ERR("We shouldn't get here! tvt = %d!\n", tvt);
3531 break;
3533 if (resvt != tvt) {
3534 while ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3535 /* Overflow! Change to the vartype with the next higher priority.
3536 With one exception: I4 ==> R8 even if it would fit in I8 */
3537 if (resvt == VT_I4)
3538 resvt = VT_R8;
3539 else
3540 resvt = prio2vt[coerce[resvt] + 1];
3542 } else
3543 hres = VariantCopy(result, &tv);
3545 end:
3546 if (hres != S_OK) {
3547 V_VT(result) = VT_EMPTY;
3548 V_I4(result) = 0; /* No V_EMPTY */
3550 VariantClear(&lv);
3551 VariantClear(&rv);
3552 VariantClear(&tv);
3553 VariantClear(&tempLeft);
3554 VariantClear(&tempRight);
3555 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3556 return hres;
3559 /**********************************************************************
3560 * VarDiv [OLEAUT32.143]
3562 * Divides one variant with another.
3564 * PARAMS
3565 * left [I] First variant
3566 * right [I] Second variant
3567 * result [O] Result variant
3569 * RETURNS
3570 * Success: S_OK.
3571 * Failure: An HRESULT error code indicating the error.
3573 HRESULT WINAPI VarDiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3575 HRESULT hres = S_OK;
3576 VARTYPE resvt = VT_EMPTY;
3577 VARTYPE leftvt,rightvt;
3578 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3579 VARIANT lv,rv;
3580 VARIANT tempLeft, tempRight;
3582 VariantInit(&tempLeft);
3583 VariantInit(&tempRight);
3584 VariantInit(&lv);
3585 VariantInit(&rv);
3587 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3589 /* Handle VT_DISPATCH by storing and taking address of returned value */
3590 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3592 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3593 if (FAILED(hres)) goto end;
3594 left = &tempLeft;
3596 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3598 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3599 if (FAILED(hres)) goto end;
3600 right = &tempRight;
3603 leftvt = V_VT(left)&VT_TYPEMASK;
3604 rightvt = V_VT(right)&VT_TYPEMASK;
3605 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3606 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3608 if (leftExtraFlags != rightExtraFlags)
3610 hres = DISP_E_BADVARTYPE;
3611 goto end;
3613 ExtraFlags = leftExtraFlags;
3615 /* Native VarDiv always returns an error when using extra flags */
3616 if (ExtraFlags != 0)
3618 hres = DISP_E_BADVARTYPE;
3619 goto end;
3622 /* Determine return type */
3623 if (rightvt != VT_EMPTY)
3625 if (leftvt == VT_NULL || rightvt == VT_NULL)
3627 V_VT(result) = VT_NULL;
3628 hres = S_OK;
3629 goto end;
3631 else if (leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3632 resvt = VT_DECIMAL;
3633 else if (leftvt == VT_I8 || rightvt == VT_I8 ||
3634 leftvt == VT_CY || rightvt == VT_CY ||
3635 leftvt == VT_DATE || rightvt == VT_DATE ||
3636 leftvt == VT_I4 || rightvt == VT_I4 ||
3637 leftvt == VT_BSTR || rightvt == VT_BSTR ||
3638 leftvt == VT_I2 || rightvt == VT_I2 ||
3639 leftvt == VT_BOOL || rightvt == VT_BOOL ||
3640 leftvt == VT_R8 || rightvt == VT_R8 ||
3641 leftvt == VT_UI1 || rightvt == VT_UI1)
3643 if ((leftvt == VT_UI1 && rightvt == VT_R4) ||
3644 (leftvt == VT_R4 && rightvt == VT_UI1))
3645 resvt = VT_R4;
3646 else if ((leftvt == VT_R4 && (rightvt == VT_BOOL ||
3647 rightvt == VT_I2)) || (rightvt == VT_R4 &&
3648 (leftvt == VT_BOOL || leftvt == VT_I2)))
3649 resvt = VT_R4;
3650 else
3651 resvt = VT_R8;
3653 else if (leftvt == VT_R4 || rightvt == VT_R4)
3654 resvt = VT_R4;
3656 else if (leftvt == VT_NULL)
3658 V_VT(result) = VT_NULL;
3659 hres = S_OK;
3660 goto end;
3662 else
3664 hres = DISP_E_BADVARTYPE;
3665 goto end;
3668 /* coerce to the result type */
3669 hres = VariantChangeType(&lv, left, 0, resvt);
3670 if (hres != S_OK) goto end;
3672 hres = VariantChangeType(&rv, right, 0, resvt);
3673 if (hres != S_OK) goto end;
3675 /* do the math */
3676 V_VT(result) = resvt;
3677 switch (resvt)
3679 case VT_R4:
3680 if (V_R4(&lv) == 0.0 && V_R4(&rv) == 0.0)
3682 hres = DISP_E_OVERFLOW;
3683 V_VT(result) = VT_EMPTY;
3685 else if (V_R4(&rv) == 0.0)
3687 hres = DISP_E_DIVBYZERO;
3688 V_VT(result) = VT_EMPTY;
3690 else
3691 V_R4(result) = V_R4(&lv) / V_R4(&rv);
3692 break;
3693 case VT_R8:
3694 if (V_R8(&lv) == 0.0 && V_R8(&rv) == 0.0)
3696 hres = DISP_E_OVERFLOW;
3697 V_VT(result) = VT_EMPTY;
3699 else if (V_R8(&rv) == 0.0)
3701 hres = DISP_E_DIVBYZERO;
3702 V_VT(result) = VT_EMPTY;
3704 else
3705 V_R8(result) = V_R8(&lv) / V_R8(&rv);
3706 break;
3707 case VT_DECIMAL:
3708 hres = VarDecDiv(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
3709 break;
3712 end:
3713 VariantClear(&lv);
3714 VariantClear(&rv);
3715 VariantClear(&tempLeft);
3716 VariantClear(&tempRight);
3717 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3718 return hres;
3721 /**********************************************************************
3722 * VarSub [OLEAUT32.159]
3724 * Subtract two variants.
3726 * PARAMS
3727 * left [I] First variant
3728 * right [I] Second variant
3729 * result [O] Result variant
3731 * RETURNS
3732 * Success: S_OK.
3733 * Failure: An HRESULT error code indicating the error.
3735 HRESULT WINAPI VarSub(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3737 HRESULT hres = S_OK;
3738 VARTYPE resvt = VT_EMPTY;
3739 VARTYPE leftvt,rightvt;
3740 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3741 VARIANT lv,rv;
3742 VARIANT tempLeft, tempRight;
3744 VariantInit(&lv);
3745 VariantInit(&rv);
3746 VariantInit(&tempLeft);
3747 VariantInit(&tempRight);
3749 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3751 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH &&
3752 (V_VT(left)&(~VT_TYPEMASK)) == 0 &&
3753 (V_VT(right) & VT_TYPEMASK) != VT_NULL)
3755 if (NULL == V_DISPATCH(left)) {
3756 if ((V_VT(right) & VT_TYPEMASK) >= VT_INT_PTR)
3757 hres = DISP_E_BADVARTYPE;
3758 else if ((V_VT(right) & VT_TYPEMASK) >= VT_UI8 &&
3759 (V_VT(right) & VT_TYPEMASK) < VT_RECORD)
3760 hres = DISP_E_BADVARTYPE;
3761 else switch (V_VT(right) & VT_TYPEMASK)
3763 case VT_VARIANT:
3764 case VT_UNKNOWN:
3765 case 15:
3766 case VT_I1:
3767 case VT_UI2:
3768 case VT_UI4:
3769 hres = DISP_E_BADVARTYPE;
3771 if (FAILED(hres)) goto end;
3773 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3774 if (FAILED(hres)) goto end;
3775 left = &tempLeft;
3777 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH &&
3778 (V_VT(right)&(~VT_TYPEMASK)) == 0 &&
3779 (V_VT(left) & VT_TYPEMASK) != VT_NULL)
3781 if (NULL == V_DISPATCH(right))
3783 if ((V_VT(left) & VT_TYPEMASK) >= VT_INT_PTR)
3784 hres = DISP_E_BADVARTYPE;
3785 else if ((V_VT(left) & VT_TYPEMASK) >= VT_UI8 &&
3786 (V_VT(left) & VT_TYPEMASK) < VT_RECORD)
3787 hres = DISP_E_BADVARTYPE;
3788 else switch (V_VT(left) & VT_TYPEMASK)
3790 case VT_VARIANT:
3791 case VT_UNKNOWN:
3792 case 15:
3793 case VT_I1:
3794 case VT_UI2:
3795 case VT_UI4:
3796 hres = DISP_E_BADVARTYPE;
3798 if (FAILED(hres)) goto end;
3800 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3801 if (FAILED(hres)) goto end;
3802 right = &tempRight;
3805 leftvt = V_VT(left)&VT_TYPEMASK;
3806 rightvt = V_VT(right)&VT_TYPEMASK;
3807 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3808 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3810 if (leftExtraFlags != rightExtraFlags)
3812 hres = DISP_E_BADVARTYPE;
3813 goto end;
3815 ExtraFlags = leftExtraFlags;
3817 /* determine return type and return code */
3818 /* All extra flags produce errors */
3819 if (ExtraFlags == (VT_VECTOR|VT_BYREF|VT_RESERVED) ||
3820 ExtraFlags == (VT_VECTOR|VT_RESERVED) ||
3821 ExtraFlags == (VT_VECTOR|VT_BYREF) ||
3822 ExtraFlags == (VT_BYREF|VT_RESERVED) ||
3823 ExtraFlags == VT_VECTOR ||
3824 ExtraFlags == VT_BYREF ||
3825 ExtraFlags == VT_RESERVED)
3827 hres = DISP_E_BADVARTYPE;
3828 goto end;
3830 else if (ExtraFlags >= VT_ARRAY)
3832 hres = DISP_E_TYPEMISMATCH;
3833 goto end;
3835 /* Native VarSub cannot handle: VT_I1, VT_UI2, VT_UI4,
3836 VT_INT, VT_UINT and VT_UI8. Tested with WinXP */
3837 else if (leftvt == VT_CLSID || rightvt == VT_CLSID ||
3838 leftvt == VT_VARIANT || rightvt == VT_VARIANT ||
3839 leftvt == VT_I1 || rightvt == VT_I1 ||
3840 leftvt == VT_UI2 || rightvt == VT_UI2 ||
3841 leftvt == VT_UI4 || rightvt == VT_UI4 ||
3842 leftvt == VT_UI8 || rightvt == VT_UI8 ||
3843 leftvt == VT_INT || rightvt == VT_INT ||
3844 leftvt == VT_UINT || rightvt == VT_UINT ||
3845 leftvt == VT_UNKNOWN || rightvt == VT_UNKNOWN ||
3846 leftvt == VT_RECORD || rightvt == VT_RECORD)
3848 if (leftvt == VT_RECORD && rightvt == VT_I8)
3849 hres = DISP_E_TYPEMISMATCH;
3850 else if (leftvt < VT_UI1 && rightvt == VT_RECORD)
3851 hres = DISP_E_TYPEMISMATCH;
3852 else if (leftvt >= VT_UI1 && rightvt == VT_RECORD)
3853 hres = DISP_E_TYPEMISMATCH;
3854 else if (leftvt == VT_RECORD && rightvt <= VT_UI1)
3855 hres = DISP_E_TYPEMISMATCH;
3856 else if (leftvt == VT_RECORD && rightvt > VT_UI1)
3857 hres = DISP_E_BADVARTYPE;
3858 else
3859 hres = DISP_E_BADVARTYPE;
3860 goto end;
3862 /* The following flags/types are invalid for left variant */
3863 else if (!((leftvt <= VT_LPWSTR || leftvt == VT_RECORD ||
3864 leftvt == VT_CLSID) && leftvt != (VARTYPE)15 /* undefined vt */ &&
3865 (leftvt < VT_VOID || leftvt > VT_LPWSTR)))
3867 hres = DISP_E_BADVARTYPE;
3868 goto end;
3870 /* The following flags/types are invalid for right variant */
3871 else if (!((rightvt <= VT_LPWSTR || rightvt == VT_RECORD ||
3872 rightvt == VT_CLSID) && rightvt != (VARTYPE)15 /* undefined vt */ &&
3873 (rightvt < VT_VOID || rightvt > VT_LPWSTR)))
3875 hres = DISP_E_BADVARTYPE;
3876 goto end;
3878 else if ((leftvt == VT_NULL && rightvt == VT_DISPATCH) ||
3879 (leftvt == VT_DISPATCH && rightvt == VT_NULL))
3880 resvt = VT_NULL;
3881 else if (leftvt == VT_DISPATCH || rightvt == VT_DISPATCH ||
3882 leftvt == VT_ERROR || rightvt == VT_ERROR)
3884 hres = DISP_E_TYPEMISMATCH;
3885 goto end;
3887 else if (leftvt == VT_NULL || rightvt == VT_NULL)
3888 resvt = VT_NULL;
3889 else if ((leftvt == VT_EMPTY && rightvt == VT_BSTR) ||
3890 (leftvt == VT_DATE && rightvt == VT_DATE) ||
3891 (leftvt == VT_BSTR && rightvt == VT_EMPTY) ||
3892 (leftvt == VT_BSTR && rightvt == VT_BSTR))
3893 resvt = VT_R8;
3894 else if (leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3895 resvt = VT_DECIMAL;
3896 else if (leftvt == VT_DATE || rightvt == VT_DATE)
3897 resvt = VT_DATE;
3898 else if (leftvt == VT_CY || rightvt == VT_CY)
3899 resvt = VT_CY;
3900 else if (leftvt == VT_R8 || rightvt == VT_R8)
3901 resvt = VT_R8;
3902 else if (leftvt == VT_BSTR || rightvt == VT_BSTR)
3903 resvt = VT_R8;
3904 else if (leftvt == VT_R4 || rightvt == VT_R4)
3906 if (leftvt == VT_I4 || rightvt == VT_I4 ||
3907 leftvt == VT_I8 || rightvt == VT_I8)
3908 resvt = VT_R8;
3909 else
3910 resvt = VT_R4;
3912 else if (leftvt == VT_I8 || rightvt == VT_I8)
3913 resvt = VT_I8;
3914 else if (leftvt == VT_I4 || rightvt == VT_I4)
3915 resvt = VT_I4;
3916 else if (leftvt == VT_I2 || rightvt == VT_I2 ||
3917 leftvt == VT_BOOL || rightvt == VT_BOOL ||
3918 (leftvt == VT_EMPTY && rightvt == VT_EMPTY))
3919 resvt = VT_I2;
3920 else if (leftvt == VT_UI1 || rightvt == VT_UI1)
3921 resvt = VT_UI1;
3922 else
3924 hres = DISP_E_TYPEMISMATCH;
3925 goto end;
3928 /* coerce to the result type */
3929 if (leftvt == VT_BSTR && rightvt == VT_DATE)
3930 hres = VariantChangeType(&lv, left, 0, VT_R8);
3931 else
3932 hres = VariantChangeType(&lv, left, 0, resvt);
3933 if (hres != S_OK) goto end;
3934 if (leftvt == VT_DATE && rightvt == VT_BSTR)
3935 hres = VariantChangeType(&rv, right, 0, VT_R8);
3936 else
3937 hres = VariantChangeType(&rv, right, 0, resvt);
3938 if (hres != S_OK) goto end;
3940 /* do the math */
3941 V_VT(result) = resvt;
3942 switch (resvt)
3944 case VT_NULL:
3945 break;
3946 case VT_DATE:
3947 V_DATE(result) = V_DATE(&lv) - V_DATE(&rv);
3948 break;
3949 case VT_CY:
3950 hres = VarCySub(V_CY(&lv), V_CY(&rv), &(V_CY(result)));
3951 break;
3952 case VT_R4:
3953 V_R4(result) = V_R4(&lv) - V_R4(&rv);
3954 break;
3955 case VT_I8:
3956 V_I8(result) = V_I8(&lv) - V_I8(&rv);
3957 break;
3958 case VT_I4:
3959 V_I4(result) = V_I4(&lv) - V_I4(&rv);
3960 break;
3961 case VT_I2:
3962 V_I2(result) = V_I2(&lv) - V_I2(&rv);
3963 break;
3964 case VT_UI1:
3965 V_UI1(result) = V_UI2(&lv) - V_UI1(&rv);
3966 break;
3967 case VT_R8:
3968 V_R8(result) = V_R8(&lv) - V_R8(&rv);
3969 break;
3970 case VT_DECIMAL:
3971 hres = VarDecSub(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
3972 break;
3975 end:
3976 VariantClear(&lv);
3977 VariantClear(&rv);
3978 VariantClear(&tempLeft);
3979 VariantClear(&tempRight);
3980 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3981 return hres;
3985 /**********************************************************************
3986 * VarOr [OLEAUT32.157]
3988 * Perform a logical or (OR) operation on two variants.
3990 * PARAMS
3991 * pVarLeft [I] First variant
3992 * pVarRight [I] Variant to OR with pVarLeft
3993 * pVarOut [O] Destination for OR result
3995 * RETURNS
3996 * Success: S_OK. pVarOut contains the result of the operation with its type
3997 * taken from the table listed under VarXor().
3998 * Failure: An HRESULT error code indicating the error.
4000 * NOTES
4001 * See the Notes section of VarXor() for further information.
4003 HRESULT WINAPI VarOr(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4005 VARTYPE vt = VT_I4;
4006 VARIANT varLeft, varRight, varStr;
4007 HRESULT hRet;
4008 VARIANT tempLeft, tempRight;
4010 VariantInit(&tempLeft);
4011 VariantInit(&tempRight);
4012 VariantInit(&varLeft);
4013 VariantInit(&varRight);
4014 VariantInit(&varStr);
4016 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
4018 /* Handle VT_DISPATCH by storing and taking address of returned value */
4019 if ((V_VT(pVarLeft) & VT_TYPEMASK) == VT_DISPATCH)
4021 hRet = VARIANT_FetchDispatchValue(pVarLeft, &tempLeft);
4022 if (FAILED(hRet)) goto VarOr_Exit;
4023 pVarLeft = &tempLeft;
4025 if ((V_VT(pVarRight) & VT_TYPEMASK) == VT_DISPATCH)
4027 hRet = VARIANT_FetchDispatchValue(pVarRight, &tempRight);
4028 if (FAILED(hRet)) goto VarOr_Exit;
4029 pVarRight = &tempRight;
4032 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
4033 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
4034 V_VT(pVarLeft) == VT_DISPATCH || V_VT(pVarRight) == VT_DISPATCH ||
4035 V_VT(pVarLeft) == VT_RECORD || V_VT(pVarRight) == VT_RECORD)
4037 hRet = DISP_E_BADVARTYPE;
4038 goto VarOr_Exit;
4041 V_VT(&varLeft) = V_VT(&varRight) = V_VT(&varStr) = VT_EMPTY;
4043 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
4045 /* NULL OR Zero is NULL, NULL OR value is value */
4046 if (V_VT(pVarLeft) == VT_NULL)
4047 pVarLeft = pVarRight; /* point to the non-NULL var */
4049 V_VT(pVarOut) = VT_NULL;
4050 V_I4(pVarOut) = 0;
4052 switch (V_VT(pVarLeft))
4054 case VT_DATE: case VT_R8:
4055 if (V_R8(pVarLeft))
4056 goto VarOr_AsEmpty;
4057 hRet = S_OK;
4058 goto VarOr_Exit;
4059 case VT_BOOL:
4060 if (V_BOOL(pVarLeft))
4061 *pVarOut = *pVarLeft;
4062 hRet = S_OK;
4063 goto VarOr_Exit;
4064 case VT_I2: case VT_UI2:
4065 if (V_I2(pVarLeft))
4066 goto VarOr_AsEmpty;
4067 hRet = S_OK;
4068 goto VarOr_Exit;
4069 case VT_I1:
4070 if (V_I1(pVarLeft))
4071 goto VarOr_AsEmpty;
4072 hRet = S_OK;
4073 goto VarOr_Exit;
4074 case VT_UI1:
4075 if (V_UI1(pVarLeft))
4076 *pVarOut = *pVarLeft;
4077 hRet = S_OK;
4078 goto VarOr_Exit;
4079 case VT_R4:
4080 if (V_R4(pVarLeft))
4081 goto VarOr_AsEmpty;
4082 hRet = S_OK;
4083 goto VarOr_Exit;
4084 case VT_I4: case VT_UI4: case VT_INT: case VT_UINT:
4085 if (V_I4(pVarLeft))
4086 goto VarOr_AsEmpty;
4087 hRet = S_OK;
4088 goto VarOr_Exit;
4089 case VT_CY:
4090 if (V_CY(pVarLeft).int64)
4091 goto VarOr_AsEmpty;
4092 hRet = S_OK;
4093 goto VarOr_Exit;
4094 case VT_I8: case VT_UI8:
4095 if (V_I8(pVarLeft))
4096 goto VarOr_AsEmpty;
4097 hRet = S_OK;
4098 goto VarOr_Exit;
4099 case VT_DECIMAL:
4100 if (DEC_HI32(&V_DECIMAL(pVarLeft)) || DEC_LO64(&V_DECIMAL(pVarLeft)))
4101 goto VarOr_AsEmpty;
4102 hRet = S_OK;
4103 goto VarOr_Exit;
4104 case VT_BSTR:
4106 VARIANT_BOOL b;
4108 if (!V_BSTR(pVarLeft))
4110 hRet = DISP_E_BADVARTYPE;
4111 goto VarOr_Exit;
4114 hRet = VarBoolFromStr(V_BSTR(pVarLeft), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
4115 if (SUCCEEDED(hRet) && b)
4117 V_VT(pVarOut) = VT_BOOL;
4118 V_BOOL(pVarOut) = b;
4120 goto VarOr_Exit;
4122 case VT_NULL: case VT_EMPTY:
4123 V_VT(pVarOut) = VT_NULL;
4124 hRet = S_OK;
4125 goto VarOr_Exit;
4126 default:
4127 hRet = DISP_E_BADVARTYPE;
4128 goto VarOr_Exit;
4132 if (V_VT(pVarLeft) == VT_EMPTY || V_VT(pVarRight) == VT_EMPTY)
4134 if (V_VT(pVarLeft) == VT_EMPTY)
4135 pVarLeft = pVarRight; /* point to the non-EMPTY var */
4137 VarOr_AsEmpty:
4138 /* Since one argument is empty (0), OR'ing it with the other simply
4139 * gives the others value (as 0|x => x). So just convert the other
4140 * argument to the required result type.
4142 switch (V_VT(pVarLeft))
4144 case VT_BSTR:
4145 if (!V_BSTR(pVarLeft))
4147 hRet = DISP_E_BADVARTYPE;
4148 goto VarOr_Exit;
4151 hRet = VariantCopy(&varStr, pVarLeft);
4152 if (FAILED(hRet))
4153 goto VarOr_Exit;
4154 pVarLeft = &varStr;
4155 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
4156 if (FAILED(hRet))
4157 goto VarOr_Exit;
4158 /* Fall Through ... */
4159 case VT_EMPTY: case VT_UI1: case VT_BOOL: case VT_I2:
4160 V_VT(pVarOut) = VT_I2;
4161 break;
4162 case VT_DATE: case VT_CY: case VT_DECIMAL: case VT_R4: case VT_R8:
4163 case VT_I1: case VT_UI2: case VT_I4: case VT_UI4:
4164 case VT_INT: case VT_UINT: case VT_UI8:
4165 V_VT(pVarOut) = VT_I4;
4166 break;
4167 case VT_I8:
4168 V_VT(pVarOut) = VT_I8;
4169 break;
4170 default:
4171 hRet = DISP_E_BADVARTYPE;
4172 goto VarOr_Exit;
4174 hRet = VariantCopy(&varLeft, pVarLeft);
4175 if (FAILED(hRet))
4176 goto VarOr_Exit;
4177 pVarLeft = &varLeft;
4178 hRet = VariantChangeType(pVarOut, pVarLeft, 0, V_VT(pVarOut));
4179 goto VarOr_Exit;
4182 if (V_VT(pVarLeft) == VT_BOOL && V_VT(pVarRight) == VT_BOOL)
4184 V_VT(pVarOut) = VT_BOOL;
4185 V_BOOL(pVarOut) = V_BOOL(pVarLeft) | V_BOOL(pVarRight);
4186 hRet = S_OK;
4187 goto VarOr_Exit;
4190 if (V_VT(pVarLeft) == VT_UI1 && V_VT(pVarRight) == VT_UI1)
4192 V_VT(pVarOut) = VT_UI1;
4193 V_UI1(pVarOut) = V_UI1(pVarLeft) | V_UI1(pVarRight);
4194 hRet = S_OK;
4195 goto VarOr_Exit;
4198 if (V_VT(pVarLeft) == VT_BSTR)
4200 hRet = VariantCopy(&varStr, pVarLeft);
4201 if (FAILED(hRet))
4202 goto VarOr_Exit;
4203 pVarLeft = &varStr;
4204 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
4205 if (FAILED(hRet))
4206 goto VarOr_Exit;
4209 if (V_VT(pVarLeft) == VT_BOOL &&
4210 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_BSTR))
4212 vt = VT_BOOL;
4214 else if ((V_VT(pVarLeft) == VT_BOOL || V_VT(pVarLeft) == VT_UI1 ||
4215 V_VT(pVarLeft) == VT_I2 || V_VT(pVarLeft) == VT_BSTR) &&
4216 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_UI1 ||
4217 V_VT(pVarRight) == VT_I2 || V_VT(pVarRight) == VT_BSTR))
4219 vt = VT_I2;
4221 else if (V_VT(pVarLeft) == VT_I8 || V_VT(pVarRight) == VT_I8)
4223 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
4225 hRet = DISP_E_TYPEMISMATCH;
4226 goto VarOr_Exit;
4228 vt = VT_I8;
4231 hRet = VariantCopy(&varLeft, pVarLeft);
4232 if (FAILED(hRet))
4233 goto VarOr_Exit;
4235 hRet = VariantCopy(&varRight, pVarRight);
4236 if (FAILED(hRet))
4237 goto VarOr_Exit;
4239 if (vt == VT_I4 && V_VT(&varLeft) == VT_UI4)
4240 V_VT(&varLeft) = VT_I4; /* Don't overflow */
4241 else
4243 double d;
4245 if (V_VT(&varLeft) == VT_BSTR &&
4246 FAILED(VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d)))
4247 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL, VT_BOOL);
4248 if (SUCCEEDED(hRet) && V_VT(&varLeft) != vt)
4249 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
4250 if (FAILED(hRet))
4251 goto VarOr_Exit;
4254 if (vt == VT_I4 && V_VT(&varRight) == VT_UI4)
4255 V_VT(&varRight) = VT_I4; /* Don't overflow */
4256 else
4258 double d;
4260 if (V_VT(&varRight) == VT_BSTR &&
4261 FAILED(VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d)))
4262 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL, VT_BOOL);
4263 if (SUCCEEDED(hRet) && V_VT(&varRight) != vt)
4264 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
4265 if (FAILED(hRet))
4266 goto VarOr_Exit;
4269 V_VT(pVarOut) = vt;
4270 if (vt == VT_I8)
4272 V_I8(pVarOut) = V_I8(&varLeft) | V_I8(&varRight);
4274 else if (vt == VT_I4)
4276 V_I4(pVarOut) = V_I4(&varLeft) | V_I4(&varRight);
4278 else
4280 V_I2(pVarOut) = V_I2(&varLeft) | V_I2(&varRight);
4283 VarOr_Exit:
4284 VariantClear(&varStr);
4285 VariantClear(&varLeft);
4286 VariantClear(&varRight);
4287 VariantClear(&tempLeft);
4288 VariantClear(&tempRight);
4289 return hRet;
4292 /**********************************************************************
4293 * VarAbs [OLEAUT32.168]
4295 * Convert a variant to its absolute value.
4297 * PARAMS
4298 * pVarIn [I] Source variant
4299 * pVarOut [O] Destination for converted value
4301 * RETURNS
4302 * Success: S_OK. pVarOut contains the absolute value of pVarIn.
4303 * Failure: An HRESULT error code indicating the error.
4305 * NOTES
4306 * - This function does not process by-reference variants.
4307 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4308 * according to the following table:
4309 *| Input Type Output Type
4310 *| ---------- -----------
4311 *| VT_BOOL VT_I2
4312 *| VT_BSTR VT_R8
4313 *| (All others) Unchanged
4315 HRESULT WINAPI VarAbs(LPVARIANT pVarIn, LPVARIANT pVarOut)
4317 VARIANT varIn;
4318 HRESULT hRet = S_OK;
4319 VARIANT temp;
4321 VariantInit(&temp);
4323 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4325 /* Handle VT_DISPATCH by storing and taking address of returned value */
4326 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4328 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4329 if (FAILED(hRet)) goto VarAbs_Exit;
4330 pVarIn = &temp;
4333 if (V_ISARRAY(pVarIn) || V_VT(pVarIn) == VT_UNKNOWN ||
4334 V_VT(pVarIn) == VT_DISPATCH || V_VT(pVarIn) == VT_RECORD ||
4335 V_VT(pVarIn) == VT_ERROR)
4337 hRet = DISP_E_TYPEMISMATCH;
4338 goto VarAbs_Exit;
4340 *pVarOut = *pVarIn; /* Shallow copy the value, and invert it if needed */
4342 #define ABS_CASE(typ,min) \
4343 case VT_##typ: if (V_##typ(pVarIn) == min) hRet = DISP_E_OVERFLOW; \
4344 else if (V_##typ(pVarIn) < 0) V_##typ(pVarOut) = -V_##typ(pVarIn); \
4345 break
4347 switch (V_VT(pVarIn))
4349 ABS_CASE(I1,I1_MIN);
4350 case VT_BOOL:
4351 V_VT(pVarOut) = VT_I2;
4352 /* BOOL->I2, Fall through ... */
4353 ABS_CASE(I2,I2_MIN);
4354 case VT_INT:
4355 ABS_CASE(I4,I4_MIN);
4356 ABS_CASE(I8,I8_MIN);
4357 ABS_CASE(R4,R4_MIN);
4358 case VT_BSTR:
4359 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
4360 if (FAILED(hRet))
4361 break;
4362 V_VT(pVarOut) = VT_R8;
4363 pVarIn = &varIn;
4364 /* Fall through ... */
4365 case VT_DATE:
4366 ABS_CASE(R8,R8_MIN);
4367 case VT_CY:
4368 hRet = VarCyAbs(V_CY(pVarIn), & V_CY(pVarOut));
4369 break;
4370 case VT_DECIMAL:
4371 DEC_SIGN(&V_DECIMAL(pVarOut)) &= ~DECIMAL_NEG;
4372 break;
4373 case VT_UI1:
4374 case VT_UI2:
4375 case VT_UINT:
4376 case VT_UI4:
4377 case VT_UI8:
4378 /* No-Op */
4379 break;
4380 case VT_EMPTY:
4381 V_VT(pVarOut) = VT_I2;
4382 case VT_NULL:
4383 V_I2(pVarOut) = 0;
4384 break;
4385 default:
4386 hRet = DISP_E_BADVARTYPE;
4389 VarAbs_Exit:
4390 VariantClear(&temp);
4391 return hRet;
4394 /**********************************************************************
4395 * VarFix [OLEAUT32.169]
4397 * Truncate a variants value to a whole number.
4399 * PARAMS
4400 * pVarIn [I] Source variant
4401 * pVarOut [O] Destination for converted value
4403 * RETURNS
4404 * Success: S_OK. pVarOut contains the converted value.
4405 * Failure: An HRESULT error code indicating the error.
4407 * NOTES
4408 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4409 * according to the following table:
4410 *| Input Type Output Type
4411 *| ---------- -----------
4412 *| VT_BOOL VT_I2
4413 *| VT_EMPTY VT_I2
4414 *| VT_BSTR VT_R8
4415 *| All Others Unchanged
4416 * - The difference between this function and VarInt() is that VarInt() rounds
4417 * negative numbers away from 0, while this function rounds them towards zero.
4419 HRESULT WINAPI VarFix(LPVARIANT pVarIn, LPVARIANT pVarOut)
4421 HRESULT hRet = S_OK;
4422 VARIANT temp;
4424 VariantInit(&temp);
4426 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4428 /* Handle VT_DISPATCH by storing and taking address of returned value */
4429 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4431 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4432 if (FAILED(hRet)) goto VarFix_Exit;
4433 pVarIn = &temp;
4435 V_VT(pVarOut) = V_VT(pVarIn);
4437 switch (V_VT(pVarIn))
4439 case VT_UI1:
4440 V_UI1(pVarOut) = V_UI1(pVarIn);
4441 break;
4442 case VT_BOOL:
4443 V_VT(pVarOut) = VT_I2;
4444 /* Fall through */
4445 case VT_I2:
4446 V_I2(pVarOut) = V_I2(pVarIn);
4447 break;
4448 case VT_I4:
4449 V_I4(pVarOut) = V_I4(pVarIn);
4450 break;
4451 case VT_I8:
4452 V_I8(pVarOut) = V_I8(pVarIn);
4453 break;
4454 case VT_R4:
4455 if (V_R4(pVarIn) < 0.0f)
4456 V_R4(pVarOut) = (float)ceil(V_R4(pVarIn));
4457 else
4458 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
4459 break;
4460 case VT_BSTR:
4461 V_VT(pVarOut) = VT_R8;
4462 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4463 pVarIn = pVarOut;
4464 /* Fall through */
4465 case VT_DATE:
4466 case VT_R8:
4467 if (V_R8(pVarIn) < 0.0)
4468 V_R8(pVarOut) = ceil(V_R8(pVarIn));
4469 else
4470 V_R8(pVarOut) = floor(V_R8(pVarIn));
4471 break;
4472 case VT_CY:
4473 hRet = VarCyFix(V_CY(pVarIn), &V_CY(pVarOut));
4474 break;
4475 case VT_DECIMAL:
4476 hRet = VarDecFix(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4477 break;
4478 case VT_EMPTY:
4479 V_VT(pVarOut) = VT_I2;
4480 V_I2(pVarOut) = 0;
4481 break;
4482 case VT_NULL:
4483 /* No-Op */
4484 break;
4485 default:
4486 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4487 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4488 hRet = DISP_E_BADVARTYPE;
4489 else
4490 hRet = DISP_E_TYPEMISMATCH;
4492 VarFix_Exit:
4493 if (FAILED(hRet))
4494 V_VT(pVarOut) = VT_EMPTY;
4495 VariantClear(&temp);
4497 return hRet;
4500 /**********************************************************************
4501 * VarInt [OLEAUT32.172]
4503 * Truncate a variants value to a whole number.
4505 * PARAMS
4506 * pVarIn [I] Source variant
4507 * pVarOut [O] Destination for converted value
4509 * RETURNS
4510 * Success: S_OK. pVarOut contains the converted value.
4511 * Failure: An HRESULT error code indicating the error.
4513 * NOTES
4514 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4515 * according to the following table:
4516 *| Input Type Output Type
4517 *| ---------- -----------
4518 *| VT_BOOL VT_I2
4519 *| VT_EMPTY VT_I2
4520 *| VT_BSTR VT_R8
4521 *| All Others Unchanged
4522 * - The difference between this function and VarFix() is that VarFix() rounds
4523 * negative numbers towards 0, while this function rounds them away from zero.
4525 HRESULT WINAPI VarInt(LPVARIANT pVarIn, LPVARIANT pVarOut)
4527 HRESULT hRet = S_OK;
4528 VARIANT temp;
4530 VariantInit(&temp);
4532 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4534 /* Handle VT_DISPATCH by storing and taking address of returned value */
4535 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4537 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4538 if (FAILED(hRet)) goto VarInt_Exit;
4539 pVarIn = &temp;
4541 V_VT(pVarOut) = V_VT(pVarIn);
4543 switch (V_VT(pVarIn))
4545 case VT_R4:
4546 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
4547 break;
4548 case VT_BSTR:
4549 V_VT(pVarOut) = VT_R8;
4550 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4551 pVarIn = pVarOut;
4552 /* Fall through */
4553 case VT_DATE:
4554 case VT_R8:
4555 V_R8(pVarOut) = floor(V_R8(pVarIn));
4556 break;
4557 case VT_CY:
4558 hRet = VarCyInt(V_CY(pVarIn), &V_CY(pVarOut));
4559 break;
4560 case VT_DECIMAL:
4561 hRet = VarDecInt(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4562 break;
4563 default:
4564 hRet = VarFix(pVarIn, pVarOut);
4566 VarInt_Exit:
4567 VariantClear(&temp);
4569 return hRet;
4572 /**********************************************************************
4573 * VarXor [OLEAUT32.167]
4575 * Perform a logical exclusive-or (XOR) operation on two variants.
4577 * PARAMS
4578 * pVarLeft [I] First variant
4579 * pVarRight [I] Variant to XOR with pVarLeft
4580 * pVarOut [O] Destination for XOR result
4582 * RETURNS
4583 * Success: S_OK. pVarOut contains the result of the operation with its type
4584 * taken from the table below).
4585 * Failure: An HRESULT error code indicating the error.
4587 * NOTES
4588 * - Neither pVarLeft or pVarRight are modified by this function.
4589 * - This function does not process by-reference variants.
4590 * - Input types of VT_BSTR may be numeric strings or boolean text.
4591 * - The type of result stored in pVarOut depends on the types of pVarLeft
4592 * and pVarRight, and will be one of VT_UI1, VT_I2, VT_I4, VT_I8, VT_BOOL,
4593 * or VT_NULL if the function succeeds.
4594 * - Type promotion is inconsistent and as a result certain combinations of
4595 * values will return DISP_E_OVERFLOW even when they could be represented.
4596 * This matches the behaviour of native oleaut32.
4598 HRESULT WINAPI VarXor(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4600 VARTYPE vt;
4601 VARIANT varLeft, varRight;
4602 VARIANT tempLeft, tempRight;
4603 double d;
4604 HRESULT hRet;
4606 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
4608 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
4609 V_VT(pVarLeft) > VT_UINT || V_VT(pVarRight) > VT_UINT ||
4610 V_VT(pVarLeft) == VT_VARIANT || V_VT(pVarRight) == VT_VARIANT ||
4611 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
4612 V_VT(pVarLeft) == (VARTYPE)15 || V_VT(pVarRight) == (VARTYPE)15 ||
4613 V_VT(pVarLeft) == VT_ERROR || V_VT(pVarRight) == VT_ERROR)
4614 return DISP_E_BADVARTYPE;
4616 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
4618 /* NULL XOR anything valid is NULL */
4619 V_VT(pVarOut) = VT_NULL;
4620 return S_OK;
4623 VariantInit(&tempLeft);
4624 VariantInit(&tempRight);
4626 /* Handle VT_DISPATCH by storing and taking address of returned value */
4627 if ((V_VT(pVarLeft) & VT_TYPEMASK) == VT_DISPATCH)
4629 hRet = VARIANT_FetchDispatchValue(pVarLeft, &tempLeft);
4630 if (FAILED(hRet)) goto VarXor_Exit;
4631 pVarLeft = &tempLeft;
4633 if ((V_VT(pVarRight) & VT_TYPEMASK) == VT_DISPATCH)
4635 hRet = VARIANT_FetchDispatchValue(pVarRight, &tempRight);
4636 if (FAILED(hRet)) goto VarXor_Exit;
4637 pVarRight = &tempRight;
4640 /* Copy our inputs so we don't disturb anything */
4641 V_VT(&varLeft) = V_VT(&varRight) = VT_EMPTY;
4643 hRet = VariantCopy(&varLeft, pVarLeft);
4644 if (FAILED(hRet))
4645 goto VarXor_Exit;
4647 hRet = VariantCopy(&varRight, pVarRight);
4648 if (FAILED(hRet))
4649 goto VarXor_Exit;
4651 /* Try any strings first as numbers, then as VT_BOOL */
4652 if (V_VT(&varLeft) == VT_BSTR)
4654 hRet = VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d);
4655 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL,
4656 FAILED(hRet) ? VT_BOOL : VT_I4);
4657 if (FAILED(hRet))
4658 goto VarXor_Exit;
4661 if (V_VT(&varRight) == VT_BSTR)
4663 hRet = VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d);
4664 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL,
4665 FAILED(hRet) ? VT_BOOL : VT_I4);
4666 if (FAILED(hRet))
4667 goto VarXor_Exit;
4670 /* Determine the result type */
4671 if (V_VT(&varLeft) == VT_I8 || V_VT(&varRight) == VT_I8)
4673 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
4675 hRet = DISP_E_TYPEMISMATCH;
4676 goto VarXor_Exit;
4678 vt = VT_I8;
4680 else
4682 switch ((V_VT(&varLeft) << 16) | V_VT(&varRight))
4684 case (VT_BOOL << 16) | VT_BOOL:
4685 vt = VT_BOOL;
4686 break;
4687 case (VT_UI1 << 16) | VT_UI1:
4688 vt = VT_UI1;
4689 break;
4690 case (VT_EMPTY << 16) | VT_EMPTY:
4691 case (VT_EMPTY << 16) | VT_UI1:
4692 case (VT_EMPTY << 16) | VT_I2:
4693 case (VT_EMPTY << 16) | VT_BOOL:
4694 case (VT_UI1 << 16) | VT_EMPTY:
4695 case (VT_UI1 << 16) | VT_I2:
4696 case (VT_UI1 << 16) | VT_BOOL:
4697 case (VT_I2 << 16) | VT_EMPTY:
4698 case (VT_I2 << 16) | VT_UI1:
4699 case (VT_I2 << 16) | VT_I2:
4700 case (VT_I2 << 16) | VT_BOOL:
4701 case (VT_BOOL << 16) | VT_EMPTY:
4702 case (VT_BOOL << 16) | VT_UI1:
4703 case (VT_BOOL << 16) | VT_I2:
4704 vt = VT_I2;
4705 break;
4706 default:
4707 vt = VT_I4;
4708 break;
4712 /* VT_UI4 does not overflow */
4713 if (vt != VT_I8)
4715 if (V_VT(&varLeft) == VT_UI4)
4716 V_VT(&varLeft) = VT_I4;
4717 if (V_VT(&varRight) == VT_UI4)
4718 V_VT(&varRight) = VT_I4;
4721 /* Convert our input copies to the result type */
4722 if (V_VT(&varLeft) != vt)
4723 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
4724 if (FAILED(hRet))
4725 goto VarXor_Exit;
4727 if (V_VT(&varRight) != vt)
4728 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
4729 if (FAILED(hRet))
4730 goto VarXor_Exit;
4732 V_VT(pVarOut) = vt;
4734 /* Calculate the result */
4735 switch (vt)
4737 case VT_I8:
4738 V_I8(pVarOut) = V_I8(&varLeft) ^ V_I8(&varRight);
4739 break;
4740 case VT_I4:
4741 V_I4(pVarOut) = V_I4(&varLeft) ^ V_I4(&varRight);
4742 break;
4743 case VT_BOOL:
4744 case VT_I2:
4745 V_I2(pVarOut) = V_I2(&varLeft) ^ V_I2(&varRight);
4746 break;
4747 case VT_UI1:
4748 V_UI1(pVarOut) = V_UI1(&varLeft) ^ V_UI1(&varRight);
4749 break;
4752 VarXor_Exit:
4753 VariantClear(&varLeft);
4754 VariantClear(&varRight);
4755 VariantClear(&tempLeft);
4756 VariantClear(&tempRight);
4757 return hRet;
4760 /**********************************************************************
4761 * VarEqv [OLEAUT32.172]
4763 * Determine if two variants contain the same value.
4765 * PARAMS
4766 * pVarLeft [I] First variant to compare
4767 * pVarRight [I] Variant to compare to pVarLeft
4768 * pVarOut [O] Destination for comparison result
4770 * RETURNS
4771 * Success: S_OK. pVarOut contains the result of the comparison (VARIANT_TRUE
4772 * if equivalent or non-zero otherwise.
4773 * Failure: An HRESULT error code indicating the error.
4775 * NOTES
4776 * - This function simply calls VarXor() on pVarLeft and pVarRight and inverts
4777 * the result.
4779 HRESULT WINAPI VarEqv(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4781 HRESULT hRet;
4783 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
4785 hRet = VarXor(pVarLeft, pVarRight, pVarOut);
4786 if (SUCCEEDED(hRet))
4788 if (V_VT(pVarOut) == VT_I8)
4789 V_I8(pVarOut) = ~V_I8(pVarOut);
4790 else
4791 V_UI4(pVarOut) = ~V_UI4(pVarOut);
4793 return hRet;
4796 /**********************************************************************
4797 * VarNeg [OLEAUT32.173]
4799 * Negate the value of a variant.
4801 * PARAMS
4802 * pVarIn [I] Source variant
4803 * pVarOut [O] Destination for converted value
4805 * RETURNS
4806 * Success: S_OK. pVarOut contains the converted value.
4807 * Failure: An HRESULT error code indicating the error.
4809 * NOTES
4810 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4811 * according to the following table:
4812 *| Input Type Output Type
4813 *| ---------- -----------
4814 *| VT_EMPTY VT_I2
4815 *| VT_UI1 VT_I2
4816 *| VT_BOOL VT_I2
4817 *| VT_BSTR VT_R8
4818 *| All Others Unchanged (unless promoted)
4819 * - Where the negated value of a variant does not fit in its base type, the type
4820 * is promoted according to the following table:
4821 *| Input Type Promoted To
4822 *| ---------- -----------
4823 *| VT_I2 VT_I4
4824 *| VT_I4 VT_R8
4825 *| VT_I8 VT_R8
4826 * - The native version of this function returns DISP_E_BADVARTYPE for valid
4827 * variant types that cannot be negated, and returns DISP_E_TYPEMISMATCH
4828 * for types which are not valid. Since this is in contravention of the
4829 * meaning of those error codes and unlikely to be relied on by applications,
4830 * this implementation returns errors consistent with the other high level
4831 * variant math functions.
4833 HRESULT WINAPI VarNeg(LPVARIANT pVarIn, LPVARIANT pVarOut)
4835 HRESULT hRet = S_OK;
4836 VARIANT temp;
4838 VariantInit(&temp);
4840 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4842 /* Handle VT_DISPATCH by storing and taking address of returned value */
4843 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4845 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4846 if (FAILED(hRet)) goto VarNeg_Exit;
4847 pVarIn = &temp;
4849 V_VT(pVarOut) = V_VT(pVarIn);
4851 switch (V_VT(pVarIn))
4853 case VT_UI1:
4854 V_VT(pVarOut) = VT_I2;
4855 V_I2(pVarOut) = -V_UI1(pVarIn);
4856 break;
4857 case VT_BOOL:
4858 V_VT(pVarOut) = VT_I2;
4859 /* Fall through */
4860 case VT_I2:
4861 if (V_I2(pVarIn) == I2_MIN)
4863 V_VT(pVarOut) = VT_I4;
4864 V_I4(pVarOut) = -(int)V_I2(pVarIn);
4866 else
4867 V_I2(pVarOut) = -V_I2(pVarIn);
4868 break;
4869 case VT_I4:
4870 if (V_I4(pVarIn) == I4_MIN)
4872 V_VT(pVarOut) = VT_R8;
4873 V_R8(pVarOut) = -(double)V_I4(pVarIn);
4875 else
4876 V_I4(pVarOut) = -V_I4(pVarIn);
4877 break;
4878 case VT_I8:
4879 if (V_I8(pVarIn) == I8_MIN)
4881 V_VT(pVarOut) = VT_R8;
4882 hRet = VarR8FromI8(V_I8(pVarIn), &V_R8(pVarOut));
4883 V_R8(pVarOut) *= -1.0;
4885 else
4886 V_I8(pVarOut) = -V_I8(pVarIn);
4887 break;
4888 case VT_R4:
4889 V_R4(pVarOut) = -V_R4(pVarIn);
4890 break;
4891 case VT_DATE:
4892 case VT_R8:
4893 V_R8(pVarOut) = -V_R8(pVarIn);
4894 break;
4895 case VT_CY:
4896 hRet = VarCyNeg(V_CY(pVarIn), &V_CY(pVarOut));
4897 break;
4898 case VT_DECIMAL:
4899 hRet = VarDecNeg(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4900 break;
4901 case VT_BSTR:
4902 V_VT(pVarOut) = VT_R8;
4903 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4904 V_R8(pVarOut) = -V_R8(pVarOut);
4905 break;
4906 case VT_EMPTY:
4907 V_VT(pVarOut) = VT_I2;
4908 V_I2(pVarOut) = 0;
4909 break;
4910 case VT_NULL:
4911 /* No-Op */
4912 break;
4913 default:
4914 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4915 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4916 hRet = DISP_E_BADVARTYPE;
4917 else
4918 hRet = DISP_E_TYPEMISMATCH;
4920 VarNeg_Exit:
4921 if (FAILED(hRet))
4922 V_VT(pVarOut) = VT_EMPTY;
4923 VariantClear(&temp);
4925 return hRet;
4928 /**********************************************************************
4929 * VarNot [OLEAUT32.174]
4931 * Perform a not operation on a variant.
4933 * PARAMS
4934 * pVarIn [I] Source variant
4935 * pVarOut [O] Destination for converted value
4937 * RETURNS
4938 * Success: S_OK. pVarOut contains the converted value.
4939 * Failure: An HRESULT error code indicating the error.
4941 * NOTES
4942 * - Strictly speaking, this function performs a bitwise ones complement
4943 * on the variants value (after possibly converting to VT_I4, see below).
4944 * This only behaves like a boolean not operation if the value in
4945 * pVarIn is either VARIANT_TRUE or VARIANT_FALSE and the type is signed.
4946 * - To perform a genuine not operation, convert the variant to a VT_BOOL
4947 * before calling this function.
4948 * - This function does not process by-reference variants.
4949 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4950 * according to the following table:
4951 *| Input Type Output Type
4952 *| ---------- -----------
4953 *| VT_EMPTY VT_I2
4954 *| VT_R4 VT_I4
4955 *| VT_R8 VT_I4
4956 *| VT_BSTR VT_I4
4957 *| VT_DECIMAL VT_I4
4958 *| VT_CY VT_I4
4959 *| (All others) Unchanged
4961 HRESULT WINAPI VarNot(LPVARIANT pVarIn, LPVARIANT pVarOut)
4963 VARIANT varIn;
4964 HRESULT hRet = S_OK;
4965 VARIANT temp;
4967 VariantInit(&temp);
4969 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4971 /* Handle VT_DISPATCH by storing and taking address of returned value */
4972 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4974 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4975 if (FAILED(hRet)) goto VarNot_Exit;
4976 pVarIn = &temp;
4979 if (V_VT(pVarIn) == VT_BSTR)
4981 V_VT(&varIn) = VT_R8;
4982 hRet = VarR8FromStr( V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn) );
4983 if (FAILED(hRet))
4985 V_VT(&varIn) = VT_BOOL;
4986 hRet = VarBoolFromStr( V_BSTR(pVarIn), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &V_BOOL(&varIn) );
4988 if (FAILED(hRet)) goto VarNot_Exit;
4989 pVarIn = &varIn;
4992 V_VT(pVarOut) = V_VT(pVarIn);
4994 switch (V_VT(pVarIn))
4996 case VT_I1:
4997 V_I4(pVarOut) = ~V_I1(pVarIn);
4998 V_VT(pVarOut) = VT_I4;
4999 break;
5000 case VT_UI1: V_UI1(pVarOut) = ~V_UI1(pVarIn); break;
5001 case VT_BOOL:
5002 case VT_I2: V_I2(pVarOut) = ~V_I2(pVarIn); break;
5003 case VT_UI2:
5004 V_I4(pVarOut) = ~V_UI2(pVarIn);
5005 V_VT(pVarOut) = VT_I4;
5006 break;
5007 case VT_DECIMAL:
5008 hRet = VarI4FromDec(&V_DECIMAL(pVarIn), &V_I4(&varIn));
5009 if (FAILED(hRet))
5010 break;
5011 pVarIn = &varIn;
5012 /* Fall through ... */
5013 case VT_INT:
5014 V_VT(pVarOut) = VT_I4;
5015 /* Fall through ... */
5016 case VT_I4: V_I4(pVarOut) = ~V_I4(pVarIn); break;
5017 case VT_UINT:
5018 case VT_UI4:
5019 V_I4(pVarOut) = ~V_UI4(pVarIn);
5020 V_VT(pVarOut) = VT_I4;
5021 break;
5022 case VT_I8: V_I8(pVarOut) = ~V_I8(pVarIn); break;
5023 case VT_UI8:
5024 V_I4(pVarOut) = ~V_UI8(pVarIn);
5025 V_VT(pVarOut) = VT_I4;
5026 break;
5027 case VT_R4:
5028 hRet = VarI4FromR4(V_R4(pVarIn), &V_I4(pVarOut));
5029 V_I4(pVarOut) = ~V_I4(pVarOut);
5030 V_VT(pVarOut) = VT_I4;
5031 break;
5032 case VT_DATE:
5033 case VT_R8:
5034 hRet = VarI4FromR8(V_R8(pVarIn), &V_I4(pVarOut));
5035 V_I4(pVarOut) = ~V_I4(pVarOut);
5036 V_VT(pVarOut) = VT_I4;
5037 break;
5038 case VT_CY:
5039 hRet = VarI4FromCy(V_CY(pVarIn), &V_I4(pVarOut));
5040 V_I4(pVarOut) = ~V_I4(pVarOut);
5041 V_VT(pVarOut) = VT_I4;
5042 break;
5043 case VT_EMPTY:
5044 V_I2(pVarOut) = ~0;
5045 V_VT(pVarOut) = VT_I2;
5046 break;
5047 case VT_NULL:
5048 /* No-Op */
5049 break;
5050 default:
5051 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
5052 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
5053 hRet = DISP_E_BADVARTYPE;
5054 else
5055 hRet = DISP_E_TYPEMISMATCH;
5057 VarNot_Exit:
5058 if (FAILED(hRet))
5059 V_VT(pVarOut) = VT_EMPTY;
5060 VariantClear(&temp);
5062 return hRet;
5065 /**********************************************************************
5066 * VarRound [OLEAUT32.175]
5068 * Perform a round operation on a variant.
5070 * PARAMS
5071 * pVarIn [I] Source variant
5072 * deci [I] Number of decimals to round to
5073 * pVarOut [O] Destination for converted value
5075 * RETURNS
5076 * Success: S_OK. pVarOut contains the converted value.
5077 * Failure: An HRESULT error code indicating the error.
5079 * NOTES
5080 * - Floating point values are rounded to the desired number of decimals.
5081 * - Some integer types are just copied to the return variable.
5082 * - Some other integer types are not handled and fail.
5084 HRESULT WINAPI VarRound(LPVARIANT pVarIn, int deci, LPVARIANT pVarOut)
5086 VARIANT varIn;
5087 HRESULT hRet = S_OK;
5088 float factor;
5089 VARIANT temp;
5091 VariantInit(&temp);
5093 TRACE("(%s,%d)\n", debugstr_variant(pVarIn), deci);
5095 /* Handle VT_DISPATCH by storing and taking address of returned value */
5096 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
5098 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
5099 if (FAILED(hRet)) goto VarRound_Exit;
5100 pVarIn = &temp;
5103 switch (V_VT(pVarIn))
5105 /* cases that fail on windows */
5106 case VT_I1:
5107 case VT_I8:
5108 case VT_UI2:
5109 case VT_UI4:
5110 hRet = DISP_E_BADVARTYPE;
5111 break;
5113 /* cases just copying in to out */
5114 case VT_UI1:
5115 V_VT(pVarOut) = V_VT(pVarIn);
5116 V_UI1(pVarOut) = V_UI1(pVarIn);
5117 break;
5118 case VT_I2:
5119 V_VT(pVarOut) = V_VT(pVarIn);
5120 V_I2(pVarOut) = V_I2(pVarIn);
5121 break;
5122 case VT_I4:
5123 V_VT(pVarOut) = V_VT(pVarIn);
5124 V_I4(pVarOut) = V_I4(pVarIn);
5125 break;
5126 case VT_NULL:
5127 V_VT(pVarOut) = V_VT(pVarIn);
5128 /* value unchanged */
5129 break;
5131 /* cases that change type */
5132 case VT_EMPTY:
5133 V_VT(pVarOut) = VT_I2;
5134 V_I2(pVarOut) = 0;
5135 break;
5136 case VT_BOOL:
5137 V_VT(pVarOut) = VT_I2;
5138 V_I2(pVarOut) = V_BOOL(pVarIn);
5139 break;
5140 case VT_BSTR:
5141 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
5142 if (FAILED(hRet))
5143 break;
5144 V_VT(&varIn)=VT_R8;
5145 pVarIn = &varIn;
5146 /* Fall through ... */
5148 /* cases we need to do math */
5149 case VT_R8:
5150 if (V_R8(pVarIn)>0) {
5151 V_R8(pVarOut)=floor(V_R8(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5152 } else {
5153 V_R8(pVarOut)=ceil(V_R8(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5155 V_VT(pVarOut) = V_VT(pVarIn);
5156 break;
5157 case VT_R4:
5158 if (V_R4(pVarIn)>0) {
5159 V_R4(pVarOut)=floor(V_R4(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5160 } else {
5161 V_R4(pVarOut)=ceil(V_R4(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5163 V_VT(pVarOut) = V_VT(pVarIn);
5164 break;
5165 case VT_DATE:
5166 if (V_DATE(pVarIn)>0) {
5167 V_DATE(pVarOut)=floor(V_DATE(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5168 } else {
5169 V_DATE(pVarOut)=ceil(V_DATE(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5171 V_VT(pVarOut) = V_VT(pVarIn);
5172 break;
5173 case VT_CY:
5174 if (deci>3)
5175 factor=1;
5176 else
5177 factor=pow(10, 4-deci);
5179 if (V_CY(pVarIn).int64>0) {
5180 V_CY(pVarOut).int64=floor(V_CY(pVarIn).int64/factor)*factor;
5181 } else {
5182 V_CY(pVarOut).int64=ceil(V_CY(pVarIn).int64/factor)*factor;
5184 V_VT(pVarOut) = V_VT(pVarIn);
5185 break;
5187 /* cases we don't know yet */
5188 default:
5189 FIXME("unimplemented part, V_VT(pVarIn) == 0x%X, deci == %d\n",
5190 V_VT(pVarIn) & VT_TYPEMASK, deci);
5191 hRet = DISP_E_BADVARTYPE;
5193 VarRound_Exit:
5194 if (FAILED(hRet))
5195 V_VT(pVarOut) = VT_EMPTY;
5196 VariantClear(&temp);
5198 TRACE("returning 0x%08x %s\n", hRet, debugstr_variant(pVarOut));
5199 return hRet;
5202 /**********************************************************************
5203 * VarIdiv [OLEAUT32.153]
5205 * Converts input variants to integers and divides them.
5207 * PARAMS
5208 * left [I] Left hand variant
5209 * right [I] Right hand variant
5210 * result [O] Destination for quotient
5212 * RETURNS
5213 * Success: S_OK. result contains the quotient.
5214 * Failure: An HRESULT error code indicating the error.
5216 * NOTES
5217 * If either expression is null, null is returned, as per MSDN
5219 HRESULT WINAPI VarIdiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5221 HRESULT hres = S_OK;
5222 VARTYPE resvt = VT_EMPTY;
5223 VARTYPE leftvt,rightvt;
5224 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5225 VARIANT lv,rv;
5226 VARIANT tempLeft, tempRight;
5228 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5230 VariantInit(&lv);
5231 VariantInit(&rv);
5232 VariantInit(&tempLeft);
5233 VariantInit(&tempRight);
5235 leftvt = V_VT(left)&VT_TYPEMASK;
5236 rightvt = V_VT(right)&VT_TYPEMASK;
5237 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5238 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5240 if (leftExtraFlags != rightExtraFlags)
5242 hres = DISP_E_BADVARTYPE;
5243 goto end;
5245 ExtraFlags = leftExtraFlags;
5247 /* Native VarIdiv always returns an error when using extra
5248 * flags or if the variant combination is I8 and INT.
5250 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
5251 (leftvt == VT_INT && rightvt == VT_I8) ||
5252 (rightvt == VT_EMPTY && leftvt != VT_NULL) ||
5253 ExtraFlags != 0)
5255 hres = DISP_E_BADVARTYPE;
5256 goto end;
5259 /* Determine variant type */
5260 else if (leftvt == VT_NULL || rightvt == VT_NULL)
5262 V_VT(result) = VT_NULL;
5263 hres = S_OK;
5264 goto end;
5266 else if (leftvt == VT_I8 || rightvt == VT_I8)
5267 resvt = VT_I8;
5268 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
5269 leftvt == VT_INT || rightvt == VT_INT ||
5270 leftvt == VT_UINT || rightvt == VT_UINT ||
5271 leftvt == VT_UI8 || rightvt == VT_UI8 ||
5272 leftvt == VT_UI4 || rightvt == VT_UI4 ||
5273 leftvt == VT_UI2 || rightvt == VT_UI2 ||
5274 leftvt == VT_I1 || rightvt == VT_I1 ||
5275 leftvt == VT_BSTR || rightvt == VT_BSTR ||
5276 leftvt == VT_DATE || rightvt == VT_DATE ||
5277 leftvt == VT_CY || rightvt == VT_CY ||
5278 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL ||
5279 leftvt == VT_R8 || rightvt == VT_R8 ||
5280 leftvt == VT_R4 || rightvt == VT_R4)
5281 resvt = VT_I4;
5282 else if (leftvt == VT_I2 || rightvt == VT_I2 ||
5283 leftvt == VT_BOOL || rightvt == VT_BOOL ||
5284 leftvt == VT_EMPTY)
5285 resvt = VT_I2;
5286 else if (leftvt == VT_UI1 || rightvt == VT_UI1)
5287 resvt = VT_UI1;
5288 else
5290 hres = DISP_E_BADVARTYPE;
5291 goto end;
5294 /* coerce to the result type */
5295 hres = VariantChangeType(&lv, left, 0, resvt);
5296 if (hres != S_OK) goto end;
5297 hres = VariantChangeType(&rv, right, 0, resvt);
5298 if (hres != S_OK) goto end;
5300 /* do the math */
5301 V_VT(result) = resvt;
5302 switch (resvt)
5304 case VT_UI1:
5305 if (V_UI1(&rv) == 0)
5307 hres = DISP_E_DIVBYZERO;
5308 V_VT(result) = VT_EMPTY;
5310 else
5311 V_UI1(result) = V_UI1(&lv) / V_UI1(&rv);
5312 break;
5313 case VT_I2:
5314 if (V_I2(&rv) == 0)
5316 hres = DISP_E_DIVBYZERO;
5317 V_VT(result) = VT_EMPTY;
5319 else
5320 V_I2(result) = V_I2(&lv) / V_I2(&rv);
5321 break;
5322 case VT_I4:
5323 if (V_I4(&rv) == 0)
5325 hres = DISP_E_DIVBYZERO;
5326 V_VT(result) = VT_EMPTY;
5328 else
5329 V_I4(result) = V_I4(&lv) / V_I4(&rv);
5330 break;
5331 case VT_I8:
5332 if (V_I8(&rv) == 0)
5334 hres = DISP_E_DIVBYZERO;
5335 V_VT(result) = VT_EMPTY;
5337 else
5338 V_I8(result) = V_I8(&lv) / V_I8(&rv);
5339 break;
5340 default:
5341 FIXME("Couldn't integer divide variant types %d,%d\n",
5342 leftvt,rightvt);
5345 end:
5346 VariantClear(&lv);
5347 VariantClear(&rv);
5348 VariantClear(&tempLeft);
5349 VariantClear(&tempRight);
5351 return hres;
5355 /**********************************************************************
5356 * VarMod [OLEAUT32.155]
5358 * Perform the modulus operation of the right hand variant on the left
5360 * PARAMS
5361 * left [I] Left hand variant
5362 * right [I] Right hand variant
5363 * result [O] Destination for converted value
5365 * RETURNS
5366 * Success: S_OK. result contains the remainder.
5367 * Failure: An HRESULT error code indicating the error.
5369 * NOTE:
5370 * If an error occurs the type of result will be modified but the value will not be.
5371 * Doesn't support arrays or any special flags yet.
5373 HRESULT WINAPI VarMod(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5375 BOOL lOk = TRUE;
5376 HRESULT rc = E_FAIL;
5377 int resT = 0;
5378 VARIANT lv,rv;
5379 VARIANT tempLeft, tempRight;
5381 VariantInit(&tempLeft);
5382 VariantInit(&tempRight);
5383 VariantInit(&lv);
5384 VariantInit(&rv);
5386 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5388 /* Handle VT_DISPATCH by storing and taking address of returned value */
5389 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5391 rc = VARIANT_FetchDispatchValue(left, &tempLeft);
5392 if (FAILED(rc)) goto end;
5393 left = &tempLeft;
5395 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5397 rc = VARIANT_FetchDispatchValue(right, &tempRight);
5398 if (FAILED(rc)) goto end;
5399 right = &tempRight;
5402 /* check for invalid inputs */
5403 lOk = TRUE;
5404 switch (V_VT(left) & VT_TYPEMASK) {
5405 case VT_BOOL :
5406 case VT_I1 :
5407 case VT_I2 :
5408 case VT_I4 :
5409 case VT_I8 :
5410 case VT_INT :
5411 case VT_UI1 :
5412 case VT_UI2 :
5413 case VT_UI4 :
5414 case VT_UI8 :
5415 case VT_UINT :
5416 case VT_R4 :
5417 case VT_R8 :
5418 case VT_CY :
5419 case VT_EMPTY:
5420 case VT_DATE :
5421 case VT_BSTR :
5422 case VT_DECIMAL:
5423 break;
5424 case VT_VARIANT:
5425 case VT_UNKNOWN:
5426 V_VT(result) = VT_EMPTY;
5427 rc = DISP_E_TYPEMISMATCH;
5428 goto end;
5429 case VT_ERROR:
5430 rc = DISP_E_TYPEMISMATCH;
5431 goto end;
5432 case VT_RECORD:
5433 V_VT(result) = VT_EMPTY;
5434 rc = DISP_E_TYPEMISMATCH;
5435 goto end;
5436 case VT_NULL:
5437 break;
5438 default:
5439 V_VT(result) = VT_EMPTY;
5440 rc = DISP_E_BADVARTYPE;
5441 goto end;
5445 switch (V_VT(right) & VT_TYPEMASK) {
5446 case VT_BOOL :
5447 case VT_I1 :
5448 case VT_I2 :
5449 case VT_I4 :
5450 case VT_I8 :
5451 if((V_VT(left) == VT_INT) && (V_VT(right) == VT_I8))
5453 V_VT(result) = VT_EMPTY;
5454 rc = DISP_E_TYPEMISMATCH;
5455 goto end;
5457 case VT_INT :
5458 if((V_VT(right) == VT_INT) && (V_VT(left) == VT_I8))
5460 V_VT(result) = VT_EMPTY;
5461 rc = DISP_E_TYPEMISMATCH;
5462 goto end;
5464 case VT_UI1 :
5465 case VT_UI2 :
5466 case VT_UI4 :
5467 case VT_UI8 :
5468 case VT_UINT :
5469 case VT_R4 :
5470 case VT_R8 :
5471 case VT_CY :
5472 if(V_VT(left) == VT_EMPTY)
5474 V_VT(result) = VT_I4;
5475 rc = S_OK;
5476 goto end;
5478 case VT_EMPTY:
5479 case VT_DATE :
5480 case VT_DECIMAL:
5481 if(V_VT(left) == VT_ERROR)
5483 V_VT(result) = VT_EMPTY;
5484 rc = DISP_E_TYPEMISMATCH;
5485 goto end;
5487 case VT_BSTR:
5488 if(V_VT(left) == VT_NULL)
5490 V_VT(result) = VT_NULL;
5491 rc = S_OK;
5492 goto end;
5494 break;
5496 case VT_VOID:
5497 V_VT(result) = VT_EMPTY;
5498 rc = DISP_E_BADVARTYPE;
5499 goto end;
5500 case VT_NULL:
5501 if(V_VT(left) == VT_VOID)
5503 V_VT(result) = VT_EMPTY;
5504 rc = DISP_E_BADVARTYPE;
5505 } else if((V_VT(left) == VT_NULL) || (V_VT(left) == VT_EMPTY) || (V_VT(left) == VT_ERROR) ||
5506 lOk)
5508 V_VT(result) = VT_NULL;
5509 rc = S_OK;
5510 } else
5512 V_VT(result) = VT_NULL;
5513 rc = DISP_E_BADVARTYPE;
5515 goto end;
5516 case VT_VARIANT:
5517 case VT_UNKNOWN:
5518 V_VT(result) = VT_EMPTY;
5519 rc = DISP_E_TYPEMISMATCH;
5520 goto end;
5521 case VT_ERROR:
5522 rc = DISP_E_TYPEMISMATCH;
5523 goto end;
5524 case VT_RECORD:
5525 if((V_VT(left) == 15) || ((V_VT(left) >= 24) && (V_VT(left) <= 35)) || !lOk)
5527 V_VT(result) = VT_EMPTY;
5528 rc = DISP_E_BADVARTYPE;
5529 } else
5531 V_VT(result) = VT_EMPTY;
5532 rc = DISP_E_TYPEMISMATCH;
5534 goto end;
5535 default:
5536 V_VT(result) = VT_EMPTY;
5537 rc = DISP_E_BADVARTYPE;
5538 goto end;
5541 /* determine the result type */
5542 if((V_VT(left) == VT_I8) || (V_VT(right) == VT_I8)) resT = VT_I8;
5543 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5544 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_UI1)) resT = VT_UI1;
5545 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_I2)) resT = VT_I2;
5546 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5547 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_UI1)) resT = VT_I2;
5548 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_I2)) resT = VT_I2;
5549 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5550 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_UI1)) resT = VT_I2;
5551 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_I2)) resT = VT_I2;
5552 else resT = VT_I4; /* most outputs are I4 */
5554 /* convert to I8 for the modulo */
5555 rc = VariantChangeType(&lv, left, 0, VT_I8);
5556 if(FAILED(rc))
5558 FIXME("Could not convert left type %d to %d? rc == 0x%X\n", V_VT(left), VT_I8, rc);
5559 goto end;
5562 rc = VariantChangeType(&rv, right, 0, VT_I8);
5563 if(FAILED(rc))
5565 FIXME("Could not convert right type %d to %d? rc == 0x%X\n", V_VT(right), VT_I8, rc);
5566 goto end;
5569 /* if right is zero set VT_EMPTY and return divide by zero */
5570 if(V_I8(&rv) == 0)
5572 V_VT(result) = VT_EMPTY;
5573 rc = DISP_E_DIVBYZERO;
5574 goto end;
5577 /* perform the modulo operation */
5578 V_VT(result) = VT_I8;
5579 V_I8(result) = V_I8(&lv) % V_I8(&rv);
5581 TRACE("V_I8(left) == %s, V_I8(right) == %s, V_I8(result) == %s\n",
5582 wine_dbgstr_longlong(V_I8(&lv)), wine_dbgstr_longlong(V_I8(&rv)),
5583 wine_dbgstr_longlong(V_I8(result)));
5585 /* convert left and right to the destination type */
5586 rc = VariantChangeType(result, result, 0, resT);
5587 if(FAILED(rc))
5589 FIXME("Could not convert 0x%x to %d?\n", V_VT(result), resT);
5590 /* fall to end of function */
5593 end:
5594 VariantClear(&lv);
5595 VariantClear(&rv);
5596 VariantClear(&tempLeft);
5597 VariantClear(&tempRight);
5598 return rc;
5601 /**********************************************************************
5602 * VarPow [OLEAUT32.158]
5604 * Computes the power of one variant to another variant.
5606 * PARAMS
5607 * left [I] First variant
5608 * right [I] Second variant
5609 * result [O] Result variant
5611 * RETURNS
5612 * Success: S_OK.
5613 * Failure: An HRESULT error code indicating the error.
5615 HRESULT WINAPI VarPow(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5617 HRESULT hr = S_OK;
5618 VARIANT dl,dr;
5619 VARTYPE resvt = VT_EMPTY;
5620 VARTYPE leftvt,rightvt;
5621 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5622 VARIANT tempLeft, tempRight;
5624 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5626 VariantInit(&dl);
5627 VariantInit(&dr);
5628 VariantInit(&tempLeft);
5629 VariantInit(&tempRight);
5631 /* Handle VT_DISPATCH by storing and taking address of returned value */
5632 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5634 hr = VARIANT_FetchDispatchValue(left, &tempLeft);
5635 if (FAILED(hr)) goto end;
5636 left = &tempLeft;
5638 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5640 hr = VARIANT_FetchDispatchValue(right, &tempRight);
5641 if (FAILED(hr)) goto end;
5642 right = &tempRight;
5645 leftvt = V_VT(left)&VT_TYPEMASK;
5646 rightvt = V_VT(right)&VT_TYPEMASK;
5647 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5648 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5650 if (leftExtraFlags != rightExtraFlags)
5652 hr = DISP_E_BADVARTYPE;
5653 goto end;
5655 ExtraFlags = leftExtraFlags;
5657 /* Native VarPow always returns an error when using extra flags */
5658 if (ExtraFlags != 0)
5660 hr = DISP_E_BADVARTYPE;
5661 goto end;
5664 /* Determine return type */
5665 else if (leftvt == VT_NULL || rightvt == VT_NULL) {
5666 V_VT(result) = VT_NULL;
5667 hr = S_OK;
5668 goto end;
5670 else if ((leftvt == VT_EMPTY || leftvt == VT_I2 ||
5671 leftvt == VT_I4 || leftvt == VT_R4 ||
5672 leftvt == VT_R8 || leftvt == VT_CY ||
5673 leftvt == VT_DATE || leftvt == VT_BSTR ||
5674 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
5675 (leftvt >= VT_I1 && leftvt <= VT_UINT)) &&
5676 (rightvt == VT_EMPTY || rightvt == VT_I2 ||
5677 rightvt == VT_I4 || rightvt == VT_R4 ||
5678 rightvt == VT_R8 || rightvt == VT_CY ||
5679 rightvt == VT_DATE || rightvt == VT_BSTR ||
5680 rightvt == VT_BOOL || rightvt == VT_DECIMAL ||
5681 (rightvt >= VT_I1 && rightvt <= VT_UINT)))
5682 resvt = VT_R8;
5683 else
5685 hr = DISP_E_BADVARTYPE;
5686 goto end;
5689 hr = VariantChangeType(&dl,left,0,resvt);
5690 if (FAILED(hr)) {
5691 ERR("Could not change passed left argument to VT_R8, handle it differently.\n");
5692 hr = E_FAIL;
5693 goto end;
5696 hr = VariantChangeType(&dr,right,0,resvt);
5697 if (FAILED(hr)) {
5698 ERR("Could not change passed right argument to VT_R8, handle it differently.\n");
5699 hr = E_FAIL;
5700 goto end;
5703 V_VT(result) = VT_R8;
5704 V_R8(result) = pow(V_R8(&dl),V_R8(&dr));
5706 end:
5707 VariantClear(&dl);
5708 VariantClear(&dr);
5709 VariantClear(&tempLeft);
5710 VariantClear(&tempRight);
5712 return hr;
5715 /**********************************************************************
5716 * VarImp [OLEAUT32.154]
5718 * Bitwise implication of two variants.
5720 * PARAMS
5721 * left [I] First variant
5722 * right [I] Second variant
5723 * result [O] Result variant
5725 * RETURNS
5726 * Success: S_OK.
5727 * Failure: An HRESULT error code indicating the error.
5729 HRESULT WINAPI VarImp(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5731 HRESULT hres = S_OK;
5732 VARTYPE resvt = VT_EMPTY;
5733 VARTYPE leftvt,rightvt;
5734 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5735 VARIANT lv,rv;
5736 double d;
5737 VARIANT tempLeft, tempRight;
5739 VariantInit(&lv);
5740 VariantInit(&rv);
5741 VariantInit(&tempLeft);
5742 VariantInit(&tempRight);
5744 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5746 /* Handle VT_DISPATCH by storing and taking address of returned value */
5747 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5749 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
5750 if (FAILED(hres)) goto VarImp_Exit;
5751 left = &tempLeft;
5753 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5755 hres = VARIANT_FetchDispatchValue(right, &tempRight);
5756 if (FAILED(hres)) goto VarImp_Exit;
5757 right = &tempRight;
5760 leftvt = V_VT(left)&VT_TYPEMASK;
5761 rightvt = V_VT(right)&VT_TYPEMASK;
5762 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5763 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5765 if (leftExtraFlags != rightExtraFlags)
5767 hres = DISP_E_BADVARTYPE;
5768 goto VarImp_Exit;
5770 ExtraFlags = leftExtraFlags;
5772 /* Native VarImp always returns an error when using extra
5773 * flags or if the variants are I8 and INT.
5775 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
5776 ExtraFlags != 0)
5778 hres = DISP_E_BADVARTYPE;
5779 goto VarImp_Exit;
5782 /* Determine result type */
5783 else if ((leftvt == VT_NULL && rightvt == VT_NULL) ||
5784 (leftvt == VT_NULL && rightvt == VT_EMPTY))
5786 V_VT(result) = VT_NULL;
5787 hres = S_OK;
5788 goto VarImp_Exit;
5790 else if (leftvt == VT_I8 || rightvt == VT_I8)
5791 resvt = VT_I8;
5792 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
5793 leftvt == VT_INT || rightvt == VT_INT ||
5794 leftvt == VT_UINT || rightvt == VT_UINT ||
5795 leftvt == VT_UI4 || rightvt == VT_UI4 ||
5796 leftvt == VT_UI8 || rightvt == VT_UI8 ||
5797 leftvt == VT_UI2 || rightvt == VT_UI2 ||
5798 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL ||
5799 leftvt == VT_DATE || rightvt == VT_DATE ||
5800 leftvt == VT_CY || rightvt == VT_CY ||
5801 leftvt == VT_R8 || rightvt == VT_R8 ||
5802 leftvt == VT_R4 || rightvt == VT_R4 ||
5803 leftvt == VT_I1 || rightvt == VT_I1)
5804 resvt = VT_I4;
5805 else if ((leftvt == VT_UI1 && rightvt == VT_UI1) ||
5806 (leftvt == VT_UI1 && rightvt == VT_NULL) ||
5807 (leftvt == VT_NULL && rightvt == VT_UI1))
5808 resvt = VT_UI1;
5809 else if (leftvt == VT_EMPTY || rightvt == VT_EMPTY ||
5810 leftvt == VT_I2 || rightvt == VT_I2 ||
5811 leftvt == VT_UI1 || rightvt == VT_UI1)
5812 resvt = VT_I2;
5813 else if (leftvt == VT_BOOL || rightvt == VT_BOOL ||
5814 leftvt == VT_BSTR || rightvt == VT_BSTR)
5815 resvt = VT_BOOL;
5817 /* VT_NULL requires special handling for when the opposite
5818 * variant is equal to something other than -1.
5819 * (NULL Imp 0 = NULL, NULL Imp n = n)
5821 if (leftvt == VT_NULL)
5823 VARIANT_BOOL b;
5824 switch(rightvt)
5826 case VT_I1: if (!V_I1(right)) resvt = VT_NULL; break;
5827 case VT_UI1: if (!V_UI1(right)) resvt = VT_NULL; break;
5828 case VT_I2: if (!V_I2(right)) resvt = VT_NULL; break;
5829 case VT_UI2: if (!V_UI2(right)) resvt = VT_NULL; break;
5830 case VT_I4: if (!V_I4(right)) resvt = VT_NULL; break;
5831 case VT_UI4: if (!V_UI4(right)) resvt = VT_NULL; break;
5832 case VT_I8: if (!V_I8(right)) resvt = VT_NULL; break;
5833 case VT_UI8: if (!V_UI8(right)) resvt = VT_NULL; break;
5834 case VT_INT: if (!V_INT(right)) resvt = VT_NULL; break;
5835 case VT_UINT: if (!V_UINT(right)) resvt = VT_NULL; break;
5836 case VT_BOOL: if (!V_BOOL(right)) resvt = VT_NULL; break;
5837 case VT_R4: if (!V_R4(right)) resvt = VT_NULL; break;
5838 case VT_R8: if (!V_R8(right)) resvt = VT_NULL; break;
5839 case VT_DATE: if (!V_DATE(right)) resvt = VT_NULL; break;
5840 case VT_CY: if (!V_CY(right).int64) resvt = VT_NULL; break;
5841 case VT_DECIMAL:
5842 if (!(DEC_HI32(&V_DECIMAL(right)) || DEC_LO64(&V_DECIMAL(right))))
5843 resvt = VT_NULL;
5844 break;
5845 case VT_BSTR:
5846 hres = VarBoolFromStr(V_BSTR(right),LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
5847 if (FAILED(hres)) goto VarImp_Exit;
5848 else if (!b)
5849 V_VT(result) = VT_NULL;
5850 else
5852 V_VT(result) = VT_BOOL;
5853 V_BOOL(result) = b;
5855 goto VarImp_Exit;
5857 if (resvt == VT_NULL)
5859 V_VT(result) = resvt;
5860 goto VarImp_Exit;
5862 else
5864 hres = VariantChangeType(result,right,0,resvt);
5865 goto VarImp_Exit;
5869 /* Special handling is required when NULL is the right variant.
5870 * (-1 Imp NULL = NULL, n Imp NULL = n Imp 0)
5872 else if (rightvt == VT_NULL)
5874 VARIANT_BOOL b;
5875 switch(leftvt)
5877 case VT_I1: if (V_I1(left) == -1) resvt = VT_NULL; break;
5878 case VT_UI1: if (V_UI1(left) == 0xff) resvt = VT_NULL; break;
5879 case VT_I2: if (V_I2(left) == -1) resvt = VT_NULL; break;
5880 case VT_UI2: if (V_UI2(left) == 0xffff) resvt = VT_NULL; break;
5881 case VT_INT: if (V_INT(left) == -1) resvt = VT_NULL; break;
5882 case VT_UINT: if (V_UINT(left) == ~0u) resvt = VT_NULL; break;
5883 case VT_I4: if (V_I4(left) == -1) resvt = VT_NULL; break;
5884 case VT_UI4: if (V_UI4(left) == ~0u) resvt = VT_NULL; break;
5885 case VT_I8: if (V_I8(left) == -1) resvt = VT_NULL; break;
5886 case VT_UI8: if (V_UI8(left) == ~(ULONGLONG)0) resvt = VT_NULL; break;
5887 case VT_BOOL: if (V_BOOL(left) == VARIANT_TRUE) resvt = VT_NULL; break;
5888 case VT_R4: if (V_R4(left) == -1.0) resvt = VT_NULL; break;
5889 case VT_R8: if (V_R8(left) == -1.0) resvt = VT_NULL; break;
5890 case VT_CY: if (V_CY(left).int64 == -1) resvt = VT_NULL; break;
5891 case VT_DECIMAL:
5892 if (DEC_HI32(&V_DECIMAL(left)) == 0xffffffff)
5893 resvt = VT_NULL;
5894 break;
5895 case VT_BSTR:
5896 hres = VarBoolFromStr(V_BSTR(left),LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
5897 if (FAILED(hres)) goto VarImp_Exit;
5898 else if (b == VARIANT_TRUE)
5899 resvt = VT_NULL;
5901 if (resvt == VT_NULL)
5903 V_VT(result) = resvt;
5904 goto VarImp_Exit;
5908 hres = VariantCopy(&lv, left);
5909 if (FAILED(hres)) goto VarImp_Exit;
5911 if (rightvt == VT_NULL)
5913 memset( &rv, 0, sizeof(rv) );
5914 V_VT(&rv) = resvt;
5916 else
5918 hres = VariantCopy(&rv, right);
5919 if (FAILED(hres)) goto VarImp_Exit;
5922 if (V_VT(&lv) == VT_BSTR &&
5923 FAILED(VarR8FromStr(V_BSTR(&lv),LOCALE_USER_DEFAULT, 0, &d)))
5924 hres = VariantChangeType(&lv,&lv,VARIANT_LOCALBOOL, VT_BOOL);
5925 if (SUCCEEDED(hres) && V_VT(&lv) != resvt)
5926 hres = VariantChangeType(&lv,&lv,0,resvt);
5927 if (FAILED(hres)) goto VarImp_Exit;
5929 if (V_VT(&rv) == VT_BSTR &&
5930 FAILED(VarR8FromStr(V_BSTR(&rv),LOCALE_USER_DEFAULT, 0, &d)))
5931 hres = VariantChangeType(&rv, &rv,VARIANT_LOCALBOOL, VT_BOOL);
5932 if (SUCCEEDED(hres) && V_VT(&rv) != resvt)
5933 hres = VariantChangeType(&rv, &rv, 0, resvt);
5934 if (FAILED(hres)) goto VarImp_Exit;
5936 /* do the math */
5937 V_VT(result) = resvt;
5938 switch (resvt)
5940 case VT_I8:
5941 V_I8(result) = (~V_I8(&lv)) | V_I8(&rv);
5942 break;
5943 case VT_I4:
5944 V_I4(result) = (~V_I4(&lv)) | V_I4(&rv);
5945 break;
5946 case VT_I2:
5947 V_I2(result) = (~V_I2(&lv)) | V_I2(&rv);
5948 break;
5949 case VT_UI1:
5950 V_UI1(result) = (~V_UI1(&lv)) | V_UI1(&rv);
5951 break;
5952 case VT_BOOL:
5953 V_BOOL(result) = (~V_BOOL(&lv)) | V_BOOL(&rv);
5954 break;
5955 default:
5956 FIXME("Couldn't perform bitwise implication on variant types %d,%d\n",
5957 leftvt,rightvt);
5960 VarImp_Exit:
5962 VariantClear(&lv);
5963 VariantClear(&rv);
5964 VariantClear(&tempLeft);
5965 VariantClear(&tempRight);
5967 return hres;