shlwapi/tests: Link directly to Url*() functions.
[wine.git] / dlls / msvcrt / math.c
blob854403a71bfc8804c45dc95cdbd547a5535710b4
1 /*
2 * msvcrt.dll math functions
4 * Copyright 2000 Jon Griffiths
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
21 * For functions copied from musl libc (http://musl.libc.org/):
22 * ====================================================
23 * Copyright 2005-2020 Rich Felker, et al.
25 * Permission is hereby granted, free of charge, to any person obtaining
26 * a copy of this software and associated documentation files (the
27 * "Software"), to deal in the Software without restriction, including
28 * without limitation the rights to use, copy, modify, merge, publish,
29 * distribute, sublicense, and/or sell copies of the Software, and to
30 * permit persons to whom the Software is furnished to do so, subject to
31 * the following conditions:
33 * The above copyright notice and this permission notice shall be
34 * included in all copies or substantial portions of the Software.
35 * ====================================================
38 #include <assert.h>
39 #include <complex.h>
40 #include <stdio.h>
41 #include <fenv.h>
42 #include <fpieee.h>
43 #include <limits.h>
44 #include <locale.h>
45 #include <math.h>
47 #include "msvcrt.h"
48 #include "winternl.h"
50 #include "wine/asm.h"
51 #include "wine/debug.h"
53 WINE_DEFAULT_DEBUG_CHANNEL(msvcrt);
55 #undef div
56 #undef ldiv
58 #define _DOMAIN 1 /* domain error in argument */
59 #define _SING 2 /* singularity */
60 #define _OVERFLOW 3 /* range overflow */
61 #define _UNDERFLOW 4 /* range underflow */
63 typedef int (CDECL *MSVCRT_matherr_func)(struct _exception *);
65 static MSVCRT_matherr_func MSVCRT_default_matherr_func = NULL;
67 BOOL sse2_supported;
68 static BOOL sse2_enabled;
70 void msvcrt_init_math( void *module )
72 sse2_supported = IsProcessorFeaturePresent( PF_XMMI64_INSTRUCTIONS_AVAILABLE );
73 #if _MSVCR_VER <=71
74 sse2_enabled = FALSE;
75 #else
76 sse2_enabled = sse2_supported;
77 #endif
80 /* Copied from musl: src/internal/libm.h */
81 static inline float fp_barrierf(float x)
83 volatile float y = x;
84 return y;
87 static inline double fp_barrier(double x)
89 volatile double y = x;
90 return y;
93 static inline double ret_nan( BOOL update_sw )
95 double x = 1.0;
96 if (!update_sw) return -NAN;
97 return (x - x) / (x - x);
100 #define SET_X87_CW(MASK) \
101 "subl $4, %esp\n\t" \
102 __ASM_CFI(".cfi_adjust_cfa_offset 4\n\t") \
103 "fnstcw (%esp)\n\t" \
104 "movw (%esp), %ax\n\t" \
105 "movw %ax, 2(%esp)\n\t" \
106 "testw $" #MASK ", %ax\n\t" \
107 "jz 1f\n\t" \
108 "andw $~" #MASK ", %ax\n\t" \
109 "movw %ax, 2(%esp)\n\t" \
110 "fldcw 2(%esp)\n\t" \
111 "1:\n\t"
113 #define RESET_X87_CW \
114 "movw (%esp), %ax\n\t" \
115 "cmpw %ax, 2(%esp)\n\t" \
116 "je 1f\n\t" \
117 "fstpl 8(%esp)\n\t" \
118 "fldcw (%esp)\n\t" \
119 "fldl 8(%esp)\n\t" \
120 "fwait\n\t" \
121 "1:\n\t" \
122 "addl $4, %esp\n\t" \
123 __ASM_CFI(".cfi_adjust_cfa_offset -4\n\t")
125 /*********************************************************************
126 * _matherr (CRTDLL.@)
128 int CDECL _matherr(struct _exception *e)
130 return 0;
134 static double math_error(int type, const char *name, double arg1, double arg2, double retval)
136 struct _exception exception = {type, (char *)name, arg1, arg2, retval};
138 TRACE("(%d, %s, %g, %g, %g)\n", type, debugstr_a(name), arg1, arg2, retval);
140 if (MSVCRT_default_matherr_func && MSVCRT_default_matherr_func(&exception))
141 return exception.retval;
143 switch (type)
145 case 0:
146 /* don't set errno */
147 break;
148 case _DOMAIN:
149 *_errno() = EDOM;
150 break;
151 case _SING:
152 case _OVERFLOW:
153 *_errno() = ERANGE;
154 break;
155 case _UNDERFLOW:
156 /* don't set errno */
157 break;
158 default:
159 ERR("Unhandled math error!\n");
162 return exception.retval;
165 /*********************************************************************
166 * __setusermatherr (MSVCRT.@)
168 void CDECL __setusermatherr(MSVCRT_matherr_func func)
170 MSVCRT_default_matherr_func = func;
171 TRACE("new matherr handler %p\n", func);
174 /*********************************************************************
175 * _set_SSE2_enable (MSVCRT.@)
177 int CDECL _set_SSE2_enable(int flag)
179 sse2_enabled = flag && sse2_supported;
180 return sse2_enabled;
183 #if defined(_WIN64)
184 # if _MSVCR_VER>=140
185 /*********************************************************************
186 * _get_FMA3_enable (UCRTBASE.@)
188 int CDECL _get_FMA3_enable(void)
190 FIXME("() stub\n");
191 return 0;
193 # endif
195 # if _MSVCR_VER>=120
196 /*********************************************************************
197 * _set_FMA3_enable (MSVCR120.@)
199 int CDECL _set_FMA3_enable(int flag)
201 FIXME("(%x) stub\n", flag);
202 return 0;
204 # endif
205 #endif
207 #if !defined(__i386__) || _MSVCR_VER>=120
209 /*********************************************************************
210 * _chgsignf (MSVCRT.@)
212 float CDECL _chgsignf( float num )
214 union { float f; UINT32 i; } u = { num };
215 u.i ^= 0x80000000;
216 return u.f;
219 /*********************************************************************
220 * _copysignf (MSVCRT.@)
222 * Copied from musl: src/math/copysignf.c
224 float CDECL _copysignf( float x, float y )
226 union { float f; UINT32 i; } ux = { x }, uy = { y };
227 ux.i &= 0x7fffffff;
228 ux.i |= uy.i & 0x80000000;
229 return ux.f;
232 /*********************************************************************
233 * _nextafterf (MSVCRT.@)
235 * Copied from musl: src/math/nextafterf.c
237 float CDECL _nextafterf( float x, float y )
239 unsigned int ix = *(unsigned int*)&x;
240 unsigned int iy = *(unsigned int*)&y;
241 unsigned int ax, ay, e;
243 if (isnan(x) || isnan(y))
244 return x + y;
245 if (x == y) {
246 if (_fpclassf(y) & (_FPCLASS_ND | _FPCLASS_PD | _FPCLASS_NZ | _FPCLASS_PZ ))
247 *_errno() = ERANGE;
248 return y;
250 ax = ix & 0x7fffffff;
251 ay = iy & 0x7fffffff;
252 if (ax == 0) {
253 if (ay == 0)
254 return y;
255 ix = (iy & 0x80000000) | 1;
256 } else if (ax > ay || ((ix ^ iy) & 0x80000000))
257 ix--;
258 else
259 ix++;
260 e = ix & 0x7f800000;
261 /* raise overflow if ix is infinite and x is finite */
262 if (e == 0x7f800000) {
263 fp_barrierf(x + x);
264 *_errno() = ERANGE;
266 /* raise underflow if ix is subnormal or zero */
267 y = *(float*)&ix;
268 if (e == 0) {
269 fp_barrierf(x * x + y * y);
270 *_errno() = ERANGE;
272 return y;
275 /* Copied from musl: src/math/ilogbf.c */
276 static int __ilogbf(float x)
278 union { float f; UINT32 i; } u = { x };
279 int e = u.i >> 23 & 0xff;
281 if (!e)
283 u.i <<= 9;
284 if (u.i == 0) return FP_ILOGB0;
285 /* subnormal x */
286 for (e = -0x7f; u.i >> 31 == 0; e--, u.i <<= 1);
287 return e;
289 if (e == 0xff) return u.i << 9 ? FP_ILOGBNAN : INT_MAX;
290 return e - 0x7f;
293 /*********************************************************************
294 * _logbf (MSVCRT.@)
296 * Copied from musl: src/math/logbf.c
298 float CDECL _logbf(float x)
300 if (!isfinite(x))
301 return x * x;
302 if (x == 0) {
303 *_errno() = ERANGE;
304 return -1 / (x * x);
306 return __ilogbf(x);
309 #endif
311 /* Copied from musl: src/math/scalbn.c */
312 static double __scalbn(double x, int n)
314 union {double f; UINT64 i;} u;
315 double y = x;
317 if (n > 1023) {
318 y *= 0x1p1023;
319 n -= 1023;
320 if (n > 1023) {
321 y *= 0x1p1023;
322 n -= 1023;
323 if (n > 1023)
324 n = 1023;
326 } else if (n < -1022) {
327 /* make sure final n < -53 to avoid double
328 rounding in the subnormal range */
329 y *= 0x1p-1022 * 0x1p53;
330 n += 1022 - 53;
331 if (n < -1022) {
332 y *= 0x1p-1022 * 0x1p53;
333 n += 1022 - 53;
334 if (n < -1022)
335 n = -1022;
338 u.i = (UINT64)(0x3ff + n) << 52;
339 x = y * u.f;
340 return x;
343 /* Copied from musl: src/math/__rem_pio2_large.c */
344 static int __rem_pio2_large(double *x, double *y, int e0, int nx, int prec)
346 static const int init_jk[] = {3, 4};
347 static const INT32 ipio2[] = {
348 0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
349 0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
350 0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
351 0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
352 0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
353 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
354 0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
355 0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
356 0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
357 0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
358 0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
360 static const double PIo2[] = {
361 1.57079625129699707031e+00,
362 7.54978941586159635335e-08,
363 5.39030252995776476554e-15,
364 3.28200341580791294123e-22,
365 1.27065575308067607349e-29,
366 1.22933308981111328932e-36,
367 2.73370053816464559624e-44,
368 2.16741683877804819444e-51,
371 INT32 jz, jx, jv, jp, jk, carry, n, iq[20], i, j, k, m, q0, ih;
372 double z, fw, f[20], fq[20] = {0}, q[20];
374 /* initialize jk*/
375 jk = init_jk[prec];
376 jp = jk;
378 /* determine jx,jv,q0, note that 3>q0 */
379 jx = nx - 1;
380 jv = (e0 - 3) / 24;
381 if(jv < 0) jv = 0;
382 q0 = e0 - 24 * (jv + 1);
384 /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
385 j = jv - jx;
386 m = jx + jk;
387 for (i = 0; i <= m; i++, j++)
388 f[i] = j < 0 ? 0.0 : (double)ipio2[j];
390 /* compute q[0],q[1],...q[jk] */
391 for (i = 0; i <= jk; i++) {
392 for (j = 0, fw = 0.0; j <= jx; j++)
393 fw += x[j] * f[jx + i - j];
394 q[i] = fw;
397 jz = jk;
398 recompute:
399 /* distill q[] into iq[] reversingly */
400 for (i = 0, j = jz, z = q[jz]; j > 0; i++, j--) {
401 fw = (double)(INT32)(0x1p-24 * z);
402 iq[i] = (INT32)(z - 0x1p24 * fw);
403 z = q[j - 1] + fw;
406 /* compute n */
407 z = __scalbn(z, q0); /* actual value of z */
408 z -= 8.0 * floor(z * 0.125); /* trim off integer >= 8 */
409 n = (INT32)z;
410 z -= (double)n;
411 ih = 0;
412 if (q0 > 0) { /* need iq[jz-1] to determine n */
413 i = iq[jz - 1] >> (24 - q0);
414 n += i;
415 iq[jz - 1] -= i << (24 - q0);
416 ih = iq[jz - 1] >> (23 - q0);
418 else if (q0 == 0) ih = iq[jz - 1] >> 23;
419 else if (z >= 0.5) ih = 2;
421 if (ih > 0) { /* q > 0.5 */
422 n += 1;
423 carry = 0;
424 for (i = 0; i < jz; i++) { /* compute 1-q */
425 j = iq[i];
426 if (carry == 0) {
427 if (j != 0) {
428 carry = 1;
429 iq[i] = 0x1000000 - j;
431 } else
432 iq[i] = 0xffffff - j;
434 if (q0 > 0) { /* rare case: chance is 1 in 12 */
435 switch(q0) {
436 case 1:
437 iq[jz - 1] &= 0x7fffff;
438 break;
439 case 2:
440 iq[jz - 1] &= 0x3fffff;
441 break;
444 if (ih == 2) {
445 z = 1.0 - z;
446 if (carry != 0)
447 z -= __scalbn(1.0, q0);
451 /* check if recomputation is needed */
452 if (z == 0.0) {
453 j = 0;
454 for (i = jz - 1; i >= jk; i--) j |= iq[i];
455 if (j == 0) { /* need recomputation */
456 for (k = 1; iq[jk - k] == 0; k++); /* k = no. of terms needed */
458 for (i = jz + 1; i <= jz + k; i++) { /* add q[jz+1] to q[jz+k] */
459 f[jx + i] = (double)ipio2[jv + i];
460 for (j = 0, fw = 0.0; j <= jx; j++)
461 fw += x[j] * f[jx + i - j];
462 q[i] = fw;
464 jz += k;
465 goto recompute;
469 /* chop off zero terms */
470 if (z == 0.0) {
471 jz -= 1;
472 q0 -= 24;
473 while (iq[jz] == 0) {
474 jz--;
475 q0 -= 24;
477 } else { /* break z into 24-bit if necessary */
478 z = __scalbn(z, -q0);
479 if (z >= 0x1p24) {
480 fw = (double)(INT32)(0x1p-24 * z);
481 iq[jz] = (INT32)(z - 0x1p24 * fw);
482 jz += 1;
483 q0 += 24;
484 iq[jz] = (INT32)fw;
485 } else
486 iq[jz] = (INT32)z;
489 /* convert integer "bit" chunk to floating-point value */
490 fw = __scalbn(1.0, q0);
491 for (i = jz; i >= 0; i--) {
492 q[i] = fw * (double)iq[i];
493 fw *= 0x1p-24;
496 /* compute PIo2[0,...,jp]*q[jz,...,0] */
497 for(i = jz; i >= 0; i--) {
498 for (fw = 0.0, k = 0; k <= jp && k <= jz - i; k++)
499 fw += PIo2[k] * q[i + k];
500 fq[jz - i] = fw;
503 /* compress fq[] into y[] */
504 switch(prec) {
505 case 0:
506 fw = 0.0;
507 for (i = jz; i >= 0; i--)
508 fw += fq[i];
509 y[0] = ih == 0 ? fw : -fw;
510 break;
511 case 1:
512 case 2:
513 fw = 0.0;
514 for (i = jz; i >= 0; i--)
515 fw += fq[i];
516 fw = (double)fw;
517 y[0] = ih==0 ? fw : -fw;
518 fw = fq[0] - fw;
519 for (i = 1; i <= jz; i++)
520 fw += fq[i];
521 y[1] = ih == 0 ? fw : -fw;
522 break;
523 case 3: /* painful */
524 for (i = jz; i > 0; i--) {
525 fw = fq[i - 1] + fq[i];
526 fq[i] += fq[i - 1] - fw;
527 fq[i - 1] = fw;
529 for (i = jz; i > 1; i--) {
530 fw = fq[i - 1] + fq[i];
531 fq[i] += fq[i - 1] - fw;
532 fq[i - 1] = fw;
534 for (fw = 0.0, i = jz; i >= 2; i--)
535 fw += fq[i];
536 if (ih == 0) {
537 y[0] = fq[0];
538 y[1] = fq[1];
539 y[2] = fw;
540 } else {
541 y[0] = -fq[0];
542 y[1] = -fq[1];
543 y[2] = -fw;
546 return n & 7;
549 /* Based on musl implementation: src/math/round.c */
550 static double __round(double x)
552 ULONGLONG llx = *(ULONGLONG*)&x, tmp;
553 int e = (llx >> 52 & 0x7ff) - 0x3ff;
555 if (e >= 52)
556 return x;
557 if (e < -1)
558 return 0 * x;
559 else if (e == -1)
560 return signbit(x) ? -1 : 1;
562 tmp = 0x000fffffffffffffULL >> e;
563 if (!(llx & tmp))
564 return x;
565 llx += 0x0008000000000000ULL >> e;
566 llx &= ~tmp;
567 return *(double*)&llx;
570 #if !defined(__i386__) || _MSVCR_VER >= 120
571 /* Copied from musl: src/math/expm1f.c */
572 static float __expm1f(float x)
574 static const float ln2_hi = 6.9313812256e-01,
575 ln2_lo = 9.0580006145e-06,
576 invln2 = 1.4426950216e+00,
577 Q1 = -3.3333212137e-2,
578 Q2 = 1.5807170421e-3;
580 float y, hi, lo, c, t, e, hxs, hfx, r1, twopk;
581 union {float f; UINT32 i;} u = {x};
582 UINT32 hx = u.i & 0x7fffffff;
583 int k, sign = u.i >> 31;
585 /* filter out huge and non-finite argument */
586 if (hx >= 0x4195b844) { /* if |x|>=27*ln2 */
587 if (hx >= 0x7f800000) /* NaN */
588 return u.i == 0xff800000 ? -1 : x;
589 if (sign)
590 return math_error(_UNDERFLOW, "exp", x, 0, -1);
591 if (hx > 0x42b17217) /* x > log(FLT_MAX) */
592 return math_error(_OVERFLOW, "exp", x, 0, fp_barrierf(x * FLT_MAX));
595 /* argument reduction */
596 if (hx > 0x3eb17218) { /* if |x| > 0.5 ln2 */
597 if (hx < 0x3F851592) { /* and |x| < 1.5 ln2 */
598 if (!sign) {
599 hi = x - ln2_hi;
600 lo = ln2_lo;
601 k = 1;
602 } else {
603 hi = x + ln2_hi;
604 lo = -ln2_lo;
605 k = -1;
607 } else {
608 k = invln2 * x + (sign ? -0.5f : 0.5f);
609 t = k;
610 hi = x - t * ln2_hi; /* t*ln2_hi is exact here */
611 lo = t * ln2_lo;
613 x = hi - lo;
614 c = (hi - x) - lo;
615 } else if (hx < 0x33000000) { /* when |x|<2**-25, return x */
616 if (hx < 0x00800000)
617 fp_barrierf(x * x);
618 return x;
619 } else
620 k = 0;
622 /* x is now in primary range */
623 hfx = 0.5f * x;
624 hxs = x * hfx;
625 r1 = 1.0f + hxs * (Q1 + hxs * Q2);
626 t = 3.0f - r1 * hfx;
627 e = hxs * ((r1 - t) / (6.0f - x * t));
628 if (k == 0) /* c is 0 */
629 return x - (x * e - hxs);
630 e = x * (e - c) - c;
631 e -= hxs;
632 /* exp(x) ~ 2^k (x_reduced - e + 1) */
633 if (k == -1)
634 return 0.5f * (x - e) - 0.5f;
635 if (k == 1) {
636 if (x < -0.25f)
637 return -2.0f * (e - (x + 0.5f));
638 return 1.0f + 2.0f * (x - e);
640 u.i = (0x7f + k) << 23; /* 2^k */
641 twopk = u.f;
642 if (k < 0 || k > 56) { /* suffice to return exp(x)-1 */
643 y = x - e + 1.0f;
644 if (k == 128)
645 y = y * 2.0f * 0x1p127f;
646 else
647 y = y * twopk;
648 return y - 1.0f;
650 u.i = (0x7f-k) << 23; /* 2^-k */
651 if (k < 23)
652 y = (x - e + (1 - u.f)) * twopk;
653 else
654 y = (x - (e + u.f) + 1) * twopk;
655 return y;
658 /* Copied from musl: src/math/__sindf.c */
659 static float __sindf(double x)
661 static const double S1 = -0x1.5555555555555p-3,
662 S2 = 0x1.1111111111111p-7,
663 S3 = -0x1.a01a01a01a01ap-13,
664 S4 = 0x1.71de3a556c734p-19;
666 double r, s, w, z;
668 z = x * x;
669 if (x > -7.8175831586122513e-03 && x < 7.8175831586122513e-03)
670 return x * (1 + S1 * z);
672 w = z * z;
673 r = S3 + z * S4;
674 s = z * x;
675 return (x + s * (S1 + z * S2)) + s * w * r;
678 /* Copied from musl: src/math/__cosdf.c */
679 static float __cosdf(double x)
681 static const double C0 = -0x1.0000000000000p-1,
682 C1 = 0x1.5555555555555p-5,
683 C2 = -0x1.6c16c16c16c17p-10,
684 C3 = 0x1.a01a01a01a01ap-16,
685 C4 = -0x1.27e4fb7789f5cp-22;
686 double z;
688 z = x * x;
689 if (x > -7.8163146972656250e-03 && x < 7.8163146972656250e-03)
690 return 1 + C0 * z;
691 return 1.0 + z * (C0 + z * (C1 + z * (C2 + z * (C3 + z * C4))));
694 static const UINT64 exp2f_T[] = {
695 0x3ff0000000000000ULL, 0x3fefd9b0d3158574ULL, 0x3fefb5586cf9890fULL, 0x3fef9301d0125b51ULL,
696 0x3fef72b83c7d517bULL, 0x3fef54873168b9aaULL, 0x3fef387a6e756238ULL, 0x3fef1e9df51fdee1ULL,
697 0x3fef06fe0a31b715ULL, 0x3feef1a7373aa9cbULL, 0x3feedea64c123422ULL, 0x3feece086061892dULL,
698 0x3feebfdad5362a27ULL, 0x3feeb42b569d4f82ULL, 0x3feeab07dd485429ULL, 0x3feea47eb03a5585ULL,
699 0x3feea09e667f3bcdULL, 0x3fee9f75e8ec5f74ULL, 0x3feea11473eb0187ULL, 0x3feea589994cce13ULL,
700 0x3feeace5422aa0dbULL, 0x3feeb737b0cdc5e5ULL, 0x3feec49182a3f090ULL, 0x3feed503b23e255dULL,
701 0x3feee89f995ad3adULL, 0x3feeff76f2fb5e47ULL, 0x3fef199bdd85529cULL, 0x3fef3720dcef9069ULL,
702 0x3fef5818dcfba487ULL, 0x3fef7c97337b9b5fULL, 0x3fefa4afa2a490daULL, 0x3fefd0765b6e4540ULL
704 #endif
706 /*********************************************************************
707 * _fdclass (MSVCR120.@)
709 * Copied from musl: src/math/__fpclassifyf.c
711 short CDECL _fdclass(float x)
713 union { float f; UINT32 i; } u = { x };
714 int e = u.i >> 23 & 0xff;
716 if (!e) return u.i << 1 ? FP_SUBNORMAL : FP_ZERO;
717 if (e == 0xff) return u.i << 9 ? FP_NAN : FP_INFINITE;
718 return FP_NORMAL;
721 /*********************************************************************
722 * _dclass (MSVCR120.@)
724 * Copied from musl: src/math/__fpclassify.c
726 short CDECL _dclass(double x)
728 union { double f; UINT64 i; } u = { x };
729 int e = u.i >> 52 & 0x7ff;
731 if (!e) return u.i << 1 ? FP_SUBNORMAL : FP_ZERO;
732 if (e == 0x7ff) return (u.i << 12) ? FP_NAN : FP_INFINITE;
733 return FP_NORMAL;
736 #ifndef __i386__
738 /*********************************************************************
739 * _fpclassf (MSVCRT.@)
741 int CDECL _fpclassf( float num )
743 union { float f; UINT32 i; } u = { num };
744 int e = u.i >> 23 & 0xff;
745 int s = u.i >> 31;
747 switch (e)
749 case 0:
750 if (u.i << 1) return s ? _FPCLASS_ND : _FPCLASS_PD;
751 return s ? _FPCLASS_NZ : _FPCLASS_PZ;
752 case 0xff:
753 if (u.i << 9) return ((u.i >> 22) & 1) ? _FPCLASS_QNAN : _FPCLASS_SNAN;
754 return s ? _FPCLASS_NINF : _FPCLASS_PINF;
755 default:
756 return s ? _FPCLASS_NN : _FPCLASS_PN;
760 /*********************************************************************
761 * _finitef (MSVCRT.@)
763 int CDECL _finitef( float num )
765 union { float f; UINT32 i; } u = { num };
766 return (u.i & 0x7fffffff) < 0x7f800000;
769 /*********************************************************************
770 * _isnanf (MSVCRT.@)
772 int CDECL _isnanf( float num )
774 union { float f; UINT32 i; } u = { num };
775 return (u.i & 0x7fffffff) > 0x7f800000;
778 static float asinf_R(float z)
780 /* coefficients for R(x^2) */
781 static const float p1 = 1.66666672e-01,
782 p2 = -5.11644611e-02,
783 p3 = -1.21124933e-02,
784 p4 = -3.58742251e-03,
785 q1 = -7.56982703e-01;
787 float p, q;
788 p = z * (p1 + z * (p2 + z * (p3 + z * p4)));
789 q = 1.0f + z * q1;
790 return p / q;
793 /*********************************************************************
794 * acosf (MSVCRT.@)
796 * Copied from musl: src/math/acosf.c
798 float CDECL acosf( float x )
800 static const double pio2_lo = 6.12323399573676603587e-17;
801 static const double pio2_hi = 1.57079632679489655800e+00;
803 float z, w, s, c, df;
804 unsigned int hx, ix;
806 hx = *(unsigned int*)&x;
807 ix = hx & 0x7fffffff;
808 /* |x| >= 1 or nan */
809 if (ix >= 0x3f800000) {
810 if (ix == 0x3f800000) {
811 if (hx >> 31)
812 return M_PI;
813 return 0;
815 if (isnan(x)) return x;
816 return math_error(_DOMAIN, "acosf", x, 0, 0 / (x - x));
818 /* |x| < 0.5 */
819 if (ix < 0x3f000000) {
820 if (ix <= 0x32800000) /* |x| < 2**-26 */
821 return M_PI_2;
822 return pio2_hi - (x - (pio2_lo - x * asinf_R(x * x)));
824 /* x < -0.5 */
825 if (hx >> 31) {
826 z = (1 + x) * 0.5f;
827 s = sqrtf(z);
828 return 2*(pio2_hi - (s + (asinf_R(z) * s - pio2_lo)));
830 /* x > 0.5 */
831 z = (1 - x) * 0.5f;
832 s = sqrtf(z);
833 hx = *(unsigned int*)&s & 0xffff0000;
834 df = *(float*)&hx;
835 c = (z - df * df) / (s + df);
836 w = asinf_R(z) * s + c;
837 return 2 * (df + w);
840 /*********************************************************************
841 * asinf (MSVCRT.@)
843 * Copied from musl: src/math/asinf.c
845 float CDECL asinf( float x )
847 static const double pio2 = 1.570796326794896558e+00;
848 static const float pio4_hi = 0.785398125648;
849 static const float pio2_lo = 7.54978941586e-08;
851 float s, z, f, c;
852 unsigned int hx, ix;
854 hx = *(unsigned int*)&x;
855 ix = hx & 0x7fffffff;
856 if (ix >= 0x3f800000) { /* |x| >= 1 */
857 if (ix == 0x3f800000) /* |x| == 1 */
858 return x * pio2 + 7.5231638453e-37; /* asin(+-1) = +-pi/2 with inexact */
859 if (isnan(x)) return x;
860 return math_error(_DOMAIN, "asinf", x, 0, 0 / (x - x));
862 if (ix < 0x3f000000) { /* |x| < 0.5 */
863 /* if 0x1p-126 <= |x| < 0x1p-12, avoid raising underflow */
864 if (ix < 0x39800000 && ix >= 0x00800000)
865 return x;
866 return x + x * asinf_R(x * x);
868 /* 1 > |x| >= 0.5 */
869 z = (1 - fabsf(x)) * 0.5f;
870 s = sqrtf(z);
871 /* f+c = sqrt(z) */
872 *(unsigned int*)&f = *(unsigned int*)&s & 0xffff0000;
873 c = (z - f * f) / (s + f);
874 x = pio4_hi - (2 * s * asinf_R(z) - (pio2_lo - 2 * c) - (pio4_hi - 2 * f));
875 if (hx >> 31)
876 return -x;
877 return x;
880 /*********************************************************************
881 * atanf (MSVCRT.@)
883 * Copied from musl: src/math/atanf.c
885 float CDECL atanf( float x )
887 static const float atanhi[] = {
888 4.6364760399e-01,
889 7.8539812565e-01,
890 9.8279368877e-01,
891 1.5707962513e+00,
893 static const float atanlo[] = {
894 5.0121582440e-09,
895 3.7748947079e-08,
896 3.4473217170e-08,
897 7.5497894159e-08,
899 static const float aT[] = {
900 3.3333328366e-01,
901 -1.9999158382e-01,
902 1.4253635705e-01,
903 -1.0648017377e-01,
904 6.1687607318e-02,
907 float w, s1, s2, z;
908 unsigned int ix, sign;
909 int id;
911 #if _MSVCR_VER == 0
912 if (isnan(x)) return math_error(_DOMAIN, "atanf", x, 0, x);
913 #endif
915 ix = *(unsigned int*)&x;
916 sign = ix >> 31;
917 ix &= 0x7fffffff;
918 if (ix >= 0x4c800000) { /* if |x| >= 2**26 */
919 if (isnan(x))
920 return x;
921 z = atanhi[3] + 7.5231638453e-37;
922 return sign ? -z : z;
924 if (ix < 0x3ee00000) { /* |x| < 0.4375 */
925 if (ix < 0x39800000) { /* |x| < 2**-12 */
926 if (ix < 0x00800000)
927 /* raise underflow for subnormal x */
928 fp_barrierf(x*x);
929 return x;
931 id = -1;
932 } else {
933 x = fabsf(x);
934 if (ix < 0x3f980000) { /* |x| < 1.1875 */
935 if (ix < 0x3f300000) { /* 7/16 <= |x| < 11/16 */
936 id = 0;
937 x = (2.0f * x - 1.0f) / (2.0f + x);
938 } else { /* 11/16 <= |x| < 19/16 */
939 id = 1;
940 x = (x - 1.0f) / (x + 1.0f);
942 } else {
943 if (ix < 0x401c0000) { /* |x| < 2.4375 */
944 id = 2;
945 x = (x - 1.5f) / (1.0f + 1.5f * x);
946 } else { /* 2.4375 <= |x| < 2**26 */
947 id = 3;
948 x = -1.0f / x;
952 /* end of argument reduction */
953 z = x * x;
954 w = z * z;
955 /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
956 s1 = z * (aT[0] + w * (aT[2] + w * aT[4]));
957 s2 = w * (aT[1] + w * aT[3]);
958 if (id < 0)
959 return x - x * (s1 + s2);
960 z = atanhi[id] - ((x * (s1 + s2) - atanlo[id]) - x);
961 return sign ? -z : z;
964 /*********************************************************************
965 * atan2f (MSVCRT.@)
967 * Copied from musl: src/math/atan2f.c
969 float CDECL atan2f( float y, float x )
971 static const float pi = 3.1415927410e+00,
972 pi_lo = -8.7422776573e-08;
974 float z;
975 unsigned int m, ix, iy;
977 if (isnan(x) || isnan(y))
978 return x + y;
979 ix = *(unsigned int*)&x;
980 iy = *(unsigned int*)&y;
981 if (ix == 0x3f800000) /* x=1.0 */
982 return atanf(y);
983 m = ((iy >> 31) & 1) | ((ix >> 30) & 2); /* 2*sign(x)+sign(y) */
984 ix &= 0x7fffffff;
985 iy &= 0x7fffffff;
987 /* when y = 0 */
988 if (iy == 0) {
989 switch (m) {
990 case 0:
991 case 1: return y; /* atan(+-0,+anything)=+-0 */
992 case 2: return pi; /* atan(+0,-anything) = pi */
993 case 3: return -pi; /* atan(-0,-anything) =-pi */
996 /* when x = 0 */
997 if (ix == 0)
998 return m & 1 ? -pi / 2 : pi / 2;
999 /* when x is INF */
1000 if (ix == 0x7f800000) {
1001 if (iy == 0x7f800000) {
1002 switch (m) {
1003 case 0: return pi / 4; /* atan(+INF,+INF) */
1004 case 1: return -pi / 4; /* atan(-INF,+INF) */
1005 case 2: return 3 * pi / 4; /*atan(+INF,-INF)*/
1006 case 3: return -3 * pi / 4; /*atan(-INF,-INF)*/
1008 } else {
1009 switch (m) {
1010 case 0: return 0.0f; /* atan(+...,+INF) */
1011 case 1: return -0.0f; /* atan(-...,+INF) */
1012 case 2: return pi; /* atan(+...,-INF) */
1013 case 3: return -pi; /* atan(-...,-INF) */
1017 /* |y/x| > 0x1p26 */
1018 if (ix + (26 << 23) < iy || iy == 0x7f800000)
1019 return m & 1 ? -pi / 2 : pi / 2;
1021 /* z = atan(|y/x|) with correct underflow */
1022 if ((m & 2) && iy + (26 << 23) < ix) /*|y/x| < 0x1p-26, x < 0 */
1023 z = 0.0;
1024 else
1025 z = atanf(fabsf(y / x));
1026 switch (m) {
1027 case 0: return z; /* atan(+,+) */
1028 case 1: return -z; /* atan(-,+) */
1029 case 2: return pi - (z - pi_lo); /* atan(+,-) */
1030 default: /* case 3 */
1031 return (z - pi_lo) - pi; /* atan(-,-) */
1035 /* Copied from musl: src/math/__rem_pio2f.c */
1036 static int __rem_pio2f(float x, double *y)
1038 static const double toint = 1.5 / DBL_EPSILON,
1039 pio4 = 0x1.921fb6p-1,
1040 invpio2 = 6.36619772367581382433e-01,
1041 pio2_1 = 1.57079631090164184570e+00,
1042 pio2_1t = 1.58932547735281966916e-08;
1044 union {float f; uint32_t i;} u = {x};
1045 double tx[1], ty[1], fn;
1046 UINT32 ix;
1047 int n, sign, e0;
1049 ix = u.i & 0x7fffffff;
1050 /* 25+53 bit pi is good enough for medium size */
1051 if (ix < 0x4dc90fdb) { /* |x| ~< 2^28*(pi/2), medium size */
1052 /* Use a specialized rint() to get fn. */
1053 fn = fp_barrier(x * invpio2 + toint) - toint;
1054 n = (int)fn;
1055 *y = x - fn * pio2_1 - fn * pio2_1t;
1056 /* Matters with directed rounding. */
1057 if (*y < -pio4) {
1058 n--;
1059 fn--;
1060 *y = x - fn * pio2_1 - fn * pio2_1t;
1061 } else if (*y > pio4) {
1062 n++;
1063 fn++;
1064 *y = x - fn * pio2_1 - fn * pio2_1t;
1066 return n;
1068 if(ix >= 0x7f800000) { /* x is inf or NaN */
1069 *y = x - x;
1070 return 0;
1072 /* scale x into [2^23, 2^24-1] */
1073 sign = u.i >> 31;
1074 e0 = (ix >> 23) - (0x7f + 23); /* e0 = ilogb(|x|)-23, positive */
1075 u.i = ix - (e0 << 23);
1076 tx[0] = u.f;
1077 n = __rem_pio2_large(tx, ty, e0, 1, 0);
1078 if (sign) {
1079 *y = -ty[0];
1080 return -n;
1082 *y = ty[0];
1083 return n;
1086 /*********************************************************************
1087 * cosf (MSVCRT.@)
1089 * Copied from musl: src/math/cosf.c
1091 float CDECL cosf( float x )
1093 static const double c1pio2 = 1*M_PI_2,
1094 c2pio2 = 2*M_PI_2,
1095 c3pio2 = 3*M_PI_2,
1096 c4pio2 = 4*M_PI_2;
1098 double y;
1099 UINT32 ix;
1100 unsigned n, sign;
1102 ix = *(UINT32*)&x;
1103 sign = ix >> 31;
1104 ix &= 0x7fffffff;
1106 if (ix <= 0x3f490fda) { /* |x| ~<= pi/4 */
1107 if (ix < 0x39800000) { /* |x| < 2**-12 */
1108 /* raise inexact if x != 0 */
1109 fp_barrierf(x + 0x1p120f);
1110 return 1.0f;
1112 return __cosdf(x);
1114 if (ix <= 0x407b53d1) { /* |x| ~<= 5*pi/4 */
1115 if (ix > 0x4016cbe3) /* |x| ~> 3*pi/4 */
1116 return -__cosdf(sign ? x + c2pio2 : x - c2pio2);
1117 else {
1118 if (sign)
1119 return __sindf(x + c1pio2);
1120 else
1121 return __sindf(c1pio2 - x);
1124 if (ix <= 0x40e231d5) { /* |x| ~<= 9*pi/4 */
1125 if (ix > 0x40afeddf) /* |x| ~> 7*pi/4 */
1126 return __cosdf(sign ? x + c4pio2 : x - c4pio2);
1127 else {
1128 if (sign)
1129 return __sindf(-x - c3pio2);
1130 else
1131 return __sindf(x - c3pio2);
1135 /* cos(Inf or NaN) is NaN */
1136 if (isinf(x)) return math_error(_DOMAIN, "cosf", x, 0, x - x);
1137 if (ix >= 0x7f800000)
1138 return x - x;
1140 /* general argument reduction needed */
1141 n = __rem_pio2f(x, &y);
1142 switch (n & 3) {
1143 case 0: return __cosdf(y);
1144 case 1: return __sindf(-y);
1145 case 2: return -__cosdf(y);
1146 default: return __sindf(y);
1150 /* Copied from musl: src/math/__expo2f.c */
1151 static float __expo2f(float x, float sign)
1153 static const int k = 235;
1154 static const float kln2 = 0x1.45c778p+7f;
1155 float scale;
1157 *(UINT32*)&scale = (UINT32)(0x7f + k/2) << 23;
1158 return expf(x - kln2) * (sign * scale) * scale;
1161 /*********************************************************************
1162 * coshf (MSVCRT.@)
1164 * Copied from musl: src/math/coshf.c
1166 float CDECL coshf( float x )
1168 UINT32 ui = *(UINT32*)&x;
1169 UINT32 sign = ui & 0x80000000;
1170 float t;
1172 /* |x| */
1173 ui &= 0x7fffffff;
1174 x = *(float*)&ui;
1176 /* |x| < log(2) */
1177 if (ui < 0x3f317217) {
1178 if (ui < 0x3f800000 - (12 << 23)) {
1179 fp_barrierf(x + 0x1p120f);
1180 return 1;
1182 t = __expm1f(x);
1183 return 1 + t * t / (2 * (1 + t));
1186 /* |x| < log(FLT_MAX) */
1187 if (ui < 0x42b17217) {
1188 t = expf(x);
1189 return 0.5f * (t + 1 / t);
1192 /* |x| > log(FLT_MAX) or nan */
1193 if (ui > 0x7f800000)
1194 *(UINT32*)&t = ui | sign | 0x400000;
1195 else
1196 t = __expo2f(x, 1.0f);
1197 return t;
1200 /*********************************************************************
1201 * expf (MSVCRT.@)
1203 float CDECL expf( float x )
1205 static const double C[] = {
1206 0x1.c6af84b912394p-5 / (1 << 5) / (1 << 5) / (1 << 5),
1207 0x1.ebfce50fac4f3p-3 / (1 << 5) / (1 << 5),
1208 0x1.62e42ff0c52d6p-1 / (1 << 5)
1210 static const double invln2n = 0x1.71547652b82fep+0 * (1 << 5);
1212 double kd, z, r, r2, y, s;
1213 UINT32 abstop;
1214 UINT64 ki, t;
1216 abstop = (*(UINT32*)&x >> 20) & 0x7ff;
1217 if (abstop >= 0x42b) {
1218 /* |x| >= 88 or x is nan. */
1219 if (*(UINT32*)&x == 0xff800000)
1220 return 0.0f;
1221 if (abstop >= 0x7f8)
1222 return x + x;
1223 if (x > 0x1.62e42ep6f) /* x > log(0x1p128) ~= 88.72 */
1224 return math_error(_OVERFLOW, "expf", x, 0, x * FLT_MAX);
1225 if (x < -0x1.9fe368p6f) /* x < log(0x1p-150) ~= -103.97 */
1226 return math_error(_UNDERFLOW, "expf", x, 0, fp_barrierf(FLT_MIN) * FLT_MIN);
1229 /* x*N/Ln2 = k + r with r in [-1/2, 1/2] and int k. */
1230 z = invln2n * x;
1232 /* Round and convert z to int, the result is in [-150*N, 128*N] and
1233 ideally ties-to-even rule is used, otherwise the magnitude of r
1234 can be bigger which gives larger approximation error. */
1235 kd = __round(z);
1236 ki = (INT64)kd;
1237 r = z - kd;
1239 /* exp(x) = 2^(k/N) * 2^(r/N) ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */
1240 t = exp2f_T[ki % (1 << 5)];
1241 t += ki << (52 - 5);
1242 s = *(double*)&t;
1243 z = C[0] * r + C[1];
1244 r2 = r * r;
1245 y = C[2] * r + 1;
1246 y = z * r2 + y;
1247 y = y * s;
1248 return y;
1251 /*********************************************************************
1252 * fmodf (MSVCRT.@)
1254 * Copied from musl: src/math/fmodf.c
1256 float CDECL fmodf( float x, float y )
1258 UINT32 xi = *(UINT32*)&x;
1259 UINT32 yi = *(UINT32*)&y;
1260 int ex = xi>>23 & 0xff;
1261 int ey = yi>>23 & 0xff;
1262 UINT32 sx = xi & 0x80000000;
1263 UINT32 i;
1265 if (isinf(x)) return math_error(_DOMAIN, "fmodf", x, y, (x * y) / (x * y));
1266 if (yi << 1 == 0 || isnan(y) || ex == 0xff)
1267 return (x * y) / (x * y);
1268 if (xi << 1 <= yi << 1) {
1269 if (xi << 1 == yi << 1)
1270 return 0 * x;
1271 return x;
1274 /* normalize x and y */
1275 if (!ex) {
1276 for (i = xi << 9; i >> 31 == 0; ex--, i <<= 1);
1277 xi <<= -ex + 1;
1278 } else {
1279 xi &= -1U >> 9;
1280 xi |= 1U << 23;
1282 if (!ey) {
1283 for (i = yi << 9; i >> 31 == 0; ey--, i <<= 1);
1284 yi <<= -ey + 1;
1285 } else {
1286 yi &= -1U >> 9;
1287 yi |= 1U << 23;
1290 /* x mod y */
1291 for (; ex > ey; ex--) {
1292 i = xi - yi;
1293 if (i >> 31 == 0) {
1294 if (i == 0)
1295 return 0 * x;
1296 xi = i;
1298 xi <<= 1;
1300 i = xi - yi;
1301 if (i >> 31 == 0) {
1302 if (i == 0)
1303 return 0 * x;
1304 xi = i;
1306 for (; xi>>23 == 0; xi <<= 1, ex--);
1308 /* scale result up */
1309 if (ex > 0) {
1310 xi -= 1U << 23;
1311 xi |= (UINT32)ex << 23;
1312 } else {
1313 xi >>= -ex + 1;
1315 xi |= sx;
1316 return *(float*)&xi;
1319 /*********************************************************************
1320 * logf (MSVCRT.@)
1322 * Copied from musl: src/math/logf.c src/math/logf_data.c
1324 float CDECL logf( float x )
1326 static const double Ln2 = 0x1.62e42fefa39efp-1;
1327 static const double A[] = {
1328 -0x1.00ea348b88334p-2,
1329 0x1.5575b0be00b6ap-2,
1330 -0x1.ffffef20a4123p-2
1332 static const struct {
1333 double invc, logc;
1334 } T[] = {
1335 { 0x1.661ec79f8f3bep+0, -0x1.57bf7808caadep-2 },
1336 { 0x1.571ed4aaf883dp+0, -0x1.2bef0a7c06ddbp-2 },
1337 { 0x1.49539f0f010bp+0, -0x1.01eae7f513a67p-2 },
1338 { 0x1.3c995b0b80385p+0, -0x1.b31d8a68224e9p-3 },
1339 { 0x1.30d190c8864a5p+0, -0x1.6574f0ac07758p-3 },
1340 { 0x1.25e227b0b8eap+0, -0x1.1aa2bc79c81p-3 },
1341 { 0x1.1bb4a4a1a343fp+0, -0x1.a4e76ce8c0e5ep-4 },
1342 { 0x1.12358f08ae5bap+0, -0x1.1973c5a611cccp-4 },
1343 { 0x1.0953f419900a7p+0, -0x1.252f438e10c1ep-5 },
1344 { 0x1p+0, 0x0p+0 },
1345 { 0x1.e608cfd9a47acp-1, 0x1.aa5aa5df25984p-5 },
1346 { 0x1.ca4b31f026aap-1, 0x1.c5e53aa362eb4p-4 },
1347 { 0x1.b2036576afce6p-1, 0x1.526e57720db08p-3 },
1348 { 0x1.9c2d163a1aa2dp-1, 0x1.bc2860d22477p-3 },
1349 { 0x1.886e6037841edp-1, 0x1.1058bc8a07ee1p-2 },
1350 { 0x1.767dcf5534862p-1, 0x1.4043057b6ee09p-2 }
1353 double z, r, r2, y, y0, invc, logc;
1354 UINT32 ix, iz, tmp;
1355 int k, i;
1357 ix = *(UINT32*)&x;
1358 /* Fix sign of zero with downward rounding when x==1. */
1359 if (ix == 0x3f800000)
1360 return 0;
1361 if (ix - 0x00800000 >= 0x7f800000 - 0x00800000) {
1362 /* x < 0x1p-126 or inf or nan. */
1363 if (ix * 2 == 0)
1364 return math_error(_SING, "logf", x, 0, (ix & 0x80000000 ? 1.0 : -1.0) / x);
1365 if (ix == 0x7f800000) /* log(inf) == inf. */
1366 return x;
1367 if (ix * 2 > 0xff000000)
1368 return x;
1369 if (ix & 0x80000000)
1370 return math_error(_DOMAIN, "logf", x, 0, (x - x) / (x - x));
1371 /* x is subnormal, normalize it. */
1372 x *= 0x1p23f;
1373 ix = *(UINT32*)&x;
1374 ix -= 23 << 23;
1377 /* x = 2^k z; where z is in range [OFF,2*OFF] and exact.
1378 The range is split into N subintervals.
1379 The ith subinterval contains z and c is near its center. */
1380 tmp = ix - 0x3f330000;
1381 i = (tmp >> (23 - 4)) % (1 << 4);
1382 k = (INT32)tmp >> 23; /* arithmetic shift */
1383 iz = ix - (tmp & (0x1ffu << 23));
1384 invc = T[i].invc;
1385 logc = T[i].logc;
1386 z = *(float*)&iz;
1388 /* log(x) = log1p(z/c-1) + log(c) + k*Ln2 */
1389 r = z * invc - 1;
1390 y0 = logc + (double)k * Ln2;
1392 /* Pipelined polynomial evaluation to approximate log1p(r). */
1393 r2 = r * r;
1394 y = A[1] * r + A[2];
1395 y = A[0] * r2 + y;
1396 y = y * r2 + (y0 + r);
1397 return y;
1400 /*********************************************************************
1401 * log10f (MSVCRT.@)
1403 float CDECL log10f( float x )
1405 static const float ivln10hi = 4.3432617188e-01,
1406 ivln10lo = -3.1689971365e-05,
1407 log10_2hi = 3.0102920532e-01,
1408 log10_2lo = 7.9034151668e-07,
1409 Lg1 = 0xaaaaaa.0p-24,
1410 Lg2 = 0xccce13.0p-25,
1411 Lg3 = 0x91e9ee.0p-25,
1412 Lg4 = 0xf89e26.0p-26;
1414 union {float f; UINT32 i;} u = {x};
1415 float hfsq, f, s, z, R, w, t1, t2, dk, hi, lo;
1416 UINT32 ix;
1417 int k;
1419 ix = u.i;
1420 k = 0;
1421 if (ix < 0x00800000 || ix >> 31) { /* x < 2**-126 */
1422 if (ix << 1 == 0)
1423 return math_error(_SING, "log10f", x, 0, -1 / (x * x));
1424 if ((ix & ~(1u << 31)) > 0x7f800000)
1425 return x;
1426 if (ix >> 31)
1427 return math_error(_DOMAIN, "log10f", x, 0, (x - x) / (x - x));
1428 /* subnormal number, scale up x */
1429 k -= 25;
1430 x *= 0x1p25f;
1431 u.f = x;
1432 ix = u.i;
1433 } else if (ix >= 0x7f800000) {
1434 return x;
1435 } else if (ix == 0x3f800000)
1436 return 0;
1438 /* reduce x into [sqrt(2)/2, sqrt(2)] */
1439 ix += 0x3f800000 - 0x3f3504f3;
1440 k += (int)(ix >> 23) - 0x7f;
1441 ix = (ix & 0x007fffff) + 0x3f3504f3;
1442 u.i = ix;
1443 x = u.f;
1445 f = x - 1.0f;
1446 s = f / (2.0f + f);
1447 z = s * s;
1448 w = z * z;
1449 t1= w * (Lg2 + w * Lg4);
1450 t2= z * (Lg1 + w * Lg3);
1451 R = t2 + t1;
1452 hfsq = 0.5f * f * f;
1454 hi = f - hfsq;
1455 u.f = hi;
1456 u.i &= 0xfffff000;
1457 hi = u.f;
1458 lo = f - hi - hfsq + s * (hfsq + R);
1459 dk = k;
1460 return dk * log10_2lo + (lo + hi) * ivln10lo + lo * ivln10hi + hi * ivln10hi + dk * log10_2hi;
1463 /* Subnormal input is normalized so ix has negative biased exponent.
1464 Output is multiplied by POWF_SCALE (where 1 << 5). */
1465 static double powf_log2(UINT32 ix)
1467 static const struct {
1468 double invc, logc;
1469 } T[] = {
1470 { 0x1.661ec79f8f3bep+0, -0x1.efec65b963019p-2 * (1 << 5) },
1471 { 0x1.571ed4aaf883dp+0, -0x1.b0b6832d4fca4p-2 * (1 << 5) },
1472 { 0x1.49539f0f010bp+0, -0x1.7418b0a1fb77bp-2 * (1 << 5) },
1473 { 0x1.3c995b0b80385p+0, -0x1.39de91a6dcf7bp-2 * (1 << 5) },
1474 { 0x1.30d190c8864a5p+0, -0x1.01d9bf3f2b631p-2 * (1 << 5) },
1475 { 0x1.25e227b0b8eap+0, -0x1.97c1d1b3b7afp-3 * (1 << 5) },
1476 { 0x1.1bb4a4a1a343fp+0, -0x1.2f9e393af3c9fp-3 * (1 << 5) },
1477 { 0x1.12358f08ae5bap+0, -0x1.960cbbf788d5cp-4 * (1 << 5) },
1478 { 0x1.0953f419900a7p+0, -0x1.a6f9db6475fcep-5 * (1 << 5) },
1479 { 0x1p+0, 0x0p+0 * (1 << 4) },
1480 { 0x1.e608cfd9a47acp-1, 0x1.338ca9f24f53dp-4 * (1 << 5) },
1481 { 0x1.ca4b31f026aap-1, 0x1.476a9543891bap-3 * (1 << 5) },
1482 { 0x1.b2036576afce6p-1, 0x1.e840b4ac4e4d2p-3 * (1 << 5) },
1483 { 0x1.9c2d163a1aa2dp-1, 0x1.40645f0c6651cp-2 * (1 << 5) },
1484 { 0x1.886e6037841edp-1, 0x1.88e9c2c1b9ff8p-2 * (1 << 5) },
1485 { 0x1.767dcf5534862p-1, 0x1.ce0a44eb17bccp-2 * (1 << 5) }
1487 static const double A[] = {
1488 0x1.27616c9496e0bp-2 * (1 << 5), -0x1.71969a075c67ap-2 * (1 << 5),
1489 0x1.ec70a6ca7baddp-2 * (1 << 5), -0x1.7154748bef6c8p-1 * (1 << 5),
1490 0x1.71547652ab82bp0 * (1 << 5)
1493 double z, r, r2, r4, p, q, y, y0, invc, logc;
1494 UINT32 iz, top, tmp;
1495 int k, i;
1497 /* x = 2^k z; where z is in range [OFF,2*OFF] and exact.
1498 The range is split into N subintervals.
1499 The ith subinterval contains z and c is near its center. */
1500 tmp = ix - 0x3f330000;
1501 i = (tmp >> (23 - 4)) % (1 << 4);
1502 top = tmp & 0xff800000;
1503 iz = ix - top;
1504 k = (INT32)top >> (23 - 5); /* arithmetic shift */
1505 invc = T[i].invc;
1506 logc = T[i].logc;
1507 z = *(float*)&iz;
1509 /* log2(x) = log1p(z/c-1)/ln2 + log2(c) + k */
1510 r = z * invc - 1;
1511 y0 = logc + (double)k;
1513 /* Pipelined polynomial evaluation to approximate log1p(r)/ln2. */
1514 r2 = r * r;
1515 y = A[0] * r + A[1];
1516 p = A[2] * r + A[3];
1517 r4 = r2 * r2;
1518 q = A[4] * r + y0;
1519 q = p * r2 + q;
1520 y = y * r4 + q;
1521 return y;
1524 /* The output of log2 and thus the input of exp2 is either scaled by N
1525 (in case of fast toint intrinsics) or not. The unscaled xd must be
1526 in [-1021,1023], sign_bias sets the sign of the result. */
1527 static float powf_exp2(double xd, UINT32 sign_bias)
1529 static const double C[] = {
1530 0x1.c6af84b912394p-5 / (1 << 5) / (1 << 5) / (1 << 5),
1531 0x1.ebfce50fac4f3p-3 / (1 << 5) / (1 << 5),
1532 0x1.62e42ff0c52d6p-1 / (1 << 5)
1535 UINT64 ki, ski, t;
1536 double kd, z, r, r2, y, s;
1538 /* N*x = k + r with r in [-1/2, 1/2] */
1539 kd = __round(xd); /* k */
1540 ki = (INT64)kd;
1541 r = xd - kd;
1543 /* exp2(x) = 2^(k/N) * 2^r ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */
1544 t = exp2f_T[ki % (1 << 5)];
1545 ski = ki + sign_bias;
1546 t += ski << (52 - 5);
1547 s = *(double*)&t;
1548 z = C[0] * r + C[1];
1549 r2 = r * r;
1550 y = C[2] * r + 1;
1551 y = z * r2 + y;
1552 y = y * s;
1553 return y;
1556 /* Returns 0 if not int, 1 if odd int, 2 if even int. The argument is
1557 the bit representation of a non-zero finite floating-point value. */
1558 static int powf_checkint(UINT32 iy)
1560 int e = iy >> 23 & 0xff;
1561 if (e < 0x7f)
1562 return 0;
1563 if (e > 0x7f + 23)
1564 return 2;
1565 if (iy & ((1 << (0x7f + 23 - e)) - 1))
1566 return 0;
1567 if (iy & (1 << (0x7f + 23 - e)))
1568 return 1;
1569 return 2;
1572 /*********************************************************************
1573 * powf (MSVCRT.@)
1575 * Copied from musl: src/math/powf.c src/math/powf_data.c
1577 float CDECL powf( float x, float y )
1579 UINT32 sign_bias = 0;
1580 UINT32 ix, iy;
1581 double logx, ylogx;
1583 ix = *(UINT32*)&x;
1584 iy = *(UINT32*)&y;
1585 if (ix - 0x00800000 >= 0x7f800000 - 0x00800000 ||
1586 2 * iy - 1 >= 2u * 0x7f800000 - 1) {
1587 /* Either (x < 0x1p-126 or inf or nan) or (y is 0 or inf or nan). */
1588 if (2 * iy - 1 >= 2u * 0x7f800000 - 1) {
1589 if (2 * iy == 0)
1590 return 1.0f;
1591 if (ix == 0x3f800000)
1592 return 1.0f;
1593 if (2 * ix > 2u * 0x7f800000 || 2 * iy > 2u * 0x7f800000)
1594 return x + y;
1595 if (2 * ix == 2 * 0x3f800000)
1596 return 1.0f;
1597 if ((2 * ix < 2 * 0x3f800000) == !(iy & 0x80000000))
1598 return 0.0f; /* |x|<1 && y==inf or |x|>1 && y==-inf. */
1599 return y * y;
1601 if (2 * ix - 1 >= 2u * 0x7f800000 - 1) {
1602 float x2 = x * x;
1603 if (ix & 0x80000000 && powf_checkint(iy) == 1)
1604 x2 = -x2;
1605 if (iy & 0x80000000 && x2 == 0.0)
1606 return math_error(_SING, "powf", x, y, 1 / x2);
1607 /* Without the barrier some versions of clang hoist the 1/x2 and
1608 thus division by zero exception can be signaled spuriously. */
1609 return iy & 0x80000000 ? fp_barrierf(1 / x2) : x2;
1611 /* x and y are non-zero finite. */
1612 if (ix & 0x80000000) {
1613 /* Finite x < 0. */
1614 int yint = powf_checkint(iy);
1615 if (yint == 0)
1616 return math_error(_DOMAIN, "powf", x, y, 0 / (x - x));
1617 if (yint == 1)
1618 sign_bias = 1 << (5 + 11);
1619 ix &= 0x7fffffff;
1621 if (ix < 0x00800000) {
1622 /* Normalize subnormal x so exponent becomes negative. */
1623 x *= 0x1p23f;
1624 ix = *(UINT32*)&x;
1625 ix &= 0x7fffffff;
1626 ix -= 23 << 23;
1629 logx = powf_log2(ix);
1630 ylogx = y * logx; /* cannot overflow, y is single prec. */
1631 if ((*(UINT64*)&ylogx >> 47 & 0xffff) >= 0x40af800000000000llu >> 47) {
1632 /* |y*log(x)| >= 126. */
1633 if (ylogx > 0x1.fffffffd1d571p+6 * (1 << 5))
1634 return math_error(_OVERFLOW, "powf", x, y, (sign_bias ? -1.0 : 1.0) * 0x1p1023);
1635 if (ylogx <= -150.0 * (1 << 5))
1636 return math_error(_UNDERFLOW, "powf", x, y, (sign_bias ? -1.0 : 1.0) / 0x1p1023);
1638 return powf_exp2(ylogx, sign_bias);
1641 /*********************************************************************
1642 * sinf (MSVCRT.@)
1644 * Copied from musl: src/math/sinf.c
1646 float CDECL sinf( float x )
1648 static const double s1pio2 = 1*M_PI_2,
1649 s2pio2 = 2*M_PI_2,
1650 s3pio2 = 3*M_PI_2,
1651 s4pio2 = 4*M_PI_2;
1653 double y;
1654 UINT32 ix;
1655 int n, sign;
1657 ix = *(UINT32*)&x;
1658 sign = ix >> 31;
1659 ix &= 0x7fffffff;
1661 if (ix <= 0x3f490fda) { /* |x| ~<= pi/4 */
1662 if (ix < 0x39800000) { /* |x| < 2**-12 */
1663 /* raise inexact if x!=0 and underflow if subnormal */
1664 fp_barrierf(ix < 0x00800000 ? x / 0x1p120f : x + 0x1p120f);
1665 return x;
1667 return __sindf(x);
1669 if (ix <= 0x407b53d1) { /* |x| ~<= 5*pi/4 */
1670 if (ix <= 0x4016cbe3) { /* |x| ~<= 3pi/4 */
1671 if (sign)
1672 return -__cosdf(x + s1pio2);
1673 else
1674 return __cosdf(x - s1pio2);
1676 return __sindf(sign ? -(x + s2pio2) : -(x - s2pio2));
1678 if (ix <= 0x40e231d5) { /* |x| ~<= 9*pi/4 */
1679 if (ix <= 0x40afeddf) { /* |x| ~<= 7*pi/4 */
1680 if (sign)
1681 return __cosdf(x + s3pio2);
1682 else
1683 return -__cosdf(x - s3pio2);
1685 return __sindf(sign ? x + s4pio2 : x - s4pio2);
1688 /* sin(Inf or NaN) is NaN */
1689 if (isinf(x))
1690 return math_error(_DOMAIN, "sinf", x, 0, x - x);
1691 if (ix >= 0x7f800000)
1692 return x - x;
1694 /* general argument reduction needed */
1695 n = __rem_pio2f(x, &y);
1696 switch (n&3) {
1697 case 0: return __sindf(y);
1698 case 1: return __cosdf(y);
1699 case 2: return __sindf(-y);
1700 default: return -__cosdf(y);
1704 /*********************************************************************
1705 * sinhf (MSVCRT.@)
1707 float CDECL sinhf( float x )
1709 UINT32 ui = *(UINT32*)&x;
1710 float t, h, absx;
1712 h = 0.5;
1713 if (ui >> 31)
1714 h = -h;
1715 /* |x| */
1716 ui &= 0x7fffffff;
1717 absx = *(float*)&ui;
1719 /* |x| < log(FLT_MAX) */
1720 if (ui < 0x42b17217) {
1721 t = __expm1f(absx);
1722 if (ui < 0x3f800000) {
1723 if (ui < 0x3f800000 - (12 << 23))
1724 return x;
1725 return h * (2 * t - t * t / (t + 1));
1727 return h * (t + t / (t + 1));
1730 /* |x| > logf(FLT_MAX) or nan */
1731 if (ui > 0x7f800000)
1732 *(DWORD*)&t = *(DWORD*)&x | 0x400000;
1733 else
1734 t = __expo2f(absx, 2 * h);
1735 return t;
1738 static BOOL sqrtf_validate( float *x )
1740 short c = _fdclass(*x);
1742 if (c == FP_ZERO) return FALSE;
1743 if (c == FP_NAN) return FALSE;
1744 if (signbit(*x))
1746 *x = math_error(_DOMAIN, "sqrtf", *x, 0, ret_nan(TRUE));
1747 return FALSE;
1749 if (c == FP_INFINITE) return FALSE;
1750 return TRUE;
1753 #if defined(__x86_64__) || defined(__i386__)
1754 float CDECL sse2_sqrtf(float);
1755 __ASM_GLOBAL_FUNC( sse2_sqrtf,
1756 "sqrtss %xmm0, %xmm0\n\t"
1757 "ret" )
1758 #endif
1760 /*********************************************************************
1761 * sqrtf (MSVCRT.@)
1763 * Copied from musl: src/math/sqrtf.c
1765 float CDECL sqrtf( float x )
1767 #ifdef __x86_64__
1768 if (!sqrtf_validate(&x))
1769 return x;
1771 return sse2_sqrtf(x);
1772 #else
1773 static const float tiny = 1.0e-30;
1775 float z;
1776 int ix,s,q,m,t,i;
1777 unsigned int r;
1779 ix = *(int*)&x;
1781 if (!sqrtf_validate(&x))
1782 return x;
1784 /* normalize x */
1785 m = ix >> 23;
1786 if (m == 0) { /* subnormal x */
1787 for (i = 0; (ix & 0x00800000) == 0; i++)
1788 ix <<= 1;
1789 m -= i - 1;
1791 m -= 127; /* unbias exponent */
1792 ix = (ix & 0x007fffff) | 0x00800000;
1793 if (m & 1) /* odd m, double x to make it even */
1794 ix += ix;
1795 m >>= 1; /* m = [m/2] */
1797 /* generate sqrt(x) bit by bit */
1798 ix += ix;
1799 q = s = 0; /* q = sqrt(x) */
1800 r = 0x01000000; /* r = moving bit from right to left */
1802 while (r != 0) {
1803 t = s + r;
1804 if (t <= ix) {
1805 s = t + r;
1806 ix -= t;
1807 q += r;
1809 ix += ix;
1810 r >>= 1;
1813 /* use floating add to find out rounding direction */
1814 if (ix != 0) {
1815 z = 1.0f - tiny; /* raise inexact flag */
1816 if (z >= 1.0f) {
1817 z = 1.0f + tiny;
1818 if (z > 1.0f)
1819 q += 2;
1820 else
1821 q += q & 1;
1824 ix = (q >> 1) + 0x3f000000;
1825 r = ix + ((unsigned int)m << 23);
1826 z = *(float*)&r;
1827 return z;
1828 #endif
1831 /* Copied from musl: src/math/__tandf.c */
1832 static float __tandf(double x, int odd)
1834 static const double T[] = {
1835 0x15554d3418c99f.0p-54,
1836 0x1112fd38999f72.0p-55,
1837 0x1b54c91d865afe.0p-57,
1838 0x191df3908c33ce.0p-58,
1839 0x185dadfcecf44e.0p-61,
1840 0x1362b9bf971bcd.0p-59,
1843 double z, r, w, s, t, u;
1845 z = x * x;
1846 r = T[4] + z * T[5];
1847 t = T[2] + z * T[3];
1848 w = z * z;
1849 s = z * x;
1850 u = T[0] + z * T[1];
1851 r = (x + s * u) + (s * w) * (t + w * r);
1852 return odd ? -1.0 / r : r;
1855 /*********************************************************************
1856 * tanf (MSVCRT.@)
1858 * Copied from musl: src/math/tanf.c
1860 float CDECL tanf( float x )
1862 static const double t1pio2 = 1*M_PI_2,
1863 t2pio2 = 2*M_PI_2,
1864 t3pio2 = 3*M_PI_2,
1865 t4pio2 = 4*M_PI_2;
1867 double y;
1868 UINT32 ix;
1869 unsigned n, sign;
1871 ix = *(UINT32*)&x;
1872 sign = ix >> 31;
1873 ix &= 0x7fffffff;
1875 if (ix <= 0x3f490fda) { /* |x| ~<= pi/4 */
1876 if (ix < 0x39800000) { /* |x| < 2**-12 */
1877 /* raise inexact if x!=0 and underflow if subnormal */
1878 fp_barrierf(ix < 0x00800000 ? x / 0x1p120f : x + 0x1p120f);
1879 return x;
1881 return __tandf(x, 0);
1883 if (ix <= 0x407b53d1) { /* |x| ~<= 5*pi/4 */
1884 if (ix <= 0x4016cbe3) /* |x| ~<= 3pi/4 */
1885 return __tandf((sign ? x + t1pio2 : x - t1pio2), 1);
1886 else
1887 return __tandf((sign ? x + t2pio2 : x - t2pio2), 0);
1889 if (ix <= 0x40e231d5) { /* |x| ~<= 9*pi/4 */
1890 if (ix <= 0x40afeddf) /* |x| ~<= 7*pi/4 */
1891 return __tandf((sign ? x + t3pio2 : x - t3pio2), 1);
1892 else
1893 return __tandf((sign ? x + t4pio2 : x - t4pio2), 0);
1896 /* tan(Inf or NaN) is NaN */
1897 if (isinf(x))
1898 return math_error(_DOMAIN, "tanf", x, 0, x - x);
1899 if (ix >= 0x7f800000)
1900 return x - x;
1902 /* argument reduction */
1903 n = __rem_pio2f(x, &y);
1904 return __tandf(y, n & 1);
1907 /*********************************************************************
1908 * tanhf (MSVCRT.@)
1910 float CDECL tanhf( float x )
1912 UINT32 ui = *(UINT32*)&x;
1913 UINT32 sign = ui & 0x80000000;
1914 float t;
1916 /* x = |x| */
1917 ui &= 0x7fffffff;
1918 x = *(float*)&ui;
1920 if (ui > 0x3f0c9f54) {
1921 /* |x| > log(3)/2 ~= 0.5493 or nan */
1922 if (ui > 0x41200000) {
1923 if (ui > 0x7f800000) {
1924 *(UINT32*)&x = ui | sign | 0x400000;
1925 #if _MSVCR_VER < 140
1926 return math_error(_DOMAIN, "tanhf", x, 0, x);
1927 #else
1928 return x;
1929 #endif
1931 /* |x| > 10 */
1932 fp_barrierf(x + 0x1p120f);
1933 t = 1 + 0 / x;
1934 } else {
1935 t = __expm1f(2 * x);
1936 t = 1 - 2 / (t + 2);
1938 } else if (ui > 0x3e82c578) {
1939 /* |x| > log(5/3)/2 ~= 0.2554 */
1940 t = __expm1f(2 * x);
1941 t = t / (t + 2);
1942 } else if (ui >= 0x00800000) {
1943 /* |x| >= 0x1p-126 */
1944 t = __expm1f(-2 * x);
1945 t = -t / (t + 2);
1946 } else {
1947 /* |x| is subnormal */
1948 fp_barrierf(x * x);
1949 t = x;
1951 return sign ? -t : t;
1954 /*********************************************************************
1955 * ceilf (MSVCRT.@)
1957 * Copied from musl: src/math/ceilf.c
1959 float CDECL ceilf( float x )
1961 union {float f; UINT32 i;} u = {x};
1962 int e = (int)(u.i >> 23 & 0xff) - 0x7f;
1963 UINT32 m;
1965 if (e >= 23)
1966 return x;
1967 if (e >= 0) {
1968 m = 0x007fffff >> e;
1969 if ((u.i & m) == 0)
1970 return x;
1971 if (u.i >> 31 == 0)
1972 u.i += m;
1973 u.i &= ~m;
1974 } else {
1975 if (u.i >> 31)
1976 return -0.0;
1977 else if (u.i << 1)
1978 return 1.0;
1980 return u.f;
1983 /*********************************************************************
1984 * floorf (MSVCRT.@)
1986 * Copied from musl: src/math/floorf.c
1988 float CDECL floorf( float x )
1990 union {float f; UINT32 i;} u = {x};
1991 int e = (int)(u.i >> 23 & 0xff) - 0x7f;
1992 UINT32 m;
1994 if (e >= 23)
1995 return x;
1996 if (e >= 0) {
1997 m = 0x007fffff >> e;
1998 if ((u.i & m) == 0)
1999 return x;
2000 if (u.i >> 31)
2001 u.i += m;
2002 u.i &= ~m;
2003 } else {
2004 if (u.i >> 31 == 0)
2005 return 0;
2006 else if (u.i << 1)
2007 return -1;
2009 return u.f;
2012 /*********************************************************************
2013 * frexpf (MSVCRT.@)
2015 * Copied from musl: src/math/frexpf.c
2017 float CDECL frexpf( float x, int *e )
2019 UINT32 ux = *(UINT32*)&x;
2020 int ee = ux >> 23 & 0xff;
2022 if (!ee) {
2023 if (x) {
2024 x = frexpf(x * 0x1p64, e);
2025 *e -= 64;
2026 } else *e = 0;
2027 return x;
2028 } else if (ee == 0xff) {
2029 return x;
2032 *e = ee - 0x7e;
2033 ux &= 0x807ffffful;
2034 ux |= 0x3f000000ul;
2035 return *(float*)&ux;
2038 /*********************************************************************
2039 * modff (MSVCRT.@)
2041 * Copied from musl: src/math/modff.c
2043 float CDECL modff( float x, float *iptr )
2045 union {float f; UINT32 i;} u = {x};
2046 UINT32 mask;
2047 int e = (u.i >> 23 & 0xff) - 0x7f;
2049 /* no fractional part */
2050 if (e >= 23) {
2051 *iptr = x;
2052 if (e == 0x80 && u.i << 9 != 0) { /* nan */
2053 return x;
2055 u.i &= 0x80000000;
2056 return u.f;
2058 /* no integral part */
2059 if (e < 0) {
2060 u.i &= 0x80000000;
2061 *iptr = u.f;
2062 return x;
2065 mask = 0x007fffff >> e;
2066 if ((u.i & mask) == 0) {
2067 *iptr = x;
2068 u.i &= 0x80000000;
2069 return u.f;
2071 u.i &= ~mask;
2072 *iptr = u.f;
2073 return x - u.f;
2076 #endif
2078 #if !defined(__i386__) && !defined(__x86_64__) && (_MSVCR_VER == 0 || _MSVCR_VER >= 110)
2080 /*********************************************************************
2081 * fabsf (MSVCRT.@)
2083 * Copied from musl: src/math/fabsf.c
2085 float CDECL fabsf( float x )
2087 union { float f; UINT32 i; } u = { x };
2088 u.i &= 0x7fffffff;
2089 return u.f;
2092 #endif
2094 /*********************************************************************
2095 * acos (MSVCRT.@)
2097 * Copied from musl: src/math/acos.c
2099 static double acos_R(double z)
2101 static const double pS0 = 1.66666666666666657415e-01,
2102 pS1 = -3.25565818622400915405e-01,
2103 pS2 = 2.01212532134862925881e-01,
2104 pS3 = -4.00555345006794114027e-02,
2105 pS4 = 7.91534994289814532176e-04,
2106 pS5 = 3.47933107596021167570e-05,
2107 qS1 = -2.40339491173441421878e+00,
2108 qS2 = 2.02094576023350569471e+00,
2109 qS3 = -6.88283971605453293030e-01,
2110 qS4 = 7.70381505559019352791e-02;
2112 double p, q;
2113 p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5)))));
2114 q = 1.0 + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4)));
2115 return p/q;
2118 double CDECL acos( double x )
2120 static const double pio2_hi = 1.57079632679489655800e+00,
2121 pio2_lo = 6.12323399573676603587e-17;
2123 double z, w, s, c, df;
2124 unsigned int hx, ix;
2125 ULONGLONG llx;
2127 hx = *(ULONGLONG*)&x >> 32;
2128 ix = hx & 0x7fffffff;
2129 /* |x| >= 1 or nan */
2130 if (ix >= 0x3ff00000) {
2131 unsigned int lx;
2133 lx = *(ULONGLONG*)&x;
2134 if (((ix - 0x3ff00000) | lx) == 0) {
2135 /* acos(1)=0, acos(-1)=pi */
2136 if (hx >> 31)
2137 return 2 * pio2_hi + 7.5231638452626401e-37;
2138 return 0;
2140 if (isnan(x)) return x;
2141 return math_error(_DOMAIN, "acos", x, 0, 0 / (x - x));
2143 /* |x| < 0.5 */
2144 if (ix < 0x3fe00000) {
2145 if (ix <= 0x3c600000) /* |x| < 2**-57 */
2146 return pio2_hi + 7.5231638452626401e-37;
2147 return pio2_hi - (x - (pio2_lo - x * acos_R(x * x)));
2149 /* x < -0.5 */
2150 if (hx >> 31) {
2151 z = (1.0 + x) * 0.5;
2152 s = sqrt(z);
2153 w = acos_R(z) * s - pio2_lo;
2154 return 2 * (pio2_hi - (s + w));
2156 /* x > 0.5 */
2157 z = (1.0 - x) * 0.5;
2158 s = sqrt(z);
2159 df = s;
2160 llx = (*(ULONGLONG*)&df >> 32) << 32;
2161 df = *(double*)&llx;
2162 c = (z - df * df) / (s + df);
2163 w = acos_R(z) * s + c;
2164 return 2 * (df + w);
2167 /*********************************************************************
2168 * asin (MSVCRT.@)
2170 * Copied from musl: src/math/asin.c
2172 static double asin_R(double z)
2174 /* coefficients for R(x^2) */
2175 static const double pS0 = 1.66666666666666657415e-01,
2176 pS1 = -3.25565818622400915405e-01,
2177 pS2 = 2.01212532134862925881e-01,
2178 pS3 = -4.00555345006794114027e-02,
2179 pS4 = 7.91534994289814532176e-04,
2180 pS5 = 3.47933107596021167570e-05,
2181 qS1 = -2.40339491173441421878e+00,
2182 qS2 = 2.02094576023350569471e+00,
2183 qS3 = -6.88283971605453293030e-01,
2184 qS4 = 7.70381505559019352791e-02;
2186 double p, q;
2187 p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5)))));
2188 q = 1.0 + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4)));
2189 return p / q;
2192 #ifdef __i386__
2193 double CDECL x87_asin(double);
2194 __ASM_GLOBAL_FUNC( x87_asin,
2195 "fldl 4(%esp)\n\t"
2196 SET_X87_CW(~0x37f)
2197 "fld %st\n\t"
2198 "fld1\n\t"
2199 "fsubp\n\t"
2200 "fld1\n\t"
2201 "fadd %st(2)\n\t"
2202 "fmulp\n\t"
2203 "fsqrt\n\t"
2204 "fpatan\n\t"
2205 RESET_X87_CW
2206 "ret" )
2207 #endif
2209 double CDECL asin( double x )
2211 static const double pio2_hi = 1.57079632679489655800e+00,
2212 pio2_lo = 6.12323399573676603587e-17;
2214 double z, r, s;
2215 unsigned int hx, ix;
2216 ULONGLONG llx;
2217 #ifdef __i386__
2218 unsigned int x87_cw, sse2_cw;
2219 #endif
2221 hx = *(ULONGLONG*)&x >> 32;
2222 ix = hx & 0x7fffffff;
2223 /* |x| >= 1 or nan */
2224 if (ix >= 0x3ff00000) {
2225 unsigned int lx;
2226 lx = *(ULONGLONG*)&x;
2227 if (((ix - 0x3ff00000) | lx) == 0)
2228 /* asin(1) = +-pi/2 with inexact */
2229 return x * pio2_hi + 7.5231638452626401e-37;
2230 if (isnan(x))
2232 #ifdef __i386__
2233 return math_error(_DOMAIN, "asin", x, 0, x);
2234 #else
2235 return x;
2236 #endif
2238 return math_error(_DOMAIN, "asin", x, 0, 0 / (x - x));
2241 #ifdef __i386__
2242 __control87_2(0, 0, &x87_cw, &sse2_cw);
2243 if (!sse2_enabled || (x87_cw & _MCW_EM) != _MCW_EM
2244 || (sse2_cw & (_MCW_EM | _MCW_RC)) != _MCW_EM)
2245 return x87_asin(x);
2246 #endif
2248 /* |x| < 0.5 */
2249 if (ix < 0x3fe00000) {
2250 /* if 0x1p-1022 <= |x| < 0x1p-26, avoid raising underflow */
2251 if (ix < 0x3e500000 && ix >= 0x00100000)
2252 return x;
2253 return x + x * asin_R(x * x);
2255 /* 1 > |x| >= 0.5 */
2256 z = (1 - fabs(x)) * 0.5;
2257 s = sqrt(z);
2258 r = asin_R(z);
2259 if (ix >= 0x3fef3333) { /* if |x| > 0.975 */
2260 x = pio2_hi - (2 * (s + s * r) - pio2_lo);
2261 } else {
2262 double f, c;
2263 /* f+c = sqrt(z) */
2264 f = s;
2265 llx = (*(ULONGLONG*)&f >> 32) << 32;
2266 f = *(double*)&llx;
2267 c = (z - f * f) / (s + f);
2268 x = 0.5 * pio2_hi - (2 * s * r - (pio2_lo - 2 * c) - (0.5 * pio2_hi - 2 * f));
2270 if (hx >> 31)
2271 return -x;
2272 return x;
2275 /*********************************************************************
2276 * atan (MSVCRT.@)
2278 * Copied from musl: src/math/atan.c
2280 double CDECL atan( double x )
2282 static const double atanhi[] = {
2283 4.63647609000806093515e-01,
2284 7.85398163397448278999e-01,
2285 9.82793723247329054082e-01,
2286 1.57079632679489655800e+00,
2288 static const double atanlo[] = {
2289 2.26987774529616870924e-17,
2290 3.06161699786838301793e-17,
2291 1.39033110312309984516e-17,
2292 6.12323399573676603587e-17,
2294 static const double aT[] = {
2295 3.33333333333329318027e-01,
2296 -1.99999999998764832476e-01,
2297 1.42857142725034663711e-01,
2298 -1.11111104054623557880e-01,
2299 9.09088713343650656196e-02,
2300 -7.69187620504482999495e-02,
2301 6.66107313738753120669e-02,
2302 -5.83357013379057348645e-02,
2303 4.97687799461593236017e-02,
2304 -3.65315727442169155270e-02,
2305 1.62858201153657823623e-02,
2308 double w, s1, s2, z;
2309 unsigned int ix, sign;
2310 int id;
2312 #if _MSVCR_VER == 0
2313 if (isnan(x)) return math_error(_DOMAIN, "atan", x, 0, x);
2314 #endif
2316 ix = *(ULONGLONG*)&x >> 32;
2317 sign = ix >> 31;
2318 ix &= 0x7fffffff;
2319 if (ix >= 0x44100000) { /* if |x| >= 2^66 */
2320 if (isnan(x))
2321 return x;
2322 z = atanhi[3] + 7.5231638452626401e-37;
2323 return sign ? -z : z;
2325 if (ix < 0x3fdc0000) { /* |x| < 0.4375 */
2326 if (ix < 0x3e400000) { /* |x| < 2^-27 */
2327 if (ix < 0x00100000)
2328 /* raise underflow for subnormal x */
2329 fp_barrierf((float)x);
2330 return x;
2332 id = -1;
2333 } else {
2334 x = fabs(x);
2335 if (ix < 0x3ff30000) { /* |x| < 1.1875 */
2336 if (ix < 0x3fe60000) { /* 7/16 <= |x| < 11/16 */
2337 id = 0;
2338 x = (2.0 * x - 1.0) / (2.0 + x);
2339 } else { /* 11/16 <= |x| < 19/16 */
2340 id = 1;
2341 x = (x - 1.0) / (x + 1.0);
2343 } else {
2344 if (ix < 0x40038000) { /* |x| < 2.4375 */
2345 id = 2;
2346 x = (x - 1.5) / (1.0 + 1.5 * x);
2347 } else { /* 2.4375 <= |x| < 2^66 */
2348 id = 3;
2349 x = -1.0 / x;
2353 /* end of argument reduction */
2354 z = x * x;
2355 w = z * z;
2356 /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
2357 s1 = z * (aT[0] + w * (aT[2] + w * (aT[4] + w * (aT[6] + w * (aT[8] + w * aT[10])))));
2358 s2 = w * (aT[1] + w * (aT[3] + w * (aT[5] + w * (aT[7] + w * aT[9]))));
2359 if (id < 0)
2360 return x - x * (s1 + s2);
2361 z = atanhi[id] - (x * (s1 + s2) - atanlo[id] - x);
2362 return sign ? -z : z;
2365 /*********************************************************************
2366 * atan2 (MSVCRT.@)
2368 * Copied from musl: src/math/atan2.c
2370 double CDECL atan2( double y, double x )
2372 static const double pi = 3.1415926535897931160E+00,
2373 pi_lo = 1.2246467991473531772E-16;
2375 double z;
2376 unsigned int m, lx, ly, ix, iy;
2378 if (isnan(x) || isnan(y))
2379 return x+y;
2380 ix = *(ULONGLONG*)&x >> 32;
2381 lx = *(ULONGLONG*)&x;
2382 iy = *(ULONGLONG*)&y >> 32;
2383 ly = *(ULONGLONG*)&y;
2384 if (((ix - 0x3ff00000) | lx) == 0) /* x = 1.0 */
2385 return atan(y);
2386 m = ((iy >> 31) & 1) | ((ix >> 30) & 2); /* 2*sign(x)+sign(y) */
2387 ix = ix & 0x7fffffff;
2388 iy = iy & 0x7fffffff;
2390 /* when y = 0 */
2391 if ((iy | ly) == 0) {
2392 switch(m) {
2393 case 0:
2394 case 1: return y; /* atan(+-0,+anything)=+-0 */
2395 case 2: return pi; /* atan(+0,-anything) = pi */
2396 case 3: return -pi; /* atan(-0,-anything) =-pi */
2399 /* when x = 0 */
2400 if ((ix | lx) == 0)
2401 return m & 1 ? -pi / 2 : pi / 2;
2402 /* when x is INF */
2403 if (ix == 0x7ff00000) {
2404 if (iy == 0x7ff00000) {
2405 switch(m) {
2406 case 0: return pi / 4; /* atan(+INF,+INF) */
2407 case 1: return -pi / 4; /* atan(-INF,+INF) */
2408 case 2: return 3 * pi / 4; /* atan(+INF,-INF) */
2409 case 3: return -3 * pi / 4; /* atan(-INF,-INF) */
2411 } else {
2412 switch(m) {
2413 case 0: return 0.0; /* atan(+...,+INF) */
2414 case 1: return -0.0; /* atan(-...,+INF) */
2415 case 2: return pi; /* atan(+...,-INF) */
2416 case 3: return -pi; /* atan(-...,-INF) */
2420 /* |y/x| > 0x1p64 */
2421 if (ix + (64 << 20) < iy || iy == 0x7ff00000)
2422 return m & 1 ? -pi / 2 : pi / 2;
2424 /* z = atan(|y/x|) without spurious underflow */
2425 if ((m & 2) && iy + (64 << 20) < ix) /* |y/x| < 0x1p-64, x<0 */
2426 z = 0;
2427 else
2428 z = atan(fabs(y / x));
2429 switch (m) {
2430 case 0: return z; /* atan(+,+) */
2431 case 1: return -z; /* atan(-,+) */
2432 case 2: return pi - (z - pi_lo); /* atan(+,-) */
2433 default: /* case 3 */
2434 return (z - pi_lo) - pi; /* atan(-,-) */
2438 /* Copied from musl: src/math/rint.c */
2439 static double __rint(double x)
2441 static const double toint = 1 / DBL_EPSILON;
2443 ULONGLONG llx = *(ULONGLONG*)&x;
2444 int e = llx >> 52 & 0x7ff;
2445 int s = llx >> 63;
2446 unsigned cw;
2447 double y;
2449 if (e >= 0x3ff+52)
2450 return x;
2451 cw = _controlfp(0, 0);
2452 if ((cw & _MCW_PC) != _PC_53)
2453 _controlfp(_PC_53, _MCW_PC);
2454 if (s)
2455 y = fp_barrier(x - toint) + toint;
2456 else
2457 y = fp_barrier(x + toint) - toint;
2458 if ((cw & _MCW_PC) != _PC_53)
2459 _controlfp(cw, _MCW_PC);
2460 if (y == 0)
2461 return s ? -0.0 : 0;
2462 return y;
2465 /* Copied from musl: src/math/__rem_pio2.c */
2466 static int __rem_pio2(double x, double *y)
2468 static const double pio4 = 0x1.921fb54442d18p-1,
2469 invpio2 = 6.36619772367581382433e-01,
2470 pio2_1 = 1.57079632673412561417e+00,
2471 pio2_1t = 6.07710050650619224932e-11,
2472 pio2_2 = 6.07710050630396597660e-11,
2473 pio2_2t = 2.02226624879595063154e-21,
2474 pio2_3 = 2.02226624871116645580e-21,
2475 pio2_3t = 8.47842766036889956997e-32;
2477 union {double f; UINT64 i;} u = {x};
2478 double z, w, t, r, fn, tx[3], ty[2];
2479 UINT32 ix;
2480 int sign, n, ex, ey, i;
2482 sign = u.i >> 63;
2483 ix = u.i >> 32 & 0x7fffffff;
2484 if (ix <= 0x400f6a7a) { /* |x| ~<= 5pi/4 */
2485 if ((ix & 0xfffff) == 0x921fb) /* |x| ~= pi/2 or 2pi/2 */
2486 goto medium; /* cancellation -- use medium case */
2487 if (ix <= 0x4002d97c) { /* |x| ~<= 3pi/4 */
2488 if (!sign) {
2489 z = x - pio2_1; /* one round good to 85 bits */
2490 y[0] = z - pio2_1t;
2491 y[1] = (z - y[0]) - pio2_1t;
2492 return 1;
2493 } else {
2494 z = x + pio2_1;
2495 y[0] = z + pio2_1t;
2496 y[1] = (z - y[0]) + pio2_1t;
2497 return -1;
2499 } else {
2500 if (!sign) {
2501 z = x - 2 * pio2_1;
2502 y[0] = z - 2 * pio2_1t;
2503 y[1] = (z - y[0]) - 2 * pio2_1t;
2504 return 2;
2505 } else {
2506 z = x + 2 * pio2_1;
2507 y[0] = z + 2 * pio2_1t;
2508 y[1] = (z - y[0]) + 2 * pio2_1t;
2509 return -2;
2513 if (ix <= 0x401c463b) { /* |x| ~<= 9pi/4 */
2514 if (ix <= 0x4015fdbc) { /* |x| ~<= 7pi/4 */
2515 if (ix == 0x4012d97c) /* |x| ~= 3pi/2 */
2516 goto medium;
2517 if (!sign) {
2518 z = x - 3 * pio2_1;
2519 y[0] = z - 3 * pio2_1t;
2520 y[1] = (z - y[0]) - 3 * pio2_1t;
2521 return 3;
2522 } else {
2523 z = x + 3 * pio2_1;
2524 y[0] = z + 3 * pio2_1t;
2525 y[1] = (z - y[0]) + 3 * pio2_1t;
2526 return -3;
2528 } else {
2529 if (ix == 0x401921fb) /* |x| ~= 4pi/2 */
2530 goto medium;
2531 if (!sign) {
2532 z = x - 4 * pio2_1;
2533 y[0] = z - 4 * pio2_1t;
2534 y[1] = (z - y[0]) - 4 * pio2_1t;
2535 return 4;
2536 } else {
2537 z = x + 4 * pio2_1;
2538 y[0] = z + 4 * pio2_1t;
2539 y[1] = (z - y[0]) + 4 * pio2_1t;
2540 return -4;
2544 if (ix < 0x413921fb) { /* |x| ~< 2^20*(pi/2), medium size */
2545 medium:
2546 fn = __rint(x * invpio2);
2547 n = (INT32)fn;
2548 r = x - fn * pio2_1;
2549 w = fn * pio2_1t; /* 1st round, good to 85 bits */
2550 /* Matters with directed rounding. */
2551 if (r - w < -pio4) {
2552 n--;
2553 fn--;
2554 r = x - fn * pio2_1;
2555 w = fn * pio2_1t;
2556 } else if (r - w > pio4) {
2557 n++;
2558 fn++;
2559 r = x - fn * pio2_1;
2560 w = fn * pio2_1t;
2562 y[0] = r - w;
2563 u.f = y[0];
2564 ey = u.i >> 52 & 0x7ff;
2565 ex = ix >> 20;
2566 if (ex - ey > 16) { /* 2nd round, good to 118 bits */
2567 t = r;
2568 w = fn * pio2_2;
2569 r = t - w;
2570 w = fn * pio2_2t - ((t - r) - w);
2571 y[0] = r - w;
2572 u.f = y[0];
2573 ey = u.i >> 52 & 0x7ff;
2574 if (ex - ey > 49) { /* 3rd round, good to 151 bits, covers all cases */
2575 t = r;
2576 w = fn * pio2_3;
2577 r = t - w;
2578 w = fn * pio2_3t - ((t - r) - w);
2579 y[0] = r - w;
2582 y[1] = (r - y[0]) - w;
2583 return n;
2586 * all other (large) arguments
2588 if (ix >= 0x7ff00000) { /* x is inf or NaN */
2589 y[0] = y[1] = x - x;
2590 return 0;
2592 /* set z = scalbn(|x|,-ilogb(x)+23) */
2593 u.f = x;
2594 u.i &= (UINT64)-1 >> 12;
2595 u.i |= (UINT64)(0x3ff + 23) << 52;
2596 z = u.f;
2597 for (i = 0; i < 2; i++) {
2598 tx[i] = (double)(INT32)z;
2599 z = (z - tx[i]) * 0x1p24;
2601 tx[i] = z;
2602 /* skip zero terms, first term is non-zero */
2603 while (tx[i] == 0.0)
2604 i--;
2605 n = __rem_pio2_large(tx, ty, (int)(ix >> 20) - (0x3ff + 23), i + 1, 1);
2606 if (sign) {
2607 y[0] = -ty[0];
2608 y[1] = -ty[1];
2609 return -n;
2611 y[0] = ty[0];
2612 y[1] = ty[1];
2613 return n;
2616 /* Copied from musl: src/math/__sin.c */
2617 static double __sin(double x, double y, int iy)
2619 static const double S1 = -1.66666666666666324348e-01,
2620 S2 = 8.33333333332248946124e-03,
2621 S3 = -1.98412698298579493134e-04,
2622 S4 = 2.75573137070700676789e-06,
2623 S5 = -2.50507602534068634195e-08,
2624 S6 = 1.58969099521155010221e-10;
2626 double z, r, v, w;
2628 z = x * x;
2629 w = z * z;
2630 r = S2 + z * (S3 + z * S4) + z * w * (S5 + z * S6);
2631 v = z * x;
2632 if (iy == 0)
2633 return x + v * (S1 + z * r);
2634 else
2635 return x - ((z * (0.5 * y - v * r) - y) - v * S1);
2638 /* Copied from musl: src/math/__cos.c */
2639 static double __cos(double x, double y)
2641 static const double C1 = 4.16666666666666019037e-02,
2642 C2 = -1.38888888888741095749e-03,
2643 C3 = 2.48015872894767294178e-05,
2644 C4 = -2.75573143513906633035e-07,
2645 C5 = 2.08757232129817482790e-09,
2646 C6 = -1.13596475577881948265e-11;
2647 double hz, z, r, w;
2649 z = x * x;
2650 w = z * z;
2651 r = z * (C1 + z * (C2 + z * C3)) + w * w * (C4 + z * (C5 + z * C6));
2652 hz = 0.5 * z;
2653 w = 1.0 - hz;
2654 return w + (((1.0 - w) - hz) + (z * r - x * y));
2657 /*********************************************************************
2658 * cos (MSVCRT.@)
2660 * Copied from musl: src/math/cos.c
2662 double CDECL cos( double x )
2664 double y[2];
2665 UINT32 ix;
2666 unsigned n;
2668 ix = *(ULONGLONG*)&x >> 32;
2669 ix &= 0x7fffffff;
2671 /* |x| ~< pi/4 */
2672 if (ix <= 0x3fe921fb) {
2673 if (ix < 0x3e46a09e) { /* |x| < 2**-27 * sqrt(2) */
2674 /* raise inexact if x!=0 */
2675 fp_barrier(x + 0x1p120f);
2676 return 1.0;
2678 return __cos(x, 0);
2681 /* cos(Inf or NaN) is NaN */
2682 if (isinf(x)) return math_error(_DOMAIN, "cos", x, 0, x - x);
2683 if (ix >= 0x7ff00000)
2684 return x - x;
2686 /* argument reduction */
2687 n = __rem_pio2(x, y);
2688 switch (n & 3) {
2689 case 0: return __cos(y[0], y[1]);
2690 case 1: return -__sin(y[0], y[1], 1);
2691 case 2: return -__cos(y[0], y[1]);
2692 default: return __sin(y[0], y[1], 1);
2696 /* Copied from musl: src/math/expm1.c */
2697 static double __expm1(double x)
2699 static const double o_threshold = 7.09782712893383973096e+02,
2700 ln2_hi = 6.93147180369123816490e-01,
2701 ln2_lo = 1.90821492927058770002e-10,
2702 invln2 = 1.44269504088896338700e+00,
2703 Q1 = -3.33333333333331316428e-02,
2704 Q2 = 1.58730158725481460165e-03,
2705 Q3 = -7.93650757867487942473e-05,
2706 Q4 = 4.00821782732936239552e-06,
2707 Q5 = -2.01099218183624371326e-07;
2709 double y, hi, lo, c, t, e, hxs, hfx, r1, twopk;
2710 union {double f; UINT64 i;} u = {x};
2711 UINT32 hx = u.i >> 32 & 0x7fffffff;
2712 int k, sign = u.i >> 63;
2714 /* filter out huge and non-finite argument */
2715 if (hx >= 0x4043687A) { /* if |x|>=56*ln2 */
2716 if (isnan(x))
2717 return x;
2718 if (isinf(x))
2719 return sign ? -1 : x;
2720 if (sign)
2721 return math_error(_UNDERFLOW, "exp", x, 0, -1);
2722 if (x > o_threshold)
2723 return math_error(_OVERFLOW, "exp", x, 0, x * 0x1p1023);
2726 /* argument reduction */
2727 if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
2728 if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
2729 if (!sign) {
2730 hi = x - ln2_hi;
2731 lo = ln2_lo;
2732 k = 1;
2733 } else {
2734 hi = x + ln2_hi;
2735 lo = -ln2_lo;
2736 k = -1;
2738 } else {
2739 k = invln2 * x + (sign ? -0.5 : 0.5);
2740 t = k;
2741 hi = x - t * ln2_hi; /* t*ln2_hi is exact here */
2742 lo = t * ln2_lo;
2744 x = hi - lo;
2745 c = (hi - x) - lo;
2746 } else if (hx < 0x3c900000) { /* |x| < 2**-54, return x */
2747 fp_barrier(x + 0x1p120f);
2748 if (hx < 0x00100000)
2749 fp_barrier((float)x);
2750 return x;
2751 } else
2752 k = 0;
2754 /* x is now in primary range */
2755 hfx = 0.5 * x;
2756 hxs = x * hfx;
2757 r1 = 1.0 + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5))));
2758 t = 3.0 - r1 * hfx;
2759 e = hxs * ((r1 - t) / (6.0 - x * t));
2760 if (k == 0) /* c is 0 */
2761 return x - (x * e - hxs);
2762 e = x * (e - c) - c;
2763 e -= hxs;
2764 /* exp(x) ~ 2^k (x_reduced - e + 1) */
2765 if (k == -1)
2766 return 0.5 * (x - e) - 0.5;
2767 if (k == 1) {
2768 if (x < -0.25)
2769 return -2.0 * (e - (x + 0.5));
2770 return 1.0 + 2.0 * (x - e);
2772 u.i = (UINT64)(0x3ff + k) << 52; /* 2^k */
2773 twopk = u.f;
2774 if (k < 0 || k > 56) { /* suffice to return exp(x)-1 */
2775 y = x - e + 1.0;
2776 if (k == 1024)
2777 y = y * 2.0 * 0x1p1023;
2778 else
2779 y = y * twopk;
2780 return y - 1.0;
2782 u.i = (UINT64)(0x3ff - k) << 52; /* 2^-k */
2783 if (k < 20)
2784 y = (x - e + (1 - u.f)) * twopk;
2785 else
2786 y = (x - (e + u.f) + 1) * twopk;
2787 return y;
2790 static double __expo2(double x, double sign)
2792 static const int k = 2043;
2793 static const double kln2 = 0x1.62066151add8bp+10;
2794 double scale;
2796 *(UINT64*)&scale = (UINT64)(0x3ff + k / 2) << 52;
2797 return exp(x - kln2) * (sign * scale) * scale;
2800 /*********************************************************************
2801 * cosh (MSVCRT.@)
2803 * Copied from musl: src/math/cosh.c
2805 double CDECL cosh( double x )
2807 UINT64 ux = *(UINT64*)&x;
2808 UINT64 sign = ux & 0x8000000000000000ULL;
2809 UINT32 w;
2810 double t;
2812 /* |x| */
2813 ux &= (uint64_t)-1 / 2;
2814 x = *(double*)&ux;
2815 w = ux >> 32;
2817 /* |x| < log(2) */
2818 if (w < 0x3fe62e42) {
2819 if (w < 0x3ff00000 - (26 << 20)) {
2820 fp_barrier(x + 0x1p120f);
2821 return 1;
2823 t = __expm1(x);
2824 return 1 + t * t / (2 * (1 + t));
2827 /* |x| < log(DBL_MAX) */
2828 if (w < 0x40862e42) {
2829 t = exp(x);
2830 /* note: if x>log(0x1p26) then the 1/t is not needed */
2831 return 0.5 * (t + 1 / t);
2834 /* |x| > log(DBL_MAX) or nan */
2835 /* note: the result is stored to handle overflow */
2836 if (ux > 0x7ff0000000000000ULL)
2837 *(UINT64*)&t = ux | sign | 0x0008000000000000ULL;
2838 else
2839 t = __expo2(x, 1.0);
2840 return t;
2843 /* Copied from musl: src/math/exp_data.c */
2844 static const UINT64 exp_T[] = {
2845 0x0ULL, 0x3ff0000000000000ULL,
2846 0x3c9b3b4f1a88bf6eULL, 0x3feff63da9fb3335ULL,
2847 0xbc7160139cd8dc5dULL, 0x3fefec9a3e778061ULL,
2848 0xbc905e7a108766d1ULL, 0x3fefe315e86e7f85ULL,
2849 0x3c8cd2523567f613ULL, 0x3fefd9b0d3158574ULL,
2850 0xbc8bce8023f98efaULL, 0x3fefd06b29ddf6deULL,
2851 0x3c60f74e61e6c861ULL, 0x3fefc74518759bc8ULL,
2852 0x3c90a3e45b33d399ULL, 0x3fefbe3ecac6f383ULL,
2853 0x3c979aa65d837b6dULL, 0x3fefb5586cf9890fULL,
2854 0x3c8eb51a92fdeffcULL, 0x3fefac922b7247f7ULL,
2855 0x3c3ebe3d702f9cd1ULL, 0x3fefa3ec32d3d1a2ULL,
2856 0xbc6a033489906e0bULL, 0x3fef9b66affed31bULL,
2857 0xbc9556522a2fbd0eULL, 0x3fef9301d0125b51ULL,
2858 0xbc5080ef8c4eea55ULL, 0x3fef8abdc06c31ccULL,
2859 0xbc91c923b9d5f416ULL, 0x3fef829aaea92de0ULL,
2860 0x3c80d3e3e95c55afULL, 0x3fef7a98c8a58e51ULL,
2861 0xbc801b15eaa59348ULL, 0x3fef72b83c7d517bULL,
2862 0xbc8f1ff055de323dULL, 0x3fef6af9388c8deaULL,
2863 0x3c8b898c3f1353bfULL, 0x3fef635beb6fcb75ULL,
2864 0xbc96d99c7611eb26ULL, 0x3fef5be084045cd4ULL,
2865 0x3c9aecf73e3a2f60ULL, 0x3fef54873168b9aaULL,
2866 0xbc8fe782cb86389dULL, 0x3fef4d5022fcd91dULL,
2867 0x3c8a6f4144a6c38dULL, 0x3fef463b88628cd6ULL,
2868 0x3c807a05b0e4047dULL, 0x3fef3f49917ddc96ULL,
2869 0x3c968efde3a8a894ULL, 0x3fef387a6e756238ULL,
2870 0x3c875e18f274487dULL, 0x3fef31ce4fb2a63fULL,
2871 0x3c80472b981fe7f2ULL, 0x3fef2b4565e27cddULL,
2872 0xbc96b87b3f71085eULL, 0x3fef24dfe1f56381ULL,
2873 0x3c82f7e16d09ab31ULL, 0x3fef1e9df51fdee1ULL,
2874 0xbc3d219b1a6fbffaULL, 0x3fef187fd0dad990ULL,
2875 0x3c8b3782720c0ab4ULL, 0x3fef1285a6e4030bULL,
2876 0x3c6e149289cecb8fULL, 0x3fef0cafa93e2f56ULL,
2877 0x3c834d754db0abb6ULL, 0x3fef06fe0a31b715ULL,
2878 0x3c864201e2ac744cULL, 0x3fef0170fc4cd831ULL,
2879 0x3c8fdd395dd3f84aULL, 0x3feefc08b26416ffULL,
2880 0xbc86a3803b8e5b04ULL, 0x3feef6c55f929ff1ULL,
2881 0xbc924aedcc4b5068ULL, 0x3feef1a7373aa9cbULL,
2882 0xbc9907f81b512d8eULL, 0x3feeecae6d05d866ULL,
2883 0xbc71d1e83e9436d2ULL, 0x3feee7db34e59ff7ULL,
2884 0xbc991919b3ce1b15ULL, 0x3feee32dc313a8e5ULL,
2885 0x3c859f48a72a4c6dULL, 0x3feedea64c123422ULL,
2886 0xbc9312607a28698aULL, 0x3feeda4504ac801cULL,
2887 0xbc58a78f4817895bULL, 0x3feed60a21f72e2aULL,
2888 0xbc7c2c9b67499a1bULL, 0x3feed1f5d950a897ULL,
2889 0x3c4363ed60c2ac11ULL, 0x3feece086061892dULL,
2890 0x3c9666093b0664efULL, 0x3feeca41ed1d0057ULL,
2891 0x3c6ecce1daa10379ULL, 0x3feec6a2b5c13cd0ULL,
2892 0x3c93ff8e3f0f1230ULL, 0x3feec32af0d7d3deULL,
2893 0x3c7690cebb7aafb0ULL, 0x3feebfdad5362a27ULL,
2894 0x3c931dbdeb54e077ULL, 0x3feebcb299fddd0dULL,
2895 0xbc8f94340071a38eULL, 0x3feeb9b2769d2ca7ULL,
2896 0xbc87deccdc93a349ULL, 0x3feeb6daa2cf6642ULL,
2897 0xbc78dec6bd0f385fULL, 0x3feeb42b569d4f82ULL,
2898 0xbc861246ec7b5cf6ULL, 0x3feeb1a4ca5d920fULL,
2899 0x3c93350518fdd78eULL, 0x3feeaf4736b527daULL,
2900 0x3c7b98b72f8a9b05ULL, 0x3feead12d497c7fdULL,
2901 0x3c9063e1e21c5409ULL, 0x3feeab07dd485429ULL,
2902 0x3c34c7855019c6eaULL, 0x3feea9268a5946b7ULL,
2903 0x3c9432e62b64c035ULL, 0x3feea76f15ad2148ULL,
2904 0xbc8ce44a6199769fULL, 0x3feea5e1b976dc09ULL,
2905 0xbc8c33c53bef4da8ULL, 0x3feea47eb03a5585ULL,
2906 0xbc845378892be9aeULL, 0x3feea34634ccc320ULL,
2907 0xbc93cedd78565858ULL, 0x3feea23882552225ULL,
2908 0x3c5710aa807e1964ULL, 0x3feea155d44ca973ULL,
2909 0xbc93b3efbf5e2228ULL, 0x3feea09e667f3bcdULL,
2910 0xbc6a12ad8734b982ULL, 0x3feea012750bdabfULL,
2911 0xbc6367efb86da9eeULL, 0x3fee9fb23c651a2fULL,
2912 0xbc80dc3d54e08851ULL, 0x3fee9f7df9519484ULL,
2913 0xbc781f647e5a3ecfULL, 0x3fee9f75e8ec5f74ULL,
2914 0xbc86ee4ac08b7db0ULL, 0x3fee9f9a48a58174ULL,
2915 0xbc8619321e55e68aULL, 0x3fee9feb564267c9ULL,
2916 0x3c909ccb5e09d4d3ULL, 0x3feea0694fde5d3fULL,
2917 0xbc7b32dcb94da51dULL, 0x3feea11473eb0187ULL,
2918 0x3c94ecfd5467c06bULL, 0x3feea1ed0130c132ULL,
2919 0x3c65ebe1abd66c55ULL, 0x3feea2f336cf4e62ULL,
2920 0xbc88a1c52fb3cf42ULL, 0x3feea427543e1a12ULL,
2921 0xbc9369b6f13b3734ULL, 0x3feea589994cce13ULL,
2922 0xbc805e843a19ff1eULL, 0x3feea71a4623c7adULL,
2923 0xbc94d450d872576eULL, 0x3feea8d99b4492edULL,
2924 0x3c90ad675b0e8a00ULL, 0x3feeaac7d98a6699ULL,
2925 0x3c8db72fc1f0eab4ULL, 0x3feeace5422aa0dbULL,
2926 0xbc65b6609cc5e7ffULL, 0x3feeaf3216b5448cULL,
2927 0x3c7bf68359f35f44ULL, 0x3feeb1ae99157736ULL,
2928 0xbc93091fa71e3d83ULL, 0x3feeb45b0b91ffc6ULL,
2929 0xbc5da9b88b6c1e29ULL, 0x3feeb737b0cdc5e5ULL,
2930 0xbc6c23f97c90b959ULL, 0x3feeba44cbc8520fULL,
2931 0xbc92434322f4f9aaULL, 0x3feebd829fde4e50ULL,
2932 0xbc85ca6cd7668e4bULL, 0x3feec0f170ca07baULL,
2933 0x3c71affc2b91ce27ULL, 0x3feec49182a3f090ULL,
2934 0x3c6dd235e10a73bbULL, 0x3feec86319e32323ULL,
2935 0xbc87c50422622263ULL, 0x3feecc667b5de565ULL,
2936 0x3c8b1c86e3e231d5ULL, 0x3feed09bec4a2d33ULL,
2937 0xbc91bbd1d3bcbb15ULL, 0x3feed503b23e255dULL,
2938 0x3c90cc319cee31d2ULL, 0x3feed99e1330b358ULL,
2939 0x3c8469846e735ab3ULL, 0x3feede6b5579fdbfULL,
2940 0xbc82dfcd978e9db4ULL, 0x3feee36bbfd3f37aULL,
2941 0x3c8c1a7792cb3387ULL, 0x3feee89f995ad3adULL,
2942 0xbc907b8f4ad1d9faULL, 0x3feeee07298db666ULL,
2943 0xbc55c3d956dcaebaULL, 0x3feef3a2b84f15fbULL,
2944 0xbc90a40e3da6f640ULL, 0x3feef9728de5593aULL,
2945 0xbc68d6f438ad9334ULL, 0x3feeff76f2fb5e47ULL,
2946 0xbc91eee26b588a35ULL, 0x3fef05b030a1064aULL,
2947 0x3c74ffd70a5fddcdULL, 0x3fef0c1e904bc1d2ULL,
2948 0xbc91bdfbfa9298acULL, 0x3fef12c25bd71e09ULL,
2949 0x3c736eae30af0cb3ULL, 0x3fef199bdd85529cULL,
2950 0x3c8ee3325c9ffd94ULL, 0x3fef20ab5fffd07aULL,
2951 0x3c84e08fd10959acULL, 0x3fef27f12e57d14bULL,
2952 0x3c63cdaf384e1a67ULL, 0x3fef2f6d9406e7b5ULL,
2953 0x3c676b2c6c921968ULL, 0x3fef3720dcef9069ULL,
2954 0xbc808a1883ccb5d2ULL, 0x3fef3f0b555dc3faULL,
2955 0xbc8fad5d3ffffa6fULL, 0x3fef472d4a07897cULL,
2956 0xbc900dae3875a949ULL, 0x3fef4f87080d89f2ULL,
2957 0x3c74a385a63d07a7ULL, 0x3fef5818dcfba487ULL,
2958 0xbc82919e2040220fULL, 0x3fef60e316c98398ULL,
2959 0x3c8e5a50d5c192acULL, 0x3fef69e603db3285ULL,
2960 0x3c843a59ac016b4bULL, 0x3fef7321f301b460ULL,
2961 0xbc82d52107b43e1fULL, 0x3fef7c97337b9b5fULL,
2962 0xbc892ab93b470dc9ULL, 0x3fef864614f5a129ULL,
2963 0x3c74b604603a88d3ULL, 0x3fef902ee78b3ff6ULL,
2964 0x3c83c5ec519d7271ULL, 0x3fef9a51fbc74c83ULL,
2965 0xbc8ff7128fd391f0ULL, 0x3fefa4afa2a490daULL,
2966 0xbc8dae98e223747dULL, 0x3fefaf482d8e67f1ULL,
2967 0x3c8ec3bc41aa2008ULL, 0x3fefba1bee615a27ULL,
2968 0x3c842b94c3a9eb32ULL, 0x3fefc52b376bba97ULL,
2969 0x3c8a64a931d185eeULL, 0x3fefd0765b6e4540ULL,
2970 0xbc8e37bae43be3edULL, 0x3fefdbfdad9cbe14ULL,
2971 0x3c77893b4d91cd9dULL, 0x3fefe7c1819e90d8ULL,
2972 0x3c5305c14160cc89ULL, 0x3feff3c22b8f71f1ULL
2975 /*********************************************************************
2976 * exp (MSVCRT.@)
2978 * Copied from musl: src/math/exp.c
2980 double CDECL exp( double x )
2982 static const double C[] = {
2983 0x1.ffffffffffdbdp-2,
2984 0x1.555555555543cp-3,
2985 0x1.55555cf172b91p-5,
2986 0x1.1111167a4d017p-7
2988 static const double invln2N = 0x1.71547652b82fep0 * (1 << 7),
2989 negln2hiN = -0x1.62e42fefa0000p-8,
2990 negln2loN = -0x1.cf79abc9e3b3ap-47;
2992 UINT32 abstop;
2993 UINT64 ki, idx, top, sbits;
2994 double kd, z, r, r2, scale, tail, tmp;
2996 abstop = (*(UINT64*)&x >> 52) & 0x7ff;
2997 if (abstop - 0x3c9 >= 0x408 - 0x3c9) {
2998 if (abstop - 0x3c9 >= 0x80000000)
2999 /* Avoid spurious underflow for tiny x. */
3000 /* Note: 0 is common input. */
3001 return 1.0 + x;
3002 if (abstop >= 0x409) {
3003 if (*(UINT64*)&x == 0xfff0000000000000ULL)
3004 return 0.0;
3005 #if _MSVCR_VER == 0
3006 if (*(UINT64*)&x > 0x7ff0000000000000ULL)
3007 return math_error(_DOMAIN, "exp", x, 0, 1.0 + x);
3008 #endif
3009 if (abstop >= 0x7ff)
3010 return 1.0 + x;
3011 if (*(UINT64*)&x >> 63)
3012 return math_error(_UNDERFLOW, "exp", x, 0, fp_barrier(DBL_MIN) * DBL_MIN);
3013 else
3014 return math_error(_OVERFLOW, "exp", x, 0, fp_barrier(DBL_MAX) * DBL_MAX);
3016 /* Large x is special cased below. */
3017 abstop = 0;
3020 /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */
3021 /* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */
3022 z = invln2N * x;
3023 kd = __round(z);
3024 ki = (INT64)kd;
3026 r = x + kd * negln2hiN + kd * negln2loN;
3027 /* 2^(k/N) ~= scale * (1 + tail). */
3028 idx = 2 * (ki % (1 << 7));
3029 top = ki << (52 - 7);
3030 tail = *(double*)&exp_T[idx];
3031 /* This is only a valid scale when -1023*N < k < 1024*N. */
3032 sbits = exp_T[idx + 1] + top;
3033 /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). */
3034 /* Evaluation is optimized assuming superscalar pipelined execution. */
3035 r2 = r * r;
3036 /* Without fma the worst case error is 0.25/N ulp larger. */
3037 /* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp. */
3038 tmp = tail + r + r2 * (C[0] + r * C[1]) + r2 * r2 * (C[2] + r * C[3]);
3039 if (abstop == 0) {
3040 /* Handle cases that may overflow or underflow when computing the result that
3041 is scale*(1+TMP) without intermediate rounding. The bit representation of
3042 scale is in SBITS, however it has a computed exponent that may have
3043 overflown into the sign bit so that needs to be adjusted before using it as
3044 a double. (int32_t)KI is the k used in the argument reduction and exponent
3045 adjustment of scale, positive k here means the result may overflow and
3046 negative k means the result may underflow. */
3047 double scale, y;
3049 if ((ki & 0x80000000) == 0) {
3050 /* k > 0, the exponent of scale might have overflowed by <= 460. */
3051 sbits -= 1009ull << 52;
3052 scale = *(double*)&sbits;
3053 y = 0x1p1009 * (scale + scale * tmp);
3054 if (isinf(y))
3055 return math_error(_OVERFLOW, "exp", x, 0, y);
3056 return y;
3058 /* k < 0, need special care in the subnormal range. */
3059 sbits += 1022ull << 52;
3060 scale = *(double*)&sbits;
3061 y = scale + scale * tmp;
3062 if (y < 1.0) {
3063 /* Round y to the right precision before scaling it into the subnormal
3064 range to avoid double rounding that can cause 0.5+E/2 ulp error where
3065 E is the worst-case ulp error outside the subnormal range. So this
3066 is only useful if the goal is better than 1 ulp worst-case error. */
3067 double hi, lo;
3068 lo = scale - y + scale * tmp;
3069 hi = 1.0 + y;
3070 lo = 1.0 - hi + y + lo;
3071 y = hi + lo - 1.0;
3072 /* Avoid -0.0 with downward rounding. */
3073 if (y == 0.0)
3074 y = 0.0;
3075 /* The underflow exception needs to be signaled explicitly. */
3076 fp_barrier(fp_barrier(0x1p-1022) * 0x1p-1022);
3077 y = 0x1p-1022 * y;
3078 return math_error(_UNDERFLOW, "exp", x, 0, y);
3080 y = 0x1p-1022 * y;
3081 return y;
3083 scale = *(double*)&sbits;
3084 /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
3085 is no spurious underflow here even without fma. */
3086 return scale + scale * tmp;
3089 /*********************************************************************
3090 * fmod (MSVCRT.@)
3092 * Copied from musl: src/math/fmod.c
3094 double CDECL fmod( double x, double y )
3096 UINT64 xi = *(UINT64*)&x;
3097 UINT64 yi = *(UINT64*)&y;
3098 int ex = xi >> 52 & 0x7ff;
3099 int ey = yi >> 52 & 0x7ff;
3100 int sx = xi >> 63;
3101 UINT64 i;
3103 if (isinf(x)) return math_error(_DOMAIN, "fmod", x, y, (x * y) / (x * y));
3104 if (yi << 1 == 0 || isnan(y) || ex == 0x7ff)
3105 return (x * y) / (x * y);
3106 if (xi << 1 <= yi << 1) {
3107 if (xi << 1 == yi << 1)
3108 return 0 * x;
3109 return x;
3112 /* normalize x and y */
3113 if (!ex) {
3114 for (i = xi << 12; i >> 63 == 0; ex--, i <<= 1);
3115 xi <<= -ex + 1;
3116 } else {
3117 xi &= -1ULL >> 12;
3118 xi |= 1ULL << 52;
3120 if (!ey) {
3121 for (i = yi << 12; i >> 63 == 0; ey--, i <<= 1);
3122 yi <<= -ey + 1;
3123 } else {
3124 yi &= -1ULL >> 12;
3125 yi |= 1ULL << 52;
3128 /* x mod y */
3129 for (; ex > ey; ex--) {
3130 i = xi - yi;
3131 if (i >> 63 == 0) {
3132 if (i == 0)
3133 return 0 * x;
3134 xi = i;
3136 xi <<= 1;
3138 i = xi - yi;
3139 if (i >> 63 == 0) {
3140 if (i == 0)
3141 return 0 * x;
3142 xi = i;
3144 for (; xi >> 52 == 0; xi <<= 1, ex--);
3146 /* scale result */
3147 if (ex > 0) {
3148 xi -= 1ULL << 52;
3149 xi |= (UINT64)ex << 52;
3150 } else {
3151 xi >>= -ex + 1;
3153 xi |= (UINT64)sx << 63;
3154 return *(double*)&xi;
3157 /*********************************************************************
3158 * log (MSVCRT.@)
3160 * Copied from musl: src/math/log.c src/math/log_data.c
3162 double CDECL log( double x )
3164 static const double Ln2hi = 0x1.62e42fefa3800p-1,
3165 Ln2lo = 0x1.ef35793c76730p-45;
3166 static const double A[] = {
3167 -0x1.0000000000001p-1,
3168 0x1.555555551305bp-2,
3169 -0x1.fffffffeb459p-3,
3170 0x1.999b324f10111p-3,
3171 -0x1.55575e506c89fp-3
3173 static const double B[] = {
3174 -0x1p-1,
3175 0x1.5555555555577p-2,
3176 -0x1.ffffffffffdcbp-3,
3177 0x1.999999995dd0cp-3,
3178 -0x1.55555556745a7p-3,
3179 0x1.24924a344de3p-3,
3180 -0x1.fffffa4423d65p-4,
3181 0x1.c7184282ad6cap-4,
3182 -0x1.999eb43b068ffp-4,
3183 0x1.78182f7afd085p-4,
3184 -0x1.5521375d145cdp-4
3186 static const struct {
3187 double invc, logc;
3188 } T[] = {
3189 {0x1.734f0c3e0de9fp+0, -0x1.7cc7f79e69000p-2},
3190 {0x1.713786a2ce91fp+0, -0x1.76feec20d0000p-2},
3191 {0x1.6f26008fab5a0p+0, -0x1.713e31351e000p-2},
3192 {0x1.6d1a61f138c7dp+0, -0x1.6b85b38287800p-2},
3193 {0x1.6b1490bc5b4d1p+0, -0x1.65d5590807800p-2},
3194 {0x1.69147332f0cbap+0, -0x1.602d076180000p-2},
3195 {0x1.6719f18224223p+0, -0x1.5a8ca86909000p-2},
3196 {0x1.6524f99a51ed9p+0, -0x1.54f4356035000p-2},
3197 {0x1.63356aa8f24c4p+0, -0x1.4f637c36b4000p-2},
3198 {0x1.614b36b9ddc14p+0, -0x1.49da7fda85000p-2},
3199 {0x1.5f66452c65c4cp+0, -0x1.445923989a800p-2},
3200 {0x1.5d867b5912c4fp+0, -0x1.3edf439b0b800p-2},
3201 {0x1.5babccb5b90dep+0, -0x1.396ce448f7000p-2},
3202 {0x1.59d61f2d91a78p+0, -0x1.3401e17bda000p-2},
3203 {0x1.5805612465687p+0, -0x1.2e9e2ef468000p-2},
3204 {0x1.56397cee76bd3p+0, -0x1.2941b3830e000p-2},
3205 {0x1.54725e2a77f93p+0, -0x1.23ec58cda8800p-2},
3206 {0x1.52aff42064583p+0, -0x1.1e9e129279000p-2},
3207 {0x1.50f22dbb2bddfp+0, -0x1.1956d2b48f800p-2},
3208 {0x1.4f38f4734ded7p+0, -0x1.141679ab9f800p-2},
3209 {0x1.4d843cfde2840p+0, -0x1.0edd094ef9800p-2},
3210 {0x1.4bd3ec078a3c8p+0, -0x1.09aa518db1000p-2},
3211 {0x1.4a27fc3e0258ap+0, -0x1.047e65263b800p-2},
3212 {0x1.4880524d48434p+0, -0x1.feb224586f000p-3},
3213 {0x1.46dce1b192d0bp+0, -0x1.f474a7517b000p-3},
3214 {0x1.453d9d3391854p+0, -0x1.ea4443d103000p-3},
3215 {0x1.43a2744b4845ap+0, -0x1.e020d44e9b000p-3},
3216 {0x1.420b54115f8fbp+0, -0x1.d60a22977f000p-3},
3217 {0x1.40782da3ef4b1p+0, -0x1.cc00104959000p-3},
3218 {0x1.3ee8f5d57fe8fp+0, -0x1.c202956891000p-3},
3219 {0x1.3d5d9a00b4ce9p+0, -0x1.b81178d811000p-3},
3220 {0x1.3bd60c010c12bp+0, -0x1.ae2c9ccd3d000p-3},
3221 {0x1.3a5242b75dab8p+0, -0x1.a45402e129000p-3},
3222 {0x1.38d22cd9fd002p+0, -0x1.9a877681df000p-3},
3223 {0x1.3755bc5847a1cp+0, -0x1.90c6d69483000p-3},
3224 {0x1.35dce49ad36e2p+0, -0x1.87120a645c000p-3},
3225 {0x1.34679984dd440p+0, -0x1.7d68fb4143000p-3},
3226 {0x1.32f5cceffcb24p+0, -0x1.73cb83c627000p-3},
3227 {0x1.3187775a10d49p+0, -0x1.6a39a9b376000p-3},
3228 {0x1.301c8373e3990p+0, -0x1.60b3154b7a000p-3},
3229 {0x1.2eb4ebb95f841p+0, -0x1.5737d76243000p-3},
3230 {0x1.2d50a0219a9d1p+0, -0x1.4dc7b8fc23000p-3},
3231 {0x1.2bef9a8b7fd2ap+0, -0x1.4462c51d20000p-3},
3232 {0x1.2a91c7a0c1babp+0, -0x1.3b08abc830000p-3},
3233 {0x1.293726014b530p+0, -0x1.31b996b490000p-3},
3234 {0x1.27dfa5757a1f5p+0, -0x1.2875490a44000p-3},
3235 {0x1.268b39b1d3bbfp+0, -0x1.1f3b9f879a000p-3},
3236 {0x1.2539d838ff5bdp+0, -0x1.160c8252ca000p-3},
3237 {0x1.23eb7aac9083bp+0, -0x1.0ce7f57f72000p-3},
3238 {0x1.22a012ba940b6p+0, -0x1.03cdc49fea000p-3},
3239 {0x1.2157996cc4132p+0, -0x1.f57bdbc4b8000p-4},
3240 {0x1.201201dd2fc9bp+0, -0x1.e370896404000p-4},
3241 {0x1.1ecf4494d480bp+0, -0x1.d17983ef94000p-4},
3242 {0x1.1d8f5528f6569p+0, -0x1.bf9674ed8a000p-4},
3243 {0x1.1c52311577e7cp+0, -0x1.adc79202f6000p-4},
3244 {0x1.1b17c74cb26e9p+0, -0x1.9c0c3e7288000p-4},
3245 {0x1.19e010c2c1ab6p+0, -0x1.8a646b372c000p-4},
3246 {0x1.18ab07bb670bdp+0, -0x1.78d01b3ac0000p-4},
3247 {0x1.1778a25efbcb6p+0, -0x1.674f145380000p-4},
3248 {0x1.1648d354c31dap+0, -0x1.55e0e6d878000p-4},
3249 {0x1.151b990275fddp+0, -0x1.4485cdea1e000p-4},
3250 {0x1.13f0ea432d24cp+0, -0x1.333d94d6aa000p-4},
3251 {0x1.12c8b7210f9dap+0, -0x1.22079f8c56000p-4},
3252 {0x1.11a3028ecb531p+0, -0x1.10e4698622000p-4},
3253 {0x1.107fbda8434afp+0, -0x1.ffa6c6ad20000p-5},
3254 {0x1.0f5ee0f4e6bb3p+0, -0x1.dda8d4a774000p-5},
3255 {0x1.0e4065d2a9fcep+0, -0x1.bbcece4850000p-5},
3256 {0x1.0d244632ca521p+0, -0x1.9a1894012c000p-5},
3257 {0x1.0c0a77ce2981ap+0, -0x1.788583302c000p-5},
3258 {0x1.0af2f83c636d1p+0, -0x1.5715e67d68000p-5},
3259 {0x1.09ddb98a01339p+0, -0x1.35c8a49658000p-5},
3260 {0x1.08cabaf52e7dfp+0, -0x1.149e364154000p-5},
3261 {0x1.07b9f2f4e28fbp+0, -0x1.e72c082eb8000p-6},
3262 {0x1.06ab58c358f19p+0, -0x1.a55f152528000p-6},
3263 {0x1.059eea5ecf92cp+0, -0x1.63d62cf818000p-6},
3264 {0x1.04949cdd12c90p+0, -0x1.228fb8caa0000p-6},
3265 {0x1.038c6c6f0ada9p+0, -0x1.c317b20f90000p-7},
3266 {0x1.02865137932a9p+0, -0x1.419355daa0000p-7},
3267 {0x1.0182427ea7348p+0, -0x1.81203c2ec0000p-8},
3268 {0x1.008040614b195p+0, -0x1.0040979240000p-9},
3269 {0x1.fe01ff726fa1ap-1, 0x1.feff384900000p-9},
3270 {0x1.fa11cc261ea74p-1, 0x1.7dc41353d0000p-7},
3271 {0x1.f6310b081992ep-1, 0x1.3cea3c4c28000p-6},
3272 {0x1.f25f63ceeadcdp-1, 0x1.b9fc114890000p-6},
3273 {0x1.ee9c8039113e7p-1, 0x1.1b0d8ce110000p-5},
3274 {0x1.eae8078cbb1abp-1, 0x1.58a5bd001c000p-5},
3275 {0x1.e741aa29d0c9bp-1, 0x1.95c8340d88000p-5},
3276 {0x1.e3a91830a99b5p-1, 0x1.d276aef578000p-5},
3277 {0x1.e01e009609a56p-1, 0x1.07598e598c000p-4},
3278 {0x1.dca01e577bb98p-1, 0x1.253f5e30d2000p-4},
3279 {0x1.d92f20b7c9103p-1, 0x1.42edd8b380000p-4},
3280 {0x1.d5cac66fb5ccep-1, 0x1.606598757c000p-4},
3281 {0x1.d272caa5ede9dp-1, 0x1.7da76356a0000p-4},
3282 {0x1.cf26e3e6b2ccdp-1, 0x1.9ab434e1c6000p-4},
3283 {0x1.cbe6da2a77902p-1, 0x1.b78c7bb0d6000p-4},
3284 {0x1.c8b266d37086dp-1, 0x1.d431332e72000p-4},
3285 {0x1.c5894bd5d5804p-1, 0x1.f0a3171de6000p-4},
3286 {0x1.c26b533bb9f8cp-1, 0x1.067152b914000p-3},
3287 {0x1.bf583eeece73fp-1, 0x1.147858292b000p-3},
3288 {0x1.bc4fd75db96c1p-1, 0x1.2266ecdca3000p-3},
3289 {0x1.b951e0c864a28p-1, 0x1.303d7a6c55000p-3},
3290 {0x1.b65e2c5ef3e2cp-1, 0x1.3dfc33c331000p-3},
3291 {0x1.b374867c9888bp-1, 0x1.4ba366b7a8000p-3},
3292 {0x1.b094b211d304ap-1, 0x1.5933928d1f000p-3},
3293 {0x1.adbe885f2ef7ep-1, 0x1.66acd2418f000p-3},
3294 {0x1.aaf1d31603da2p-1, 0x1.740f8ec669000p-3},
3295 {0x1.a82e63fd358a7p-1, 0x1.815c0f51af000p-3},
3296 {0x1.a5740ef09738bp-1, 0x1.8e92954f68000p-3},
3297 {0x1.a2c2a90ab4b27p-1, 0x1.9bb3602f84000p-3},
3298 {0x1.a01a01393f2d1p-1, 0x1.a8bed1c2c0000p-3},
3299 {0x1.9d79f24db3c1bp-1, 0x1.b5b515c01d000p-3},
3300 {0x1.9ae2505c7b190p-1, 0x1.c2967ccbcc000p-3},
3301 {0x1.9852ef297ce2fp-1, 0x1.cf635d5486000p-3},
3302 {0x1.95cbaeea44b75p-1, 0x1.dc1bd3446c000p-3},
3303 {0x1.934c69de74838p-1, 0x1.e8c01b8cfe000p-3},
3304 {0x1.90d4f2f6752e6p-1, 0x1.f5509c0179000p-3},
3305 {0x1.8e6528effd79dp-1, 0x1.00e6c121fb800p-2},
3306 {0x1.8bfce9fcc007cp-1, 0x1.071b80e93d000p-2},
3307 {0x1.899c0dabec30ep-1, 0x1.0d46b9e867000p-2},
3308 {0x1.87427aa2317fbp-1, 0x1.13687334bd000p-2},
3309 {0x1.84f00acb39a08p-1, 0x1.1980d67234800p-2},
3310 {0x1.82a49e8653e55p-1, 0x1.1f8ffe0cc8000p-2},
3311 {0x1.8060195f40260p-1, 0x1.2595fd7636800p-2},
3312 {0x1.7e22563e0a329p-1, 0x1.2b9300914a800p-2},
3313 {0x1.7beb377dcb5adp-1, 0x1.3187210436000p-2},
3314 {0x1.79baa679725c2p-1, 0x1.377266dec1800p-2},
3315 {0x1.77907f2170657p-1, 0x1.3d54ffbaf3000p-2},
3316 {0x1.756cadbd6130cp-1, 0x1.432eee32fe000p-2}
3318 static const struct {
3319 double chi, clo;
3320 } T2[] = {
3321 {0x1.61000014fb66bp-1, 0x1.e026c91425b3cp-56},
3322 {0x1.63000034db495p-1, 0x1.dbfea48005d41p-55},
3323 {0x1.650000d94d478p-1, 0x1.e7fa786d6a5b7p-55},
3324 {0x1.67000074e6fadp-1, 0x1.1fcea6b54254cp-57},
3325 {0x1.68ffffedf0faep-1, -0x1.c7e274c590efdp-56},
3326 {0x1.6b0000763c5bcp-1, -0x1.ac16848dcda01p-55},
3327 {0x1.6d0001e5cc1f6p-1, 0x1.33f1c9d499311p-55},
3328 {0x1.6efffeb05f63ep-1, -0x1.e80041ae22d53p-56},
3329 {0x1.710000e86978p-1, 0x1.bff6671097952p-56},
3330 {0x1.72ffffc67e912p-1, 0x1.c00e226bd8724p-55},
3331 {0x1.74fffdf81116ap-1, -0x1.e02916ef101d2p-57},
3332 {0x1.770000f679c9p-1, -0x1.7fc71cd549c74p-57},
3333 {0x1.78ffffa7ec835p-1, 0x1.1bec19ef50483p-55},
3334 {0x1.7affffe20c2e6p-1, -0x1.07e1729cc6465p-56},
3335 {0x1.7cfffed3fc9p-1, -0x1.08072087b8b1cp-55},
3336 {0x1.7efffe9261a76p-1, 0x1.dc0286d9df9aep-55},
3337 {0x1.81000049ca3e8p-1, 0x1.97fd251e54c33p-55},
3338 {0x1.8300017932c8fp-1, -0x1.afee9b630f381p-55},
3339 {0x1.850000633739cp-1, 0x1.9bfbf6b6535bcp-55},
3340 {0x1.87000204289c6p-1, -0x1.bbf65f3117b75p-55},
3341 {0x1.88fffebf57904p-1, -0x1.9006ea23dcb57p-55},
3342 {0x1.8b00022bc04dfp-1, -0x1.d00df38e04b0ap-56},
3343 {0x1.8cfffe50c1b8ap-1, -0x1.8007146ff9f05p-55},
3344 {0x1.8effffc918e43p-1, 0x1.3817bd07a7038p-55},
3345 {0x1.910001efa5fc7p-1, 0x1.93e9176dfb403p-55},
3346 {0x1.9300013467bb9p-1, 0x1.f804e4b980276p-56},
3347 {0x1.94fffe6ee076fp-1, -0x1.f7ef0d9ff622ep-55},
3348 {0x1.96fffde3c12d1p-1, -0x1.082aa962638bap-56},
3349 {0x1.98ffff4458a0dp-1, -0x1.7801b9164a8efp-55},
3350 {0x1.9afffdd982e3ep-1, -0x1.740e08a5a9337p-55},
3351 {0x1.9cfffed49fb66p-1, 0x1.fce08c19bep-60},
3352 {0x1.9f00020f19c51p-1, -0x1.a3faa27885b0ap-55},
3353 {0x1.a10001145b006p-1, 0x1.4ff489958da56p-56},
3354 {0x1.a300007bbf6fap-1, 0x1.cbeab8a2b6d18p-55},
3355 {0x1.a500010971d79p-1, 0x1.8fecadd78793p-55},
3356 {0x1.a70001df52e48p-1, -0x1.f41763dd8abdbp-55},
3357 {0x1.a90001c593352p-1, -0x1.ebf0284c27612p-55},
3358 {0x1.ab0002a4f3e4bp-1, -0x1.9fd043cff3f5fp-57},
3359 {0x1.acfffd7ae1ed1p-1, -0x1.23ee7129070b4p-55},
3360 {0x1.aefffee510478p-1, 0x1.a063ee00edea3p-57},
3361 {0x1.b0fffdb650d5bp-1, 0x1.a06c8381f0ab9p-58},
3362 {0x1.b2ffffeaaca57p-1, -0x1.9011e74233c1dp-56},
3363 {0x1.b4fffd995badcp-1, -0x1.9ff1068862a9fp-56},
3364 {0x1.b7000249e659cp-1, 0x1.aff45d0864f3ep-55},
3365 {0x1.b8ffff987164p-1, 0x1.cfe7796c2c3f9p-56},
3366 {0x1.bafffd204cb4fp-1, -0x1.3ff27eef22bc4p-57},
3367 {0x1.bcfffd2415c45p-1, -0x1.cffb7ee3bea21p-57},
3368 {0x1.beffff86309dfp-1, -0x1.14103972e0b5cp-55},
3369 {0x1.c0fffe1b57653p-1, 0x1.bc16494b76a19p-55},
3370 {0x1.c2ffff1fa57e3p-1, -0x1.4feef8d30c6edp-57},
3371 {0x1.c4fffdcbfe424p-1, -0x1.43f68bcec4775p-55},
3372 {0x1.c6fffed54b9f7p-1, 0x1.47ea3f053e0ecp-55},
3373 {0x1.c8fffeb998fd5p-1, 0x1.383068df992f1p-56},
3374 {0x1.cb0002125219ap-1, -0x1.8fd8e64180e04p-57},
3375 {0x1.ccfffdd94469cp-1, 0x1.e7ebe1cc7ea72p-55},
3376 {0x1.cefffeafdc476p-1, 0x1.ebe39ad9f88fep-55},
3377 {0x1.d1000169af82bp-1, 0x1.57d91a8b95a71p-56},
3378 {0x1.d30000d0ff71dp-1, 0x1.9c1906970c7dap-55},
3379 {0x1.d4fffea790fc4p-1, -0x1.80e37c558fe0cp-58},
3380 {0x1.d70002edc87e5p-1, -0x1.f80d64dc10f44p-56},
3381 {0x1.d900021dc82aap-1, -0x1.47c8f94fd5c5cp-56},
3382 {0x1.dafffd86b0283p-1, 0x1.c7f1dc521617ep-55},
3383 {0x1.dd000296c4739p-1, 0x1.8019eb2ffb153p-55},
3384 {0x1.defffe54490f5p-1, 0x1.e00d2c652cc89p-57},
3385 {0x1.e0fffcdabf694p-1, -0x1.f8340202d69d2p-56},
3386 {0x1.e2fffdb52c8ddp-1, 0x1.b00c1ca1b0864p-56},
3387 {0x1.e4ffff24216efp-1, 0x1.2ffa8b094ab51p-56},
3388 {0x1.e6fffe88a5e11p-1, -0x1.7f673b1efbe59p-58},
3389 {0x1.e9000119eff0dp-1, -0x1.4808d5e0bc801p-55},
3390 {0x1.eafffdfa51744p-1, 0x1.80006d54320b5p-56},
3391 {0x1.ed0001a127fa1p-1, -0x1.002f860565c92p-58},
3392 {0x1.ef00007babcc4p-1, -0x1.540445d35e611p-55},
3393 {0x1.f0ffff57a8d02p-1, -0x1.ffb3139ef9105p-59},
3394 {0x1.f30001ee58ac7p-1, 0x1.a81acf2731155p-55},
3395 {0x1.f4ffff5823494p-1, 0x1.a3f41d4d7c743p-55},
3396 {0x1.f6ffffca94c6bp-1, -0x1.202f41c987875p-57},
3397 {0x1.f8fffe1f9c441p-1, 0x1.77dd1f477e74bp-56},
3398 {0x1.fafffd2e0e37ep-1, -0x1.f01199a7ca331p-57},
3399 {0x1.fd0001c77e49ep-1, 0x1.181ee4bceacb1p-56},
3400 {0x1.feffff7e0c331p-1, -0x1.e05370170875ap-57},
3401 {0x1.00ffff465606ep+0, -0x1.a7ead491c0adap-55},
3402 {0x1.02ffff3867a58p+0, -0x1.77f69c3fcb2ep-54},
3403 {0x1.04ffffdfc0d17p+0, 0x1.7bffe34cb945bp-54},
3404 {0x1.0700003cd4d82p+0, 0x1.20083c0e456cbp-55},
3405 {0x1.08ffff9f2cbe8p+0, -0x1.dffdfbe37751ap-57},
3406 {0x1.0b000010cda65p+0, -0x1.13f7faee626ebp-54},
3407 {0x1.0d00001a4d338p+0, 0x1.07dfa79489ff7p-55},
3408 {0x1.0effffadafdfdp+0, -0x1.7040570d66bcp-56},
3409 {0x1.110000bbafd96p+0, 0x1.e80d4846d0b62p-55},
3410 {0x1.12ffffae5f45dp+0, 0x1.dbffa64fd36efp-54},
3411 {0x1.150000dd59ad9p+0, 0x1.a0077701250aep-54},
3412 {0x1.170000f21559ap+0, 0x1.dfdf9e2e3deeep-55},
3413 {0x1.18ffffc275426p+0, 0x1.10030dc3b7273p-54},
3414 {0x1.1b000123d3c59p+0, 0x1.97f7980030188p-54},
3415 {0x1.1cffff8299eb7p+0, -0x1.5f932ab9f8c67p-57},
3416 {0x1.1effff48ad4p+0, 0x1.37fbf9da75bebp-54},
3417 {0x1.210000c8b86a4p+0, 0x1.f806b91fd5b22p-54},
3418 {0x1.2300003854303p+0, 0x1.3ffc2eb9fbf33p-54},
3419 {0x1.24fffffbcf684p+0, 0x1.601e77e2e2e72p-56},
3420 {0x1.26ffff52921d9p+0, 0x1.ffcbb767f0c61p-56},
3421 {0x1.2900014933a3cp+0, -0x1.202ca3c02412bp-56},
3422 {0x1.2b00014556313p+0, -0x1.2808233f21f02p-54},
3423 {0x1.2cfffebfe523bp+0, -0x1.8ff7e384fdcf2p-55},
3424 {0x1.2f0000bb8ad96p+0, -0x1.5ff51503041c5p-55},
3425 {0x1.30ffffb7ae2afp+0, -0x1.10071885e289dp-55},
3426 {0x1.32ffffeac5f7fp+0, -0x1.1ff5d3fb7b715p-54},
3427 {0x1.350000ca66756p+0, 0x1.57f82228b82bdp-54},
3428 {0x1.3700011fbf721p+0, 0x1.000bac40dd5ccp-55},
3429 {0x1.38ffff9592fb9p+0, -0x1.43f9d2db2a751p-54},
3430 {0x1.3b00004ddd242p+0, 0x1.57f6b707638e1p-55},
3431 {0x1.3cffff5b2c957p+0, 0x1.a023a10bf1231p-56},
3432 {0x1.3efffeab0b418p+0, 0x1.87f6d66b152bp-54},
3433 {0x1.410001532aff4p+0, 0x1.7f8375f198524p-57},
3434 {0x1.4300017478b29p+0, 0x1.301e672dc5143p-55},
3435 {0x1.44fffe795b463p+0, 0x1.9ff69b8b2895ap-55},
3436 {0x1.46fffe80475ep+0, -0x1.5c0b19bc2f254p-54},
3437 {0x1.48fffef6fc1e7p+0, 0x1.b4009f23a2a72p-54},
3438 {0x1.4afffe5bea704p+0, -0x1.4ffb7bf0d7d45p-54},
3439 {0x1.4d000171027dep+0, -0x1.9c06471dc6a3dp-54},
3440 {0x1.4f0000ff03ee2p+0, 0x1.77f890b85531cp-54},
3441 {0x1.5100012dc4bd1p+0, 0x1.004657166a436p-57},
3442 {0x1.530001605277ap+0, -0x1.6bfcece233209p-54},
3443 {0x1.54fffecdb704cp+0, -0x1.902720505a1d7p-55},
3444 {0x1.56fffef5f54a9p+0, 0x1.bbfe60ec96412p-54},
3445 {0x1.5900017e61012p+0, 0x1.87ec581afef9p-55},
3446 {0x1.5b00003c93e92p+0, -0x1.f41080abf0ccp-54},
3447 {0x1.5d0001d4919bcp+0, -0x1.8812afb254729p-54},
3448 {0x1.5efffe7b87a89p+0, -0x1.47eb780ed6904p-54}
3451 double w, z, r, r2, r3, y, invc, logc, kd, hi, lo;
3452 UINT64 ix, iz, tmp;
3453 UINT32 top;
3454 int k, i;
3456 ix = *(UINT64*)&x;
3457 top = ix >> 48;
3458 if (ix - 0x3fee000000000000ULL < 0x3090000000000ULL) {
3459 double rhi, rlo;
3461 /* Handle close to 1.0 inputs separately. */
3462 /* Fix sign of zero with downward rounding when x==1. */
3463 if (ix == 0x3ff0000000000000ULL)
3464 return 0;
3465 r = x - 1.0;
3466 r2 = r * r;
3467 r3 = r * r2;
3468 y = r3 * (B[1] + r * B[2] + r2 * B[3] + r3 * (B[4] + r * B[5] + r2 * B[6] +
3469 r3 * (B[7] + r * B[8] + r2 * B[9] + r3 * B[10])));
3470 /* Worst-case error is around 0.507 ULP. */
3471 w = r * 0x1p27;
3472 rhi = r + w - w;
3473 rlo = r - rhi;
3474 w = rhi * rhi * B[0]; /* B[0] == -0.5. */
3475 hi = r + w;
3476 lo = r - hi + w;
3477 lo += B[0] * rlo * (rhi + r);
3478 y += lo;
3479 y += hi;
3480 return y;
3482 if (top - 0x0010 >= 0x7ff0 - 0x0010) {
3483 /* x < 0x1p-1022 or inf or nan. */
3484 if (ix * 2 == 0)
3485 return math_error(_SING, "log", x, 0, (top & 0x8000 ? 1.0 : -1.0) / x);
3486 if (ix == 0x7ff0000000000000ULL) /* log(inf) == inf. */
3487 return x;
3488 if ((top & 0x7ff0) == 0x7ff0 && (ix & 0xfffffffffffffULL))
3489 return x;
3490 if (top & 0x8000)
3491 return math_error(_DOMAIN, "log", x, 0, (x - x) / (x - x));
3492 /* x is subnormal, normalize it. */
3493 x *= 0x1p52;
3494 ix = *(UINT64*)&x;
3495 ix -= 52ULL << 52;
3498 /* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
3499 The range is split into N subintervals.
3500 The ith subinterval contains z and c is near its center. */
3501 tmp = ix - 0x3fe6000000000000ULL;
3502 i = (tmp >> (52 - 7)) % (1 << 7);
3503 k = (INT64)tmp >> 52; /* arithmetic shift */
3504 iz = ix - (tmp & 0xfffULL << 52);
3505 invc = T[i].invc;
3506 logc = T[i].logc;
3507 z = *(double*)&iz;
3509 /* log(x) = log1p(z/c-1) + log(c) + k*Ln2. */
3510 /* r ~= z/c - 1, |r| < 1/(2*N). */
3511 r = (z - T2[i].chi - T2[i].clo) * invc;
3512 kd = (double)k;
3514 /* hi + lo = r + log(c) + k*Ln2. */
3515 w = kd * Ln2hi + logc;
3516 hi = w + r;
3517 lo = w - hi + r + kd * Ln2lo;
3519 /* log(x) = lo + (log1p(r) - r) + hi. */
3520 r2 = r * r; /* rounding error: 0x1p-54/N^2. */
3521 /* Worst case error if |y| > 0x1p-5:
3522 0.5 + 4.13/N + abs-poly-error*2^57 ULP (+ 0.002 ULP without fma)
3523 Worst case error if |y| > 0x1p-4:
3524 0.5 + 2.06/N + abs-poly-error*2^56 ULP (+ 0.001 ULP without fma). */
3525 y = lo + r2 * A[0] +
3526 r * r2 * (A[1] + r * A[2] + r2 * (A[3] + r * A[4])) + hi;
3527 return y;
3530 /*********************************************************************
3531 * log10 (MSVCRT.@)
3533 double CDECL log10( double x )
3535 static const double ivln10hi = 4.34294481878168880939e-01,
3536 ivln10lo = 2.50829467116452752298e-11,
3537 log10_2hi = 3.01029995663611771306e-01,
3538 log10_2lo = 3.69423907715893078616e-13,
3539 Lg1 = 6.666666666666735130e-01,
3540 Lg2 = 3.999999999940941908e-01,
3541 Lg3 = 2.857142874366239149e-01,
3542 Lg4 = 2.222219843214978396e-01,
3543 Lg5 = 1.818357216161805012e-01,
3544 Lg6 = 1.531383769920937332e-01,
3545 Lg7 = 1.479819860511658591e-01;
3547 union {double f; UINT64 i;} u = {x};
3548 double hfsq, f, s, z, R, w, t1, t2, dk, y, hi, lo, val_hi, val_lo;
3549 UINT32 hx;
3550 int k;
3552 hx = u.i >> 32;
3553 k = 0;
3554 if (hx < 0x00100000 || hx >> 31) {
3555 if (u.i << 1 == 0)
3556 return math_error(_SING, "log10", x, 0, -1 / (x * x));
3557 if ((u.i & ~(1ULL << 63)) > 0x7ff0000000000000ULL)
3558 return x;
3559 if (hx >> 31)
3560 return math_error(_DOMAIN, "log10", x, 0, (x - x) / (x - x));
3561 /* subnormal number, scale x up */
3562 k -= 54;
3563 x *= 0x1p54;
3564 u.f = x;
3565 hx = u.i >> 32;
3566 } else if (hx >= 0x7ff00000) {
3567 return x;
3568 } else if (hx == 0x3ff00000 && u.i<<32 == 0)
3569 return 0;
3571 /* reduce x into [sqrt(2)/2, sqrt(2)] */
3572 hx += 0x3ff00000 - 0x3fe6a09e;
3573 k += (int)(hx >> 20) - 0x3ff;
3574 hx = (hx & 0x000fffff) + 0x3fe6a09e;
3575 u.i = (UINT64)hx << 32 | (u.i & 0xffffffff);
3576 x = u.f;
3578 f = x - 1.0;
3579 hfsq = 0.5 * f * f;
3580 s = f / (2.0 + f);
3581 z = s * s;
3582 w = z * z;
3583 t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
3584 t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
3585 R = t2 + t1;
3587 /* hi+lo = f - hfsq + s*(hfsq+R) ~ log(1+f) */
3588 hi = f - hfsq;
3589 u.f = hi;
3590 u.i &= (UINT64)-1 << 32;
3591 hi = u.f;
3592 lo = f - hi - hfsq + s * (hfsq + R);
3594 /* val_hi+val_lo ~ log10(1+f) + k*log10(2) */
3595 val_hi = hi * ivln10hi;
3596 dk = k;
3597 y = dk * log10_2hi;
3598 val_lo = dk * log10_2lo + (lo + hi) * ivln10lo + lo * ivln10hi;
3601 * Extra precision in for adding y is not strictly needed
3602 * since there is no very large cancellation near x = sqrt(2) or
3603 * x = 1/sqrt(2), but we do it anyway since it costs little on CPUs
3604 * with some parallelism and it reduces the error for many args.
3606 w = y + val_hi;
3607 val_lo += (y - w) + val_hi;
3608 val_hi = w;
3610 return val_lo + val_hi;
3613 /* Compute y+TAIL = log(x) where the rounded result is y and TAIL has about
3614 additional 15 bits precision. IX is the bit representation of x, but
3615 normalized in the subnormal range using the sign bit for the exponent. */
3616 static double pow_log(UINT64 ix, double *tail)
3618 static const struct {
3619 double invc, logc, logctail;
3620 } T[] = {
3621 {0x1.6a00000000000p+0, -0x1.62c82f2b9c800p-2, 0x1.ab42428375680p-48},
3622 {0x1.6800000000000p+0, -0x1.5d1bdbf580800p-2, -0x1.ca508d8e0f720p-46},
3623 {0x1.6600000000000p+0, -0x1.5767717455800p-2, -0x1.362a4d5b6506dp-45},
3624 {0x1.6400000000000p+0, -0x1.51aad872df800p-2, -0x1.684e49eb067d5p-49},
3625 {0x1.6200000000000p+0, -0x1.4be5f95777800p-2, -0x1.41b6993293ee0p-47},
3626 {0x1.6000000000000p+0, -0x1.4618bc21c6000p-2, 0x1.3d82f484c84ccp-46},
3627 {0x1.5e00000000000p+0, -0x1.404308686a800p-2, 0x1.c42f3ed820b3ap-50},
3628 {0x1.5c00000000000p+0, -0x1.3a64c55694800p-2, 0x1.0b1c686519460p-45},
3629 {0x1.5a00000000000p+0, -0x1.347dd9a988000p-2, 0x1.5594dd4c58092p-45},
3630 {0x1.5800000000000p+0, -0x1.2e8e2bae12000p-2, 0x1.67b1e99b72bd8p-45},
3631 {0x1.5600000000000p+0, -0x1.2895a13de8800p-2, 0x1.5ca14b6cfb03fp-46},
3632 {0x1.5600000000000p+0, -0x1.2895a13de8800p-2, 0x1.5ca14b6cfb03fp-46},
3633 {0x1.5400000000000p+0, -0x1.22941fbcf7800p-2, -0x1.65a242853da76p-46},
3634 {0x1.5200000000000p+0, -0x1.1c898c1699800p-2, -0x1.fafbc68e75404p-46},
3635 {0x1.5000000000000p+0, -0x1.1675cababa800p-2, 0x1.f1fc63382a8f0p-46},
3636 {0x1.4e00000000000p+0, -0x1.1058bf9ae4800p-2, -0x1.6a8c4fd055a66p-45},
3637 {0x1.4c00000000000p+0, -0x1.0a324e2739000p-2, -0x1.c6bee7ef4030ep-47},
3638 {0x1.4a00000000000p+0, -0x1.0402594b4d000p-2, -0x1.036b89ef42d7fp-48},
3639 {0x1.4a00000000000p+0, -0x1.0402594b4d000p-2, -0x1.036b89ef42d7fp-48},
3640 {0x1.4800000000000p+0, -0x1.fb9186d5e4000p-3, 0x1.d572aab993c87p-47},
3641 {0x1.4600000000000p+0, -0x1.ef0adcbdc6000p-3, 0x1.b26b79c86af24p-45},
3642 {0x1.4400000000000p+0, -0x1.e27076e2af000p-3, -0x1.72f4f543fff10p-46},
3643 {0x1.4200000000000p+0, -0x1.d5c216b4fc000p-3, 0x1.1ba91bbca681bp-45},
3644 {0x1.4000000000000p+0, -0x1.c8ff7c79aa000p-3, 0x1.7794f689f8434p-45},
3645 {0x1.4000000000000p+0, -0x1.c8ff7c79aa000p-3, 0x1.7794f689f8434p-45},
3646 {0x1.3e00000000000p+0, -0x1.bc286742d9000p-3, 0x1.94eb0318bb78fp-46},
3647 {0x1.3c00000000000p+0, -0x1.af3c94e80c000p-3, 0x1.a4e633fcd9066p-52},
3648 {0x1.3a00000000000p+0, -0x1.a23bc1fe2b000p-3, -0x1.58c64dc46c1eap-45},
3649 {0x1.3a00000000000p+0, -0x1.a23bc1fe2b000p-3, -0x1.58c64dc46c1eap-45},
3650 {0x1.3800000000000p+0, -0x1.9525a9cf45000p-3, -0x1.ad1d904c1d4e3p-45},
3651 {0x1.3600000000000p+0, -0x1.87fa06520d000p-3, 0x1.bbdbf7fdbfa09p-45},
3652 {0x1.3400000000000p+0, -0x1.7ab890210e000p-3, 0x1.bdb9072534a58p-45},
3653 {0x1.3400000000000p+0, -0x1.7ab890210e000p-3, 0x1.bdb9072534a58p-45},
3654 {0x1.3200000000000p+0, -0x1.6d60fe719d000p-3, -0x1.0e46aa3b2e266p-46},
3655 {0x1.3000000000000p+0, -0x1.5ff3070a79000p-3, -0x1.e9e439f105039p-46},
3656 {0x1.3000000000000p+0, -0x1.5ff3070a79000p-3, -0x1.e9e439f105039p-46},
3657 {0x1.2e00000000000p+0, -0x1.526e5e3a1b000p-3, -0x1.0de8b90075b8fp-45},
3658 {0x1.2c00000000000p+0, -0x1.44d2b6ccb8000p-3, 0x1.70cc16135783cp-46},
3659 {0x1.2c00000000000p+0, -0x1.44d2b6ccb8000p-3, 0x1.70cc16135783cp-46},
3660 {0x1.2a00000000000p+0, -0x1.371fc201e9000p-3, 0x1.178864d27543ap-48},
3661 {0x1.2800000000000p+0, -0x1.29552f81ff000p-3, -0x1.48d301771c408p-45},
3662 {0x1.2600000000000p+0, -0x1.1b72ad52f6000p-3, -0x1.e80a41811a396p-45},
3663 {0x1.2600000000000p+0, -0x1.1b72ad52f6000p-3, -0x1.e80a41811a396p-45},
3664 {0x1.2400000000000p+0, -0x1.0d77e7cd09000p-3, 0x1.a699688e85bf4p-47},
3665 {0x1.2400000000000p+0, -0x1.0d77e7cd09000p-3, 0x1.a699688e85bf4p-47},
3666 {0x1.2200000000000p+0, -0x1.fec9131dbe000p-4, -0x1.575545ca333f2p-45},
3667 {0x1.2000000000000p+0, -0x1.e27076e2b0000p-4, 0x1.a342c2af0003cp-45},
3668 {0x1.2000000000000p+0, -0x1.e27076e2b0000p-4, 0x1.a342c2af0003cp-45},
3669 {0x1.1e00000000000p+0, -0x1.c5e548f5bc000p-4, -0x1.d0c57585fbe06p-46},
3670 {0x1.1c00000000000p+0, -0x1.a926d3a4ae000p-4, 0x1.53935e85baac8p-45},
3671 {0x1.1c00000000000p+0, -0x1.a926d3a4ae000p-4, 0x1.53935e85baac8p-45},
3672 {0x1.1a00000000000p+0, -0x1.8c345d631a000p-4, 0x1.37c294d2f5668p-46},
3673 {0x1.1a00000000000p+0, -0x1.8c345d631a000p-4, 0x1.37c294d2f5668p-46},
3674 {0x1.1800000000000p+0, -0x1.6f0d28ae56000p-4, -0x1.69737c93373dap-45},
3675 {0x1.1600000000000p+0, -0x1.51b073f062000p-4, 0x1.f025b61c65e57p-46},
3676 {0x1.1600000000000p+0, -0x1.51b073f062000p-4, 0x1.f025b61c65e57p-46},
3677 {0x1.1400000000000p+0, -0x1.341d7961be000p-4, 0x1.c5edaccf913dfp-45},
3678 {0x1.1400000000000p+0, -0x1.341d7961be000p-4, 0x1.c5edaccf913dfp-45},
3679 {0x1.1200000000000p+0, -0x1.16536eea38000p-4, 0x1.47c5e768fa309p-46},
3680 {0x1.1000000000000p+0, -0x1.f0a30c0118000p-5, 0x1.d599e83368e91p-45},
3681 {0x1.1000000000000p+0, -0x1.f0a30c0118000p-5, 0x1.d599e83368e91p-45},
3682 {0x1.0e00000000000p+0, -0x1.b42dd71198000p-5, 0x1.c827ae5d6704cp-46},
3683 {0x1.0e00000000000p+0, -0x1.b42dd71198000p-5, 0x1.c827ae5d6704cp-46},
3684 {0x1.0c00000000000p+0, -0x1.77458f632c000p-5, -0x1.cfc4634f2a1eep-45},
3685 {0x1.0c00000000000p+0, -0x1.77458f632c000p-5, -0x1.cfc4634f2a1eep-45},
3686 {0x1.0a00000000000p+0, -0x1.39e87b9fec000p-5, 0x1.502b7f526feaap-48},
3687 {0x1.0a00000000000p+0, -0x1.39e87b9fec000p-5, 0x1.502b7f526feaap-48},
3688 {0x1.0800000000000p+0, -0x1.f829b0e780000p-6, -0x1.980267c7e09e4p-45},
3689 {0x1.0800000000000p+0, -0x1.f829b0e780000p-6, -0x1.980267c7e09e4p-45},
3690 {0x1.0600000000000p+0, -0x1.7b91b07d58000p-6, -0x1.88d5493faa639p-45},
3691 {0x1.0400000000000p+0, -0x1.fc0a8b0fc0000p-7, -0x1.f1e7cf6d3a69cp-50},
3692 {0x1.0400000000000p+0, -0x1.fc0a8b0fc0000p-7, -0x1.f1e7cf6d3a69cp-50},
3693 {0x1.0200000000000p+0, -0x1.fe02a6b100000p-8, -0x1.9e23f0dda40e4p-46},
3694 {0x1.0200000000000p+0, -0x1.fe02a6b100000p-8, -0x1.9e23f0dda40e4p-46},
3695 {0x1.0000000000000p+0, 0x0.0000000000000p+0, 0x0.0000000000000p+0},
3696 {0x1.0000000000000p+0, 0x0.0000000000000p+0, 0x0.0000000000000p+0},
3697 {0x1.fc00000000000p-1, 0x1.0101575890000p-7, -0x1.0c76b999d2be8p-46},
3698 {0x1.f800000000000p-1, 0x1.0205658938000p-6, -0x1.3dc5b06e2f7d2p-45},
3699 {0x1.f400000000000p-1, 0x1.8492528c90000p-6, -0x1.aa0ba325a0c34p-45},
3700 {0x1.f000000000000p-1, 0x1.0415d89e74000p-5, 0x1.111c05cf1d753p-47},
3701 {0x1.ec00000000000p-1, 0x1.466aed42e0000p-5, -0x1.c167375bdfd28p-45},
3702 {0x1.e800000000000p-1, 0x1.894aa149fc000p-5, -0x1.97995d05a267dp-46},
3703 {0x1.e400000000000p-1, 0x1.ccb73cdddc000p-5, -0x1.a68f247d82807p-46},
3704 {0x1.e200000000000p-1, 0x1.eea31c006c000p-5, -0x1.e113e4fc93b7bp-47},
3705 {0x1.de00000000000p-1, 0x1.1973bd1466000p-4, -0x1.5325d560d9e9bp-45},
3706 {0x1.da00000000000p-1, 0x1.3bdf5a7d1e000p-4, 0x1.cc85ea5db4ed7p-45},
3707 {0x1.d600000000000p-1, 0x1.5e95a4d97a000p-4, -0x1.c69063c5d1d1ep-45},
3708 {0x1.d400000000000p-1, 0x1.700d30aeac000p-4, 0x1.c1e8da99ded32p-49},
3709 {0x1.d000000000000p-1, 0x1.9335e5d594000p-4, 0x1.3115c3abd47dap-45},
3710 {0x1.cc00000000000p-1, 0x1.b6ac88dad6000p-4, -0x1.390802bf768e5p-46},
3711 {0x1.ca00000000000p-1, 0x1.c885801bc4000p-4, 0x1.646d1c65aacd3p-45},
3712 {0x1.c600000000000p-1, 0x1.ec739830a2000p-4, -0x1.dc068afe645e0p-45},
3713 {0x1.c400000000000p-1, 0x1.fe89139dbe000p-4, -0x1.534d64fa10afdp-45},
3714 {0x1.c000000000000p-1, 0x1.1178e8227e000p-3, 0x1.1ef78ce2d07f2p-45},
3715 {0x1.be00000000000p-1, 0x1.1aa2b7e23f000p-3, 0x1.ca78e44389934p-45},
3716 {0x1.ba00000000000p-1, 0x1.2d1610c868000p-3, 0x1.39d6ccb81b4a1p-47},
3717 {0x1.b800000000000p-1, 0x1.365fcb0159000p-3, 0x1.62fa8234b7289p-51},
3718 {0x1.b400000000000p-1, 0x1.4913d8333b000p-3, 0x1.5837954fdb678p-45},
3719 {0x1.b200000000000p-1, 0x1.527e5e4a1b000p-3, 0x1.633e8e5697dc7p-45},
3720 {0x1.ae00000000000p-1, 0x1.6574ebe8c1000p-3, 0x1.9cf8b2c3c2e78p-46},
3721 {0x1.ac00000000000p-1, 0x1.6f0128b757000p-3, -0x1.5118de59c21e1p-45},
3722 {0x1.aa00000000000p-1, 0x1.7898d85445000p-3, -0x1.c661070914305p-46},
3723 {0x1.a600000000000p-1, 0x1.8beafeb390000p-3, -0x1.73d54aae92cd1p-47},
3724 {0x1.a400000000000p-1, 0x1.95a5adcf70000p-3, 0x1.7f22858a0ff6fp-47},
3725 {0x1.a000000000000p-1, 0x1.a93ed3c8ae000p-3, -0x1.8724350562169p-45},
3726 {0x1.9e00000000000p-1, 0x1.b31d8575bd000p-3, -0x1.c358d4eace1aap-47},
3727 {0x1.9c00000000000p-1, 0x1.bd087383be000p-3, -0x1.d4bc4595412b6p-45},
3728 {0x1.9a00000000000p-1, 0x1.c6ffbc6f01000p-3, -0x1.1ec72c5962bd2p-48},
3729 {0x1.9600000000000p-1, 0x1.db13db0d49000p-3, -0x1.aff2af715b035p-45},
3730 {0x1.9400000000000p-1, 0x1.e530effe71000p-3, 0x1.212276041f430p-51},
3731 {0x1.9200000000000p-1, 0x1.ef5ade4dd0000p-3, -0x1.a211565bb8e11p-51},
3732 {0x1.9000000000000p-1, 0x1.f991c6cb3b000p-3, 0x1.bcbecca0cdf30p-46},
3733 {0x1.8c00000000000p-1, 0x1.07138604d5800p-2, 0x1.89cdb16ed4e91p-48},
3734 {0x1.8a00000000000p-1, 0x1.0c42d67616000p-2, 0x1.7188b163ceae9p-45},
3735 {0x1.8800000000000p-1, 0x1.1178e8227e800p-2, -0x1.c210e63a5f01cp-45},
3736 {0x1.8600000000000p-1, 0x1.16b5ccbacf800p-2, 0x1.b9acdf7a51681p-45},
3737 {0x1.8400000000000p-1, 0x1.1bf99635a6800p-2, 0x1.ca6ed5147bdb7p-45},
3738 {0x1.8200000000000p-1, 0x1.214456d0eb800p-2, 0x1.a87deba46baeap-47},
3739 {0x1.7e00000000000p-1, 0x1.2bef07cdc9000p-2, 0x1.a9cfa4a5004f4p-45},
3740 {0x1.7c00000000000p-1, 0x1.314f1e1d36000p-2, -0x1.8e27ad3213cb8p-45},
3741 {0x1.7a00000000000p-1, 0x1.36b6776be1000p-2, 0x1.16ecdb0f177c8p-46},
3742 {0x1.7800000000000p-1, 0x1.3c25277333000p-2, 0x1.83b54b606bd5cp-46},
3743 {0x1.7600000000000p-1, 0x1.419b423d5e800p-2, 0x1.8e436ec90e09dp-47},
3744 {0x1.7400000000000p-1, 0x1.4718dc271c800p-2, -0x1.f27ce0967d675p-45},
3745 {0x1.7200000000000p-1, 0x1.4c9e09e173000p-2, -0x1.e20891b0ad8a4p-45},
3746 {0x1.7000000000000p-1, 0x1.522ae0738a000p-2, 0x1.ebe708164c759p-45},
3747 {0x1.6e00000000000p-1, 0x1.57bf753c8d000p-2, 0x1.fadedee5d40efp-46},
3748 {0x1.6c00000000000p-1, 0x1.5d5bddf596000p-2, -0x1.a0b2a08a465dcp-47},
3750 static const double A[] = {
3751 -0x1p-1,
3752 0x1.555555555556p-2 * -2,
3753 -0x1.0000000000006p-2 * -2,
3754 0x1.999999959554ep-3 * 4,
3755 -0x1.555555529a47ap-3 * 4,
3756 0x1.2495b9b4845e9p-3 * -8,
3757 -0x1.0002b8b263fc3p-3 * -8
3759 static const double ln2hi = 0x1.62e42fefa3800p-1,
3760 ln2lo = 0x1.ef35793c76730p-45;
3762 double z, r, y, invc, logc, logctail, kd, hi, t1, t2, lo, lo1, lo2, p;
3763 double zhi, zlo, rhi, rlo, ar, ar2, ar3, lo3, lo4, arhi, arhi2;
3764 UINT64 iz, tmp;
3765 int k, i;
3767 /* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
3768 The range is split into N subintervals.
3769 The ith subinterval contains z and c is near its center. */
3770 tmp = ix - 0x3fe6955500000000ULL;
3771 i = (tmp >> (52 - 7)) % (1 << 7);
3772 k = (INT64)tmp >> 52; /* arithmetic shift */
3773 iz = ix - (tmp & 0xfffULL << 52);
3774 z = *(double*)&iz;
3775 kd = k;
3777 /* log(x) = k*Ln2 + log(c) + log1p(z/c-1). */
3778 invc = T[i].invc;
3779 logc = T[i].logc;
3780 logctail = T[i].logctail;
3782 /* Note: 1/c is j/N or j/N/2 where j is an integer in [N,2N) and
3783 |z/c - 1| < 1/N, so r = z/c - 1 is exactly representible. */
3784 /* Split z such that rhi, rlo and rhi*rhi are exact and |rlo| <= |r|. */
3785 iz = (iz + (1ULL << 31)) & (-1ULL << 32);
3786 zhi = *(double*)&iz;
3787 zlo = z - zhi;
3788 rhi = zhi * invc - 1.0;
3789 rlo = zlo * invc;
3790 r = rhi + rlo;
3792 /* k*Ln2 + log(c) + r. */
3793 t1 = kd * ln2hi + logc;
3794 t2 = t1 + r;
3795 lo1 = kd * ln2lo + logctail;
3796 lo2 = t1 - t2 + r;
3798 /* Evaluation is optimized assuming superscalar pipelined execution. */
3799 ar = A[0] * r; /* A[0] = -0.5. */
3800 ar2 = r * ar;
3801 ar3 = r * ar2;
3802 /* k*Ln2 + log(c) + r + A[0]*r*r. */
3803 arhi = A[0] * rhi;
3804 arhi2 = rhi * arhi;
3805 hi = t2 + arhi2;
3806 lo3 = rlo * (ar + arhi);
3807 lo4 = t2 - hi + arhi2;
3808 /* p = log1p(r) - r - A[0]*r*r. */
3809 p = (ar3 * (A[1] + r * A[2] + ar2 * (A[3] + r * A[4] + ar2 * (A[5] + r * A[6]))));
3810 lo = lo1 + lo2 + lo3 + lo4 + p;
3811 y = hi + lo;
3812 *tail = hi - y + lo;
3813 return y;
3816 /* Computes sign*exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|.
3817 The sign_bias argument is SIGN_BIAS or 0 and sets the sign to -1 or 1. */
3818 static double pow_exp(double argx, double argy, double x, double xtail, UINT32 sign_bias)
3820 static const double C[] = {
3821 0x1.ffffffffffdbdp-2,
3822 0x1.555555555543cp-3,
3823 0x1.55555cf172b91p-5,
3824 0x1.1111167a4d017p-7
3826 static const double invln2N = 0x1.71547652b82fep0 * (1 << 7),
3827 negln2hiN = -0x1.62e42fefa0000p-8,
3828 negln2loN = -0x1.cf79abc9e3b3ap-47;
3830 UINT32 abstop;
3831 UINT64 ki, idx, top, sbits;
3832 double kd, z, r, r2, scale, tail, tmp;
3834 abstop = (*(UINT64*)&x >> 52) & 0x7ff;
3835 if (abstop - 0x3c9 >= 0x408 - 0x3c9) {
3836 if (abstop - 0x3c9 >= 0x80000000) {
3837 /* Avoid spurious underflow for tiny x. */
3838 /* Note: 0 is common input. */
3839 double one = 1.0 + x;
3840 return sign_bias ? -one : one;
3842 if (abstop >= 0x409) {
3843 /* Note: inf and nan are already handled. */
3844 if (*(UINT64*)&x >> 63)
3845 return math_error(_UNDERFLOW, "pow", argx, argy, (sign_bias ? -DBL_MIN : DBL_MIN) * DBL_MIN);
3846 return math_error(_OVERFLOW, "pow", argx, argy, (sign_bias ? -DBL_MAX : DBL_MAX) * DBL_MAX);
3848 /* Large x is special cased below. */
3849 abstop = 0;
3852 /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */
3853 /* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */
3854 z = invln2N * x;
3855 kd = __round(z);
3856 ki = (INT64)kd;
3857 r = x + kd * negln2hiN + kd * negln2loN;
3858 /* The code assumes 2^-200 < |xtail| < 2^-8/N. */
3859 r += xtail;
3860 /* 2^(k/N) ~= scale * (1 + tail). */
3861 idx = 2 * (ki % (1 << 7));
3862 top = (ki + sign_bias) << (52 - 7);
3863 tail = *(double*)&exp_T[idx];
3864 /* This is only a valid scale when -1023*N < k < 1024*N. */
3865 sbits = exp_T[idx + 1] + top;
3866 /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). */
3867 /* Evaluation is optimized assuming superscalar pipelined execution. */
3868 r2 = r * r;
3869 /* Without fma the worst case error is 0.25/N ulp larger. */
3870 /* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp. */
3871 tmp = tail + r + r2 * (C[0] + r * C[1]) + r2 * r2 * (C[2] + r * C[3]);
3872 if (abstop == 0) {
3873 /* Handle cases that may overflow or underflow when computing the result that
3874 is scale*(1+TMP) without intermediate rounding. The bit representation of
3875 scale is in SBITS, however it has a computed exponent that may have
3876 overflown into the sign bit so that needs to be adjusted before using it as
3877 a double. (int32_t)KI is the k used in the argument reduction and exponent
3878 adjustment of scale, positive k here means the result may overflow and
3879 negative k means the result may underflow. */
3880 double scale, y;
3882 if ((ki & 0x80000000) == 0) {
3883 /* k > 0, the exponent of scale might have overflowed by <= 460. */
3884 sbits -= 1009ull << 52;
3885 scale = *(double*)&sbits;
3886 y = 0x1p1009 * (scale + scale * tmp);
3887 if (isinf(y))
3888 return math_error(_OVERFLOW, "pow", argx, argy, y);
3889 return y;
3891 /* k < 0, need special care in the subnormal range. */
3892 sbits += 1022ull << 52;
3893 /* Note: sbits is signed scale. */
3894 scale = *(double*)&sbits;
3895 y = scale + scale * tmp;
3896 if (fabs(y) < 1.0) {
3897 /* Round y to the right precision before scaling it into the subnormal
3898 range to avoid double rounding that can cause 0.5+E/2 ulp error where
3899 E is the worst-case ulp error outside the subnormal range. So this
3900 is only useful if the goal is better than 1 ulp worst-case error. */
3901 double hi, lo, one = 1.0;
3902 if (y < 0.0)
3903 one = -1.0;
3904 lo = scale - y + scale * tmp;
3905 hi = one + y;
3906 lo = one - hi + y + lo;
3907 y = hi + lo - one;
3908 /* Fix the sign of 0. */
3909 if (y == 0.0) {
3910 sbits &= 0x8000000000000000ULL;
3911 y = *(double*)&sbits;
3913 /* The underflow exception needs to be signaled explicitly. */
3914 fp_barrier(fp_barrier(0x1p-1022) * 0x1p-1022);
3915 y = 0x1p-1022 * y;
3916 return math_error(_UNDERFLOW, "pow", argx, argy, y);
3918 y = 0x1p-1022 * y;
3919 return y;
3921 scale = *(double*)&sbits;
3922 /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
3923 is no spurious underflow here even without fma. */
3924 return scale + scale * tmp;
3927 /* Returns 0 if not int, 1 if odd int, 2 if even int. The argument is
3928 the bit representation of a non-zero finite floating-point value. */
3929 static inline int pow_checkint(UINT64 iy)
3931 int e = iy >> 52 & 0x7ff;
3932 if (e < 0x3ff)
3933 return 0;
3934 if (e > 0x3ff + 52)
3935 return 2;
3936 if (iy & ((1ULL << (0x3ff + 52 - e)) - 1))
3937 return 0;
3938 if (iy & (1ULL << (0x3ff + 52 - e)))
3939 return 1;
3940 return 2;
3943 /*********************************************************************
3944 * pow (MSVCRT.@)
3946 * Copied from musl: src/math/pow.c
3948 double CDECL pow( double x, double y )
3950 UINT32 sign_bias = 0;
3951 UINT64 ix, iy;
3952 UINT32 topx, topy;
3953 double lo, hi, ehi, elo, yhi, ylo, lhi, llo;
3955 ix = *(UINT64*)&x;
3956 iy = *(UINT64*)&y;
3957 topx = ix >> 52;
3958 topy = iy >> 52;
3959 if (topx - 0x001 >= 0x7ff - 0x001 ||
3960 (topy & 0x7ff) - 0x3be >= 0x43e - 0x3be) {
3961 /* Note: if |y| > 1075 * ln2 * 2^53 ~= 0x1.749p62 then pow(x,y) = inf/0
3962 and if |y| < 2^-54 / 1075 ~= 0x1.e7b6p-65 then pow(x,y) = +-1. */
3963 /* Special cases: (x < 0x1p-126 or inf or nan) or
3964 (|y| < 0x1p-65 or |y| >= 0x1p63 or nan). */
3965 if (2 * iy - 1 >= 2 * 0x7ff0000000000000ULL - 1) {
3966 if (2 * iy == 0)
3967 return 1.0;
3968 if (ix == 0x3ff0000000000000ULL)
3969 return 1.0;
3970 if (2 * ix > 2 * 0x7ff0000000000000ULL ||
3971 2 * iy > 2 * 0x7ff0000000000000ULL)
3972 return x + y;
3973 if (2 * ix == 2 * 0x3ff0000000000000ULL)
3974 return 1.0;
3975 if ((2 * ix < 2 * 0x3ff0000000000000ULL) == !(iy >> 63))
3976 return 0.0; /* |x|<1 && y==inf or |x|>1 && y==-inf. */
3977 return y * y;
3979 if (2 * ix - 1 >= 2 * 0x7ff0000000000000ULL - 1) {
3980 double x2 = x * x;
3981 if (ix >> 63 && pow_checkint(iy) == 1)
3982 x2 = -x2;
3983 if (iy & 0x8000000000000000ULL && x2 == 0.0)
3984 return math_error(_SING, "pow", x, y, 1 / x2);
3985 /* Without the barrier some versions of clang hoist the 1/x2 and
3986 thus division by zero exception can be signaled spuriously. */
3987 return iy >> 63 ? fp_barrier(1 / x2) : x2;
3989 /* Here x and y are non-zero finite. */
3990 if (ix >> 63) {
3991 /* Finite x < 0. */
3992 int yint = pow_checkint(iy);
3993 if (yint == 0)
3994 return math_error(_DOMAIN, "pow", x, y, 0 / (x - x));
3995 if (yint == 1)
3996 sign_bias = 0x800 << 7;
3997 ix &= 0x7fffffffffffffff;
3998 topx &= 0x7ff;
4000 if ((topy & 0x7ff) - 0x3be >= 0x43e - 0x3be) {
4001 /* Note: sign_bias == 0 here because y is not odd. */
4002 if (ix == 0x3ff0000000000000ULL)
4003 return 1.0;
4004 if ((topy & 0x7ff) < 0x3be) {
4005 /* |y| < 2^-65, x^y ~= 1 + y*log(x). */
4006 return ix > 0x3ff0000000000000ULL ? 1.0 + y : 1.0 - y;
4008 if ((ix > 0x3ff0000000000000ULL) == (topy < 0x800))
4009 return math_error(_OVERFLOW, "pow", x, y, fp_barrier(DBL_MAX) * DBL_MAX);
4010 return math_error(_UNDERFLOW, "pow", x, y, fp_barrier(DBL_MIN) * DBL_MIN);
4012 if (topx == 0) {
4013 /* Normalize subnormal x so exponent becomes negative. */
4014 x *= 0x1p52;
4015 ix = *(UINT64*)&x;
4016 ix &= 0x7fffffffffffffff;
4017 ix -= 52ULL << 52;
4021 hi = pow_log(ix, &lo);
4022 iy &= -1ULL << 27;
4023 yhi = *(double*)&iy;
4024 ylo = y - yhi;
4025 *(UINT64*)&lhi = *(UINT64*)&hi & -1ULL << 27;
4026 llo = fp_barrier(hi - lhi + lo);
4027 ehi = yhi * lhi;
4028 elo = ylo * lhi + y * llo; /* |elo| < |ehi| * 2^-25. */
4029 return pow_exp(x, y, ehi, elo, sign_bias);
4032 /*********************************************************************
4033 * sin (MSVCRT.@)
4035 * Copied from musl: src/math/sin.c
4037 double CDECL sin( double x )
4039 double y[2];
4040 UINT32 ix;
4041 unsigned n;
4043 ix = *(ULONGLONG*)&x >> 32;
4044 ix &= 0x7fffffff;
4046 /* |x| ~< pi/4 */
4047 if (ix <= 0x3fe921fb) {
4048 if (ix < 0x3e500000) { /* |x| < 2**-26 */
4049 /* raise inexact if x != 0 and underflow if subnormal*/
4050 fp_barrier(ix < 0x00100000 ? x/0x1p120f : x+0x1p120f);
4051 return x;
4053 return __sin(x, 0.0, 0);
4056 /* sin(Inf or NaN) is NaN */
4057 if (isinf(x))
4058 return math_error(_DOMAIN, "sin", x, 0, x - x);
4059 if (ix >= 0x7ff00000)
4060 return x - x;
4062 /* argument reduction needed */
4063 n = __rem_pio2(x, y);
4064 switch (n&3) {
4065 case 0: return __sin(y[0], y[1], 1);
4066 case 1: return __cos(y[0], y[1]);
4067 case 2: return -__sin(y[0], y[1], 1);
4068 default: return -__cos(y[0], y[1]);
4072 /*********************************************************************
4073 * sinh (MSVCRT.@)
4075 double CDECL sinh( double x )
4077 UINT64 ux = *(UINT64*)&x;
4078 UINT64 sign = ux & 0x8000000000000000ULL;
4079 UINT32 w;
4080 double t, h, absx;
4082 h = 0.5;
4083 if (ux >> 63)
4084 h = -h;
4085 /* |x| */
4086 ux &= (UINT64)-1 / 2;
4087 absx = *(double*)&ux;
4088 w = ux >> 32;
4090 /* |x| < log(DBL_MAX) */
4091 if (w < 0x40862e42) {
4092 t = __expm1(absx);
4093 if (w < 0x3ff00000) {
4094 if (w < 0x3ff00000 - (26 << 20))
4095 return x;
4096 return h * (2 * t - t * t / (t + 1));
4098 return h * (t + t / (t + 1));
4101 /* |x| > log(DBL_MAX) or nan */
4102 /* note: the result is stored to handle overflow */
4103 if (ux > 0x7ff0000000000000ULL)
4104 *(UINT64*)&t = ux | sign | 0x0008000000000000ULL;
4105 else
4106 t = __expo2(absx, 2 * h);
4107 return t;
4110 static BOOL sqrt_validate( double *x, BOOL update_sw )
4112 short c = _dclass(*x);
4114 if (c == FP_ZERO) return FALSE;
4115 if (c == FP_NAN)
4117 #ifdef __i386__
4118 if (update_sw)
4119 *x = math_error(_DOMAIN, "sqrt", *x, 0, *x);
4120 #else
4121 /* set signaling bit */
4122 *(ULONGLONG*)x |= 0x8000000000000ULL;
4123 #endif
4124 return FALSE;
4126 if (signbit(*x))
4128 *x = math_error(_DOMAIN, "sqrt", *x, 0, ret_nan(update_sw));
4129 return FALSE;
4131 if (c == FP_INFINITE) return FALSE;
4132 return TRUE;
4135 #if defined(__x86_64__) || defined(__i386__)
4136 double CDECL sse2_sqrt(double);
4137 __ASM_GLOBAL_FUNC( sse2_sqrt,
4138 "sqrtsd %xmm0, %xmm0\n\t"
4139 "ret" )
4140 #endif
4142 #ifdef __i386__
4143 double CDECL x87_sqrt(double);
4144 __ASM_GLOBAL_FUNC( x87_sqrt,
4145 "fldl 4(%esp)\n\t"
4146 SET_X87_CW(0xc00)
4147 "fsqrt\n\t"
4148 RESET_X87_CW
4149 "ret" )
4150 #endif
4152 /*********************************************************************
4153 * sqrt (MSVCRT.@)
4155 * Copied from musl: src/math/sqrt.c
4157 double CDECL sqrt( double x )
4159 #ifdef __x86_64__
4160 if (!sqrt_validate(&x, TRUE))
4161 return x;
4163 return sse2_sqrt(x);
4164 #elif defined( __i386__ )
4165 if (!sqrt_validate(&x, TRUE))
4166 return x;
4168 return x87_sqrt(x);
4169 #else
4170 static const double tiny = 1.0e-300;
4172 double z;
4173 int sign = 0x80000000;
4174 int ix0,s0,q,m,t,i;
4175 unsigned int r,t1,s1,ix1,q1;
4176 ULONGLONG ix;
4178 if (!sqrt_validate(&x, TRUE))
4179 return x;
4181 ix = *(ULONGLONG*)&x;
4182 ix0 = ix >> 32;
4183 ix1 = ix;
4185 /* normalize x */
4186 m = ix0 >> 20;
4187 if (m == 0) { /* subnormal x */
4188 while (ix0 == 0) {
4189 m -= 21;
4190 ix0 |= (ix1 >> 11);
4191 ix1 <<= 21;
4193 for (i=0; (ix0 & 0x00100000) == 0; i++)
4194 ix0 <<= 1;
4195 m -= i - 1;
4196 ix0 |= ix1 >> (32 - i);
4197 ix1 <<= i;
4199 m -= 1023; /* unbias exponent */
4200 ix0 = (ix0 & 0x000fffff) | 0x00100000;
4201 if (m & 1) { /* odd m, double x to make it even */
4202 ix0 += ix0 + ((ix1 & sign) >> 31);
4203 ix1 += ix1;
4205 m >>= 1; /* m = [m/2] */
4207 /* generate sqrt(x) bit by bit */
4208 ix0 += ix0 + ((ix1 & sign) >> 31);
4209 ix1 += ix1;
4210 q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
4211 r = 0x00200000; /* r = moving bit from right to left */
4213 while (r != 0) {
4214 t = s0 + r;
4215 if (t <= ix0) {
4216 s0 = t + r;
4217 ix0 -= t;
4218 q += r;
4220 ix0 += ix0 + ((ix1 & sign) >> 31);
4221 ix1 += ix1;
4222 r >>= 1;
4225 r = sign;
4226 while (r != 0) {
4227 t1 = s1 + r;
4228 t = s0;
4229 if (t < ix0 || (t == ix0 && t1 <= ix1)) {
4230 s1 = t1 + r;
4231 if ((t1&sign) == sign && (s1 & sign) == 0)
4232 s0++;
4233 ix0 -= t;
4234 if (ix1 < t1)
4235 ix0--;
4236 ix1 -= t1;
4237 q1 += r;
4239 ix0 += ix0 + ((ix1 & sign) >> 31);
4240 ix1 += ix1;
4241 r >>= 1;
4244 /* use floating add to find out rounding direction */
4245 if ((ix0 | ix1) != 0) {
4246 z = 1.0 - tiny; /* raise inexact flag */
4247 if (z >= 1.0) {
4248 z = 1.0 + tiny;
4249 if (q1 == (unsigned int)0xffffffff) {
4250 q1 = 0;
4251 q++;
4252 } else if (z > 1.0) {
4253 if (q1 == (unsigned int)0xfffffffe)
4254 q++;
4255 q1 += 2;
4256 } else
4257 q1 += q1 & 1;
4260 ix0 = (q >> 1) + 0x3fe00000;
4261 ix1 = q1 >> 1;
4262 if (q & 1)
4263 ix1 |= sign;
4264 ix = ix0 + ((unsigned int)m << 20);
4265 ix <<= 32;
4266 ix |= ix1;
4267 return *(double*)&ix;
4268 #endif
4271 /* Copied from musl: src/math/__tan.c */
4272 static double __tan(double x, double y, int odd)
4274 static const double T[] = {
4275 3.33333333333334091986e-01,
4276 1.33333333333201242699e-01,
4277 5.39682539762260521377e-02,
4278 2.18694882948595424599e-02,
4279 8.86323982359930005737e-03,
4280 3.59207910759131235356e-03,
4281 1.45620945432529025516e-03,
4282 5.88041240820264096874e-04,
4283 2.46463134818469906812e-04,
4284 7.81794442939557092300e-05,
4285 7.14072491382608190305e-05,
4286 -1.85586374855275456654e-05,
4287 2.59073051863633712884e-05,
4289 static const double pio4 = 7.85398163397448278999e-01;
4290 static const double pio4lo = 3.06161699786838301793e-17;
4292 double z, r, v, w, s, a, w0, a0;
4293 UINT32 hx;
4294 int big, sign;
4296 hx = *(ULONGLONG*)&x >> 32;
4297 big = (hx & 0x7fffffff) >= 0x3FE59428; /* |x| >= 0.6744 */
4298 if (big) {
4299 sign = hx >> 31;
4300 if (sign) {
4301 x = -x;
4302 y = -y;
4304 x = (pio4 - x) + (pio4lo - y);
4305 y = 0.0;
4307 z = x * x;
4308 w = z * z;
4309 r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] + w * T[11]))));
4310 v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] + w * T[12])))));
4311 s = z * x;
4312 r = y + z * (s * (r + v) + y) + s * T[0];
4313 w = x + r;
4314 if (big) {
4315 s = 1 - 2 * odd;
4316 v = s - 2.0 * (x + (r - w * w / (w + s)));
4317 return sign ? -v : v;
4319 if (!odd)
4320 return w;
4321 /* -1.0/(x+r) has up to 2ulp error, so compute it accurately */
4322 w0 = w;
4323 *(LONGLONG*)&w0 = *(LONGLONG*)&w0 & 0xffffffff00000000ULL;
4324 v = r - (w0 - x); /* w0+v = r+x */
4325 a0 = a = -1.0 / w;
4326 *(LONGLONG*)&a0 = *(LONGLONG*)&a0 & 0xffffffff00000000ULL;
4327 return a0 + a * (1.0 + a0 * w0 + a0 * v);
4330 /*********************************************************************
4331 * tan (MSVCRT.@)
4333 * Copied from musl: src/math/tan.c
4335 double CDECL tan( double x )
4337 double y[2];
4338 UINT32 ix;
4339 unsigned n;
4341 ix = *(ULONGLONG*)&x >> 32;
4342 ix &= 0x7fffffff;
4344 if (ix <= 0x3fe921fb) { /* |x| ~< pi/4 */
4345 if (ix < 0x3e400000) { /* |x| < 2**-27 */
4346 /* raise inexact if x!=0 and underflow if subnormal */
4347 fp_barrier(ix < 0x00100000 ? x / 0x1p120f : x + 0x1p120f);
4348 return x;
4350 return __tan(x, 0.0, 0);
4353 if (isinf(x))
4354 return math_error(_DOMAIN, "tan", x, 0, x - x);
4355 if (ix >= 0x7ff00000)
4356 return x - x;
4358 n = __rem_pio2(x, y);
4359 return __tan(y[0], y[1], n & 1);
4362 /*********************************************************************
4363 * tanh (MSVCRT.@)
4365 double CDECL tanh( double x )
4367 UINT64 ui = *(UINT64*)&x;
4368 UINT64 sign = ui & 0x8000000000000000ULL;
4369 UINT32 w;
4370 double t;
4372 /* x = |x| */
4373 ui &= (UINT64)-1 / 2;
4374 x = *(double*)&ui;
4375 w = ui >> 32;
4377 if (w > 0x3fe193ea) {
4378 /* |x| > log(3)/2 ~= 0.5493 or nan */
4379 if (w > 0x40340000) {
4380 if (ui > 0x7ff0000000000000ULL) {
4381 *(UINT64*)&x = ui | sign | 0x0008000000000000ULL;
4382 #if _MSVCR_VER < 140
4383 return math_error(_DOMAIN, "tanh", x, 0, x);
4384 #else
4385 return x;
4386 #endif
4388 /* |x| > 20 */
4389 /* note: this branch avoids raising overflow */
4390 fp_barrier(x + 0x1p120f);
4391 t = 1 - 0 / x;
4392 } else {
4393 t = __expm1(2 * x);
4394 t = 1 - 2 / (t + 2);
4396 } else if (w > 0x3fd058ae) {
4397 /* |x| > log(5/3)/2 ~= 0.2554 */
4398 t = __expm1(2 * x);
4399 t = t / (t + 2);
4400 } else if (w >= 0x00100000) {
4401 /* |x| >= 0x1p-1022, up to 2ulp error in [0.1,0.2554] */
4402 t = __expm1(-2 * x);
4403 t = -t / (t + 2);
4404 } else {
4405 /* |x| is subnormal */
4406 /* note: the branch above would not raise underflow in [0x1p-1023,0x1p-1022) */
4407 fp_barrier((float)x);
4408 t = x;
4410 return sign ? -t : t;
4414 #if (defined(__GNUC__) || defined(__clang__)) && defined(__i386__)
4416 #define CREATE_FPU_FUNC1(name, call) \
4417 __ASM_GLOBAL_FUNC(name, \
4418 "pushl %ebp\n\t" \
4419 __ASM_CFI(".cfi_adjust_cfa_offset 4\n\t") \
4420 __ASM_CFI(".cfi_rel_offset %ebp,0\n\t") \
4421 "movl %esp, %ebp\n\t" \
4422 __ASM_CFI(".cfi_def_cfa_register %ebp\n\t") \
4423 "subl $68, %esp\n\t" /* sizeof(double)*8 + sizeof(int) */ \
4424 "fstpl (%esp)\n\t" /* store function argument */ \
4425 "fwait\n\t" \
4426 "movl $1, %ecx\n\t" /* empty FPU stack */ \
4427 "1:\n\t" \
4428 "fxam\n\t" \
4429 "fstsw %ax\n\t" \
4430 "and $0x4500, %ax\n\t" \
4431 "cmp $0x4100, %ax\n\t" \
4432 "je 2f\n\t" \
4433 "fstpl (%esp,%ecx,8)\n\t" \
4434 "fwait\n\t" \
4435 "incl %ecx\n\t" \
4436 "jmp 1b\n\t" \
4437 "2:\n\t" \
4438 "movl %ecx, -4(%ebp)\n\t" \
4439 "call " __ASM_NAME( #call ) "\n\t" \
4440 "movl -4(%ebp), %ecx\n\t" \
4441 "fstpl (%esp)\n\t" /* save result */ \
4442 "3:\n\t" /* restore FPU stack */ \
4443 "decl %ecx\n\t" \
4444 "fldl (%esp,%ecx,8)\n\t" \
4445 "cmpl $0, %ecx\n\t" \
4446 "jne 3b\n\t" \
4447 "leave\n\t" \
4448 __ASM_CFI(".cfi_def_cfa %esp,4\n\t") \
4449 __ASM_CFI(".cfi_same_value %ebp\n\t") \
4450 "ret")
4452 #define CREATE_FPU_FUNC2(name, call) \
4453 __ASM_GLOBAL_FUNC(name, \
4454 "pushl %ebp\n\t" \
4455 __ASM_CFI(".cfi_adjust_cfa_offset 4\n\t") \
4456 __ASM_CFI(".cfi_rel_offset %ebp,0\n\t") \
4457 "movl %esp, %ebp\n\t" \
4458 __ASM_CFI(".cfi_def_cfa_register %ebp\n\t") \
4459 "subl $68, %esp\n\t" /* sizeof(double)*8 + sizeof(int) */ \
4460 "fstpl 8(%esp)\n\t" /* store function argument */ \
4461 "fwait\n\t" \
4462 "fstpl (%esp)\n\t" \
4463 "fwait\n\t" \
4464 "movl $2, %ecx\n\t" /* empty FPU stack */ \
4465 "1:\n\t" \
4466 "fxam\n\t" \
4467 "fstsw %ax\n\t" \
4468 "and $0x4500, %ax\n\t" \
4469 "cmp $0x4100, %ax\n\t" \
4470 "je 2f\n\t" \
4471 "fstpl (%esp,%ecx,8)\n\t" \
4472 "fwait\n\t" \
4473 "incl %ecx\n\t" \
4474 "jmp 1b\n\t" \
4475 "2:\n\t" \
4476 "movl %ecx, -4(%ebp)\n\t" \
4477 "call " __ASM_NAME( #call ) "\n\t" \
4478 "movl -4(%ebp), %ecx\n\t" \
4479 "fstpl 8(%esp)\n\t" /* save result */ \
4480 "3:\n\t" /* restore FPU stack */ \
4481 "decl %ecx\n\t" \
4482 "fldl (%esp,%ecx,8)\n\t" \
4483 "cmpl $1, %ecx\n\t" \
4484 "jne 3b\n\t" \
4485 "leave\n\t" \
4486 __ASM_CFI(".cfi_def_cfa %esp,4\n\t") \
4487 __ASM_CFI(".cfi_same_value %ebp\n\t") \
4488 "ret")
4490 CREATE_FPU_FUNC1(_CIacos, acos)
4491 CREATE_FPU_FUNC1(_CIasin, asin)
4492 CREATE_FPU_FUNC1(_CIatan, atan)
4493 CREATE_FPU_FUNC2(_CIatan2, atan2)
4494 CREATE_FPU_FUNC1(_CIcos, cos)
4495 CREATE_FPU_FUNC1(_CIcosh, cosh)
4496 CREATE_FPU_FUNC1(_CIexp, exp)
4497 CREATE_FPU_FUNC2(_CIfmod, fmod)
4498 CREATE_FPU_FUNC1(_CIlog, log)
4499 CREATE_FPU_FUNC1(_CIlog10, log10)
4500 CREATE_FPU_FUNC2(_CIpow, pow)
4501 CREATE_FPU_FUNC1(_CIsin, sin)
4502 CREATE_FPU_FUNC1(_CIsinh, sinh)
4503 CREATE_FPU_FUNC1(_CIsqrt, sqrt)
4504 CREATE_FPU_FUNC1(_CItan, tan)
4505 CREATE_FPU_FUNC1(_CItanh, tanh)
4507 __ASM_GLOBAL_FUNC(_ftol,
4508 "pushl %ebp\n\t"
4509 __ASM_CFI(".cfi_adjust_cfa_offset 4\n\t")
4510 __ASM_CFI(".cfi_rel_offset %ebp,0\n\t")
4511 "movl %esp, %ebp\n\t"
4512 __ASM_CFI(".cfi_def_cfa_register %ebp\n\t")
4513 "subl $12, %esp\n\t" /* sizeof(LONGLONG) + 2*sizeof(WORD) */
4514 "fnstcw (%esp)\n\t"
4515 "mov (%esp), %ax\n\t"
4516 "or $0xc00, %ax\n\t"
4517 "mov %ax, 2(%esp)\n\t"
4518 "fldcw 2(%esp)\n\t"
4519 "fistpq 4(%esp)\n\t"
4520 "fldcw (%esp)\n\t"
4521 "movl 4(%esp), %eax\n\t"
4522 "movl 8(%esp), %edx\n\t"
4523 "leave\n\t"
4524 __ASM_CFI(".cfi_def_cfa %esp,4\n\t")
4525 __ASM_CFI(".cfi_same_value %ebp\n\t")
4526 "ret")
4528 #endif /* (defined(__GNUC__) || defined(__clang__)) && defined(__i386__) */
4530 /*********************************************************************
4531 * _fpclass (MSVCRT.@)
4533 int CDECL _fpclass(double num)
4535 union { double f; UINT64 i; } u = { num };
4536 int e = u.i >> 52 & 0x7ff;
4537 int s = u.i >> 63;
4539 switch (e)
4541 case 0:
4542 if (u.i << 1) return s ? _FPCLASS_ND : _FPCLASS_PD;
4543 return s ? _FPCLASS_NZ : _FPCLASS_PZ;
4544 case 0x7ff:
4545 if (u.i << 12) return ((u.i >> 51) & 1) ? _FPCLASS_QNAN : _FPCLASS_SNAN;
4546 return s ? _FPCLASS_NINF : _FPCLASS_PINF;
4547 default:
4548 return s ? _FPCLASS_NN : _FPCLASS_PN;
4552 /*********************************************************************
4553 * _rotl (MSVCRT.@)
4555 unsigned int CDECL MSVCRT__rotl(unsigned int num, int shift)
4557 shift &= 31;
4558 return (num << shift) | (num >> (32-shift));
4561 /*********************************************************************
4562 * _lrotl (MSVCRT.@)
4564 __msvcrt_ulong CDECL MSVCRT__lrotl(__msvcrt_ulong num, int shift)
4566 shift &= 0x1f;
4567 return (num << shift) | (num >> (32-shift));
4570 /*********************************************************************
4571 * _lrotr (MSVCRT.@)
4573 __msvcrt_ulong CDECL MSVCRT__lrotr(__msvcrt_ulong num, int shift)
4575 shift &= 0x1f;
4576 return (num >> shift) | (num << (32-shift));
4579 /*********************************************************************
4580 * _rotr (MSVCRT.@)
4582 unsigned int CDECL MSVCRT__rotr(unsigned int num, int shift)
4584 shift &= 0x1f;
4585 return (num >> shift) | (num << (32-shift));
4588 /*********************************************************************
4589 * _rotl64 (MSVCRT.@)
4591 unsigned __int64 CDECL MSVCRT__rotl64(unsigned __int64 num, int shift)
4593 shift &= 63;
4594 return (num << shift) | (num >> (64-shift));
4597 /*********************************************************************
4598 * _rotr64 (MSVCRT.@)
4600 unsigned __int64 CDECL MSVCRT__rotr64(unsigned __int64 num, int shift)
4602 shift &= 63;
4603 return (num >> shift) | (num << (64-shift));
4606 /*********************************************************************
4607 * abs (MSVCRT.@)
4609 int CDECL abs( int n )
4611 return n >= 0 ? n : -n;
4614 /*********************************************************************
4615 * labs (MSVCRT.@)
4617 __msvcrt_long CDECL labs( __msvcrt_long n )
4619 return n >= 0 ? n : -n;
4622 #if _MSVCR_VER>=100
4623 /*********************************************************************
4624 * llabs (MSVCR100.@)
4626 __int64 CDECL llabs( __int64 n )
4628 return n >= 0 ? n : -n;
4630 #endif
4632 #if _MSVCR_VER>=120
4633 /*********************************************************************
4634 * imaxabs (MSVCR120.@)
4636 intmax_t CDECL imaxabs( intmax_t n )
4638 return n >= 0 ? n : -n;
4640 #endif
4642 /*********************************************************************
4643 * _abs64 (MSVCRT.@)
4645 __int64 CDECL _abs64( __int64 n )
4647 return n >= 0 ? n : -n;
4650 /* Copied from musl: src/math/ilogb.c */
4651 static int __ilogb(double x)
4653 union { double f; UINT64 i; } u = { x };
4654 int e = u.i >> 52 & 0x7ff;
4656 if (!e)
4658 u.i <<= 12;
4659 if (u.i == 0) return FP_ILOGB0;
4660 /* subnormal x */
4661 for (e = -0x3ff; u.i >> 63 == 0; e--, u.i <<= 1);
4662 return e;
4664 if (e == 0x7ff) return u.i << 12 ? FP_ILOGBNAN : INT_MAX;
4665 return e - 0x3ff;
4668 /*********************************************************************
4669 * _logb (MSVCRT.@)
4671 * Copied from musl: src/math/logb.c
4673 double CDECL _logb(double x)
4675 if (!isfinite(x))
4676 return x * x;
4677 if (x == 0)
4678 return math_error(_SING, "_logb", x, 0, -1 / (x * x));
4679 return __ilogb(x);
4682 static void sq(double *hi, double *lo, double x)
4684 double xh, xl, xc;
4686 xc = x * (0x1p27 + 1);
4687 xh = x - xc + xc;
4688 xl = x - xh;
4689 *hi = x * x;
4690 *lo = xh * xh - *hi + 2 * xh * xl + xl * xl;
4693 /*********************************************************************
4694 * _hypot (MSVCRT.@)
4696 * Copied from musl: src/math/hypot.c
4698 double CDECL _hypot(double x, double y)
4700 UINT64 ux = *(UINT64*)&x, uy = *(UINT64*)&y, ut;
4701 double hx, lx, hy, ly, z;
4702 int ex, ey;
4704 /* arrange |x| >= |y| */
4705 ux &= -1ULL >> 1;
4706 uy &= -1ULL >> 1;
4707 if (ux < uy) {
4708 ut = ux;
4709 ux = uy;
4710 uy = ut;
4713 /* special cases */
4714 ex = ux >> 52;
4715 ey = uy >> 52;
4716 x = *(double*)&ux;
4717 y = *(double*)&uy;
4718 /* note: hypot(inf,nan) == inf */
4719 if (ey == 0x7ff)
4720 return y;
4721 if (ex == 0x7ff || uy == 0)
4722 return x;
4723 /* note: hypot(x,y) ~= x + y*y/x/2 with inexact for small y/x */
4724 /* 64 difference is enough for ld80 double_t */
4725 if (ex - ey > 64)
4726 return x + y;
4728 /* precise sqrt argument in nearest rounding mode without overflow */
4729 /* xh*xh must not overflow and xl*xl must not underflow in sq */
4730 z = 1;
4731 if (ex > 0x3ff + 510) {
4732 z = 0x1p700;
4733 x *= 0x1p-700;
4734 y *= 0x1p-700;
4735 } else if (ey < 0x3ff - 450) {
4736 z = 0x1p-700;
4737 x *= 0x1p700;
4738 y *= 0x1p700;
4740 sq(&hx, &lx, x);
4741 sq(&hy, &ly, y);
4742 return z * sqrt(ly + lx + hy + hx);
4745 /*********************************************************************
4746 * _hypotf (MSVCRT.@)
4748 * Copied from musl: src/math/hypotf.c
4750 float CDECL _hypotf(float x, float y)
4752 UINT32 ux = *(UINT32*)&x, uy = *(UINT32*)&y, ut;
4753 float z;
4755 ux &= -1U >> 1;
4756 uy &= -1U >> 1;
4757 if (ux < uy) {
4758 ut = ux;
4759 ux = uy;
4760 uy = ut;
4763 x = *(float*)&ux;
4764 y = *(float*)&uy;
4765 if (uy == 0xff << 23)
4766 return y;
4767 if (ux >= 0xff << 23 || uy == 0 || ux - uy >= 25 << 23)
4768 return x + y;
4770 z = 1;
4771 if (ux >= (0x7f + 60) << 23) {
4772 z = 0x1p90f;
4773 x *= 0x1p-90f;
4774 y *= 0x1p-90f;
4775 } else if (uy < (0x7f - 60) << 23) {
4776 z = 0x1p-90f;
4777 x *= 0x1p90f;
4778 y *= 0x1p90f;
4780 return z * sqrtf((double)x * x + (double)y * y);
4783 /*********************************************************************
4784 * ceil (MSVCRT.@)
4786 * Based on musl: src/math/ceilf.c
4788 double CDECL ceil( double x )
4790 union {double f; UINT64 i;} u = {x};
4791 int e = (u.i >> 52 & 0x7ff) - 0x3ff;
4792 UINT64 m;
4794 if (e >= 52)
4795 return x;
4796 if (e >= 0) {
4797 m = 0x000fffffffffffffULL >> e;
4798 if ((u.i & m) == 0)
4799 return x;
4800 if (u.i >> 63 == 0)
4801 u.i += m;
4802 u.i &= ~m;
4803 } else {
4804 if (u.i >> 63)
4805 return -0.0;
4806 else if (u.i << 1)
4807 return 1.0;
4809 return u.f;
4812 /*********************************************************************
4813 * floor (MSVCRT.@)
4815 * Based on musl: src/math/floorf.c
4817 double CDECL floor( double x )
4819 union {double f; UINT64 i;} u = {x};
4820 int e = (int)(u.i >> 52 & 0x7ff) - 0x3ff;
4821 UINT64 m;
4823 if (e >= 52)
4824 return x;
4825 if (e >= 0) {
4826 m = 0x000fffffffffffffULL >> e;
4827 if ((u.i & m) == 0)
4828 return x;
4829 if (u.i >> 63)
4830 u.i += m;
4831 u.i &= ~m;
4832 } else {
4833 if (u.i >> 63 == 0)
4834 return 0;
4835 else if (u.i << 1)
4836 return -1;
4838 return u.f;
4841 /*********************************************************************
4842 * fma (MSVCRT.@)
4844 * Copied from musl: src/math/fma.c
4846 struct fma_num
4848 UINT64 m;
4849 int e;
4850 int sign;
4853 static struct fma_num normalize(double x)
4855 UINT64 ix = *(UINT64*)&x;
4856 int e = ix >> 52;
4857 int sign = e & 0x800;
4858 struct fma_num ret;
4860 e &= 0x7ff;
4861 if (!e) {
4862 x *= 0x1p63;
4863 ix = *(UINT64*)&x;
4864 e = ix >> 52 & 0x7ff;
4865 e = e ? e - 63 : 0x800;
4867 ix &= (1ull << 52) - 1;
4868 ix |= 1ull << 52;
4869 ix <<= 1;
4870 e -= 0x3ff + 52 + 1;
4872 ret.m = ix;
4873 ret.e = e;
4874 ret.sign = sign;
4875 return ret;
4878 static void mul(UINT64 *hi, UINT64 *lo, UINT64 x, UINT64 y)
4880 UINT64 t1, t2, t3;
4881 UINT64 xlo = (UINT32)x, xhi = x >> 32;
4882 UINT64 ylo = (UINT32)y, yhi = y >> 32;
4884 t1 = xlo * ylo;
4885 t2 = xlo * yhi + xhi * ylo;
4886 t3 = xhi * yhi;
4887 *lo = t1 + (t2 << 32);
4888 *hi = t3 + (t2 >> 32) + (t1 > *lo);
4891 double CDECL fma( double x, double y, double z )
4893 int e, d, sign, samesign, nonzero;
4894 UINT64 rhi, rlo, zhi, zlo;
4895 struct fma_num nx, ny, nz;
4896 double r;
4897 INT64 i;
4899 /* normalize so top 10bits and last bit are 0 */
4900 nx = normalize(x);
4901 ny = normalize(y);
4902 nz = normalize(z);
4904 if (nx.e >= 0x7ff - 0x3ff - 52 - 1 || ny.e >= 0x7ff - 0x3ff - 52 - 1) {
4905 r = x * y + z;
4906 if (!isnan(x) && !isnan(y) && !isnan(z) && isnan(r)) *_errno() = EDOM;
4907 return r;
4909 if (nz.e >= 0x7ff - 0x3ff - 52 - 1) {
4910 if (nz.e > 0x7ff - 0x3ff - 52 - 1) {/* z==0 */
4911 r = x * y + z;
4912 if (!isnan(x) && !isnan(y) && isnan(r)) *_errno() = EDOM;
4913 return r;
4915 return z;
4918 /* mul: r = x*y */
4919 mul(&rhi, &rlo, nx.m, ny.m);
4920 /* either top 20 or 21 bits of rhi and last 2 bits of rlo are 0 */
4922 /* align exponents */
4923 e = nx.e + ny.e;
4924 d = nz.e - e;
4925 /* shift bits z<<=kz, r>>=kr, so kz+kr == d, set e = e+kr (== ez-kz) */
4926 if (d > 0) {
4927 if (d < 64) {
4928 zlo = nz.m << d;
4929 zhi = nz.m >> (64 - d);
4930 } else {
4931 zlo = 0;
4932 zhi = nz.m;
4933 e = nz.e - 64;
4934 d -= 64;
4935 if (d < 64 && d) {
4936 rlo = rhi << (64 - d) | rlo >> d | !!(rlo << (64 - d));
4937 rhi = rhi >> d;
4938 } else if (d) {
4939 rlo = 1;
4940 rhi = 0;
4943 } else {
4944 zhi = 0;
4945 d = -d;
4946 if (d == 0) {
4947 zlo = nz.m;
4948 } else if (d < 64) {
4949 zlo = nz.m >> d | !!(nz.m << (64 - d));
4950 } else {
4951 zlo = 1;
4955 /* add */
4956 sign = nx.sign ^ ny.sign;
4957 samesign = !(sign ^ nz.sign);
4958 nonzero = 1;
4959 if (samesign) {
4960 /* r += z */
4961 rlo += zlo;
4962 rhi += zhi + (rlo < zlo);
4963 } else {
4964 /* r -= z */
4965 UINT64 t = rlo;
4966 rlo -= zlo;
4967 rhi = rhi - zhi - (t < rlo);
4968 if (rhi >> 63) {
4969 rlo = -rlo;
4970 rhi = -rhi - !!rlo;
4971 sign = !sign;
4973 nonzero = !!rhi;
4976 /* set rhi to top 63bit of the result (last bit is sticky) */
4977 if (nonzero) {
4978 e += 64;
4979 if (rhi >> 32) {
4980 BitScanReverse((DWORD*)&d, rhi >> 32);
4981 d = 31 - d - 1;
4982 } else {
4983 BitScanReverse((DWORD*)&d, rhi);
4984 d = 63 - d - 1;
4986 /* note: d > 0 */
4987 rhi = rhi << d | rlo >> (64 - d) | !!(rlo << d);
4988 } else if (rlo) {
4989 if (rlo >> 32) {
4990 BitScanReverse((DWORD*)&d, rlo >> 32);
4991 d = 31 - d - 1;
4992 } else {
4993 BitScanReverse((DWORD*)&d, rlo);
4994 d = 63 - d - 1;
4996 if (d < 0)
4997 rhi = rlo >> 1 | (rlo & 1);
4998 else
4999 rhi = rlo << d;
5000 } else {
5001 /* exact +-0 */
5002 return x * y + z;
5004 e -= d;
5006 /* convert to double */
5007 i = rhi; /* i is in [1<<62,(1<<63)-1] */
5008 if (sign)
5009 i = -i;
5010 r = i; /* |r| is in [0x1p62,0x1p63] */
5012 if (e < -1022 - 62) {
5013 /* result is subnormal before rounding */
5014 if (e == -1022 - 63) {
5015 double c = 0x1p63;
5016 if (sign)
5017 c = -c;
5018 if (r == c) {
5019 /* min normal after rounding, underflow depends
5020 on arch behaviour which can be imitated by
5021 a double to float conversion */
5022 float fltmin = 0x0.ffffff8p-63 * FLT_MIN * r;
5023 return DBL_MIN / FLT_MIN * fltmin;
5025 /* one bit is lost when scaled, add another top bit to
5026 only round once at conversion if it is inexact */
5027 if (rhi << 53) {
5028 double tiny;
5030 i = rhi >> 1 | (rhi & 1) | 1ull << 62;
5031 if (sign)
5032 i = -i;
5033 r = i;
5034 r = 2 * r - c; /* remove top bit */
5036 /* raise underflow portably, such that it
5037 cannot be optimized away */
5038 tiny = DBL_MIN / FLT_MIN * r;
5039 r += (double)(tiny * tiny) * (r - r);
5041 } else {
5042 /* only round once when scaled */
5043 d = 10;
5044 i = (rhi >> d | !!(rhi << (64 - d))) << d;
5045 if (sign)
5046 i = -i;
5047 r = i;
5050 return __scalbn(r, e);
5053 /*********************************************************************
5054 * fmaf (MSVCRT.@)
5056 * Copied from musl: src/math/fmaf.c
5058 float CDECL fmaf( float x, float y, float z )
5060 union { double f; UINT64 i; } u;
5061 double xy, err;
5062 int e, neg;
5064 xy = (double)x * y;
5065 u.f = xy + z;
5066 e = u.i>>52 & 0x7ff;
5067 /* Common case: The double precision result is fine. */
5068 if ((u.i & 0x1fffffff) != 0x10000000 || /* not a halfway case */
5069 e == 0x7ff || /* NaN */
5070 (u.f - xy == z && u.f - z == xy) || /* exact */
5071 (_controlfp(0, 0) & _MCW_RC) != _RC_NEAR) /* not round-to-nearest */
5073 if (!isnan(x) && !isnan(y) && !isnan(z) && isnan(u.f)) *_errno() = EDOM;
5075 /* underflow may not be raised correctly, example:
5076 fmaf(0x1p-120f, 0x1p-120f, 0x1p-149f) */
5077 if (e < 0x3ff-126 && e >= 0x3ff-149 && _statusfp() & _SW_INEXACT)
5078 fp_barrierf((float)u.f * (float)u.f);
5079 return u.f;
5083 * If result is inexact, and exactly halfway between two float values,
5084 * we need to adjust the low-order bit in the direction of the error.
5086 neg = u.i >> 63;
5087 if (neg == (z > xy))
5088 err = xy - u.f + z;
5089 else
5090 err = z - u.f + xy;
5091 if (neg == (err < 0))
5092 u.i++;
5093 else
5094 u.i--;
5095 return u.f;
5098 /*********************************************************************
5099 * fabs (MSVCRT.@)
5101 * Copied from musl: src/math/fabsf.c
5103 double CDECL fabs( double x )
5105 union { double f; UINT64 i; } u = { x };
5106 u.i &= ~0ull >> 1;
5107 return u.f;
5110 /*********************************************************************
5111 * frexp (MSVCRT.@)
5113 * Copied from musl: src/math/frexp.c
5115 double CDECL frexp( double x, int *e )
5117 UINT64 ux = *(UINT64*)&x;
5118 int ee = ux >> 52 & 0x7ff;
5120 if (!ee) {
5121 if (x) {
5122 x = frexp(x * 0x1p64, e);
5123 *e -= 64;
5124 } else *e = 0;
5125 return x;
5126 } else if (ee == 0x7ff) {
5127 return x;
5130 *e = ee - 0x3fe;
5131 ux &= 0x800fffffffffffffull;
5132 ux |= 0x3fe0000000000000ull;
5133 return *(double*)&ux;
5136 /*********************************************************************
5137 * modf (MSVCRT.@)
5139 * Copied from musl: src/math/modf.c
5141 double CDECL modf( double x, double *iptr )
5143 union {double f; UINT64 i;} u = {x};
5144 UINT64 mask;
5145 int e = (u.i >> 52 & 0x7ff) - 0x3ff;
5147 /* no fractional part */
5148 if (e >= 52) {
5149 *iptr = x;
5150 if (e == 0x400 && u.i << 12 != 0) /* nan */
5151 return x;
5152 u.i &= 1ULL << 63;
5153 return u.f;
5156 /* no integral part*/
5157 if (e < 0) {
5158 u.i &= 1ULL << 63;
5159 *iptr = u.f;
5160 return x;
5163 mask = -1ULL >> 12 >> e;
5164 if ((u.i & mask) == 0) {
5165 *iptr = x;
5166 u.i &= 1ULL << 63;
5167 return u.f;
5169 u.i &= ~mask;
5170 *iptr = u.f;
5171 return x - u.f;
5174 #if defined(__i386__) || defined(__x86_64__)
5175 static void _setfp_sse( unsigned int *cw, unsigned int cw_mask,
5176 unsigned int *sw, unsigned int sw_mask )
5178 #if defined(__GNUC__) || defined(__clang__)
5179 unsigned long old_fpword, fpword;
5180 unsigned int flags;
5182 __asm__ __volatile__( "stmxcsr %0" : "=m" (fpword) );
5183 old_fpword = fpword;
5185 cw_mask &= _MCW_EM | _MCW_RC | _MCW_DN;
5186 sw_mask &= _MCW_EM;
5188 if (sw)
5190 flags = 0;
5191 if (fpword & 0x1) flags |= _SW_INVALID;
5192 if (fpword & 0x2) flags |= _SW_DENORMAL;
5193 if (fpword & 0x4) flags |= _SW_ZERODIVIDE;
5194 if (fpword & 0x8) flags |= _SW_OVERFLOW;
5195 if (fpword & 0x10) flags |= _SW_UNDERFLOW;
5196 if (fpword & 0x20) flags |= _SW_INEXACT;
5198 *sw = (flags & ~sw_mask) | (*sw & sw_mask);
5199 TRACE("sse2 update sw %08x to %08x\n", flags, *sw);
5200 fpword &= ~0x3f;
5201 if (*sw & _SW_INVALID) fpword |= 0x1;
5202 if (*sw & _SW_DENORMAL) fpword |= 0x2;
5203 if (*sw & _SW_ZERODIVIDE) fpword |= 0x4;
5204 if (*sw & _SW_OVERFLOW) fpword |= 0x8;
5205 if (*sw & _SW_UNDERFLOW) fpword |= 0x10;
5206 if (*sw & _SW_INEXACT) fpword |= 0x20;
5207 *sw = flags;
5210 if (cw)
5212 flags = 0;
5213 if (fpword & 0x80) flags |= _EM_INVALID;
5214 if (fpword & 0x100) flags |= _EM_DENORMAL;
5215 if (fpword & 0x200) flags |= _EM_ZERODIVIDE;
5216 if (fpword & 0x400) flags |= _EM_OVERFLOW;
5217 if (fpword & 0x800) flags |= _EM_UNDERFLOW;
5218 if (fpword & 0x1000) flags |= _EM_INEXACT;
5219 switch (fpword & 0x6000)
5221 case 0x6000: flags |= _RC_UP|_RC_DOWN; break;
5222 case 0x4000: flags |= _RC_UP; break;
5223 case 0x2000: flags |= _RC_DOWN; break;
5225 switch (fpword & 0x8040)
5227 case 0x0040: flags |= _DN_FLUSH_OPERANDS_SAVE_RESULTS; break;
5228 case 0x8000: flags |= _DN_SAVE_OPERANDS_FLUSH_RESULTS; break;
5229 case 0x8040: flags |= _DN_FLUSH; break;
5232 *cw = (flags & ~cw_mask) | (*cw & cw_mask);
5233 TRACE("sse2 update cw %08x to %08x\n", flags, *cw);
5234 fpword &= ~0xffc0;
5235 if (*cw & _EM_INVALID) fpword |= 0x80;
5236 if (*cw & _EM_DENORMAL) fpword |= 0x100;
5237 if (*cw & _EM_ZERODIVIDE) fpword |= 0x200;
5238 if (*cw & _EM_OVERFLOW) fpword |= 0x400;
5239 if (*cw & _EM_UNDERFLOW) fpword |= 0x800;
5240 if (*cw & _EM_INEXACT) fpword |= 0x1000;
5241 switch (*cw & _MCW_RC)
5243 case _RC_UP|_RC_DOWN: fpword |= 0x6000; break;
5244 case _RC_UP: fpword |= 0x4000; break;
5245 case _RC_DOWN: fpword |= 0x2000; break;
5247 switch (*cw & _MCW_DN)
5249 case _DN_FLUSH_OPERANDS_SAVE_RESULTS: fpword |= 0x0040; break;
5250 case _DN_SAVE_OPERANDS_FLUSH_RESULTS: fpword |= 0x8000; break;
5251 case _DN_FLUSH: fpword |= 0x8040; break;
5254 /* clear status word if anything changes */
5255 if (fpword != old_fpword && !sw)
5257 TRACE("sse2 clear status word\n");
5258 fpword &= ~0x3f;
5262 if (fpword != old_fpword)
5263 __asm__ __volatile__( "ldmxcsr %0" : : "m" (fpword) );
5264 #else
5265 FIXME("not implemented\n");
5266 if (cw) *cw = 0;
5267 if (sw) *sw = 0;
5268 #endif
5270 #endif
5272 static void _setfp( unsigned int *cw, unsigned int cw_mask,
5273 unsigned int *sw, unsigned int sw_mask )
5275 #if (defined(__GNUC__) || defined(__clang__)) && defined(__i386__)
5276 unsigned long oldcw = 0, newcw = 0;
5277 unsigned long oldsw = 0, newsw = 0;
5278 unsigned int flags;
5280 cw_mask &= _MCW_EM | _MCW_IC | _MCW_RC | _MCW_PC;
5281 sw_mask &= _MCW_EM;
5283 if (sw)
5285 __asm__ __volatile__( "fstsw %0" : "=m" (newsw) );
5286 oldsw = newsw;
5288 flags = 0;
5289 if (newsw & 0x1) flags |= _SW_INVALID;
5290 if (newsw & 0x2) flags |= _SW_DENORMAL;
5291 if (newsw & 0x4) flags |= _SW_ZERODIVIDE;
5292 if (newsw & 0x8) flags |= _SW_OVERFLOW;
5293 if (newsw & 0x10) flags |= _SW_UNDERFLOW;
5294 if (newsw & 0x20) flags |= _SW_INEXACT;
5296 *sw = (flags & ~sw_mask) | (*sw & sw_mask);
5297 TRACE("x86 update sw %08x to %08x\n", flags, *sw);
5298 newsw &= ~0x3f;
5299 if (*sw & _SW_INVALID) newsw |= 0x1;
5300 if (*sw & _SW_DENORMAL) newsw |= 0x2;
5301 if (*sw & _SW_ZERODIVIDE) newsw |= 0x4;
5302 if (*sw & _SW_OVERFLOW) newsw |= 0x8;
5303 if (*sw & _SW_UNDERFLOW) newsw |= 0x10;
5304 if (*sw & _SW_INEXACT) newsw |= 0x20;
5305 *sw = flags;
5308 if (cw)
5310 __asm__ __volatile__( "fstcw %0" : "=m" (newcw) );
5311 oldcw = newcw;
5313 flags = 0;
5314 if (newcw & 0x1) flags |= _EM_INVALID;
5315 if (newcw & 0x2) flags |= _EM_DENORMAL;
5316 if (newcw & 0x4) flags |= _EM_ZERODIVIDE;
5317 if (newcw & 0x8) flags |= _EM_OVERFLOW;
5318 if (newcw & 0x10) flags |= _EM_UNDERFLOW;
5319 if (newcw & 0x20) flags |= _EM_INEXACT;
5320 switch (newcw & 0xc00)
5322 case 0xc00: flags |= _RC_UP|_RC_DOWN; break;
5323 case 0x800: flags |= _RC_UP; break;
5324 case 0x400: flags |= _RC_DOWN; break;
5326 switch (newcw & 0x300)
5328 case 0x0: flags |= _PC_24; break;
5329 case 0x200: flags |= _PC_53; break;
5330 case 0x300: flags |= _PC_64; break;
5332 if (newcw & 0x1000) flags |= _IC_AFFINE;
5334 *cw = (flags & ~cw_mask) | (*cw & cw_mask);
5335 TRACE("x86 update cw %08x to %08x\n", flags, *cw);
5336 newcw &= ~0x1f3f;
5337 if (*cw & _EM_INVALID) newcw |= 0x1;
5338 if (*cw & _EM_DENORMAL) newcw |= 0x2;
5339 if (*cw & _EM_ZERODIVIDE) newcw |= 0x4;
5340 if (*cw & _EM_OVERFLOW) newcw |= 0x8;
5341 if (*cw & _EM_UNDERFLOW) newcw |= 0x10;
5342 if (*cw & _EM_INEXACT) newcw |= 0x20;
5343 switch (*cw & _MCW_RC)
5345 case _RC_UP|_RC_DOWN: newcw |= 0xc00; break;
5346 case _RC_UP: newcw |= 0x800; break;
5347 case _RC_DOWN: newcw |= 0x400; break;
5349 switch (*cw & _MCW_PC)
5351 case _PC_64: newcw |= 0x300; break;
5352 case _PC_53: newcw |= 0x200; break;
5353 case _PC_24: newcw |= 0x0; break;
5355 if (*cw & _IC_AFFINE) newcw |= 0x1000;
5358 if (oldsw != newsw && (newsw & 0x3f))
5360 struct {
5361 WORD control_word;
5362 WORD unused1;
5363 WORD status_word;
5364 WORD unused2;
5365 WORD tag_word;
5366 WORD unused3;
5367 DWORD instruction_pointer;
5368 WORD code_segment;
5369 WORD unused4;
5370 DWORD operand_addr;
5371 WORD data_segment;
5372 WORD unused5;
5373 } fenv;
5375 assert(cw);
5377 __asm__ __volatile__( "fnstenv %0" : "=m" (fenv) );
5378 fenv.control_word = newcw;
5379 fenv.status_word = newsw;
5380 __asm__ __volatile__( "fldenv %0" : : "m" (fenv) : "st", "st(1)",
5381 "st(2)", "st(3)", "st(4)", "st(5)", "st(6)", "st(7)" );
5382 return;
5385 if (oldsw != newsw)
5386 __asm__ __volatile__( "fnclex" );
5387 if (oldcw != newcw)
5388 __asm__ __volatile__( "fldcw %0" : : "m" (newcw) );
5389 #elif defined(__x86_64__)
5390 _setfp_sse(cw, cw_mask, sw, sw_mask);
5391 #elif defined(__aarch64__)
5392 ULONG_PTR old_fpsr = 0, fpsr = 0, old_fpcr = 0, fpcr = 0;
5393 unsigned int flags;
5395 cw_mask &= _MCW_EM | _MCW_RC;
5396 sw_mask &= _MCW_EM;
5398 if (sw)
5400 __asm__ __volatile__( "mrs %0, fpsr" : "=r" (fpsr) );
5401 old_fpsr = fpsr;
5403 flags = 0;
5404 if (fpsr & 0x1) flags |= _SW_INVALID;
5405 if (fpsr & 0x2) flags |= _SW_ZERODIVIDE;
5406 if (fpsr & 0x4) flags |= _SW_OVERFLOW;
5407 if (fpsr & 0x8) flags |= _SW_UNDERFLOW;
5408 if (fpsr & 0x10) flags |= _SW_INEXACT;
5409 if (fpsr & 0x80) flags |= _SW_DENORMAL;
5411 *sw = (flags & ~sw_mask) | (*sw & sw_mask);
5412 TRACE("aarch64 update sw %08x to %08x\n", flags, *sw);
5413 fpsr &= ~0x9f;
5414 if (*sw & _SW_INVALID) fpsr |= 0x1;
5415 if (*sw & _SW_ZERODIVIDE) fpsr |= 0x2;
5416 if (*sw & _SW_OVERFLOW) fpsr |= 0x4;
5417 if (*sw & _SW_UNDERFLOW) fpsr |= 0x8;
5418 if (*sw & _SW_INEXACT) fpsr |= 0x10;
5419 if (*sw & _SW_DENORMAL) fpsr |= 0x80;
5420 *sw = flags;
5423 if (cw)
5425 __asm__ __volatile__( "mrs %0, fpcr" : "=r" (fpcr) );
5426 old_fpcr = fpcr;
5428 flags = 0;
5429 if (!(fpcr & 0x100)) flags |= _EM_INVALID;
5430 if (!(fpcr & 0x200)) flags |= _EM_ZERODIVIDE;
5431 if (!(fpcr & 0x400)) flags |= _EM_OVERFLOW;
5432 if (!(fpcr & 0x800)) flags |= _EM_UNDERFLOW;
5433 if (!(fpcr & 0x1000)) flags |= _EM_INEXACT;
5434 if (!(fpcr & 0x8000)) flags |= _EM_DENORMAL;
5435 switch (fpcr & 0xc00000)
5437 case 0x400000: flags |= _RC_UP; break;
5438 case 0x800000: flags |= _RC_DOWN; break;
5439 case 0xc00000: flags |= _RC_CHOP; break;
5442 *cw = (flags & ~cw_mask) | (*cw & cw_mask);
5443 TRACE("aarch64 update cw %08x to %08x\n", flags, *cw);
5444 fpcr &= ~0xc09f00ul;
5445 if (!(*cw & _EM_INVALID)) fpcr |= 0x100;
5446 if (!(*cw & _EM_ZERODIVIDE)) fpcr |= 0x200;
5447 if (!(*cw & _EM_OVERFLOW)) fpcr |= 0x400;
5448 if (!(*cw & _EM_UNDERFLOW)) fpcr |= 0x800;
5449 if (!(*cw & _EM_INEXACT)) fpcr |= 0x1000;
5450 if (!(*cw & _EM_DENORMAL)) fpcr |= 0x8000;
5451 switch (*cw & _MCW_RC)
5453 case _RC_CHOP: fpcr |= 0xc00000; break;
5454 case _RC_UP: fpcr |= 0x400000; break;
5455 case _RC_DOWN: fpcr |= 0x800000; break;
5459 /* mask exceptions if needed */
5460 if (old_fpcr != fpcr && ~(old_fpcr >> 8) & fpsr & 0x9f != fpsr & 0x9f)
5462 ULONG_PTR mask = fpcr & ~0x9f00;
5463 __asm__ __volatile__( "msr fpcr, %0" :: "r" (mask) );
5466 if (old_fpsr != fpsr)
5467 __asm__ __volatile__( "msr fpsr, %0" :: "r" (fpsr) );
5468 if (old_fpcr != fpcr)
5469 __asm__ __volatile__( "msr fpcr, %0" :: "r" (fpcr) );
5470 #elif defined(__arm__) && !defined(__SOFTFP__)
5471 DWORD old_fpscr, fpscr;
5472 unsigned int flags;
5474 __asm__ __volatile__( "vmrs %0, fpscr" : "=r" (fpscr) );
5475 old_fpscr = fpscr;
5477 cw_mask &= _MCW_EM | _MCW_RC;
5478 sw_mask &= _MCW_EM;
5480 if (sw)
5482 flags = 0;
5483 if (fpscr & 0x1) flags |= _SW_INVALID;
5484 if (fpscr & 0x2) flags |= _SW_ZERODIVIDE;
5485 if (fpscr & 0x4) flags |= _SW_OVERFLOW;
5486 if (fpscr & 0x8) flags |= _SW_UNDERFLOW;
5487 if (fpscr & 0x10) flags |= _SW_INEXACT;
5488 if (fpscr & 0x80) flags |= _SW_DENORMAL;
5490 *sw = (flags & ~sw_mask) | (*sw & sw_mask);
5491 TRACE("arm update sw %08x to %08x\n", flags, *sw);
5492 fpscr &= ~0x9f;
5493 if (*sw & _SW_INVALID) fpscr |= 0x1;
5494 if (*sw & _SW_ZERODIVIDE) fpscr |= 0x2;
5495 if (*sw & _SW_OVERFLOW) fpscr |= 0x4;
5496 if (*sw & _SW_UNDERFLOW) fpscr |= 0x8;
5497 if (*sw & _SW_INEXACT) fpscr |= 0x10;
5498 if (*sw & _SW_DENORMAL) fpscr |= 0x80;
5499 *sw = flags;
5502 if (cw)
5504 flags = 0;
5505 if (!(fpscr & 0x100)) flags |= _EM_INVALID;
5506 if (!(fpscr & 0x200)) flags |= _EM_ZERODIVIDE;
5507 if (!(fpscr & 0x400)) flags |= _EM_OVERFLOW;
5508 if (!(fpscr & 0x800)) flags |= _EM_UNDERFLOW;
5509 if (!(fpscr & 0x1000)) flags |= _EM_INEXACT;
5510 if (!(fpscr & 0x8000)) flags |= _EM_DENORMAL;
5511 switch (fpscr & 0xc00000)
5513 case 0x400000: flags |= _RC_UP; break;
5514 case 0x800000: flags |= _RC_DOWN; break;
5515 case 0xc00000: flags |= _RC_CHOP; break;
5518 *cw = (flags & ~cw_mask) | (*cw & cw_mask);
5519 TRACE("arm update cw %08x to %08x\n", flags, *cw);
5520 fpscr &= ~0xc09f00ul;
5521 if (!(*cw & _EM_INVALID)) fpscr |= 0x100;
5522 if (!(*cw & _EM_ZERODIVIDE)) fpscr |= 0x200;
5523 if (!(*cw & _EM_OVERFLOW)) fpscr |= 0x400;
5524 if (!(*cw & _EM_UNDERFLOW)) fpscr |= 0x800;
5525 if (!(*cw & _EM_INEXACT)) fpscr |= 0x1000;
5526 if (!(*cw & _EM_DENORMAL)) fpscr |= 0x8000;
5527 switch (*cw & _MCW_RC)
5529 case _RC_CHOP: fpscr |= 0xc00000; break;
5530 case _RC_UP: fpscr |= 0x400000; break;
5531 case _RC_DOWN: fpscr |= 0x800000; break;
5535 if (old_fpscr != fpscr)
5536 __asm__ __volatile__( "vmsr fpscr, %0" :: "r" (fpscr) );
5537 #else
5538 FIXME("not implemented\n");
5539 if (cw) *cw = 0;
5540 if (sw) *sw = 0;
5541 #endif
5544 /**********************************************************************
5545 * _statusfp2 (MSVCR80.@)
5547 #if defined(__i386__)
5548 void CDECL _statusfp2( unsigned int *x86_sw, unsigned int *sse2_sw )
5550 if (x86_sw)
5551 _setfp(NULL, 0, x86_sw, 0);
5552 if (!sse2_sw) return;
5553 if (sse2_supported)
5554 _setfp_sse(NULL, 0, sse2_sw, 0);
5555 else *sse2_sw = 0;
5557 #endif
5559 /**********************************************************************
5560 * _statusfp (MSVCRT.@)
5562 unsigned int CDECL _statusfp(void)
5564 unsigned int flags = 0;
5565 #if defined(__i386__)
5566 unsigned int x86_sw, sse2_sw;
5568 _statusfp2( &x86_sw, &sse2_sw );
5569 /* FIXME: there's no definition for ambiguous status, just return all status bits for now */
5570 flags = x86_sw | sse2_sw;
5571 #else
5572 _setfp(NULL, 0, &flags, 0);
5573 #endif
5574 return flags;
5577 /*********************************************************************
5578 * _clearfp (MSVCRT.@)
5580 unsigned int CDECL _clearfp(void)
5582 unsigned int flags = 0;
5583 #ifdef __i386__
5584 _setfp(NULL, 0, &flags, _MCW_EM);
5585 if (sse2_supported)
5587 unsigned int sse_sw = 0;
5589 _setfp_sse(NULL, 0, &sse_sw, _MCW_EM);
5590 flags |= sse_sw;
5592 #else
5593 _setfp(NULL, 0, &flags, _MCW_EM);
5594 #endif
5595 return flags;
5598 /*********************************************************************
5599 * __fpecode (MSVCRT.@)
5601 int * CDECL __fpecode(void)
5603 return &msvcrt_get_thread_data()->fpecode;
5606 /*********************************************************************
5607 * ldexp (MSVCRT.@)
5609 double CDECL ldexp(double num, int exp)
5611 double z = __scalbn(num, exp);
5613 if (isfinite(num) && !isfinite(z))
5614 return math_error(_OVERFLOW, "ldexp", num, exp, z);
5615 if (num && isfinite(num) && !z)
5616 return math_error(_UNDERFLOW, "ldexp", num, exp, z);
5617 return z;
5620 /*********************************************************************
5621 * _cabs (MSVCRT.@)
5623 double CDECL _cabs(struct _complex num)
5625 return sqrt(num.x * num.x + num.y * num.y);
5628 /*********************************************************************
5629 * _chgsign (MSVCRT.@)
5631 double CDECL _chgsign(double num)
5633 union { double f; UINT64 i; } u = { num };
5634 u.i ^= 1ull << 63;
5635 return u.f;
5638 /*********************************************************************
5639 * __control87_2 (MSVCR80.@)
5641 * Not exported by native msvcrt, added in msvcr80.
5643 #ifdef __i386__
5644 int CDECL __control87_2( unsigned int newval, unsigned int mask,
5645 unsigned int *x86_cw, unsigned int *sse2_cw )
5647 if (x86_cw)
5649 *x86_cw = newval;
5650 _setfp(x86_cw, mask, NULL, 0);
5653 if (!sse2_cw) return 1;
5655 if (sse2_supported)
5657 *sse2_cw = newval;
5658 _setfp_sse(sse2_cw, mask, NULL, 0);
5660 else *sse2_cw = 0;
5662 return 1;
5664 #endif
5666 /*********************************************************************
5667 * _control87 (MSVCRT.@)
5669 unsigned int CDECL _control87(unsigned int newval, unsigned int mask)
5671 unsigned int flags = 0;
5672 #ifdef __i386__
5673 unsigned int sse2_cw;
5675 __control87_2( newval, mask, &flags, &sse2_cw );
5677 if (sse2_supported)
5679 if ((flags ^ sse2_cw) & (_MCW_EM | _MCW_RC)) flags |= _EM_AMBIGUOUS;
5680 flags |= sse2_cw;
5682 #else
5683 flags = newval;
5684 _setfp(&flags, mask, NULL, 0);
5685 #endif
5686 return flags;
5689 /*********************************************************************
5690 * _controlfp (MSVCRT.@)
5692 unsigned int CDECL _controlfp(unsigned int newval, unsigned int mask)
5694 return _control87( newval, mask & ~_EM_DENORMAL );
5697 /*********************************************************************
5698 * _set_controlfp (MSVCRT.@)
5700 void CDECL _set_controlfp( unsigned int newval, unsigned int mask )
5702 _controlfp( newval, mask );
5705 /*********************************************************************
5706 * _controlfp_s (MSVCRT.@)
5708 int CDECL _controlfp_s(unsigned int *cur, unsigned int newval, unsigned int mask)
5710 static const unsigned int all_flags = (_MCW_EM | _MCW_IC | _MCW_RC |
5711 _MCW_PC | _MCW_DN);
5712 unsigned int val;
5714 if (!MSVCRT_CHECK_PMT( !(newval & mask & ~all_flags) ))
5716 if (cur) *cur = _controlfp( 0, 0 ); /* retrieve it anyway */
5717 return EINVAL;
5719 val = _controlfp( newval, mask );
5720 if (cur) *cur = val;
5721 return 0;
5724 #if _MSVCR_VER >= 140 && (defined(__i386__) || defined(__x86_64__))
5725 enum fenv_masks
5727 FENV_X_INVALID = 0x00100010,
5728 FENV_X_DENORMAL = 0x00200020,
5729 FENV_X_ZERODIVIDE = 0x00080008,
5730 FENV_X_OVERFLOW = 0x00040004,
5731 FENV_X_UNDERFLOW = 0x00020002,
5732 FENV_X_INEXACT = 0x00010001,
5733 FENV_X_AFFINE = 0x00004000,
5734 FENV_X_UP = 0x00800200,
5735 FENV_X_DOWN = 0x00400100,
5736 FENV_X_24 = 0x00002000,
5737 FENV_X_53 = 0x00001000,
5738 FENV_Y_INVALID = 0x10000010,
5739 FENV_Y_DENORMAL = 0x20000020,
5740 FENV_Y_ZERODIVIDE = 0x08000008,
5741 FENV_Y_OVERFLOW = 0x04000004,
5742 FENV_Y_UNDERFLOW = 0x02000002,
5743 FENV_Y_INEXACT = 0x01000001,
5744 FENV_Y_UP = 0x80000200,
5745 FENV_Y_DOWN = 0x40000100,
5746 FENV_Y_FLUSH = 0x00000400,
5747 FENV_Y_FLUSH_SAVE = 0x00000800
5750 /* encodes x87/sse control/status word in ulong */
5751 static __msvcrt_ulong fenv_encode(unsigned int x, unsigned int y)
5753 __msvcrt_ulong ret = 0;
5755 #ifdef __i386__
5756 if (x & _EM_INVALID) ret |= FENV_X_INVALID;
5757 if (x & _EM_DENORMAL) ret |= FENV_X_DENORMAL;
5758 if (x & _EM_ZERODIVIDE) ret |= FENV_X_ZERODIVIDE;
5759 if (x & _EM_OVERFLOW) ret |= FENV_X_OVERFLOW;
5760 if (x & _EM_UNDERFLOW) ret |= FENV_X_UNDERFLOW;
5761 if (x & _EM_INEXACT) ret |= FENV_X_INEXACT;
5762 if (x & _IC_AFFINE) ret |= FENV_X_AFFINE;
5763 if (x & _RC_UP) ret |= FENV_X_UP;
5764 if (x & _RC_DOWN) ret |= FENV_X_DOWN;
5765 if (x & _PC_24) ret |= FENV_X_24;
5766 if (x & _PC_53) ret |= FENV_X_53;
5767 #endif
5768 x &= ~(_MCW_EM | _MCW_IC | _MCW_RC | _MCW_PC);
5770 if (y & _EM_INVALID) ret |= FENV_Y_INVALID;
5771 if (y & _EM_DENORMAL) ret |= FENV_Y_DENORMAL;
5772 if (y & _EM_ZERODIVIDE) ret |= FENV_Y_ZERODIVIDE;
5773 if (y & _EM_OVERFLOW) ret |= FENV_Y_OVERFLOW;
5774 if (y & _EM_UNDERFLOW) ret |= FENV_Y_UNDERFLOW;
5775 if (y & _EM_INEXACT) ret |= FENV_Y_INEXACT;
5776 if (y & _RC_UP) ret |= FENV_Y_UP;
5777 if (y & _RC_DOWN) ret |= FENV_Y_DOWN;
5778 if (y & _DN_FLUSH) ret |= FENV_Y_FLUSH;
5779 if (y & _DN_FLUSH_OPERANDS_SAVE_RESULTS) ret |= FENV_Y_FLUSH_SAVE;
5780 y &= ~(_MCW_EM | _MCW_IC | _MCW_RC | _MCW_DN);
5782 if(x || y) FIXME("unsupported flags: %x, %x\n", x, y);
5783 return ret;
5786 /* decodes x87/sse control/status word, returns FALSE on error */
5787 static BOOL fenv_decode(__msvcrt_ulong enc, unsigned int *x, unsigned int *y)
5789 *x = *y = 0;
5790 if ((enc & FENV_X_INVALID) == FENV_X_INVALID) *x |= _EM_INVALID;
5791 if ((enc & FENV_X_DENORMAL) == FENV_X_DENORMAL) *x |= _EM_DENORMAL;
5792 if ((enc & FENV_X_ZERODIVIDE) == FENV_X_ZERODIVIDE) *x |= _EM_ZERODIVIDE;
5793 if ((enc & FENV_X_OVERFLOW) == FENV_X_OVERFLOW) *x |= _EM_OVERFLOW;
5794 if ((enc & FENV_X_UNDERFLOW) == FENV_X_UNDERFLOW) *x |= _EM_UNDERFLOW;
5795 if ((enc & FENV_X_INEXACT) == FENV_X_INEXACT) *x |= _EM_INEXACT;
5796 if ((enc & FENV_X_AFFINE) == FENV_X_AFFINE) *x |= _IC_AFFINE;
5797 if ((enc & FENV_X_UP) == FENV_X_UP) *x |= _RC_UP;
5798 if ((enc & FENV_X_DOWN) == FENV_X_DOWN) *x |= _RC_DOWN;
5799 if ((enc & FENV_X_24) == FENV_X_24) *x |= _PC_24;
5800 if ((enc & FENV_X_53) == FENV_X_53) *x |= _PC_53;
5802 if ((enc & FENV_Y_INVALID) == FENV_Y_INVALID) *y |= _EM_INVALID;
5803 if ((enc & FENV_Y_DENORMAL) == FENV_Y_DENORMAL) *y |= _EM_DENORMAL;
5804 if ((enc & FENV_Y_ZERODIVIDE) == FENV_Y_ZERODIVIDE) *y |= _EM_ZERODIVIDE;
5805 if ((enc & FENV_Y_OVERFLOW) == FENV_Y_OVERFLOW) *y |= _EM_OVERFLOW;
5806 if ((enc & FENV_Y_UNDERFLOW) == FENV_Y_UNDERFLOW) *y |= _EM_UNDERFLOW;
5807 if ((enc & FENV_Y_INEXACT) == FENV_Y_INEXACT) *y |= _EM_INEXACT;
5808 if ((enc & FENV_Y_UP) == FENV_Y_UP) *y |= _RC_UP;
5809 if ((enc & FENV_Y_DOWN) == FENV_Y_DOWN) *y |= _RC_DOWN;
5810 if ((enc & FENV_Y_FLUSH) == FENV_Y_FLUSH) *y |= _DN_FLUSH;
5811 if ((enc & FENV_Y_FLUSH_SAVE) == FENV_Y_FLUSH_SAVE) *y |= _DN_FLUSH_OPERANDS_SAVE_RESULTS;
5813 if (fenv_encode(*x, *y) != enc)
5815 WARN("can't decode: %lx\n", enc);
5816 return FALSE;
5818 return TRUE;
5820 #elif _MSVCR_VER >= 120
5821 static __msvcrt_ulong fenv_encode(unsigned int x, unsigned int y)
5823 if (y & _EM_DENORMAL)
5824 y = (y & ~_EM_DENORMAL) | 0x20;
5826 return x | y;
5829 static BOOL fenv_decode(__msvcrt_ulong enc, unsigned int *x, unsigned int *y)
5831 if (enc & 0x20)
5832 enc = (enc & ~0x20) | _EM_DENORMAL;
5834 *x = *y = enc;
5835 return TRUE;
5837 #endif
5839 #if _MSVCR_VER>=120
5840 /*********************************************************************
5841 * fegetenv (MSVCR120.@)
5843 int CDECL fegetenv(fenv_t *env)
5845 #if _MSVCR_VER>=140 && defined(__i386__)
5846 unsigned int x87, sse;
5847 __control87_2(0, 0, &x87, &sse);
5848 env->_Fe_ctl = fenv_encode(x87, sse);
5849 _statusfp2(&x87, &sse);
5850 env->_Fe_stat = fenv_encode(x87, sse);
5851 #elif _MSVCR_VER>=140
5852 env->_Fe_ctl = fenv_encode(0, _control87(0, 0));
5853 env->_Fe_stat = fenv_encode(0, _statusfp());
5854 #else
5855 env->_Fe_ctl = _controlfp(0, 0) & (_EM_INEXACT | _EM_UNDERFLOW |
5856 _EM_OVERFLOW | _EM_ZERODIVIDE | _EM_INVALID | _MCW_RC);
5857 env->_Fe_stat = _statusfp();
5858 #endif
5859 return 0;
5862 /*********************************************************************
5863 * feupdateenv (MSVCR120.@)
5865 int CDECL feupdateenv(const fenv_t *env)
5867 fenv_t set;
5868 fegetenv(&set);
5869 set._Fe_ctl = env->_Fe_ctl;
5870 set._Fe_stat |= env->_Fe_stat;
5871 return fesetenv(&set);
5874 /*********************************************************************
5875 * fetestexcept (MSVCR120.@)
5877 int CDECL fetestexcept(int flags)
5879 return _statusfp() & flags;
5882 /*********************************************************************
5883 * fesetexceptflag (MSVCR120.@)
5885 int CDECL fesetexceptflag(const fexcept_t *status, int excepts)
5887 fenv_t env;
5889 excepts &= FE_ALL_EXCEPT;
5890 if(!excepts)
5891 return 0;
5893 fegetenv(&env);
5894 env._Fe_stat &= ~fenv_encode(excepts, excepts);
5895 env._Fe_stat |= *status & fenv_encode(excepts, excepts);
5896 return fesetenv(&env);
5899 /*********************************************************************
5900 * feraiseexcept (MSVCR120.@)
5902 int CDECL feraiseexcept(int flags)
5904 fenv_t env;
5906 flags &= FE_ALL_EXCEPT;
5907 fegetenv(&env);
5908 env._Fe_stat |= fenv_encode(flags, flags);
5909 return fesetenv(&env);
5912 /*********************************************************************
5913 * feclearexcept (MSVCR120.@)
5915 int CDECL feclearexcept(int flags)
5917 fenv_t env;
5919 fegetenv(&env);
5920 flags &= FE_ALL_EXCEPT;
5921 env._Fe_stat &= ~fenv_encode(flags, flags);
5922 return fesetenv(&env);
5925 /*********************************************************************
5926 * fegetexceptflag (MSVCR120.@)
5928 int CDECL fegetexceptflag(fexcept_t *status, int excepts)
5930 #if _MSVCR_VER>=140 && defined(__i386__)
5931 unsigned int x87, sse;
5932 _statusfp2(&x87, &sse);
5933 *status = fenv_encode(x87 & excepts, sse & excepts);
5934 #else
5935 *status = fenv_encode(0, _statusfp() & excepts);
5936 #endif
5937 return 0;
5939 #endif
5941 #if _MSVCR_VER>=140
5942 /*********************************************************************
5943 * __fpe_flt_rounds (UCRTBASE.@)
5945 int CDECL __fpe_flt_rounds(void)
5947 unsigned int fpc = _controlfp(0, 0) & _RC_CHOP;
5949 TRACE("()\n");
5951 switch(fpc) {
5952 case _RC_CHOP: return 0;
5953 case _RC_NEAR: return 1;
5954 case _RC_UP: return 2;
5955 default: return 3;
5958 #endif
5960 #if _MSVCR_VER>=120
5962 /*********************************************************************
5963 * fegetround (MSVCR120.@)
5965 int CDECL fegetround(void)
5967 return _controlfp(0, 0) & _MCW_RC;
5970 /*********************************************************************
5971 * fesetround (MSVCR120.@)
5973 int CDECL fesetround(int round_mode)
5975 if (round_mode & (~_MCW_RC))
5976 return 1;
5977 _controlfp(round_mode, _MCW_RC);
5978 return 0;
5981 #endif /* _MSVCR_VER>=120 */
5983 /*********************************************************************
5984 * _copysign (MSVCRT.@)
5986 * Copied from musl: src/math/copysign.c
5988 double CDECL _copysign( double x, double y )
5990 union { double f; UINT64 i; } ux = { x }, uy = { y };
5991 ux.i &= ~0ull >> 1;
5992 ux.i |= uy.i & 1ull << 63;
5993 return ux.f;
5996 /*********************************************************************
5997 * _finite (MSVCRT.@)
5999 int CDECL _finite(double num)
6001 union { double f; UINT64 i; } u = { num };
6002 return (u.i & ~0ull >> 1) < 0x7ffull << 52;
6005 /*********************************************************************
6006 * _fpreset (MSVCRT.@)
6008 void CDECL _fpreset(void)
6010 #if (defined(__GNUC__) || defined(__clang__)) && defined(__i386__)
6011 const unsigned int x86_cw = 0x27f;
6012 __asm__ __volatile__( "fninit; fldcw %0" : : "m" (x86_cw) );
6013 if (sse2_supported)
6015 unsigned int cw = _MCW_EM, sw = 0;
6016 _setfp_sse(&cw, ~0, &sw, ~0);
6018 #else
6019 unsigned int cw = _MCW_EM, sw = 0;
6020 _setfp(&cw, ~0, &sw, ~0);
6021 #endif
6024 #if _MSVCR_VER>=120
6025 /*********************************************************************
6026 * fesetenv (MSVCR120.@)
6028 int CDECL fesetenv(const fenv_t *env)
6030 unsigned int x87_cw, cw, x87_stat, stat;
6031 unsigned int mask;
6033 TRACE( "(%p)\n", env );
6035 if (!env->_Fe_ctl && !env->_Fe_stat) {
6036 _fpreset();
6037 return 0;
6040 if (!fenv_decode(env->_Fe_ctl, &x87_cw, &cw))
6041 return 1;
6042 if (!fenv_decode(env->_Fe_stat, &x87_stat, &stat))
6043 return 1;
6045 #if _MSVCR_VER >= 140
6046 mask = ~0;
6047 #else
6048 mask = _EM_INEXACT | _EM_UNDERFLOW | _EM_OVERFLOW
6049 | _EM_ZERODIVIDE | _EM_INVALID | _MCW_RC;
6050 #endif
6052 #ifdef __i386__
6053 _setfp(&x87_cw, mask, &x87_stat, ~0);
6054 if (sse2_supported)
6055 _setfp_sse(&cw, mask, &stat, ~0);
6056 return 0;
6057 #else
6058 _setfp(&cw, mask, &stat, ~0);
6059 return 0;
6060 #endif
6062 #endif
6064 /*********************************************************************
6065 * _isnan (MSVCRT.@)
6067 int CDECL _isnan(double num)
6069 union { double f; UINT64 i; } u = { num };
6070 return (u.i & ~0ull >> 1) > 0x7ffull << 52;
6073 static double pzero(double x)
6075 static const double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
6076 0.00000000000000000000e+00,
6077 -7.03124999999900357484e-02,
6078 -8.08167041275349795626e+00,
6079 -2.57063105679704847262e+02,
6080 -2.48521641009428822144e+03,
6081 -5.25304380490729545272e+03,
6082 }, pS8[5] = {
6083 1.16534364619668181717e+02,
6084 3.83374475364121826715e+03,
6085 4.05978572648472545552e+04,
6086 1.16752972564375915681e+05,
6087 4.76277284146730962675e+04,
6088 }, pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
6089 -1.14125464691894502584e-11,
6090 -7.03124940873599280078e-02,
6091 -4.15961064470587782438e+00,
6092 -6.76747652265167261021e+01,
6093 -3.31231299649172967747e+02,
6094 -3.46433388365604912451e+02,
6095 }, pS5[5] = {
6096 6.07539382692300335975e+01,
6097 1.05125230595704579173e+03,
6098 5.97897094333855784498e+03,
6099 9.62544514357774460223e+03,
6100 2.40605815922939109441e+03,
6101 }, pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
6102 -2.54704601771951915620e-09,
6103 -7.03119616381481654654e-02,
6104 -2.40903221549529611423e+00,
6105 -2.19659774734883086467e+01,
6106 -5.80791704701737572236e+01,
6107 -3.14479470594888503854e+01,
6108 }, pS3[5] = {
6109 3.58560338055209726349e+01,
6110 3.61513983050303863820e+02,
6111 1.19360783792111533330e+03,
6112 1.12799679856907414432e+03,
6113 1.73580930813335754692e+02,
6114 }, pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
6115 -8.87534333032526411254e-08,
6116 -7.03030995483624743247e-02,
6117 -1.45073846780952986357e+00,
6118 -7.63569613823527770791e+00,
6119 -1.11931668860356747786e+01,
6120 -3.23364579351335335033e+00,
6121 }, pS2[5] = {
6122 2.22202997532088808441e+01,
6123 1.36206794218215208048e+02,
6124 2.70470278658083486789e+02,
6125 1.53875394208320329881e+02,
6126 1.46576176948256193810e+01,
6129 const double *p, *q;
6130 double z, r, s;
6131 UINT32 ix;
6133 ix = *(ULONGLONG*)&x >> 32;
6134 ix &= 0x7fffffff;
6135 if (ix >= 0x40200000) {
6136 p = pR8;
6137 q = pS8;
6138 } else if (ix >= 0x40122E8B) {
6139 p = pR5;
6140 q = pS5;
6141 } else if (ix >= 0x4006DB6D) {
6142 p = pR3;
6143 q = pS3;
6144 } else /*ix >= 0x40000000*/ {
6145 p = pR2;
6146 q = pS2;
6149 z = 1.0 / (x * x);
6150 r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
6151 s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4]))));
6152 return 1.0 + r / s;
6155 static double qzero(double x)
6157 static const double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
6158 0.00000000000000000000e+00,
6159 7.32421874999935051953e-02,
6160 1.17682064682252693899e+01,
6161 5.57673380256401856059e+02,
6162 8.85919720756468632317e+03,
6163 3.70146267776887834771e+04,
6164 }, qS8[6] = {
6165 1.63776026895689824414e+02,
6166 8.09834494656449805916e+03,
6167 1.42538291419120476348e+05,
6168 8.03309257119514397345e+05,
6169 8.40501579819060512818e+05,
6170 -3.43899293537866615225e+05,
6171 }, qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
6172 1.84085963594515531381e-11,
6173 7.32421766612684765896e-02,
6174 5.83563508962056953777e+00,
6175 1.35111577286449829671e+02,
6176 1.02724376596164097464e+03,
6177 1.98997785864605384631e+03,
6178 }, qS5[6] = {
6179 8.27766102236537761883e+01,
6180 2.07781416421392987104e+03,
6181 1.88472887785718085070e+04,
6182 5.67511122894947329769e+04,
6183 3.59767538425114471465e+04,
6184 -5.35434275601944773371e+03,
6185 }, qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
6186 4.37741014089738620906e-09,
6187 7.32411180042911447163e-02,
6188 3.34423137516170720929e+00,
6189 4.26218440745412650017e+01,
6190 1.70808091340565596283e+02,
6191 1.66733948696651168575e+02,
6192 }, qS3[6] = {
6193 4.87588729724587182091e+01,
6194 7.09689221056606015736e+02,
6195 3.70414822620111362994e+03,
6196 6.46042516752568917582e+03,
6197 2.51633368920368957333e+03,
6198 -1.49247451836156386662e+02,
6199 }, qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
6200 1.50444444886983272379e-07,
6201 7.32234265963079278272e-02,
6202 1.99819174093815998816e+00,
6203 1.44956029347885735348e+01,
6204 3.16662317504781540833e+01,
6205 1.62527075710929267416e+01,
6206 }, qS2[6] = {
6207 3.03655848355219184498e+01,
6208 2.69348118608049844624e+02,
6209 8.44783757595320139444e+02,
6210 8.82935845112488550512e+02,
6211 2.12666388511798828631e+02,
6212 -5.31095493882666946917e+00,
6215 const double *p, *q;
6216 double s, r, z;
6217 unsigned int ix;
6219 ix = *(ULONGLONG*)&x >> 32;
6220 ix &= 0x7fffffff;
6221 if (ix >= 0x40200000) {
6222 p = qR8;
6223 q = qS8;
6224 } else if (ix >= 0x40122E8B) {
6225 p = qR5;
6226 q = qS5;
6227 } else if (ix >= 0x4006DB6D) {
6228 p = qR3;
6229 q = qS3;
6230 } else /*ix >= 0x40000000*/ {
6231 p = qR2;
6232 q = qS2;
6235 z = 1.0 / (x * x);
6236 r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
6237 s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5])))));
6238 return (-0.125 + r / s) / x;
6241 /* j0 and y0 approximation for |x|>=2 */
6242 static double j0_y0_approx(unsigned int ix, double x, BOOL y0)
6244 static const double invsqrtpi = 5.64189583547756279280e-01;
6246 double s, c, ss, cc, z;
6248 s = sin(x);
6249 c = cos(x);
6250 if (y0) c = -c;
6251 cc = s + c;
6252 /* avoid overflow in 2*x, big ulp error when x>=0x1p1023 */
6253 if (ix < 0x7fe00000) {
6254 ss = s - c;
6255 z = -cos(2 * x);
6256 if (s * c < 0) cc = z / ss;
6257 else ss = z / cc;
6258 if (ix < 0x48000000) {
6259 if (y0) ss = -ss;
6260 cc = pzero(x) * cc - qzero(x) * ss;
6263 return invsqrtpi * cc / sqrt(x);
6266 /*********************************************************************
6267 * _j0 (MSVCRT.@)
6269 * Copied from musl: src/math/j0.c
6271 double CDECL _j0(double x)
6273 static const double R02 = 1.56249999999999947958e-02,
6274 R03 = -1.89979294238854721751e-04,
6275 R04 = 1.82954049532700665670e-06,
6276 R05 = -4.61832688532103189199e-09,
6277 S01 = 1.56191029464890010492e-02,
6278 S02 = 1.16926784663337450260e-04,
6279 S03 = 5.13546550207318111446e-07,
6280 S04 = 1.16614003333790000205e-09;
6282 double z, r, s;
6283 unsigned int ix;
6285 ix = *(ULONGLONG*)&x >> 32;
6286 ix &= 0x7fffffff;
6288 /* j0(+-inf)=0, j0(nan)=nan */
6289 if (ix >= 0x7ff00000)
6290 return math_error(_DOMAIN, "_j0", x, 0, 1 / (x * x));
6291 x = fabs(x);
6293 if (ix >= 0x40000000) { /* |x| >= 2 */
6294 /* large ulp error near zeros: 2.4, 5.52, 8.6537,.. */
6295 return j0_y0_approx(ix, x, FALSE);
6298 if (ix >= 0x3f200000) { /* |x| >= 2**-13 */
6299 /* up to 4ulp error close to 2 */
6300 z = x * x;
6301 r = z * (R02 + z * (R03 + z * (R04 + z * R05)));
6302 s = 1 + z * (S01 + z * (S02 + z * (S03 + z * S04)));
6303 return (1 + x / 2) * (1 - x / 2) + z * (r / s);
6306 /* 1 - x*x/4 */
6307 /* prevent underflow */
6308 /* inexact should be raised when x!=0, this is not done correctly */
6309 if (ix >= 0x38000000) /* |x| >= 2**-127 */
6310 x = 0.25 * x * x;
6311 return 1 - x;
6314 static double pone(double x)
6316 static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
6317 0.00000000000000000000e+00,
6318 1.17187499999988647970e-01,
6319 1.32394806593073575129e+01,
6320 4.12051854307378562225e+02,
6321 3.87474538913960532227e+03,
6322 7.91447954031891731574e+03,
6323 }, ps8[5] = {
6324 1.14207370375678408436e+02,
6325 3.65093083420853463394e+03,
6326 3.69562060269033463555e+04,
6327 9.76027935934950801311e+04,
6328 3.08042720627888811578e+04,
6329 }, pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
6330 1.31990519556243522749e-11,
6331 1.17187493190614097638e-01,
6332 6.80275127868432871736e+00,
6333 1.08308182990189109773e+02,
6334 5.17636139533199752805e+02,
6335 5.28715201363337541807e+02,
6336 }, ps5[5] = {
6337 5.92805987221131331921e+01,
6338 9.91401418733614377743e+02,
6339 5.35326695291487976647e+03,
6340 7.84469031749551231769e+03,
6341 1.50404688810361062679e+03,
6342 }, pr3[6] = {
6343 3.02503916137373618024e-09,
6344 1.17186865567253592491e-01,
6345 3.93297750033315640650e+00,
6346 3.51194035591636932736e+01,
6347 9.10550110750781271918e+01,
6348 4.85590685197364919645e+01,
6349 }, ps3[5] = {
6350 3.47913095001251519989e+01,
6351 3.36762458747825746741e+02,
6352 1.04687139975775130551e+03,
6353 8.90811346398256432622e+02,
6354 1.03787932439639277504e+02,
6355 }, pr2[6] = { /* for x in [2.8570,2]=1/[0.3499,0.5] */
6356 1.07710830106873743082e-07,
6357 1.17176219462683348094e-01,
6358 2.36851496667608785174e+00,
6359 1.22426109148261232917e+01,
6360 1.76939711271687727390e+01,
6361 5.07352312588818499250e+00,
6362 }, ps2[5] = {
6363 2.14364859363821409488e+01,
6364 1.25290227168402751090e+02,
6365 2.32276469057162813669e+02,
6366 1.17679373287147100768e+02,
6367 8.36463893371618283368e+00,
6370 const double *p, *q;
6371 double z, r, s;
6372 unsigned int ix;
6374 ix = *(ULONGLONG*)&x >> 32;
6375 ix &= 0x7fffffff;
6376 if (ix >= 0x40200000) {
6377 p = pr8;
6378 q = ps8;
6379 } else if (ix >= 0x40122E8B) {
6380 p = pr5;
6381 q = ps5;
6382 } else if (ix >= 0x4006DB6D) {
6383 p = pr3;
6384 q = ps3;
6385 } else /*ix >= 0x40000000*/ {
6386 p = pr2;
6387 q = ps2;
6389 z = 1.0 / (x * x);
6390 r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
6391 s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4]))));
6392 return 1.0 + r / s;
6395 static double qone(double x)
6397 static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
6398 0.00000000000000000000e+00,
6399 -1.02539062499992714161e-01,
6400 -1.62717534544589987888e+01,
6401 -7.59601722513950107896e+02,
6402 -1.18498066702429587167e+04,
6403 -4.84385124285750353010e+04,
6404 }, qs8[6] = {
6405 1.61395369700722909556e+02,
6406 7.82538599923348465381e+03,
6407 1.33875336287249578163e+05,
6408 7.19657723683240939863e+05,
6409 6.66601232617776375264e+05,
6410 -2.94490264303834643215e+05,
6411 }, qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
6412 -2.08979931141764104297e-11,
6413 -1.02539050241375426231e-01,
6414 -8.05644828123936029840e+00,
6415 -1.83669607474888380239e+02,
6416 -1.37319376065508163265e+03,
6417 -2.61244440453215656817e+03,
6418 }, qs5[6] = {
6419 8.12765501384335777857e+01,
6420 1.99179873460485964642e+03,
6421 1.74684851924908907677e+04,
6422 4.98514270910352279316e+04,
6423 2.79480751638918118260e+04,
6424 -4.71918354795128470869e+03,
6425 }, qr3[6] = {
6426 -5.07831226461766561369e-09,
6427 -1.02537829820837089745e-01,
6428 -4.61011581139473403113e+00,
6429 -5.78472216562783643212e+01,
6430 -2.28244540737631695038e+02,
6431 -2.19210128478909325622e+02,
6432 }, qs3[6] = {
6433 4.76651550323729509273e+01,
6434 6.73865112676699709482e+02,
6435 3.38015286679526343505e+03,
6436 5.54772909720722782367e+03,
6437 1.90311919338810798763e+03,
6438 -1.35201191444307340817e+02,
6439 }, qr2[6] = { /* for x in [2.8570,2]=1/[0.3499,0.5] */
6440 -1.78381727510958865572e-07,
6441 -1.02517042607985553460e-01,
6442 -2.75220568278187460720e+00,
6443 -1.96636162643703720221e+01,
6444 -4.23253133372830490089e+01,
6445 -2.13719211703704061733e+01,
6446 }, qs2[6] = {
6447 2.95333629060523854548e+01,
6448 2.52981549982190529136e+02,
6449 7.57502834868645436472e+02,
6450 7.39393205320467245656e+02,
6451 1.55949003336666123687e+02,
6452 -4.95949898822628210127e+00,
6455 const double *p, *q;
6456 double s, r, z;
6457 unsigned int ix;
6459 ix = *(ULONGLONG*)&x >> 32;
6460 ix &= 0x7fffffff;
6461 if (ix >= 0x40200000) {
6462 p = qr8;
6463 q = qs8;
6464 } else if (ix >= 0x40122E8B) {
6465 p = qr5;
6466 q = qs5;
6467 } else if (ix >= 0x4006DB6D) {
6468 p = qr3;
6469 q = qs3;
6470 } else /*ix >= 0x40000000*/ {
6471 p = qr2;
6472 q = qs2;
6474 z = 1.0 / (x * x);
6475 r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
6476 s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5])))));
6477 return (0.375 + r / s) / x;
6480 static double j1_y1_approx(unsigned int ix, double x, BOOL y1, int sign)
6482 static const double invsqrtpi = 5.64189583547756279280e-01;
6484 double z, s, c, ss, cc;
6486 s = sin(x);
6487 if (y1) s = -s;
6488 c = cos(x);
6489 cc = s - c;
6490 if (ix < 0x7fe00000) {
6491 ss = -s - c;
6492 z = cos(2 * x);
6493 if (s * c > 0) cc = z / ss;
6494 else ss = z / cc;
6495 if (ix < 0x48000000) {
6496 if (y1)
6497 ss = -ss;
6498 cc = pone(x) * cc - qone(x) * ss;
6501 if (sign)
6502 cc = -cc;
6503 return invsqrtpi * cc / sqrt(x);
6506 /*********************************************************************
6507 * _j1 (MSVCRT.@)
6509 * Copied from musl: src/math/j1.c
6511 double CDECL _j1(double x)
6513 static const double r00 = -6.25000000000000000000e-02,
6514 r01 = 1.40705666955189706048e-03,
6515 r02 = -1.59955631084035597520e-05,
6516 r03 = 4.96727999609584448412e-08,
6517 s01 = 1.91537599538363460805e-02,
6518 s02 = 1.85946785588630915560e-04,
6519 s03 = 1.17718464042623683263e-06,
6520 s04 = 5.04636257076217042715e-09,
6521 s05 = 1.23542274426137913908e-11;
6523 double z, r, s;
6524 unsigned int ix;
6525 int sign;
6527 ix = *(ULONGLONG*)&x >> 32;
6528 sign = ix >> 31;
6529 ix &= 0x7fffffff;
6530 if (ix >= 0x7ff00000)
6531 return math_error(isnan(x) ? 0 : _DOMAIN, "_j1", x, 0, 1 / (x * x));
6532 if (ix >= 0x40000000) /* |x| >= 2 */
6533 return j1_y1_approx(ix, fabs(x), FALSE, sign);
6534 if (ix >= 0x38000000) { /* |x| >= 2**-127 */
6535 z = x * x;
6536 r = z * (r00 + z * (r01 + z * (r02 + z * r03)));
6537 s = 1 + z * (s01 + z * (s02 + z * (s03 + z * (s04 + z * s05))));
6538 z = r / s;
6539 } else {
6540 /* avoid underflow, raise inexact if x!=0 */
6541 z = x;
6543 return (0.5 + z) * x;
6546 /*********************************************************************
6547 * _jn (MSVCRT.@)
6549 * Copied from musl: src/math/jn.c
6551 double CDECL _jn(int n, double x)
6553 static const double invsqrtpi = 5.64189583547756279280e-01;
6555 unsigned int ix, lx;
6556 int nm1, i, sign;
6557 double a, b, temp;
6559 ix = *(ULONGLONG*)&x >> 32;
6560 lx = *(ULONGLONG*)&x;
6561 sign = ix >> 31;
6562 ix &= 0x7fffffff;
6564 if ((ix | (lx | -lx) >> 31) > 0x7ff00000) /* nan */
6565 return x;
6567 if (n == 0)
6568 return _j0(x);
6569 if (n < 0) {
6570 nm1 = -(n + 1);
6571 x = -x;
6572 sign ^= 1;
6573 } else {
6574 nm1 = n-1;
6576 if (nm1 == 0)
6577 return j1(x);
6579 sign &= n; /* even n: 0, odd n: signbit(x) */
6580 x = fabs(x);
6581 if ((ix | lx) == 0 || ix == 0x7ff00000) /* if x is 0 or inf */
6582 b = 0.0;
6583 else if (nm1 < x) {
6584 if (ix >= 0x52d00000) { /* x > 2**302 */
6585 switch(nm1 & 3) {
6586 case 0:
6587 temp = -cos(x) + sin(x);
6588 break;
6589 case 1:
6590 temp = -cos(x) - sin(x);
6591 break;
6592 case 2:
6593 temp = cos(x) - sin(x);
6594 break;
6595 default:
6596 temp = cos(x) + sin(x);
6597 break;
6599 b = invsqrtpi * temp / sqrt(x);
6600 } else {
6601 a = _j0(x);
6602 b = _j1(x);
6603 for (i = 0; i < nm1; ) {
6604 i++;
6605 temp = b;
6606 b = b * (2.0 * i / x) - a; /* avoid underflow */
6607 a = temp;
6610 } else {
6611 if (ix < 0x3e100000) { /* x < 2**-29 */
6612 if (nm1 > 32) /* underflow */
6613 b = 0.0;
6614 else {
6615 temp = x * 0.5;
6616 b = temp;
6617 a = 1.0;
6618 for (i = 2; i <= nm1 + 1; i++) {
6619 a *= (double)i; /* a = n! */
6620 b *= temp; /* b = (x/2)^n */
6622 b = b / a;
6624 } else {
6625 double t, q0, q1, w, h, z, tmp, nf;
6626 int k;
6628 nf = nm1 + 1.0;
6629 w = 2 * nf / x;
6630 h = 2 / x;
6631 z = w + h;
6632 q0 = w;
6633 q1 = w * z - 1.0;
6634 k = 1;
6635 while (q1 < 1.0e9) {
6636 k += 1;
6637 z += h;
6638 tmp = z * q1 - q0;
6639 q0 = q1;
6640 q1 = tmp;
6642 for (t = 0.0, i = k; i >= 0; i--)
6643 t = 1 / (2 * (i + nf) / x - t);
6644 a = t;
6645 b = 1.0;
6646 tmp = nf * log(fabs(w));
6647 if (tmp < 7.09782712893383973096e+02) {
6648 for (i = nm1; i > 0; i--) {
6649 temp = b;
6650 b = b * (2.0 * i) / x - a;
6651 a = temp;
6653 } else {
6654 for (i = nm1; i > 0; i--) {
6655 temp = b;
6656 b = b * (2.0 * i) / x - a;
6657 a = temp;
6658 /* scale b to avoid spurious overflow */
6659 if (b > 0x1p500) {
6660 a /= b;
6661 t /= b;
6662 b = 1.0;
6666 z = j0(x);
6667 w = j1(x);
6668 if (fabs(z) >= fabs(w))
6669 b = t * z / b;
6670 else
6671 b = t * w / a;
6674 return sign ? -b : b;
6677 /*********************************************************************
6678 * _y0 (MSVCRT.@)
6680 double CDECL _y0(double x)
6682 static const double tpi = 6.36619772367581382433e-01,
6683 u00 = -7.38042951086872317523e-02,
6684 u01 = 1.76666452509181115538e-01,
6685 u02 = -1.38185671945596898896e-02,
6686 u03 = 3.47453432093683650238e-04,
6687 u04 = -3.81407053724364161125e-06,
6688 u05 = 1.95590137035022920206e-08,
6689 u06 = -3.98205194132103398453e-11,
6690 v01 = 1.27304834834123699328e-02,
6691 v02 = 7.60068627350353253702e-05,
6692 v03 = 2.59150851840457805467e-07,
6693 v04 = 4.41110311332675467403e-10;
6695 double z, u, v;
6696 unsigned int ix, lx;
6698 ix = *(ULONGLONG*)&x >> 32;
6699 lx = *(ULONGLONG*)&x;
6701 /* y0(nan)=nan, y0(<0)=nan, y0(0)=-inf, y0(inf)=0 */
6702 if ((ix << 1 | lx) == 0)
6703 return math_error(_OVERFLOW, "_y0", x, 0, -INFINITY);
6704 if (isnan(x))
6705 return x;
6706 if (ix >> 31)
6707 return math_error(_DOMAIN, "_y0", x, 0, 0 / (x - x));
6708 if (ix >= 0x7ff00000)
6709 return 1 / x;
6711 if (ix >= 0x40000000) { /* x >= 2 */
6712 /* large ulp errors near zeros: 3.958, 7.086,.. */
6713 return j0_y0_approx(ix, x, TRUE);
6716 if (ix >= 0x3e400000) { /* x >= 2**-27 */
6717 /* large ulp error near the first zero, x ~= 0.89 */
6718 z = x * x;
6719 u = u00 + z * (u01 + z * (u02 + z * (u03 + z * (u04 + z * (u05 + z * u06)))));
6720 v = 1.0 + z * (v01 + z * (v02 + z * (v03 + z * v04)));
6721 return u / v + tpi * (j0(x) * log(x));
6723 return u00 + tpi * log(x);
6726 /*********************************************************************
6727 * _y1 (MSVCRT.@)
6729 double CDECL _y1(double x)
6731 static const double tpi = 6.36619772367581382433e-01,
6732 u00 = -1.96057090646238940668e-01,
6733 u01 = 5.04438716639811282616e-02,
6734 u02 = -1.91256895875763547298e-03,
6735 u03 = 2.35252600561610495928e-05,
6736 u04 = -9.19099158039878874504e-08,
6737 v00 = 1.99167318236649903973e-02,
6738 v01 = 2.02552581025135171496e-04,
6739 v02 = 1.35608801097516229404e-06,
6740 v03 = 6.22741452364621501295e-09,
6741 v04 = 1.66559246207992079114e-11;
6743 double z, u, v;
6744 unsigned int ix, lx;
6746 ix = *(ULONGLONG*)&x >> 32;
6747 lx = *(ULONGLONG*)&x;
6749 /* y1(nan)=nan, y1(<0)=nan, y1(0)=-inf, y1(inf)=0 */
6750 if ((ix << 1 | lx) == 0)
6751 return math_error(_OVERFLOW, "_y1", x, 0, -INFINITY);
6752 if (isnan(x))
6753 return x;
6754 if (ix >> 31)
6755 return math_error(_DOMAIN, "_y1", x, 0, 0 / (x - x));
6756 if (ix >= 0x7ff00000)
6757 return 1 / x;
6759 if (ix >= 0x40000000) /* x >= 2 */
6760 return j1_y1_approx(ix, x, TRUE, 0);
6761 if (ix < 0x3c900000) /* x < 2**-54 */
6762 return -tpi / x;
6763 z = x * x;
6764 u = u00 + z * (u01 + z * (u02 + z * (u03 + z * u04)));
6765 v = 1 + z * (v00 + z * (v01 + z * (v02 + z * (v03 + z * v04))));
6766 return x * (u / v) + tpi * (j1(x) * log(x) - 1 / x);
6769 /*********************************************************************
6770 * _yn (MSVCRT.@)
6772 * Copied from musl: src/math/jn.c
6774 double CDECL _yn(int n, double x)
6776 static const double invsqrtpi = 5.64189583547756279280e-01;
6778 unsigned int ix, lx, ib;
6779 int nm1, sign, i;
6780 double a, b, temp;
6782 ix = *(ULONGLONG*)&x >> 32;
6783 lx = *(ULONGLONG*)&x;
6784 sign = ix >> 31;
6785 ix &= 0x7fffffff;
6787 if ((ix | (lx | -lx) >> 31) > 0x7ff00000) /* nan */
6788 return x;
6789 if (sign && (ix | lx) != 0) /* x < 0 */
6790 return math_error(_DOMAIN, "_y1", x, 0, 0 / (x - x));
6791 if (ix == 0x7ff00000)
6792 return 0.0;
6794 if (n == 0)
6795 return y0(x);
6796 if (n < 0) {
6797 nm1 = -(n + 1);
6798 sign = n & 1;
6799 } else {
6800 nm1 = n - 1;
6801 sign = 0;
6803 if (nm1 == 0)
6804 return sign ? -y1(x) : y1(x);
6806 if (ix >= 0x52d00000) { /* x > 2**302 */
6807 switch(nm1 & 3) {
6808 case 0:
6809 temp = -sin(x) - cos(x);
6810 break;
6811 case 1:
6812 temp = -sin(x) + cos(x);
6813 break;
6814 case 2:
6815 temp = sin(x) + cos(x);
6816 break;
6817 default:
6818 temp = sin(x) - cos(x);
6819 break;
6821 b = invsqrtpi * temp / sqrt(x);
6822 } else {
6823 a = y0(x);
6824 b = y1(x);
6825 /* quit if b is -inf */
6826 ib = *(ULONGLONG*)&b >> 32;
6827 for (i = 0; i < nm1 && ib != 0xfff00000;) {
6828 i++;
6829 temp = b;
6830 b = (2.0 * i / x) * b - a;
6831 ib = *(ULONGLONG*)&b >> 32;
6832 a = temp;
6835 return sign ? -b : b;
6838 #if _MSVCR_VER>=120
6840 /*********************************************************************
6841 * _nearbyint (MSVCR120.@)
6843 * Based on musl: src/math/nearbyteint.c
6845 double CDECL nearbyint(double x)
6847 BOOL update_cw, update_sw;
6848 unsigned int cw, sw;
6850 _setfp(&cw, 0, &sw, 0);
6851 update_cw = !(cw & _EM_INEXACT);
6852 update_sw = !(sw & _SW_INEXACT);
6853 if (update_cw)
6855 cw |= _EM_INEXACT;
6856 _setfp(&cw, _EM_INEXACT, NULL, 0);
6858 x = rint(x);
6859 if (update_cw || update_sw)
6861 sw = 0;
6862 cw &= ~_EM_INEXACT;
6863 _setfp(update_cw ? &cw : NULL, _EM_INEXACT,
6864 update_sw ? &sw : NULL, _SW_INEXACT);
6866 return x;
6869 /*********************************************************************
6870 * _nearbyintf (MSVCR120.@)
6872 * Based on musl: src/math/nearbyteintf.c
6874 float CDECL nearbyintf(float x)
6876 BOOL update_cw, update_sw;
6877 unsigned int cw, sw;
6879 _setfp(&cw, 0, &sw, 0);
6880 update_cw = !(cw & _EM_INEXACT);
6881 update_sw = !(sw & _SW_INEXACT);
6882 if (update_cw)
6884 cw |= _EM_INEXACT;
6885 _setfp(&cw, _EM_INEXACT, NULL, 0);
6887 x = rintf(x);
6888 if (update_cw || update_sw)
6890 sw = 0;
6891 cw &= ~_EM_INEXACT;
6892 _setfp(update_cw ? &cw : NULL, _EM_INEXACT,
6893 update_sw ? &sw : NULL, _SW_INEXACT);
6895 return x;
6898 /*********************************************************************
6899 * nexttoward (MSVCR120.@)
6901 double CDECL MSVCRT_nexttoward(double num, double next)
6903 return _nextafter(num, next);
6906 /*********************************************************************
6907 * nexttowardf (MSVCR120.@)
6909 * Copied from musl: src/math/nexttowardf.c
6911 float CDECL MSVCRT_nexttowardf(float x, double y)
6913 unsigned int ix = *(unsigned int*)&x;
6914 unsigned int e;
6915 float ret;
6917 if (isnan(x) || isnan(y))
6918 return x + y;
6919 if (x == y)
6920 return y;
6921 if (x == 0) {
6922 ix = 1;
6923 if (signbit(y))
6924 ix |= 0x80000000;
6925 } else if (x < y) {
6926 if (signbit(x))
6927 ix--;
6928 else
6929 ix++;
6930 } else {
6931 if (signbit(x))
6932 ix++;
6933 else
6934 ix--;
6936 e = ix & 0x7f800000;
6937 /* raise overflow if ix is infinite and x is finite */
6938 if (e == 0x7f800000) {
6939 fp_barrierf(x + x);
6940 *_errno() = ERANGE;
6942 ret = *(float*)&ix;
6943 /* raise underflow if ret is subnormal or zero */
6944 if (e == 0) {
6945 fp_barrierf(x * x + ret * ret);
6946 *_errno() = ERANGE;
6948 return ret;
6951 #endif /* _MSVCR_VER>=120 */
6953 /*********************************************************************
6954 * _nextafter (MSVCRT.@)
6956 * Copied from musl: src/math/nextafter.c
6958 double CDECL _nextafter(double x, double y)
6960 ULONGLONG llx = *(ULONGLONG*)&x;
6961 ULONGLONG lly = *(ULONGLONG*)&y;
6962 ULONGLONG ax, ay;
6963 int e;
6965 if (isnan(x) || isnan(y))
6966 return x + y;
6967 if (llx == lly) {
6968 if (_fpclass(y) & (_FPCLASS_ND | _FPCLASS_PD | _FPCLASS_NZ | _FPCLASS_PZ ))
6969 *_errno() = ERANGE;
6970 return y;
6972 ax = llx & -1ULL / 2;
6973 ay = lly & -1ULL / 2;
6974 if (ax == 0) {
6975 if (ay == 0)
6976 return y;
6977 llx = (lly & 1ULL << 63) | 1;
6978 } else if (ax > ay || ((llx ^ lly) & 1ULL << 63))
6979 llx--;
6980 else
6981 llx++;
6982 e = llx >> 52 & 0x7ff;
6983 /* raise overflow if llx is infinite and x is finite */
6984 if (e == 0x7ff) {
6985 fp_barrier(x + x);
6986 *_errno() = ERANGE;
6988 /* raise underflow if llx is subnormal or zero */
6989 y = *(double*)&llx;
6990 if (e == 0) {
6991 fp_barrier(x * x + y * y);
6992 *_errno() = ERANGE;
6994 return y;
6997 /*********************************************************************
6998 * _ecvt (MSVCRT.@)
7000 char * CDECL _ecvt( double number, int ndigits, int *decpt, int *sign )
7002 int prec, len;
7003 thread_data_t *data = msvcrt_get_thread_data();
7004 /* FIXME: check better for overflow (native supports over 300 chars) */
7005 ndigits = min( ndigits, 80 - 8); /* 8 : space for sign, dec point, "e",
7006 * 4 for exponent and one for
7007 * terminating '\0' */
7008 if (!data->efcvt_buffer)
7009 data->efcvt_buffer = malloc( 80 ); /* ought to be enough */
7011 /* handle cases with zero ndigits or less */
7012 prec = ndigits;
7013 if( prec < 1) prec = 2;
7014 len = _snprintf(data->efcvt_buffer, 80, "%.*le", prec - 1, number);
7016 if (data->efcvt_buffer[0] == '-') {
7017 memmove( data->efcvt_buffer, data->efcvt_buffer + 1, len-- );
7018 *sign = 1;
7019 } else *sign = 0;
7021 /* take the decimal "point away */
7022 if( prec != 1)
7023 memmove( data->efcvt_buffer + 1, data->efcvt_buffer + 2, len - 1 );
7024 /* take the exponential "e" out */
7025 data->efcvt_buffer[ prec] = '\0';
7026 /* read the exponent */
7027 sscanf( data->efcvt_buffer + prec + 1, "%d", decpt);
7028 (*decpt)++;
7029 /* adjust for some border cases */
7030 if( data->efcvt_buffer[0] == '0')/* value is zero */
7031 *decpt = 0;
7032 /* handle cases with zero ndigits or less */
7033 if( ndigits < 1){
7034 if( data->efcvt_buffer[ 0] >= '5')
7035 (*decpt)++;
7036 data->efcvt_buffer[ 0] = '\0';
7038 TRACE("out=\"%s\"\n",data->efcvt_buffer);
7039 return data->efcvt_buffer;
7042 /*********************************************************************
7043 * _ecvt_s (MSVCRT.@)
7045 int CDECL _ecvt_s( char *buffer, size_t length, double number, int ndigits, int *decpt, int *sign )
7047 int prec, len;
7048 char *result;
7050 if (!MSVCRT_CHECK_PMT(buffer != NULL)) return EINVAL;
7051 if (!MSVCRT_CHECK_PMT(decpt != NULL)) return EINVAL;
7052 if (!MSVCRT_CHECK_PMT(sign != NULL)) return EINVAL;
7053 if (!MSVCRT_CHECK_PMT_ERR( length > 2, ERANGE )) return ERANGE;
7054 if (!MSVCRT_CHECK_PMT_ERR(ndigits < (int)length - 1, ERANGE )) return ERANGE;
7056 /* handle cases with zero ndigits or less */
7057 prec = ndigits;
7058 if( prec < 1) prec = 2;
7059 result = malloc(prec + 8);
7061 len = _snprintf(result, prec + 8, "%.*le", prec - 1, number);
7062 if (result[0] == '-') {
7063 memmove( result, result + 1, len-- );
7064 *sign = 1;
7065 } else *sign = 0;
7067 /* take the decimal "point away */
7068 if( prec != 1)
7069 memmove( result + 1, result + 2, len - 1 );
7070 /* take the exponential "e" out */
7071 result[ prec] = '\0';
7072 /* read the exponent */
7073 sscanf( result + prec + 1, "%d", decpt);
7074 (*decpt)++;
7075 /* adjust for some border cases */
7076 if( result[0] == '0')/* value is zero */
7077 *decpt = 0;
7078 /* handle cases with zero ndigits or less */
7079 if( ndigits < 1){
7080 if( result[ 0] >= '5')
7081 (*decpt)++;
7082 result[ 0] = '\0';
7084 memcpy( buffer, result, max(ndigits + 1, 1) );
7085 free( result );
7086 return 0;
7089 /***********************************************************************
7090 * _fcvt (MSVCRT.@)
7092 char * CDECL _fcvt( double number, int ndigits, int *decpt, int *sign )
7094 thread_data_t *data = msvcrt_get_thread_data();
7095 int stop, dec1, dec2;
7096 char *ptr1, *ptr2, *first;
7097 char buf[80]; /* ought to be enough */
7098 char decimal_separator = get_locinfo()->lconv->decimal_point[0];
7100 if (!data->efcvt_buffer)
7101 data->efcvt_buffer = malloc( 80 ); /* ought to be enough */
7103 stop = _snprintf(buf, 80, "%.*f", ndigits < 0 ? 0 : ndigits, number);
7104 ptr1 = buf;
7105 ptr2 = data->efcvt_buffer;
7106 first = NULL;
7107 dec1 = 0;
7108 dec2 = 0;
7110 if (*ptr1 == '-') {
7111 *sign = 1;
7112 ptr1++;
7113 } else *sign = 0;
7115 /* For numbers below the requested resolution, work out where
7116 the decimal point will be rather than finding it in the string */
7117 if (number < 1.0 && number > 0.0) {
7118 dec2 = log10(number + 1e-10);
7119 if (-dec2 <= ndigits) dec2 = 0;
7122 /* If requested digits is zero or less, we will need to truncate
7123 * the returned string */
7124 if (ndigits < 1) {
7125 stop += ndigits;
7128 while (*ptr1 == '0') ptr1++; /* Skip leading zeroes */
7129 while (*ptr1 != '\0' && *ptr1 != decimal_separator) {
7130 if (!first) first = ptr2;
7131 if ((ptr1 - buf) < stop) {
7132 *ptr2++ = *ptr1++;
7133 } else {
7134 ptr1++;
7136 dec1++;
7139 if (ndigits > 0) {
7140 ptr1++;
7141 if (!first) {
7142 while (*ptr1 == '0') { /* Process leading zeroes */
7143 *ptr2++ = *ptr1++;
7144 dec1--;
7147 while (*ptr1 != '\0') {
7148 if (!first) first = ptr2;
7149 *ptr2++ = *ptr1++;
7153 *ptr2 = '\0';
7155 /* We never found a non-zero digit, then our number is either
7156 * smaller than the requested precision, or 0.0 */
7157 if (!first) {
7158 if (number > 0.0) {
7159 first = ptr2;
7160 } else {
7161 first = data->efcvt_buffer;
7162 dec1 = 0;
7166 *decpt = dec2 ? dec2 : dec1;
7167 return first;
7170 /***********************************************************************
7171 * _fcvt_s (MSVCRT.@)
7173 int CDECL _fcvt_s(char* outbuffer, size_t size, double number, int ndigits, int *decpt, int *sign)
7175 int stop, dec1, dec2;
7176 char *ptr1, *ptr2, *first;
7177 char buf[80]; /* ought to be enough */
7178 char decimal_separator = get_locinfo()->lconv->decimal_point[0];
7180 if (!outbuffer || !decpt || !sign || size == 0)
7182 *_errno() = EINVAL;
7183 return EINVAL;
7186 stop = _snprintf(buf, 80, "%.*f", ndigits < 0 ? 0 : ndigits, number);
7187 ptr1 = buf;
7188 ptr2 = outbuffer;
7189 first = NULL;
7190 dec1 = 0;
7191 dec2 = 0;
7193 if (*ptr1 == '-') {
7194 *sign = 1;
7195 ptr1++;
7196 } else *sign = 0;
7198 /* For numbers below the requested resolution, work out where
7199 the decimal point will be rather than finding it in the string */
7200 if (number < 1.0 && number > 0.0) {
7201 dec2 = log10(number + 1e-10);
7202 if (-dec2 <= ndigits) dec2 = 0;
7205 /* If requested digits is zero or less, we will need to truncate
7206 * the returned string */
7207 if (ndigits < 1) {
7208 stop += ndigits;
7211 while (*ptr1 == '0') ptr1++; /* Skip leading zeroes */
7212 while (*ptr1 != '\0' && *ptr1 != decimal_separator) {
7213 if (!first) first = ptr2;
7214 if ((ptr1 - buf) < stop) {
7215 if (size > 1) {
7216 *ptr2++ = *ptr1++;
7217 size--;
7219 } else {
7220 ptr1++;
7222 dec1++;
7225 if (ndigits > 0) {
7226 ptr1++;
7227 if (!first) {
7228 while (*ptr1 == '0') { /* Process leading zeroes */
7229 if (number == 0.0 && size > 1) {
7230 *ptr2++ = '0';
7231 size--;
7233 ptr1++;
7234 dec1--;
7237 while (*ptr1 != '\0') {
7238 if (!first) first = ptr2;
7239 if (size > 1) {
7240 *ptr2++ = *ptr1++;
7241 size--;
7246 *ptr2 = '\0';
7248 /* We never found a non-zero digit, then our number is either
7249 * smaller than the requested precision, or 0.0 */
7250 if (!first && (number <= 0.0))
7251 dec1 = 0;
7253 *decpt = dec2 ? dec2 : dec1;
7254 return 0;
7257 /***********************************************************************
7258 * _gcvt (MSVCRT.@)
7260 char * CDECL _gcvt( double number, int ndigit, char *buff )
7262 if(!buff) {
7263 *_errno() = EINVAL;
7264 return NULL;
7267 if(ndigit < 0) {
7268 *_errno() = ERANGE;
7269 return NULL;
7272 sprintf(buff, "%.*g", ndigit, number);
7273 return buff;
7276 /***********************************************************************
7277 * _gcvt_s (MSVCRT.@)
7279 int CDECL _gcvt_s(char *buff, size_t size, double number, int digits)
7281 int len;
7283 if(!buff) {
7284 *_errno() = EINVAL;
7285 return EINVAL;
7288 if( digits<0 || digits>=size) {
7289 if(size)
7290 buff[0] = '\0';
7292 *_errno() = ERANGE;
7293 return ERANGE;
7296 len = _scprintf("%.*g", digits, number);
7297 if(len > size) {
7298 buff[0] = '\0';
7299 *_errno() = ERANGE;
7300 return ERANGE;
7303 sprintf(buff, "%.*g", digits, number);
7304 return 0;
7307 #include <stdlib.h> /* div_t, ldiv_t */
7309 /*********************************************************************
7310 * div (MSVCRT.@)
7311 * VERSION
7312 * [i386] Windows binary compatible - returns the struct in eax/edx.
7314 #ifdef __i386__
7315 unsigned __int64 CDECL div(int num, int denom)
7317 union {
7318 div_t div;
7319 unsigned __int64 uint64;
7320 } ret;
7322 ret.div.quot = num / denom;
7323 ret.div.rem = num % denom;
7324 return ret.uint64;
7326 #else
7327 /*********************************************************************
7328 * div (MSVCRT.@)
7329 * VERSION
7330 * [!i386] Non-x86 can't run win32 apps so we don't need binary compatibility
7332 div_t CDECL div(int num, int denom)
7334 div_t ret;
7336 ret.quot = num / denom;
7337 ret.rem = num % denom;
7338 return ret;
7340 #endif /* ifdef __i386__ */
7343 /*********************************************************************
7344 * ldiv (MSVCRT.@)
7345 * VERSION
7346 * [i386] Windows binary compatible - returns the struct in eax/edx.
7348 #ifdef __i386__
7349 unsigned __int64 CDECL ldiv(__msvcrt_long num, __msvcrt_long denom)
7351 union {
7352 ldiv_t ldiv;
7353 unsigned __int64 uint64;
7354 } ret;
7356 ret.ldiv.quot = num / denom;
7357 ret.ldiv.rem = num % denom;
7358 return ret.uint64;
7360 #else
7361 /*********************************************************************
7362 * ldiv (MSVCRT.@)
7363 * VERSION
7364 * [!i386] Non-x86 can't run win32 apps so we don't need binary compatibility
7366 ldiv_t CDECL ldiv(__msvcrt_long num, __msvcrt_long denom)
7368 ldiv_t ret;
7370 ret.quot = num / denom;
7371 ret.rem = num % denom;
7372 return ret;
7374 #endif /* ifdef __i386__ */
7376 #if _MSVCR_VER>=100
7377 /*********************************************************************
7378 * lldiv (MSVCR100.@)
7380 lldiv_t CDECL lldiv(__int64 num, __int64 denom)
7382 lldiv_t ret;
7384 ret.quot = num / denom;
7385 ret.rem = num % denom;
7387 return ret;
7389 #endif
7391 #ifdef __i386__
7393 /*********************************************************************
7394 * _adjust_fdiv (MSVCRT.@)
7395 * Used by the MSVC compiler to work around the Pentium FDIV bug.
7397 int MSVCRT__adjust_fdiv = 0;
7399 /***********************************************************************
7400 * _adj_fdiv_m16i (MSVCRT.@)
7402 * NOTE
7403 * I _think_ this function is intended to work around the Pentium
7404 * fdiv bug.
7406 void __stdcall _adj_fdiv_m16i( short arg )
7408 TRACE("(): stub\n");
7411 /***********************************************************************
7412 * _adj_fdiv_m32 (MSVCRT.@)
7414 * NOTE
7415 * I _think_ this function is intended to work around the Pentium
7416 * fdiv bug.
7418 void __stdcall _adj_fdiv_m32( unsigned int arg )
7420 TRACE("(): stub\n");
7423 /***********************************************************************
7424 * _adj_fdiv_m32i (MSVCRT.@)
7426 * NOTE
7427 * I _think_ this function is intended to work around the Pentium
7428 * fdiv bug.
7430 void __stdcall _adj_fdiv_m32i( int arg )
7432 TRACE("(): stub\n");
7435 /***********************************************************************
7436 * _adj_fdiv_m64 (MSVCRT.@)
7438 * NOTE
7439 * I _think_ this function is intended to work around the Pentium
7440 * fdiv bug.
7442 void __stdcall _adj_fdiv_m64( unsigned __int64 arg )
7444 TRACE("(): stub\n");
7447 /***********************************************************************
7448 * _adj_fdiv_r (MSVCRT.@)
7449 * FIXME
7450 * This function is likely to have the wrong number of arguments.
7452 * NOTE
7453 * I _think_ this function is intended to work around the Pentium
7454 * fdiv bug.
7456 void _adj_fdiv_r(void)
7458 TRACE("(): stub\n");
7461 /***********************************************************************
7462 * _adj_fdivr_m16i (MSVCRT.@)
7464 * NOTE
7465 * I _think_ this function is intended to work around the Pentium
7466 * fdiv bug.
7468 void __stdcall _adj_fdivr_m16i( short arg )
7470 TRACE("(): stub\n");
7473 /***********************************************************************
7474 * _adj_fdivr_m32 (MSVCRT.@)
7476 * NOTE
7477 * I _think_ this function is intended to work around the Pentium
7478 * fdiv bug.
7480 void __stdcall _adj_fdivr_m32( unsigned int arg )
7482 TRACE("(): stub\n");
7485 /***********************************************************************
7486 * _adj_fdivr_m32i (MSVCRT.@)
7488 * NOTE
7489 * I _think_ this function is intended to work around the Pentium
7490 * fdiv bug.
7492 void __stdcall _adj_fdivr_m32i( int arg )
7494 TRACE("(): stub\n");
7497 /***********************************************************************
7498 * _adj_fdivr_m64 (MSVCRT.@)
7500 * NOTE
7501 * I _think_ this function is intended to work around the Pentium
7502 * fdiv bug.
7504 void __stdcall _adj_fdivr_m64( unsigned __int64 arg )
7506 TRACE("(): stub\n");
7509 /***********************************************************************
7510 * _adj_fpatan (MSVCRT.@)
7511 * FIXME
7512 * This function is likely to have the wrong number of arguments.
7514 * NOTE
7515 * I _think_ this function is intended to work around the Pentium
7516 * fdiv bug.
7518 void _adj_fpatan(void)
7520 TRACE("(): stub\n");
7523 /***********************************************************************
7524 * _adj_fprem (MSVCRT.@)
7525 * FIXME
7526 * This function is likely to have the wrong number of arguments.
7528 * NOTE
7529 * I _think_ this function is intended to work around the Pentium
7530 * fdiv bug.
7532 void _adj_fprem(void)
7534 TRACE("(): stub\n");
7537 /***********************************************************************
7538 * _adj_fprem1 (MSVCRT.@)
7539 * FIXME
7540 * This function is likely to have the wrong number of arguments.
7542 * NOTE
7543 * I _think_ this function is intended to work around the Pentium
7544 * fdiv bug.
7546 void _adj_fprem1(void)
7548 TRACE("(): stub\n");
7551 /***********************************************************************
7552 * _adj_fptan (MSVCRT.@)
7553 * FIXME
7554 * This function is likely to have the wrong number of arguments.
7556 * NOTE
7557 * I _think_ this function is intended to work around the Pentium
7558 * fdiv bug.
7560 void _adj_fptan(void)
7562 TRACE("(): stub\n");
7565 /***********************************************************************
7566 * _safe_fdiv (MSVCRT.@)
7567 * FIXME
7568 * This function is likely to have the wrong number of arguments.
7570 * NOTE
7571 * I _think_ this function is intended to work around the Pentium
7572 * fdiv bug.
7574 void _safe_fdiv(void)
7576 TRACE("(): stub\n");
7579 /***********************************************************************
7580 * _safe_fdivr (MSVCRT.@)
7581 * FIXME
7582 * This function is likely to have the wrong number of arguments.
7584 * NOTE
7585 * I _think_ this function is intended to work around the Pentium
7586 * fdiv bug.
7588 void _safe_fdivr(void)
7590 TRACE("(): stub\n");
7593 /***********************************************************************
7594 * _safe_fprem (MSVCRT.@)
7595 * FIXME
7596 * This function is likely to have the wrong number of arguments.
7598 * NOTE
7599 * I _think_ this function is intended to work around the Pentium
7600 * fdiv bug.
7602 void _safe_fprem(void)
7604 TRACE("(): stub\n");
7607 /***********************************************************************
7608 * _safe_fprem1 (MSVCRT.@)
7610 * FIXME
7611 * This function is likely to have the wrong number of arguments.
7613 * NOTE
7614 * I _think_ this function is intended to work around the Pentium
7615 * fdiv bug.
7617 void _safe_fprem1(void)
7619 TRACE("(): stub\n");
7622 /***********************************************************************
7623 * __libm_sse2_acos (MSVCRT.@)
7625 void __cdecl __libm_sse2_acos(void)
7627 double d;
7628 __asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
7629 d = acos( d );
7630 __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
7633 /***********************************************************************
7634 * __libm_sse2_acosf (MSVCRT.@)
7636 void __cdecl __libm_sse2_acosf(void)
7638 float f;
7639 __asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
7640 f = acosf( f );
7641 __asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
7644 /***********************************************************************
7645 * __libm_sse2_asin (MSVCRT.@)
7647 void __cdecl __libm_sse2_asin(void)
7649 double d;
7650 __asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
7651 d = asin( d );
7652 __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
7655 /***********************************************************************
7656 * __libm_sse2_asinf (MSVCRT.@)
7658 void __cdecl __libm_sse2_asinf(void)
7660 float f;
7661 __asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
7662 f = asinf( f );
7663 __asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
7666 /***********************************************************************
7667 * __libm_sse2_atan (MSVCRT.@)
7669 void __cdecl __libm_sse2_atan(void)
7671 double d;
7672 __asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
7673 d = atan( d );
7674 __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
7677 /***********************************************************************
7678 * __libm_sse2_atan2 (MSVCRT.@)
7680 void __cdecl __libm_sse2_atan2(void)
7682 double d1, d2;
7683 __asm__ __volatile__( "movq %%xmm0,%0; movq %%xmm1,%1 " : "=m" (d1), "=m" (d2) );
7684 d1 = atan2( d1, d2 );
7685 __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d1) );
7688 /***********************************************************************
7689 * __libm_sse2_atanf (MSVCRT.@)
7691 void __cdecl __libm_sse2_atanf(void)
7693 float f;
7694 __asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
7695 f = atanf( f );
7696 __asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
7699 /***********************************************************************
7700 * __libm_sse2_cos (MSVCRT.@)
7702 void __cdecl __libm_sse2_cos(void)
7704 double d;
7705 __asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
7706 d = cos( d );
7707 __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
7710 /***********************************************************************
7711 * __libm_sse2_cosf (MSVCRT.@)
7713 void __cdecl __libm_sse2_cosf(void)
7715 float f;
7716 __asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
7717 f = cosf( f );
7718 __asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
7721 /***********************************************************************
7722 * __libm_sse2_exp (MSVCRT.@)
7724 void __cdecl __libm_sse2_exp(void)
7726 double d;
7727 __asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
7728 d = exp( d );
7729 __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
7732 /***********************************************************************
7733 * __libm_sse2_expf (MSVCRT.@)
7735 void __cdecl __libm_sse2_expf(void)
7737 float f;
7738 __asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
7739 f = expf( f );
7740 __asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
7743 /***********************************************************************
7744 * __libm_sse2_log (MSVCRT.@)
7746 void __cdecl __libm_sse2_log(void)
7748 double d;
7749 __asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
7750 d = log( d );
7751 __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
7754 /***********************************************************************
7755 * __libm_sse2_log10 (MSVCRT.@)
7757 void __cdecl __libm_sse2_log10(void)
7759 double d;
7760 __asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
7761 d = log10( d );
7762 __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
7765 /***********************************************************************
7766 * __libm_sse2_log10f (MSVCRT.@)
7768 void __cdecl __libm_sse2_log10f(void)
7770 float f;
7771 __asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
7772 f = log10f( f );
7773 __asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
7776 /***********************************************************************
7777 * __libm_sse2_logf (MSVCRT.@)
7779 void __cdecl __libm_sse2_logf(void)
7781 float f;
7782 __asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
7783 f = logf( f );
7784 __asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
7787 /***********************************************************************
7788 * __libm_sse2_pow (MSVCRT.@)
7790 void __cdecl __libm_sse2_pow(void)
7792 double d1, d2;
7793 __asm__ __volatile__( "movq %%xmm0,%0; movq %%xmm1,%1 " : "=m" (d1), "=m" (d2) );
7794 d1 = pow( d1, d2 );
7795 __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d1) );
7798 /***********************************************************************
7799 * __libm_sse2_powf (MSVCRT.@)
7801 void __cdecl __libm_sse2_powf(void)
7803 float f1, f2;
7804 __asm__ __volatile__( "movd %%xmm0,%0; movd %%xmm1,%1" : "=g" (f1), "=g" (f2) );
7805 f1 = powf( f1, f2 );
7806 __asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f1) );
7809 /***********************************************************************
7810 * __libm_sse2_sin (MSVCRT.@)
7812 void __cdecl __libm_sse2_sin(void)
7814 double d;
7815 __asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
7816 d = sin( d );
7817 __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
7820 /***********************************************************************
7821 * __libm_sse2_sinf (MSVCRT.@)
7823 void __cdecl __libm_sse2_sinf(void)
7825 float f;
7826 __asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
7827 f = sinf( f );
7828 __asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
7831 /***********************************************************************
7832 * __libm_sse2_tan (MSVCRT.@)
7834 void __cdecl __libm_sse2_tan(void)
7836 double d;
7837 __asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
7838 d = tan( d );
7839 __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
7842 /***********************************************************************
7843 * __libm_sse2_tanf (MSVCRT.@)
7845 void __cdecl __libm_sse2_tanf(void)
7847 float f;
7848 __asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
7849 f = tanf( f );
7850 __asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
7853 /***********************************************************************
7854 * __libm_sse2_sqrt_precise (MSVCR110.@)
7856 void __cdecl __libm_sse2_sqrt_precise(void)
7858 unsigned int cw;
7859 double d;
7861 __asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
7862 __control87_2(0, 0, NULL, &cw);
7863 if (cw & _MCW_RC)
7865 d = sqrt(d);
7866 __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
7867 return;
7870 if (!sqrt_validate(&d, FALSE))
7872 __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
7873 return;
7875 __asm__ __volatile__( "call " __ASM_NAME( "sse2_sqrt" ) );
7877 #endif /* __i386__ */
7879 #if _MSVCR_VER>=120
7881 /*********************************************************************
7882 * cbrt (MSVCR120.@)
7884 * Copied from musl: src/math/cbrt.c
7886 double CDECL cbrt(double x)
7888 static const UINT32 B1 = 715094163, B2 = 696219795;
7889 static const double P0 = 1.87595182427177009643,
7890 P1 = -1.88497979543377169875,
7891 P2 = 1.621429720105354466140,
7892 P3 = -0.758397934778766047437,
7893 P4 = 0.145996192886612446982;
7895 union {double f; UINT64 i;} u = {x};
7896 double r,s,t,w;
7897 UINT32 hx = u.i >> 32 & 0x7fffffff;
7899 if (hx >= 0x7ff00000) /* cbrt(NaN,INF) is itself */
7900 return x + x;
7902 if (hx < 0x00100000) { /* zero or subnormal? */
7903 u.f = x * 0x1p54;
7904 hx = u.i>>32 & 0x7fffffff;
7905 if (hx == 0)
7906 return x;
7907 hx = hx / 3 + B2;
7908 } else
7909 hx = hx / 3 + B1;
7910 u.i &= 1ULL << 63;
7911 u.i |= (UINT64)hx << 32;
7912 t = u.f;
7914 r = (t * t) * (t / x);
7915 t = t * ((P0 + r * (P1 + r * P2)) + ((r * r) * r) * (P3 + r * P4));
7917 u.f = t;
7918 u.i = (u.i + 0x80000000) & 0xffffffffc0000000ULL;
7919 t = u.f;
7921 s = t * t;
7922 r = x / s;
7923 w = t + t;
7924 r = (r - t) / (w + r);
7925 t = t + t * r;
7926 return t;
7929 /*********************************************************************
7930 * cbrtf (MSVCR120.@)
7932 * Copied from musl: src/math/cbrtf.c
7934 float CDECL cbrtf(float x)
7936 static const unsigned B1 = 709958130, B2 = 642849266;
7938 double r,T;
7939 union {float f; UINT32 i;} u = {x};
7940 UINT32 hx = u.i & 0x7fffffff;
7942 if (hx >= 0x7f800000)
7943 return x + x;
7945 if (hx < 0x00800000) { /* zero or subnormal? */
7946 if (hx == 0)
7947 return x;
7948 u.f = x * 0x1p24f;
7949 hx = u.i & 0x7fffffff;
7950 hx = hx / 3 + B2;
7951 } else
7952 hx = hx / 3 + B1;
7953 u.i &= 0x80000000;
7954 u.i |= hx;
7956 T = u.f;
7957 r = T * T * T;
7958 T = T * (x + x + r) / (x + r + r);
7960 r = T * T * T;
7961 T = T * (x + x + r) / (x + r + r);
7962 return T;
7965 /*********************************************************************
7966 * exp2 (MSVCR120.@)
7968 * Copied from musl: src/math/exp2.c
7970 double CDECL exp2(double x)
7972 static const double C[] = {
7973 0x1.62e42fefa39efp-1,
7974 0x1.ebfbdff82c424p-3,
7975 0x1.c6b08d70cf4b5p-5,
7976 0x1.3b2abd24650ccp-7,
7977 0x1.5d7e09b4e3a84p-10
7980 UINT32 abstop;
7981 UINT64 ki, idx, top, sbits;
7982 double kd, r, r2, scale, tail, tmp;
7984 abstop = (*(UINT64*)&x >> 52) & 0x7ff;
7985 if (abstop - 0x3c9 >= 0x408 - 0x3c9) {
7986 if (abstop - 0x3c9 >= 0x80000000) {
7987 /* Avoid spurious underflow for tiny x. */
7988 /* Note: 0 is common input. */
7989 return 1.0 + x;
7991 if (abstop >= 409) {
7992 if (*(UINT64*)&x == 0xfff0000000000000ull)
7993 return 0.0;
7994 if (abstop >= 0x7ff)
7995 return 1.0 + x;
7996 if (!(*(UINT64*)&x >> 63)) {
7997 *_errno() = ERANGE;
7998 return fp_barrier(DBL_MAX) * DBL_MAX;
8000 else if (x <= -2147483648.0) {
8001 fp_barrier(x + 0x1p120f);
8002 return 0;
8004 else if (*(UINT64*)&x >= 0xc090cc0000000000ull) {
8005 *_errno() = ERANGE;
8006 fp_barrier(x + 0x1p120f);
8007 return 0;
8010 if (2 * *(UINT64*)&x > 2 * 0x408d000000000000ull)
8011 /* Large x is special cased below. */
8012 abstop = 0;
8015 /* exp2(x) = 2^(k/N) * 2^r, with 2^r in [2^(-1/2N),2^(1/2N)]. */
8016 /* x = k/N + r, with int k and r in [-1/2N, 1/2N]. */
8017 kd = fp_barrier(x + 0x1.8p52 / (1 << 7));
8018 ki = *(UINT64*)&kd; /* k. */
8019 kd -= 0x1.8p52 / (1 << 7); /* k/N for int k. */
8020 r = x - kd;
8021 /* 2^(k/N) ~= scale * (1 + tail). */
8022 idx = 2 * (ki % (1 << 7));
8023 top = ki << (52 - 7);
8024 tail = *(double*)&exp_T[idx];
8025 /* This is only a valid scale when -1023*N < k < 1024*N. */
8026 sbits = exp_T[idx + 1] + top;
8027 /* exp2(x) = 2^(k/N) * 2^r ~= scale + scale * (tail + 2^r - 1). */
8028 /* Evaluation is optimized assuming superscalar pipelined execution. */
8029 r2 = r * r;
8030 /* Without fma the worst case error is 0.5/N ulp larger. */
8031 /* Worst case error is less than 0.5+0.86/N+(abs poly error * 2^53) ulp. */
8032 tmp = tail + r * C[0] + r2 * (C[1] + r * C[2]) + r2 * r2 * (C[3] + r * C[4]);
8033 if (abstop == 0)
8035 /* Handle cases that may overflow or underflow when computing the result that
8036 is scale*(1+TMP) without intermediate rounding. The bit representation of
8037 scale is in SBITS, however it has a computed exponent that may have
8038 overflown into the sign bit so that needs to be adjusted before using it as
8039 a double. (int32_t)KI is the k used in the argument reduction and exponent
8040 adjustment of scale, positive k here means the result may overflow and
8041 negative k means the result may underflow. */
8042 double scale, y;
8044 if ((ki & 0x80000000) == 0) {
8045 /* k > 0, the exponent of scale might have overflowed by 1. */
8046 sbits -= 1ull << 52;
8047 scale = *(double*)&sbits;
8048 y = 2 * (scale + scale * tmp);
8049 return y;
8051 /* k < 0, need special care in the subnormal range. */
8052 sbits += 1022ull << 52;
8053 scale = *(double*)&sbits;
8054 y = scale + scale * tmp;
8055 if (y < 1.0) {
8056 /* Round y to the right precision before scaling it into the subnormal
8057 range to avoid double rounding that can cause 0.5+E/2 ulp error where
8058 E is the worst-case ulp error outside the subnormal range. So this
8059 is only useful if the goal is better than 1 ulp worst-case error. */
8060 double hi, lo;
8061 lo = scale - y + scale * tmp;
8062 hi = 1.0 + y;
8063 lo = 1.0 - hi + y + lo;
8064 y = hi + lo - 1.0;
8065 /* Avoid -0.0 with downward rounding. */
8066 if (y == 0.0)
8067 y = 0.0;
8068 /* The underflow exception needs to be signaled explicitly. */
8069 fp_barrier(fp_barrier(0x1p-1022) * 0x1p-1022);
8071 y = 0x1p-1022 * y;
8072 return y;
8074 scale = *(double*)&sbits;
8075 /* Note: tmp == 0 or |tmp| > 2^-65 and scale > 2^-928, so there
8076 is no spurious underflow here even without fma. */
8077 return scale + scale * tmp;
8080 /*********************************************************************
8081 * exp2f (MSVCR120.@)
8083 * Copied from musl: src/math/exp2f.c
8085 float CDECL exp2f(float x)
8087 static const double C[] = {
8088 0x1.c6af84b912394p-5, 0x1.ebfce50fac4f3p-3, 0x1.62e42ff0c52d6p-1
8090 static const double shift = 0x1.8p+52 / (1 << 5);
8092 double kd, xd, z, r, r2, y, s;
8093 UINT32 abstop;
8094 UINT64 ki, t;
8096 xd = x;
8097 abstop = (*(UINT32*)&x >> 20) & 0x7ff;
8098 if (abstop >= 0x430) {
8099 /* |x| >= 128 or x is nan. */
8100 if (*(UINT32*)&x == 0xff800000)
8101 return 0.0f;
8102 if (abstop >= 0x7f8)
8103 return x + x;
8104 if (x > 0.0f) {
8105 *_errno() = ERANGE;
8106 return fp_barrierf(x * FLT_MAX);
8108 if (x <= -150.0f) {
8109 fp_barrierf(x - 0x1p120);
8110 return 0;
8114 /* x = k/N + r with r in [-1/(2N), 1/(2N)] and int k, N = 1 << 5. */
8115 kd = xd + shift;
8116 ki = *(UINT64*)&kd;
8117 kd -= shift; /* k/(1<<5) for int k. */
8118 r = xd - kd;
8120 /* exp2(x) = 2^(k/N) * 2^r ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */
8121 t = exp2f_T[ki % (1 << 5)];
8122 t += ki << (52 - 5);
8123 s = *(double*)&t;
8124 z = C[0] * r + C[1];
8125 r2 = r * r;
8126 y = C[2] * r + 1;
8127 y = z * r2 + y;
8128 y = y * s;
8129 return y;
8132 /*********************************************************************
8133 * expm1 (MSVCR120.@)
8135 double CDECL expm1(double x)
8137 return __expm1(x);
8140 /*********************************************************************
8141 * expm1f (MSVCR120.@)
8143 float CDECL expm1f(float x)
8145 return __expm1f(x);
8148 /*********************************************************************
8149 * log1p (MSVCR120.@)
8151 * Copied from musl: src/math/log1p.c
8153 double CDECL log1p(double x)
8155 static const double ln2_hi = 6.93147180369123816490e-01,
8156 ln2_lo = 1.90821492927058770002e-10,
8157 Lg1 = 6.666666666666735130e-01,
8158 Lg2 = 3.999999999940941908e-01,
8159 Lg3 = 2.857142874366239149e-01,
8160 Lg4 = 2.222219843214978396e-01,
8161 Lg5 = 1.818357216161805012e-01,
8162 Lg6 = 1.531383769920937332e-01,
8163 Lg7 = 1.479819860511658591e-01;
8165 union {double f; UINT64 i;} u = {x};
8166 double hfsq, f, c, s, z, R, w, t1, t2, dk;
8167 UINT32 hx, hu;
8168 int k;
8170 hx = u.i >> 32;
8171 k = 1;
8172 if (hx < 0x3fda827a || hx >> 31) { /* 1+x < sqrt(2)+ */
8173 if (hx >= 0xbff00000) { /* x <= -1.0 */
8174 if (x == -1) {
8175 *_errno() = ERANGE;
8176 return x / 0.0; /* og1p(-1) = -inf */
8178 *_errno() = EDOM;
8179 return (x-x) / 0.0; /* log1p(x<-1) = NaN */
8181 if (hx << 1 < 0x3ca00000 << 1) { /* |x| < 2**-53 */
8182 fp_barrier(x + 0x1p120f);
8183 /* underflow if subnormal */
8184 if ((hx & 0x7ff00000) == 0)
8185 fp_barrierf(x);
8186 return x;
8188 if (hx <= 0xbfd2bec4) { /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
8189 k = 0;
8190 c = 0;
8191 f = x;
8193 } else if (hx >= 0x7ff00000)
8194 return x;
8195 if (k) {
8196 u.f = 1 + x;
8197 hu = u.i >> 32;
8198 hu += 0x3ff00000 - 0x3fe6a09e;
8199 k = (int)(hu >> 20) - 0x3ff;
8200 /* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
8201 if (k < 54) {
8202 c = k >= 2 ? 1 - (u.f - x) : x - (u.f - 1);
8203 c /= u.f;
8204 } else
8205 c = 0;
8206 /* reduce u into [sqrt(2)/2, sqrt(2)] */
8207 hu = (hu & 0x000fffff) + 0x3fe6a09e;
8208 u.i = (UINT64)hu << 32 | (u.i & 0xffffffff);
8209 f = u.f - 1;
8211 hfsq = 0.5 * f * f;
8212 s = f / (2.0 + f);
8213 z = s * s;
8214 w = z * z;
8215 t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
8216 t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
8217 R = t2 + t1;
8218 dk = k;
8219 return s * (hfsq + R) + (dk * ln2_lo + c) - hfsq + f + dk * ln2_hi;
8222 /*********************************************************************
8223 * log1pf (MSVCR120.@)
8225 * Copied from musl: src/math/log1pf.c
8227 float CDECL log1pf(float x)
8229 static const float ln2_hi = 6.9313812256e-01,
8230 ln2_lo = 9.0580006145e-06,
8231 Lg1 = 0xaaaaaa.0p-24,
8232 Lg2 = 0xccce13.0p-25,
8233 Lg3 = 0x91e9ee.0p-25,
8234 Lg4 = 0xf89e26.0p-26;
8236 union {float f; UINT32 i;} u = {x};
8237 float hfsq, f, c, s, z, R, w, t1, t2, dk;
8238 UINT32 ix, iu;
8239 int k;
8241 ix = u.i;
8242 k = 1;
8243 if (ix < 0x3ed413d0 || ix >> 31) { /* 1+x < sqrt(2)+ */
8244 if (ix >= 0xbf800000) { /* x <= -1.0 */
8245 if (x == -1) {
8246 *_errno() = ERANGE;
8247 return x / 0.0f; /* log1p(-1)=+inf */
8249 *_errno() = EDOM;
8250 return (x - x) / 0.0f; /* log1p(x<-1)=NaN */
8252 if (ix<<1 < 0x33800000<<1) { /* |x| < 2**-24 */
8253 /* underflow if subnormal */
8254 if ((ix & 0x7f800000) == 0)
8255 fp_barrierf(x * x);
8256 return x;
8258 if (ix <= 0xbe95f619) { /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
8259 k = 0;
8260 c = 0;
8261 f = x;
8263 } else if (ix >= 0x7f800000)
8264 return x;
8265 if (k) {
8266 u.f = 1 + x;
8267 iu = u.i;
8268 iu += 0x3f800000 - 0x3f3504f3;
8269 k = (int)(iu >> 23) - 0x7f;
8270 /* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
8271 if (k < 25) {
8272 c = k >= 2 ? 1 - (u.f - x) : x - (u.f - 1);
8273 c /= u.f;
8274 } else
8275 c = 0;
8276 /* reduce u into [sqrt(2)/2, sqrt(2)] */
8277 iu = (iu & 0x007fffff) + 0x3f3504f3;
8278 u.i = iu;
8279 f = u.f - 1;
8281 s = f / (2.0f + f);
8282 z = s * s;
8283 w = z * z;
8284 t1= w * (Lg2 + w * Lg4);
8285 t2= z * (Lg1 + w * Lg3);
8286 R = t2 + t1;
8287 hfsq = 0.5f * f * f;
8288 dk = k;
8289 return s * (hfsq + R) + (dk * ln2_lo + c) - hfsq + f + dk * ln2_hi;
8292 /*********************************************************************
8293 * log2 (MSVCR120.@)
8295 * Copied from musl: src/math/log2.c
8297 double CDECL log2(double x)
8299 static const double invln2hi = 0x1.7154765200000p+0,
8300 invln2lo = 0x1.705fc2eefa200p-33;
8301 static const double A[] = {
8302 -0x1.71547652b8339p-1,
8303 0x1.ec709dc3a04bep-2,
8304 -0x1.7154764702ffbp-2,
8305 0x1.2776c50034c48p-2,
8306 -0x1.ec7b328ea92bcp-3,
8307 0x1.a6225e117f92ep-3
8309 static const double B[] = {
8310 -0x1.71547652b82fep-1,
8311 0x1.ec709dc3a03f7p-2,
8312 -0x1.71547652b7c3fp-2,
8313 0x1.2776c50f05be4p-2,
8314 -0x1.ec709dd768fe5p-3,
8315 0x1.a61761ec4e736p-3,
8316 -0x1.7153fbc64a79bp-3,
8317 0x1.484d154f01b4ap-3,
8318 -0x1.289e4a72c383cp-3,
8319 0x1.0b32f285aee66p-3
8321 static const struct {
8322 double invc, logc;
8323 } T[] = {
8324 {0x1.724286bb1acf8p+0, -0x1.1095feecdb000p-1},
8325 {0x1.6e1f766d2cca1p+0, -0x1.08494bd76d000p-1},
8326 {0x1.6a13d0e30d48ap+0, -0x1.00143aee8f800p-1},
8327 {0x1.661ec32d06c85p+0, -0x1.efec5360b4000p-2},
8328 {0x1.623fa951198f8p+0, -0x1.dfdd91ab7e000p-2},
8329 {0x1.5e75ba4cf026cp+0, -0x1.cffae0cc79000p-2},
8330 {0x1.5ac055a214fb8p+0, -0x1.c043811fda000p-2},
8331 {0x1.571ed0f166e1ep+0, -0x1.b0b67323ae000p-2},
8332 {0x1.53909590bf835p+0, -0x1.a152f5a2db000p-2},
8333 {0x1.5014fed61adddp+0, -0x1.9217f5af86000p-2},
8334 {0x1.4cab88e487bd0p+0, -0x1.8304db0719000p-2},
8335 {0x1.49539b4334feep+0, -0x1.74189f9a9e000p-2},
8336 {0x1.460cbdfafd569p+0, -0x1.6552bb5199000p-2},
8337 {0x1.42d664ee4b953p+0, -0x1.56b23a29b1000p-2},
8338 {0x1.3fb01111dd8a6p+0, -0x1.483650f5fa000p-2},
8339 {0x1.3c995b70c5836p+0, -0x1.39de937f6a000p-2},
8340 {0x1.3991c4ab6fd4ap+0, -0x1.2baa1538d6000p-2},
8341 {0x1.3698e0ce099b5p+0, -0x1.1d98340ca4000p-2},
8342 {0x1.33ae48213e7b2p+0, -0x1.0fa853a40e000p-2},
8343 {0x1.30d191985bdb1p+0, -0x1.01d9c32e73000p-2},
8344 {0x1.2e025cab271d7p+0, -0x1.e857da2fa6000p-3},
8345 {0x1.2b404cf13cd82p+0, -0x1.cd3c8633d8000p-3},
8346 {0x1.288b02c7ccb50p+0, -0x1.b26034c14a000p-3},
8347 {0x1.25e2263944de5p+0, -0x1.97c1c2f4fe000p-3},
8348 {0x1.234563d8615b1p+0, -0x1.7d6023f800000p-3},
8349 {0x1.20b46e33eaf38p+0, -0x1.633a71a05e000p-3},
8350 {0x1.1e2eefdcda3ddp+0, -0x1.494f5e9570000p-3},
8351 {0x1.1bb4a580b3930p+0, -0x1.2f9e424e0a000p-3},
8352 {0x1.19453847f2200p+0, -0x1.162595afdc000p-3},
8353 {0x1.16e06c0d5d73cp+0, -0x1.f9c9a75bd8000p-4},
8354 {0x1.1485f47b7e4c2p+0, -0x1.c7b575bf9c000p-4},
8355 {0x1.12358ad0085d1p+0, -0x1.960c60ff48000p-4},
8356 {0x1.0fef00f532227p+0, -0x1.64ce247b60000p-4},
8357 {0x1.0db2077d03a8fp+0, -0x1.33f78b2014000p-4},
8358 {0x1.0b7e6d65980d9p+0, -0x1.0387d1a42c000p-4},
8359 {0x1.0953efe7b408dp+0, -0x1.a6f9208b50000p-5},
8360 {0x1.07325cac53b83p+0, -0x1.47a954f770000p-5},
8361 {0x1.05197e40d1b5cp+0, -0x1.d23a8c50c0000p-6},
8362 {0x1.03091c1208ea2p+0, -0x1.16a2629780000p-6},
8363 {0x1.0101025b37e21p+0, -0x1.720f8d8e80000p-8},
8364 {0x1.fc07ef9caa76bp-1, 0x1.6fe53b1500000p-7},
8365 {0x1.f4465d3f6f184p-1, 0x1.11ccce10f8000p-5},
8366 {0x1.ecc079f84107fp-1, 0x1.c4dfc8c8b8000p-5},
8367 {0x1.e573a99975ae8p-1, 0x1.3aa321e574000p-4},
8368 {0x1.de5d6f0bd3de6p-1, 0x1.918a0d08b8000p-4},
8369 {0x1.d77b681ff38b3p-1, 0x1.e72e9da044000p-4},
8370 {0x1.d0cb5724de943p-1, 0x1.1dcd2507f6000p-3},
8371 {0x1.ca4b2dc0e7563p-1, 0x1.476ab03dea000p-3},
8372 {0x1.c3f8ee8d6cb51p-1, 0x1.7074377e22000p-3},
8373 {0x1.bdd2b4f020c4cp-1, 0x1.98ede8ba94000p-3},
8374 {0x1.b7d6c006015cap-1, 0x1.c0db86ad2e000p-3},
8375 {0x1.b20366e2e338fp-1, 0x1.e840aafcee000p-3},
8376 {0x1.ac57026295039p-1, 0x1.0790ab4678000p-2},
8377 {0x1.a6d01bc2731ddp-1, 0x1.1ac056801c000p-2},
8378 {0x1.a16d3bc3ff18bp-1, 0x1.2db11d4fee000p-2},
8379 {0x1.9c2d14967feadp-1, 0x1.406464ec58000p-2},
8380 {0x1.970e4f47c9902p-1, 0x1.52dbe093af000p-2},
8381 {0x1.920fb3982bcf2p-1, 0x1.651902050d000p-2},
8382 {0x1.8d30187f759f1p-1, 0x1.771d2cdeaf000p-2},
8383 {0x1.886e5ebb9f66dp-1, 0x1.88e9c857d9000p-2},
8384 {0x1.83c97b658b994p-1, 0x1.9a80155e16000p-2},
8385 {0x1.7f405ffc61022p-1, 0x1.abe186ed3d000p-2},
8386 {0x1.7ad22181415cap-1, 0x1.bd0f2aea0e000p-2},
8387 {0x1.767dcf99eff8cp-1, 0x1.ce0a43dbf4000p-2}
8389 static const struct {
8390 double chi, clo;
8391 } T2[] = {
8392 {0x1.6200012b90a8ep-1, 0x1.904ab0644b605p-55},
8393 {0x1.66000045734a6p-1, 0x1.1ff9bea62f7a9p-57},
8394 {0x1.69fffc325f2c5p-1, 0x1.27ecfcb3c90bap-55},
8395 {0x1.6e00038b95a04p-1, 0x1.8ff8856739326p-55},
8396 {0x1.71fffe09994e3p-1, 0x1.afd40275f82b1p-55},
8397 {0x1.7600015590e1p-1, -0x1.2fd75b4238341p-56},
8398 {0x1.7a00012655bd5p-1, 0x1.808e67c242b76p-56},
8399 {0x1.7e0003259e9a6p-1, -0x1.208e426f622b7p-57},
8400 {0x1.81fffedb4b2d2p-1, -0x1.402461ea5c92fp-55},
8401 {0x1.860002dfafcc3p-1, 0x1.df7f4a2f29a1fp-57},
8402 {0x1.89ffff78c6b5p-1, -0x1.e0453094995fdp-55},
8403 {0x1.8e00039671566p-1, -0x1.a04f3bec77b45p-55},
8404 {0x1.91fffe2bf1745p-1, -0x1.7fa34400e203cp-56},
8405 {0x1.95fffcc5c9fd1p-1, -0x1.6ff8005a0695dp-56},
8406 {0x1.9a0003bba4767p-1, 0x1.0f8c4c4ec7e03p-56},
8407 {0x1.9dfffe7b92da5p-1, 0x1.e7fd9478c4602p-55},
8408 {0x1.a1fffd72efdafp-1, -0x1.a0c554dcdae7ep-57},
8409 {0x1.a5fffde04ff95p-1, 0x1.67da98ce9b26bp-55},
8410 {0x1.a9fffca5e8d2bp-1, -0x1.284c9b54c13dep-55},
8411 {0x1.adfffddad03eap-1, 0x1.812c8ea602e3cp-58},
8412 {0x1.b1ffff10d3d4dp-1, -0x1.efaddad27789cp-55},
8413 {0x1.b5fffce21165ap-1, 0x1.3cb1719c61237p-58},
8414 {0x1.b9fffd950e674p-1, 0x1.3f7d94194cep-56},
8415 {0x1.be000139ca8afp-1, 0x1.50ac4215d9bcp-56},
8416 {0x1.c20005b46df99p-1, 0x1.beea653e9c1c9p-57},
8417 {0x1.c600040b9f7aep-1, -0x1.c079f274a70d6p-56},
8418 {0x1.ca0006255fd8ap-1, -0x1.a0b4076e84c1fp-56},
8419 {0x1.cdfffd94c095dp-1, 0x1.8f933f99ab5d7p-55},
8420 {0x1.d1ffff975d6cfp-1, -0x1.82c08665fe1bep-58},
8421 {0x1.d5fffa2561c93p-1, -0x1.b04289bd295f3p-56},
8422 {0x1.d9fff9d228b0cp-1, 0x1.70251340fa236p-55},
8423 {0x1.de00065bc7e16p-1, -0x1.5011e16a4d80cp-56},
8424 {0x1.e200002f64791p-1, 0x1.9802f09ef62ep-55},
8425 {0x1.e600057d7a6d8p-1, -0x1.e0b75580cf7fap-56},
8426 {0x1.ea00027edc00cp-1, -0x1.c848309459811p-55},
8427 {0x1.ee0006cf5cb7cp-1, -0x1.f8027951576f4p-55},
8428 {0x1.f2000782b7dccp-1, -0x1.f81d97274538fp-55},
8429 {0x1.f6000260c450ap-1, -0x1.071002727ffdcp-59},
8430 {0x1.f9fffe88cd533p-1, -0x1.81bdce1fda8bp-58},
8431 {0x1.fdfffd50f8689p-1, 0x1.7f91acb918e6ep-55},
8432 {0x1.0200004292367p+0, 0x1.b7ff365324681p-54},
8433 {0x1.05fffe3e3d668p+0, 0x1.6fa08ddae957bp-55},
8434 {0x1.0a0000a85a757p+0, -0x1.7e2de80d3fb91p-58},
8435 {0x1.0e0001a5f3fccp+0, -0x1.1823305c5f014p-54},
8436 {0x1.11ffff8afbaf5p+0, -0x1.bfabb6680bac2p-55},
8437 {0x1.15fffe54d91adp+0, -0x1.d7f121737e7efp-54},
8438 {0x1.1a00011ac36e1p+0, 0x1.c000a0516f5ffp-54},
8439 {0x1.1e00019c84248p+0, -0x1.082fbe4da5dap-54},
8440 {0x1.220000ffe5e6ep+0, -0x1.8fdd04c9cfb43p-55},
8441 {0x1.26000269fd891p+0, 0x1.cfe2a7994d182p-55},
8442 {0x1.2a00029a6e6dap+0, -0x1.00273715e8bc5p-56},
8443 {0x1.2dfffe0293e39p+0, 0x1.b7c39dab2a6f9p-54},
8444 {0x1.31ffff7dcf082p+0, 0x1.df1336edc5254p-56},
8445 {0x1.35ffff05a8b6p+0, -0x1.e03564ccd31ebp-54},
8446 {0x1.3a0002e0eaeccp+0, 0x1.5f0e74bd3a477p-56},
8447 {0x1.3e000043bb236p+0, 0x1.c7dcb149d8833p-54},
8448 {0x1.4200002d187ffp+0, 0x1.e08afcf2d3d28p-56},
8449 {0x1.460000d387cb1p+0, 0x1.20837856599a6p-55},
8450 {0x1.4a00004569f89p+0, -0x1.9fa5c904fbcd2p-55},
8451 {0x1.4e000043543f3p+0, -0x1.81125ed175329p-56},
8452 {0x1.51fffcc027f0fp+0, 0x1.883d8847754dcp-54},
8453 {0x1.55ffffd87b36fp+0, -0x1.709e731d02807p-55},
8454 {0x1.59ffff21df7bap+0, 0x1.7f79f68727b02p-55},
8455 {0x1.5dfffebfc3481p+0, -0x1.180902e30e93ep-54}
8458 double z, r, r2, r4, y, invc, logc, kd, hi, lo, t1, t2, t3, p, rhi, rlo;
8459 UINT64 ix, iz, tmp;
8460 UINT32 top;
8461 int k, i;
8463 ix = *(UINT64*)&x;
8464 top = ix >> 48;
8465 if (ix - 0x3feea4af00000000ULL < 0x210aa00000000ULL) {
8466 /* Handle close to 1.0 inputs separately. */
8467 /* Fix sign of zero with downward rounding when x==1. */
8468 if (ix == 0x3ff0000000000000ULL)
8469 return 0;
8470 r = x - 1.0;
8471 *(UINT64*)&rhi = *(UINT64*)&r & -1ULL << 32;
8472 rlo = r - rhi;
8473 hi = rhi * invln2hi;
8474 lo = rlo * invln2hi + r * invln2lo;
8475 r2 = r * r; /* rounding error: 0x1p-62. */
8476 r4 = r2 * r2;
8477 /* Worst-case error is less than 0.54 ULP (0.55 ULP without fma). */
8478 p = r2 * (B[0] + r * B[1]);
8479 y = hi + p;
8480 lo += hi - y + p;
8481 lo += r4 * (B[2] + r * B[3] + r2 * (B[4] + r * B[5]) +
8482 r4 * (B[6] + r * B[7] + r2 * (B[8] + r * B[9])));
8483 y += lo;
8484 return y;
8486 if (top - 0x0010 >= 0x7ff0 - 0x0010) {
8487 /* x < 0x1p-1022 or inf or nan. */
8488 if (ix * 2 == 0) {
8489 *_errno() = ERANGE;
8490 return -1.0 / x;
8492 if (ix == 0x7ff0000000000000ULL) /* log(inf) == inf. */
8493 return x;
8494 if ((top & 0x7ff0) == 0x7ff0 && (ix & 0xfffffffffffffULL))
8495 return x;
8496 if (top & 0x8000) {
8497 *_errno() = EDOM;
8498 return (x - x) / (x - x);
8500 /* x is subnormal, normalize it. */
8501 x *= 0x1p52;
8502 ix = *(UINT64*)&x;
8503 ix -= 52ULL << 52;
8506 /* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
8507 The range is split into N subintervals.
8508 The ith subinterval contains z and c is near its center. */
8509 tmp = ix - 0x3fe6000000000000ULL;
8510 i = (tmp >> (52 - 6)) % (1 << 6);
8511 k = (INT64)tmp >> 52; /* arithmetic shift */
8512 iz = ix - (tmp & 0xfffULL << 52);
8513 invc = T[i].invc;
8514 logc = T[i].logc;
8515 z = *(double*)&iz;
8516 kd = k;
8518 /* log2(x) = log2(z/c) + log2(c) + k. */
8519 /* r ~= z/c - 1, |r| < 1/(2*N). */
8520 /* rounding error: 0x1p-55/N + 0x1p-65. */
8521 r = (z - T2[i].chi - T2[i].clo) * invc;
8522 *(UINT64*)&rhi = *(UINT64*)&r & -1ULL << 32;
8523 rlo = r - rhi;
8524 t1 = rhi * invln2hi;
8525 t2 = rlo * invln2hi + r * invln2lo;
8527 /* hi + lo = r/ln2 + log2(c) + k. */
8528 t3 = kd + logc;
8529 hi = t3 + t1;
8530 lo = t3 - hi + t1 + t2;
8532 /* log2(r+1) = r/ln2 + r^2*poly(r). */
8533 /* Evaluation is optimized assuming superscalar pipelined execution. */
8534 r2 = r * r; /* rounding error: 0x1p-54/N^2. */
8535 r4 = r2 * r2;
8536 /* Worst-case error if |y| > 0x1p-4: 0.547 ULP (0.550 ULP without fma).
8537 ~ 0.5 + 2/N/ln2 + abs-poly-error*0x1p56 ULP (+ 0.003 ULP without fma). */
8538 p = A[0] + r * A[1] + r2 * (A[2] + r * A[3]) + r4 * (A[4] + r * A[5]);
8539 y = lo + r2 * p + hi;
8540 return y;
8543 /*********************************************************************
8544 * log2f (MSVCR120.@)
8546 * Copied from musl: src/math/log2f.c
8548 float CDECL log2f(float x)
8550 static const double A[] = {
8551 -0x1.712b6f70a7e4dp-2,
8552 0x1.ecabf496832ep-2,
8553 -0x1.715479ffae3dep-1,
8554 0x1.715475f35c8b8p0
8556 static const struct {
8557 double invc, logc;
8558 } T[] = {
8559 { 0x1.661ec79f8f3bep+0, -0x1.efec65b963019p-2 },
8560 { 0x1.571ed4aaf883dp+0, -0x1.b0b6832d4fca4p-2 },
8561 { 0x1.49539f0f010bp+0, -0x1.7418b0a1fb77bp-2 },
8562 { 0x1.3c995b0b80385p+0, -0x1.39de91a6dcf7bp-2 },
8563 { 0x1.30d190c8864a5p+0, -0x1.01d9bf3f2b631p-2 },
8564 { 0x1.25e227b0b8eap+0, -0x1.97c1d1b3b7afp-3 },
8565 { 0x1.1bb4a4a1a343fp+0, -0x1.2f9e393af3c9fp-3 },
8566 { 0x1.12358f08ae5bap+0, -0x1.960cbbf788d5cp-4 },
8567 { 0x1.0953f419900a7p+0, -0x1.a6f9db6475fcep-5 },
8568 { 0x1p+0, 0x0p+0 },
8569 { 0x1.e608cfd9a47acp-1, 0x1.338ca9f24f53dp-4 },
8570 { 0x1.ca4b31f026aap-1, 0x1.476a9543891bap-3 },
8571 { 0x1.b2036576afce6p-1, 0x1.e840b4ac4e4d2p-3 },
8572 { 0x1.9c2d163a1aa2dp-1, 0x1.40645f0c6651cp-2 },
8573 { 0x1.886e6037841edp-1, 0x1.88e9c2c1b9ff8p-2 },
8574 { 0x1.767dcf5534862p-1, 0x1.ce0a44eb17bccp-2 }
8577 double z, r, r2, p, y, y0, invc, logc;
8578 UINT32 ix, iz, top, tmp;
8579 int k, i;
8581 ix = *(UINT32*)&x;
8582 /* Fix sign of zero with downward rounding when x==1. */
8583 if (ix == 0x3f800000)
8584 return 0;
8585 if (ix - 0x00800000 >= 0x7f800000 - 0x00800000) {
8586 /* x < 0x1p-126 or inf or nan. */
8587 if (ix * 2 == 0) {
8588 *_errno() = ERANGE;
8589 return -1.0f / x;
8591 if (ix == 0x7f800000) /* log2(inf) == inf. */
8592 return x;
8593 if (ix * 2 > 0xff000000)
8594 return x;
8595 if (ix & 0x80000000) {
8596 *_errno() = EDOM;
8597 return (x - x) / (x - x);
8599 /* x is subnormal, normalize it. */
8600 x *= 0x1p23f;
8601 ix = *(UINT32*)&x;
8602 ix -= 23 << 23;
8605 /* x = 2^k z; where z is in range [OFF,2*OFF] and exact.
8606 The range is split into N subintervals.
8607 The ith subinterval contains z and c is near its center. */
8608 tmp = ix - 0x3f330000;
8609 i = (tmp >> (23 - 4)) % (1 << 4);
8610 top = tmp & 0xff800000;
8611 iz = ix - top;
8612 k = (INT32)tmp >> 23; /* arithmetic shift */
8613 invc = T[i].invc;
8614 logc = T[i].logc;
8615 z = *(float*)&iz;
8617 /* log2(x) = log1p(z/c-1)/ln2 + log2(c) + k */
8618 r = z * invc - 1;
8619 y0 = logc + (double)k;
8621 /* Pipelined polynomial evaluation to approximate log1p(r)/ln2. */
8622 r2 = r * r;
8623 y = A[1] * r + A[2];
8624 y = A[0] * r2 + y;
8625 p = A[3] * r + y0;
8626 y = y * r2 + p;
8627 return y;
8630 /*********************************************************************
8631 * rint (MSVCR120.@)
8633 double CDECL rint(double x)
8635 return __rint(x);
8638 /*********************************************************************
8639 * rintf (MSVCR120.@)
8641 * Copied from musl: src/math/rintf.c
8643 float CDECL rintf(float x)
8645 static const float toint = 1 / FLT_EPSILON;
8647 unsigned int ix = *(unsigned int*)&x;
8648 int e = ix >> 23 & 0xff;
8649 int s = ix >> 31;
8650 float y;
8652 if (e >= 0x7f + 23)
8653 return x;
8654 if (s)
8655 y = fp_barrierf(x - toint) + toint;
8656 else
8657 y = fp_barrierf(x + toint) - toint;
8658 if (y == 0)
8659 return s ? -0.0f : 0.0f;
8660 return y;
8663 /*********************************************************************
8664 * lrint (MSVCR120.@)
8666 __msvcrt_long CDECL lrint(double x)
8668 double d;
8670 d = rint(x);
8671 if ((d < 0 && d != (double)(__msvcrt_long)d)
8672 || (d >= 0 && d != (double)(__msvcrt_ulong)d)) {
8673 *_errno() = EDOM;
8674 return 0;
8676 return d;
8679 /*********************************************************************
8680 * lrintf (MSVCR120.@)
8682 __msvcrt_long CDECL lrintf(float x)
8684 float f;
8686 f = rintf(x);
8687 if ((f < 0 && f != (float)(__msvcrt_long)f)
8688 || (f >= 0 && f != (float)(__msvcrt_ulong)f)) {
8689 *_errno() = EDOM;
8690 return 0;
8692 return f;
8695 /*********************************************************************
8696 * llrint (MSVCR120.@)
8698 __int64 CDECL llrint(double x)
8700 double d;
8702 d = rint(x);
8703 if ((d < 0 && d != (double)(__int64)d)
8704 || (d >= 0 && d != (double)(unsigned __int64)d)) {
8705 *_errno() = EDOM;
8706 return 0;
8708 return d;
8711 /*********************************************************************
8712 * llrintf (MSVCR120.@)
8714 __int64 CDECL llrintf(float x)
8716 float f;
8718 f = rintf(x);
8719 if ((f < 0 && f != (float)(__int64)f)
8720 || (f >= 0 && f != (float)(unsigned __int64)f)) {
8721 *_errno() = EDOM;
8722 return 0;
8724 return f;
8727 /*********************************************************************
8728 * round (MSVCR120.@)
8730 double CDECL round(double x)
8732 return __round(x);
8735 /*********************************************************************
8736 * roundf (MSVCR120.@)
8738 * Copied from musl: src/math/roundf.c
8740 float CDECL roundf(float x)
8742 static const float toint = 1 / FLT_EPSILON;
8744 unsigned int ix = *(unsigned int*)&x;
8745 int e = ix >> 23 & 0xff;
8746 float y;
8748 if (e >= 0x7f + 23)
8749 return x;
8750 if (ix >> 31)
8751 x = -x;
8752 if (e < 0x7f - 1)
8753 return 0 * *(float*)&ix;
8754 y = fp_barrierf(x + toint) - toint - x;
8755 if (y > 0.5f)
8756 y = y + x - 1;
8757 else if (y <= -0.5f)
8758 y = y + x + 1;
8759 else
8760 y = y + x;
8761 if (ix >> 31)
8762 y = -y;
8763 return y;
8766 /*********************************************************************
8767 * lround (MSVCR120.@)
8769 * Copied from musl: src/math/lround.c
8771 __msvcrt_long CDECL lround(double x)
8773 double d = round(x);
8774 if (d != (double)(__msvcrt_long)d) {
8775 *_errno() = EDOM;
8776 return 0;
8778 return d;
8781 /*********************************************************************
8782 * lroundf (MSVCR120.@)
8784 * Copied from musl: src/math/lroundf.c
8786 __msvcrt_long CDECL lroundf(float x)
8788 float f = roundf(x);
8789 if (f != (float)(__msvcrt_long)f) {
8790 *_errno() = EDOM;
8791 return 0;
8793 return f;
8796 /*********************************************************************
8797 * llround (MSVCR120.@)
8799 * Copied from musl: src/math/llround.c
8801 __int64 CDECL llround(double x)
8803 double d = round(x);
8804 if (d != (double)(__int64)d) {
8805 *_errno() = EDOM;
8806 return 0;
8808 return d;
8811 /*********************************************************************
8812 * llroundf (MSVCR120.@)
8814 * Copied from musl: src/math/llroundf.c
8816 __int64 CDECL llroundf(float x)
8818 float f = roundf(x);
8819 if (f != (float)(__int64)f) {
8820 *_errno() = EDOM;
8821 return 0;
8823 return f;
8826 /*********************************************************************
8827 * trunc (MSVCR120.@)
8829 * Copied from musl: src/math/trunc.c
8831 double CDECL trunc(double x)
8833 union {double f; UINT64 i;} u = {x};
8834 int e = (u.i >> 52 & 0x7ff) - 0x3ff + 12;
8835 UINT64 m;
8837 if (e >= 52 + 12)
8838 return x;
8839 if (e < 12)
8840 e = 1;
8841 m = -1ULL >> e;
8842 if ((u.i & m) == 0)
8843 return x;
8844 u.i &= ~m;
8845 return u.f;
8848 /*********************************************************************
8849 * truncf (MSVCR120.@)
8851 * Copied from musl: src/math/truncf.c
8853 float CDECL truncf(float x)
8855 union {float f; UINT32 i;} u = {x};
8856 int e = (u.i >> 23 & 0xff) - 0x7f + 9;
8857 UINT32 m;
8859 if (e >= 23 + 9)
8860 return x;
8861 if (e < 9)
8862 e = 1;
8863 m = -1U >> e;
8864 if ((u.i & m) == 0)
8865 return x;
8866 u.i &= ~m;
8867 return u.f;
8870 /*********************************************************************
8871 * _dtest (MSVCR120.@)
8873 short CDECL _dtest(double *x)
8875 return _dclass(*x);
8878 /*********************************************************************
8879 * _fdtest (MSVCR120.@)
8881 short CDECL _fdtest(float *x)
8883 return _fdclass(*x);
8886 static double erfc1(double x)
8888 static const double erx = 8.45062911510467529297e-01,
8889 pa0 = -2.36211856075265944077e-03,
8890 pa1 = 4.14856118683748331666e-01,
8891 pa2 = -3.72207876035701323847e-01,
8892 pa3 = 3.18346619901161753674e-01,
8893 pa4 = -1.10894694282396677476e-01,
8894 pa5 = 3.54783043256182359371e-02,
8895 pa6 = -2.16637559486879084300e-03,
8896 qa1 = 1.06420880400844228286e-01,
8897 qa2 = 5.40397917702171048937e-01,
8898 qa3 = 7.18286544141962662868e-02,
8899 qa4 = 1.26171219808761642112e-01,
8900 qa5 = 1.36370839120290507362e-02,
8901 qa6 = 1.19844998467991074170e-02;
8903 double s, P, Q;
8905 s = fabs(x) - 1;
8906 P = pa0 + s * (pa1 + s * (pa2 + s * (pa3 + s * (pa4 + s * (pa5 + s * pa6)))));
8907 Q = 1 + s * (qa1 + s * (qa2 + s * (qa3 + s * (qa4 + s * (qa5 + s * qa6)))));
8908 return 1 - erx - P / Q;
8911 static double erfc2(UINT32 ix, double x)
8913 static const double ra0 = -9.86494403484714822705e-03,
8914 ra1 = -6.93858572707181764372e-01,
8915 ra2 = -1.05586262253232909814e+01,
8916 ra3 = -6.23753324503260060396e+01,
8917 ra4 = -1.62396669462573470355e+02,
8918 ra5 = -1.84605092906711035994e+02,
8919 ra6 = -8.12874355063065934246e+01,
8920 ra7 = -9.81432934416914548592e+00,
8921 sa1 = 1.96512716674392571292e+01,
8922 sa2 = 1.37657754143519042600e+02,
8923 sa3 = 4.34565877475229228821e+02,
8924 sa4 = 6.45387271733267880336e+02,
8925 sa5 = 4.29008140027567833386e+02,
8926 sa6 = 1.08635005541779435134e+02,
8927 sa7 = 6.57024977031928170135e+00,
8928 sa8 = -6.04244152148580987438e-02,
8929 rb0 = -9.86494292470009928597e-03,
8930 rb1 = -7.99283237680523006574e-01,
8931 rb2 = -1.77579549177547519889e+01,
8932 rb3 = -1.60636384855821916062e+02,
8933 rb4 = -6.37566443368389627722e+02,
8934 rb5 = -1.02509513161107724954e+03,
8935 rb6 = -4.83519191608651397019e+02,
8936 sb1 = 3.03380607434824582924e+01,
8937 sb2 = 3.25792512996573918826e+02,
8938 sb3 = 1.53672958608443695994e+03,
8939 sb4 = 3.19985821950859553908e+03,
8940 sb5 = 2.55305040643316442583e+03,
8941 sb6 = 4.74528541206955367215e+02,
8942 sb7 = -2.24409524465858183362e+01;
8944 double s, R, S, z;
8945 UINT64 iz;
8947 if (ix < 0x3ff40000) /* |x| < 1.25 */
8948 return erfc1(x);
8950 x = fabs(x);
8951 s = 1 / (x * x);
8952 if (ix < 0x4006db6d) { /* |x| < 1/.35 ~ 2.85714 */
8953 R = ra0 + s * (ra1 + s * (ra2 + s * (ra3 + s * (ra4 + s *
8954 (ra5 + s * (ra6 + s * ra7))))));
8955 S = 1.0 + s * (sa1 + s * (sa2 + s * (sa3 + s * (sa4 + s *
8956 (sa5 + s * (sa6 + s * (sa7 + s * sa8)))))));
8957 } else { /* |x| > 1/.35 */
8958 R = rb0 + s * (rb1 + s * (rb2 + s * (rb3 + s * (rb4 + s *
8959 (rb5 + s * rb6)))));
8960 S = 1.0 + s * (sb1 + s * (sb2 + s * (sb3 + s * (sb4 + s *
8961 (sb5 + s * (sb6 + s * sb7))))));
8963 z = x;
8964 iz = *(ULONGLONG*)&z;
8965 iz &= 0xffffffff00000000ULL;
8966 z = *(double*)&iz;
8967 return exp(-z * z - 0.5625) * exp((z - x) * (z + x) + R / S) / x;
8970 /*********************************************************************
8971 * erf (MSVCR120.@)
8973 double CDECL erf(double x)
8975 static const double efx8 = 1.02703333676410069053e+00,
8976 pp0 = 1.28379167095512558561e-01,
8977 pp1 = -3.25042107247001499370e-01,
8978 pp2 = -2.84817495755985104766e-02,
8979 pp3 = -5.77027029648944159157e-03,
8980 pp4 = -2.37630166566501626084e-05,
8981 qq1 = 3.97917223959155352819e-01,
8982 qq2 = 6.50222499887672944485e-02,
8983 qq3 = 5.08130628187576562776e-03,
8984 qq4 = 1.32494738004321644526e-04,
8985 qq5 = -3.96022827877536812320e-06;
8987 double r, s, z, y;
8988 UINT32 ix;
8989 int sign;
8991 ix = *(UINT64*)&x >> 32;
8992 sign = ix >> 31;
8993 ix &= 0x7fffffff;
8994 if (ix >= 0x7ff00000) {
8995 /* erf(nan)=nan, erf(+-inf)=+-1 */
8996 return 1 - 2 * sign + 1 / x;
8998 if (ix < 0x3feb0000) { /* |x| < 0.84375 */
8999 if (ix < 0x3e300000) { /* |x| < 2**-28 */
9000 /* avoid underflow */
9001 return 0.125 * (8 * x + efx8 * x);
9003 z = x * x;
9004 r = pp0 + z * (pp1 + z * (pp2 + z * (pp3 + z * pp4)));
9005 s = 1.0 + z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
9006 y = r / s;
9007 return x + x * y;
9009 if (ix < 0x40180000) /* 0.84375 <= |x| < 6 */
9010 y = 1 - erfc2(ix, x);
9011 else
9012 y = 1 - DBL_MIN;
9013 return sign ? -y : y;
9016 static float erfc1f(float x)
9018 static const float erx = 8.4506291151e-01,
9019 pa0 = -2.3621185683e-03,
9020 pa1 = 4.1485610604e-01,
9021 pa2 = -3.7220788002e-01,
9022 pa3 = 3.1834661961e-01,
9023 pa4 = -1.1089469492e-01,
9024 pa5 = 3.5478305072e-02,
9025 pa6 = -2.1663755178e-03,
9026 qa1 = 1.0642088205e-01,
9027 qa2 = 5.4039794207e-01,
9028 qa3 = 7.1828655899e-02,
9029 qa4 = 1.2617121637e-01,
9030 qa5 = 1.3637083583e-02,
9031 qa6 = 1.1984500103e-02;
9033 float s, P, Q;
9035 s = fabsf(x) - 1;
9036 P = pa0 + s * (pa1 + s * (pa2 + s * (pa3 + s * (pa4 + s * (pa5 + s * pa6)))));
9037 Q = 1 + s * (qa1 + s * (qa2 + s * (qa3 + s * (qa4 + s * (qa5 + s * qa6)))));
9038 return 1 - erx - P / Q;
9041 static float erfc2f(UINT32 ix, float x)
9043 static const float ra0 = -9.8649440333e-03,
9044 ra1 = -6.9385856390e-01,
9045 ra2 = -1.0558626175e+01,
9046 ra3 = -6.2375331879e+01,
9047 ra4 = -1.6239666748e+02,
9048 ra5 = -1.8460508728e+02,
9049 ra6 = -8.1287437439e+01,
9050 ra7 = -9.8143291473e+00,
9051 sa1 = 1.9651271820e+01,
9052 sa2 = 1.3765776062e+02,
9053 sa3 = 4.3456588745e+02,
9054 sa4 = 6.4538726807e+02,
9055 sa5 = 4.2900814819e+02,
9056 sa6 = 1.0863500214e+02,
9057 sa7 = 6.5702495575e+00,
9058 sa8 = -6.0424413532e-02,
9059 rb0 = -9.8649431020e-03,
9060 rb1 = -7.9928326607e-01,
9061 rb2 = -1.7757955551e+01,
9062 rb3 = -1.6063638306e+02,
9063 rb4 = -6.3756646729e+02,
9064 rb5 = -1.0250950928e+03,
9065 rb6 = -4.8351919556e+02,
9066 sb1 = 3.0338060379e+01,
9067 sb2 = 3.2579251099e+02,
9068 sb3 = 1.5367296143e+03,
9069 sb4 = 3.1998581543e+03,
9070 sb5 = 2.5530502930e+03,
9071 sb6 = 4.7452853394e+02,
9072 sb7 = -2.2440952301e+01;
9074 float s, R, S, z;
9076 if (ix < 0x3fa00000) /* |x| < 1.25 */
9077 return erfc1f(x);
9079 x = fabsf(x);
9080 s = 1 / (x * x);
9081 if (ix < 0x4036db6d) { /* |x| < 1/0.35 */
9082 R = ra0 + s * (ra1 + s * (ra2 + s * (ra3 + s * (ra4 + s *
9083 (ra5 + s * (ra6 + s * ra7))))));
9084 S = 1.0f + s * (sa1 + s * (sa2 + s * (sa3 + s * (sa4 + s *
9085 (sa5 + s * (sa6 + s * (sa7 + s * sa8)))))));
9086 } else { /* |x| >= 1/0.35 */
9087 R = rb0 + s * (rb1 + s * (rb2 + s * (rb3 + s * (rb4 + s * (rb5 + s * rb6)))));
9088 S = 1.0f + s * (sb1 + s * (sb2 + s * (sb3 + s * (sb4 + s *
9089 (sb5 + s * (sb6 + s * sb7))))));
9092 ix = *(UINT32*)&x & 0xffffe000;
9093 z = *(float*)&ix;
9094 return expf(-z * z - 0.5625f) * expf((z - x) * (z + x) + R / S) / x;
9097 /*********************************************************************
9098 * erff (MSVCR120.@)
9100 * Copied from musl: src/math/erff.c
9102 float CDECL erff(float x)
9104 static const float efx8 = 1.0270333290e+00,
9105 pp0 = 1.2837916613e-01,
9106 pp1 = -3.2504209876e-01,
9107 pp2 = -2.8481749818e-02,
9108 pp3 = -5.7702702470e-03,
9109 pp4 = -2.3763017452e-05,
9110 qq1 = 3.9791721106e-01,
9111 qq2 = 6.5022252500e-02,
9112 qq3 = 5.0813062117e-03,
9113 qq4 = 1.3249473704e-04,
9114 qq5 = -3.9602282413e-06;
9116 float r, s, z, y;
9117 UINT32 ix;
9118 int sign;
9120 ix = *(UINT32*)&x;
9121 sign = ix >> 31;
9122 ix &= 0x7fffffff;
9123 if (ix >= 0x7f800000) {
9124 /* erf(nan)=nan, erf(+-inf)=+-1 */
9125 return 1 - 2 * sign + 1 / x;
9127 if (ix < 0x3f580000) { /* |x| < 0.84375 */
9128 if (ix < 0x31800000) { /* |x| < 2**-28 */
9129 /*avoid underflow */
9130 return 0.125f * (8 * x + efx8 * x);
9132 z = x * x;
9133 r = pp0 + z * (pp1 + z * (pp2 + z * (pp3 + z * pp4)));
9134 s = 1 + z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
9135 y = r / s;
9136 return x + x * y;
9138 if (ix < 0x40c00000) /* |x| < 6 */
9139 y = 1 - erfc2f(ix, x);
9140 else
9141 y = 1 - FLT_MIN;
9142 return sign ? -y : y;
9145 /*********************************************************************
9146 * erfc (MSVCR120.@)
9148 * Copied from musl: src/math/erf.c
9150 double CDECL erfc(double x)
9152 static const double pp0 = 1.28379167095512558561e-01,
9153 pp1 = -3.25042107247001499370e-01,
9154 pp2 = -2.84817495755985104766e-02,
9155 pp3 = -5.77027029648944159157e-03,
9156 pp4 = -2.37630166566501626084e-05,
9157 qq1 = 3.97917223959155352819e-01,
9158 qq2 = 6.50222499887672944485e-02,
9159 qq3 = 5.08130628187576562776e-03,
9160 qq4 = 1.32494738004321644526e-04,
9161 qq5 = -3.96022827877536812320e-06;
9163 double r, s, z, y;
9164 UINT32 ix;
9165 int sign;
9167 ix = *(ULONGLONG*)&x >> 32;
9168 sign = ix >> 31;
9169 ix &= 0x7fffffff;
9170 if (ix >= 0x7ff00000) {
9171 /* erfc(nan)=nan, erfc(+-inf)=0,2 */
9172 return 2 * sign + 1 / x;
9174 if (ix < 0x3feb0000) { /* |x| < 0.84375 */
9175 if (ix < 0x3c700000) /* |x| < 2**-56 */
9176 return 1.0 - x;
9177 z = x * x;
9178 r = pp0 + z * (pp1 + z * (pp2 + z * (pp3 + z * pp4)));
9179 s = 1.0 + z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
9180 y = r / s;
9181 if (sign || ix < 0x3fd00000) { /* x < 1/4 */
9182 return 1.0 - (x + x * y);
9184 return 0.5 - (x - 0.5 + x * y);
9186 if (ix < 0x403c0000) { /* 0.84375 <= |x| < 28 */
9187 return sign ? 2 - erfc2(ix, x) : erfc2(ix, x);
9189 if (sign)
9190 return 2 - DBL_MIN;
9191 *_errno() = ERANGE;
9192 return fp_barrier(DBL_MIN) * DBL_MIN;
9195 /*********************************************************************
9196 * erfcf (MSVCR120.@)
9198 * Copied from musl: src/math/erff.c
9200 float CDECL erfcf(float x)
9202 static const float pp0 = 1.2837916613e-01,
9203 pp1 = -3.2504209876e-01,
9204 pp2 = -2.8481749818e-02,
9205 pp3 = -5.7702702470e-03,
9206 pp4 = -2.3763017452e-05,
9207 qq1 = 3.9791721106e-01,
9208 qq2 = 6.5022252500e-02,
9209 qq3 = 5.0813062117e-03,
9210 qq4 = 1.3249473704e-04,
9211 qq5 = -3.9602282413e-06;
9213 float r, s, z, y;
9214 UINT32 ix;
9215 int sign;
9217 ix = *(UINT32*)&x;
9218 sign = ix >> 31;
9219 ix &= 0x7fffffff;
9220 if (ix >= 0x7f800000) {
9221 /* erfc(nan)=nan, erfc(+-inf)=0,2 */
9222 return 2 * sign + 1 / x;
9225 if (ix < 0x3f580000) { /* |x| < 0.84375 */
9226 if (ix < 0x23800000) /* |x| < 2**-56 */
9227 return 1.0f - x;
9228 z = x * x;
9229 r = pp0 + z * (pp1 + z * (pp2 + z * (pp3 + z * pp4)));
9230 s = 1.0f + z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
9231 y = r / s;
9232 if (sign || ix < 0x3e800000) /* x < 1/4 */
9233 return 1.0f - (x + x * y);
9234 return 0.5f - (x - 0.5f + x * y);
9236 if (ix < 0x41e00000) { /* |x| < 28 */
9237 return sign ? 2 - erfc2f(ix, x) : erfc2f(ix, x);
9239 if (sign)
9240 return 2 - FLT_MIN;
9241 *_errno() = ERANGE;
9242 return FLT_MIN * FLT_MIN;
9245 /*********************************************************************
9246 * fmaxf (MSVCR120.@)
9248 float CDECL fmaxf(float x, float y)
9250 if(isnan(x))
9251 return y;
9252 if(isnan(y))
9253 return x;
9254 if(x==0 && y==0)
9255 return signbit(x) ? y : x;
9256 return x<y ? y : x;
9259 /*********************************************************************
9260 * fmax (MSVCR120.@)
9262 double CDECL fmax(double x, double y)
9264 if(isnan(x))
9265 return y;
9266 if(isnan(y))
9267 return x;
9268 if(x==0 && y==0)
9269 return signbit(x) ? y : x;
9270 return x<y ? y : x;
9273 /*********************************************************************
9274 * fdimf (MSVCR120.@)
9276 float CDECL fdimf(float x, float y)
9278 if(isnan(x))
9279 return x;
9280 if(isnan(y))
9281 return y;
9282 return x>y ? x-y : 0;
9285 /*********************************************************************
9286 * fdim (MSVCR120.@)
9288 double CDECL fdim(double x, double y)
9290 if(isnan(x))
9291 return x;
9292 if(isnan(y))
9293 return y;
9294 return x>y ? x-y : 0;
9297 /*********************************************************************
9298 * _fdsign (MSVCR120.@)
9300 int CDECL _fdsign(float x)
9302 union { float f; UINT32 i; } u = { x };
9303 return (u.i >> 16) & 0x8000;
9306 /*********************************************************************
9307 * _dsign (MSVCR120.@)
9309 int CDECL _dsign(double x)
9311 union { double f; UINT64 i; } u = { x };
9312 return (u.i >> 48) & 0x8000;
9316 /*********************************************************************
9317 * _dpcomp (MSVCR120.@)
9319 int CDECL _dpcomp(double x, double y)
9321 if(isnan(x) || isnan(y))
9322 return 0;
9324 if(x == y) return 2;
9325 return x < y ? 1 : 4;
9328 /*********************************************************************
9329 * _fdpcomp (MSVCR120.@)
9331 int CDECL _fdpcomp(float x, float y)
9333 return _dpcomp(x, y);
9336 /*********************************************************************
9337 * fminf (MSVCR120.@)
9339 float CDECL fminf(float x, float y)
9341 if(isnan(x))
9342 return y;
9343 if(isnan(y))
9344 return x;
9345 if(x==0 && y==0)
9346 return signbit(x) ? x : y;
9347 return x<y ? x : y;
9350 /*********************************************************************
9351 * fmin (MSVCR120.@)
9353 double CDECL fmin(double x, double y)
9355 if(isnan(x))
9356 return y;
9357 if(isnan(y))
9358 return x;
9359 if(x==0 && y==0)
9360 return signbit(x) ? x : y;
9361 return x<y ? x : y;
9364 /*********************************************************************
9365 * asinh (MSVCR120.@)
9367 * Copied from musl: src/math/asinh.c
9369 double CDECL asinh(double x)
9371 UINT64 ux = *(UINT64*)&x;
9372 int e = ux >> 52 & 0x7ff;
9373 int s = ux >> 63;
9375 /* |x| */
9376 ux &= (UINT64)-1 / 2;
9377 x = *(double*)&ux;
9379 if (e >= 0x3ff + 26) /* |x| >= 0x1p26 or inf or nan */
9380 x = log(x) + 0.693147180559945309417232121458176568;
9381 else if (e >= 0x3ff + 1) /* |x| >= 2 */
9382 x = log(2 * x + 1 / (sqrt(x * x + 1) + x));
9383 else if (e >= 0x3ff - 26) /* |x| >= 0x1p-26 */
9384 x = log1p(x + x * x / (sqrt(x * x + 1) + 1));
9385 else /* |x| < 0x1p-26, raise inexact if x != 0 */
9386 fp_barrier(x + 0x1p120f);
9387 return s ? -x : x;
9390 /*********************************************************************
9391 * asinhf (MSVCR120.@)
9393 * Copied from musl: src/math/asinhf.c
9395 float CDECL asinhf(float x)
9397 UINT32 ux = *(UINT32*)&x;
9398 UINT32 i = ux & 0x7fffffff;
9399 int s = ux >> 31;
9401 /* |x| */
9402 x = *(float*)&i;
9404 if (i >= 0x3f800000 + (12 << 23))/* |x| >= 0x1p12 or inf or nan */
9405 x = logf(x) + 0.693147180559945309417232121458176568f;
9406 else if (i >= 0x3f800000 + (1 << 23)) /* |x| >= 2 */
9407 x = logf(2 * x + 1 / (sqrtf(x * x + 1) + x));
9408 else if (i >= 0x3f800000 - (12 << 23)) /* |x| >= 0x1p-12 */
9409 x = log1pf(x + x * x / (sqrtf(x * x + 1) + 1));
9410 else /* |x| < 0x1p-12, raise inexact if x!=0 */
9411 fp_barrierf(x + 0x1p120f);
9412 return s ? -x : x;
9415 /*********************************************************************
9416 * acosh (MSVCR120.@)
9418 * Copied from musl: src/math/acosh.c
9420 double CDECL acosh(double x)
9422 int e = *(UINT64*)&x >> 52 & 0x7ff;
9424 if (x < 1)
9426 *_errno() = EDOM;
9427 feraiseexcept(FE_INVALID);
9428 return NAN;
9431 if (e < 0x3ff + 1) /* |x| < 2, up to 2ulp error in [1,1.125] */
9432 return log1p(x - 1 + sqrt((x - 1) * (x - 1) + 2 * (x - 1)));
9433 if (e < 0x3ff + 26) /* |x| < 0x1p26 */
9434 return log(2 * x - 1 / (x + sqrt(x * x - 1)));
9435 /* |x| >= 0x1p26 or nan */
9436 return log(x) + 0.693147180559945309417232121458176568;
9439 /*********************************************************************
9440 * acoshf (MSVCR120.@)
9442 * Copied from musl: src/math/acoshf.c
9444 float CDECL acoshf(float x)
9446 UINT32 a = *(UINT32*)&x & 0x7fffffff;
9448 if (x < 1)
9450 *_errno() = EDOM;
9451 feraiseexcept(FE_INVALID);
9452 return NAN;
9455 if (a < 0x3f800000 + (1 << 23)) /* |x| < 2, up to 2ulp error in [1,1.125] */
9456 return log1pf(x - 1 + sqrtf((x - 1) * (x - 1) + 2 * (x - 1)));
9457 if (*(UINT32*)&x < 0x3f800000 + (12 << 23)) /* 2 <= x < 0x1p12 */
9458 return logf(2 * x - 1 / (x + sqrtf(x * x - 1)));
9459 /* x >= 0x1p12 or x <= -2 or nan */
9460 return logf(x) + 0.693147180559945309417232121458176568f;
9463 /*********************************************************************
9464 * atanh (MSVCR120.@)
9466 * Copied from musl: src/math/atanh.c
9468 double CDECL atanh(double x)
9470 UINT64 ux = *(UINT64*)&x;
9471 int e = ux >> 52 & 0x7ff;
9472 int s = ux >> 63;
9474 /* |x| */
9475 ux &= (UINT64)-1 / 2;
9476 x = *(double*)&ux;
9478 if (x > 1) {
9479 *_errno() = EDOM;
9480 feraiseexcept(FE_INVALID);
9481 return NAN;
9484 if (e < 0x3ff - 1) {
9485 if (e < 0x3ff - 32) {
9486 fp_barrier(x + 0x1p120f);
9487 if (e == 0) /* handle underflow */
9488 fp_barrier(x * x);
9489 } else { /* |x| < 0.5, up to 1.7ulp error */
9490 x = 0.5 * log1p(2 * x + 2 * x * x / (1 - x));
9492 } else { /* avoid overflow */
9493 x = 0.5 * log1p(2 * (x / (1 - x)));
9494 if (isinf(x)) *_errno() = ERANGE;
9496 return s ? -x : x;
9499 /*********************************************************************
9500 * atanhf (MSVCR120.@)
9502 * Copied from musl: src/math/atanhf.c
9504 float CDECL atanhf(float x)
9506 UINT32 ux = *(UINT32*)&x;
9507 int s = ux >> 31;
9509 /* |x| */
9510 ux &= 0x7fffffff;
9511 x = *(float*)&ux;
9513 if (x > 1) {
9514 *_errno() = EDOM;
9515 feraiseexcept(FE_INVALID);
9516 return NAN;
9519 if (ux < 0x3f800000 - (1 << 23)) {
9520 if (ux < 0x3f800000 - (32 << 23)) {
9521 fp_barrierf(x + 0x1p120f);
9522 if (ux < (1 << 23)) /* handle underflow */
9523 fp_barrierf(x * x);
9524 } else { /* |x| < 0.5, up to 1.7ulp error */
9525 x = 0.5f * log1pf(2 * x + 2 * x * x / (1 - x));
9527 } else { /* avoid overflow */
9528 x = 0.5f * log1pf(2 * (x / (1 - x)));
9529 if (isinf(x)) *_errno() = ERANGE;
9531 return s ? -x : x;
9534 #endif /* _MSVCR_VER>=120 */
9536 /*********************************************************************
9537 * _scalb (MSVCRT.@)
9538 * scalbn (MSVCR120.@)
9539 * scalbln (MSVCR120.@)
9541 double CDECL _scalb(double num, __msvcrt_long power)
9543 return ldexp(num, power);
9546 /*********************************************************************
9547 * _scalbf (MSVCRT.@)
9548 * scalbnf (MSVCR120.@)
9549 * scalblnf (MSVCR120.@)
9551 float CDECL _scalbf(float num, __msvcrt_long power)
9553 return ldexp(num, power);
9556 #if _MSVCR_VER>=120
9558 /*********************************************************************
9559 * remainder (MSVCR120.@)
9561 * Copied from musl: src/math/remainder.c
9563 double CDECL remainder(double x, double y)
9565 int q;
9566 #if _MSVCR_VER == 120 && defined(__x86_64__)
9567 if (isnan(x) || isnan(y)) *_errno() = EDOM;
9568 #endif
9569 return remquo(x, y, &q);
9572 /*********************************************************************
9573 * remainderf (MSVCR120.@)
9575 * Copied from musl: src/math/remainderf.c
9577 float CDECL remainderf(float x, float y)
9579 int q;
9580 #if _MSVCR_VER == 120 && defined(__x86_64__)
9581 if (isnan(x) || isnan(y)) *_errno() = EDOM;
9582 #endif
9583 return remquof(x, y, &q);
9586 /*********************************************************************
9587 * remquo (MSVCR120.@)
9589 * Copied from musl: src/math/remquo.c
9591 double CDECL remquo(double x, double y, int *quo)
9593 UINT64 uxi = *(UINT64*)&x;
9594 UINT64 uyi = *(UINT64*)&y;
9595 int ex = uxi >> 52 & 0x7ff;
9596 int ey = uyi >> 52 & 0x7ff;
9597 int sx = uxi >> 63;
9598 int sy = uyi >> 63;
9599 UINT32 q;
9600 UINT64 i;
9602 *quo = 0;
9603 if (y == 0 || isinf(x)) *_errno() = EDOM;
9604 if (uyi << 1 == 0 || isnan(y) || ex == 0x7ff)
9605 return (x * y) / (x * y);
9606 if (uxi << 1 == 0)
9607 return x;
9609 /* normalize x and y */
9610 if (!ex) {
9611 for (i = uxi << 12; i >> 63 == 0; ex--, i <<= 1);
9612 uxi <<= -ex + 1;
9613 } else {
9614 uxi &= -1ULL >> 12;
9615 uxi |= 1ULL << 52;
9617 if (!ey) {
9618 for (i = uyi << 12; i >> 63 == 0; ey--, i <<= 1);
9619 uyi <<= -ey + 1;
9620 } else {
9621 uyi &= -1ULL >> 12;
9622 uyi |= 1ULL << 52;
9625 q = 0;
9626 if (ex < ey) {
9627 if (ex+1 == ey)
9628 goto end;
9629 return x;
9632 /* x mod y */
9633 for (; ex > ey; ex--) {
9634 i = uxi - uyi;
9635 if (i >> 63 == 0) {
9636 uxi = i;
9637 q++;
9639 uxi <<= 1;
9640 q <<= 1;
9642 i = uxi - uyi;
9643 if (i >> 63 == 0) {
9644 uxi = i;
9645 q++;
9647 if (uxi == 0)
9648 ex = -60;
9649 else
9650 for (; uxi >> 52 == 0; uxi <<= 1, ex--);
9651 end:
9652 /* scale result and decide between |x| and |x|-|y| */
9653 if (ex > 0) {
9654 uxi -= 1ULL << 52;
9655 uxi |= (UINT64)ex << 52;
9656 } else {
9657 uxi >>= -ex + 1;
9659 x = *(double*)&uxi;
9660 if (sy)
9661 y = -y;
9662 if (ex == ey || (ex + 1 == ey && (2 * x > y || (2 * x == y && q % 2)))) {
9663 x -= y;
9664 q++;
9666 q &= 0x7fffffff;
9667 *quo = sx ^ sy ? -(int)q : (int)q;
9668 return sx ? -x : x;
9671 /*********************************************************************
9672 * remquof (MSVCR120.@)
9674 * Copied from musl: src/math/remquof.c
9676 float CDECL remquof(float x, float y, int *quo)
9678 UINT32 uxi = *(UINT32*)&x;
9679 UINT32 uyi = *(UINT32*)&y;
9680 int ex = uxi >> 23 & 0xff;
9681 int ey = uyi >> 23 & 0xff;
9682 int sx = uxi >> 31;
9683 int sy = uyi>> 31;
9684 UINT32 q, i;
9686 *quo = 0;
9687 if (y == 0 || isinf(x)) *_errno() = EDOM;
9688 if (uyi << 1 == 0 || isnan(y) || ex == 0xff)
9689 return (x * y) / (x * y);
9690 if (uxi << 1 == 0)
9691 return x;
9693 /* normalize x and y */
9694 if (!ex) {
9695 for (i = uxi << 9; i >> 31 == 0; ex--, i <<= 1);
9696 uxi <<= -ex + 1;
9697 } else {
9698 uxi &= -1U >> 9;
9699 uxi |= 1U << 23;
9701 if (!ey) {
9702 for (i = uyi << 9; i >> 31 == 0; ey--, i <<= 1);
9703 uyi <<= -ey + 1;
9704 } else {
9705 uyi &= -1U >> 9;
9706 uyi |= 1U << 23;
9709 q = 0;
9710 if (ex < ey) {
9711 if (ex + 1 == ey)
9712 goto end;
9713 return x;
9716 /* x mod y */
9717 for (; ex > ey; ex--) {
9718 i = uxi - uyi;
9719 if (i >> 31 == 0) {
9720 uxi = i;
9721 q++;
9723 uxi <<= 1;
9724 q <<= 1;
9726 i = uxi - uyi;
9727 if (i >> 31 == 0) {
9728 uxi = i;
9729 q++;
9731 if (uxi == 0)
9732 ex = -30;
9733 else
9734 for (; uxi >> 23 == 0; uxi <<= 1, ex--);
9735 end:
9736 /* scale result and decide between |x| and |x|-|y| */
9737 if (ex > 0) {
9738 uxi -= 1U << 23;
9739 uxi |= (UINT32)ex << 23;
9740 } else {
9741 uxi >>= -ex + 1;
9743 x = *(float*)&uxi;
9744 if (sy)
9745 y = -y;
9746 if (ex == ey || (ex + 1 == ey && (2 * x > y || (2 * x == y && q % 2)))) {
9747 x -= y;
9748 q++;
9750 q &= 0x7fffffff;
9751 *quo = sx ^ sy ? -(int)q : (int)q;
9752 return sx ? -x : x;
9755 /* sin(pi*x) assuming x > 2^-100, if sin(pi*x)==0 the sign is arbitrary */
9756 static double sin_pi(double x)
9758 int n;
9760 /* spurious inexact if odd int */
9761 x = 2.0 * (x * 0.5 - floor(x * 0.5)); /* x mod 2.0 */
9763 n = x * 4.0;
9764 n = (n + 1) / 2;
9765 x -= n * 0.5f;
9766 x *= M_PI;
9768 switch (n) {
9769 default: /* case 4: */
9770 case 0: return __sin(x, 0.0, 0);
9771 case 1: return __cos(x, 0.0);
9772 case 2: return __sin(-x, 0.0, 0);
9773 case 3: return -__cos(x, 0.0);
9777 /*********************************************************************
9778 * lgamma (MSVCR120.@)
9780 * Copied from musl: src/math/lgamma_r.c
9782 double CDECL lgamma(double x)
9784 static const double pi = 3.14159265358979311600e+00,
9785 a0 = 7.72156649015328655494e-02,
9786 a1 = 3.22467033424113591611e-01,
9787 a2 = 6.73523010531292681824e-02,
9788 a3 = 2.05808084325167332806e-02,
9789 a4 = 7.38555086081402883957e-03,
9790 a5 = 2.89051383673415629091e-03,
9791 a6 = 1.19270763183362067845e-03,
9792 a7 = 5.10069792153511336608e-04,
9793 a8 = 2.20862790713908385557e-04,
9794 a9 = 1.08011567247583939954e-04,
9795 a10 = 2.52144565451257326939e-05,
9796 a11 = 4.48640949618915160150e-05,
9797 tc = 1.46163214496836224576e+00,
9798 tf = -1.21486290535849611461e-01,
9799 tt = -3.63867699703950536541e-18,
9800 t0 = 4.83836122723810047042e-01,
9801 t1 = -1.47587722994593911752e-01,
9802 t2 = 6.46249402391333854778e-02,
9803 t3 = -3.27885410759859649565e-02,
9804 t4 = 1.79706750811820387126e-02,
9805 t5 = -1.03142241298341437450e-02,
9806 t6 = 6.10053870246291332635e-03,
9807 t7 = -3.68452016781138256760e-03,
9808 t8 = 2.25964780900612472250e-03,
9809 t9 = -1.40346469989232843813e-03,
9810 t10 = 8.81081882437654011382e-04,
9811 t11 = -5.38595305356740546715e-04,
9812 t12 = 3.15632070903625950361e-04,
9813 t13 = -3.12754168375120860518e-04,
9814 t14 = 3.35529192635519073543e-04,
9815 u0 = -7.72156649015328655494e-02,
9816 u1 = 6.32827064025093366517e-01,
9817 u2 = 1.45492250137234768737e+00,
9818 u3 = 9.77717527963372745603e-01,
9819 u4 = 2.28963728064692451092e-01,
9820 u5 = 1.33810918536787660377e-02,
9821 v1 = 2.45597793713041134822e+00,
9822 v2 = 2.12848976379893395361e+00,
9823 v3 = 7.69285150456672783825e-01,
9824 v4 = 1.04222645593369134254e-01,
9825 v5 = 3.21709242282423911810e-03,
9826 s0 = -7.72156649015328655494e-02,
9827 s1 = 2.14982415960608852501e-01,
9828 s2 = 3.25778796408930981787e-01,
9829 s3 = 1.46350472652464452805e-01,
9830 s4 = 2.66422703033638609560e-02,
9831 s5 = 1.84028451407337715652e-03,
9832 s6 = 3.19475326584100867617e-05,
9833 r1 = 1.39200533467621045958e+00,
9834 r2 = 7.21935547567138069525e-01,
9835 r3 = 1.71933865632803078993e-01,
9836 r4 = 1.86459191715652901344e-02,
9837 r5 = 7.77942496381893596434e-04,
9838 r6 = 7.32668430744625636189e-06,
9839 w0 = 4.18938533204672725052e-01,
9840 w1 = 8.33333333333329678849e-02,
9841 w2 = -2.77777777728775536470e-03,
9842 w3 = 7.93650558643019558500e-04,
9843 w4 = -5.95187557450339963135e-04,
9844 w5 = 8.36339918996282139126e-04,
9845 w6 = -1.63092934096575273989e-03;
9847 union {double f; UINT64 i;} u = {x};
9848 double t, y, z, nadj, p, p1, p2, p3, q, r, w;
9849 UINT32 ix;
9850 int sign,i;
9852 /* purge off +-inf, NaN, +-0, tiny and negative arguments */
9853 sign = u.i >> 63;
9854 ix = u.i >> 32 & 0x7fffffff;
9855 if (ix >= 0x7ff00000)
9856 return x * x;
9857 if (ix < (0x3ff - 70) << 20) { /* |x|<2**-70, return -log(|x|) */
9858 if(sign)
9859 x = -x;
9860 return -log(x);
9862 if (sign) {
9863 x = -x;
9864 t = sin_pi(x);
9865 if (t == 0.0) { /* -integer */
9866 *_errno() = ERANGE;
9867 return 1.0 / (x - x);
9869 if (t <= 0.0)
9870 t = -t;
9871 nadj = log(pi / (t * x));
9874 /* purge off 1 and 2 */
9875 if ((ix == 0x3ff00000 || ix == 0x40000000) && (UINT32)u.i == 0)
9876 r = 0;
9877 /* for x < 2.0 */
9878 else if (ix < 0x40000000) {
9879 if (ix <= 0x3feccccc) { /* lgamma(x) = lgamma(x+1)-log(x) */
9880 r = -log(x);
9881 if (ix >= 0x3FE76944) {
9882 y = 1.0 - x;
9883 i = 0;
9884 } else if (ix >= 0x3FCDA661) {
9885 y = x - (tc - 1.0);
9886 i = 1;
9887 } else {
9888 y = x;
9889 i = 2;
9891 } else {
9892 r = 0.0;
9893 if (ix >= 0x3FFBB4C3) { /* [1.7316,2] */
9894 y = 2.0 - x;
9895 i = 0;
9896 } else if(ix >= 0x3FF3B4C4) { /* [1.23,1.73] */
9897 y = x - tc;
9898 i = 1;
9899 } else {
9900 y = x - 1.0;
9901 i = 2;
9904 switch (i) {
9905 case 0:
9906 z = y * y;
9907 p1 = a0 + z * (a2 + z * (a4 + z * (a6 + z * (a8 + z * a10))));
9908 p2 = z * (a1 + z * (a3 + z * (a5 + z * (a7 + z * (a9 + z * a11)))));
9909 p = y * p1 + p2;
9910 r += (p - 0.5 * y);
9911 break;
9912 case 1:
9913 z = y * y;
9914 w = z * y;
9915 p1 = t0 + w * (t3 + w * (t6 + w * (t9 + w * t12))); /* parallel comp */
9916 p2 = t1 + w * (t4 + w * (t7 + w * (t10 + w * t13)));
9917 p3 = t2 + w * (t5 + w * (t8 + w * (t11 + w * t14)));
9918 p = z * p1 - (tt - w * (p2 + y * p3));
9919 r += tf + p;
9920 break;
9921 case 2:
9922 p1 = y * (u0 + y * (u1 + y * (u2 + y * (u3 + y * (u4 + y * u5)))));
9923 p2 = 1.0 + y * (v1 + y * (v2 + y * (v3 + y * (v4 + y * v5))));
9924 r += -0.5 * y + p1 / p2;
9926 } else if (ix < 0x40200000) { /* x < 8.0 */
9927 i = (int)x;
9928 y = x - (double)i;
9929 p = y * (s0 + y * (s1 + y * (s2 + y * (s3 + y * (s4 + y * (s5 + y * s6))))));
9930 q = 1.0 + y * (r1 + y * (r2 + y * (r3 + y * (r4 + y * (r5 + y * r6)))));
9931 r = 0.5 * y + p / q;
9932 z = 1.0; /* lgamma(1+s) = log(s) + lgamma(s) */
9933 switch (i) {
9934 case 7: z *= y + 6.0; /* fall through */
9935 case 6: z *= y + 5.0; /* fall through */
9936 case 5: z *= y + 4.0; /* fall through */
9937 case 4: z *= y + 3.0; /* fall through */
9938 case 3:
9939 z *= y + 2.0;
9940 r += log(z);
9941 break;
9943 } else if (ix < 0x43900000) { /* 8.0 <= x < 2**58 */
9944 t = log(x);
9945 z = 1.0 / x;
9946 y = z * z;
9947 w = w0 + z * (w1 + y * (w2 + y * (w3 + y * (w4 + y * (w5 + y * w6)))));
9948 r = (x - 0.5) * (t - 1.0) + w;
9949 } else /* 2**58 <= x <= inf */
9950 r = x * (log(x) - 1.0);
9951 if (sign)
9952 r = nadj - r;
9953 return r;
9956 /* sin(pi*x) assuming x > 2^-100, if sin(pi*x)==0 the sign is arbitrary */
9957 static float sinf_pi(float x)
9959 double y;
9960 int n;
9962 /* spurious inexact if odd int */
9963 x = 2 * (x * 0.5f - floorf(x * 0.5f)); /* x mod 2.0 */
9965 n = (int)(x * 4);
9966 n = (n + 1) / 2;
9967 y = x - n * 0.5f;
9968 y *= M_PI;
9969 switch (n) {
9970 default: /* case 4: */
9971 case 0: return __sindf(y);
9972 case 1: return __cosdf(y);
9973 case 2: return __sindf(-y);
9974 case 3: return -__cosdf(y);
9978 /*********************************************************************
9979 * lgammaf (MSVCR120.@)
9981 * Copied from musl: src/math/lgammaf_r.c
9983 float CDECL lgammaf(float x)
9985 static const float pi = 3.1415927410e+00,
9986 a0 = 7.7215664089e-02,
9987 a1 = 3.2246702909e-01,
9988 a2 = 6.7352302372e-02,
9989 a3 = 2.0580807701e-02,
9990 a4 = 7.3855509982e-03,
9991 a5 = 2.8905137442e-03,
9992 a6 = 1.1927076848e-03,
9993 a7 = 5.1006977446e-04,
9994 a8 = 2.2086278477e-04,
9995 a9 = 1.0801156895e-04,
9996 a10 = 2.5214456400e-05,
9997 a11 = 4.4864096708e-05,
9998 tc = 1.4616321325e+00,
9999 tf = -1.2148628384e-01,
10000 tt = 6.6971006518e-09,
10001 t0 = 4.8383611441e-01,
10002 t1 = -1.4758771658e-01,
10003 t2 = 6.4624942839e-02,
10004 t3 = -3.2788541168e-02,
10005 t4 = 1.7970675603e-02,
10006 t5 = -1.0314224288e-02,
10007 t6 = 6.1005386524e-03,
10008 t7 = -3.6845202558e-03,
10009 t8 = 2.2596477065e-03,
10010 t9 = -1.4034647029e-03,
10011 t10 = 8.8108185446e-04,
10012 t11 = -5.3859531181e-04,
10013 t12 = 3.1563205994e-04,
10014 t13 = -3.1275415677e-04,
10015 t14 = 3.3552918467e-04,
10016 u0 = -7.7215664089e-02,
10017 u1 = 6.3282704353e-01,
10018 u2 = 1.4549225569e+00,
10019 u3 = 9.7771751881e-01,
10020 u4 = 2.2896373272e-01,
10021 u5 = 1.3381091878e-02,
10022 v1 = 2.4559779167e+00,
10023 v2 = 2.1284897327e+00,
10024 v3 = 7.6928514242e-01,
10025 v4 = 1.0422264785e-01,
10026 v5 = 3.2170924824e-03,
10027 s0 = -7.7215664089e-02,
10028 s1 = 2.1498242021e-01,
10029 s2 = 3.2577878237e-01,
10030 s3 = 1.4635047317e-01,
10031 s4 = 2.6642270386e-02,
10032 s5 = 1.8402845599e-03,
10033 s6 = 3.1947532989e-05,
10034 r1 = 1.3920053244e+00,
10035 r2 = 7.2193557024e-01,
10036 r3 = 1.7193385959e-01,
10037 r4 = 1.8645919859e-02,
10038 r5 = 7.7794247773e-04,
10039 r6 = 7.3266842264e-06,
10040 w0 = 4.1893854737e-01,
10041 w1 = 8.3333335817e-02,
10042 w2 = -2.7777778450e-03,
10043 w3 = 7.9365057172e-04,
10044 w4 = -5.9518753551e-04,
10045 w5 = 8.3633989561e-04,
10046 w6 = -1.6309292987e-03;
10048 union {float f; UINT32 i;} u = {x};
10049 float t, y, z, nadj, p, p1, p2, p3, q, r, w;
10050 UINT32 ix;
10051 int i, sign;
10053 /* purge off +-inf, NaN, +-0, tiny and negative arguments */
10054 sign = u.i >> 31;
10055 ix = u.i & 0x7fffffff;
10056 if (ix >= 0x7f800000)
10057 return x * x;
10058 if (ix < 0x35000000) { /* |x| < 2**-21, return -log(|x|) */
10059 if (sign)
10060 x = -x;
10061 return -logf(x);
10063 if (sign) {
10064 x = -x;
10065 t = sinf_pi(x);
10066 if (t == 0.0f) { /* -integer */
10067 *_errno() = ERANGE;
10068 return 1.0f / (x - x);
10070 if (t <= 0.0f)
10071 t = -t;
10072 nadj = logf(pi / (t * x));
10075 /* purge off 1 and 2 */
10076 if (ix == 0x3f800000 || ix == 0x40000000)
10077 r = 0;
10078 /* for x < 2.0 */
10079 else if (ix < 0x40000000) {
10080 if (ix <= 0x3f666666) { /* lgamma(x) = lgamma(x+1)-log(x) */
10081 r = -logf(x);
10082 if (ix >= 0x3f3b4a20) {
10083 y = 1.0f - x;
10084 i = 0;
10085 } else if (ix >= 0x3e6d3308) {
10086 y = x - (tc - 1.0f);
10087 i = 1;
10088 } else {
10089 y = x;
10090 i = 2;
10092 } else {
10093 r = 0.0f;
10094 if (ix >= 0x3fdda618) { /* [1.7316,2] */
10095 y = 2.0f - x;
10096 i = 0;
10097 } else if (ix >= 0x3F9da620) { /* [1.23,1.73] */
10098 y = x - tc;
10099 i = 1;
10100 } else {
10101 y = x - 1.0f;
10102 i = 2;
10105 switch(i) {
10106 case 0:
10107 z = y * y;
10108 p1 = a0 + z * (a2 + z * (a4 + z * (a6 + z * (a8 + z * a10))));
10109 p2 = z * (a1 + z * (a3 + z * (a5 + z * (a7 + z * (a9 + z * a11)))));
10110 p = y * p1 + p2;
10111 r += p - 0.5f * y;
10112 break;
10113 case 1:
10114 z = y * y;
10115 w = z * y;
10116 p1 = t0 + w * (t3 + w * (t6 + w * (t9 + w * t12))); /* parallel comp */
10117 p2 = t1 + w * (t4 + w * (t7 + w * (t10 + w * t13)));
10118 p3 = t2 + w * (t5 + w * (t8 + w * (t11 + w * t14)));
10119 p = z * p1 - (tt - w * (p2 + y * p3));
10120 r += (tf + p);
10121 break;
10122 case 2:
10123 p1 = y * (u0 + y * (u1 + y * (u2 + y * (u3 + y * (u4 + y * u5)))));
10124 p2 = 1.0f + y * (v1 + y * (v2 + y * (v3 + y * (v4 + y * v5))));
10125 r += -0.5f * y + p1 / p2;
10127 } else if (ix < 0x41000000) { /* x < 8.0 */
10128 i = (int)x;
10129 y = x - (float)i;
10130 p = y * (s0 + y * (s1 + y * (s2 + y * (s3 + y * (s4 + y * (s5 + y * s6))))));
10131 q = 1.0f + y * (r1 + y * (r2 + y * (r3 + y * (r4 + y * (r5 + y * r6)))));
10132 r = 0.5f * y + p / q;
10133 z = 1.0f; /* lgamma(1+s) = log(s) + lgamma(s) */
10134 switch (i) {
10135 case 7: z *= y + 6.0f; /* fall through */
10136 case 6: z *= y + 5.0f; /* fall through */
10137 case 5: z *= y + 4.0f; /* fall through */
10138 case 4: z *= y + 3.0f; /* fall through */
10139 case 3:
10140 z *= y + 2.0f;
10141 r += logf(z);
10142 break;
10144 } else if (ix < 0x5c800000) { /* 8.0 <= x < 2**58 */
10145 t = logf(x);
10146 z = 1.0f / x;
10147 y = z * z;
10148 w = w0 + z * (w1 + y * (w2 + y * (w3 + y * (w4 + y * (w5 + y * w6)))));
10149 r = (x - 0.5f) * (t - 1.0f) + w;
10150 } else /* 2**58 <= x <= inf */
10151 r = x * (logf(x) - 1.0f);
10152 if (sign)
10153 r = nadj - r;
10154 return r;
10157 static double tgamma_S(double x)
10159 static const double Snum[] = {
10160 23531376880.410759688572007674451636754734846804940,
10161 42919803642.649098768957899047001988850926355848959,
10162 35711959237.355668049440185451547166705960488635843,
10163 17921034426.037209699919755754458931112671403265390,
10164 6039542586.3520280050642916443072979210699388420708,
10165 1439720407.3117216736632230727949123939715485786772,
10166 248874557.86205415651146038641322942321632125127801,
10167 31426415.585400194380614231628318205362874684987640,
10168 2876370.6289353724412254090516208496135991145378768,
10169 186056.26539522349504029498971604569928220784236328,
10170 8071.6720023658162106380029022722506138218516325024,
10171 210.82427775157934587250973392071336271166969580291,
10172 2.5066282746310002701649081771338373386264310793408,
10174 static const double Sden[] = {
10175 0, 39916800, 120543840, 150917976, 105258076, 45995730, 13339535,
10176 2637558, 357423, 32670, 1925, 66, 1,
10179 double num = 0, den = 0;
10180 int i;
10182 /* to avoid overflow handle large x differently */
10183 if (x < 8)
10184 for (i = ARRAY_SIZE(Snum) - 1; i >= 0; i--) {
10185 num = num * x + Snum[i];
10186 den = den * x + Sden[i];
10188 else
10189 for (i = 0; i < ARRAY_SIZE(Snum); i++) {
10190 num = num / x + Snum[i];
10191 den = den / x + Sden[i];
10193 return num / den;
10196 /*********************************************************************
10197 * tgamma (MSVCR120.@)
10199 * Copied from musl: src/math/tgamma.c
10201 double CDECL tgamma(double x)
10203 static const double gmhalf = 5.524680040776729583740234375;
10204 static const double fact[] = {
10205 1, 1, 2, 6, 24, 120, 720, 5040.0, 40320.0, 362880.0, 3628800.0, 39916800.0,
10206 479001600.0, 6227020800.0, 87178291200.0, 1307674368000.0, 20922789888000.0,
10207 355687428096000.0, 6402373705728000.0, 121645100408832000.0,
10208 2432902008176640000.0, 51090942171709440000.0, 1124000727777607680000.0,
10211 union {double f; UINT64 i;} u = {x};
10212 double absx, y, dy, z, r;
10213 UINT32 ix = u.i >> 32 & 0x7fffffff;
10214 int sign = u.i >> 63;
10216 /* special cases */
10217 if (ix >= 0x7ff00000) {
10218 /* tgamma(nan)=nan, tgamma(inf)=inf, tgamma(-inf)=nan with invalid */
10219 if (u.i == 0xfff0000000000000ULL)
10220 *_errno() = EDOM;
10221 return x + INFINITY;
10223 if (ix < (0x3ff - 54) << 20) {
10224 /* |x| < 2^-54: tgamma(x) ~ 1/x, +-0 raises div-by-zero */
10225 if (x == 0.0)
10226 *_errno() = ERANGE;
10227 return 1 / x;
10230 /* integer arguments */
10231 /* raise inexact when non-integer */
10232 if (x == floor(x)) {
10233 if (sign) {
10234 *_errno() = EDOM;
10235 return 0 / (x - x);
10237 if (x <= ARRAY_SIZE(fact))
10238 return fact[(int)x - 1];
10241 /* x >= 172: tgamma(x)=inf with overflow */
10242 /* x =< -184: tgamma(x)=+-0 with underflow */
10243 if (ix >= 0x40670000) { /* |x| >= 184 */
10244 *_errno() = ERANGE;
10245 if (sign) {
10246 fp_barrierf(0x1p-126 / x);
10247 return 0;
10249 x *= 0x1p1023;
10250 return x;
10253 absx = sign ? -x : x;
10255 /* handle the error of x + g - 0.5 */
10256 y = absx + gmhalf;
10257 if (absx > gmhalf) {
10258 dy = y - absx;
10259 dy -= gmhalf;
10260 } else {
10261 dy = y - gmhalf;
10262 dy -= absx;
10265 z = absx - 0.5;
10266 r = tgamma_S(absx) * exp(-y);
10267 if (x < 0) {
10268 /* reflection formula for negative x */
10269 /* sinpi(absx) is not 0, integers are already handled */
10270 r = -M_PI / (sin_pi(absx) * absx * r);
10271 dy = -dy;
10272 z = -z;
10274 r += dy * (gmhalf + 0.5) * r / y;
10275 z = pow(y, 0.5 * z);
10276 y = r * z * z;
10277 return y;
10280 /*********************************************************************
10281 * tgammaf (MSVCR120.@)
10283 * Copied from musl: src/math/tgammaf.c
10285 float CDECL tgammaf(float x)
10287 return tgamma(x);
10290 /*********************************************************************
10291 * nan (MSVCR120.@)
10293 double CDECL nan(const char *tagp)
10295 /* Windows ignores input (MSDN) */
10296 return NAN;
10299 /*********************************************************************
10300 * nanf (MSVCR120.@)
10302 float CDECL nanf(const char *tagp)
10304 return NAN;
10307 /*********************************************************************
10308 * _except1 (MSVCR120.@)
10309 * TODO:
10310 * - find meaning of ignored cw and operation bits
10311 * - unk parameter
10313 double CDECL _except1(DWORD fpe, _FP_OPERATION_CODE op, double arg, double res, DWORD cw, void *unk)
10315 ULONG_PTR exception_arg;
10316 DWORD exception = 0;
10317 unsigned int fpword = 0;
10318 WORD operation;
10319 int raise = 0;
10321 TRACE("(%lx %x %lf %lf %lx %p)\n", fpe, op, arg, res, cw, unk);
10323 #ifdef _WIN64
10324 cw = ((cw >> 7) & 0x3f) | ((cw >> 3) & 0xc00);
10325 #endif
10326 operation = op << 5;
10327 exception_arg = (ULONG_PTR)&operation;
10329 if (fpe & 0x1) { /* overflow */
10330 if ((fpe == 0x1 && (cw & 0x8)) || (fpe==0x11 && (cw & 0x28))) {
10331 /* 32-bit version also sets SW_INEXACT here */
10332 raise |= FE_OVERFLOW;
10333 if (fpe & 0x10) raise |= FE_INEXACT;
10334 res = signbit(res) ? -INFINITY : INFINITY;
10335 } else {
10336 exception = EXCEPTION_FLT_OVERFLOW;
10338 } else if (fpe & 0x2) { /* underflow */
10339 if ((fpe == 0x2 && (cw & 0x10)) || (fpe==0x12 && (cw & 0x30))) {
10340 raise |= FE_UNDERFLOW;
10341 if (fpe & 0x10) raise |= FE_INEXACT;
10342 res = signbit(res) ? -0.0 : 0.0;
10343 } else {
10344 exception = EXCEPTION_FLT_UNDERFLOW;
10346 } else if (fpe & 0x4) { /* zerodivide */
10347 if ((fpe == 0x4 && (cw & 0x4)) || (fpe==0x14 && (cw & 0x24))) {
10348 raise |= FE_DIVBYZERO;
10349 if (fpe & 0x10) raise |= FE_INEXACT;
10350 } else {
10351 exception = EXCEPTION_FLT_DIVIDE_BY_ZERO;
10353 } else if (fpe & 0x8) { /* invalid */
10354 if (fpe == 0x8 && (cw & 0x1)) {
10355 raise |= FE_INVALID;
10356 } else {
10357 exception = EXCEPTION_FLT_INVALID_OPERATION;
10359 } else if (fpe & 0x10) { /* inexact */
10360 if (fpe == 0x10 && (cw & 0x20)) {
10361 raise |= FE_INEXACT;
10362 } else {
10363 exception = EXCEPTION_FLT_INEXACT_RESULT;
10367 if (exception)
10368 raise = 0;
10369 feraiseexcept(raise);
10370 if (exception)
10371 RaiseException(exception, 0, 1, &exception_arg);
10373 if (cw & 0x1) fpword |= _EM_INVALID;
10374 if (cw & 0x2) fpword |= _EM_DENORMAL;
10375 if (cw & 0x4) fpword |= _EM_ZERODIVIDE;
10376 if (cw & 0x8) fpword |= _EM_OVERFLOW;
10377 if (cw & 0x10) fpword |= _EM_UNDERFLOW;
10378 if (cw & 0x20) fpword |= _EM_INEXACT;
10379 switch (cw & 0xc00)
10381 case 0xc00: fpword |= _RC_UP|_RC_DOWN; break;
10382 case 0x800: fpword |= _RC_UP; break;
10383 case 0x400: fpword |= _RC_DOWN; break;
10385 switch (cw & 0x300)
10387 case 0x0: fpword |= _PC_24; break;
10388 case 0x200: fpword |= _PC_53; break;
10389 case 0x300: fpword |= _PC_64; break;
10391 if (cw & 0x1000) fpword |= _IC_AFFINE;
10392 _setfp(&fpword, _MCW_EM | _MCW_RC | _MCW_PC | _MCW_IC, NULL, 0);
10394 return res;
10397 _Dcomplex* CDECL _Cbuild(_Dcomplex *ret, double r, double i)
10399 ret->_Val[0] = r;
10400 ret->_Val[1] = i;
10401 return ret;
10404 double CDECL MSVCR120_creal(_Dcomplex z)
10406 return z._Val[0];
10409 /*********************************************************************
10410 * ilogb (MSVCR120.@)
10412 int CDECL ilogb(double x)
10414 return __ilogb(x);
10417 /*********************************************************************
10418 * ilogbf (MSVCR120.@)
10420 int CDECL ilogbf(float x)
10422 return __ilogbf(x);
10424 #endif /* _MSVCR_VER>=120 */