user32/tests: Test pending redraw state with owner-drawn list box.
[wine.git] / dlls / dbghelp / storage.c
blob48a43e6bc3dc46cb64129088c1e93e31f3b0cdfe
1 /*
2 * Various storage structures (pool allocation, vector, hash table)
4 * Copyright (C) 1993, Eric Youngdale.
5 * 2004, Eric Pouech
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
23 #include <assert.h>
24 #include <stdlib.h>
25 #include "wine/debug.h"
27 #include "dbghelp_private.h"
28 #ifdef USE_STATS
29 #include <math.h>
30 #endif
32 WINE_DEFAULT_DEBUG_CHANNEL(dbghelp);
34 struct pool_arena
36 struct list entry;
37 char *current;
38 char *end;
41 void pool_init(struct pool* a, size_t arena_size)
43 list_init( &a->arena_list );
44 list_init( &a->arena_full );
45 a->arena_size = arena_size;
48 void pool_destroy(struct pool* pool)
50 struct pool_arena* arena;
51 struct pool_arena* next;
53 #ifdef USE_STATS
54 size_t alloc, used, num;
56 alloc = used = num = 0;
57 LIST_FOR_EACH_ENTRY( arena, &pool->arena_list, struct pool_arena, entry )
59 alloc += arena->end - (char *)arena;
60 used += arena->current - (char*)arena;
61 num++;
63 LIST_FOR_EACH_ENTRY( arena, &pool->arena_full, struct pool_arena, entry )
65 alloc += arena->end - (char *)arena;
66 used += arena->current - (char*)arena;
67 num++;
69 if (alloc == 0) alloc = 1; /* avoid division by zero */
70 FIXME("STATS: pool %p has allocated %u kbytes, used %u kbytes in %u arenas, non-allocation ratio: %.2f%%\n",
71 pool, (unsigned)(alloc >> 10), (unsigned)(used >> 10), (unsigned)num,
72 100.0 - (float)used / (float)alloc * 100.0);
73 #endif
75 LIST_FOR_EACH_ENTRY_SAFE( arena, next, &pool->arena_list, struct pool_arena, entry )
77 list_remove( &arena->entry );
78 HeapFree(GetProcessHeap(), 0, arena);
80 LIST_FOR_EACH_ENTRY_SAFE( arena, next, &pool->arena_full, struct pool_arena, entry )
82 list_remove( &arena->entry );
83 HeapFree(GetProcessHeap(), 0, arena);
87 void* pool_alloc(struct pool* pool, size_t len)
89 struct pool_arena* arena;
90 void* ret;
91 size_t size;
93 len = (len + 3) & ~3; /* round up size on DWORD boundary */
95 LIST_FOR_EACH_ENTRY( arena, &pool->arena_list, struct pool_arena, entry )
97 if (arena->end - arena->current >= len)
99 ret = arena->current;
100 arena->current += len;
101 if (arena->current + 16 >= arena->end)
103 list_remove( &arena->entry );
104 list_add_tail( &pool->arena_full, &arena->entry );
106 return ret;
110 size = max( pool->arena_size, len );
111 arena = HeapAlloc(GetProcessHeap(), 0, size + sizeof(struct pool_arena));
112 if (!arena) return NULL;
114 ret = arena + 1;
115 arena->current = (char*)ret + len;
116 arena->end = (char*)ret + size;
117 if (arena->current + 16 >= arena->end)
118 list_add_tail( &pool->arena_full, &arena->entry );
119 else
120 list_add_head( &pool->arena_list, &arena->entry );
121 return ret;
124 char* pool_strdup(struct pool* pool, const char* str)
126 char* ret;
127 if ((ret = pool_alloc(pool, strlen(str) + 1))) strcpy(ret, str);
128 return ret;
131 void vector_init(struct vector* v, unsigned esz, unsigned bucket_sz)
133 v->buckets = NULL;
134 /* align size on DWORD boundaries */
135 v->elt_size = (esz + 3) & ~3;
136 switch (bucket_sz)
138 case 2: v->shift = 1; break;
139 case 4: v->shift = 2; break;
140 case 8: v->shift = 3; break;
141 case 16: v->shift = 4; break;
142 case 32: v->shift = 5; break;
143 case 64: v->shift = 6; break;
144 case 128: v->shift = 7; break;
145 case 256: v->shift = 8; break;
146 case 512: v->shift = 9; break;
147 case 1024: v->shift = 10; break;
148 default: assert(0);
150 v->num_buckets = 0;
151 v->buckets_allocated = 0;
152 v->num_elts = 0;
155 unsigned vector_length(const struct vector* v)
157 return v->num_elts;
160 void* vector_at(const struct vector* v, unsigned pos)
162 unsigned o;
164 if (pos >= v->num_elts) return NULL;
165 o = pos & ((1 << v->shift) - 1);
166 return (char*)v->buckets[pos >> v->shift] + o * v->elt_size;
169 void* vector_add(struct vector* v, struct pool* pool)
171 unsigned ncurr = v->num_elts++;
173 /* check that we don't wrap around */
174 assert(v->num_elts > ncurr);
175 if (ncurr == (v->num_buckets << v->shift))
177 if(v->num_buckets == v->buckets_allocated)
179 /* Double the bucket cache, so it scales well with big vectors.*/
180 unsigned new_reserved;
181 void* new;
183 new_reserved = 2*v->buckets_allocated;
184 if(new_reserved == 0) new_reserved = 1;
186 /* Don't even try to resize memory.
187 Pool datastructure is very inefficient with reallocs. */
188 new = pool_alloc(pool, new_reserved * sizeof(void*));
189 memcpy(new, v->buckets, v->buckets_allocated * sizeof(void*));
190 v->buckets = new;
191 v->buckets_allocated = new_reserved;
193 v->buckets[v->num_buckets] = pool_alloc(pool, v->elt_size << v->shift);
194 return v->buckets[v->num_buckets++];
196 return vector_at(v, ncurr);
199 /* We construct the sparse array as two vectors (of equal size)
200 * The first vector (key2index) is the lookup table between the key and
201 * an index in the second vector (elements)
202 * When inserting an element, it's always appended in second vector (and
203 * never moved in memory later on), only the first vector is reordered
205 struct key2index
207 ULONG_PTR key;
208 unsigned index;
211 void sparse_array_init(struct sparse_array* sa, unsigned elt_sz, unsigned bucket_sz)
213 vector_init(&sa->key2index, sizeof(struct key2index), bucket_sz);
214 vector_init(&sa->elements, elt_sz, bucket_sz);
217 /******************************************************************
218 * sparse_array_lookup
220 * Returns the first index which key is >= at passed key
222 static struct key2index* sparse_array_lookup(const struct sparse_array* sa,
223 ULONG_PTR key, unsigned* idx)
225 struct key2index* pk2i;
226 unsigned low, high;
228 if (!sa->elements.num_elts)
230 *idx = 0;
231 return NULL;
233 high = sa->elements.num_elts;
234 pk2i = vector_at(&sa->key2index, high - 1);
235 if (pk2i->key < key)
237 *idx = high;
238 return NULL;
240 if (pk2i->key == key)
242 *idx = high - 1;
243 return pk2i;
245 low = 0;
246 pk2i = vector_at(&sa->key2index, low);
247 if (pk2i->key >= key)
249 *idx = 0;
250 return pk2i;
252 /* now we have: sa(lowest key) < key < sa(highest key) */
253 while (low < high)
255 *idx = (low + high) / 2;
256 pk2i = vector_at(&sa->key2index, *idx);
257 if (pk2i->key > key) high = *idx;
258 else if (pk2i->key < key) low = *idx + 1;
259 else return pk2i;
261 /* binary search could return exact item, we search for highest one
262 * below the key
264 if (pk2i->key < key)
265 pk2i = vector_at(&sa->key2index, ++(*idx));
266 return pk2i;
269 void* sparse_array_find(const struct sparse_array* sa, ULONG_PTR key)
271 unsigned idx;
272 struct key2index* pk2i;
274 if ((pk2i = sparse_array_lookup(sa, key, &idx)) && pk2i->key == key)
275 return vector_at(&sa->elements, pk2i->index);
276 return NULL;
279 void* sparse_array_add(struct sparse_array* sa, ULONG_PTR key,
280 struct pool* pool)
282 unsigned idx, i;
283 struct key2index* pk2i;
284 struct key2index* to;
286 pk2i = sparse_array_lookup(sa, key, &idx);
287 if (pk2i && pk2i->key == key)
289 FIXME("re-adding an existing key\n");
290 return NULL;
292 to = vector_add(&sa->key2index, pool);
293 if (pk2i)
295 /* we need to shift vector's content... */
296 /* let's do it brute force... (FIXME) */
297 assert(sa->key2index.num_elts >= 2);
298 for (i = sa->key2index.num_elts - 1; i > idx; i--)
300 pk2i = vector_at(&sa->key2index, i - 1);
301 *to = *pk2i;
302 to = pk2i;
306 to->key = key;
307 to->index = sa->elements.num_elts;
309 return vector_add(&sa->elements, pool);
312 unsigned sparse_array_length(const struct sparse_array* sa)
314 return sa->elements.num_elts;
317 static unsigned hash_table_hash(const char* name, unsigned num_buckets)
319 unsigned hash = 0;
320 while (*name)
322 hash += *name++;
323 hash += (hash << 10);
324 hash ^= (hash >> 6);
326 hash += (hash << 3);
327 hash ^= (hash >> 11);
328 hash += (hash << 15);
329 return hash % num_buckets;
332 void hash_table_init(struct pool* pool, struct hash_table* ht, unsigned num_buckets)
334 ht->num_elts = 0;
335 ht->num_buckets = num_buckets;
336 ht->pool = pool;
337 ht->buckets = NULL;
340 void hash_table_destroy(struct hash_table* ht)
342 #if defined(USE_STATS)
343 int i;
344 unsigned len;
345 unsigned min = 0xffffffff, max = 0, sq = 0;
346 struct hash_table_elt* elt;
347 double mean, variance;
349 for (i = 0; i < ht->num_buckets; i++)
351 for (len = 0, elt = ht->buckets[i]; elt; elt = elt->next) len++;
352 if (len < min) min = len;
353 if (len > max) max = len;
354 sq += len * len;
356 mean = (double)ht->num_elts / ht->num_buckets;
357 variance = (double)sq / ht->num_buckets - mean * mean;
358 FIXME("STATS: elts[num:%-4u size:%u mean:%f] buckets[min:%-4u variance:%+f max:%-4u]\n",
359 ht->num_elts, ht->num_buckets, mean, min, variance, max);
361 for (i = 0; i < ht->num_buckets; i++)
363 for (len = 0, elt = ht->buckets[i]; elt; elt = elt->next) len++;
364 if (len == max)
366 FIXME("Longest bucket:\n");
367 for (elt = ht->buckets[i]; elt; elt = elt->next)
368 FIXME("\t%s\n", elt->name);
369 break;
373 #endif
376 void hash_table_add(struct hash_table* ht, struct hash_table_elt* elt)
378 unsigned hash = hash_table_hash(elt->name, ht->num_buckets);
380 if (!ht->buckets)
382 ht->buckets = pool_alloc(ht->pool, ht->num_buckets * sizeof(struct hash_table_bucket));
383 assert(ht->buckets);
384 memset(ht->buckets, 0, ht->num_buckets * sizeof(struct hash_table_bucket));
387 /* in some cases, we need to get back the symbols of same name in the order
388 * in which they've been inserted. So insert new elements at the end of the list.
390 if (!ht->buckets[hash].first)
392 ht->buckets[hash].first = elt;
394 else
396 ht->buckets[hash].last->next = elt;
398 ht->buckets[hash].last = elt;
399 elt->next = NULL;
400 ht->num_elts++;
403 void hash_table_iter_init(const struct hash_table* ht,
404 struct hash_table_iter* hti, const char* name)
406 hti->ht = ht;
407 if (name)
409 hti->last = hash_table_hash(name, ht->num_buckets);
410 hti->index = hti->last - 1;
412 else
414 hti->last = ht->num_buckets - 1;
415 hti->index = -1;
417 hti->element = NULL;
420 void* hash_table_iter_up(struct hash_table_iter* hti)
422 if (!hti->ht->buckets) return NULL;
424 if (hti->element) hti->element = hti->element->next;
425 while (!hti->element && hti->index < hti->last)
426 hti->element = hti->ht->buckets[++hti->index].first;
427 return hti->element;