4 * Copyright 2000-2002 Stuart Caie
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 * Principal author: Stuart Caie <kyzer@4u.net>
22 * Based on specification documents from Microsoft Corporation
23 * Quantum decompression researched and implemented by Matthew Russoto
24 * Huffman code adapted from unlzx by Dave Tritscher.
25 * InfoZip team's INFLATE implementation adapted to MSZIP by Dirk Stoecker.
26 * Major LZX fixes by Jae Jung.
39 #include "wine/debug.h"
41 WINE_DEFAULT_DEBUG_CHANNEL(cabinet
);
45 /* all the file IO is abstracted into these routines:
46 * cabinet_(open|close|read|seek|skip|getoffset)
47 * file_(open|close|write)
50 /* try to open a cabinet file, returns success */
51 BOOL
cabinet_open(struct cabinet
*cab
)
53 char *name
= (char *)cab
->filename
;
56 TRACE("(cab == ^%p)\n", cab
);
58 if ((fh
= CreateFileA( name
, GENERIC_READ
, FILE_SHARE_READ
,
59 NULL
, OPEN_EXISTING
, FILE_ATTRIBUTE_NORMAL
, NULL
)) == INVALID_HANDLE_VALUE
) {
60 ERR("Couldn't open %s\n", debugstr_a(name
));
64 /* seek to end of file and get the length */
65 if ((cab
->filelen
= SetFilePointer(fh
, 0, NULL
, FILE_END
)) == INVALID_SET_FILE_POINTER
) {
66 if (GetLastError() != NO_ERROR
) {
67 ERR("Seek END failed: %s", debugstr_a(name
));
73 /* return to the start of the file */
74 if (SetFilePointer(fh
, 0, NULL
, FILE_BEGIN
) == INVALID_SET_FILE_POINTER
) {
75 ERR("Seek BEGIN failed: %s", debugstr_a(name
));
84 /*******************************************************************
85 * cabinet_close (internal)
87 * close the file handle in a struct cabinet.
89 void cabinet_close(struct cabinet
*cab
) {
90 TRACE("(cab == ^%p)\n", cab
);
91 if (cab
->fh
) CloseHandle(cab
->fh
);
95 /*******************************************************
96 * ensure_filepath2 (internal)
98 BOOL
ensure_filepath2(char *path
) {
103 new_path
= HeapAlloc(GetProcessHeap(), 0, (strlen(path
) + 1));
104 strcpy(new_path
, path
);
106 while((len
= strlen(new_path
)) && new_path
[len
- 1] == '\\')
107 new_path
[len
- 1] = 0;
109 TRACE("About to try to create directory %s\n", debugstr_a(new_path
));
110 while(!CreateDirectoryA(new_path
, NULL
)) {
112 DWORD last_error
= GetLastError();
114 if(last_error
== ERROR_ALREADY_EXISTS
)
117 if(last_error
!= ERROR_PATH_NOT_FOUND
) {
122 if(!(slash
= strrchr(new_path
, '\\'))) {
127 len
= slash
- new_path
;
129 if(! ensure_filepath2(new_path
)) {
133 new_path
[len
] = '\\';
134 TRACE("New path in next iteration: %s\n", debugstr_a(new_path
));
137 HeapFree(GetProcessHeap(), 0, new_path
);
142 /**********************************************************************
143 * ensure_filepath (internal)
145 * ensure_filepath("a\b\c\d.txt") ensures a, a\b and a\b\c exist as dirs
147 BOOL
ensure_filepath(char *path
) {
148 char new_path
[MAX_PATH
];
149 int len
, i
, lastslashpos
= -1;
151 TRACE("(path == %s)\n", debugstr_a(path
));
153 strcpy(new_path
, path
);
154 /* remove trailing slashes (shouldn't need to but wth...) */
155 while ((len
= strlen(new_path
)) && new_path
[len
- 1] == '\\')
156 new_path
[len
- 1] = 0;
157 /* find the position of the last '\\' */
158 for (i
=0; i
<MAX_PATH
; i
++) {
159 if (new_path
[i
] == 0) break;
160 if (new_path
[i
] == '\\')
163 if (lastslashpos
> 0) {
164 new_path
[lastslashpos
] = 0;
165 /* may be trailing slashes but ensure_filepath2 will chop them */
166 return ensure_filepath2(new_path
);
171 /*******************************************************************
172 * file_open (internal)
174 * opens a file for output, returns success
176 BOOL
file_open(struct cab_file
*fi
, BOOL lower
, LPCSTR dir
)
178 char c
, *s
, *d
, *name
;
181 TRACE("(fi == ^%p, lower == %s, dir == %s)\n", fi
, lower
? "TRUE" : "FALSE", debugstr_a(dir
));
183 if (!(name
= malloc(strlen(fi
->filename
) + (dir
? strlen(dir
) : 0) + 2))) {
184 ERR("out of memory!\n");
188 /* start with blank name */
191 /* add output directory if needed */
197 /* remove leading slashes */
198 s
= (char *) fi
->filename
;
199 while (*s
== '\\') s
++;
201 /* copy from fi->filename to new name.
202 * lowercases characters if needed.
204 d
= &name
[strlen(name
)];
207 *d
++ = (lower
? tolower((unsigned char) c
) : c
);
210 /* create directories if needed, attempt to write file */
211 if (ensure_filepath(name
)) {
212 fi
->fh
= CreateFileA(name
, GENERIC_WRITE
, 0, NULL
,
213 CREATE_ALWAYS
, FILE_ATTRIBUTE_NORMAL
, 0);
214 if (fi
->fh
!= INVALID_HANDLE_VALUE
)
217 ERR("CreateFileA returned INVALID_HANDLE_VALUE\n");
221 ERR("Couldn't ensure filepath for %s", debugstr_a(name
));
224 ERR("Couldn't open file %s for writing\n", debugstr_a(name
));
227 /* as full filename is no longer needed, free it */
233 /********************************************************
234 * close_file (internal)
236 * closes a completed file
238 void file_close(struct cab_file
*fi
)
240 TRACE("(fi == ^%p)\n", fi
);
248 /******************************************************************
249 * file_write (internal)
251 * writes from buf to a file specified as a cab_file struct.
252 * returns success/failure
254 BOOL
file_write(struct cab_file
*fi
, cab_UBYTE
*buf
, cab_off_t length
)
258 TRACE("(fi == ^%p, buf == ^%p, length == %u)\n", fi
, buf
, length
);
260 if ((!WriteFile( fi
->fh
, (LPCVOID
) buf
, length
, &bytes_written
, FALSE
) ||
261 (bytes_written
!= length
))) {
262 ERR("Error writing file: %s\n", debugstr_a(fi
->filename
));
269 /*******************************************************************
270 * cabinet_skip (internal)
272 * advance the file pointer associated with the cab structure
275 void cabinet_skip(struct cabinet
*cab
, cab_off_t distance
)
277 TRACE("(cab == ^%p, distance == %u)\n", cab
, distance
);
278 if (SetFilePointer(cab
->fh
, distance
, NULL
, FILE_CURRENT
) == INVALID_SET_FILE_POINTER
) {
279 if (distance
!= INVALID_SET_FILE_POINTER
)
280 ERR("%s", debugstr_a((char *) cab
->filename
));
284 /*******************************************************************
285 * cabinet_seek (internal)
287 * seek to the specified absolute offset in a cab
289 void cabinet_seek(struct cabinet
*cab
, cab_off_t offset
) {
290 TRACE("(cab == ^%p, offset == %u)\n", cab
, offset
);
291 if (SetFilePointer(cab
->fh
, offset
, NULL
, FILE_BEGIN
) != offset
)
292 ERR("%s seek failure\n", debugstr_a((char *)cab
->filename
));
295 /*******************************************************************
296 * cabinet_getoffset (internal)
298 * returns the file pointer position of a cab
300 cab_off_t
cabinet_getoffset(struct cabinet
*cab
)
302 return SetFilePointer(cab
->fh
, 0, NULL
, FILE_CURRENT
);
305 /*******************************************************************
306 * cabinet_read (internal)
308 * read data from a cabinet, returns success
310 BOOL
cabinet_read(struct cabinet
*cab
, cab_UBYTE
*buf
, cab_off_t length
)
313 cab_off_t avail
= cab
->filelen
- cabinet_getoffset(cab
);
315 TRACE("(cab == ^%p, buf == ^%p, length == %u)\n", cab
, buf
, length
);
317 if (length
> avail
) {
318 WARN("%s: WARNING; cabinet is truncated\n", debugstr_a((char *)cab
->filename
));
322 if (! ReadFile( cab
->fh
, (LPVOID
) buf
, length
, &bytes_read
, NULL
)) {
323 ERR("%s read error\n", debugstr_a((char *) cab
->filename
));
325 } else if (bytes_read
!= length
) {
326 ERR("%s read size mismatch\n", debugstr_a((char *) cab
->filename
));
333 /**********************************************************************
334 * cabinet_read_string (internal)
336 * allocate and read an aribitrarily long string from the cabinet
338 char *cabinet_read_string(struct cabinet
*cab
)
340 cab_off_t len
=256, base
= cabinet_getoffset(cab
), maxlen
= cab
->filelen
- base
;
343 cab_UBYTE
*buf
= NULL
;
345 TRACE("(cab == ^%p)\n", cab
);
348 if (len
> maxlen
) len
= maxlen
;
349 if (!(buf
= realloc(buf
, (size_t) len
))) break;
350 if (!cabinet_read(cab
, buf
, (size_t) len
)) break;
352 /* search for a null terminator in what we've just read */
353 for (i
=0; i
< len
; i
++) {
354 if (!buf
[i
]) {ok
=TRUE
; break;}
359 ERR("%s: WARNING; cabinet is truncated\n", debugstr_a((char *) cab
->filename
));
363 cabinet_seek(cab
, base
);
371 ERR("out of memory!\n");
375 /* otherwise, set the stream to just after the string and return */
376 cabinet_seek(cab
, base
+ ((cab_off_t
) strlen((char *) buf
)) + 1);
381 /******************************************************************
382 * cabinet_read_entries (internal)
384 * reads the header and all folder and file entries in this cabinet
386 BOOL
cabinet_read_entries(struct cabinet
*cab
)
388 int num_folders
, num_files
, header_resv
, folder_resv
= 0, i
;
389 struct cab_folder
*fol
, *linkfol
= NULL
;
390 struct cab_file
*file
, *linkfile
= NULL
;
391 cab_off_t base_offset
;
394 TRACE("(cab == ^%p)\n", cab
);
396 /* read in the CFHEADER */
397 base_offset
= cabinet_getoffset(cab
);
398 if (!cabinet_read(cab
, buf
, cfhead_SIZEOF
)) {
402 /* check basic MSCF signature */
403 if (EndGetI32(buf
+cfhead_Signature
) != 0x4643534d) {
404 ERR("%s: not a Microsoft cabinet file\n", debugstr_a((char *) cab
->filename
));
408 /* get the number of folders */
409 num_folders
= EndGetI16(buf
+cfhead_NumFolders
);
410 if (num_folders
== 0) {
411 ERR("%s: no folders in cabinet\n", debugstr_a((char *) cab
->filename
));
415 /* get the number of files */
416 num_files
= EndGetI16(buf
+cfhead_NumFiles
);
417 if (num_files
== 0) {
418 ERR("%s: no files in cabinet\n", debugstr_a((char *) cab
->filename
));
422 /* just check the header revision */
423 if ((buf
[cfhead_MajorVersion
] > 1) ||
424 (buf
[cfhead_MajorVersion
] == 1 && buf
[cfhead_MinorVersion
] > 3))
426 WARN("%s: WARNING; cabinet format version > 1.3\n", debugstr_a((char *) cab
->filename
));
429 /* read the reserved-sizes part of header, if present */
430 cab
->flags
= EndGetI16(buf
+cfhead_Flags
);
431 if (cab
->flags
& cfheadRESERVE_PRESENT
) {
432 if (!cabinet_read(cab
, buf
, cfheadext_SIZEOF
)) return FALSE
;
433 header_resv
= EndGetI16(buf
+cfheadext_HeaderReserved
);
434 folder_resv
= buf
[cfheadext_FolderReserved
];
435 cab
->block_resv
= buf
[cfheadext_DataReserved
];
437 if (header_resv
> 60000) {
438 WARN("%s: WARNING; header reserved space > 60000\n", debugstr_a((char *) cab
->filename
));
441 /* skip the reserved header */
443 if (SetFilePointer(cab
->fh
, (cab_off_t
) header_resv
, NULL
, FILE_CURRENT
) == INVALID_SET_FILE_POINTER
)
444 ERR("seek failure: %s\n", debugstr_a((char *) cab
->filename
));
447 if (cab
->flags
& cfheadPREV_CABINET
) {
448 cab
->prevname
= cabinet_read_string(cab
);
449 if (!cab
->prevname
) return FALSE
;
450 cab
->previnfo
= cabinet_read_string(cab
);
453 if (cab
->flags
& cfheadNEXT_CABINET
) {
454 cab
->nextname
= cabinet_read_string(cab
);
455 if (!cab
->nextname
) return FALSE
;
456 cab
->nextinfo
= cabinet_read_string(cab
);
460 for (i
= 0; i
< num_folders
; i
++) {
461 if (!cabinet_read(cab
, buf
, cffold_SIZEOF
)) return FALSE
;
462 if (folder_resv
) cabinet_skip(cab
, folder_resv
);
464 fol
= (struct cab_folder
*) calloc(1, sizeof(struct cab_folder
));
466 ERR("out of memory!\n");
471 fol
->offset
[0] = base_offset
+ (cab_off_t
) EndGetI32(buf
+cffold_DataOffset
);
472 fol
->num_blocks
= EndGetI16(buf
+cffold_NumBlocks
);
473 fol
->comp_type
= EndGetI16(buf
+cffold_CompType
);
484 for (i
= 0; i
< num_files
; i
++) {
485 if (!cabinet_read(cab
, buf
, cffile_SIZEOF
))
488 file
= (struct cab_file
*) calloc(1, sizeof(struct cab_file
));
490 ERR("out of memory!\n");
494 file
->length
= EndGetI32(buf
+cffile_UncompressedSize
);
495 file
->offset
= EndGetI32(buf
+cffile_FolderOffset
);
496 file
->index
= EndGetI16(buf
+cffile_FolderIndex
);
497 file
->time
= EndGetI16(buf
+cffile_Time
);
498 file
->date
= EndGetI16(buf
+cffile_Date
);
499 file
->attribs
= EndGetI16(buf
+cffile_Attribs
);
500 file
->filename
= cabinet_read_string(cab
);
502 if (!file
->filename
) {
510 linkfile
->next
= file
;
517 /***********************************************************
518 * load_cab_offset (internal)
520 * validates and reads file entries from a cabinet at offset [offset] in
521 * file [name]. Returns a cabinet structure if successful, or NULL
524 struct cabinet
*load_cab_offset(LPCSTR name
, cab_off_t offset
)
526 struct cabinet
*cab
= (struct cabinet
*) calloc(1, sizeof(struct cabinet
));
529 TRACE("(name == %s, offset == %u)\n", debugstr_a((char *) name
), offset
);
531 if (!cab
) return NULL
;
533 cab
->filename
= name
;
534 if ((ok
= cabinet_open(cab
))) {
535 cabinet_seek(cab
, offset
);
536 ok
= cabinet_read_entries(cab
);
545 /* MSZIP decruncher */
547 /* Dirk Stoecker wrote the ZIP decoder, based on the InfoZip deflate code */
549 /********************************************************
550 * Ziphuft_free (internal)
552 void Ziphuft_free(struct Ziphuft
*t
)
554 register struct Ziphuft
*p
, *q
;
556 /* Go through linked list, freeing from the allocated (t[-1]) address. */
558 while (p
!= (struct Ziphuft
*)NULL
)
566 /*********************************************************
567 * Ziphuft_build (internal)
569 cab_LONG
Ziphuft_build(cab_ULONG
*b
, cab_ULONG n
, cab_ULONG s
, cab_UWORD
*d
, cab_UWORD
*e
,
570 struct Ziphuft
**t
, cab_LONG
*m
, cab_decomp_state
*decomp_state
)
572 cab_ULONG a
; /* counter for codes of length k */
573 cab_ULONG el
; /* length of EOB code (value 256) */
574 cab_ULONG f
; /* i repeats in table every f entries */
575 cab_LONG g
; /* maximum code length */
576 cab_LONG h
; /* table level */
577 register cab_ULONG i
; /* counter, current code */
578 register cab_ULONG j
; /* counter */
579 register cab_LONG k
; /* number of bits in current code */
580 cab_LONG
*l
; /* stack of bits per table */
581 register cab_ULONG
*p
; /* pointer into ZIP(c)[],ZIP(b)[],ZIP(v)[] */
582 register struct Ziphuft
*q
; /* points to current table */
583 struct Ziphuft r
; /* table entry for structure assignment */
584 register cab_LONG w
; /* bits before this table == (l * h) */
585 cab_ULONG
*xp
; /* pointer into x */
586 cab_LONG y
; /* number of dummy codes added */
587 cab_ULONG z
; /* number of entries in current table */
591 /* Generate counts for each bit length */
592 el
= n
> 256 ? b
[256] : ZIPBMAX
; /* set length of EOB code, if any */
594 for(i
= 0; i
< ZIPBMAX
+1; ++i
)
599 ZIP(c
)[*p
]++; p
++; /* assume all entries <= ZIPBMAX */
601 if (ZIP(c
)[0] == n
) /* null input--all zero length codes */
603 *t
= (struct Ziphuft
*)NULL
;
608 /* Find minimum and maximum length, bound *m by those */
609 for (j
= 1; j
<= ZIPBMAX
; j
++)
612 k
= j
; /* minimum code length */
613 if ((cab_ULONG
)*m
< j
)
615 for (i
= ZIPBMAX
; i
; i
--)
618 g
= i
; /* maximum code length */
619 if ((cab_ULONG
)*m
> i
)
622 /* Adjust last length count to fill out codes, if needed */
623 for (y
= 1 << j
; j
< i
; j
++, y
<<= 1)
624 if ((y
-= ZIP(c
)[j
]) < 0)
625 return 2; /* bad input: more codes than bits */
626 if ((y
-= ZIP(c
)[i
]) < 0)
630 /* Generate starting offsets LONGo the value table for each length */
632 p
= ZIP(c
) + 1; xp
= ZIP(x
) + 2;
634 { /* note that i == g from above */
638 /* Make a table of values in order of bit lengths */
642 ZIP(v
)[ZIP(x
)[j
]++] = i
;
646 /* Generate the Huffman codes and for each, make the table entries */
647 ZIP(x
)[0] = i
= 0; /* first Huffman code is zero */
648 p
= ZIP(v
); /* grab values in bit order */
649 h
= -1; /* no tables yet--level -1 */
650 w
= l
[-1] = 0; /* no bits decoded yet */
651 ZIP(u
)[0] = (struct Ziphuft
*)NULL
; /* just to keep compilers happy */
652 q
= (struct Ziphuft
*)NULL
; /* ditto */
655 /* go through the bit lengths (k already is bits in shortest code) */
661 /* here i is the Huffman code of length k bits for value *p */
662 /* make tables up to required level */
665 w
+= l
[h
++]; /* add bits already decoded */
667 /* compute minimum size table less than or equal to *m bits */
668 z
= (z
= g
- w
) > (cab_ULONG
)*m
? *m
: z
; /* upper limit */
669 if ((f
= 1 << (j
= k
- w
)) > a
+ 1) /* try a k-w bit table */
670 { /* too few codes for k-w bit table */
671 f
-= a
+ 1; /* deduct codes from patterns left */
673 while (++j
< z
) /* try smaller tables up to z bits */
675 if ((f
<<= 1) <= *++xp
)
676 break; /* enough codes to use up j bits */
677 f
-= *xp
; /* else deduct codes from patterns */
680 if ((cab_ULONG
)w
+ j
> el
&& (cab_ULONG
)w
< el
)
681 j
= el
- w
; /* make EOB code end at table */
682 z
= 1 << j
; /* table entries for j-bit table */
683 l
[h
] = j
; /* set table size in stack */
685 /* allocate and link in new table */
686 if (!(q
= (struct Ziphuft
*) malloc((z
+ 1)*sizeof(struct Ziphuft
))))
689 Ziphuft_free(ZIP(u
)[0]);
690 return 3; /* not enough memory */
692 *t
= q
+ 1; /* link to list for Ziphuft_free() */
693 *(t
= &(q
->v
.t
)) = (struct Ziphuft
*)NULL
;
694 ZIP(u
)[h
] = ++q
; /* table starts after link */
696 /* connect to last table, if there is one */
699 ZIP(x
)[h
] = i
; /* save pattern for backing up */
700 r
.b
= (cab_UBYTE
)l
[h
-1]; /* bits to dump before this table */
701 r
.e
= (cab_UBYTE
)(16 + j
); /* bits in this table */
702 r
.v
.t
= q
; /* pointer to this table */
703 j
= (i
& ((1 << w
) - 1)) >> (w
- l
[h
-1]);
704 ZIP(u
)[h
-1][j
] = r
; /* connect to last table */
708 /* set up table entry in r */
709 r
.b
= (cab_UBYTE
)(k
- w
);
711 r
.e
= 99; /* out of values--invalid code */
714 r
.e
= (cab_UBYTE
)(*p
< 256 ? 16 : 15); /* 256 is end-of-block code */
715 r
.v
.n
= *p
++; /* simple code is just the value */
719 r
.e
= (cab_UBYTE
)e
[*p
- s
]; /* non-simple--look up in lists */
723 /* fill code-like entries with r */
725 for (j
= i
>> w
; j
< z
; j
+= f
)
728 /* backwards increment the k-bit code i */
729 for (j
= 1 << (k
- 1); i
& j
; j
>>= 1)
733 /* backup over finished tables */
734 while ((i
& ((1 << w
) - 1)) != ZIP(x
)[h
])
735 w
-= l
[--h
]; /* don't need to update q */
739 /* return actual size of base table */
742 /* Return true (1) if we were given an incomplete table */
743 return y
!= 0 && g
!= 1;
746 /*********************************************************
747 * Zipinflate_codes (internal)
749 cab_LONG
Zipinflate_codes(struct Ziphuft
*tl
, struct Ziphuft
*td
,
750 cab_LONG bl
, cab_LONG bd
, cab_decomp_state
*decomp_state
)
752 register cab_ULONG e
; /* table entry flag/number of extra bits */
753 cab_ULONG n
, d
; /* length and index for copy */
754 cab_ULONG w
; /* current window position */
755 struct Ziphuft
*t
; /* pointer to table entry */
756 cab_ULONG ml
, md
; /* masks for bl and bd bits */
757 register cab_ULONG b
; /* bit buffer */
758 register cab_ULONG k
; /* number of bits in bit buffer */
760 /* make local copies of globals */
761 b
= ZIP(bb
); /* initialize bit buffer */
763 w
= ZIP(window_posn
); /* initialize window position */
765 /* inflate the coded data */
766 ml
= Zipmask
[bl
]; /* precompute masks for speed */
771 ZIPNEEDBITS((cab_ULONG
)bl
)
772 if((e
= (t
= tl
+ ((cab_ULONG
)b
& ml
))->e
) > 16)
780 } while ((e
= (t
= t
->v
.t
+ ((cab_ULONG
)b
& Zipmask
[e
]))->e
) > 16);
782 if (e
== 16) /* then it's a literal */
783 CAB(outbuf
)[w
++] = (cab_UBYTE
)t
->v
.n
;
784 else /* it's an EOB or a length */
786 /* exit if end of block */
790 /* get length of block to copy */
792 n
= t
->v
.n
+ ((cab_ULONG
)b
& Zipmask
[e
]);
795 /* decode distance of block to copy */
796 ZIPNEEDBITS((cab_ULONG
)bd
)
797 if ((e
= (t
= td
+ ((cab_ULONG
)b
& md
))->e
) > 16)
804 } while ((e
= (t
= t
->v
.t
+ ((cab_ULONG
)b
& Zipmask
[e
]))->e
) > 16);
807 d
= w
- t
->v
.n
- ((cab_ULONG
)b
& Zipmask
[e
]);
811 n
-= (e
= (e
= ZIPWSIZE
- ((d
&= ZIPWSIZE
-1) > w
? d
: w
)) > n
?n
:e
);
814 CAB(outbuf
)[w
++] = CAB(outbuf
)[d
++];
820 /* restore the globals from the locals */
821 ZIP(window_posn
) = w
; /* restore global window pointer */
822 ZIP(bb
) = b
; /* restore global bit buffer */
829 /***********************************************************
830 * Zipinflate_stored (internal)
832 cab_LONG
Zipinflate_stored(cab_decomp_state
*decomp_state
)
833 /* "decompress" an inflated type 0 (stored) block. */
835 cab_ULONG n
; /* number of bytes in block */
836 cab_ULONG w
; /* current window position */
837 register cab_ULONG b
; /* bit buffer */
838 register cab_ULONG k
; /* number of bits in bit buffer */
840 /* make local copies of globals */
841 b
= ZIP(bb
); /* initialize bit buffer */
843 w
= ZIP(window_posn
); /* initialize window position */
845 /* go to byte boundary */
849 /* get the length and its complement */
851 n
= ((cab_ULONG
)b
& 0xffff);
854 if (n
!= (cab_ULONG
)((~b
) & 0xffff))
855 return 1; /* error in compressed data */
858 /* read and output the compressed data */
862 CAB(outbuf
)[w
++] = (cab_UBYTE
)b
;
866 /* restore the globals from the locals */
867 ZIP(window_posn
) = w
; /* restore global window pointer */
868 ZIP(bb
) = b
; /* restore global bit buffer */
873 /******************************************************
874 * Zipinflate_fixed (internal)
876 cab_LONG
Zipinflate_fixed(cab_decomp_state
*decomp_state
)
878 struct Ziphuft
*fixed_tl
;
879 struct Ziphuft
*fixed_td
;
880 cab_LONG fixed_bl
, fixed_bd
;
881 cab_LONG i
; /* temporary variable */
887 for(i
= 0; i
< 144; i
++)
893 for(; i
< 288; i
++) /* make a complete, but wrong code set */
896 if((i
= Ziphuft_build(l
, 288, 257, (cab_UWORD
*) Zipcplens
,
897 (cab_UWORD
*) Zipcplext
, &fixed_tl
, &fixed_bl
, decomp_state
)))
901 for(i
= 0; i
< 30; i
++) /* make an incomplete code set */
904 if((i
= Ziphuft_build(l
, 30, 0, (cab_UWORD
*) Zipcpdist
, (cab_UWORD
*) Zipcpdext
,
905 &fixed_td
, &fixed_bd
, decomp_state
)) > 1)
907 Ziphuft_free(fixed_tl
);
911 /* decompress until an end-of-block code */
912 i
= Zipinflate_codes(fixed_tl
, fixed_td
, fixed_bl
, fixed_bd
, decomp_state
);
914 Ziphuft_free(fixed_td
);
915 Ziphuft_free(fixed_tl
);
919 /**************************************************************
920 * Zipinflate_dynamic (internal)
922 cab_LONG
Zipinflate_dynamic(cab_decomp_state
*decomp_state
)
923 /* decompress an inflated type 2 (dynamic Huffman codes) block. */
925 cab_LONG i
; /* temporary variables */
928 cab_ULONG l
; /* last length */
929 cab_ULONG m
; /* mask for bit lengths table */
930 cab_ULONG n
; /* number of lengths to get */
931 struct Ziphuft
*tl
; /* literal/length code table */
932 struct Ziphuft
*td
; /* distance code table */
933 cab_LONG bl
; /* lookup bits for tl */
934 cab_LONG bd
; /* lookup bits for td */
935 cab_ULONG nb
; /* number of bit length codes */
936 cab_ULONG nl
; /* number of literal/length codes */
937 cab_ULONG nd
; /* number of distance codes */
938 register cab_ULONG b
; /* bit buffer */
939 register cab_ULONG k
; /* number of bits in bit buffer */
941 /* make local bit buffer */
946 /* read in table lengths */
948 nl
= 257 + ((cab_ULONG
)b
& 0x1f); /* number of literal/length codes */
951 nd
= 1 + ((cab_ULONG
)b
& 0x1f); /* number of distance codes */
954 nb
= 4 + ((cab_ULONG
)b
& 0xf); /* number of bit length codes */
956 if(nl
> 288 || nd
> 32)
957 return 1; /* bad lengths */
959 /* read in bit-length-code lengths */
960 for(j
= 0; j
< nb
; j
++)
963 ll
[Zipborder
[j
]] = (cab_ULONG
)b
& 7;
967 ll
[Zipborder
[j
]] = 0;
969 /* build decoding table for trees--single level, 7 bit lookup */
971 if((i
= Ziphuft_build(ll
, 19, 19, NULL
, NULL
, &tl
, &bl
, decomp_state
)) != 0)
975 return i
; /* incomplete code set */
978 /* read in literal and distance code lengths */
982 while((cab_ULONG
)i
< n
)
984 ZIPNEEDBITS((cab_ULONG
)bl
)
985 j
= (td
= tl
+ ((cab_ULONG
)b
& m
))->b
;
988 if (j
< 16) /* length of code in bits (0..15) */
989 ll
[i
++] = l
= j
; /* save last length in l */
990 else if (j
== 16) /* repeat last length 3 to 6 times */
993 j
= 3 + ((cab_ULONG
)b
& 3);
995 if((cab_ULONG
)i
+ j
> n
)
1000 else if (j
== 17) /* 3 to 10 zero length codes */
1003 j
= 3 + ((cab_ULONG
)b
& 7);
1005 if ((cab_ULONG
)i
+ j
> n
)
1011 else /* j == 18: 11 to 138 zero length codes */
1014 j
= 11 + ((cab_ULONG
)b
& 0x7f);
1016 if ((cab_ULONG
)i
+ j
> n
)
1024 /* free decoding table for trees */
1027 /* restore the global bit buffer */
1031 /* build the decoding tables for literal/length and distance codes */
1033 if((i
= Ziphuft_build(ll
, nl
, 257, (cab_UWORD
*) Zipcplens
, (cab_UWORD
*) Zipcplext
,
1034 &tl
, &bl
, decomp_state
)) != 0)
1038 return i
; /* incomplete code set */
1041 Ziphuft_build(ll
+ nl
, nd
, 0, (cab_UWORD
*) Zipcpdist
, (cab_UWORD
*) Zipcpdext
,
1042 &td
, &bd
, decomp_state
);
1044 /* decompress until an end-of-block code */
1045 if(Zipinflate_codes(tl
, td
, bl
, bd
, decomp_state
))
1048 /* free the decoding tables, return */
1054 /*****************************************************
1055 * Zipinflate_block (internal)
1057 cab_LONG
Zipinflate_block(cab_LONG
*e
, cab_decomp_state
*decomp_state
) /* e == last block flag */
1058 { /* decompress an inflated block */
1059 cab_ULONG t
; /* block type */
1060 register cab_ULONG b
; /* bit buffer */
1061 register cab_ULONG k
; /* number of bits in bit buffer */
1063 /* make local bit buffer */
1067 /* read in last block bit */
1069 *e
= (cab_LONG
)b
& 1;
1072 /* read in block type */
1074 t
= (cab_ULONG
)b
& 3;
1077 /* restore the global bit buffer */
1081 /* inflate that block type */
1083 return Zipinflate_dynamic(decomp_state
);
1085 return Zipinflate_stored(decomp_state
);
1087 return Zipinflate_fixed(decomp_state
);
1088 /* bad block type */
1092 /****************************************************
1093 * ZIPdecompress (internal)
1095 int ZIPdecompress(int inlen
, int outlen
, cab_decomp_state
*decomp_state
)
1097 cab_LONG e
; /* last block flag */
1099 TRACE("(inlen == %d, outlen == %d)\n", inlen
, outlen
);
1101 ZIP(inpos
) = CAB(inbuf
);
1102 ZIP(bb
) = ZIP(bk
) = ZIP(window_posn
) = 0;
1103 if(outlen
> ZIPWSIZE
)
1104 return DECR_DATAFORMAT
;
1106 /* CK = Chris Kirmse, official Microsoft purloiner */
1107 if(ZIP(inpos
)[0] != 0x43 || ZIP(inpos
)[1] != 0x4B)
1108 return DECR_ILLEGALDATA
;
1113 if(Zipinflate_block(&e
, decomp_state
))
1114 return DECR_ILLEGALDATA
;
1117 /* return success */
1121 /* Quantum decruncher */
1123 /* This decruncher was researched and implemented by Matthew Russoto. */
1124 /* It has since been tidied up by Stuart Caie */
1126 /******************************************************************
1127 * QTMinitmodel (internal)
1129 * Initialise a model which decodes symbols from [s] to [s]+[n]-1
1131 void QTMinitmodel(struct QTMmodel
*m
, struct QTMmodelsym
*sym
, int n
, int s
) {
1136 memset(m
->tabloc
, 0xFF, sizeof(m
->tabloc
)); /* clear out look-up table */
1137 for (i
= 0; i
< n
; i
++) {
1138 m
->tabloc
[i
+s
] = i
; /* set up a look-up entry for symbol */
1139 m
->syms
[i
].sym
= i
+s
; /* actual symbol */
1140 m
->syms
[i
].cumfreq
= n
-i
; /* current frequency of that symbol */
1142 m
->syms
[n
].cumfreq
= 0;
1145 /******************************************************************
1146 * QTMinit (internal)
1148 int QTMinit(int window
, int level
, cab_decomp_state
*decomp_state
) {
1149 int wndsize
= 1 << window
, msz
= window
* 2, i
;
1152 /* QTM supports window sizes of 2^10 (1Kb) through 2^21 (2Mb) */
1153 /* if a previously allocated window is big enough, keep it */
1154 if (window
< 10 || window
> 21) return DECR_DATAFORMAT
;
1155 if (QTM(actual_size
) < wndsize
) {
1156 if (QTM(window
)) free(QTM(window
));
1160 if (!(QTM(window
) = malloc(wndsize
))) return DECR_NOMEMORY
;
1161 QTM(actual_size
) = wndsize
;
1163 QTM(window_size
) = wndsize
;
1164 QTM(window_posn
) = 0;
1166 /* initialise static slot/extrabits tables */
1167 for (i
= 0, j
= 0; i
< 27; i
++) {
1168 CAB(q_length_extra
)[i
] = (i
== 26) ? 0 : (i
< 2 ? 0 : i
- 2) >> 2;
1169 CAB(q_length_base
)[i
] = j
; j
+= 1 << ((i
== 26) ? 5 : CAB(q_length_extra
)[i
]);
1171 for (i
= 0, j
= 0; i
< 42; i
++) {
1172 CAB(q_extra_bits
)[i
] = (i
< 2 ? 0 : i
-2) >> 1;
1173 CAB(q_position_base
)[i
] = j
; j
+= 1 << CAB(q_extra_bits
)[i
];
1176 /* initialise arithmetic coding models */
1178 QTMinitmodel(&QTM(model7
), &QTM(m7sym
)[0], 7, 0);
1180 QTMinitmodel(&QTM(model00
), &QTM(m00sym
)[0], 0x40, 0x00);
1181 QTMinitmodel(&QTM(model40
), &QTM(m40sym
)[0], 0x40, 0x40);
1182 QTMinitmodel(&QTM(model80
), &QTM(m80sym
)[0], 0x40, 0x80);
1183 QTMinitmodel(&QTM(modelC0
), &QTM(mC0sym
)[0], 0x40, 0xC0);
1185 /* model 4 depends on table size, ranges from 20 to 24 */
1186 QTMinitmodel(&QTM(model4
), &QTM(m4sym
)[0], (msz
< 24) ? msz
: 24, 0);
1187 /* model 5 depends on table size, ranges from 20 to 36 */
1188 QTMinitmodel(&QTM(model5
), &QTM(m5sym
)[0], (msz
< 36) ? msz
: 36, 0);
1189 /* model 6pos depends on table size, ranges from 20 to 42 */
1190 QTMinitmodel(&QTM(model6pos
), &QTM(m6psym
)[0], msz
, 0);
1191 QTMinitmodel(&QTM(model6len
), &QTM(m6lsym
)[0], 27, 0);
1196 /****************************************************************
1197 * QTMupdatemodel (internal)
1199 void QTMupdatemodel(struct QTMmodel
*model
, int sym
) {
1200 struct QTMmodelsym temp
;
1203 for (i
= 0; i
< sym
; i
++) model
->syms
[i
].cumfreq
+= 8;
1205 if (model
->syms
[0].cumfreq
> 3800) {
1206 if (--model
->shiftsleft
) {
1207 for (i
= model
->entries
- 1; i
>= 0; i
--) {
1208 /* -1, not -2; the 0 entry saves this */
1209 model
->syms
[i
].cumfreq
>>= 1;
1210 if (model
->syms
[i
].cumfreq
<= model
->syms
[i
+1].cumfreq
) {
1211 model
->syms
[i
].cumfreq
= model
->syms
[i
+1].cumfreq
+ 1;
1216 model
->shiftsleft
= 50;
1217 for (i
= 0; i
< model
->entries
; i
++) {
1218 /* no -1, want to include the 0 entry */
1219 /* this converts cumfreqs into frequencies, then shifts right */
1220 model
->syms
[i
].cumfreq
-= model
->syms
[i
+1].cumfreq
;
1221 model
->syms
[i
].cumfreq
++; /* avoid losing things entirely */
1222 model
->syms
[i
].cumfreq
>>= 1;
1225 /* now sort by frequencies, decreasing order -- this must be an
1226 * inplace selection sort, or a sort with the same (in)stability
1229 for (i
= 0; i
< model
->entries
- 1; i
++) {
1230 for (j
= i
+ 1; j
< model
->entries
; j
++) {
1231 if (model
->syms
[i
].cumfreq
< model
->syms
[j
].cumfreq
) {
1232 temp
= model
->syms
[i
];
1233 model
->syms
[i
] = model
->syms
[j
];
1234 model
->syms
[j
] = temp
;
1239 /* then convert frequencies back to cumfreq */
1240 for (i
= model
->entries
- 1; i
>= 0; i
--) {
1241 model
->syms
[i
].cumfreq
+= model
->syms
[i
+1].cumfreq
;
1243 /* then update the other part of the table */
1244 for (i
= 0; i
< model
->entries
; i
++) {
1245 model
->tabloc
[model
->syms
[i
].sym
] = i
;
1251 /*******************************************************************
1252 * QTMdecompress (internal)
1254 int QTMdecompress(int inlen
, int outlen
, cab_decomp_state
*decomp_state
)
1256 cab_UBYTE
*inpos
= CAB(inbuf
);
1257 cab_UBYTE
*window
= QTM(window
);
1258 cab_UBYTE
*runsrc
, *rundest
;
1260 cab_ULONG window_posn
= QTM(window_posn
);
1261 cab_ULONG window_size
= QTM(window_size
);
1263 /* used by bitstream macros */
1264 register int bitsleft
, bitrun
, bitsneed
;
1265 register cab_ULONG bitbuf
;
1267 /* used by GET_SYMBOL */
1272 int extra
, togo
= outlen
, match_length
= 0, copy_length
;
1273 cab_UBYTE selector
, sym
;
1274 cab_ULONG match_offset
= 0;
1276 cab_UWORD H
= 0xFFFF, L
= 0, C
;
1278 TRACE("(inlen == %d, outlen == %d)\n", inlen
, outlen
);
1280 /* read initial value of C */
1284 /* apply 2^x-1 mask */
1285 window_posn
&= window_size
- 1;
1286 /* runs can't straddle the window wraparound */
1287 if ((window_posn
+ togo
) > window_size
) {
1288 TRACE("straddled run\n");
1289 return DECR_DATAFORMAT
;
1293 GET_SYMBOL(model7
, selector
);
1296 GET_SYMBOL(model00
, sym
); window
[window_posn
++] = sym
; togo
--;
1299 GET_SYMBOL(model40
, sym
); window
[window_posn
++] = sym
; togo
--;
1302 GET_SYMBOL(model80
, sym
); window
[window_posn
++] = sym
; togo
--;
1305 GET_SYMBOL(modelC0
, sym
); window
[window_posn
++] = sym
; togo
--;
1309 /* selector 4 = fixed length of 3 */
1310 GET_SYMBOL(model4
, sym
);
1311 Q_READ_BITS(extra
, CAB(q_extra_bits
)[sym
]);
1312 match_offset
= CAB(q_position_base
)[sym
] + extra
+ 1;
1317 /* selector 5 = fixed length of 4 */
1318 GET_SYMBOL(model5
, sym
);
1319 Q_READ_BITS(extra
, CAB(q_extra_bits
)[sym
]);
1320 match_offset
= CAB(q_position_base
)[sym
] + extra
+ 1;
1325 /* selector 6 = variable length */
1326 GET_SYMBOL(model6len
, sym
);
1327 Q_READ_BITS(extra
, CAB(q_length_extra
)[sym
]);
1328 match_length
= CAB(q_length_base
)[sym
] + extra
+ 5;
1329 GET_SYMBOL(model6pos
, sym
);
1330 Q_READ_BITS(extra
, CAB(q_extra_bits
)[sym
]);
1331 match_offset
= CAB(q_position_base
)[sym
] + extra
+ 1;
1335 TRACE("Selector is bogus\n");
1336 return DECR_ILLEGALDATA
;
1339 /* if this is a match */
1340 if (selector
>= 4) {
1341 rundest
= window
+ window_posn
;
1342 togo
-= match_length
;
1344 /* copy any wrapped around source data */
1345 if (window_posn
>= match_offset
) {
1347 runsrc
= rundest
- match_offset
;
1349 runsrc
= rundest
+ (window_size
- match_offset
);
1350 copy_length
= match_offset
- window_posn
;
1351 if (copy_length
< match_length
) {
1352 match_length
-= copy_length
;
1353 window_posn
+= copy_length
;
1354 while (copy_length
-- > 0) *rundest
++ = *runsrc
++;
1358 window_posn
+= match_length
;
1360 /* copy match data - no worries about destination wraps */
1361 while (match_length
-- > 0) *rundest
++ = *runsrc
++;
1363 } /* while (togo > 0) */
1366 TRACE("Frame overflow, this_run = %d\n", togo
);
1367 return DECR_ILLEGALDATA
;
1370 memcpy(CAB(outbuf
), window
+ ((!window_posn
) ? window_size
: window_posn
) -
1373 QTM(window_posn
) = window_posn
;
1377 /* LZX decruncher */
1379 /* Microsoft's LZX document and their implementation of the
1380 * com.ms.util.cab Java package do not concur.
1382 * In the LZX document, there is a table showing the correlation between
1383 * window size and the number of position slots. It states that the 1MB
1384 * window = 40 slots and the 2MB window = 42 slots. In the implementation,
1385 * 1MB = 42 slots, 2MB = 50 slots. The actual calculation is 'find the
1386 * first slot whose position base is equal to or more than the required
1387 * window size'. This would explain why other tables in the document refer
1388 * to 50 slots rather than 42.
1390 * The constant NUM_PRIMARY_LENGTHS used in the decompression pseudocode
1391 * is not defined in the specification.
1393 * The LZX document does not state the uncompressed block has an
1394 * uncompressed length field. Where does this length field come from, so
1395 * we can know how large the block is? The implementation has it as the 24
1396 * bits following after the 3 blocktype bits, before the alignment
1399 * The LZX document states that aligned offset blocks have their aligned
1400 * offset huffman tree AFTER the main and length trees. The implementation
1401 * suggests that the aligned offset tree is BEFORE the main and length
1404 * The LZX document decoding algorithm states that, in an aligned offset
1405 * block, if an extra_bits value is 1, 2 or 3, then that number of bits
1406 * should be read and the result added to the match offset. This is
1407 * correct for 1 and 2, but not 3, where just a huffman symbol (using the
1408 * aligned tree) should be read.
1410 * Regarding the E8 preprocessing, the LZX document states 'No translation
1411 * may be performed on the last 6 bytes of the input block'. This is
1412 * correct. However, the pseudocode provided checks for the *E8 leader*
1413 * up to the last 6 bytes. If the leader appears between -10 and -7 bytes
1414 * from the end, this would cause the next four bytes to be modified, at
1415 * least one of which would be in the last 6 bytes, which is not allowed
1416 * according to the spec.
1418 * The specification states that the huffman trees must always contain at
1419 * least one element. However, many CAB files contain blocks where the
1420 * length tree is completely empty (because there are no matches), and
1421 * this is expected to succeed.
1425 /* LZX uses what it calls 'position slots' to represent match offsets.
1426 * What this means is that a small 'position slot' number and a small
1427 * offset from that slot are encoded instead of one large offset for
1429 * - lzx_position_base is an index to the position slot bases
1430 * - lzx_extra_bits states how many bits of offset-from-base data is needed.
1433 /************************************************************
1434 * LZXinit (internal)
1436 int LZXinit(int window
, cab_decomp_state
*decomp_state
) {
1437 cab_ULONG wndsize
= 1 << window
;
1438 int i
, j
, posn_slots
;
1440 /* LZX supports window sizes of 2^15 (32Kb) through 2^21 (2Mb) */
1441 /* if a previously allocated window is big enough, keep it */
1442 if (window
< 15 || window
> 21) return DECR_DATAFORMAT
;
1443 if (LZX(actual_size
) < wndsize
) {
1444 if (LZX(window
)) free(LZX(window
));
1448 if (!(LZX(window
) = malloc(wndsize
))) return DECR_NOMEMORY
;
1449 LZX(actual_size
) = wndsize
;
1451 LZX(window_size
) = wndsize
;
1453 /* initialise static tables */
1454 for (i
=0, j
=0; i
<= 50; i
+= 2) {
1455 CAB(extra_bits
)[i
] = CAB(extra_bits
)[i
+1] = j
; /* 0,0,0,0,1,1,2,2,3,3... */
1456 if ((i
!= 0) && (j
< 17)) j
++; /* 0,0,1,2,3,4...15,16,17,17,17,17... */
1458 for (i
=0, j
=0; i
<= 50; i
++) {
1459 CAB(lzx_position_base
)[i
] = j
; /* 0,1,2,3,4,6,8,12,16,24,32,... */
1460 j
+= 1 << CAB(extra_bits
)[i
]; /* 1,1,1,1,2,2,4,4,8,8,16,16,32,32,... */
1463 /* calculate required position slots */
1464 if (window
== 20) posn_slots
= 42;
1465 else if (window
== 21) posn_slots
= 50;
1466 else posn_slots
= window
<< 1;
1468 /*posn_slots=i=0; while (i < wndsize) i += 1 << CAB(extra_bits)[posn_slots++]; */
1470 LZX(R0
) = LZX(R1
) = LZX(R2
) = 1;
1471 LZX(main_elements
) = LZX_NUM_CHARS
+ (posn_slots
<< 3);
1472 LZX(header_read
) = 0;
1473 LZX(frames_read
) = 0;
1474 LZX(block_remaining
) = 0;
1475 LZX(block_type
) = LZX_BLOCKTYPE_INVALID
;
1476 LZX(intel_curpos
) = 0;
1477 LZX(intel_started
) = 0;
1478 LZX(window_posn
) = 0;
1480 /* initialise tables to 0 (because deltas will be applied to them) */
1481 for (i
= 0; i
< LZX_MAINTREE_MAXSYMBOLS
; i
++) LZX(MAINTREE_len
)[i
] = 0;
1482 for (i
= 0; i
< LZX_LENGTH_MAXSYMBOLS
; i
++) LZX(LENGTH_len
)[i
] = 0;
1487 /*************************************************************************
1488 * make_decode_table (internal)
1490 * This function was coded by David Tritscher. It builds a fast huffman
1491 * decoding table out of just a canonical huffman code lengths table.
1494 * nsyms: total number of symbols in this huffman tree.
1495 * nbits: any symbols with a code length of nbits or less can be decoded
1496 * in one lookup of the table.
1497 * length: A table to get code lengths from [0 to syms-1]
1498 * table: The table to fill up with decoded symbols and pointers.
1504 int make_decode_table(cab_ULONG nsyms
, cab_ULONG nbits
, cab_UBYTE
*length
, cab_UWORD
*table
) {
1505 register cab_UWORD sym
;
1506 register cab_ULONG leaf
;
1507 register cab_UBYTE bit_num
= 1;
1509 cab_ULONG pos
= 0; /* the current position in the decode table */
1510 cab_ULONG table_mask
= 1 << nbits
;
1511 cab_ULONG bit_mask
= table_mask
>> 1; /* don't do 0 length codes */
1512 cab_ULONG next_symbol
= bit_mask
; /* base of allocation for long codes */
1514 /* fill entries for codes short enough for a direct mapping */
1515 while (bit_num
<= nbits
) {
1516 for (sym
= 0; sym
< nsyms
; sym
++) {
1517 if (length
[sym
] == bit_num
) {
1520 if((pos
+= bit_mask
) > table_mask
) return 1; /* table overrun */
1522 /* fill all possible lookups of this symbol with the symbol itself */
1524 while (fill
-- > 0) table
[leaf
++] = sym
;
1531 /* if there are any codes longer than nbits */
1532 if (pos
!= table_mask
) {
1533 /* clear the remainder of the table */
1534 for (sym
= pos
; sym
< table_mask
; sym
++) table
[sym
] = 0;
1536 /* give ourselves room for codes to grow by up to 16 more bits */
1541 while (bit_num
<= 16) {
1542 for (sym
= 0; sym
< nsyms
; sym
++) {
1543 if (length
[sym
] == bit_num
) {
1545 for (fill
= 0; fill
< bit_num
- nbits
; fill
++) {
1546 /* if this path hasn't been taken yet, 'allocate' two entries */
1547 if (table
[leaf
] == 0) {
1548 table
[(next_symbol
<< 1)] = 0;
1549 table
[(next_symbol
<< 1) + 1] = 0;
1550 table
[leaf
] = next_symbol
++;
1552 /* follow the path and select either left or right for next bit */
1553 leaf
= table
[leaf
] << 1;
1554 if ((pos
>> (15-fill
)) & 1) leaf
++;
1558 if ((pos
+= bit_mask
) > table_mask
) return 1; /* table overflow */
1567 if (pos
== table_mask
) return 0;
1569 /* either erroneous table, or all elements are 0 - let's find out. */
1570 for (sym
= 0; sym
< nsyms
; sym
++) if (length
[sym
]) return 1;
1574 /************************************************************
1575 * lzx_read_lens (internal)
1577 int lzx_read_lens(cab_UBYTE
*lens
, cab_ULONG first
, cab_ULONG last
, struct lzx_bits
*lb
,
1578 cab_decomp_state
*decomp_state
) {
1582 register cab_ULONG bitbuf
= lb
->bb
;
1583 register int bitsleft
= lb
->bl
;
1584 cab_UBYTE
*inpos
= lb
->ip
;
1587 for (x
= 0; x
< 20; x
++) {
1589 LENTABLE(PRETREE
)[x
] = y
;
1591 BUILD_TABLE(PRETREE
);
1593 for (x
= first
; x
< last
; ) {
1594 READ_HUFFSYM(PRETREE
, z
);
1596 READ_BITS(y
, 4); y
+= 4;
1597 while (y
--) lens
[x
++] = 0;
1600 READ_BITS(y
, 5); y
+= 20;
1601 while (y
--) lens
[x
++] = 0;
1604 READ_BITS(y
, 1); y
+= 4;
1605 READ_HUFFSYM(PRETREE
, z
);
1606 z
= lens
[x
] - z
; if (z
< 0) z
+= 17;
1607 while (y
--) lens
[x
++] = z
;
1610 z
= lens
[x
] - z
; if (z
< 0) z
+= 17;
1621 /*******************************************************
1622 * LZXdecompress (internal)
1624 int LZXdecompress(int inlen
, int outlen
, cab_decomp_state
*decomp_state
) {
1625 cab_UBYTE
*inpos
= CAB(inbuf
);
1626 cab_UBYTE
*endinp
= inpos
+ inlen
;
1627 cab_UBYTE
*window
= LZX(window
);
1628 cab_UBYTE
*runsrc
, *rundest
;
1629 cab_UWORD
*hufftbl
; /* used in READ_HUFFSYM macro as chosen decoding table */
1631 cab_ULONG window_posn
= LZX(window_posn
);
1632 cab_ULONG window_size
= LZX(window_size
);
1633 cab_ULONG R0
= LZX(R0
);
1634 cab_ULONG R1
= LZX(R1
);
1635 cab_ULONG R2
= LZX(R2
);
1637 register cab_ULONG bitbuf
;
1638 register int bitsleft
;
1639 cab_ULONG match_offset
, i
,j
,k
; /* ijk used in READ_HUFFSYM macro */
1640 struct lzx_bits lb
; /* used in READ_LENGTHS macro */
1642 int togo
= outlen
, this_run
, main_element
, aligned_bits
;
1643 int match_length
, copy_length
, length_footer
, extra
, verbatim_bits
;
1645 TRACE("(inlen == %d, outlen == %d)\n", inlen
, outlen
);
1649 /* read header if necessary */
1650 if (!LZX(header_read
)) {
1652 READ_BITS(k
, 1); if (k
) { READ_BITS(i
,16); READ_BITS(j
,16); }
1653 LZX(intel_filesize
) = (i
<< 16) | j
; /* or 0 if not encoded */
1654 LZX(header_read
) = 1;
1657 /* main decoding loop */
1659 /* last block finished, new block expected */
1660 if (LZX(block_remaining
) == 0) {
1661 if (LZX(block_type
) == LZX_BLOCKTYPE_UNCOMPRESSED
) {
1662 if (LZX(block_length
) & 1) inpos
++; /* realign bitstream to word */
1666 READ_BITS(LZX(block_type
), 3);
1669 LZX(block_remaining
) = LZX(block_length
) = (i
<< 8) | j
;
1671 switch (LZX(block_type
)) {
1672 case LZX_BLOCKTYPE_ALIGNED
:
1673 for (i
= 0; i
< 8; i
++) { READ_BITS(j
, 3); LENTABLE(ALIGNED
)[i
] = j
; }
1674 BUILD_TABLE(ALIGNED
);
1675 /* rest of aligned header is same as verbatim */
1677 case LZX_BLOCKTYPE_VERBATIM
:
1678 READ_LENGTHS(MAINTREE
, 0, 256, lzx_read_lens
);
1679 READ_LENGTHS(MAINTREE
, 256, LZX(main_elements
), lzx_read_lens
);
1680 BUILD_TABLE(MAINTREE
);
1681 if (LENTABLE(MAINTREE
)[0xE8] != 0) LZX(intel_started
) = 1;
1683 READ_LENGTHS(LENGTH
, 0, LZX_NUM_SECONDARY_LENGTHS
, lzx_read_lens
);
1684 BUILD_TABLE(LENGTH
);
1687 case LZX_BLOCKTYPE_UNCOMPRESSED
:
1688 LZX(intel_started
) = 1; /* because we can't assume otherwise */
1689 ENSURE_BITS(16); /* get up to 16 pad bits into the buffer */
1690 if (bitsleft
> 16) inpos
-= 2; /* and align the bitstream! */
1691 R0
= inpos
[0]|(inpos
[1]<<8)|(inpos
[2]<<16)|(inpos
[3]<<24);inpos
+=4;
1692 R1
= inpos
[0]|(inpos
[1]<<8)|(inpos
[2]<<16)|(inpos
[3]<<24);inpos
+=4;
1693 R2
= inpos
[0]|(inpos
[1]<<8)|(inpos
[2]<<16)|(inpos
[3]<<24);inpos
+=4;
1697 return DECR_ILLEGALDATA
;
1701 /* buffer exhaustion check */
1702 if (inpos
> endinp
) {
1703 /* it's possible to have a file where the next run is less than
1704 * 16 bits in size. In this case, the READ_HUFFSYM() macro used
1705 * in building the tables will exhaust the buffer, so we should
1706 * allow for this, but not allow those accidentally read bits to
1707 * be used (so we check that there are at least 16 bits
1708 * remaining - in this boundary case they aren't really part of
1709 * the compressed data)
1711 if (inpos
> (endinp
+2) || bitsleft
< 16) return DECR_ILLEGALDATA
;
1714 while ((this_run
= LZX(block_remaining
)) > 0 && togo
> 0) {
1715 if (this_run
> togo
) this_run
= togo
;
1717 LZX(block_remaining
) -= this_run
;
1719 /* apply 2^x-1 mask */
1720 window_posn
&= window_size
- 1;
1721 /* runs can't straddle the window wraparound */
1722 if ((window_posn
+ this_run
) > window_size
)
1723 return DECR_DATAFORMAT
;
1725 switch (LZX(block_type
)) {
1727 case LZX_BLOCKTYPE_VERBATIM
:
1728 while (this_run
> 0) {
1729 READ_HUFFSYM(MAINTREE
, main_element
);
1731 if (main_element
< LZX_NUM_CHARS
) {
1732 /* literal: 0 to LZX_NUM_CHARS-1 */
1733 window
[window_posn
++] = main_element
;
1737 /* match: LZX_NUM_CHARS + ((slot<<3) | length_header (3 bits)) */
1738 main_element
-= LZX_NUM_CHARS
;
1740 match_length
= main_element
& LZX_NUM_PRIMARY_LENGTHS
;
1741 if (match_length
== LZX_NUM_PRIMARY_LENGTHS
) {
1742 READ_HUFFSYM(LENGTH
, length_footer
);
1743 match_length
+= length_footer
;
1745 match_length
+= LZX_MIN_MATCH
;
1747 match_offset
= main_element
>> 3;
1749 if (match_offset
> 2) {
1750 /* not repeated offset */
1751 if (match_offset
!= 3) {
1752 extra
= CAB(extra_bits
)[match_offset
];
1753 READ_BITS(verbatim_bits
, extra
);
1754 match_offset
= CAB(lzx_position_base
)[match_offset
]
1755 - 2 + verbatim_bits
;
1761 /* update repeated offset LRU queue */
1762 R2
= R1
; R1
= R0
; R0
= match_offset
;
1764 else if (match_offset
== 0) {
1767 else if (match_offset
== 1) {
1769 R1
= R0
; R0
= match_offset
;
1771 else /* match_offset == 2 */ {
1773 R2
= R0
; R0
= match_offset
;
1776 rundest
= window
+ window_posn
;
1777 this_run
-= match_length
;
1779 /* copy any wrapped around source data */
1780 if (window_posn
>= match_offset
) {
1782 runsrc
= rundest
- match_offset
;
1784 runsrc
= rundest
+ (window_size
- match_offset
);
1785 copy_length
= match_offset
- window_posn
;
1786 if (copy_length
< match_length
) {
1787 match_length
-= copy_length
;
1788 window_posn
+= copy_length
;
1789 while (copy_length
-- > 0) *rundest
++ = *runsrc
++;
1793 window_posn
+= match_length
;
1795 /* copy match data - no worries about destination wraps */
1796 while (match_length
-- > 0) *rundest
++ = *runsrc
++;
1801 case LZX_BLOCKTYPE_ALIGNED
:
1802 while (this_run
> 0) {
1803 READ_HUFFSYM(MAINTREE
, main_element
);
1805 if (main_element
< LZX_NUM_CHARS
) {
1806 /* literal: 0 to LZX_NUM_CHARS-1 */
1807 window
[window_posn
++] = main_element
;
1811 /* match: LZX_NUM_CHARS + ((slot<<3) | length_header (3 bits)) */
1812 main_element
-= LZX_NUM_CHARS
;
1814 match_length
= main_element
& LZX_NUM_PRIMARY_LENGTHS
;
1815 if (match_length
== LZX_NUM_PRIMARY_LENGTHS
) {
1816 READ_HUFFSYM(LENGTH
, length_footer
);
1817 match_length
+= length_footer
;
1819 match_length
+= LZX_MIN_MATCH
;
1821 match_offset
= main_element
>> 3;
1823 if (match_offset
> 2) {
1824 /* not repeated offset */
1825 extra
= CAB(extra_bits
)[match_offset
];
1826 match_offset
= CAB(lzx_position_base
)[match_offset
] - 2;
1828 /* verbatim and aligned bits */
1830 READ_BITS(verbatim_bits
, extra
);
1831 match_offset
+= (verbatim_bits
<< 3);
1832 READ_HUFFSYM(ALIGNED
, aligned_bits
);
1833 match_offset
+= aligned_bits
;
1835 else if (extra
== 3) {
1836 /* aligned bits only */
1837 READ_HUFFSYM(ALIGNED
, aligned_bits
);
1838 match_offset
+= aligned_bits
;
1840 else if (extra
> 0) { /* extra==1, extra==2 */
1841 /* verbatim bits only */
1842 READ_BITS(verbatim_bits
, extra
);
1843 match_offset
+= verbatim_bits
;
1845 else /* extra == 0 */ {
1850 /* update repeated offset LRU queue */
1851 R2
= R1
; R1
= R0
; R0
= match_offset
;
1853 else if (match_offset
== 0) {
1856 else if (match_offset
== 1) {
1858 R1
= R0
; R0
= match_offset
;
1860 else /* match_offset == 2 */ {
1862 R2
= R0
; R0
= match_offset
;
1865 rundest
= window
+ window_posn
;
1866 this_run
-= match_length
;
1868 /* copy any wrapped around source data */
1869 if (window_posn
>= match_offset
) {
1871 runsrc
= rundest
- match_offset
;
1873 runsrc
= rundest
+ (window_size
- match_offset
);
1874 copy_length
= match_offset
- window_posn
;
1875 if (copy_length
< match_length
) {
1876 match_length
-= copy_length
;
1877 window_posn
+= copy_length
;
1878 while (copy_length
-- > 0) *rundest
++ = *runsrc
++;
1882 window_posn
+= match_length
;
1884 /* copy match data - no worries about destination wraps */
1885 while (match_length
-- > 0) *rundest
++ = *runsrc
++;
1890 case LZX_BLOCKTYPE_UNCOMPRESSED
:
1891 if ((inpos
+ this_run
) > endinp
) return DECR_ILLEGALDATA
;
1892 memcpy(window
+ window_posn
, inpos
, (size_t) this_run
);
1893 inpos
+= this_run
; window_posn
+= this_run
;
1897 return DECR_ILLEGALDATA
; /* might as well */
1903 if (togo
!= 0) return DECR_ILLEGALDATA
;
1904 memcpy(CAB(outbuf
), window
+ ((!window_posn
) ? window_size
: window_posn
) -
1905 outlen
, (size_t) outlen
);
1907 LZX(window_posn
) = window_posn
;
1912 /* intel E8 decoding */
1913 if ((LZX(frames_read
)++ < 32768) && LZX(intel_filesize
) != 0) {
1914 if (outlen
<= 6 || !LZX(intel_started
)) {
1915 LZX(intel_curpos
) += outlen
;
1918 cab_UBYTE
*data
= CAB(outbuf
);
1919 cab_UBYTE
*dataend
= data
+ outlen
- 10;
1920 cab_LONG curpos
= LZX(intel_curpos
);
1921 cab_LONG filesize
= LZX(intel_filesize
);
1922 cab_LONG abs_off
, rel_off
;
1924 LZX(intel_curpos
) = curpos
+ outlen
;
1926 while (data
< dataend
) {
1927 if (*data
++ != 0xE8) { curpos
++; continue; }
1928 abs_off
= data
[0] | (data
[1]<<8) | (data
[2]<<16) | (data
[3]<<24);
1929 if ((abs_off
>= -curpos
) && (abs_off
< filesize
)) {
1930 rel_off
= (abs_off
>= 0) ? abs_off
- curpos
: abs_off
+ filesize
;
1931 data
[0] = (cab_UBYTE
) rel_off
;
1932 data
[1] = (cab_UBYTE
) (rel_off
>> 8);
1933 data
[2] = (cab_UBYTE
) (rel_off
>> 16);
1934 data
[3] = (cab_UBYTE
) (rel_off
>> 24);
1944 /*********************************************************
1945 * find_cabs_in_file (internal)
1947 struct cabinet
*find_cabs_in_file(LPCSTR name
, cab_UBYTE search_buf
[])
1949 struct cabinet
*cab
, *cab2
, *firstcab
= NULL
, *linkcab
= NULL
;
1950 cab_UBYTE
*pstart
= &search_buf
[0], *pend
, *p
;
1951 cab_off_t offset
, caboff
, cablen
= 0, foffset
= 0, filelen
, length
;
1952 int state
= 0, found
= 0, ok
= 0;
1954 TRACE("(name == %s)\n", debugstr_a((char *) name
));
1956 /* open the file and search for cabinet headers */
1957 if ((cab
= (struct cabinet
*) calloc(1, sizeof(struct cabinet
)))) {
1958 cab
->filename
= name
;
1959 if (cabinet_open(cab
)) {
1960 filelen
= cab
->filelen
;
1961 for (offset
= 0; (offset
< filelen
); offset
+= length
) {
1962 /* search length is either the full length of the search buffer,
1963 * or the amount of data remaining to the end of the file,
1964 * whichever is less.
1966 length
= filelen
- offset
;
1967 if (length
> CAB_SEARCH_SIZE
) length
= CAB_SEARCH_SIZE
;
1969 /* fill the search buffer with data from disk */
1970 if (!cabinet_read(cab
, search_buf
, length
)) break;
1972 /* read through the entire buffer. */
1974 pend
= &search_buf
[length
];
1977 /* starting state */
1979 /* we spend most of our time in this while loop, looking for
1980 * a leading 'M' of the 'MSCF' signature
1982 while (*p
++ != 0x4D && p
< pend
);
1983 if (p
< pend
) state
= 1; /* if we found tht 'M', advance state */
1986 /* verify that the next 3 bytes are 'S', 'C' and 'F' */
1987 case 1: state
= (*p
++ == 0x53) ? 2 : 0; break;
1988 case 2: state
= (*p
++ == 0x43) ? 3 : 0; break;
1989 case 3: state
= (*p
++ == 0x46) ? 4 : 0; break;
1991 /* we don't care about bytes 4-7 */
1992 /* bytes 8-11 are the overall length of the cabinet */
1993 case 8: cablen
= *p
++; state
++; break;
1994 case 9: cablen
|= *p
++ << 8; state
++; break;
1995 case 10: cablen
|= *p
++ << 16; state
++; break;
1996 case 11: cablen
|= *p
++ << 24; state
++; break;
1998 /* we don't care about bytes 12-15 */
1999 /* bytes 16-19 are the offset within the cabinet of the filedata */
2000 case 16: foffset
= *p
++; state
++; break;
2001 case 17: foffset
|= *p
++ << 8; state
++; break;
2002 case 18: foffset
|= *p
++ << 16; state
++; break;
2003 case 19: foffset
|= *p
++ << 24;
2004 /* now we have received 20 bytes of potential cab header. */
2005 /* work out the offset in the file of this potential cabinet */
2006 caboff
= offset
+ (p
-pstart
) - 20;
2008 /* check that the files offset is less than the alleged length
2009 * of the cabinet, and that the offset + the alleged length are
2010 * 'roughly' within the end of overall file length
2012 if ((foffset
< cablen
) &&
2013 ((caboff
+ foffset
) < (filelen
+ 32)) &&
2014 ((caboff
+ cablen
) < (filelen
+ 32)) )
2016 /* found a potential result - try loading it */
2018 cab2
= load_cab_offset(name
, caboff
);
2023 /* cause the search to restart after this cab's data. */
2024 offset
= caboff
+ cablen
;
2025 if (offset
< cab
->filelen
) cabinet_seek(cab
, offset
);
2029 /* link the cab into the list */
2030 if (linkcab
== NULL
) firstcab
= cab2
;
2031 else linkcab
->next
= cab2
;
2038 p
++, state
++; break;
2047 /* if there were cabinets that were found but are not ok, point this out */
2049 WARN("%s: found %d bad cabinets\n", debugstr_a(name
), found
-ok
);
2052 /* if no cabinets were found, let the user know */
2054 WARN("%s: not a Microsoft cabinet file.\n", debugstr_a(name
));
2059 /***********************************************************************
2060 * find_cabinet_file (internal)
2062 * tries to find *cabname, from the directory path of origcab, correcting the
2063 * case of *cabname if necessary, If found, writes back to *cabname.
2065 void find_cabinet_file(char **cabname
, LPCSTR origcab
) {
2067 char *tail
, *cab
, *name
, *nextpart
, nametmp
[MAX_PATH
], *filepart
;
2070 TRACE("(*cabname == ^%p, origcab == %s)\n", cabname
? *cabname
: NULL
, debugstr_a(origcab
));
2072 /* ensure we have a cabinet name at all */
2073 if (!(name
= *cabname
)) {
2074 WARN("no cabinet name at all\n");
2077 /* find if there's a directory path in the origcab */
2078 tail
= origcab
? max(strrchr(origcab
, '/'), strrchr(origcab
, '\\')) : NULL
;
2080 if ((cab
= (char *) malloc(MAX_PATH
))) {
2081 /* add the directory path from the original cabinet name */
2083 memcpy(cab
, origcab
, tail
- origcab
);
2084 cab
[tail
- origcab
] = '\0';
2086 /* default directory path of '.' */
2092 TRACE("trying cab == %s", debugstr_a(cab
));
2094 /* we don't want null cabinet filenames */
2095 if (name
[0] == '\0') {
2096 WARN("null cab name\n");
2100 /* if there is a directory component in the cabinet name,
2101 * look for that alone first
2103 nextpart
= strchr(name
, '\\');
2104 if (nextpart
) *nextpart
= '\0';
2106 found
= SearchPathA(cab
, name
, NULL
, MAX_PATH
, nametmp
, &filepart
);
2108 /* if the component was not found, look for it in the current dir */
2110 found
= SearchPathA(".", name
, NULL
, MAX_PATH
, nametmp
, &filepart
);
2114 TRACE("found: %s\n", debugstr_a(nametmp
));
2116 TRACE("not found.\n");
2118 /* restore the real name and skip to the next directory component
2119 * or actual cabinet name
2121 if (nextpart
) *nextpart
= '\\', name
= &nextpart
[1];
2123 /* while there is another directory component, and while we
2124 * successfully found the current component
2126 } while (nextpart
&& found
);
2128 /* if we found the cabinet, change the next cabinet's name.
2129 * otherwise, pretend nothing happened
2132 free((void *) *cabname
);
2134 strncpy(cab
, nametmp
, found
+1);
2135 TRACE("result: %s\n", debugstr_a(cab
));
2138 TRACE("result: nothing\n");
2143 /************************************************************************
2144 * process_files (internal)
2146 * this does the tricky job of running through every file in the cabinet,
2147 * including spanning cabinets, and working out which file is in which
2148 * folder in which cabinet. It also throws out the duplicate file entries
2149 * that appear in spanning cabinets. There is memory leakage here because
2150 * those entries are not freed. See the XAD CAB client (function CAB_GetInfo
2151 * in CAB.c) for an implementation of this that correctly frees the discarded
2154 struct cab_file
*process_files(struct cabinet
*basecab
) {
2155 struct cabinet
*cab
;
2156 struct cab_file
*outfi
= NULL
, *linkfi
= NULL
, *nextfi
, *fi
, *cfi
;
2157 struct cab_folder
*fol
, *firstfol
, *lastfol
= NULL
, *predfol
;
2160 FIXME("(basecab == ^%p): Memory leak.\n", basecab
);
2162 for (cab
= basecab
; cab
; cab
= cab
->nextcab
) {
2163 /* firstfol = first folder in this cabinet */
2164 /* lastfol = last folder in this cabinet */
2165 /* predfol = last folder in previous cabinet (or NULL if first cabinet) */
2167 firstfol
= cab
->folders
;
2168 for (lastfol
= firstfol
; lastfol
->next
;) lastfol
= lastfol
->next
;
2171 for (fi
= cab
->files
; fi
; fi
= nextfi
) {
2175 if (i
< cffileCONTINUED_FROM_PREV
) {
2176 for (fol
= firstfol
; fol
&& i
--; ) fol
= fol
->next
;
2177 fi
->folder
= fol
; /* NULL if an invalid folder index */
2180 /* folder merging */
2181 if (i
== cffileCONTINUED_TO_NEXT
2182 || i
== cffileCONTINUED_PREV_AND_NEXT
) {
2183 if (cab
->nextcab
&& !lastfol
->contfile
) lastfol
->contfile
= fi
;
2186 if (i
== cffileCONTINUED_FROM_PREV
2187 || i
== cffileCONTINUED_PREV_AND_NEXT
) {
2188 /* these files are to be continued in yet another
2189 * cabinet, don't merge them in just yet */
2190 if (i
== cffileCONTINUED_PREV_AND_NEXT
) mergeok
= 0;
2192 /* only merge once per cabinet */
2194 if ((cfi
= predfol
->contfile
)
2195 && (cfi
->offset
== fi
->offset
)
2196 && (cfi
->length
== fi
->length
)
2197 && (strcmp(cfi
->filename
, fi
->filename
) == 0)
2198 && (predfol
->comp_type
== firstfol
->comp_type
)) {
2199 /* increase the number of splits */
2200 if ((i
= ++(predfol
->num_splits
)) > CAB_SPLITMAX
) {
2202 ERR("%s: internal error: CAB_SPLITMAX exceeded. please report this to wine-devel@winehq.org)\n",
2203 debugstr_a(basecab
->filename
));
2206 /* copy information across from the merged folder */
2207 predfol
->offset
[i
] = firstfol
->offset
[0];
2208 predfol
->cab
[i
] = firstfol
->cab
[0];
2209 predfol
->next
= firstfol
->next
;
2210 predfol
->contfile
= firstfol
->contfile
;
2212 if (firstfol
== lastfol
) lastfol
= predfol
;
2214 predfol
= NULL
; /* don't merge again within this cabinet */
2218 /* if the folders won't merge, don't add their files */
2223 if (mergeok
) fi
->folder
= firstfol
;
2228 if (linkfi
) linkfi
->next
= fi
; else outfi
= fi
;
2232 } /* for (cab= ...*/
2237 /****************************************************************
2238 * convertUTF (internal)
2240 * translate UTF -> ASCII
2242 * UTF translates two-byte unicode characters into 1, 2 or 3 bytes.
2243 * %000000000xxxxxxx -> %0xxxxxxx
2244 * %00000xxxxxyyyyyy -> %110xxxxx %10yyyyyy
2245 * %xxxxyyyyyyzzzzzz -> %1110xxxx %10yyyyyy %10zzzzzz
2247 * Therefore, the inverse is as follows:
2249 * 0x00 - 0x7F = one byte char
2250 * 0x80 - 0xBF = invalid
2251 * 0xC0 - 0xDF = 2 byte char (next char only 0x80-0xBF is valid)
2252 * 0xE0 - 0xEF = 3 byte char (next 2 chars only 0x80-0xBF is valid)
2253 * 0xF0 - 0xFF = invalid
2255 * FIXME: use a winapi to do this
2257 int convertUTF(cab_UBYTE
*in
) {
2258 cab_UBYTE c
, *out
= in
, *end
= in
+ strlen((char *) in
) + 1;
2262 /* read unicode character */
2263 if ((c
= *in
++) < 0x80) x
= c
;
2265 if (c
< 0xC0) return 0;
2266 else if (c
< 0xE0) {
2267 x
= (c
& 0x1F) << 6;
2268 if ((c
= *in
++) < 0x80 || c
> 0xBF) return 0; else x
|= (c
& 0x3F);
2270 else if (c
< 0xF0) {
2271 x
= (c
& 0xF) << 12;
2272 if ((c
= *in
++) < 0x80 || c
> 0xBF) return 0; else x
|= (c
& 0x3F)<<6;
2273 if ((c
= *in
++) < 0x80 || c
> 0xBF) return 0; else x
|= (c
& 0x3F);
2278 /* terrible unicode -> ASCII conversion */
2279 if (x
> 127) x
= '_';
2281 if (in
> end
) return 0; /* just in case */
2282 } while ((*out
++ = (cab_UBYTE
) x
));
2286 /****************************************************
2287 * NONEdecompress (internal)
2289 int NONEdecompress(int inlen
, int outlen
, cab_decomp_state
*decomp_state
)
2291 if (inlen
!= outlen
) return DECR_ILLEGALDATA
;
2292 memcpy(CAB(outbuf
), CAB(inbuf
), (size_t) inlen
);
2296 /**************************************************
2297 * checksum (internal)
2299 cab_ULONG
checksum(cab_UBYTE
*data
, cab_UWORD bytes
, cab_ULONG csum
) {
2303 for (len
= bytes
>> 2; len
--; data
+= 4) {
2304 csum
^= ((data
[0]) | (data
[1]<<8) | (data
[2]<<16) | (data
[3]<<24));
2307 switch (bytes
& 3) {
2308 case 3: ul
|= *data
++ << 16;
2309 case 2: ul
|= *data
++ << 8;
2310 case 1: ul
|= *data
;
2317 /**********************************************************
2318 * decompress (internal)
2320 int decompress(struct cab_file
*fi
, int savemode
, int fix
, cab_decomp_state
*decomp_state
)
2322 cab_ULONG bytes
= savemode
? fi
->length
: fi
->offset
- CAB(offset
);
2323 struct cabinet
*cab
= CAB(current
)->cab
[CAB(split
)];
2324 cab_UBYTE buf
[cfdata_SIZEOF
], *data
;
2325 cab_UWORD inlen
, len
, outlen
, cando
;
2329 TRACE("(fi == ^%p, savemode == %d, fix == %d)\n", fi
, savemode
, fix
);
2332 /* cando = the max number of bytes we can do */
2333 cando
= CAB(outlen
);
2334 if (cando
> bytes
) cando
= bytes
;
2337 if (cando
&& savemode
)
2338 file_write(fi
, CAB(outpos
), cando
);
2340 CAB(outpos
) += cando
;
2341 CAB(outlen
) -= cando
;
2342 bytes
-= cando
; if (!bytes
) break;
2344 /* we only get here if we emptied the output buffer */
2346 /* read data header + data */
2348 while (outlen
== 0) {
2349 /* read the block header, skip the reserved part */
2350 if (!cabinet_read(cab
, buf
, cfdata_SIZEOF
)) return DECR_INPUT
;
2351 cabinet_skip(cab
, cab
->block_resv
);
2353 /* we shouldn't get blocks over CAB_INPUTMAX in size */
2354 data
= CAB(inbuf
) + inlen
;
2355 len
= EndGetI16(buf
+cfdata_CompressedSize
);
2357 if (inlen
> CAB_INPUTMAX
) return DECR_INPUT
;
2358 if (!cabinet_read(cab
, data
, len
)) return DECR_INPUT
;
2360 /* clear two bytes after read-in data */
2361 data
[len
+1] = data
[len
+2] = 0;
2363 /* perform checksum test on the block (if one is stored) */
2364 cksum
= EndGetI32(buf
+cfdata_CheckSum
);
2365 if (cksum
&& cksum
!= checksum(buf
+4, 4, checksum(data
, len
, 0))) {
2366 /* checksum is wrong */
2367 if (fix
&& ((fi
->folder
->comp_type
& cffoldCOMPTYPE_MASK
)
2368 == cffoldCOMPTYPE_MSZIP
))
2370 WARN("%s: checksum failed\n", debugstr_a(fi
->filename
));
2373 return DECR_CHECKSUM
;
2377 /* outlen=0 means this block was part of a split block */
2378 outlen
= EndGetI16(buf
+cfdata_UncompressedSize
);
2381 cab
= CAB(current
)->cab
[++CAB(split
)];
2382 if (!cabinet_open(cab
)) return DECR_INPUT
;
2383 cabinet_seek(cab
, CAB(current
)->offset
[CAB(split
)]);
2387 /* decompress block */
2388 if ((err
= CAB(decompress
)(inlen
, outlen
, decomp_state
))) {
2389 if (fix
&& ((fi
->folder
->comp_type
& cffoldCOMPTYPE_MASK
)
2390 == cffoldCOMPTYPE_MSZIP
))
2392 ERR("%s: failed decrunching block\n", debugstr_a(fi
->filename
));
2398 CAB(outlen
) = outlen
;
2399 CAB(outpos
) = CAB(outbuf
);
2405 /****************************************************************
2406 * extract_file (internal)
2408 * workhorse to extract a particular file from a cab
2410 void extract_file(struct cab_file
*fi
, int lower
, int fix
, LPCSTR dir
, cab_decomp_state
*decomp_state
)
2412 struct cab_folder
*fol
= fi
->folder
, *oldfol
= CAB(current
);
2413 cab_LONG err
= DECR_OK
;
2415 TRACE("(fi == ^%p, lower == %d, fix == %d, dir == %s)\n", fi
, lower
, fix
, debugstr_a(dir
));
2417 /* is a change of folder needed? do we need to reset the current folder? */
2418 if (fol
!= oldfol
|| fi
->offset
< CAB(offset
)) {
2419 cab_UWORD comptype
= fol
->comp_type
;
2420 int ct1
= comptype
& cffoldCOMPTYPE_MASK
;
2421 int ct2
= oldfol
? (oldfol
->comp_type
& cffoldCOMPTYPE_MASK
) : 0;
2423 /* if the archiver has changed, call the old archiver's free() function */
2426 case cffoldCOMPTYPE_LZX
:
2432 case cffoldCOMPTYPE_QUANTUM
:
2442 case cffoldCOMPTYPE_NONE
:
2443 CAB(decompress
) = NONEdecompress
;
2446 case cffoldCOMPTYPE_MSZIP
:
2447 CAB(decompress
) = ZIPdecompress
;
2450 case cffoldCOMPTYPE_QUANTUM
:
2451 CAB(decompress
) = QTMdecompress
;
2452 err
= QTMinit((comptype
>> 8) & 0x1f, (comptype
>> 4) & 0xF, decomp_state
);
2455 case cffoldCOMPTYPE_LZX
:
2456 CAB(decompress
) = LZXdecompress
;
2457 err
= LZXinit((comptype
>> 8) & 0x1f, decomp_state
);
2461 err
= DECR_DATAFORMAT
;
2463 if (err
) goto exit_handler
;
2465 /* initialisation OK, set current folder and reset offset */
2466 if (oldfol
) cabinet_close(oldfol
->cab
[CAB(split
)]);
2467 if (!cabinet_open(fol
->cab
[0])) goto exit_handler
;
2468 cabinet_seek(fol
->cab
[0], fol
->offset
[0]);
2471 CAB(outlen
) = 0; /* discard existing block */
2475 if (fi
->offset
> CAB(offset
)) {
2476 /* decode bytes and send them to /dev/null */
2477 if ((err
= decompress(fi
, 0, fix
, decomp_state
))) goto exit_handler
;
2478 CAB(offset
) = fi
->offset
;
2481 if (!file_open(fi
, lower
, dir
)) return;
2482 err
= decompress(fi
, 1, fix
, decomp_state
);
2483 if (err
) CAB(current
) = NULL
; else CAB(offset
) += fi
->length
;
2488 char *errmsg
, *cabname
;
2491 errmsg
= "out of memory!\n"; break;
2492 case DECR_ILLEGALDATA
:
2493 errmsg
= "%s: illegal or corrupt data\n"; break;
2494 case DECR_DATAFORMAT
:
2495 errmsg
= "%s: unsupported data format\n"; break;
2497 errmsg
= "%s: checksum error\n"; break;
2499 errmsg
= "%s: input error\n"; break;
2501 errmsg
= "%s: output error\n"; break;
2503 errmsg
= "%s: unknown error (BUG)\n";
2507 cabname
= (char *) (CAB(current
)->cab
[CAB(split
)]->filename
);
2510 cabname
= (char *) (fi
->folder
->cab
[0]->filename
);
2513 ERR(errmsg
, cabname
);
2517 /*********************************************************
2518 * print_fileinfo (internal)
2520 void print_fileinfo(struct cab_file
*fi
) {
2521 int d
= fi
->date
, t
= fi
->time
;
2524 if (fi
->attribs
& cffile_A_NAME_IS_UTF
) {
2525 fname
= malloc(strlen(fi
->filename
) + 1);
2527 strcpy(fname
, fi
->filename
);
2528 convertUTF((cab_UBYTE
*) fname
);
2532 TRACE("%9u | %02d.%02d.%04d %02d:%02d:%02d | %s\n",
2534 d
& 0x1f, (d
>>5) & 0xf, (d
>>9) + 1980,
2535 t
>> 11, (t
>>5) & 0x3f, (t
<< 1) & 0x3e,
2536 fname
? fname
: fi
->filename
2539 if (fname
) free(fname
);
2542 /****************************************************************************
2543 * process_cabinet (internal)
2545 * called to simply "extract" a cabinet file. Will find every cabinet file
2546 * in that file, search for every chained cabinet attached to those cabinets,
2547 * and will either extract the cabinets, or ? (call a callback?)
2550 * cabname [I] name of the cabinet file to extract
2551 * dir [I] directory to extract to
2552 * fix [I] attempt to process broken cabinets
2553 * lower [I] ? (lower case something or other?)
2559 BOOL
process_cabinet(LPCSTR cabname
, LPCSTR dir
, BOOL fix
, BOOL lower
)
2561 struct cabinet
*basecab
, *cab
, *cab1
, *cab2
;
2562 struct cab_file
*filelist
, *fi
;
2564 /* The first result of a search will be returned, and
2565 * the remaining results will be chained to it via the cab->next structure
2568 cab_UBYTE search_buf
[CAB_SEARCH_SIZE
];
2570 cab_decomp_state decomp_state_local
;
2571 cab_decomp_state
*decomp_state
= &decomp_state_local
;
2573 /* has the list-mode header been seen before? */
2576 ZeroMemory(decomp_state
, sizeof(cab_decomp_state
));
2578 TRACE("Extract %s\n", debugstr_a(cabname
));
2580 /* load the file requested */
2581 basecab
= find_cabs_in_file(cabname
, search_buf
);
2582 if (!basecab
) return FALSE
;
2584 /* iterate over all cabinets found in that file */
2585 for (cab
= basecab
; cab
; cab
=cab
->next
) {
2587 /* bi-directionally load any spanning cabinets -- backwards */
2588 for (cab1
= cab
; cab1
->flags
& cfheadPREV_CABINET
; cab1
= cab1
->prevcab
) {
2589 TRACE("%s: extends backwards to %s (%s)\n", debugstr_a(cabname
),
2590 debugstr_a(cab1
->prevname
), debugstr_a(cab1
->previnfo
));
2591 find_cabinet_file(&(cab1
->prevname
), cabname
);
2592 if (!(cab1
->prevcab
= load_cab_offset(cab1
->prevname
, 0))) {
2593 ERR("%s: can't read previous cabinet %s\n", debugstr_a(cabname
), debugstr_a(cab1
->prevname
));
2596 cab1
->prevcab
->nextcab
= cab1
;
2599 /* bi-directionally load any spanning cabinets -- forwards */
2600 for (cab2
= cab
; cab2
->flags
& cfheadNEXT_CABINET
; cab2
= cab2
->nextcab
) {
2601 TRACE("%s: extends to %s (%s)\n", debugstr_a(cabname
),
2602 debugstr_a(cab2
->nextname
), debugstr_a(cab2
->nextinfo
));
2603 find_cabinet_file(&(cab2
->nextname
), cabname
);
2604 if (!(cab2
->nextcab
= load_cab_offset(cab2
->nextname
, 0))) {
2605 ERR("%s: can't read next cabinet %s\n", debugstr_a(cabname
), debugstr_a(cab2
->nextname
));
2608 cab2
->nextcab
->prevcab
= cab2
;
2611 filelist
= process_files(cab1
);
2612 CAB(current
) = NULL
;
2615 TRACE("File size | Date Time | Name\n");
2616 TRACE("----------+---------------------+-------------\n");
2619 for (fi
= filelist
; fi
; fi
= fi
->next
)
2621 TRACE("Beginning Extraction...\n");
2622 for (fi
= filelist
; fi
; fi
= fi
->next
) {
2623 TRACE(" extracting: %s\n", debugstr_a(fi
->filename
));
2624 extract_file(fi
, lower
, fix
, dir
, decomp_state
);
2628 TRACE("Finished processing cabinet.\n");