wineandroid: Implement wglCreateContextAttribsARB.
[wine.git] / dlls / oleaut32 / variant.c
bloba760a65267dc0ef197db26aa5acc19134908f9a6
1 /*
2 * VARIANT
4 * Copyright 1998 Jean-Claude Cote
5 * Copyright 2003 Jon Griffiths
6 * Copyright 2005 Daniel Remenak
7 * Copyright 2006 Google (Benjamin Arai)
9 * The algorithm for conversion from Julian days to day/month/year is based on
10 * that devised by Henry Fliegel, as implemented in PostgreSQL, which is
11 * Copyright 1994-7 Regents of the University of California
13 * This library is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU Lesser General Public
15 * License as published by the Free Software Foundation; either
16 * version 2.1 of the License, or (at your option) any later version.
18 * This library is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * Lesser General Public License for more details.
23 * You should have received a copy of the GNU Lesser General Public
24 * License along with this library; if not, write to the Free Software
25 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
28 #include "config.h"
30 #include <string.h>
31 #include <stdlib.h>
32 #include <stdarg.h>
34 #define COBJMACROS
35 #define NONAMELESSUNION
36 #define NONAMELESSSTRUCT
38 #include "windef.h"
39 #include "winbase.h"
40 #include "wine/unicode.h"
41 #include "winerror.h"
42 #include "variant.h"
43 #include "resource.h"
44 #include "wine/debug.h"
46 WINE_DEFAULT_DEBUG_CHANNEL(variant);
48 static CRITICAL_SECTION cache_cs;
49 static CRITICAL_SECTION_DEBUG critsect_debug =
51 0, 0, &cache_cs,
52 { &critsect_debug.ProcessLocksList, &critsect_debug.ProcessLocksList },
53 0, 0, { (DWORD_PTR)(__FILE__ ": cache_cs") }
55 static CRITICAL_SECTION cache_cs = { &critsect_debug, -1, 0, 0, 0, 0 };
57 /* Convert a variant from one type to another */
58 static inline HRESULT VARIANT_Coerce(VARIANTARG* pd, LCID lcid, USHORT wFlags,
59 VARIANTARG* ps, VARTYPE vt)
61 HRESULT res = DISP_E_TYPEMISMATCH;
62 VARTYPE vtFrom = V_TYPE(ps);
63 DWORD dwFlags = 0;
65 TRACE("(%s,0x%08x,0x%04x,%s,%s)\n", debugstr_variant(pd), lcid, wFlags,
66 debugstr_variant(ps), debugstr_vt(vt));
68 if (vt == VT_BSTR || vtFrom == VT_BSTR)
70 /* All flags passed to low level function are only used for
71 * changing to or from strings. Map these here.
73 if (wFlags & VARIANT_LOCALBOOL)
74 dwFlags |= VAR_LOCALBOOL;
75 if (wFlags & VARIANT_CALENDAR_HIJRI)
76 dwFlags |= VAR_CALENDAR_HIJRI;
77 if (wFlags & VARIANT_CALENDAR_THAI)
78 dwFlags |= VAR_CALENDAR_THAI;
79 if (wFlags & VARIANT_CALENDAR_GREGORIAN)
80 dwFlags |= VAR_CALENDAR_GREGORIAN;
81 if (wFlags & VARIANT_NOUSEROVERRIDE)
82 dwFlags |= LOCALE_NOUSEROVERRIDE;
83 if (wFlags & VARIANT_USE_NLS)
84 dwFlags |= LOCALE_USE_NLS;
87 /* Map int/uint to i4/ui4 */
88 if (vt == VT_INT)
89 vt = VT_I4;
90 else if (vt == VT_UINT)
91 vt = VT_UI4;
93 if (vtFrom == VT_INT)
94 vtFrom = VT_I4;
95 else if (vtFrom == VT_UINT)
96 vtFrom = VT_UI4;
98 if (vt == vtFrom)
99 return VariantCopy(pd, ps);
101 if (wFlags & VARIANT_NOVALUEPROP && vtFrom == VT_DISPATCH && vt != VT_UNKNOWN)
103 /* VARIANT_NOVALUEPROP prevents IDispatch objects from being coerced by
104 * accessing the default object property.
106 return DISP_E_TYPEMISMATCH;
109 switch (vt)
111 case VT_EMPTY:
112 if (vtFrom == VT_NULL)
113 return DISP_E_TYPEMISMATCH;
114 /* ... Fall through */
115 case VT_NULL:
116 if (vtFrom <= VT_UINT && vtFrom != (VARTYPE)15 && vtFrom != VT_ERROR)
118 res = VariantClear( pd );
119 if (vt == VT_NULL && SUCCEEDED(res))
120 V_VT(pd) = VT_NULL;
122 return res;
124 case VT_I1:
125 switch (vtFrom)
127 case VT_EMPTY: V_I1(pd) = 0; return S_OK;
128 case VT_I2: return VarI1FromI2(V_I2(ps), &V_I1(pd));
129 case VT_I4: return VarI1FromI4(V_I4(ps), &V_I1(pd));
130 case VT_UI1: V_I1(pd) = V_UI1(ps); return S_OK;
131 case VT_UI2: return VarI1FromUI2(V_UI2(ps), &V_I1(pd));
132 case VT_UI4: return VarI1FromUI4(V_UI4(ps), &V_I1(pd));
133 case VT_I8: return VarI1FromI8(V_I8(ps), &V_I1(pd));
134 case VT_UI8: return VarI1FromUI8(V_UI8(ps), &V_I1(pd));
135 case VT_R4: return VarI1FromR4(V_R4(ps), &V_I1(pd));
136 case VT_R8: return VarI1FromR8(V_R8(ps), &V_I1(pd));
137 case VT_DATE: return VarI1FromDate(V_DATE(ps), &V_I1(pd));
138 case VT_BOOL: return VarI1FromBool(V_BOOL(ps), &V_I1(pd));
139 case VT_CY: return VarI1FromCy(V_CY(ps), &V_I1(pd));
140 case VT_DECIMAL: return VarI1FromDec(&V_DECIMAL(ps), &V_I1(pd) );
141 case VT_DISPATCH: return VarI1FromDisp(V_DISPATCH(ps), lcid, &V_I1(pd) );
142 case VT_BSTR: return VarI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_I1(pd) );
144 break;
146 case VT_I2:
147 switch (vtFrom)
149 case VT_EMPTY: V_I2(pd) = 0; return S_OK;
150 case VT_I1: return VarI2FromI1(V_I1(ps), &V_I2(pd));
151 case VT_I4: return VarI2FromI4(V_I4(ps), &V_I2(pd));
152 case VT_UI1: return VarI2FromUI1(V_UI1(ps), &V_I2(pd));
153 case VT_UI2: V_I2(pd) = V_UI2(ps); return S_OK;
154 case VT_UI4: return VarI2FromUI4(V_UI4(ps), &V_I2(pd));
155 case VT_I8: return VarI2FromI8(V_I8(ps), &V_I2(pd));
156 case VT_UI8: return VarI2FromUI8(V_UI8(ps), &V_I2(pd));
157 case VT_R4: return VarI2FromR4(V_R4(ps), &V_I2(pd));
158 case VT_R8: return VarI2FromR8(V_R8(ps), &V_I2(pd));
159 case VT_DATE: return VarI2FromDate(V_DATE(ps), &V_I2(pd));
160 case VT_BOOL: return VarI2FromBool(V_BOOL(ps), &V_I2(pd));
161 case VT_CY: return VarI2FromCy(V_CY(ps), &V_I2(pd));
162 case VT_DECIMAL: return VarI2FromDec(&V_DECIMAL(ps), &V_I2(pd));
163 case VT_DISPATCH: return VarI2FromDisp(V_DISPATCH(ps), lcid, &V_I2(pd));
164 case VT_BSTR: return VarI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_I2(pd));
166 break;
168 case VT_I4:
169 switch (vtFrom)
171 case VT_EMPTY: V_I4(pd) = 0; return S_OK;
172 case VT_I1: return VarI4FromI1(V_I1(ps), &V_I4(pd));
173 case VT_I2: return VarI4FromI2(V_I2(ps), &V_I4(pd));
174 case VT_UI1: return VarI4FromUI1(V_UI1(ps), &V_I4(pd));
175 case VT_UI2: return VarI4FromUI2(V_UI2(ps), &V_I4(pd));
176 case VT_UI4: V_I4(pd) = V_UI4(ps); return S_OK;
177 case VT_I8: return VarI4FromI8(V_I8(ps), &V_I4(pd));
178 case VT_UI8: return VarI4FromUI8(V_UI8(ps), &V_I4(pd));
179 case VT_R4: return VarI4FromR4(V_R4(ps), &V_I4(pd));
180 case VT_R8: return VarI4FromR8(V_R8(ps), &V_I4(pd));
181 case VT_DATE: return VarI4FromDate(V_DATE(ps), &V_I4(pd));
182 case VT_BOOL: return VarI4FromBool(V_BOOL(ps), &V_I4(pd));
183 case VT_CY: return VarI4FromCy(V_CY(ps), &V_I4(pd));
184 case VT_DECIMAL: return VarI4FromDec(&V_DECIMAL(ps), &V_I4(pd));
185 case VT_DISPATCH: return VarI4FromDisp(V_DISPATCH(ps), lcid, &V_I4(pd));
186 case VT_BSTR: return VarI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_I4(pd));
188 break;
190 case VT_UI1:
191 switch (vtFrom)
193 case VT_EMPTY: V_UI1(pd) = 0; return S_OK;
194 case VT_I1: V_UI1(pd) = V_I1(ps); return S_OK;
195 case VT_I2: return VarUI1FromI2(V_I2(ps), &V_UI1(pd));
196 case VT_I4: return VarUI1FromI4(V_I4(ps), &V_UI1(pd));
197 case VT_UI2: return VarUI1FromUI2(V_UI2(ps), &V_UI1(pd));
198 case VT_UI4: return VarUI1FromUI4(V_UI4(ps), &V_UI1(pd));
199 case VT_I8: return VarUI1FromI8(V_I8(ps), &V_UI1(pd));
200 case VT_UI8: return VarUI1FromUI8(V_UI8(ps), &V_UI1(pd));
201 case VT_R4: return VarUI1FromR4(V_R4(ps), &V_UI1(pd));
202 case VT_R8: return VarUI1FromR8(V_R8(ps), &V_UI1(pd));
203 case VT_DATE: return VarUI1FromDate(V_DATE(ps), &V_UI1(pd));
204 case VT_BOOL: return VarUI1FromBool(V_BOOL(ps), &V_UI1(pd));
205 case VT_CY: return VarUI1FromCy(V_CY(ps), &V_UI1(pd));
206 case VT_DECIMAL: return VarUI1FromDec(&V_DECIMAL(ps), &V_UI1(pd));
207 case VT_DISPATCH: return VarUI1FromDisp(V_DISPATCH(ps), lcid, &V_UI1(pd));
208 case VT_BSTR: return VarUI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI1(pd));
210 break;
212 case VT_UI2:
213 switch (vtFrom)
215 case VT_EMPTY: V_UI2(pd) = 0; return S_OK;
216 case VT_I1: return VarUI2FromI1(V_I1(ps), &V_UI2(pd));
217 case VT_I2: V_UI2(pd) = V_I2(ps); return S_OK;
218 case VT_I4: return VarUI2FromI4(V_I4(ps), &V_UI2(pd));
219 case VT_UI1: return VarUI2FromUI1(V_UI1(ps), &V_UI2(pd));
220 case VT_UI4: return VarUI2FromUI4(V_UI4(ps), &V_UI2(pd));
221 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
222 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
223 case VT_R4: return VarUI2FromR4(V_R4(ps), &V_UI2(pd));
224 case VT_R8: return VarUI2FromR8(V_R8(ps), &V_UI2(pd));
225 case VT_DATE: return VarUI2FromDate(V_DATE(ps), &V_UI2(pd));
226 case VT_BOOL: return VarUI2FromBool(V_BOOL(ps), &V_UI2(pd));
227 case VT_CY: return VarUI2FromCy(V_CY(ps), &V_UI2(pd));
228 case VT_DECIMAL: return VarUI2FromDec(&V_DECIMAL(ps), &V_UI2(pd));
229 case VT_DISPATCH: return VarUI2FromDisp(V_DISPATCH(ps), lcid, &V_UI2(pd));
230 case VT_BSTR: return VarUI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI2(pd));
232 break;
234 case VT_UI4:
235 switch (vtFrom)
237 case VT_EMPTY: V_UI4(pd) = 0; return S_OK;
238 case VT_I1: return VarUI4FromI1(V_I1(ps), &V_UI4(pd));
239 case VT_I2: return VarUI4FromI2(V_I2(ps), &V_UI4(pd));
240 case VT_I4: V_UI4(pd) = V_I4(ps); return S_OK;
241 case VT_UI1: return VarUI4FromUI1(V_UI1(ps), &V_UI4(pd));
242 case VT_UI2: return VarUI4FromUI2(V_UI2(ps), &V_UI4(pd));
243 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
244 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
245 case VT_R4: return VarUI4FromR4(V_R4(ps), &V_UI4(pd));
246 case VT_R8: return VarUI4FromR8(V_R8(ps), &V_UI4(pd));
247 case VT_DATE: return VarUI4FromDate(V_DATE(ps), &V_UI4(pd));
248 case VT_BOOL: return VarUI4FromBool(V_BOOL(ps), &V_UI4(pd));
249 case VT_CY: return VarUI4FromCy(V_CY(ps), &V_UI4(pd));
250 case VT_DECIMAL: return VarUI4FromDec(&V_DECIMAL(ps), &V_UI4(pd));
251 case VT_DISPATCH: return VarUI4FromDisp(V_DISPATCH(ps), lcid, &V_UI4(pd));
252 case VT_BSTR: return VarUI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI4(pd));
254 break;
256 case VT_UI8:
257 switch (vtFrom)
259 case VT_EMPTY: V_UI8(pd) = 0; return S_OK;
260 case VT_I4: if (V_I4(ps) < 0) return DISP_E_OVERFLOW; V_UI8(pd) = V_I4(ps); return S_OK;
261 case VT_I1: return VarUI8FromI1(V_I1(ps), &V_UI8(pd));
262 case VT_I2: return VarUI8FromI2(V_I2(ps), &V_UI8(pd));
263 case VT_UI1: return VarUI8FromUI1(V_UI1(ps), &V_UI8(pd));
264 case VT_UI2: return VarUI8FromUI2(V_UI2(ps), &V_UI8(pd));
265 case VT_UI4: return VarUI8FromUI4(V_UI4(ps), &V_UI8(pd));
266 case VT_I8: V_UI8(pd) = V_I8(ps); return S_OK;
267 case VT_R4: return VarUI8FromR4(V_R4(ps), &V_UI8(pd));
268 case VT_R8: return VarUI8FromR8(V_R8(ps), &V_UI8(pd));
269 case VT_DATE: return VarUI8FromDate(V_DATE(ps), &V_UI8(pd));
270 case VT_BOOL: return VarUI8FromBool(V_BOOL(ps), &V_UI8(pd));
271 case VT_CY: return VarUI8FromCy(V_CY(ps), &V_UI8(pd));
272 case VT_DECIMAL: return VarUI8FromDec(&V_DECIMAL(ps), &V_UI8(pd));
273 case VT_DISPATCH: return VarUI8FromDisp(V_DISPATCH(ps), lcid, &V_UI8(pd));
274 case VT_BSTR: return VarUI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI8(pd));
276 break;
278 case VT_I8:
279 switch (vtFrom)
281 case VT_EMPTY: V_I8(pd) = 0; return S_OK;
282 case VT_I4: V_I8(pd) = V_I4(ps); return S_OK;
283 case VT_I1: return VarI8FromI1(V_I1(ps), &V_I8(pd));
284 case VT_I2: return VarI8FromI2(V_I2(ps), &V_I8(pd));
285 case VT_UI1: return VarI8FromUI1(V_UI1(ps), &V_I8(pd));
286 case VT_UI2: return VarI8FromUI2(V_UI2(ps), &V_I8(pd));
287 case VT_UI4: return VarI8FromUI4(V_UI4(ps), &V_I8(pd));
288 case VT_UI8: V_I8(pd) = V_UI8(ps); return S_OK;
289 case VT_R4: return VarI8FromR4(V_R4(ps), &V_I8(pd));
290 case VT_R8: return VarI8FromR8(V_R8(ps), &V_I8(pd));
291 case VT_DATE: return VarI8FromDate(V_DATE(ps), &V_I8(pd));
292 case VT_BOOL: return VarI8FromBool(V_BOOL(ps), &V_I8(pd));
293 case VT_CY: return VarI8FromCy(V_CY(ps), &V_I8(pd));
294 case VT_DECIMAL: return VarI8FromDec(&V_DECIMAL(ps), &V_I8(pd));
295 case VT_DISPATCH: return VarI8FromDisp(V_DISPATCH(ps), lcid, &V_I8(pd));
296 case VT_BSTR: return VarI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_I8(pd));
298 break;
300 case VT_R4:
301 switch (vtFrom)
303 case VT_EMPTY: V_R4(pd) = 0.0f; return S_OK;
304 case VT_I1: return VarR4FromI1(V_I1(ps), &V_R4(pd));
305 case VT_I2: return VarR4FromI2(V_I2(ps), &V_R4(pd));
306 case VT_I4: return VarR4FromI4(V_I4(ps), &V_R4(pd));
307 case VT_UI1: return VarR4FromUI1(V_UI1(ps), &V_R4(pd));
308 case VT_UI2: return VarR4FromUI2(V_UI2(ps), &V_R4(pd));
309 case VT_UI4: return VarR4FromUI4(V_UI4(ps), &V_R4(pd));
310 case VT_I8: return VarR4FromI8(V_I8(ps), &V_R4(pd));
311 case VT_UI8: return VarR4FromUI8(V_UI8(ps), &V_R4(pd));
312 case VT_R8: return VarR4FromR8(V_R8(ps), &V_R4(pd));
313 case VT_DATE: return VarR4FromDate(V_DATE(ps), &V_R4(pd));
314 case VT_BOOL: return VarR4FromBool(V_BOOL(ps), &V_R4(pd));
315 case VT_CY: return VarR4FromCy(V_CY(ps), &V_R4(pd));
316 case VT_DECIMAL: return VarR4FromDec(&V_DECIMAL(ps), &V_R4(pd));
317 case VT_DISPATCH: return VarR4FromDisp(V_DISPATCH(ps), lcid, &V_R4(pd));
318 case VT_BSTR: return VarR4FromStr(V_BSTR(ps), lcid, dwFlags, &V_R4(pd));
320 break;
322 case VT_R8:
323 switch (vtFrom)
325 case VT_EMPTY: V_R8(pd) = 0.0; return S_OK;
326 case VT_I1: return VarR8FromI1(V_I1(ps), &V_R8(pd));
327 case VT_I2: return VarR8FromI2(V_I2(ps), &V_R8(pd));
328 case VT_I4: return VarR8FromI4(V_I4(ps), &V_R8(pd));
329 case VT_UI1: return VarR8FromUI1(V_UI1(ps), &V_R8(pd));
330 case VT_UI2: return VarR8FromUI2(V_UI2(ps), &V_R8(pd));
331 case VT_UI4: return VarR8FromUI4(V_UI4(ps), &V_R8(pd));
332 case VT_I8: return VarR8FromI8(V_I8(ps), &V_R8(pd));
333 case VT_UI8: return VarR8FromUI8(V_UI8(ps), &V_R8(pd));
334 case VT_R4: return VarR8FromR4(V_R4(ps), &V_R8(pd));
335 case VT_DATE: return VarR8FromDate(V_DATE(ps), &V_R8(pd));
336 case VT_BOOL: return VarR8FromBool(V_BOOL(ps), &V_R8(pd));
337 case VT_CY: return VarR8FromCy(V_CY(ps), &V_R8(pd));
338 case VT_DECIMAL: return VarR8FromDec(&V_DECIMAL(ps), &V_R8(pd));
339 case VT_DISPATCH: return VarR8FromDisp(V_DISPATCH(ps), lcid, &V_R8(pd));
340 case VT_BSTR: return VarR8FromStr(V_BSTR(ps), lcid, dwFlags, &V_R8(pd));
342 break;
344 case VT_DATE:
345 switch (vtFrom)
347 case VT_EMPTY: V_DATE(pd) = 0.0; return S_OK;
348 case VT_I1: return VarDateFromI1(V_I1(ps), &V_DATE(pd));
349 case VT_I2: return VarDateFromI2(V_I2(ps), &V_DATE(pd));
350 case VT_I4: return VarDateFromI4(V_I4(ps), &V_DATE(pd));
351 case VT_UI1: return VarDateFromUI1(V_UI1(ps), &V_DATE(pd));
352 case VT_UI2: return VarDateFromUI2(V_UI2(ps), &V_DATE(pd));
353 case VT_UI4: return VarDateFromUI4(V_UI4(ps), &V_DATE(pd));
354 case VT_I8: return VarDateFromI8(V_I8(ps), &V_DATE(pd));
355 case VT_UI8: return VarDateFromUI8(V_UI8(ps), &V_DATE(pd));
356 case VT_R4: return VarDateFromR4(V_R4(ps), &V_DATE(pd));
357 case VT_R8: return VarDateFromR8(V_R8(ps), &V_DATE(pd));
358 case VT_BOOL: return VarDateFromBool(V_BOOL(ps), &V_DATE(pd));
359 case VT_CY: return VarDateFromCy(V_CY(ps), &V_DATE(pd));
360 case VT_DECIMAL: return VarDateFromDec(&V_DECIMAL(ps), &V_DATE(pd));
361 case VT_DISPATCH: return VarDateFromDisp(V_DISPATCH(ps), lcid, &V_DATE(pd));
362 case VT_BSTR: return VarDateFromStr(V_BSTR(ps), lcid, dwFlags, &V_DATE(pd));
364 break;
366 case VT_BOOL:
367 switch (vtFrom)
369 case VT_EMPTY: V_BOOL(pd) = 0; return S_OK;
370 case VT_I1: return VarBoolFromI1(V_I1(ps), &V_BOOL(pd));
371 case VT_I2: return VarBoolFromI2(V_I2(ps), &V_BOOL(pd));
372 case VT_I4: return VarBoolFromI4(V_I4(ps), &V_BOOL(pd));
373 case VT_UI1: return VarBoolFromUI1(V_UI1(ps), &V_BOOL(pd));
374 case VT_UI2: return VarBoolFromUI2(V_UI2(ps), &V_BOOL(pd));
375 case VT_UI4: return VarBoolFromUI4(V_UI4(ps), &V_BOOL(pd));
376 case VT_I8: return VarBoolFromI8(V_I8(ps), &V_BOOL(pd));
377 case VT_UI8: return VarBoolFromUI8(V_UI8(ps), &V_BOOL(pd));
378 case VT_R4: return VarBoolFromR4(V_R4(ps), &V_BOOL(pd));
379 case VT_R8: return VarBoolFromR8(V_R8(ps), &V_BOOL(pd));
380 case VT_DATE: return VarBoolFromDate(V_DATE(ps), &V_BOOL(pd));
381 case VT_CY: return VarBoolFromCy(V_CY(ps), &V_BOOL(pd));
382 case VT_DECIMAL: return VarBoolFromDec(&V_DECIMAL(ps), &V_BOOL(pd));
383 case VT_DISPATCH: return VarBoolFromDisp(V_DISPATCH(ps), lcid, &V_BOOL(pd));
384 case VT_BSTR: return VarBoolFromStr(V_BSTR(ps), lcid, dwFlags, &V_BOOL(pd));
386 break;
388 case VT_BSTR:
389 switch (vtFrom)
391 case VT_EMPTY:
392 V_BSTR(pd) = SysAllocStringLen(NULL, 0);
393 return V_BSTR(pd) ? S_OK : E_OUTOFMEMORY;
394 case VT_BOOL:
395 if (wFlags & (VARIANT_ALPHABOOL|VARIANT_LOCALBOOL))
396 return VarBstrFromBool(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
397 return VarBstrFromI2(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
398 case VT_I1: return VarBstrFromI1(V_I1(ps), lcid, dwFlags, &V_BSTR(pd));
399 case VT_I2: return VarBstrFromI2(V_I2(ps), lcid, dwFlags, &V_BSTR(pd));
400 case VT_I4: return VarBstrFromI4(V_I4(ps), lcid, dwFlags, &V_BSTR(pd));
401 case VT_UI1: return VarBstrFromUI1(V_UI1(ps), lcid, dwFlags, &V_BSTR(pd));
402 case VT_UI2: return VarBstrFromUI2(V_UI2(ps), lcid, dwFlags, &V_BSTR(pd));
403 case VT_UI4: return VarBstrFromUI4(V_UI4(ps), lcid, dwFlags, &V_BSTR(pd));
404 case VT_I8: return VarBstrFromI8(V_I8(ps), lcid, dwFlags, &V_BSTR(pd));
405 case VT_UI8: return VarBstrFromUI8(V_UI8(ps), lcid, dwFlags, &V_BSTR(pd));
406 case VT_R4: return VarBstrFromR4(V_R4(ps), lcid, dwFlags, &V_BSTR(pd));
407 case VT_R8: return VarBstrFromR8(V_R8(ps), lcid, dwFlags, &V_BSTR(pd));
408 case VT_DATE: return VarBstrFromDate(V_DATE(ps), lcid, dwFlags, &V_BSTR(pd));
409 case VT_CY: return VarBstrFromCy(V_CY(ps), lcid, dwFlags, &V_BSTR(pd));
410 case VT_DECIMAL: return VarBstrFromDec(&V_DECIMAL(ps), lcid, dwFlags, &V_BSTR(pd));
411 case VT_DISPATCH: return VarBstrFromDisp(V_DISPATCH(ps), lcid, dwFlags, &V_BSTR(pd));
413 break;
415 case VT_CY:
416 switch (vtFrom)
418 case VT_EMPTY: V_CY(pd).int64 = 0; return S_OK;
419 case VT_I1: return VarCyFromI1(V_I1(ps), &V_CY(pd));
420 case VT_I2: return VarCyFromI2(V_I2(ps), &V_CY(pd));
421 case VT_I4: return VarCyFromI4(V_I4(ps), &V_CY(pd));
422 case VT_UI1: return VarCyFromUI1(V_UI1(ps), &V_CY(pd));
423 case VT_UI2: return VarCyFromUI2(V_UI2(ps), &V_CY(pd));
424 case VT_UI4: return VarCyFromUI4(V_UI4(ps), &V_CY(pd));
425 case VT_I8: return VarCyFromI8(V_I8(ps), &V_CY(pd));
426 case VT_UI8: return VarCyFromUI8(V_UI8(ps), &V_CY(pd));
427 case VT_R4: return VarCyFromR4(V_R4(ps), &V_CY(pd));
428 case VT_R8: return VarCyFromR8(V_R8(ps), &V_CY(pd));
429 case VT_DATE: return VarCyFromDate(V_DATE(ps), &V_CY(pd));
430 case VT_BOOL: return VarCyFromBool(V_BOOL(ps), &V_CY(pd));
431 case VT_DECIMAL: return VarCyFromDec(&V_DECIMAL(ps), &V_CY(pd));
432 case VT_DISPATCH: return VarCyFromDisp(V_DISPATCH(ps), lcid, &V_CY(pd));
433 case VT_BSTR: return VarCyFromStr(V_BSTR(ps), lcid, dwFlags, &V_CY(pd));
435 break;
437 case VT_DECIMAL:
438 switch (vtFrom)
440 case VT_EMPTY:
441 case VT_BOOL:
442 DEC_SIGNSCALE(&V_DECIMAL(pd)) = SIGNSCALE(DECIMAL_POS,0);
443 DEC_HI32(&V_DECIMAL(pd)) = 0;
444 DEC_MID32(&V_DECIMAL(pd)) = 0;
445 /* VarDecFromBool() coerces to -1/0, ChangeTypeEx() coerces to 1/0.
446 * VT_NULL and VT_EMPTY always give a 0 value.
448 DEC_LO32(&V_DECIMAL(pd)) = vtFrom == VT_BOOL && V_BOOL(ps) ? 1 : 0;
449 return S_OK;
450 case VT_I1: return VarDecFromI1(V_I1(ps), &V_DECIMAL(pd));
451 case VT_I2: return VarDecFromI2(V_I2(ps), &V_DECIMAL(pd));
452 case VT_I4: return VarDecFromI4(V_I4(ps), &V_DECIMAL(pd));
453 case VT_UI1: return VarDecFromUI1(V_UI1(ps), &V_DECIMAL(pd));
454 case VT_UI2: return VarDecFromUI2(V_UI2(ps), &V_DECIMAL(pd));
455 case VT_UI4: return VarDecFromUI4(V_UI4(ps), &V_DECIMAL(pd));
456 case VT_I8: return VarDecFromI8(V_I8(ps), &V_DECIMAL(pd));
457 case VT_UI8: return VarDecFromUI8(V_UI8(ps), &V_DECIMAL(pd));
458 case VT_R4: return VarDecFromR4(V_R4(ps), &V_DECIMAL(pd));
459 case VT_R8: return VarDecFromR8(V_R8(ps), &V_DECIMAL(pd));
460 case VT_DATE: return VarDecFromDate(V_DATE(ps), &V_DECIMAL(pd));
461 case VT_CY: return VarDecFromCy(V_CY(ps), &V_DECIMAL(pd));
462 case VT_DISPATCH: return VarDecFromDisp(V_DISPATCH(ps), lcid, &V_DECIMAL(pd));
463 case VT_BSTR: return VarDecFromStr(V_BSTR(ps), lcid, dwFlags, &V_DECIMAL(pd));
465 break;
467 case VT_UNKNOWN:
468 switch (vtFrom)
470 case VT_DISPATCH:
471 if (V_DISPATCH(ps) == NULL)
473 V_UNKNOWN(pd) = NULL;
474 res = S_OK;
476 else
477 res = IDispatch_QueryInterface(V_DISPATCH(ps), &IID_IUnknown, (LPVOID*)&V_UNKNOWN(pd));
478 break;
480 break;
482 case VT_DISPATCH:
483 switch (vtFrom)
485 case VT_UNKNOWN:
486 if (V_UNKNOWN(ps) == NULL)
488 V_DISPATCH(pd) = NULL;
489 res = S_OK;
491 else
492 res = IUnknown_QueryInterface(V_UNKNOWN(ps), &IID_IDispatch, (LPVOID*)&V_DISPATCH(pd));
493 break;
495 break;
497 case VT_RECORD:
498 break;
500 return res;
503 /* Coerce to/from an array */
504 static inline HRESULT VARIANT_CoerceArray(VARIANTARG* pd, VARIANTARG* ps, VARTYPE vt)
506 if (vt == VT_BSTR && V_VT(ps) == (VT_ARRAY|VT_UI1))
507 return BstrFromVector(V_ARRAY(ps), &V_BSTR(pd));
509 if (V_VT(ps) == VT_BSTR && vt == (VT_ARRAY|VT_UI1))
510 return VectorFromBstr(V_BSTR(ps), &V_ARRAY(pd));
512 if (V_VT(ps) == vt)
513 return SafeArrayCopy(V_ARRAY(ps), &V_ARRAY(pd));
515 return DISP_E_TYPEMISMATCH;
518 static HRESULT VARIANT_FetchDispatchValue(LPVARIANT pvDispatch, LPVARIANT pValue)
520 HRESULT hres;
521 static DISPPARAMS emptyParams = { NULL, NULL, 0, 0 };
523 if ((V_VT(pvDispatch) & VT_TYPEMASK) == VT_DISPATCH) {
524 if (NULL == V_DISPATCH(pvDispatch)) return DISP_E_TYPEMISMATCH;
525 hres = IDispatch_Invoke(V_DISPATCH(pvDispatch), DISPID_VALUE, &IID_NULL,
526 LOCALE_USER_DEFAULT, DISPATCH_PROPERTYGET, &emptyParams, pValue,
527 NULL, NULL);
528 } else {
529 hres = DISP_E_TYPEMISMATCH;
531 return hres;
534 /******************************************************************************
535 * Check if a variants type is valid.
537 static inline HRESULT VARIANT_ValidateType(VARTYPE vt)
539 VARTYPE vtExtra = vt & VT_EXTRA_TYPE;
541 vt &= VT_TYPEMASK;
543 if (!(vtExtra & (VT_VECTOR|VT_RESERVED)))
545 if (vt < VT_VOID || vt == VT_RECORD || vt == VT_CLSID)
547 if ((vtExtra & (VT_BYREF|VT_ARRAY)) && vt <= VT_NULL)
548 return DISP_E_BADVARTYPE;
549 if (vt != (VARTYPE)15)
550 return S_OK;
553 return DISP_E_BADVARTYPE;
556 /******************************************************************************
557 * VariantInit [OLEAUT32.8]
559 * Initialise a variant.
561 * PARAMS
562 * pVarg [O] Variant to initialise
564 * RETURNS
565 * Nothing.
567 * NOTES
568 * This function simply sets the type of the variant to VT_EMPTY. It does not
569 * free any existing value, use VariantClear() for that.
571 void WINAPI VariantInit(VARIANTARG* pVarg)
573 TRACE("(%p)\n", pVarg);
575 /* Win8.1 zeroes whole struct. Previous implementations don't set any other fields. */
576 V_VT(pVarg) = VT_EMPTY;
579 HRESULT VARIANT_ClearInd(VARIANTARG *pVarg)
581 HRESULT hres;
583 TRACE("(%s)\n", debugstr_variant(pVarg));
585 hres = VARIANT_ValidateType(V_VT(pVarg));
586 if (FAILED(hres))
587 return hres;
589 switch (V_VT(pVarg))
591 case VT_DISPATCH:
592 case VT_UNKNOWN:
593 if (V_UNKNOWN(pVarg))
594 IUnknown_Release(V_UNKNOWN(pVarg));
595 break;
596 case VT_UNKNOWN | VT_BYREF:
597 case VT_DISPATCH | VT_BYREF:
598 if(*V_UNKNOWNREF(pVarg))
599 IUnknown_Release(*V_UNKNOWNREF(pVarg));
600 break;
601 case VT_BSTR:
602 SysFreeString(V_BSTR(pVarg));
603 break;
604 case VT_BSTR | VT_BYREF:
605 SysFreeString(*V_BSTRREF(pVarg));
606 break;
607 case VT_VARIANT | VT_BYREF:
608 VariantClear(V_VARIANTREF(pVarg));
609 break;
610 case VT_RECORD:
611 case VT_RECORD | VT_BYREF:
613 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
614 if (pBr->pRecInfo)
616 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
617 IRecordInfo_Release(pBr->pRecInfo);
619 break;
621 default:
622 if (V_ISARRAY(pVarg) || (V_VT(pVarg) & ~VT_BYREF) == VT_SAFEARRAY)
624 if (V_ISBYREF(pVarg))
626 if (*V_ARRAYREF(pVarg))
627 hres = SafeArrayDestroy(*V_ARRAYREF(pVarg));
629 else if (V_ARRAY(pVarg))
630 hres = SafeArrayDestroy(V_ARRAY(pVarg));
632 break;
635 V_VT(pVarg) = VT_EMPTY;
636 return hres;
639 /******************************************************************************
640 * VariantClear [OLEAUT32.9]
642 * Clear a variant.
644 * PARAMS
645 * pVarg [I/O] Variant to clear
647 * RETURNS
648 * Success: S_OK. Any previous value in pVarg is freed and its type is set to VT_EMPTY.
649 * Failure: DISP_E_BADVARTYPE, if the variant is not a valid variant type.
651 HRESULT WINAPI VariantClear(VARIANTARG* pVarg)
653 HRESULT hres;
655 TRACE("(%s)\n", debugstr_variant(pVarg));
657 hres = VARIANT_ValidateType(V_VT(pVarg));
659 if (SUCCEEDED(hres))
661 if (!V_ISBYREF(pVarg))
663 if (V_ISARRAY(pVarg) || V_VT(pVarg) == VT_SAFEARRAY)
665 hres = SafeArrayDestroy(V_ARRAY(pVarg));
667 else if (V_VT(pVarg) == VT_BSTR)
669 SysFreeString(V_BSTR(pVarg));
671 else if (V_VT(pVarg) == VT_RECORD)
673 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
674 if (pBr->pRecInfo)
676 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
677 IRecordInfo_Release(pBr->pRecInfo);
680 else if (V_VT(pVarg) == VT_DISPATCH ||
681 V_VT(pVarg) == VT_UNKNOWN)
683 if (V_UNKNOWN(pVarg))
684 IUnknown_Release(V_UNKNOWN(pVarg));
687 V_VT(pVarg) = VT_EMPTY;
689 return hres;
692 /******************************************************************************
693 * Copy an IRecordInfo object contained in a variant.
695 static HRESULT VARIANT_CopyIRecordInfo(VARIANT *dest, VARIANT *src)
697 struct __tagBRECORD *dest_rec = &V_UNION(dest, brecVal);
698 struct __tagBRECORD *src_rec = &V_UNION(src, brecVal);
699 HRESULT hr = S_OK;
700 ULONG size;
702 if (!src_rec->pRecInfo)
704 if (src_rec->pvRecord) return E_INVALIDARG;
705 return S_OK;
708 hr = IRecordInfo_GetSize(src_rec->pRecInfo, &size);
709 if (FAILED(hr)) return hr;
711 /* This could look cleaner if only RecordCreate() was used, but native doesn't use it.
712 Memory should be allocated in a same way as RecordCreate() does, so RecordDestroy()
713 could free it later. */
714 dest_rec->pvRecord = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, size);
715 if (!dest_rec->pvRecord) return E_OUTOFMEMORY;
717 dest_rec->pRecInfo = src_rec->pRecInfo;
718 IRecordInfo_AddRef(src_rec->pRecInfo);
720 return IRecordInfo_RecordCopy(src_rec->pRecInfo, src_rec->pvRecord, dest_rec->pvRecord);
723 /******************************************************************************
724 * VariantCopy [OLEAUT32.10]
726 * Copy a variant.
728 * PARAMS
729 * pvargDest [O] Destination for copy
730 * pvargSrc [I] Source variant to copy
732 * RETURNS
733 * Success: S_OK. pvargDest contains a copy of pvargSrc.
734 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid type.
735 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
736 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
737 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
739 * NOTES
740 * - If pvargSrc == pvargDest, this function does nothing, and succeeds if
741 * pvargSrc is valid. Otherwise, pvargDest is always cleared using
742 * VariantClear() before pvargSrc is copied to it. If clearing pvargDest
743 * fails, so does this function.
744 * - VT_CLSID is a valid type type for pvargSrc, but not for pvargDest.
745 * - For by-value non-intrinsic types, a deep copy is made, i.e. The whole value
746 * is copied rather than just any pointers to it.
747 * - For by-value object types the object pointer is copied and the objects
748 * reference count increased using IUnknown_AddRef().
749 * - For all by-reference types, only the referencing pointer is copied.
751 HRESULT WINAPI VariantCopy(VARIANTARG* pvargDest, VARIANTARG* pvargSrc)
753 HRESULT hres = S_OK;
755 TRACE("(%s,%s)\n", debugstr_variant(pvargDest), debugstr_variant(pvargSrc));
757 if (V_TYPE(pvargSrc) == VT_CLSID || /* VT_CLSID is a special case */
758 FAILED(VARIANT_ValidateType(V_VT(pvargSrc))))
759 return DISP_E_BADVARTYPE;
761 if (pvargSrc != pvargDest &&
762 SUCCEEDED(hres = VariantClear(pvargDest)))
764 *pvargDest = *pvargSrc; /* Shallow copy the value */
766 if (!V_ISBYREF(pvargSrc))
768 switch (V_VT(pvargSrc))
770 case VT_BSTR:
771 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)V_BSTR(pvargSrc), SysStringByteLen(V_BSTR(pvargSrc)));
772 if (!V_BSTR(pvargDest))
773 hres = E_OUTOFMEMORY;
774 break;
775 case VT_RECORD:
776 hres = VARIANT_CopyIRecordInfo(pvargDest, pvargSrc);
777 break;
778 case VT_DISPATCH:
779 case VT_UNKNOWN:
780 V_UNKNOWN(pvargDest) = V_UNKNOWN(pvargSrc);
781 if (V_UNKNOWN(pvargSrc))
782 IUnknown_AddRef(V_UNKNOWN(pvargSrc));
783 break;
784 default:
785 if (V_ISARRAY(pvargSrc))
786 hres = SafeArrayCopy(V_ARRAY(pvargSrc), &V_ARRAY(pvargDest));
790 return hres;
793 /* Return the byte size of a variants data */
794 static inline size_t VARIANT_DataSize(const VARIANT* pv)
796 switch (V_TYPE(pv))
798 case VT_I1:
799 case VT_UI1: return sizeof(BYTE);
800 case VT_I2:
801 case VT_UI2: return sizeof(SHORT);
802 case VT_INT:
803 case VT_UINT:
804 case VT_I4:
805 case VT_UI4: return sizeof(LONG);
806 case VT_I8:
807 case VT_UI8: return sizeof(LONGLONG);
808 case VT_R4: return sizeof(float);
809 case VT_R8: return sizeof(double);
810 case VT_DATE: return sizeof(DATE);
811 case VT_BOOL: return sizeof(VARIANT_BOOL);
812 case VT_DISPATCH:
813 case VT_UNKNOWN:
814 case VT_BSTR: return sizeof(void*);
815 case VT_CY: return sizeof(CY);
816 case VT_ERROR: return sizeof(SCODE);
818 TRACE("Shouldn't be called for variant %s!\n", debugstr_variant(pv));
819 return 0;
822 /******************************************************************************
823 * VariantCopyInd [OLEAUT32.11]
825 * Copy a variant, dereferencing it if it is by-reference.
827 * PARAMS
828 * pvargDest [O] Destination for copy
829 * pvargSrc [I] Source variant to copy
831 * RETURNS
832 * Success: S_OK. pvargDest contains a copy of pvargSrc.
833 * Failure: An HRESULT error code indicating the error.
835 * NOTES
836 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid by-value type.
837 * E_INVALIDARG, if pvargSrc is an invalid by-reference type.
838 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
839 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
840 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
842 * NOTES
843 * - If pvargSrc is by-value, this function behaves exactly as VariantCopy().
844 * - If pvargSrc is by-reference, the value copied to pvargDest is the pointed-to
845 * value.
846 * - if pvargSrc == pvargDest, this function dereferences in place. Otherwise,
847 * pvargDest is always cleared using VariantClear() before pvargSrc is copied
848 * to it. If clearing pvargDest fails, so does this function.
850 HRESULT WINAPI VariantCopyInd(VARIANT* pvargDest, VARIANTARG* pvargSrc)
852 VARIANTARG vTmp, *pSrc = pvargSrc;
853 VARTYPE vt;
854 HRESULT hres = S_OK;
856 TRACE("(%s,%s)\n", debugstr_variant(pvargDest), debugstr_variant(pvargSrc));
858 if (!V_ISBYREF(pvargSrc))
859 return VariantCopy(pvargDest, pvargSrc);
861 /* Argument checking is more lax than VariantCopy()... */
862 vt = V_TYPE(pvargSrc);
863 if (V_ISARRAY(pvargSrc) || (V_VT(pvargSrc) == (VT_RECORD|VT_BYREF)) ||
864 (vt > VT_NULL && vt != (VARTYPE)15 && vt < VT_VOID &&
865 !(V_VT(pvargSrc) & (VT_VECTOR|VT_RESERVED))))
867 /* OK */
869 else
870 return E_INVALIDARG; /* ...And the return value for invalid types differs too */
872 if (pvargSrc == pvargDest)
874 /* In place copy. Use a shallow copy of pvargSrc & init pvargDest.
875 * This avoids an expensive VariantCopy() call - e.g. SafeArrayCopy().
877 vTmp = *pvargSrc;
878 pSrc = &vTmp;
879 V_VT(pvargDest) = VT_EMPTY;
881 else
883 /* Copy into another variant. Free the variant in pvargDest */
884 if (FAILED(hres = VariantClear(pvargDest)))
886 TRACE("VariantClear() of destination failed\n");
887 return hres;
891 if (V_ISARRAY(pSrc))
893 /* Native doesn't check that *V_ARRAYREF(pSrc) is valid */
894 hres = SafeArrayCopy(*V_ARRAYREF(pSrc), &V_ARRAY(pvargDest));
896 else if (V_VT(pSrc) == (VT_BSTR|VT_BYREF))
898 /* Native doesn't check that *V_BSTRREF(pSrc) is valid */
899 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)*V_BSTRREF(pSrc), SysStringByteLen(*V_BSTRREF(pSrc)));
901 else if (V_VT(pSrc) == (VT_RECORD|VT_BYREF))
903 hres = VARIANT_CopyIRecordInfo(pvargDest, pvargSrc);
905 else if (V_VT(pSrc) == (VT_DISPATCH|VT_BYREF) ||
906 V_VT(pSrc) == (VT_UNKNOWN|VT_BYREF))
908 /* Native doesn't check that *V_UNKNOWNREF(pSrc) is valid */
909 V_UNKNOWN(pvargDest) = *V_UNKNOWNREF(pSrc);
910 if (*V_UNKNOWNREF(pSrc))
911 IUnknown_AddRef(*V_UNKNOWNREF(pSrc));
913 else if (V_VT(pSrc) == (VT_VARIANT|VT_BYREF))
915 /* Native doesn't check that *V_VARIANTREF(pSrc) is valid */
916 if (V_VT(V_VARIANTREF(pSrc)) == (VT_VARIANT|VT_BYREF))
917 hres = E_INVALIDARG; /* Don't dereference more than one level */
918 else
919 hres = VariantCopyInd(pvargDest, V_VARIANTREF(pSrc));
921 /* Use the dereferenced variants type value, not VT_VARIANT */
922 goto VariantCopyInd_Return;
924 else if (V_VT(pSrc) == (VT_DECIMAL|VT_BYREF))
926 memcpy(&DEC_SCALE(&V_DECIMAL(pvargDest)), &DEC_SCALE(V_DECIMALREF(pSrc)),
927 sizeof(DECIMAL) - sizeof(USHORT));
929 else
931 /* Copy the pointed to data into this variant */
932 memcpy(&V_BYREF(pvargDest), V_BYREF(pSrc), VARIANT_DataSize(pSrc));
935 V_VT(pvargDest) = V_VT(pSrc) & ~VT_BYREF;
937 VariantCopyInd_Return:
939 if (pSrc != pvargSrc)
940 VariantClear(pSrc);
942 TRACE("returning 0x%08x, %s\n", hres, debugstr_variant(pvargDest));
943 return hres;
946 /******************************************************************************
947 * VariantChangeType [OLEAUT32.12]
949 * Change the type of a variant.
951 * PARAMS
952 * pvargDest [O] Destination for the converted variant
953 * pvargSrc [O] Source variant to change the type of
954 * wFlags [I] VARIANT_ flags from "oleauto.h"
955 * vt [I] Variant type to change pvargSrc into
957 * RETURNS
958 * Success: S_OK. pvargDest contains the converted value.
959 * Failure: An HRESULT error code describing the failure.
961 * NOTES
962 * The LCID used for the conversion is LOCALE_USER_DEFAULT.
963 * See VariantChangeTypeEx.
965 HRESULT WINAPI VariantChangeType(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
966 USHORT wFlags, VARTYPE vt)
968 return VariantChangeTypeEx( pvargDest, pvargSrc, LOCALE_USER_DEFAULT, wFlags, vt );
971 /******************************************************************************
972 * VariantChangeTypeEx [OLEAUT32.147]
974 * Change the type of a variant.
976 * PARAMS
977 * pvargDest [O] Destination for the converted variant
978 * pvargSrc [O] Source variant to change the type of
979 * lcid [I] LCID for the conversion
980 * wFlags [I] VARIANT_ flags from "oleauto.h"
981 * vt [I] Variant type to change pvargSrc into
983 * RETURNS
984 * Success: S_OK. pvargDest contains the converted value.
985 * Failure: An HRESULT error code describing the failure.
987 * NOTES
988 * pvargDest and pvargSrc can point to the same variant to perform an in-place
989 * conversion. If the conversion is successful, pvargSrc will be freed.
991 HRESULT WINAPI VariantChangeTypeEx(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
992 LCID lcid, USHORT wFlags, VARTYPE vt)
994 HRESULT res = S_OK;
996 TRACE("(%s,%s,0x%08x,0x%04x,%s)\n", debugstr_variant(pvargDest),
997 debugstr_variant(pvargSrc), lcid, wFlags, debugstr_vt(vt));
999 if (vt == VT_CLSID)
1000 res = DISP_E_BADVARTYPE;
1001 else
1003 res = VARIANT_ValidateType(V_VT(pvargSrc));
1005 if (SUCCEEDED(res))
1007 res = VARIANT_ValidateType(vt);
1009 if (SUCCEEDED(res))
1011 VARIANTARG vTmp, vSrcDeref;
1013 if(V_ISBYREF(pvargSrc) && !V_BYREF(pvargSrc))
1014 res = DISP_E_TYPEMISMATCH;
1015 else
1017 V_VT(&vTmp) = VT_EMPTY;
1018 V_VT(&vSrcDeref) = VT_EMPTY;
1019 VariantClear(&vTmp);
1020 VariantClear(&vSrcDeref);
1023 if (SUCCEEDED(res))
1025 res = VariantCopyInd(&vSrcDeref, pvargSrc);
1026 if (SUCCEEDED(res))
1028 if (V_ISARRAY(&vSrcDeref) || (vt & VT_ARRAY))
1029 res = VARIANT_CoerceArray(&vTmp, &vSrcDeref, vt);
1030 else
1031 res = VARIANT_Coerce(&vTmp, lcid, wFlags, &vSrcDeref, vt);
1033 if (SUCCEEDED(res)) {
1034 V_VT(&vTmp) = vt;
1035 res = VariantCopy(pvargDest, &vTmp);
1037 VariantClear(&vTmp);
1038 VariantClear(&vSrcDeref);
1045 TRACE("returning 0x%08x, %s\n", res, debugstr_variant(pvargDest));
1046 return res;
1049 /* Date Conversions */
1051 #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
1053 /* Convert a VT_DATE value to a Julian Date */
1054 static inline int VARIANT_JulianFromDate(int dateIn)
1056 int julianDays = dateIn;
1058 julianDays -= DATE_MIN; /* Convert to + days from 1 Jan 100 AD */
1059 julianDays += 1757585; /* Convert to + days from 23 Nov 4713 BC (Julian) */
1060 return julianDays;
1063 /* Convert a Julian Date to a VT_DATE value */
1064 static inline int VARIANT_DateFromJulian(int dateIn)
1066 int julianDays = dateIn;
1068 julianDays -= 1757585; /* Convert to + days from 1 Jan 100 AD */
1069 julianDays += DATE_MIN; /* Convert to +/- days from 1 Jan 1899 AD */
1070 return julianDays;
1073 /* Convert a Julian date to Day/Month/Year - from PostgreSQL */
1074 static inline void VARIANT_DMYFromJulian(int jd, USHORT *year, USHORT *month, USHORT *day)
1076 int j, i, l, n;
1078 l = jd + 68569;
1079 n = l * 4 / 146097;
1080 l -= (n * 146097 + 3) / 4;
1081 i = (4000 * (l + 1)) / 1461001;
1082 l += 31 - (i * 1461) / 4;
1083 j = (l * 80) / 2447;
1084 *day = l - (j * 2447) / 80;
1085 l = j / 11;
1086 *month = (j + 2) - (12 * l);
1087 *year = 100 * (n - 49) + i + l;
1090 /* Convert Day/Month/Year to a Julian date - from PostgreSQL */
1091 static inline double VARIANT_JulianFromDMY(USHORT year, USHORT month, USHORT day)
1093 int m12 = (month - 14) / 12;
1095 return ((1461 * (year + 4800 + m12)) / 4 + (367 * (month - 2 - 12 * m12)) / 12 -
1096 (3 * ((year + 4900 + m12) / 100)) / 4 + day - 32075);
1099 /* Macros for accessing DOS format date/time fields */
1100 #define DOS_YEAR(x) (1980 + (x >> 9))
1101 #define DOS_MONTH(x) ((x >> 5) & 0xf)
1102 #define DOS_DAY(x) (x & 0x1f)
1103 #define DOS_HOUR(x) (x >> 11)
1104 #define DOS_MINUTE(x) ((x >> 5) & 0x3f)
1105 #define DOS_SECOND(x) ((x & 0x1f) << 1)
1106 /* Create a DOS format date/time */
1107 #define DOS_DATE(d,m,y) (d | (m << 5) | ((y-1980) << 9))
1108 #define DOS_TIME(h,m,s) ((s >> 1) | (m << 5) | (h << 11))
1110 /* Roll a date forwards or backwards to correct it */
1111 static HRESULT VARIANT_RollUdate(UDATE *lpUd)
1113 static const BYTE days[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
1114 short iYear, iMonth, iDay, iHour, iMinute, iSecond;
1116 /* interpret values signed */
1117 iYear = lpUd->st.wYear;
1118 iMonth = lpUd->st.wMonth;
1119 iDay = lpUd->st.wDay;
1120 iHour = lpUd->st.wHour;
1121 iMinute = lpUd->st.wMinute;
1122 iSecond = lpUd->st.wSecond;
1124 TRACE("Raw date: %d/%d/%d %d:%d:%d\n", iDay, iMonth,
1125 iYear, iHour, iMinute, iSecond);
1127 if (iYear > 9999 || iYear < -9999)
1128 return E_INVALIDARG; /* Invalid value */
1129 /* Year 0 to 29 are treated as 2000 + year */
1130 if (iYear >= 0 && iYear < 30)
1131 iYear += 2000;
1132 /* Remaining years < 100 are treated as 1900 + year */
1133 else if (iYear >= 30 && iYear < 100)
1134 iYear += 1900;
1136 iMinute += iSecond / 60;
1137 iSecond = iSecond % 60;
1138 iHour += iMinute / 60;
1139 iMinute = iMinute % 60;
1140 iDay += iHour / 24;
1141 iHour = iHour % 24;
1142 iYear += iMonth / 12;
1143 iMonth = iMonth % 12;
1144 if (iMonth<=0) {iMonth+=12; iYear--;}
1145 while (iDay > days[iMonth])
1147 if (iMonth == 2 && IsLeapYear(iYear))
1148 iDay -= 29;
1149 else
1150 iDay -= days[iMonth];
1151 iMonth++;
1152 iYear += iMonth / 12;
1153 iMonth = iMonth % 12;
1155 while (iDay <= 0)
1157 iMonth--;
1158 if (iMonth<=0) {iMonth+=12; iYear--;}
1159 if (iMonth == 2 && IsLeapYear(iYear))
1160 iDay += 29;
1161 else
1162 iDay += days[iMonth];
1165 if (iSecond<0){iSecond+=60; iMinute--;}
1166 if (iMinute<0){iMinute+=60; iHour--;}
1167 if (iHour<0) {iHour+=24; iDay--;}
1168 if (iYear<=0) iYear+=2000;
1170 lpUd->st.wYear = iYear;
1171 lpUd->st.wMonth = iMonth;
1172 lpUd->st.wDay = iDay;
1173 lpUd->st.wHour = iHour;
1174 lpUd->st.wMinute = iMinute;
1175 lpUd->st.wSecond = iSecond;
1177 TRACE("Rolled date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth,
1178 lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond);
1179 return S_OK;
1182 /**********************************************************************
1183 * DosDateTimeToVariantTime [OLEAUT32.14]
1185 * Convert a Dos format date and time into variant VT_DATE format.
1187 * PARAMS
1188 * wDosDate [I] Dos format date
1189 * wDosTime [I] Dos format time
1190 * pDateOut [O] Destination for VT_DATE format
1192 * RETURNS
1193 * Success: TRUE. pDateOut contains the converted time.
1194 * Failure: FALSE, if wDosDate or wDosTime are invalid (see notes).
1196 * NOTES
1197 * - Dos format dates can only hold dates from 1-Jan-1980 to 31-Dec-2099.
1198 * - Dos format times are accurate to only 2 second precision.
1199 * - The format of a Dos Date is:
1200 *| Bits Values Meaning
1201 *| ---- ------ -------
1202 *| 0-4 1-31 Day of the week. 0 rolls back one day. A value greater than
1203 *| the days in the month rolls forward the extra days.
1204 *| 5-8 1-12 Month of the year. 0 rolls back to December of the previous
1205 *| year. 13-15 are invalid.
1206 *| 9-15 0-119 Year based from 1980 (Max 2099). 120-127 are invalid.
1207 * - The format of a Dos Time is:
1208 *| Bits Values Meaning
1209 *| ---- ------ -------
1210 *| 0-4 0-29 Seconds/2. 30 and 31 are invalid.
1211 *| 5-10 0-59 Minutes. 60-63 are invalid.
1212 *| 11-15 0-23 Hours (24 hour clock). 24-32 are invalid.
1214 INT WINAPI DosDateTimeToVariantTime(USHORT wDosDate, USHORT wDosTime,
1215 double *pDateOut)
1217 UDATE ud;
1219 TRACE("(0x%x(%d/%d/%d),0x%x(%d:%d:%d),%p)\n",
1220 wDosDate, DOS_YEAR(wDosDate), DOS_MONTH(wDosDate), DOS_DAY(wDosDate),
1221 wDosTime, DOS_HOUR(wDosTime), DOS_MINUTE(wDosTime), DOS_SECOND(wDosTime),
1222 pDateOut);
1224 ud.st.wYear = DOS_YEAR(wDosDate);
1225 ud.st.wMonth = DOS_MONTH(wDosDate);
1226 if (ud.st.wYear > 2099 || ud.st.wMonth > 12)
1227 return FALSE;
1228 ud.st.wDay = DOS_DAY(wDosDate);
1229 ud.st.wHour = DOS_HOUR(wDosTime);
1230 ud.st.wMinute = DOS_MINUTE(wDosTime);
1231 ud.st.wSecond = DOS_SECOND(wDosTime);
1232 ud.st.wDayOfWeek = ud.st.wMilliseconds = 0;
1233 if (ud.st.wHour > 23 || ud.st.wMinute > 59 || ud.st.wSecond > 59)
1234 return FALSE; /* Invalid values in Dos*/
1236 return VarDateFromUdate(&ud, 0, pDateOut) == S_OK;
1239 /**********************************************************************
1240 * VariantTimeToDosDateTime [OLEAUT32.13]
1242 * Convert a variant format date into a Dos format date and time.
1244 * dateIn [I] VT_DATE time format
1245 * pwDosDate [O] Destination for Dos format date
1246 * pwDosTime [O] Destination for Dos format time
1248 * RETURNS
1249 * Success: TRUE. pwDosDate and pwDosTime contains the converted values.
1250 * Failure: FALSE, if dateIn cannot be represented in Dos format.
1252 * NOTES
1253 * See DosDateTimeToVariantTime() for Dos format details and bugs.
1255 INT WINAPI VariantTimeToDosDateTime(double dateIn, USHORT *pwDosDate, USHORT *pwDosTime)
1257 UDATE ud;
1259 TRACE("(%g,%p,%p)\n", dateIn, pwDosDate, pwDosTime);
1261 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1262 return FALSE;
1264 if (ud.st.wYear < 1980 || ud.st.wYear > 2099)
1265 return FALSE;
1267 *pwDosDate = DOS_DATE(ud.st.wDay, ud.st.wMonth, ud.st.wYear);
1268 *pwDosTime = DOS_TIME(ud.st.wHour, ud.st.wMinute, ud.st.wSecond);
1270 TRACE("Returning 0x%x(%d/%d/%d), 0x%x(%d:%d:%d)\n",
1271 *pwDosDate, DOS_YEAR(*pwDosDate), DOS_MONTH(*pwDosDate), DOS_DAY(*pwDosDate),
1272 *pwDosTime, DOS_HOUR(*pwDosTime), DOS_MINUTE(*pwDosTime), DOS_SECOND(*pwDosTime));
1273 return TRUE;
1276 /***********************************************************************
1277 * SystemTimeToVariantTime [OLEAUT32.184]
1279 * Convert a System format date and time into variant VT_DATE format.
1281 * PARAMS
1282 * lpSt [I] System format date and time
1283 * pDateOut [O] Destination for VT_DATE format date
1285 * RETURNS
1286 * Success: TRUE. *pDateOut contains the converted value.
1287 * Failure: FALSE, if lpSt cannot be represented in VT_DATE format.
1289 INT WINAPI SystemTimeToVariantTime(LPSYSTEMTIME lpSt, double *pDateOut)
1291 UDATE ud;
1293 TRACE("(%p->%d/%d/%d %d:%d:%d,%p)\n", lpSt, lpSt->wDay, lpSt->wMonth,
1294 lpSt->wYear, lpSt->wHour, lpSt->wMinute, lpSt->wSecond, pDateOut);
1296 if (lpSt->wMonth > 12)
1297 return FALSE;
1298 if (lpSt->wDay > 31)
1299 return FALSE;
1300 if ((short)lpSt->wYear < 0)
1301 return FALSE;
1303 ud.st = *lpSt;
1304 return VarDateFromUdate(&ud, 0, pDateOut) == S_OK;
1307 /***********************************************************************
1308 * VariantTimeToSystemTime [OLEAUT32.185]
1310 * Convert a variant VT_DATE into a System format date and time.
1312 * PARAMS
1313 * datein [I] Variant VT_DATE format date
1314 * lpSt [O] Destination for System format date and time
1316 * RETURNS
1317 * Success: TRUE. *lpSt contains the converted value.
1318 * Failure: FALSE, if dateIn is too large or small.
1320 INT WINAPI VariantTimeToSystemTime(double dateIn, LPSYSTEMTIME lpSt)
1322 UDATE ud;
1324 TRACE("(%g,%p)\n", dateIn, lpSt);
1326 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1327 return FALSE;
1329 *lpSt = ud.st;
1330 return TRUE;
1333 /***********************************************************************
1334 * VarDateFromUdateEx [OLEAUT32.319]
1336 * Convert an unpacked format date and time to a variant VT_DATE.
1338 * PARAMS
1339 * pUdateIn [I] Unpacked format date and time to convert
1340 * lcid [I] Locale identifier for the conversion
1341 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1342 * pDateOut [O] Destination for variant VT_DATE.
1344 * RETURNS
1345 * Success: S_OK. *pDateOut contains the converted value.
1346 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1348 HRESULT WINAPI VarDateFromUdateEx(UDATE *pUdateIn, LCID lcid, ULONG dwFlags, DATE *pDateOut)
1350 UDATE ud;
1351 double dateVal = 0;
1353 TRACE("(%p->%d/%d/%d %d:%d:%d:%d %d %d,0x%08x,0x%08x,%p)\n", pUdateIn,
1354 pUdateIn->st.wMonth, pUdateIn->st.wDay, pUdateIn->st.wYear,
1355 pUdateIn->st.wHour, pUdateIn->st.wMinute, pUdateIn->st.wSecond,
1356 pUdateIn->st.wMilliseconds, pUdateIn->st.wDayOfWeek,
1357 pUdateIn->wDayOfYear, lcid, dwFlags, pDateOut);
1359 if (lcid != MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT))
1360 FIXME("lcid possibly not handled, treating as en-us\n");
1361 if (dwFlags & ~(VAR_TIMEVALUEONLY|VAR_DATEVALUEONLY))
1362 FIXME("unsupported flags: %x\n", dwFlags);
1364 ud = *pUdateIn;
1366 if (dwFlags & VAR_VALIDDATE)
1367 WARN("Ignoring VAR_VALIDDATE\n");
1369 if (FAILED(VARIANT_RollUdate(&ud)))
1370 return E_INVALIDARG;
1372 /* Date */
1373 if (!(dwFlags & VAR_TIMEVALUEONLY))
1374 dateVal = VARIANT_DateFromJulian(VARIANT_JulianFromDMY(ud.st.wYear, ud.st.wMonth, ud.st.wDay));
1376 if ((dwFlags & VAR_TIMEVALUEONLY) || !(dwFlags & VAR_DATEVALUEONLY))
1378 double dateSign = (dateVal < 0.0) ? -1.0 : 1.0;
1380 /* Time */
1381 dateVal += ud.st.wHour / 24.0 * dateSign;
1382 dateVal += ud.st.wMinute / 1440.0 * dateSign;
1383 dateVal += ud.st.wSecond / 86400.0 * dateSign;
1386 TRACE("Returning %g\n", dateVal);
1387 *pDateOut = dateVal;
1388 return S_OK;
1391 /***********************************************************************
1392 * VarDateFromUdate [OLEAUT32.330]
1394 * Convert an unpacked format date and time to a variant VT_DATE.
1396 * PARAMS
1397 * pUdateIn [I] Unpacked format date and time to convert
1398 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1399 * pDateOut [O] Destination for variant VT_DATE.
1401 * RETURNS
1402 * Success: S_OK. *pDateOut contains the converted value.
1403 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1405 * NOTES
1406 * This function uses the United States English locale for the conversion. Use
1407 * VarDateFromUdateEx() for alternate locales.
1409 HRESULT WINAPI VarDateFromUdate(UDATE *pUdateIn, ULONG dwFlags, DATE *pDateOut)
1411 LCID lcid = MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT);
1413 return VarDateFromUdateEx(pUdateIn, lcid, dwFlags, pDateOut);
1416 /***********************************************************************
1417 * VarUdateFromDate [OLEAUT32.331]
1419 * Convert a variant VT_DATE into an unpacked format date and time.
1421 * PARAMS
1422 * datein [I] Variant VT_DATE format date
1423 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1424 * lpUdate [O] Destination for unpacked format date and time
1426 * RETURNS
1427 * Success: S_OK. *lpUdate contains the converted value.
1428 * Failure: E_INVALIDARG, if dateIn is too large or small.
1430 HRESULT WINAPI VarUdateFromDate(DATE dateIn, ULONG dwFlags, UDATE *lpUdate)
1432 /* Cumulative totals of days per month */
1433 static const USHORT cumulativeDays[] =
1435 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
1437 double datePart, timePart;
1438 int julianDays;
1440 TRACE("(%g,0x%08x,%p)\n", dateIn, dwFlags, lpUdate);
1442 if (dateIn <= (DATE_MIN - 1.0) || dateIn >= (DATE_MAX + 1.0))
1443 return E_INVALIDARG;
1445 datePart = dateIn < 0.0 ? ceil(dateIn) : floor(dateIn);
1446 /* Compensate for int truncation (always downwards) */
1447 timePart = fabs(dateIn - datePart) + 0.00000000001;
1448 if (timePart >= 1.0)
1449 timePart -= 0.00000000001;
1451 /* Date */
1452 julianDays = VARIANT_JulianFromDate(dateIn);
1453 VARIANT_DMYFromJulian(julianDays, &lpUdate->st.wYear, &lpUdate->st.wMonth,
1454 &lpUdate->st.wDay);
1456 datePart = (datePart + 1.5) / 7.0;
1457 lpUdate->st.wDayOfWeek = (datePart - floor(datePart)) * 7;
1458 if (lpUdate->st.wDayOfWeek == 0)
1459 lpUdate->st.wDayOfWeek = 5;
1460 else if (lpUdate->st.wDayOfWeek == 1)
1461 lpUdate->st.wDayOfWeek = 6;
1462 else
1463 lpUdate->st.wDayOfWeek -= 2;
1465 if (lpUdate->st.wMonth > 2 && IsLeapYear(lpUdate->st.wYear))
1466 lpUdate->wDayOfYear = 1; /* After February, in a leap year */
1467 else
1468 lpUdate->wDayOfYear = 0;
1470 lpUdate->wDayOfYear += cumulativeDays[lpUdate->st.wMonth];
1471 lpUdate->wDayOfYear += lpUdate->st.wDay;
1473 /* Time */
1474 timePart *= 24.0;
1475 lpUdate->st.wHour = timePart;
1476 timePart -= lpUdate->st.wHour;
1477 timePart *= 60.0;
1478 lpUdate->st.wMinute = timePart;
1479 timePart -= lpUdate->st.wMinute;
1480 timePart *= 60.0;
1481 lpUdate->st.wSecond = timePart;
1482 timePart -= lpUdate->st.wSecond;
1483 lpUdate->st.wMilliseconds = 0;
1484 if (timePart > 0.5)
1486 /* Round the milliseconds, adjusting the time/date forward if needed */
1487 if (lpUdate->st.wSecond < 59)
1488 lpUdate->st.wSecond++;
1489 else
1491 lpUdate->st.wSecond = 0;
1492 if (lpUdate->st.wMinute < 59)
1493 lpUdate->st.wMinute++;
1494 else
1496 lpUdate->st.wMinute = 0;
1497 if (lpUdate->st.wHour < 23)
1498 lpUdate->st.wHour++;
1499 else
1501 lpUdate->st.wHour = 0;
1502 /* Roll over a whole day */
1503 if (++lpUdate->st.wDay > 28)
1504 VARIANT_RollUdate(lpUdate);
1509 return S_OK;
1512 #define GET_NUMBER_TEXT(fld,name) \
1513 buff[0] = 0; \
1514 if (!GetLocaleInfoW(lcid, lctype|fld, buff, 2)) \
1515 WARN("buffer too small for " #fld "\n"); \
1516 else \
1517 if (buff[0]) lpChars->name = buff[0]; \
1518 TRACE("lcid 0x%x, " #name "=%d '%c'\n", lcid, lpChars->name, lpChars->name)
1520 /* Get the valid number characters for an lcid */
1521 static void VARIANT_GetLocalisedNumberChars(VARIANT_NUMBER_CHARS *lpChars, LCID lcid, DWORD dwFlags)
1523 static const VARIANT_NUMBER_CHARS defaultChars = { '-','+','.',',','$',0,'.',',' };
1524 static VARIANT_NUMBER_CHARS lastChars;
1525 static LCID lastLcid = -1;
1526 static DWORD lastFlags = 0;
1527 LCTYPE lctype = dwFlags & LOCALE_NOUSEROVERRIDE;
1528 WCHAR buff[4];
1530 /* To make caching thread-safe, a critical section is needed */
1531 EnterCriticalSection(&cache_cs);
1533 /* Asking for default locale entries is very expensive: It is a registry
1534 server call. So cache one locally, as Microsoft does it too */
1535 if(lcid == lastLcid && dwFlags == lastFlags)
1537 memcpy(lpChars, &lastChars, sizeof(defaultChars));
1538 LeaveCriticalSection(&cache_cs);
1539 return;
1542 memcpy(lpChars, &defaultChars, sizeof(defaultChars));
1543 GET_NUMBER_TEXT(LOCALE_SNEGATIVESIGN, cNegativeSymbol);
1544 GET_NUMBER_TEXT(LOCALE_SPOSITIVESIGN, cPositiveSymbol);
1545 GET_NUMBER_TEXT(LOCALE_SDECIMAL, cDecimalPoint);
1546 GET_NUMBER_TEXT(LOCALE_STHOUSAND, cDigitSeparator);
1547 GET_NUMBER_TEXT(LOCALE_SMONDECIMALSEP, cCurrencyDecimalPoint);
1548 GET_NUMBER_TEXT(LOCALE_SMONTHOUSANDSEP, cCurrencyDigitSeparator);
1550 /* Local currency symbols are often 2 characters */
1551 lpChars->cCurrencyLocal2 = '\0';
1552 switch(GetLocaleInfoW(lcid, lctype|LOCALE_SCURRENCY, buff, sizeof(buff)/sizeof(WCHAR)))
1554 case 3: lpChars->cCurrencyLocal2 = buff[1]; /* Fall through */
1555 case 2: lpChars->cCurrencyLocal = buff[0];
1556 break;
1557 default: WARN("buffer too small for LOCALE_SCURRENCY\n");
1559 TRACE("lcid 0x%x, cCurrencyLocal =%d,%d '%c','%c'\n", lcid, lpChars->cCurrencyLocal,
1560 lpChars->cCurrencyLocal2, lpChars->cCurrencyLocal, lpChars->cCurrencyLocal2);
1562 memcpy(&lastChars, lpChars, sizeof(defaultChars));
1563 lastLcid = lcid;
1564 lastFlags = dwFlags;
1565 LeaveCriticalSection(&cache_cs);
1568 /* Number Parsing States */
1569 #define B_PROCESSING_EXPONENT 0x1
1570 #define B_NEGATIVE_EXPONENT 0x2
1571 #define B_EXPONENT_START 0x4
1572 #define B_INEXACT_ZEROS 0x8
1573 #define B_LEADING_ZERO 0x10
1574 #define B_PROCESSING_HEX 0x20
1575 #define B_PROCESSING_OCT 0x40
1577 /**********************************************************************
1578 * VarParseNumFromStr [OLEAUT32.46]
1580 * Parse a string containing a number into a NUMPARSE structure.
1582 * PARAMS
1583 * lpszStr [I] String to parse number from
1584 * lcid [I] Locale Id for the conversion
1585 * dwFlags [I] 0, or LOCALE_NOUSEROVERRIDE to use system default number chars
1586 * pNumprs [I/O] Destination for parsed number
1587 * rgbDig [O] Destination for digits read in
1589 * RETURNS
1590 * Success: S_OK. pNumprs and rgbDig contain the parsed representation of
1591 * the number.
1592 * Failure: E_INVALIDARG, if any parameter is invalid.
1593 * DISP_E_TYPEMISMATCH, if the string is not a number or is formatted
1594 * incorrectly.
1595 * DISP_E_OVERFLOW, if rgbDig is too small to hold the number.
1597 * NOTES
1598 * pNumprs must have the following fields set:
1599 * cDig: Set to the size of rgbDig.
1600 * dwInFlags: Set to the allowable syntax of the number using NUMPRS_ flags
1601 * from "oleauto.h".
1603 * FIXME
1604 * - I am unsure if this function should parse non-Arabic (e.g. Thai)
1605 * numerals, so this has not been implemented.
1607 HRESULT WINAPI VarParseNumFromStr(OLECHAR *lpszStr, LCID lcid, ULONG dwFlags,
1608 NUMPARSE *pNumprs, BYTE *rgbDig)
1610 VARIANT_NUMBER_CHARS chars;
1611 BYTE rgbTmp[1024];
1612 DWORD dwState = B_EXPONENT_START|B_INEXACT_ZEROS;
1613 int iMaxDigits = sizeof(rgbTmp) / sizeof(BYTE);
1614 int cchUsed = 0;
1616 TRACE("(%s,%d,0x%08x,%p,%p)\n", debugstr_w(lpszStr), lcid, dwFlags, pNumprs, rgbDig);
1618 if (!pNumprs || !rgbDig)
1619 return E_INVALIDARG;
1621 if (pNumprs->cDig < iMaxDigits)
1622 iMaxDigits = pNumprs->cDig;
1624 pNumprs->cDig = 0;
1625 pNumprs->dwOutFlags = 0;
1626 pNumprs->cchUsed = 0;
1627 pNumprs->nBaseShift = 0;
1628 pNumprs->nPwr10 = 0;
1630 if (!lpszStr)
1631 return DISP_E_TYPEMISMATCH;
1633 VARIANT_GetLocalisedNumberChars(&chars, lcid, dwFlags);
1635 /* First consume all the leading symbols and space from the string */
1636 while (1)
1638 if (pNumprs->dwInFlags & NUMPRS_LEADING_WHITE && isspaceW(*lpszStr))
1640 pNumprs->dwOutFlags |= NUMPRS_LEADING_WHITE;
1643 cchUsed++;
1644 lpszStr++;
1645 } while (isspaceW(*lpszStr));
1647 else if (pNumprs->dwInFlags & NUMPRS_LEADING_PLUS &&
1648 *lpszStr == chars.cPositiveSymbol &&
1649 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS))
1651 pNumprs->dwOutFlags |= NUMPRS_LEADING_PLUS;
1652 cchUsed++;
1653 lpszStr++;
1655 else if (pNumprs->dwInFlags & NUMPRS_LEADING_MINUS &&
1656 *lpszStr == chars.cNegativeSymbol &&
1657 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS))
1659 pNumprs->dwOutFlags |= (NUMPRS_LEADING_MINUS|NUMPRS_NEG);
1660 cchUsed++;
1661 lpszStr++;
1663 else if (pNumprs->dwInFlags & NUMPRS_CURRENCY &&
1664 !(pNumprs->dwOutFlags & NUMPRS_CURRENCY) &&
1665 *lpszStr == chars.cCurrencyLocal &&
1666 (!chars.cCurrencyLocal2 || lpszStr[1] == chars.cCurrencyLocal2))
1668 pNumprs->dwOutFlags |= NUMPRS_CURRENCY;
1669 cchUsed++;
1670 lpszStr++;
1671 /* Only accept currency characters */
1672 chars.cDecimalPoint = chars.cCurrencyDecimalPoint;
1673 chars.cDigitSeparator = chars.cCurrencyDigitSeparator;
1675 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == '(' &&
1676 !(pNumprs->dwOutFlags & NUMPRS_PARENS))
1678 pNumprs->dwOutFlags |= NUMPRS_PARENS;
1679 cchUsed++;
1680 lpszStr++;
1682 else
1683 break;
1686 if (!(pNumprs->dwOutFlags & NUMPRS_CURRENCY))
1688 /* Only accept non-currency characters */
1689 chars.cCurrencyDecimalPoint = chars.cDecimalPoint;
1690 chars.cCurrencyDigitSeparator = chars.cDigitSeparator;
1693 if ((*lpszStr == '&' && (*(lpszStr+1) == 'H' || *(lpszStr+1) == 'h')) &&
1694 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1696 dwState |= B_PROCESSING_HEX;
1697 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1698 cchUsed=cchUsed+2;
1699 lpszStr=lpszStr+2;
1701 else if ((*lpszStr == '&' && (*(lpszStr+1) == 'O' || *(lpszStr+1) == 'o')) &&
1702 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1704 dwState |= B_PROCESSING_OCT;
1705 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1706 cchUsed=cchUsed+2;
1707 lpszStr=lpszStr+2;
1710 /* Strip Leading zeros */
1711 while (*lpszStr == '0')
1713 dwState |= B_LEADING_ZERO;
1714 cchUsed++;
1715 lpszStr++;
1718 while (*lpszStr)
1720 if (isdigitW(*lpszStr))
1722 if (dwState & B_PROCESSING_EXPONENT)
1724 int exponentSize = 0;
1725 if (dwState & B_EXPONENT_START)
1727 if (!isdigitW(*lpszStr))
1728 break; /* No exponent digits - invalid */
1729 while (*lpszStr == '0')
1731 /* Skip leading zero's in the exponent */
1732 cchUsed++;
1733 lpszStr++;
1737 while (isdigitW(*lpszStr))
1739 exponentSize *= 10;
1740 exponentSize += *lpszStr - '0';
1741 cchUsed++;
1742 lpszStr++;
1744 if (dwState & B_NEGATIVE_EXPONENT)
1745 exponentSize = -exponentSize;
1746 /* Add the exponent into the powers of 10 */
1747 pNumprs->nPwr10 += exponentSize;
1748 dwState &= ~(B_PROCESSING_EXPONENT|B_EXPONENT_START);
1749 lpszStr--; /* back up to allow processing of next char */
1751 else
1753 if ((pNumprs->cDig >= iMaxDigits) && !(dwState & B_PROCESSING_HEX)
1754 && !(dwState & B_PROCESSING_OCT))
1756 pNumprs->dwOutFlags |= NUMPRS_INEXACT;
1758 if (*lpszStr != '0')
1759 dwState &= ~B_INEXACT_ZEROS; /* Inexact number with non-trailing zeros */
1761 /* This digit can't be represented, but count it in nPwr10 */
1762 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1763 pNumprs->nPwr10--;
1764 else
1765 pNumprs->nPwr10++;
1767 else
1769 if ((dwState & B_PROCESSING_OCT) && ((*lpszStr == '8') || (*lpszStr == '9')))
1770 break;
1772 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1773 pNumprs->nPwr10--; /* Count decimal points in nPwr10 */
1775 rgbTmp[pNumprs->cDig] = *lpszStr - '0';
1777 pNumprs->cDig++;
1778 cchUsed++;
1781 else if (*lpszStr == chars.cDigitSeparator && pNumprs->dwInFlags & NUMPRS_THOUSANDS)
1783 pNumprs->dwOutFlags |= NUMPRS_THOUSANDS;
1784 cchUsed++;
1786 else if (*lpszStr == chars.cDecimalPoint &&
1787 pNumprs->dwInFlags & NUMPRS_DECIMAL &&
1788 !(pNumprs->dwOutFlags & (NUMPRS_DECIMAL|NUMPRS_EXPONENT)))
1790 pNumprs->dwOutFlags |= NUMPRS_DECIMAL;
1791 cchUsed++;
1793 /* If we have no digits so far, skip leading zeros */
1794 if (!pNumprs->cDig)
1796 while (lpszStr[1] == '0')
1798 dwState |= B_LEADING_ZERO;
1799 cchUsed++;
1800 lpszStr++;
1801 pNumprs->nPwr10--;
1805 else if (((*lpszStr >= 'a' && *lpszStr <= 'f') ||
1806 (*lpszStr >= 'A' && *lpszStr <= 'F')) &&
1807 dwState & B_PROCESSING_HEX)
1809 if (pNumprs->cDig >= iMaxDigits)
1811 return DISP_E_OVERFLOW;
1813 else
1815 if (*lpszStr >= 'a')
1816 rgbTmp[pNumprs->cDig] = *lpszStr - 'a' + 10;
1817 else
1818 rgbTmp[pNumprs->cDig] = *lpszStr - 'A' + 10;
1820 pNumprs->cDig++;
1821 cchUsed++;
1823 else if ((*lpszStr == 'e' || *lpszStr == 'E') &&
1824 pNumprs->dwInFlags & NUMPRS_EXPONENT &&
1825 !(pNumprs->dwOutFlags & NUMPRS_EXPONENT))
1827 dwState |= B_PROCESSING_EXPONENT;
1828 pNumprs->dwOutFlags |= NUMPRS_EXPONENT;
1829 cchUsed++;
1831 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cPositiveSymbol)
1833 cchUsed++; /* Ignore positive exponent */
1835 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cNegativeSymbol)
1837 dwState |= B_NEGATIVE_EXPONENT;
1838 cchUsed++;
1840 else
1841 break; /* Stop at an unrecognised character */
1843 lpszStr++;
1846 if (!pNumprs->cDig && dwState & B_LEADING_ZERO)
1848 /* Ensure a 0 on its own gets stored */
1849 pNumprs->cDig = 1;
1850 rgbTmp[0] = 0;
1853 if (pNumprs->dwOutFlags & NUMPRS_EXPONENT && dwState & B_PROCESSING_EXPONENT)
1855 pNumprs->cchUsed = cchUsed;
1856 WARN("didn't completely parse exponent\n");
1857 return DISP_E_TYPEMISMATCH; /* Failed to completely parse the exponent */
1860 if (pNumprs->dwOutFlags & NUMPRS_INEXACT)
1862 if (dwState & B_INEXACT_ZEROS)
1863 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* All zeros doesn't set NUMPRS_INEXACT */
1864 } else if(pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1866 /* copy all of the digits into the output digit buffer */
1867 /* this is exactly what windows does although it also returns */
1868 /* cDig of X and writes X+Y where Y>=0 number of digits to rgbDig */
1869 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1871 if (dwState & B_PROCESSING_HEX) {
1872 /* hex numbers have always the same format */
1873 pNumprs->nPwr10=0;
1874 pNumprs->nBaseShift=4;
1875 } else {
1876 if (dwState & B_PROCESSING_OCT) {
1877 /* oct numbers have always the same format */
1878 pNumprs->nPwr10=0;
1879 pNumprs->nBaseShift=3;
1880 } else {
1881 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1883 pNumprs->nPwr10++;
1884 pNumprs->cDig--;
1888 } else
1890 /* Remove trailing zeros from the last (whole number or decimal) part */
1891 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1893 pNumprs->nPwr10++;
1894 pNumprs->cDig--;
1898 if (pNumprs->cDig <= iMaxDigits)
1899 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* Ignore stripped zeros for NUMPRS_INEXACT */
1900 else
1901 pNumprs->cDig = iMaxDigits; /* Only return iMaxDigits worth of digits */
1903 /* Copy the digits we processed into rgbDig */
1904 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1906 /* Consume any trailing symbols and space */
1907 while (1)
1909 if ((pNumprs->dwInFlags & NUMPRS_TRAILING_WHITE) && isspaceW(*lpszStr))
1911 pNumprs->dwOutFlags |= NUMPRS_TRAILING_WHITE;
1914 cchUsed++;
1915 lpszStr++;
1916 } while (isspaceW(*lpszStr));
1918 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_PLUS &&
1919 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS) &&
1920 *lpszStr == chars.cPositiveSymbol)
1922 pNumprs->dwOutFlags |= NUMPRS_TRAILING_PLUS;
1923 cchUsed++;
1924 lpszStr++;
1926 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_MINUS &&
1927 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS) &&
1928 *lpszStr == chars.cNegativeSymbol)
1930 pNumprs->dwOutFlags |= (NUMPRS_TRAILING_MINUS|NUMPRS_NEG);
1931 cchUsed++;
1932 lpszStr++;
1934 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == ')' &&
1935 pNumprs->dwOutFlags & NUMPRS_PARENS)
1937 cchUsed++;
1938 lpszStr++;
1939 pNumprs->dwOutFlags |= NUMPRS_NEG;
1941 else
1942 break;
1945 if (pNumprs->dwOutFlags & NUMPRS_PARENS && !(pNumprs->dwOutFlags & NUMPRS_NEG))
1947 pNumprs->cchUsed = cchUsed;
1948 return DISP_E_TYPEMISMATCH; /* Opening parenthesis not matched */
1951 if (pNumprs->dwInFlags & NUMPRS_USE_ALL && *lpszStr != '\0')
1952 return DISP_E_TYPEMISMATCH; /* Not all chars were consumed */
1954 if (!pNumprs->cDig)
1955 return DISP_E_TYPEMISMATCH; /* No Number found */
1957 pNumprs->cchUsed = cchUsed;
1958 return S_OK;
1961 /* VTBIT flags indicating an integer value */
1962 #define INTEGER_VTBITS (VTBIT_I1|VTBIT_UI1|VTBIT_I2|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_I8|VTBIT_UI8)
1963 /* VTBIT flags indicating a real number value */
1964 #define REAL_VTBITS (VTBIT_R4|VTBIT_R8|VTBIT_CY)
1966 /* Helper macros to check whether bit pattern fits in VARIANT (x is a ULONG64 ) */
1967 #define FITS_AS_I1(x) ((x) >> 8 == 0)
1968 #define FITS_AS_I2(x) ((x) >> 16 == 0)
1969 #define FITS_AS_I4(x) ((x) >> 32 == 0)
1971 /**********************************************************************
1972 * VarNumFromParseNum [OLEAUT32.47]
1974 * Convert a NUMPARSE structure into a numeric Variant type.
1976 * PARAMS
1977 * pNumprs [I] Source for parsed number. cDig must be set to the size of rgbDig
1978 * rgbDig [I] Source for the numbers digits
1979 * dwVtBits [I] VTBIT_ flags from "oleauto.h" indicating the acceptable dest types
1980 * pVarDst [O] Destination for the converted Variant value.
1982 * RETURNS
1983 * Success: S_OK. pVarDst contains the converted value.
1984 * Failure: E_INVALIDARG, if any parameter is invalid.
1985 * DISP_E_OVERFLOW, if the number is too big for the types set in dwVtBits.
1987 * NOTES
1988 * - The smallest favoured type present in dwVtBits that can represent the
1989 * number in pNumprs without losing precision is used.
1990 * - Signed types are preferred over unsigned types of the same size.
1991 * - Preferred types in order are: integer, float, double, currency then decimal.
1992 * - Rounding (dropping of decimal points) occurs without error. See VarI8FromR8()
1993 * for details of the rounding method.
1994 * - pVarDst is not cleared before the result is stored in it.
1995 * - WinXP and Win2003 support VTBIT_I8, VTBIT_UI8 but that's buggy (by
1996 * design?): If some other VTBIT's for integers are specified together
1997 * with VTBIT_I8 and the number will fit only in a VT_I8 Windows will "cast"
1998 * the number to the smallest requested integer truncating this way the
1999 * number. Wine doesn't implement this "feature" (yet?).
2001 HRESULT WINAPI VarNumFromParseNum(NUMPARSE *pNumprs, BYTE *rgbDig,
2002 ULONG dwVtBits, VARIANT *pVarDst)
2004 /* Scale factors and limits for double arithmetic */
2005 static const double dblMultipliers[11] = {
2006 1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0,
2007 1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0
2009 static const double dblMinimums[11] = {
2010 R8_MIN, R8_MIN*10.0, R8_MIN*100.0, R8_MIN*1000.0, R8_MIN*10000.0,
2011 R8_MIN*100000.0, R8_MIN*1000000.0, R8_MIN*10000000.0,
2012 R8_MIN*100000000.0, R8_MIN*1000000000.0, R8_MIN*10000000000.0
2014 static const double dblMaximums[11] = {
2015 R8_MAX, R8_MAX/10.0, R8_MAX/100.0, R8_MAX/1000.0, R8_MAX/10000.0,
2016 R8_MAX/100000.0, R8_MAX/1000000.0, R8_MAX/10000000.0,
2017 R8_MAX/100000000.0, R8_MAX/1000000000.0, R8_MAX/10000000000.0
2020 int wholeNumberDigits, fractionalDigits, divisor10 = 0, multiplier10 = 0;
2022 TRACE("(%p,%p,0x%x,%p)\n", pNumprs, rgbDig, dwVtBits, pVarDst);
2024 if (pNumprs->nBaseShift)
2026 /* nBaseShift indicates a hex or octal number */
2027 ULONG64 ul64 = 0;
2028 LONG64 l64;
2029 int i;
2031 /* Convert the hex or octal number string into a UI64 */
2032 for (i = 0; i < pNumprs->cDig; i++)
2034 if (ul64 > ((UI8_MAX>>pNumprs->nBaseShift) - rgbDig[i]))
2036 TRACE("Overflow multiplying digits\n");
2037 return DISP_E_OVERFLOW;
2039 ul64 = (ul64<<pNumprs->nBaseShift) + rgbDig[i];
2042 /* also make a negative representation */
2043 l64=-ul64;
2045 /* Try signed and unsigned types in size order */
2046 if (dwVtBits & VTBIT_I1 && FITS_AS_I1(ul64))
2048 V_VT(pVarDst) = VT_I1;
2049 V_I1(pVarDst) = ul64;
2050 return S_OK;
2052 else if (dwVtBits & VTBIT_UI1 && FITS_AS_I1(ul64))
2054 V_VT(pVarDst) = VT_UI1;
2055 V_UI1(pVarDst) = ul64;
2056 return S_OK;
2058 else if (dwVtBits & VTBIT_I2 && FITS_AS_I2(ul64))
2060 V_VT(pVarDst) = VT_I2;
2061 V_I2(pVarDst) = ul64;
2062 return S_OK;
2064 else if (dwVtBits & VTBIT_UI2 && FITS_AS_I2(ul64))
2066 V_VT(pVarDst) = VT_UI2;
2067 V_UI2(pVarDst) = ul64;
2068 return S_OK;
2070 else if (dwVtBits & VTBIT_I4 && FITS_AS_I4(ul64))
2072 V_VT(pVarDst) = VT_I4;
2073 V_I4(pVarDst) = ul64;
2074 return S_OK;
2076 else if (dwVtBits & VTBIT_UI4 && FITS_AS_I4(ul64))
2078 V_VT(pVarDst) = VT_UI4;
2079 V_UI4(pVarDst) = ul64;
2080 return S_OK;
2082 else if (dwVtBits & VTBIT_I8 && ((ul64 <= I8_MAX)||(l64>=I8_MIN)))
2084 V_VT(pVarDst) = VT_I8;
2085 V_I8(pVarDst) = ul64;
2086 return S_OK;
2088 else if (dwVtBits & VTBIT_UI8)
2090 V_VT(pVarDst) = VT_UI8;
2091 V_UI8(pVarDst) = ul64;
2092 return S_OK;
2094 else if ((dwVtBits & VTBIT_DECIMAL) == VTBIT_DECIMAL)
2096 V_VT(pVarDst) = VT_DECIMAL;
2097 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2098 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2099 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2100 return S_OK;
2102 else if (dwVtBits & VTBIT_R4 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2104 V_VT(pVarDst) = VT_R4;
2105 if (ul64 <= I4_MAX)
2106 V_R4(pVarDst) = ul64;
2107 else
2108 V_R4(pVarDst) = l64;
2109 return S_OK;
2111 else if (dwVtBits & VTBIT_R8 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2113 V_VT(pVarDst) = VT_R8;
2114 if (ul64 <= I4_MAX)
2115 V_R8(pVarDst) = ul64;
2116 else
2117 V_R8(pVarDst) = l64;
2118 return S_OK;
2121 TRACE("Overflow: possible return types: 0x%x, value: %s\n", dwVtBits, wine_dbgstr_longlong(ul64));
2122 return DISP_E_OVERFLOW;
2125 /* Count the number of relevant fractional and whole digits stored,
2126 * And compute the divisor/multiplier to scale the number by.
2128 if (pNumprs->nPwr10 < 0)
2130 if (-pNumprs->nPwr10 >= pNumprs->cDig)
2132 /* A real number < +/- 1.0 e.g. 0.1024 or 0.01024 */
2133 wholeNumberDigits = 0;
2134 fractionalDigits = pNumprs->cDig;
2135 divisor10 = -pNumprs->nPwr10;
2137 else
2139 /* An exactly represented real number e.g. 1.024 */
2140 wholeNumberDigits = pNumprs->cDig + pNumprs->nPwr10;
2141 fractionalDigits = pNumprs->cDig - wholeNumberDigits;
2142 divisor10 = pNumprs->cDig - wholeNumberDigits;
2145 else if (pNumprs->nPwr10 == 0)
2147 /* An exactly represented whole number e.g. 1024 */
2148 wholeNumberDigits = pNumprs->cDig;
2149 fractionalDigits = 0;
2151 else /* pNumprs->nPwr10 > 0 */
2153 /* A whole number followed by nPwr10 0's e.g. 102400 */
2154 wholeNumberDigits = pNumprs->cDig;
2155 fractionalDigits = 0;
2156 multiplier10 = pNumprs->nPwr10;
2159 TRACE("cDig %d; nPwr10 %d, whole %d, frac %d mult %d; div %d\n",
2160 pNumprs->cDig, pNumprs->nPwr10, wholeNumberDigits, fractionalDigits,
2161 multiplier10, divisor10);
2163 if (dwVtBits & (INTEGER_VTBITS|VTBIT_DECIMAL) &&
2164 (!fractionalDigits || !(dwVtBits & (REAL_VTBITS|VTBIT_CY|VTBIT_DECIMAL))))
2166 /* We have one or more integer output choices, and either:
2167 * 1) An integer input value, or
2168 * 2) A real number input value but no floating output choices.
2169 * Alternately, we have a DECIMAL output available and an integer input.
2171 * So, place the integer value into pVarDst, using the smallest type
2172 * possible and preferring signed over unsigned types.
2174 BOOL bOverflow = FALSE, bNegative;
2175 ULONG64 ul64 = 0;
2176 int i;
2178 /* Convert the integer part of the number into a UI8 */
2179 for (i = 0; i < wholeNumberDigits; i++)
2181 if (ul64 > UI8_MAX / 10 || (ul64 == UI8_MAX / 10 && rgbDig[i] > UI8_MAX % 10))
2183 TRACE("Overflow multiplying digits\n");
2184 bOverflow = TRUE;
2185 break;
2187 ul64 = ul64 * 10 + rgbDig[i];
2190 /* Account for the scale of the number */
2191 if (!bOverflow && multiplier10)
2193 for (i = 0; i < multiplier10; i++)
2195 if (ul64 > (UI8_MAX / 10))
2197 TRACE("Overflow scaling number\n");
2198 bOverflow = TRUE;
2199 break;
2201 ul64 = ul64 * 10;
2205 /* If we have any fractional digits, round the value.
2206 * Note we don't have to do this if divisor10 is < 1,
2207 * because this means the fractional part must be < 0.5
2209 if (!bOverflow && fractionalDigits && divisor10 > 0)
2211 const BYTE* fracDig = rgbDig + wholeNumberDigits;
2212 BOOL bAdjust = FALSE;
2214 TRACE("first decimal value is %d\n", *fracDig);
2216 if (*fracDig > 5)
2217 bAdjust = TRUE; /* > 0.5 */
2218 else if (*fracDig == 5)
2220 for (i = 1; i < fractionalDigits; i++)
2222 if (fracDig[i])
2224 bAdjust = TRUE; /* > 0.5 */
2225 break;
2228 /* If exactly 0.5, round only odd values */
2229 if (i == fractionalDigits && (ul64 & 1))
2230 bAdjust = TRUE;
2233 if (bAdjust)
2235 if (ul64 == UI8_MAX)
2237 TRACE("Overflow after rounding\n");
2238 bOverflow = TRUE;
2240 ul64++;
2244 /* Zero is not a negative number */
2245 bNegative = pNumprs->dwOutFlags & NUMPRS_NEG && ul64;
2247 TRACE("Integer value is 0x%s, bNeg %d\n", wine_dbgstr_longlong(ul64), bNegative);
2249 /* For negative integers, try the signed types in size order */
2250 if (!bOverflow && bNegative)
2252 if (dwVtBits & (VTBIT_I1|VTBIT_I2|VTBIT_I4|VTBIT_I8))
2254 if (dwVtBits & VTBIT_I1 && ul64 <= -I1_MIN)
2256 V_VT(pVarDst) = VT_I1;
2257 V_I1(pVarDst) = -ul64;
2258 return S_OK;
2260 else if (dwVtBits & VTBIT_I2 && ul64 <= -I2_MIN)
2262 V_VT(pVarDst) = VT_I2;
2263 V_I2(pVarDst) = -ul64;
2264 return S_OK;
2266 else if (dwVtBits & VTBIT_I4 && ul64 <= -((LONGLONG)I4_MIN))
2268 V_VT(pVarDst) = VT_I4;
2269 V_I4(pVarDst) = -ul64;
2270 return S_OK;
2272 else if (dwVtBits & VTBIT_I8 && ul64 <= (ULONGLONG)I8_MAX + 1)
2274 V_VT(pVarDst) = VT_I8;
2275 V_I8(pVarDst) = -ul64;
2276 return S_OK;
2278 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2280 /* Decimal is only output choice left - fast path */
2281 V_VT(pVarDst) = VT_DECIMAL;
2282 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_NEG,0);
2283 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2284 DEC_LO64(&V_DECIMAL(pVarDst)) = -ul64;
2285 return S_OK;
2289 else if (!bOverflow)
2291 /* For positive integers, try signed then unsigned types in size order */
2292 if (dwVtBits & VTBIT_I1 && ul64 <= I1_MAX)
2294 V_VT(pVarDst) = VT_I1;
2295 V_I1(pVarDst) = ul64;
2296 return S_OK;
2298 else if (dwVtBits & VTBIT_UI1 && ul64 <= UI1_MAX)
2300 V_VT(pVarDst) = VT_UI1;
2301 V_UI1(pVarDst) = ul64;
2302 return S_OK;
2304 else if (dwVtBits & VTBIT_I2 && ul64 <= I2_MAX)
2306 V_VT(pVarDst) = VT_I2;
2307 V_I2(pVarDst) = ul64;
2308 return S_OK;
2310 else if (dwVtBits & VTBIT_UI2 && ul64 <= UI2_MAX)
2312 V_VT(pVarDst) = VT_UI2;
2313 V_UI2(pVarDst) = ul64;
2314 return S_OK;
2316 else if (dwVtBits & VTBIT_I4 && ul64 <= I4_MAX)
2318 V_VT(pVarDst) = VT_I4;
2319 V_I4(pVarDst) = ul64;
2320 return S_OK;
2322 else if (dwVtBits & VTBIT_UI4 && ul64 <= UI4_MAX)
2324 V_VT(pVarDst) = VT_UI4;
2325 V_UI4(pVarDst) = ul64;
2326 return S_OK;
2328 else if (dwVtBits & VTBIT_I8 && ul64 <= I8_MAX)
2330 V_VT(pVarDst) = VT_I8;
2331 V_I8(pVarDst) = ul64;
2332 return S_OK;
2334 else if (dwVtBits & VTBIT_UI8)
2336 V_VT(pVarDst) = VT_UI8;
2337 V_UI8(pVarDst) = ul64;
2338 return S_OK;
2340 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2342 /* Decimal is only output choice left - fast path */
2343 V_VT(pVarDst) = VT_DECIMAL;
2344 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2345 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2346 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2347 return S_OK;
2352 if (dwVtBits & REAL_VTBITS)
2354 /* Try to put the number into a float or real */
2355 BOOL bOverflow = FALSE, bNegative = pNumprs->dwOutFlags & NUMPRS_NEG;
2356 double whole = 0.0;
2357 int i;
2359 /* Convert the number into a double */
2360 for (i = 0; i < pNumprs->cDig; i++)
2361 whole = whole * 10.0 + rgbDig[i];
2363 TRACE("Whole double value is %16.16g\n", whole);
2365 /* Account for the scale */
2366 while (multiplier10 > 10)
2368 if (whole > dblMaximums[10])
2370 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2371 bOverflow = TRUE;
2372 break;
2374 whole = whole * dblMultipliers[10];
2375 multiplier10 -= 10;
2377 if (multiplier10 && !bOverflow)
2379 if (whole > dblMaximums[multiplier10])
2381 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2382 bOverflow = TRUE;
2384 else
2385 whole = whole * dblMultipliers[multiplier10];
2388 if (!bOverflow)
2389 TRACE("Scaled double value is %16.16g\n", whole);
2391 while (divisor10 > 10 && !bOverflow)
2393 if (whole < dblMinimums[10] && whole != 0)
2395 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2396 bOverflow = TRUE;
2397 break;
2399 whole = whole / dblMultipliers[10];
2400 divisor10 -= 10;
2402 if (divisor10 && !bOverflow)
2404 if (whole < dblMinimums[divisor10] && whole != 0)
2406 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2407 bOverflow = TRUE;
2409 else
2410 whole = whole / dblMultipliers[divisor10];
2412 if (!bOverflow)
2413 TRACE("Final double value is %16.16g\n", whole);
2415 if (dwVtBits & VTBIT_R4 &&
2416 ((whole <= R4_MAX && whole >= R4_MIN) || whole == 0.0))
2418 TRACE("Set R4 to final value\n");
2419 V_VT(pVarDst) = VT_R4; /* Fits into a float */
2420 V_R4(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2421 return S_OK;
2424 if (dwVtBits & VTBIT_R8)
2426 TRACE("Set R8 to final value\n");
2427 V_VT(pVarDst) = VT_R8; /* Fits into a double */
2428 V_R8(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2429 return S_OK;
2432 if (dwVtBits & VTBIT_CY)
2434 if (SUCCEEDED(VarCyFromR8(bNegative ? -whole : whole, &V_CY(pVarDst))))
2436 V_VT(pVarDst) = VT_CY; /* Fits into a currency */
2437 TRACE("Set CY to final value\n");
2438 return S_OK;
2440 TRACE("Value Overflows CY\n");
2444 if (dwVtBits & VTBIT_DECIMAL)
2446 int i;
2447 ULONG carry;
2448 ULONG64 tmp;
2449 DECIMAL* pDec = &V_DECIMAL(pVarDst);
2451 DECIMAL_SETZERO(*pDec);
2452 DEC_LO32(pDec) = 0;
2454 if (pNumprs->dwOutFlags & NUMPRS_NEG)
2455 DEC_SIGN(pDec) = DECIMAL_NEG;
2456 else
2457 DEC_SIGN(pDec) = DECIMAL_POS;
2459 /* Factor the significant digits */
2460 for (i = 0; i < pNumprs->cDig; i++)
2462 tmp = (ULONG64)DEC_LO32(pDec) * 10 + rgbDig[i];
2463 carry = (ULONG)(tmp >> 32);
2464 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2465 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2466 carry = (ULONG)(tmp >> 32);
2467 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2468 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2469 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2471 if (tmp >> 32 & UI4_MAX)
2473 VarNumFromParseNum_DecOverflow:
2474 TRACE("Overflow\n");
2475 DEC_LO32(pDec) = DEC_MID32(pDec) = DEC_HI32(pDec) = UI4_MAX;
2476 return DISP_E_OVERFLOW;
2480 /* Account for the scale of the number */
2481 while (multiplier10 > 0)
2483 tmp = (ULONG64)DEC_LO32(pDec) * 10;
2484 carry = (ULONG)(tmp >> 32);
2485 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2486 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2487 carry = (ULONG)(tmp >> 32);
2488 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2489 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2490 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2492 if (tmp >> 32 & UI4_MAX)
2493 goto VarNumFromParseNum_DecOverflow;
2494 multiplier10--;
2496 DEC_SCALE(pDec) = divisor10;
2498 V_VT(pVarDst) = VT_DECIMAL;
2499 return S_OK;
2501 return DISP_E_OVERFLOW; /* No more output choices */
2504 /**********************************************************************
2505 * VarCat [OLEAUT32.318]
2507 * Concatenates one variant onto another.
2509 * PARAMS
2510 * left [I] First variant
2511 * right [I] Second variant
2512 * result [O] Result variant
2514 * RETURNS
2515 * Success: S_OK.
2516 * Failure: An HRESULT error code indicating the error.
2518 HRESULT WINAPI VarCat(LPVARIANT left, LPVARIANT right, LPVARIANT out)
2520 BSTR left_str = NULL, right_str = NULL;
2521 VARTYPE leftvt, rightvt;
2522 HRESULT hres;
2524 TRACE("%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), out);
2526 leftvt = V_VT(left);
2527 rightvt = V_VT(right);
2529 /* when both left and right are NULL the result is NULL */
2530 if (leftvt == VT_NULL && rightvt == VT_NULL)
2532 V_VT(out) = VT_NULL;
2533 return S_OK;
2536 /* There are many special case for errors and return types */
2537 if (leftvt == VT_VARIANT && (rightvt == VT_ERROR ||
2538 rightvt == VT_DATE || rightvt == VT_DECIMAL))
2539 hres = DISP_E_TYPEMISMATCH;
2540 else if ((leftvt == VT_I2 || leftvt == VT_I4 ||
2541 leftvt == VT_R4 || leftvt == VT_R8 ||
2542 leftvt == VT_CY || leftvt == VT_BOOL ||
2543 leftvt == VT_BSTR || leftvt == VT_I1 ||
2544 leftvt == VT_UI1 || leftvt == VT_UI2 ||
2545 leftvt == VT_UI4 || leftvt == VT_I8 ||
2546 leftvt == VT_UI8 || leftvt == VT_INT ||
2547 leftvt == VT_UINT || leftvt == VT_EMPTY ||
2548 leftvt == VT_NULL || leftvt == VT_DATE ||
2549 leftvt == VT_DECIMAL || leftvt == VT_DISPATCH)
2551 (rightvt == VT_I2 || rightvt == VT_I4 ||
2552 rightvt == VT_R4 || rightvt == VT_R8 ||
2553 rightvt == VT_CY || rightvt == VT_BOOL ||
2554 rightvt == VT_BSTR || rightvt == VT_I1 ||
2555 rightvt == VT_UI1 || rightvt == VT_UI2 ||
2556 rightvt == VT_UI4 || rightvt == VT_I8 ||
2557 rightvt == VT_UI8 || rightvt == VT_INT ||
2558 rightvt == VT_UINT || rightvt == VT_EMPTY ||
2559 rightvt == VT_NULL || rightvt == VT_DATE ||
2560 rightvt == VT_DECIMAL || rightvt == VT_DISPATCH))
2561 hres = S_OK;
2562 else if (rightvt == VT_ERROR && leftvt < VT_VOID)
2563 hres = DISP_E_TYPEMISMATCH;
2564 else if (leftvt == VT_ERROR && (rightvt == VT_DATE ||
2565 rightvt == VT_ERROR || rightvt == VT_DECIMAL))
2566 hres = DISP_E_TYPEMISMATCH;
2567 else if (rightvt == VT_DATE || rightvt == VT_ERROR ||
2568 rightvt == VT_DECIMAL)
2569 hres = DISP_E_BADVARTYPE;
2570 else if (leftvt == VT_ERROR || rightvt == VT_ERROR)
2571 hres = DISP_E_TYPEMISMATCH;
2572 else if (leftvt == VT_VARIANT)
2573 hres = DISP_E_TYPEMISMATCH;
2574 else if (rightvt == VT_VARIANT && (leftvt == VT_EMPTY ||
2575 leftvt == VT_NULL || leftvt == VT_I2 ||
2576 leftvt == VT_I4 || leftvt == VT_R4 ||
2577 leftvt == VT_R8 || leftvt == VT_CY ||
2578 leftvt == VT_DATE || leftvt == VT_BSTR ||
2579 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
2580 leftvt == VT_I1 || leftvt == VT_UI1 ||
2581 leftvt == VT_UI2 || leftvt == VT_UI4 ||
2582 leftvt == VT_I8 || leftvt == VT_UI8 ||
2583 leftvt == VT_INT || leftvt == VT_UINT))
2584 hres = DISP_E_TYPEMISMATCH;
2585 else
2586 hres = DISP_E_BADVARTYPE;
2588 /* if result type is not S_OK, then no need to go further */
2589 if (hres != S_OK)
2591 V_VT(out) = VT_EMPTY;
2592 return hres;
2595 if (leftvt == VT_BSTR)
2596 left_str = V_BSTR(left);
2597 else
2599 VARIANT converted, *tmp = left;
2601 VariantInit(&converted);
2602 if(leftvt == VT_DISPATCH)
2604 hres = VARIANT_FetchDispatchValue(left, &converted);
2605 if(FAILED(hres))
2606 goto failed;
2608 tmp = &converted;
2611 hres = VariantChangeTypeEx(&converted, tmp, 0, VARIANT_ALPHABOOL|VARIANT_LOCALBOOL, VT_BSTR);
2612 if (SUCCEEDED(hres))
2613 left_str = V_BSTR(&converted);
2614 else if (hres != DISP_E_TYPEMISMATCH)
2616 VariantClear(&converted);
2617 goto failed;
2621 if (rightvt == VT_BSTR)
2622 right_str = V_BSTR(right);
2623 else
2625 VARIANT converted, *tmp = right;
2627 VariantInit(&converted);
2628 if(rightvt == VT_DISPATCH)
2630 hres = VARIANT_FetchDispatchValue(right, &converted);
2631 if(FAILED(hres))
2632 goto failed;
2634 tmp = &converted;
2637 hres = VariantChangeTypeEx(&converted, tmp, 0, VARIANT_ALPHABOOL|VARIANT_LOCALBOOL, VT_BSTR);
2638 if (SUCCEEDED(hres))
2639 right_str = V_BSTR(&converted);
2640 else if (hres != DISP_E_TYPEMISMATCH)
2642 VariantClear(&converted);
2643 goto failed;
2648 V_VT(out) = VT_BSTR;
2649 hres = VarBstrCat(left_str, right_str, &V_BSTR(out));
2651 failed:
2652 if(V_VT(left) != VT_BSTR)
2653 SysFreeString(left_str);
2654 if(V_VT(right) != VT_BSTR)
2655 SysFreeString(right_str);
2656 return hres;
2660 /* Wrapper around VariantChangeTypeEx() which permits changing a
2661 variant with VT_RESERVED flag set. Needed by VarCmp. */
2662 static HRESULT _VarChangeTypeExWrap (VARIANTARG* pvargDest,
2663 VARIANTARG* pvargSrc, LCID lcid, USHORT wFlags, VARTYPE vt)
2665 VARIANTARG vtmpsrc = *pvargSrc;
2667 V_VT(&vtmpsrc) &= ~VT_RESERVED;
2668 return VariantChangeTypeEx(pvargDest,&vtmpsrc,lcid,wFlags,vt);
2671 /**********************************************************************
2672 * VarCmp [OLEAUT32.176]
2674 * Compare two variants.
2676 * PARAMS
2677 * left [I] First variant
2678 * right [I] Second variant
2679 * lcid [I] LCID (locale identifier) for the comparison
2680 * flags [I] Flags to be used in the comparison:
2681 * NORM_IGNORECASE, NORM_IGNORENONSPACE, NORM_IGNORESYMBOLS,
2682 * NORM_IGNOREWIDTH, NORM_IGNOREKANATYPE, NORM_IGNOREKASHIDA
2684 * RETURNS
2685 * VARCMP_LT: left variant is less than right variant.
2686 * VARCMP_EQ: input variants are equal.
2687 * VARCMP_GT: left variant is greater than right variant.
2688 * VARCMP_NULL: either one of the input variants is NULL.
2689 * Failure: An HRESULT error code indicating the error.
2691 * NOTES
2692 * Native VarCmp up to and including WinXP doesn't like I1, UI2, VT_UI4,
2693 * UI8 and UINT as input variants. INT is accepted only as left variant.
2695 * If both input variants are ERROR then VARCMP_EQ will be returned, else
2696 * an ERROR variant will trigger an error.
2698 * Both input variants can have VT_RESERVED flag set which is ignored
2699 * unless one and only one of the variants is a BSTR and the other one
2700 * is not an EMPTY variant. All four VT_RESERVED combinations have a
2701 * different meaning:
2702 * - BSTR and other: BSTR is always greater than the other variant.
2703 * - BSTR|VT_RESERVED and other: a string comparison is performed.
2704 * - BSTR and other|VT_RESERVED: If the BSTR is a number a numeric
2705 * comparison will take place else the BSTR is always greater.
2706 * - BSTR|VT_RESERVED and other|VT_RESERVED: It seems that the other
2707 * variant is ignored and the return value depends only on the sign
2708 * of the BSTR if it is a number else the BSTR is always greater. A
2709 * positive BSTR is greater, a negative one is smaller than the other
2710 * variant.
2712 * SEE
2713 * VarBstrCmp for the lcid and flags usage.
2715 HRESULT WINAPI VarCmp(LPVARIANT left, LPVARIANT right, LCID lcid, DWORD flags)
2717 VARTYPE lvt, rvt, vt;
2718 VARIANT rv,lv;
2719 DWORD xmask;
2720 HRESULT rc;
2722 TRACE("(%s,%s,0x%08x,0x%08x)\n", debugstr_variant(left), debugstr_variant(right), lcid, flags);
2724 lvt = V_VT(left) & VT_TYPEMASK;
2725 rvt = V_VT(right) & VT_TYPEMASK;
2726 xmask = (1 << lvt) | (1 << rvt);
2728 /* If we have any flag set except VT_RESERVED bail out.
2729 Same for the left input variant type > VT_INT and for the
2730 right input variant type > VT_I8. Yes, VT_INT is only supported
2731 as left variant. Go figure */
2732 if (((V_VT(left) | V_VT(right)) & ~VT_TYPEMASK & ~VT_RESERVED) ||
2733 lvt > VT_INT || rvt > VT_I8) {
2734 return DISP_E_BADVARTYPE;
2737 /* Don't ask me why but native VarCmp cannot handle: VT_I1, VT_UI2, VT_UI4,
2738 VT_UINT and VT_UI8. Tested with DCOM98, Win2k, WinXP */
2739 if (rvt == VT_INT || xmask & (VTBIT_I1 | VTBIT_UI2 | VTBIT_UI4 | VTBIT_UI8 |
2740 VTBIT_DISPATCH | VTBIT_VARIANT | VTBIT_UNKNOWN | VTBIT_15))
2741 return DISP_E_TYPEMISMATCH;
2743 /* If both variants are VT_ERROR return VARCMP_EQ */
2744 if (xmask == VTBIT_ERROR)
2745 return VARCMP_EQ;
2746 else if (xmask & VTBIT_ERROR)
2747 return DISP_E_TYPEMISMATCH;
2749 if (xmask & VTBIT_NULL)
2750 return VARCMP_NULL;
2752 VariantInit(&lv);
2753 VariantInit(&rv);
2755 /* Two BSTRs, ignore VT_RESERVED */
2756 if (xmask == VTBIT_BSTR)
2757 return VarBstrCmp(V_BSTR(left), V_BSTR(right), lcid, flags);
2759 /* A BSTR and another variant; we have to take care of VT_RESERVED */
2760 if (xmask & VTBIT_BSTR) {
2761 VARIANT *bstrv, *nonbv;
2762 VARTYPE nonbvt;
2763 int swap = 0;
2765 /* Swap the variants so the BSTR is always on the left */
2766 if (lvt == VT_BSTR) {
2767 bstrv = left;
2768 nonbv = right;
2769 nonbvt = rvt;
2770 } else {
2771 swap = 1;
2772 bstrv = right;
2773 nonbv = left;
2774 nonbvt = lvt;
2777 /* BSTR and EMPTY: ignore VT_RESERVED */
2778 if (nonbvt == VT_EMPTY)
2779 rc = (!V_BSTR(bstrv) || !*V_BSTR(bstrv)) ? VARCMP_EQ : VARCMP_GT;
2780 else {
2781 VARTYPE breserv = V_VT(bstrv) & ~VT_TYPEMASK;
2782 VARTYPE nreserv = V_VT(nonbv) & ~VT_TYPEMASK;
2784 if (!breserv && !nreserv)
2785 /* No VT_RESERVED set ==> BSTR always greater */
2786 rc = VARCMP_GT;
2787 else if (breserv && !nreserv) {
2788 /* BSTR has VT_RESERVED set. Do a string comparison */
2789 rc = VariantChangeTypeEx(&rv,nonbv,lcid,0,VT_BSTR);
2790 if (FAILED(rc))
2791 return rc;
2792 rc = VarBstrCmp(V_BSTR(bstrv), V_BSTR(&rv), lcid, flags);
2793 VariantClear(&rv);
2794 } else if (V_BSTR(bstrv) && *V_BSTR(bstrv)) {
2795 /* Non NULL nor empty BSTR */
2796 /* If the BSTR is not a number the BSTR is greater */
2797 rc = _VarChangeTypeExWrap(&lv,bstrv,lcid,0,VT_R8);
2798 if (FAILED(rc))
2799 rc = VARCMP_GT;
2800 else if (breserv && nreserv)
2801 /* FIXME: This is strange: with both VT_RESERVED set it
2802 looks like the result depends only on the sign of
2803 the BSTR number */
2804 rc = (V_R8(&lv) >= 0) ? VARCMP_GT : VARCMP_LT;
2805 else
2806 /* Numeric comparison, will be handled below.
2807 VARCMP_NULL used only to break out. */
2808 rc = VARCMP_NULL;
2809 VariantClear(&lv);
2810 VariantClear(&rv);
2811 } else
2812 /* Empty or NULL BSTR */
2813 rc = VARCMP_GT;
2815 /* Fixup the return code if we swapped left and right */
2816 if (swap) {
2817 if (rc == VARCMP_GT)
2818 rc = VARCMP_LT;
2819 else if (rc == VARCMP_LT)
2820 rc = VARCMP_GT;
2822 if (rc != VARCMP_NULL)
2823 return rc;
2826 if (xmask & VTBIT_DECIMAL)
2827 vt = VT_DECIMAL;
2828 else if (xmask & VTBIT_BSTR)
2829 vt = VT_R8;
2830 else if (xmask & VTBIT_R4)
2831 vt = VT_R4;
2832 else if (xmask & (VTBIT_R8 | VTBIT_DATE))
2833 vt = VT_R8;
2834 else if (xmask & VTBIT_CY)
2835 vt = VT_CY;
2836 else
2837 /* default to I8 */
2838 vt = VT_I8;
2840 /* Coerce the variants */
2841 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2842 if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2843 /* Overflow, change to R8 */
2844 vt = VT_R8;
2845 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2847 if (FAILED(rc))
2848 return rc;
2849 rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2850 if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2851 /* Overflow, change to R8 */
2852 vt = VT_R8;
2853 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2854 if (FAILED(rc))
2855 return rc;
2856 rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2858 if (FAILED(rc))
2859 return rc;
2861 #define _VARCMP(a,b) \
2862 (((a) == (b)) ? VARCMP_EQ : (((a) < (b)) ? VARCMP_LT : VARCMP_GT))
2864 switch (vt) {
2865 case VT_CY:
2866 return VarCyCmp(V_CY(&lv), V_CY(&rv));
2867 case VT_DECIMAL:
2868 return VarDecCmp(&V_DECIMAL(&lv), &V_DECIMAL(&rv));
2869 case VT_I8:
2870 return _VARCMP(V_I8(&lv), V_I8(&rv));
2871 case VT_R4:
2872 return _VARCMP(V_R4(&lv), V_R4(&rv));
2873 case VT_R8:
2874 return _VARCMP(V_R8(&lv), V_R8(&rv));
2875 default:
2876 /* We should never get here */
2877 return E_FAIL;
2879 #undef _VARCMP
2882 /**********************************************************************
2883 * VarAnd [OLEAUT32.142]
2885 * Computes the logical AND of two variants.
2887 * PARAMS
2888 * left [I] First variant
2889 * right [I] Second variant
2890 * result [O] Result variant
2892 * RETURNS
2893 * Success: S_OK.
2894 * Failure: An HRESULT error code indicating the error.
2896 HRESULT WINAPI VarAnd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2898 HRESULT hres = S_OK;
2899 VARTYPE resvt = VT_EMPTY;
2900 VARTYPE leftvt,rightvt;
2901 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
2902 VARIANT varLeft, varRight;
2903 VARIANT tempLeft, tempRight;
2905 VariantInit(&varLeft);
2906 VariantInit(&varRight);
2907 VariantInit(&tempLeft);
2908 VariantInit(&tempRight);
2910 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
2912 /* Handle VT_DISPATCH by storing and taking address of returned value */
2913 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
2915 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
2916 if (FAILED(hres)) goto VarAnd_Exit;
2917 left = &tempLeft;
2919 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
2921 hres = VARIANT_FetchDispatchValue(right, &tempRight);
2922 if (FAILED(hres)) goto VarAnd_Exit;
2923 right = &tempRight;
2926 leftvt = V_VT(left)&VT_TYPEMASK;
2927 rightvt = V_VT(right)&VT_TYPEMASK;
2928 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
2929 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
2931 if (leftExtraFlags != rightExtraFlags)
2933 hres = DISP_E_BADVARTYPE;
2934 goto VarAnd_Exit;
2936 ExtraFlags = leftExtraFlags;
2938 /* Native VarAnd always returns an error when using extra
2939 * flags or if the variant combination is I8 and INT.
2941 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
2942 (leftvt == VT_INT && rightvt == VT_I8) ||
2943 ExtraFlags != 0)
2945 hres = DISP_E_BADVARTYPE;
2946 goto VarAnd_Exit;
2949 /* Determine return type */
2950 else if (leftvt == VT_I8 || rightvt == VT_I8)
2951 resvt = VT_I8;
2952 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
2953 leftvt == VT_UINT || rightvt == VT_UINT ||
2954 leftvt == VT_INT || rightvt == VT_INT ||
2955 leftvt == VT_R4 || rightvt == VT_R4 ||
2956 leftvt == VT_R8 || rightvt == VT_R8 ||
2957 leftvt == VT_CY || rightvt == VT_CY ||
2958 leftvt == VT_DATE || rightvt == VT_DATE ||
2959 leftvt == VT_I1 || rightvt == VT_I1 ||
2960 leftvt == VT_UI2 || rightvt == VT_UI2 ||
2961 leftvt == VT_UI4 || rightvt == VT_UI4 ||
2962 leftvt == VT_UI8 || rightvt == VT_UI8 ||
2963 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
2964 resvt = VT_I4;
2965 else if (leftvt == VT_UI1 || rightvt == VT_UI1 ||
2966 leftvt == VT_I2 || rightvt == VT_I2 ||
2967 leftvt == VT_EMPTY || rightvt == VT_EMPTY)
2968 if ((leftvt == VT_NULL && rightvt == VT_UI1) ||
2969 (leftvt == VT_UI1 && rightvt == VT_NULL) ||
2970 (leftvt == VT_UI1 && rightvt == VT_UI1))
2971 resvt = VT_UI1;
2972 else
2973 resvt = VT_I2;
2974 else if (leftvt == VT_BOOL || rightvt == VT_BOOL ||
2975 (leftvt == VT_BSTR && rightvt == VT_BSTR))
2976 resvt = VT_BOOL;
2977 else if (leftvt == VT_NULL || rightvt == VT_NULL ||
2978 leftvt == VT_BSTR || rightvt == VT_BSTR)
2979 resvt = VT_NULL;
2980 else
2982 hres = DISP_E_BADVARTYPE;
2983 goto VarAnd_Exit;
2986 if (leftvt == VT_NULL || rightvt == VT_NULL)
2989 * Special cases for when left variant is VT_NULL
2990 * (VT_NULL & 0 = VT_NULL, VT_NULL & value = value)
2992 if (leftvt == VT_NULL)
2994 VARIANT_BOOL b;
2995 switch(rightvt)
2997 case VT_I1: if (V_I1(right)) resvt = VT_NULL; break;
2998 case VT_UI1: if (V_UI1(right)) resvt = VT_NULL; break;
2999 case VT_I2: if (V_I2(right)) resvt = VT_NULL; break;
3000 case VT_UI2: if (V_UI2(right)) resvt = VT_NULL; break;
3001 case VT_I4: if (V_I4(right)) resvt = VT_NULL; break;
3002 case VT_UI4: if (V_UI4(right)) resvt = VT_NULL; break;
3003 case VT_I8: if (V_I8(right)) resvt = VT_NULL; break;
3004 case VT_UI8: if (V_UI8(right)) resvt = VT_NULL; break;
3005 case VT_INT: if (V_INT(right)) resvt = VT_NULL; break;
3006 case VT_UINT: if (V_UINT(right)) resvt = VT_NULL; break;
3007 case VT_BOOL: if (V_BOOL(right)) resvt = VT_NULL; break;
3008 case VT_R4: if (V_R4(right)) resvt = VT_NULL; break;
3009 case VT_R8: if (V_R8(right)) resvt = VT_NULL; break;
3010 case VT_CY:
3011 if(V_CY(right).int64)
3012 resvt = VT_NULL;
3013 break;
3014 case VT_DECIMAL:
3015 if (DEC_HI32(&V_DECIMAL(right)) ||
3016 DEC_LO64(&V_DECIMAL(right)))
3017 resvt = VT_NULL;
3018 break;
3019 case VT_BSTR:
3020 hres = VarBoolFromStr(V_BSTR(right),
3021 LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
3022 if (FAILED(hres))
3023 return hres;
3024 else if (b)
3025 V_VT(result) = VT_NULL;
3026 else
3028 V_VT(result) = VT_BOOL;
3029 V_BOOL(result) = b;
3031 goto VarAnd_Exit;
3034 V_VT(result) = resvt;
3035 goto VarAnd_Exit;
3038 hres = VariantCopy(&varLeft, left);
3039 if (FAILED(hres)) goto VarAnd_Exit;
3041 hres = VariantCopy(&varRight, right);
3042 if (FAILED(hres)) goto VarAnd_Exit;
3044 if (resvt == VT_I4 && V_VT(&varLeft) == VT_UI4)
3045 V_VT(&varLeft) = VT_I4; /* Don't overflow */
3046 else
3048 double d;
3050 if (V_VT(&varLeft) == VT_BSTR &&
3051 FAILED(VarR8FromStr(V_BSTR(&varLeft),
3052 LOCALE_USER_DEFAULT, 0, &d)))
3053 hres = VariantChangeType(&varLeft,&varLeft,
3054 VARIANT_LOCALBOOL, VT_BOOL);
3055 if (SUCCEEDED(hres) && V_VT(&varLeft) != resvt)
3056 hres = VariantChangeType(&varLeft,&varLeft,0,resvt);
3057 if (FAILED(hres)) goto VarAnd_Exit;
3060 if (resvt == VT_I4 && V_VT(&varRight) == VT_UI4)
3061 V_VT(&varRight) = VT_I4; /* Don't overflow */
3062 else
3064 double d;
3066 if (V_VT(&varRight) == VT_BSTR &&
3067 FAILED(VarR8FromStr(V_BSTR(&varRight),
3068 LOCALE_USER_DEFAULT, 0, &d)))
3069 hres = VariantChangeType(&varRight, &varRight,
3070 VARIANT_LOCALBOOL, VT_BOOL);
3071 if (SUCCEEDED(hres) && V_VT(&varRight) != resvt)
3072 hres = VariantChangeType(&varRight, &varRight, 0, resvt);
3073 if (FAILED(hres)) goto VarAnd_Exit;
3076 V_VT(result) = resvt;
3077 switch(resvt)
3079 case VT_I8:
3080 V_I8(result) = V_I8(&varLeft) & V_I8(&varRight);
3081 break;
3082 case VT_I4:
3083 V_I4(result) = V_I4(&varLeft) & V_I4(&varRight);
3084 break;
3085 case VT_I2:
3086 V_I2(result) = V_I2(&varLeft) & V_I2(&varRight);
3087 break;
3088 case VT_UI1:
3089 V_UI1(result) = V_UI1(&varLeft) & V_UI1(&varRight);
3090 break;
3091 case VT_BOOL:
3092 V_BOOL(result) = V_BOOL(&varLeft) & V_BOOL(&varRight);
3093 break;
3094 default:
3095 FIXME("Couldn't bitwise AND variant types %d,%d\n",
3096 leftvt,rightvt);
3099 VarAnd_Exit:
3100 VariantClear(&varLeft);
3101 VariantClear(&varRight);
3102 VariantClear(&tempLeft);
3103 VariantClear(&tempRight);
3105 return hres;
3108 /**********************************************************************
3109 * VarAdd [OLEAUT32.141]
3111 * Add two variants.
3113 * PARAMS
3114 * left [I] First variant
3115 * right [I] Second variant
3116 * result [O] Result variant
3118 * RETURNS
3119 * Success: S_OK.
3120 * Failure: An HRESULT error code indicating the error.
3122 * NOTES
3123 * Native VarAdd up to and including WinXP doesn't like I1, UI2, UI4,
3124 * UI8, INT and UINT as input variants.
3126 * Native VarAdd doesn't check for NULL in/out pointers and crashes. We do the
3127 * same here.
3129 * FIXME
3130 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3131 * case.
3133 HRESULT WINAPI VarAdd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3135 HRESULT hres;
3136 VARTYPE lvt, rvt, resvt, tvt;
3137 VARIANT lv, rv, tv;
3138 VARIANT tempLeft, tempRight;
3139 double r8res;
3141 /* Variant priority for coercion. Sorted from lowest to highest.
3142 VT_ERROR shows an invalid input variant type. */
3143 enum coerceprio { vt_EMPTY, vt_UI1, vt_I2, vt_I4, vt_I8, vt_BSTR,vt_R4,
3144 vt_R8, vt_CY, vt_DATE, vt_DECIMAL, vt_DISPATCH, vt_NULL,
3145 vt_ERROR };
3146 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3147 static const VARTYPE prio2vt[] = { VT_EMPTY, VT_UI1, VT_I2, VT_I4, VT_I8, VT_BSTR, VT_R4,
3148 VT_R8, VT_CY, VT_DATE, VT_DECIMAL, VT_DISPATCH,
3149 VT_NULL, VT_ERROR };
3151 /* Mapping for coercion from input variant to priority of result variant. */
3152 static const VARTYPE coerce[] = {
3153 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3154 vt_EMPTY, vt_NULL, vt_I2, vt_I4, vt_R4,
3155 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3156 vt_R8, vt_CY, vt_DATE, vt_BSTR, vt_DISPATCH,
3157 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3158 vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3159 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3160 vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3163 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3165 VariantInit(&lv);
3166 VariantInit(&rv);
3167 VariantInit(&tv);
3168 VariantInit(&tempLeft);
3169 VariantInit(&tempRight);
3171 /* Handle VT_DISPATCH by storing and taking address of returned value */
3172 if ((V_VT(left) & VT_TYPEMASK) != VT_NULL && (V_VT(right) & VT_TYPEMASK) != VT_NULL)
3174 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3176 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3177 if (FAILED(hres)) goto end;
3178 left = &tempLeft;
3180 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3182 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3183 if (FAILED(hres)) goto end;
3184 right = &tempRight;
3188 lvt = V_VT(left)&VT_TYPEMASK;
3189 rvt = V_VT(right)&VT_TYPEMASK;
3191 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3192 Same for any input variant type > VT_I8 */
3193 if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3194 lvt > VT_I8 || rvt > VT_I8) {
3195 hres = DISP_E_BADVARTYPE;
3196 goto end;
3199 /* Determine the variant type to coerce to. */
3200 if (coerce[lvt] > coerce[rvt]) {
3201 resvt = prio2vt[coerce[lvt]];
3202 tvt = prio2vt[coerce[rvt]];
3203 } else {
3204 resvt = prio2vt[coerce[rvt]];
3205 tvt = prio2vt[coerce[lvt]];
3208 /* Special cases where the result variant type is defined by both
3209 input variants and not only that with the highest priority */
3210 if (resvt == VT_BSTR) {
3211 if (tvt == VT_EMPTY || tvt == VT_BSTR)
3212 resvt = VT_BSTR;
3213 else
3214 resvt = VT_R8;
3216 if (resvt == VT_R4 && (tvt == VT_BSTR || tvt == VT_I8 || tvt == VT_I4))
3217 resvt = VT_R8;
3219 /* For overflow detection use the biggest compatible type for the
3220 addition */
3221 switch (resvt) {
3222 case VT_ERROR:
3223 hres = DISP_E_BADVARTYPE;
3224 goto end;
3225 case VT_NULL:
3226 hres = S_OK;
3227 V_VT(result) = VT_NULL;
3228 goto end;
3229 case VT_DISPATCH:
3230 FIXME("cannot handle variant type VT_DISPATCH\n");
3231 hres = DISP_E_TYPEMISMATCH;
3232 goto end;
3233 case VT_EMPTY:
3234 resvt = VT_I2;
3235 /* Fall through */
3236 case VT_UI1:
3237 case VT_I2:
3238 case VT_I4:
3239 case VT_I8:
3240 tvt = VT_I8;
3241 break;
3242 case VT_DATE:
3243 case VT_R4:
3244 tvt = VT_R8;
3245 break;
3246 default:
3247 tvt = resvt;
3250 /* Now coerce the variants */
3251 hres = VariantChangeType(&lv, left, 0, tvt);
3252 if (FAILED(hres))
3253 goto end;
3254 hres = VariantChangeType(&rv, right, 0, tvt);
3255 if (FAILED(hres))
3256 goto end;
3258 /* Do the math */
3259 hres = S_OK;
3260 V_VT(result) = resvt;
3261 switch (tvt) {
3262 case VT_DECIMAL:
3263 hres = VarDecAdd(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3264 &V_DECIMAL(result));
3265 goto end;
3266 case VT_CY:
3267 hres = VarCyAdd(V_CY(&lv), V_CY(&rv), &V_CY(result));
3268 goto end;
3269 case VT_BSTR:
3270 /* We do not add those, we concatenate them. */
3271 hres = VarBstrCat(V_BSTR(&lv), V_BSTR(&rv), &V_BSTR(result));
3272 goto end;
3273 case VT_I8:
3274 /* Overflow detection */
3275 r8res = (double)V_I8(&lv) + (double)V_I8(&rv);
3276 if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3277 V_VT(result) = VT_R8;
3278 V_R8(result) = r8res;
3279 goto end;
3280 } else {
3281 V_VT(&tv) = tvt;
3282 V_I8(&tv) = V_I8(&lv) + V_I8(&rv);
3284 break;
3285 case VT_R8:
3286 V_VT(&tv) = tvt;
3287 /* FIXME: overflow detection */
3288 V_R8(&tv) = V_R8(&lv) + V_R8(&rv);
3289 break;
3290 default:
3291 ERR("We shouldn't get here! tvt = %d!\n", tvt);
3292 break;
3294 if (resvt != tvt) {
3295 if ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3296 /* Overflow! Change to the vartype with the next higher priority.
3297 With one exception: I4 ==> R8 even if it would fit in I8 */
3298 if (resvt == VT_I4)
3299 resvt = VT_R8;
3300 else
3301 resvt = prio2vt[coerce[resvt] + 1];
3302 hres = VariantChangeType(result, &tv, 0, resvt);
3304 } else
3305 hres = VariantCopy(result, &tv);
3307 end:
3308 if (hres != S_OK) {
3309 V_VT(result) = VT_EMPTY;
3310 V_I4(result) = 0; /* No V_EMPTY */
3312 VariantClear(&lv);
3313 VariantClear(&rv);
3314 VariantClear(&tv);
3315 VariantClear(&tempLeft);
3316 VariantClear(&tempRight);
3317 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3318 return hres;
3321 /**********************************************************************
3322 * VarMul [OLEAUT32.156]
3324 * Multiply two variants.
3326 * PARAMS
3327 * left [I] First variant
3328 * right [I] Second variant
3329 * result [O] Result variant
3331 * RETURNS
3332 * Success: S_OK.
3333 * Failure: An HRESULT error code indicating the error.
3335 * NOTES
3336 * Native VarMul up to and including WinXP doesn't like I1, UI2, UI4,
3337 * UI8, INT and UINT as input variants. But it can multiply apples with oranges.
3339 * Native VarMul doesn't check for NULL in/out pointers and crashes. We do the
3340 * same here.
3342 * FIXME
3343 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3344 * case.
3346 HRESULT WINAPI VarMul(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3348 HRESULT hres;
3349 VARTYPE lvt, rvt, resvt, tvt;
3350 VARIANT lv, rv, tv;
3351 VARIANT tempLeft, tempRight;
3352 double r8res;
3354 /* Variant priority for coercion. Sorted from lowest to highest.
3355 VT_ERROR shows an invalid input variant type. */
3356 enum coerceprio { vt_UI1 = 0, vt_I2, vt_I4, vt_I8, vt_CY, vt_R4, vt_R8,
3357 vt_DECIMAL, vt_NULL, vt_ERROR };
3358 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3359 static const VARTYPE prio2vt[] = { VT_UI1, VT_I2, VT_I4, VT_I8, VT_CY, VT_R4, VT_R8,
3360 VT_DECIMAL, VT_NULL, VT_ERROR };
3362 /* Mapping for coercion from input variant to priority of result variant. */
3363 static const VARTYPE coerce[] = {
3364 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3365 vt_UI1, vt_NULL, vt_I2, vt_I4, vt_R4,
3366 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3367 vt_R8, vt_CY, vt_R8, vt_R8, vt_ERROR,
3368 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3369 vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3370 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3371 vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3374 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3376 VariantInit(&lv);
3377 VariantInit(&rv);
3378 VariantInit(&tv);
3379 VariantInit(&tempLeft);
3380 VariantInit(&tempRight);
3382 /* Handle VT_DISPATCH by storing and taking address of returned value */
3383 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3385 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3386 if (FAILED(hres)) goto end;
3387 left = &tempLeft;
3389 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3391 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3392 if (FAILED(hres)) goto end;
3393 right = &tempRight;
3396 lvt = V_VT(left)&VT_TYPEMASK;
3397 rvt = V_VT(right)&VT_TYPEMASK;
3399 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3400 Same for any input variant type > VT_I8 */
3401 if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3402 lvt > VT_I8 || rvt > VT_I8) {
3403 hres = DISP_E_BADVARTYPE;
3404 goto end;
3407 /* Determine the variant type to coerce to. */
3408 if (coerce[lvt] > coerce[rvt]) {
3409 resvt = prio2vt[coerce[lvt]];
3410 tvt = prio2vt[coerce[rvt]];
3411 } else {
3412 resvt = prio2vt[coerce[rvt]];
3413 tvt = prio2vt[coerce[lvt]];
3416 /* Special cases where the result variant type is defined by both
3417 input variants and not only that with the highest priority */
3418 if (resvt == VT_R4 && (tvt == VT_CY || tvt == VT_I8 || tvt == VT_I4))
3419 resvt = VT_R8;
3420 if (lvt == VT_EMPTY && rvt == VT_EMPTY)
3421 resvt = VT_I2;
3423 /* For overflow detection use the biggest compatible type for the
3424 multiplication */
3425 switch (resvt) {
3426 case VT_ERROR:
3427 hres = DISP_E_BADVARTYPE;
3428 goto end;
3429 case VT_NULL:
3430 hres = S_OK;
3431 V_VT(result) = VT_NULL;
3432 goto end;
3433 case VT_UI1:
3434 case VT_I2:
3435 case VT_I4:
3436 case VT_I8:
3437 tvt = VT_I8;
3438 break;
3439 case VT_R4:
3440 tvt = VT_R8;
3441 break;
3442 default:
3443 tvt = resvt;
3446 /* Now coerce the variants */
3447 hres = VariantChangeType(&lv, left, 0, tvt);
3448 if (FAILED(hres))
3449 goto end;
3450 hres = VariantChangeType(&rv, right, 0, tvt);
3451 if (FAILED(hres))
3452 goto end;
3454 /* Do the math */
3455 hres = S_OK;
3456 V_VT(&tv) = tvt;
3457 V_VT(result) = resvt;
3458 switch (tvt) {
3459 case VT_DECIMAL:
3460 hres = VarDecMul(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3461 &V_DECIMAL(result));
3462 goto end;
3463 case VT_CY:
3464 hres = VarCyMul(V_CY(&lv), V_CY(&rv), &V_CY(result));
3465 goto end;
3466 case VT_I8:
3467 /* Overflow detection */
3468 r8res = (double)V_I8(&lv) * (double)V_I8(&rv);
3469 if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3470 V_VT(result) = VT_R8;
3471 V_R8(result) = r8res;
3472 goto end;
3473 } else
3474 V_I8(&tv) = V_I8(&lv) * V_I8(&rv);
3475 break;
3476 case VT_R8:
3477 /* FIXME: overflow detection */
3478 V_R8(&tv) = V_R8(&lv) * V_R8(&rv);
3479 break;
3480 default:
3481 ERR("We shouldn't get here! tvt = %d!\n", tvt);
3482 break;
3484 if (resvt != tvt) {
3485 while ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3486 /* Overflow! Change to the vartype with the next higher priority.
3487 With one exception: I4 ==> R8 even if it would fit in I8 */
3488 if (resvt == VT_I4)
3489 resvt = VT_R8;
3490 else
3491 resvt = prio2vt[coerce[resvt] + 1];
3493 } else
3494 hres = VariantCopy(result, &tv);
3496 end:
3497 if (hres != S_OK) {
3498 V_VT(result) = VT_EMPTY;
3499 V_I4(result) = 0; /* No V_EMPTY */
3501 VariantClear(&lv);
3502 VariantClear(&rv);
3503 VariantClear(&tv);
3504 VariantClear(&tempLeft);
3505 VariantClear(&tempRight);
3506 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3507 return hres;
3510 /**********************************************************************
3511 * VarDiv [OLEAUT32.143]
3513 * Divides one variant with another.
3515 * PARAMS
3516 * left [I] First variant
3517 * right [I] Second variant
3518 * result [O] Result variant
3520 * RETURNS
3521 * Success: S_OK.
3522 * Failure: An HRESULT error code indicating the error.
3524 HRESULT WINAPI VarDiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3526 HRESULT hres = S_OK;
3527 VARTYPE resvt = VT_EMPTY;
3528 VARTYPE leftvt,rightvt;
3529 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3530 VARIANT lv,rv;
3531 VARIANT tempLeft, tempRight;
3533 VariantInit(&tempLeft);
3534 VariantInit(&tempRight);
3535 VariantInit(&lv);
3536 VariantInit(&rv);
3538 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3540 /* Handle VT_DISPATCH by storing and taking address of returned value */
3541 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3543 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3544 if (FAILED(hres)) goto end;
3545 left = &tempLeft;
3547 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3549 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3550 if (FAILED(hres)) goto end;
3551 right = &tempRight;
3554 leftvt = V_VT(left)&VT_TYPEMASK;
3555 rightvt = V_VT(right)&VT_TYPEMASK;
3556 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3557 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3559 if (leftExtraFlags != rightExtraFlags)
3561 hres = DISP_E_BADVARTYPE;
3562 goto end;
3564 ExtraFlags = leftExtraFlags;
3566 /* Native VarDiv always returns an error when using extra flags */
3567 if (ExtraFlags != 0)
3569 hres = DISP_E_BADVARTYPE;
3570 goto end;
3573 /* Determine return type */
3574 if (rightvt != VT_EMPTY)
3576 if (leftvt == VT_NULL || rightvt == VT_NULL)
3578 V_VT(result) = VT_NULL;
3579 hres = S_OK;
3580 goto end;
3582 else if (leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3583 resvt = VT_DECIMAL;
3584 else if (leftvt == VT_I8 || rightvt == VT_I8 ||
3585 leftvt == VT_CY || rightvt == VT_CY ||
3586 leftvt == VT_DATE || rightvt == VT_DATE ||
3587 leftvt == VT_I4 || rightvt == VT_I4 ||
3588 leftvt == VT_BSTR || rightvt == VT_BSTR ||
3589 leftvt == VT_I2 || rightvt == VT_I2 ||
3590 leftvt == VT_BOOL || rightvt == VT_BOOL ||
3591 leftvt == VT_R8 || rightvt == VT_R8 ||
3592 leftvt == VT_UI1 || rightvt == VT_UI1)
3594 if ((leftvt == VT_UI1 && rightvt == VT_R4) ||
3595 (leftvt == VT_R4 && rightvt == VT_UI1))
3596 resvt = VT_R4;
3597 else if ((leftvt == VT_R4 && (rightvt == VT_BOOL ||
3598 rightvt == VT_I2)) || (rightvt == VT_R4 &&
3599 (leftvt == VT_BOOL || leftvt == VT_I2)))
3600 resvt = VT_R4;
3601 else
3602 resvt = VT_R8;
3604 else if (leftvt == VT_R4 || rightvt == VT_R4)
3605 resvt = VT_R4;
3607 else if (leftvt == VT_NULL)
3609 V_VT(result) = VT_NULL;
3610 hres = S_OK;
3611 goto end;
3613 else
3615 hres = DISP_E_BADVARTYPE;
3616 goto end;
3619 /* coerce to the result type */
3620 hres = VariantChangeType(&lv, left, 0, resvt);
3621 if (hres != S_OK) goto end;
3623 hres = VariantChangeType(&rv, right, 0, resvt);
3624 if (hres != S_OK) goto end;
3626 /* do the math */
3627 V_VT(result) = resvt;
3628 switch (resvt)
3630 case VT_R4:
3631 if (V_R4(&lv) == 0.0 && V_R4(&rv) == 0.0)
3633 hres = DISP_E_OVERFLOW;
3634 V_VT(result) = VT_EMPTY;
3636 else if (V_R4(&rv) == 0.0)
3638 hres = DISP_E_DIVBYZERO;
3639 V_VT(result) = VT_EMPTY;
3641 else
3642 V_R4(result) = V_R4(&lv) / V_R4(&rv);
3643 break;
3644 case VT_R8:
3645 if (V_R8(&lv) == 0.0 && V_R8(&rv) == 0.0)
3647 hres = DISP_E_OVERFLOW;
3648 V_VT(result) = VT_EMPTY;
3650 else if (V_R8(&rv) == 0.0)
3652 hres = DISP_E_DIVBYZERO;
3653 V_VT(result) = VT_EMPTY;
3655 else
3656 V_R8(result) = V_R8(&lv) / V_R8(&rv);
3657 break;
3658 case VT_DECIMAL:
3659 hres = VarDecDiv(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
3660 break;
3663 end:
3664 VariantClear(&lv);
3665 VariantClear(&rv);
3666 VariantClear(&tempLeft);
3667 VariantClear(&tempRight);
3668 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3669 return hres;
3672 /**********************************************************************
3673 * VarSub [OLEAUT32.159]
3675 * Subtract two variants.
3677 * PARAMS
3678 * left [I] First variant
3679 * right [I] Second variant
3680 * result [O] Result variant
3682 * RETURNS
3683 * Success: S_OK.
3684 * Failure: An HRESULT error code indicating the error.
3686 HRESULT WINAPI VarSub(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3688 HRESULT hres = S_OK;
3689 VARTYPE resvt = VT_EMPTY;
3690 VARTYPE leftvt,rightvt;
3691 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3692 VARIANT lv,rv;
3693 VARIANT tempLeft, tempRight;
3695 VariantInit(&lv);
3696 VariantInit(&rv);
3697 VariantInit(&tempLeft);
3698 VariantInit(&tempRight);
3700 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3702 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH &&
3703 (V_VT(left)&(~VT_TYPEMASK)) == 0 &&
3704 (V_VT(right) & VT_TYPEMASK) != VT_NULL)
3706 if (NULL == V_DISPATCH(left)) {
3707 if ((V_VT(right) & VT_TYPEMASK) >= VT_INT_PTR)
3708 hres = DISP_E_BADVARTYPE;
3709 else if ((V_VT(right) & VT_TYPEMASK) >= VT_UI8 &&
3710 (V_VT(right) & VT_TYPEMASK) < VT_RECORD)
3711 hres = DISP_E_BADVARTYPE;
3712 else switch (V_VT(right) & VT_TYPEMASK)
3714 case VT_VARIANT:
3715 case VT_UNKNOWN:
3716 case 15:
3717 case VT_I1:
3718 case VT_UI2:
3719 case VT_UI4:
3720 hres = DISP_E_BADVARTYPE;
3722 if (FAILED(hres)) goto end;
3724 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3725 if (FAILED(hres)) goto end;
3726 left = &tempLeft;
3728 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH &&
3729 (V_VT(right)&(~VT_TYPEMASK)) == 0 &&
3730 (V_VT(left) & VT_TYPEMASK) != VT_NULL)
3732 if (NULL == V_DISPATCH(right))
3734 if ((V_VT(left) & VT_TYPEMASK) >= VT_INT_PTR)
3735 hres = DISP_E_BADVARTYPE;
3736 else if ((V_VT(left) & VT_TYPEMASK) >= VT_UI8 &&
3737 (V_VT(left) & VT_TYPEMASK) < VT_RECORD)
3738 hres = DISP_E_BADVARTYPE;
3739 else switch (V_VT(left) & VT_TYPEMASK)
3741 case VT_VARIANT:
3742 case VT_UNKNOWN:
3743 case 15:
3744 case VT_I1:
3745 case VT_UI2:
3746 case VT_UI4:
3747 hres = DISP_E_BADVARTYPE;
3749 if (FAILED(hres)) goto end;
3751 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3752 if (FAILED(hres)) goto end;
3753 right = &tempRight;
3756 leftvt = V_VT(left)&VT_TYPEMASK;
3757 rightvt = V_VT(right)&VT_TYPEMASK;
3758 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3759 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3761 if (leftExtraFlags != rightExtraFlags)
3763 hres = DISP_E_BADVARTYPE;
3764 goto end;
3766 ExtraFlags = leftExtraFlags;
3768 /* determine return type and return code */
3769 /* All extra flags produce errors */
3770 if (ExtraFlags == (VT_VECTOR|VT_BYREF|VT_RESERVED) ||
3771 ExtraFlags == (VT_VECTOR|VT_RESERVED) ||
3772 ExtraFlags == (VT_VECTOR|VT_BYREF) ||
3773 ExtraFlags == (VT_BYREF|VT_RESERVED) ||
3774 ExtraFlags == VT_VECTOR ||
3775 ExtraFlags == VT_BYREF ||
3776 ExtraFlags == VT_RESERVED)
3778 hres = DISP_E_BADVARTYPE;
3779 goto end;
3781 else if (ExtraFlags >= VT_ARRAY)
3783 hres = DISP_E_TYPEMISMATCH;
3784 goto end;
3786 /* Native VarSub cannot handle: VT_I1, VT_UI2, VT_UI4,
3787 VT_INT, VT_UINT and VT_UI8. Tested with WinXP */
3788 else if (leftvt == VT_CLSID || rightvt == VT_CLSID ||
3789 leftvt == VT_VARIANT || rightvt == VT_VARIANT ||
3790 leftvt == VT_I1 || rightvt == VT_I1 ||
3791 leftvt == VT_UI2 || rightvt == VT_UI2 ||
3792 leftvt == VT_UI4 || rightvt == VT_UI4 ||
3793 leftvt == VT_UI8 || rightvt == VT_UI8 ||
3794 leftvt == VT_INT || rightvt == VT_INT ||
3795 leftvt == VT_UINT || rightvt == VT_UINT ||
3796 leftvt == VT_UNKNOWN || rightvt == VT_UNKNOWN ||
3797 leftvt == VT_RECORD || rightvt == VT_RECORD)
3799 if (leftvt == VT_RECORD && rightvt == VT_I8)
3800 hres = DISP_E_TYPEMISMATCH;
3801 else if (leftvt < VT_UI1 && rightvt == VT_RECORD)
3802 hres = DISP_E_TYPEMISMATCH;
3803 else if (leftvt >= VT_UI1 && rightvt == VT_RECORD)
3804 hres = DISP_E_TYPEMISMATCH;
3805 else if (leftvt == VT_RECORD && rightvt <= VT_UI1)
3806 hres = DISP_E_TYPEMISMATCH;
3807 else if (leftvt == VT_RECORD && rightvt > VT_UI1)
3808 hres = DISP_E_BADVARTYPE;
3809 else
3810 hres = DISP_E_BADVARTYPE;
3811 goto end;
3813 /* The following flags/types are invalid for left variant */
3814 else if (!((leftvt <= VT_LPWSTR || leftvt == VT_RECORD ||
3815 leftvt == VT_CLSID) && leftvt != (VARTYPE)15 /* undefined vt */ &&
3816 (leftvt < VT_VOID || leftvt > VT_LPWSTR)))
3818 hres = DISP_E_BADVARTYPE;
3819 goto end;
3821 /* The following flags/types are invalid for right variant */
3822 else if (!((rightvt <= VT_LPWSTR || rightvt == VT_RECORD ||
3823 rightvt == VT_CLSID) && rightvt != (VARTYPE)15 /* undefined vt */ &&
3824 (rightvt < VT_VOID || rightvt > VT_LPWSTR)))
3826 hres = DISP_E_BADVARTYPE;
3827 goto end;
3829 else if ((leftvt == VT_NULL && rightvt == VT_DISPATCH) ||
3830 (leftvt == VT_DISPATCH && rightvt == VT_NULL))
3831 resvt = VT_NULL;
3832 else if (leftvt == VT_DISPATCH || rightvt == VT_DISPATCH ||
3833 leftvt == VT_ERROR || rightvt == VT_ERROR)
3835 hres = DISP_E_TYPEMISMATCH;
3836 goto end;
3838 else if (leftvt == VT_NULL || rightvt == VT_NULL)
3839 resvt = VT_NULL;
3840 else if ((leftvt == VT_EMPTY && rightvt == VT_BSTR) ||
3841 (leftvt == VT_DATE && rightvt == VT_DATE) ||
3842 (leftvt == VT_BSTR && rightvt == VT_EMPTY) ||
3843 (leftvt == VT_BSTR && rightvt == VT_BSTR))
3844 resvt = VT_R8;
3845 else if (leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3846 resvt = VT_DECIMAL;
3847 else if (leftvt == VT_DATE || rightvt == VT_DATE)
3848 resvt = VT_DATE;
3849 else if (leftvt == VT_CY || rightvt == VT_CY)
3850 resvt = VT_CY;
3851 else if (leftvt == VT_R8 || rightvt == VT_R8)
3852 resvt = VT_R8;
3853 else if (leftvt == VT_BSTR || rightvt == VT_BSTR)
3854 resvt = VT_R8;
3855 else if (leftvt == VT_R4 || rightvt == VT_R4)
3857 if (leftvt == VT_I4 || rightvt == VT_I4 ||
3858 leftvt == VT_I8 || rightvt == VT_I8)
3859 resvt = VT_R8;
3860 else
3861 resvt = VT_R4;
3863 else if (leftvt == VT_I8 || rightvt == VT_I8)
3864 resvt = VT_I8;
3865 else if (leftvt == VT_I4 || rightvt == VT_I4)
3866 resvt = VT_I4;
3867 else if (leftvt == VT_I2 || rightvt == VT_I2 ||
3868 leftvt == VT_BOOL || rightvt == VT_BOOL ||
3869 (leftvt == VT_EMPTY && rightvt == VT_EMPTY))
3870 resvt = VT_I2;
3871 else if (leftvt == VT_UI1 || rightvt == VT_UI1)
3872 resvt = VT_UI1;
3873 else
3875 hres = DISP_E_TYPEMISMATCH;
3876 goto end;
3879 /* coerce to the result type */
3880 if (leftvt == VT_BSTR && rightvt == VT_DATE)
3881 hres = VariantChangeType(&lv, left, 0, VT_R8);
3882 else
3883 hres = VariantChangeType(&lv, left, 0, resvt);
3884 if (hres != S_OK) goto end;
3885 if (leftvt == VT_DATE && rightvt == VT_BSTR)
3886 hres = VariantChangeType(&rv, right, 0, VT_R8);
3887 else
3888 hres = VariantChangeType(&rv, right, 0, resvt);
3889 if (hres != S_OK) goto end;
3891 /* do the math */
3892 V_VT(result) = resvt;
3893 switch (resvt)
3895 case VT_NULL:
3896 break;
3897 case VT_DATE:
3898 V_DATE(result) = V_DATE(&lv) - V_DATE(&rv);
3899 break;
3900 case VT_CY:
3901 hres = VarCySub(V_CY(&lv), V_CY(&rv), &(V_CY(result)));
3902 break;
3903 case VT_R4:
3904 V_R4(result) = V_R4(&lv) - V_R4(&rv);
3905 break;
3906 case VT_I8:
3907 V_I8(result) = V_I8(&lv) - V_I8(&rv);
3908 break;
3909 case VT_I4:
3910 V_I4(result) = V_I4(&lv) - V_I4(&rv);
3911 break;
3912 case VT_I2:
3913 V_I2(result) = V_I2(&lv) - V_I2(&rv);
3914 break;
3915 case VT_UI1:
3916 V_UI1(result) = V_UI2(&lv) - V_UI1(&rv);
3917 break;
3918 case VT_R8:
3919 V_R8(result) = V_R8(&lv) - V_R8(&rv);
3920 break;
3921 case VT_DECIMAL:
3922 hres = VarDecSub(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
3923 break;
3926 end:
3927 VariantClear(&lv);
3928 VariantClear(&rv);
3929 VariantClear(&tempLeft);
3930 VariantClear(&tempRight);
3931 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3932 return hres;
3936 /**********************************************************************
3937 * VarOr [OLEAUT32.157]
3939 * Perform a logical or (OR) operation on two variants.
3941 * PARAMS
3942 * pVarLeft [I] First variant
3943 * pVarRight [I] Variant to OR with pVarLeft
3944 * pVarOut [O] Destination for OR result
3946 * RETURNS
3947 * Success: S_OK. pVarOut contains the result of the operation with its type
3948 * taken from the table listed under VarXor().
3949 * Failure: An HRESULT error code indicating the error.
3951 * NOTES
3952 * See the Notes section of VarXor() for further information.
3954 HRESULT WINAPI VarOr(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
3956 VARTYPE vt = VT_I4;
3957 VARIANT varLeft, varRight, varStr;
3958 HRESULT hRet;
3959 VARIANT tempLeft, tempRight;
3961 VariantInit(&tempLeft);
3962 VariantInit(&tempRight);
3963 VariantInit(&varLeft);
3964 VariantInit(&varRight);
3965 VariantInit(&varStr);
3967 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
3969 /* Handle VT_DISPATCH by storing and taking address of returned value */
3970 if ((V_VT(pVarLeft) & VT_TYPEMASK) == VT_DISPATCH)
3972 hRet = VARIANT_FetchDispatchValue(pVarLeft, &tempLeft);
3973 if (FAILED(hRet)) goto VarOr_Exit;
3974 pVarLeft = &tempLeft;
3976 if ((V_VT(pVarRight) & VT_TYPEMASK) == VT_DISPATCH)
3978 hRet = VARIANT_FetchDispatchValue(pVarRight, &tempRight);
3979 if (FAILED(hRet)) goto VarOr_Exit;
3980 pVarRight = &tempRight;
3983 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
3984 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
3985 V_VT(pVarLeft) == VT_DISPATCH || V_VT(pVarRight) == VT_DISPATCH ||
3986 V_VT(pVarLeft) == VT_RECORD || V_VT(pVarRight) == VT_RECORD)
3988 hRet = DISP_E_BADVARTYPE;
3989 goto VarOr_Exit;
3992 V_VT(&varLeft) = V_VT(&varRight) = V_VT(&varStr) = VT_EMPTY;
3994 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
3996 /* NULL OR Zero is NULL, NULL OR value is value */
3997 if (V_VT(pVarLeft) == VT_NULL)
3998 pVarLeft = pVarRight; /* point to the non-NULL var */
4000 V_VT(pVarOut) = VT_NULL;
4001 V_I4(pVarOut) = 0;
4003 switch (V_VT(pVarLeft))
4005 case VT_DATE: case VT_R8:
4006 if (V_R8(pVarLeft))
4007 goto VarOr_AsEmpty;
4008 hRet = S_OK;
4009 goto VarOr_Exit;
4010 case VT_BOOL:
4011 if (V_BOOL(pVarLeft))
4012 *pVarOut = *pVarLeft;
4013 hRet = S_OK;
4014 goto VarOr_Exit;
4015 case VT_I2: case VT_UI2:
4016 if (V_I2(pVarLeft))
4017 goto VarOr_AsEmpty;
4018 hRet = S_OK;
4019 goto VarOr_Exit;
4020 case VT_I1:
4021 if (V_I1(pVarLeft))
4022 goto VarOr_AsEmpty;
4023 hRet = S_OK;
4024 goto VarOr_Exit;
4025 case VT_UI1:
4026 if (V_UI1(pVarLeft))
4027 *pVarOut = *pVarLeft;
4028 hRet = S_OK;
4029 goto VarOr_Exit;
4030 case VT_R4:
4031 if (V_R4(pVarLeft))
4032 goto VarOr_AsEmpty;
4033 hRet = S_OK;
4034 goto VarOr_Exit;
4035 case VT_I4: case VT_UI4: case VT_INT: case VT_UINT:
4036 if (V_I4(pVarLeft))
4037 goto VarOr_AsEmpty;
4038 hRet = S_OK;
4039 goto VarOr_Exit;
4040 case VT_CY:
4041 if (V_CY(pVarLeft).int64)
4042 goto VarOr_AsEmpty;
4043 hRet = S_OK;
4044 goto VarOr_Exit;
4045 case VT_I8: case VT_UI8:
4046 if (V_I8(pVarLeft))
4047 goto VarOr_AsEmpty;
4048 hRet = S_OK;
4049 goto VarOr_Exit;
4050 case VT_DECIMAL:
4051 if (DEC_HI32(&V_DECIMAL(pVarLeft)) || DEC_LO64(&V_DECIMAL(pVarLeft)))
4052 goto VarOr_AsEmpty;
4053 hRet = S_OK;
4054 goto VarOr_Exit;
4055 case VT_BSTR:
4057 VARIANT_BOOL b;
4059 if (!V_BSTR(pVarLeft))
4061 hRet = DISP_E_BADVARTYPE;
4062 goto VarOr_Exit;
4065 hRet = VarBoolFromStr(V_BSTR(pVarLeft), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
4066 if (SUCCEEDED(hRet) && b)
4068 V_VT(pVarOut) = VT_BOOL;
4069 V_BOOL(pVarOut) = b;
4071 goto VarOr_Exit;
4073 case VT_NULL: case VT_EMPTY:
4074 V_VT(pVarOut) = VT_NULL;
4075 hRet = S_OK;
4076 goto VarOr_Exit;
4077 default:
4078 hRet = DISP_E_BADVARTYPE;
4079 goto VarOr_Exit;
4083 if (V_VT(pVarLeft) == VT_EMPTY || V_VT(pVarRight) == VT_EMPTY)
4085 if (V_VT(pVarLeft) == VT_EMPTY)
4086 pVarLeft = pVarRight; /* point to the non-EMPTY var */
4088 VarOr_AsEmpty:
4089 /* Since one argument is empty (0), OR'ing it with the other simply
4090 * gives the others value (as 0|x => x). So just convert the other
4091 * argument to the required result type.
4093 switch (V_VT(pVarLeft))
4095 case VT_BSTR:
4096 if (!V_BSTR(pVarLeft))
4098 hRet = DISP_E_BADVARTYPE;
4099 goto VarOr_Exit;
4102 hRet = VariantCopy(&varStr, pVarLeft);
4103 if (FAILED(hRet))
4104 goto VarOr_Exit;
4105 pVarLeft = &varStr;
4106 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
4107 if (FAILED(hRet))
4108 goto VarOr_Exit;
4109 /* Fall Through ... */
4110 case VT_EMPTY: case VT_UI1: case VT_BOOL: case VT_I2:
4111 V_VT(pVarOut) = VT_I2;
4112 break;
4113 case VT_DATE: case VT_CY: case VT_DECIMAL: case VT_R4: case VT_R8:
4114 case VT_I1: case VT_UI2: case VT_I4: case VT_UI4:
4115 case VT_INT: case VT_UINT: case VT_UI8:
4116 V_VT(pVarOut) = VT_I4;
4117 break;
4118 case VT_I8:
4119 V_VT(pVarOut) = VT_I8;
4120 break;
4121 default:
4122 hRet = DISP_E_BADVARTYPE;
4123 goto VarOr_Exit;
4125 hRet = VariantCopy(&varLeft, pVarLeft);
4126 if (FAILED(hRet))
4127 goto VarOr_Exit;
4128 pVarLeft = &varLeft;
4129 hRet = VariantChangeType(pVarOut, pVarLeft, 0, V_VT(pVarOut));
4130 goto VarOr_Exit;
4133 if (V_VT(pVarLeft) == VT_BOOL && V_VT(pVarRight) == VT_BOOL)
4135 V_VT(pVarOut) = VT_BOOL;
4136 V_BOOL(pVarOut) = V_BOOL(pVarLeft) | V_BOOL(pVarRight);
4137 hRet = S_OK;
4138 goto VarOr_Exit;
4141 if (V_VT(pVarLeft) == VT_UI1 && V_VT(pVarRight) == VT_UI1)
4143 V_VT(pVarOut) = VT_UI1;
4144 V_UI1(pVarOut) = V_UI1(pVarLeft) | V_UI1(pVarRight);
4145 hRet = S_OK;
4146 goto VarOr_Exit;
4149 if (V_VT(pVarLeft) == VT_BSTR)
4151 hRet = VariantCopy(&varStr, pVarLeft);
4152 if (FAILED(hRet))
4153 goto VarOr_Exit;
4154 pVarLeft = &varStr;
4155 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
4156 if (FAILED(hRet))
4157 goto VarOr_Exit;
4160 if (V_VT(pVarLeft) == VT_BOOL &&
4161 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_BSTR))
4163 vt = VT_BOOL;
4165 else if ((V_VT(pVarLeft) == VT_BOOL || V_VT(pVarLeft) == VT_UI1 ||
4166 V_VT(pVarLeft) == VT_I2 || V_VT(pVarLeft) == VT_BSTR) &&
4167 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_UI1 ||
4168 V_VT(pVarRight) == VT_I2 || V_VT(pVarRight) == VT_BSTR))
4170 vt = VT_I2;
4172 else if (V_VT(pVarLeft) == VT_I8 || V_VT(pVarRight) == VT_I8)
4174 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
4176 hRet = DISP_E_TYPEMISMATCH;
4177 goto VarOr_Exit;
4179 vt = VT_I8;
4182 hRet = VariantCopy(&varLeft, pVarLeft);
4183 if (FAILED(hRet))
4184 goto VarOr_Exit;
4186 hRet = VariantCopy(&varRight, pVarRight);
4187 if (FAILED(hRet))
4188 goto VarOr_Exit;
4190 if (vt == VT_I4 && V_VT(&varLeft) == VT_UI4)
4191 V_VT(&varLeft) = VT_I4; /* Don't overflow */
4192 else
4194 double d;
4196 if (V_VT(&varLeft) == VT_BSTR &&
4197 FAILED(VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d)))
4198 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL, VT_BOOL);
4199 if (SUCCEEDED(hRet) && V_VT(&varLeft) != vt)
4200 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
4201 if (FAILED(hRet))
4202 goto VarOr_Exit;
4205 if (vt == VT_I4 && V_VT(&varRight) == VT_UI4)
4206 V_VT(&varRight) = VT_I4; /* Don't overflow */
4207 else
4209 double d;
4211 if (V_VT(&varRight) == VT_BSTR &&
4212 FAILED(VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d)))
4213 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL, VT_BOOL);
4214 if (SUCCEEDED(hRet) && V_VT(&varRight) != vt)
4215 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
4216 if (FAILED(hRet))
4217 goto VarOr_Exit;
4220 V_VT(pVarOut) = vt;
4221 if (vt == VT_I8)
4223 V_I8(pVarOut) = V_I8(&varLeft) | V_I8(&varRight);
4225 else if (vt == VT_I4)
4227 V_I4(pVarOut) = V_I4(&varLeft) | V_I4(&varRight);
4229 else
4231 V_I2(pVarOut) = V_I2(&varLeft) | V_I2(&varRight);
4234 VarOr_Exit:
4235 VariantClear(&varStr);
4236 VariantClear(&varLeft);
4237 VariantClear(&varRight);
4238 VariantClear(&tempLeft);
4239 VariantClear(&tempRight);
4240 return hRet;
4243 /**********************************************************************
4244 * VarAbs [OLEAUT32.168]
4246 * Convert a variant to its absolute value.
4248 * PARAMS
4249 * pVarIn [I] Source variant
4250 * pVarOut [O] Destination for converted value
4252 * RETURNS
4253 * Success: S_OK. pVarOut contains the absolute value of pVarIn.
4254 * Failure: An HRESULT error code indicating the error.
4256 * NOTES
4257 * - This function does not process by-reference variants.
4258 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4259 * according to the following table:
4260 *| Input Type Output Type
4261 *| ---------- -----------
4262 *| VT_BOOL VT_I2
4263 *| VT_BSTR VT_R8
4264 *| (All others) Unchanged
4266 HRESULT WINAPI VarAbs(LPVARIANT pVarIn, LPVARIANT pVarOut)
4268 VARIANT varIn;
4269 HRESULT hRet = S_OK;
4270 VARIANT temp;
4272 VariantInit(&temp);
4274 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4276 /* Handle VT_DISPATCH by storing and taking address of returned value */
4277 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4279 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4280 if (FAILED(hRet)) goto VarAbs_Exit;
4281 pVarIn = &temp;
4284 if (V_ISARRAY(pVarIn) || V_VT(pVarIn) == VT_UNKNOWN ||
4285 V_VT(pVarIn) == VT_DISPATCH || V_VT(pVarIn) == VT_RECORD ||
4286 V_VT(pVarIn) == VT_ERROR)
4288 hRet = DISP_E_TYPEMISMATCH;
4289 goto VarAbs_Exit;
4291 *pVarOut = *pVarIn; /* Shallow copy the value, and invert it if needed */
4293 #define ABS_CASE(typ,min) \
4294 case VT_##typ: if (V_##typ(pVarIn) == min) hRet = DISP_E_OVERFLOW; \
4295 else if (V_##typ(pVarIn) < 0) V_##typ(pVarOut) = -V_##typ(pVarIn); \
4296 break
4298 switch (V_VT(pVarIn))
4300 ABS_CASE(I1,I1_MIN);
4301 case VT_BOOL:
4302 V_VT(pVarOut) = VT_I2;
4303 /* BOOL->I2, Fall through ... */
4304 ABS_CASE(I2,I2_MIN);
4305 case VT_INT:
4306 ABS_CASE(I4,I4_MIN);
4307 ABS_CASE(I8,I8_MIN);
4308 ABS_CASE(R4,R4_MIN);
4309 case VT_BSTR:
4310 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
4311 if (FAILED(hRet))
4312 break;
4313 V_VT(pVarOut) = VT_R8;
4314 pVarIn = &varIn;
4315 /* Fall through ... */
4316 case VT_DATE:
4317 ABS_CASE(R8,R8_MIN);
4318 case VT_CY:
4319 hRet = VarCyAbs(V_CY(pVarIn), & V_CY(pVarOut));
4320 break;
4321 case VT_DECIMAL:
4322 DEC_SIGN(&V_DECIMAL(pVarOut)) &= ~DECIMAL_NEG;
4323 break;
4324 case VT_UI1:
4325 case VT_UI2:
4326 case VT_UINT:
4327 case VT_UI4:
4328 case VT_UI8:
4329 /* No-Op */
4330 break;
4331 case VT_EMPTY:
4332 V_VT(pVarOut) = VT_I2;
4333 case VT_NULL:
4334 V_I2(pVarOut) = 0;
4335 break;
4336 default:
4337 hRet = DISP_E_BADVARTYPE;
4340 VarAbs_Exit:
4341 VariantClear(&temp);
4342 return hRet;
4345 /**********************************************************************
4346 * VarFix [OLEAUT32.169]
4348 * Truncate a variants value to a whole number.
4350 * PARAMS
4351 * pVarIn [I] Source variant
4352 * pVarOut [O] Destination for converted value
4354 * RETURNS
4355 * Success: S_OK. pVarOut contains the converted value.
4356 * Failure: An HRESULT error code indicating the error.
4358 * NOTES
4359 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4360 * according to the following table:
4361 *| Input Type Output Type
4362 *| ---------- -----------
4363 *| VT_BOOL VT_I2
4364 *| VT_EMPTY VT_I2
4365 *| VT_BSTR VT_R8
4366 *| All Others Unchanged
4367 * - The difference between this function and VarInt() is that VarInt() rounds
4368 * negative numbers away from 0, while this function rounds them towards zero.
4370 HRESULT WINAPI VarFix(LPVARIANT pVarIn, LPVARIANT pVarOut)
4372 HRESULT hRet = S_OK;
4373 VARIANT temp;
4375 VariantInit(&temp);
4377 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4379 /* Handle VT_DISPATCH by storing and taking address of returned value */
4380 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4382 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4383 if (FAILED(hRet)) goto VarFix_Exit;
4384 pVarIn = &temp;
4386 V_VT(pVarOut) = V_VT(pVarIn);
4388 switch (V_VT(pVarIn))
4390 case VT_UI1:
4391 V_UI1(pVarOut) = V_UI1(pVarIn);
4392 break;
4393 case VT_BOOL:
4394 V_VT(pVarOut) = VT_I2;
4395 /* Fall through */
4396 case VT_I2:
4397 V_I2(pVarOut) = V_I2(pVarIn);
4398 break;
4399 case VT_I4:
4400 V_I4(pVarOut) = V_I4(pVarIn);
4401 break;
4402 case VT_I8:
4403 V_I8(pVarOut) = V_I8(pVarIn);
4404 break;
4405 case VT_R4:
4406 if (V_R4(pVarIn) < 0.0f)
4407 V_R4(pVarOut) = (float)ceil(V_R4(pVarIn));
4408 else
4409 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
4410 break;
4411 case VT_BSTR:
4412 V_VT(pVarOut) = VT_R8;
4413 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4414 pVarIn = pVarOut;
4415 /* Fall through */
4416 case VT_DATE:
4417 case VT_R8:
4418 if (V_R8(pVarIn) < 0.0)
4419 V_R8(pVarOut) = ceil(V_R8(pVarIn));
4420 else
4421 V_R8(pVarOut) = floor(V_R8(pVarIn));
4422 break;
4423 case VT_CY:
4424 hRet = VarCyFix(V_CY(pVarIn), &V_CY(pVarOut));
4425 break;
4426 case VT_DECIMAL:
4427 hRet = VarDecFix(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4428 break;
4429 case VT_EMPTY:
4430 V_VT(pVarOut) = VT_I2;
4431 V_I2(pVarOut) = 0;
4432 break;
4433 case VT_NULL:
4434 /* No-Op */
4435 break;
4436 default:
4437 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4438 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4439 hRet = DISP_E_BADVARTYPE;
4440 else
4441 hRet = DISP_E_TYPEMISMATCH;
4443 VarFix_Exit:
4444 if (FAILED(hRet))
4445 V_VT(pVarOut) = VT_EMPTY;
4446 VariantClear(&temp);
4448 return hRet;
4451 /**********************************************************************
4452 * VarInt [OLEAUT32.172]
4454 * Truncate a variants value to a whole number.
4456 * PARAMS
4457 * pVarIn [I] Source variant
4458 * pVarOut [O] Destination for converted value
4460 * RETURNS
4461 * Success: S_OK. pVarOut contains the converted value.
4462 * Failure: An HRESULT error code indicating the error.
4464 * NOTES
4465 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4466 * according to the following table:
4467 *| Input Type Output Type
4468 *| ---------- -----------
4469 *| VT_BOOL VT_I2
4470 *| VT_EMPTY VT_I2
4471 *| VT_BSTR VT_R8
4472 *| All Others Unchanged
4473 * - The difference between this function and VarFix() is that VarFix() rounds
4474 * negative numbers towards 0, while this function rounds them away from zero.
4476 HRESULT WINAPI VarInt(LPVARIANT pVarIn, LPVARIANT pVarOut)
4478 HRESULT hRet = S_OK;
4479 VARIANT temp;
4481 VariantInit(&temp);
4483 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4485 /* Handle VT_DISPATCH by storing and taking address of returned value */
4486 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4488 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4489 if (FAILED(hRet)) goto VarInt_Exit;
4490 pVarIn = &temp;
4492 V_VT(pVarOut) = V_VT(pVarIn);
4494 switch (V_VT(pVarIn))
4496 case VT_R4:
4497 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
4498 break;
4499 case VT_BSTR:
4500 V_VT(pVarOut) = VT_R8;
4501 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4502 pVarIn = pVarOut;
4503 /* Fall through */
4504 case VT_DATE:
4505 case VT_R8:
4506 V_R8(pVarOut) = floor(V_R8(pVarIn));
4507 break;
4508 case VT_CY:
4509 hRet = VarCyInt(V_CY(pVarIn), &V_CY(pVarOut));
4510 break;
4511 case VT_DECIMAL:
4512 hRet = VarDecInt(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4513 break;
4514 default:
4515 hRet = VarFix(pVarIn, pVarOut);
4517 VarInt_Exit:
4518 VariantClear(&temp);
4520 return hRet;
4523 /**********************************************************************
4524 * VarXor [OLEAUT32.167]
4526 * Perform a logical exclusive-or (XOR) operation on two variants.
4528 * PARAMS
4529 * pVarLeft [I] First variant
4530 * pVarRight [I] Variant to XOR with pVarLeft
4531 * pVarOut [O] Destination for XOR result
4533 * RETURNS
4534 * Success: S_OK. pVarOut contains the result of the operation with its type
4535 * taken from the table below).
4536 * Failure: An HRESULT error code indicating the error.
4538 * NOTES
4539 * - Neither pVarLeft or pVarRight are modified by this function.
4540 * - This function does not process by-reference variants.
4541 * - Input types of VT_BSTR may be numeric strings or boolean text.
4542 * - The type of result stored in pVarOut depends on the types of pVarLeft
4543 * and pVarRight, and will be one of VT_UI1, VT_I2, VT_I4, VT_I8, VT_BOOL,
4544 * or VT_NULL if the function succeeds.
4545 * - Type promotion is inconsistent and as a result certain combinations of
4546 * values will return DISP_E_OVERFLOW even when they could be represented.
4547 * This matches the behaviour of native oleaut32.
4549 HRESULT WINAPI VarXor(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4551 VARTYPE vt;
4552 VARIANT varLeft, varRight;
4553 VARIANT tempLeft, tempRight;
4554 double d;
4555 HRESULT hRet;
4557 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
4559 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
4560 V_VT(pVarLeft) > VT_UINT || V_VT(pVarRight) > VT_UINT ||
4561 V_VT(pVarLeft) == VT_VARIANT || V_VT(pVarRight) == VT_VARIANT ||
4562 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
4563 V_VT(pVarLeft) == (VARTYPE)15 || V_VT(pVarRight) == (VARTYPE)15 ||
4564 V_VT(pVarLeft) == VT_ERROR || V_VT(pVarRight) == VT_ERROR)
4565 return DISP_E_BADVARTYPE;
4567 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
4569 /* NULL XOR anything valid is NULL */
4570 V_VT(pVarOut) = VT_NULL;
4571 return S_OK;
4574 VariantInit(&tempLeft);
4575 VariantInit(&tempRight);
4577 /* Handle VT_DISPATCH by storing and taking address of returned value */
4578 if ((V_VT(pVarLeft) & VT_TYPEMASK) == VT_DISPATCH)
4580 hRet = VARIANT_FetchDispatchValue(pVarLeft, &tempLeft);
4581 if (FAILED(hRet)) goto VarXor_Exit;
4582 pVarLeft = &tempLeft;
4584 if ((V_VT(pVarRight) & VT_TYPEMASK) == VT_DISPATCH)
4586 hRet = VARIANT_FetchDispatchValue(pVarRight, &tempRight);
4587 if (FAILED(hRet)) goto VarXor_Exit;
4588 pVarRight = &tempRight;
4591 /* Copy our inputs so we don't disturb anything */
4592 V_VT(&varLeft) = V_VT(&varRight) = VT_EMPTY;
4594 hRet = VariantCopy(&varLeft, pVarLeft);
4595 if (FAILED(hRet))
4596 goto VarXor_Exit;
4598 hRet = VariantCopy(&varRight, pVarRight);
4599 if (FAILED(hRet))
4600 goto VarXor_Exit;
4602 /* Try any strings first as numbers, then as VT_BOOL */
4603 if (V_VT(&varLeft) == VT_BSTR)
4605 hRet = VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d);
4606 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL,
4607 FAILED(hRet) ? VT_BOOL : VT_I4);
4608 if (FAILED(hRet))
4609 goto VarXor_Exit;
4612 if (V_VT(&varRight) == VT_BSTR)
4614 hRet = VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d);
4615 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL,
4616 FAILED(hRet) ? VT_BOOL : VT_I4);
4617 if (FAILED(hRet))
4618 goto VarXor_Exit;
4621 /* Determine the result type */
4622 if (V_VT(&varLeft) == VT_I8 || V_VT(&varRight) == VT_I8)
4624 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
4626 hRet = DISP_E_TYPEMISMATCH;
4627 goto VarXor_Exit;
4629 vt = VT_I8;
4631 else
4633 switch ((V_VT(&varLeft) << 16) | V_VT(&varRight))
4635 case (VT_BOOL << 16) | VT_BOOL:
4636 vt = VT_BOOL;
4637 break;
4638 case (VT_UI1 << 16) | VT_UI1:
4639 vt = VT_UI1;
4640 break;
4641 case (VT_EMPTY << 16) | VT_EMPTY:
4642 case (VT_EMPTY << 16) | VT_UI1:
4643 case (VT_EMPTY << 16) | VT_I2:
4644 case (VT_EMPTY << 16) | VT_BOOL:
4645 case (VT_UI1 << 16) | VT_EMPTY:
4646 case (VT_UI1 << 16) | VT_I2:
4647 case (VT_UI1 << 16) | VT_BOOL:
4648 case (VT_I2 << 16) | VT_EMPTY:
4649 case (VT_I2 << 16) | VT_UI1:
4650 case (VT_I2 << 16) | VT_I2:
4651 case (VT_I2 << 16) | VT_BOOL:
4652 case (VT_BOOL << 16) | VT_EMPTY:
4653 case (VT_BOOL << 16) | VT_UI1:
4654 case (VT_BOOL << 16) | VT_I2:
4655 vt = VT_I2;
4656 break;
4657 default:
4658 vt = VT_I4;
4659 break;
4663 /* VT_UI4 does not overflow */
4664 if (vt != VT_I8)
4666 if (V_VT(&varLeft) == VT_UI4)
4667 V_VT(&varLeft) = VT_I4;
4668 if (V_VT(&varRight) == VT_UI4)
4669 V_VT(&varRight) = VT_I4;
4672 /* Convert our input copies to the result type */
4673 if (V_VT(&varLeft) != vt)
4674 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
4675 if (FAILED(hRet))
4676 goto VarXor_Exit;
4678 if (V_VT(&varRight) != vt)
4679 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
4680 if (FAILED(hRet))
4681 goto VarXor_Exit;
4683 V_VT(pVarOut) = vt;
4685 /* Calculate the result */
4686 switch (vt)
4688 case VT_I8:
4689 V_I8(pVarOut) = V_I8(&varLeft) ^ V_I8(&varRight);
4690 break;
4691 case VT_I4:
4692 V_I4(pVarOut) = V_I4(&varLeft) ^ V_I4(&varRight);
4693 break;
4694 case VT_BOOL:
4695 case VT_I2:
4696 V_I2(pVarOut) = V_I2(&varLeft) ^ V_I2(&varRight);
4697 break;
4698 case VT_UI1:
4699 V_UI1(pVarOut) = V_UI1(&varLeft) ^ V_UI1(&varRight);
4700 break;
4703 VarXor_Exit:
4704 VariantClear(&varLeft);
4705 VariantClear(&varRight);
4706 VariantClear(&tempLeft);
4707 VariantClear(&tempRight);
4708 return hRet;
4711 /**********************************************************************
4712 * VarEqv [OLEAUT32.172]
4714 * Determine if two variants contain the same value.
4716 * PARAMS
4717 * pVarLeft [I] First variant to compare
4718 * pVarRight [I] Variant to compare to pVarLeft
4719 * pVarOut [O] Destination for comparison result
4721 * RETURNS
4722 * Success: S_OK. pVarOut contains the result of the comparison (VARIANT_TRUE
4723 * if equivalent or non-zero otherwise.
4724 * Failure: An HRESULT error code indicating the error.
4726 * NOTES
4727 * - This function simply calls VarXor() on pVarLeft and pVarRight and inverts
4728 * the result.
4730 HRESULT WINAPI VarEqv(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4732 HRESULT hRet;
4734 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
4736 hRet = VarXor(pVarLeft, pVarRight, pVarOut);
4737 if (SUCCEEDED(hRet))
4739 if (V_VT(pVarOut) == VT_I8)
4740 V_I8(pVarOut) = ~V_I8(pVarOut);
4741 else
4742 V_UI4(pVarOut) = ~V_UI4(pVarOut);
4744 return hRet;
4747 /**********************************************************************
4748 * VarNeg [OLEAUT32.173]
4750 * Negate the value of a variant.
4752 * PARAMS
4753 * pVarIn [I] Source variant
4754 * pVarOut [O] Destination for converted value
4756 * RETURNS
4757 * Success: S_OK. pVarOut contains the converted value.
4758 * Failure: An HRESULT error code indicating the error.
4760 * NOTES
4761 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4762 * according to the following table:
4763 *| Input Type Output Type
4764 *| ---------- -----------
4765 *| VT_EMPTY VT_I2
4766 *| VT_UI1 VT_I2
4767 *| VT_BOOL VT_I2
4768 *| VT_BSTR VT_R8
4769 *| All Others Unchanged (unless promoted)
4770 * - Where the negated value of a variant does not fit in its base type, the type
4771 * is promoted according to the following table:
4772 *| Input Type Promoted To
4773 *| ---------- -----------
4774 *| VT_I2 VT_I4
4775 *| VT_I4 VT_R8
4776 *| VT_I8 VT_R8
4777 * - The native version of this function returns DISP_E_BADVARTYPE for valid
4778 * variant types that cannot be negated, and returns DISP_E_TYPEMISMATCH
4779 * for types which are not valid. Since this is in contravention of the
4780 * meaning of those error codes and unlikely to be relied on by applications,
4781 * this implementation returns errors consistent with the other high level
4782 * variant math functions.
4784 HRESULT WINAPI VarNeg(LPVARIANT pVarIn, LPVARIANT pVarOut)
4786 HRESULT hRet = S_OK;
4787 VARIANT temp;
4789 VariantInit(&temp);
4791 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4793 /* Handle VT_DISPATCH by storing and taking address of returned value */
4794 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4796 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4797 if (FAILED(hRet)) goto VarNeg_Exit;
4798 pVarIn = &temp;
4800 V_VT(pVarOut) = V_VT(pVarIn);
4802 switch (V_VT(pVarIn))
4804 case VT_UI1:
4805 V_VT(pVarOut) = VT_I2;
4806 V_I2(pVarOut) = -V_UI1(pVarIn);
4807 break;
4808 case VT_BOOL:
4809 V_VT(pVarOut) = VT_I2;
4810 /* Fall through */
4811 case VT_I2:
4812 if (V_I2(pVarIn) == I2_MIN)
4814 V_VT(pVarOut) = VT_I4;
4815 V_I4(pVarOut) = -(int)V_I2(pVarIn);
4817 else
4818 V_I2(pVarOut) = -V_I2(pVarIn);
4819 break;
4820 case VT_I4:
4821 if (V_I4(pVarIn) == I4_MIN)
4823 V_VT(pVarOut) = VT_R8;
4824 V_R8(pVarOut) = -(double)V_I4(pVarIn);
4826 else
4827 V_I4(pVarOut) = -V_I4(pVarIn);
4828 break;
4829 case VT_I8:
4830 if (V_I8(pVarIn) == I8_MIN)
4832 V_VT(pVarOut) = VT_R8;
4833 hRet = VarR8FromI8(V_I8(pVarIn), &V_R8(pVarOut));
4834 V_R8(pVarOut) *= -1.0;
4836 else
4837 V_I8(pVarOut) = -V_I8(pVarIn);
4838 break;
4839 case VT_R4:
4840 V_R4(pVarOut) = -V_R4(pVarIn);
4841 break;
4842 case VT_DATE:
4843 case VT_R8:
4844 V_R8(pVarOut) = -V_R8(pVarIn);
4845 break;
4846 case VT_CY:
4847 hRet = VarCyNeg(V_CY(pVarIn), &V_CY(pVarOut));
4848 break;
4849 case VT_DECIMAL:
4850 hRet = VarDecNeg(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4851 break;
4852 case VT_BSTR:
4853 V_VT(pVarOut) = VT_R8;
4854 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4855 V_R8(pVarOut) = -V_R8(pVarOut);
4856 break;
4857 case VT_EMPTY:
4858 V_VT(pVarOut) = VT_I2;
4859 V_I2(pVarOut) = 0;
4860 break;
4861 case VT_NULL:
4862 /* No-Op */
4863 break;
4864 default:
4865 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4866 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4867 hRet = DISP_E_BADVARTYPE;
4868 else
4869 hRet = DISP_E_TYPEMISMATCH;
4871 VarNeg_Exit:
4872 if (FAILED(hRet))
4873 V_VT(pVarOut) = VT_EMPTY;
4874 VariantClear(&temp);
4876 return hRet;
4879 /**********************************************************************
4880 * VarNot [OLEAUT32.174]
4882 * Perform a not operation on a variant.
4884 * PARAMS
4885 * pVarIn [I] Source variant
4886 * pVarOut [O] Destination for converted value
4888 * RETURNS
4889 * Success: S_OK. pVarOut contains the converted value.
4890 * Failure: An HRESULT error code indicating the error.
4892 * NOTES
4893 * - Strictly speaking, this function performs a bitwise ones complement
4894 * on the variants value (after possibly converting to VT_I4, see below).
4895 * This only behaves like a boolean not operation if the value in
4896 * pVarIn is either VARIANT_TRUE or VARIANT_FALSE and the type is signed.
4897 * - To perform a genuine not operation, convert the variant to a VT_BOOL
4898 * before calling this function.
4899 * - This function does not process by-reference variants.
4900 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4901 * according to the following table:
4902 *| Input Type Output Type
4903 *| ---------- -----------
4904 *| VT_EMPTY VT_I2
4905 *| VT_R4 VT_I4
4906 *| VT_R8 VT_I4
4907 *| VT_BSTR VT_I4
4908 *| VT_DECIMAL VT_I4
4909 *| VT_CY VT_I4
4910 *| (All others) Unchanged
4912 HRESULT WINAPI VarNot(LPVARIANT pVarIn, LPVARIANT pVarOut)
4914 VARIANT varIn;
4915 HRESULT hRet = S_OK;
4916 VARIANT temp;
4918 VariantInit(&temp);
4920 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4922 /* Handle VT_DISPATCH by storing and taking address of returned value */
4923 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4925 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4926 if (FAILED(hRet)) goto VarNot_Exit;
4927 pVarIn = &temp;
4930 if (V_VT(pVarIn) == VT_BSTR)
4932 V_VT(&varIn) = VT_R8;
4933 hRet = VarR8FromStr( V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn) );
4934 if (FAILED(hRet))
4936 V_VT(&varIn) = VT_BOOL;
4937 hRet = VarBoolFromStr( V_BSTR(pVarIn), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &V_BOOL(&varIn) );
4939 if (FAILED(hRet)) goto VarNot_Exit;
4940 pVarIn = &varIn;
4943 V_VT(pVarOut) = V_VT(pVarIn);
4945 switch (V_VT(pVarIn))
4947 case VT_I1:
4948 V_I4(pVarOut) = ~V_I1(pVarIn);
4949 V_VT(pVarOut) = VT_I4;
4950 break;
4951 case VT_UI1: V_UI1(pVarOut) = ~V_UI1(pVarIn); break;
4952 case VT_BOOL:
4953 case VT_I2: V_I2(pVarOut) = ~V_I2(pVarIn); break;
4954 case VT_UI2:
4955 V_I4(pVarOut) = ~V_UI2(pVarIn);
4956 V_VT(pVarOut) = VT_I4;
4957 break;
4958 case VT_DECIMAL:
4959 hRet = VarI4FromDec(&V_DECIMAL(pVarIn), &V_I4(&varIn));
4960 if (FAILED(hRet))
4961 break;
4962 pVarIn = &varIn;
4963 /* Fall through ... */
4964 case VT_INT:
4965 V_VT(pVarOut) = VT_I4;
4966 /* Fall through ... */
4967 case VT_I4: V_I4(pVarOut) = ~V_I4(pVarIn); break;
4968 case VT_UINT:
4969 case VT_UI4:
4970 V_I4(pVarOut) = ~V_UI4(pVarIn);
4971 V_VT(pVarOut) = VT_I4;
4972 break;
4973 case VT_I8: V_I8(pVarOut) = ~V_I8(pVarIn); break;
4974 case VT_UI8:
4975 V_I4(pVarOut) = ~V_UI8(pVarIn);
4976 V_VT(pVarOut) = VT_I4;
4977 break;
4978 case VT_R4:
4979 hRet = VarI4FromR4(V_R4(pVarIn), &V_I4(pVarOut));
4980 V_I4(pVarOut) = ~V_I4(pVarOut);
4981 V_VT(pVarOut) = VT_I4;
4982 break;
4983 case VT_DATE:
4984 case VT_R8:
4985 hRet = VarI4FromR8(V_R8(pVarIn), &V_I4(pVarOut));
4986 V_I4(pVarOut) = ~V_I4(pVarOut);
4987 V_VT(pVarOut) = VT_I4;
4988 break;
4989 case VT_CY:
4990 hRet = VarI4FromCy(V_CY(pVarIn), &V_I4(pVarOut));
4991 V_I4(pVarOut) = ~V_I4(pVarOut);
4992 V_VT(pVarOut) = VT_I4;
4993 break;
4994 case VT_EMPTY:
4995 V_I2(pVarOut) = ~0;
4996 V_VT(pVarOut) = VT_I2;
4997 break;
4998 case VT_NULL:
4999 /* No-Op */
5000 break;
5001 default:
5002 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
5003 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
5004 hRet = DISP_E_BADVARTYPE;
5005 else
5006 hRet = DISP_E_TYPEMISMATCH;
5008 VarNot_Exit:
5009 if (FAILED(hRet))
5010 V_VT(pVarOut) = VT_EMPTY;
5011 VariantClear(&temp);
5013 return hRet;
5016 /**********************************************************************
5017 * VarRound [OLEAUT32.175]
5019 * Perform a round operation on a variant.
5021 * PARAMS
5022 * pVarIn [I] Source variant
5023 * deci [I] Number of decimals to round to
5024 * pVarOut [O] Destination for converted value
5026 * RETURNS
5027 * Success: S_OK. pVarOut contains the converted value.
5028 * Failure: An HRESULT error code indicating the error.
5030 * NOTES
5031 * - Floating point values are rounded to the desired number of decimals.
5032 * - Some integer types are just copied to the return variable.
5033 * - Some other integer types are not handled and fail.
5035 HRESULT WINAPI VarRound(LPVARIANT pVarIn, int deci, LPVARIANT pVarOut)
5037 VARIANT varIn;
5038 HRESULT hRet = S_OK;
5039 float factor;
5040 VARIANT temp;
5042 VariantInit(&temp);
5044 TRACE("(%s,%d)\n", debugstr_variant(pVarIn), deci);
5046 /* Handle VT_DISPATCH by storing and taking address of returned value */
5047 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
5049 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
5050 if (FAILED(hRet)) goto VarRound_Exit;
5051 pVarIn = &temp;
5054 switch (V_VT(pVarIn))
5056 /* cases that fail on windows */
5057 case VT_I1:
5058 case VT_I8:
5059 case VT_UI2:
5060 case VT_UI4:
5061 hRet = DISP_E_BADVARTYPE;
5062 break;
5064 /* cases just copying in to out */
5065 case VT_UI1:
5066 V_VT(pVarOut) = V_VT(pVarIn);
5067 V_UI1(pVarOut) = V_UI1(pVarIn);
5068 break;
5069 case VT_I2:
5070 V_VT(pVarOut) = V_VT(pVarIn);
5071 V_I2(pVarOut) = V_I2(pVarIn);
5072 break;
5073 case VT_I4:
5074 V_VT(pVarOut) = V_VT(pVarIn);
5075 V_I4(pVarOut) = V_I4(pVarIn);
5076 break;
5077 case VT_NULL:
5078 V_VT(pVarOut) = V_VT(pVarIn);
5079 /* value unchanged */
5080 break;
5082 /* cases that change type */
5083 case VT_EMPTY:
5084 V_VT(pVarOut) = VT_I2;
5085 V_I2(pVarOut) = 0;
5086 break;
5087 case VT_BOOL:
5088 V_VT(pVarOut) = VT_I2;
5089 V_I2(pVarOut) = V_BOOL(pVarIn);
5090 break;
5091 case VT_BSTR:
5092 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
5093 if (FAILED(hRet))
5094 break;
5095 V_VT(&varIn)=VT_R8;
5096 pVarIn = &varIn;
5097 /* Fall through ... */
5099 /* cases we need to do math */
5100 case VT_R8:
5101 if (V_R8(pVarIn)>0) {
5102 V_R8(pVarOut)=floor(V_R8(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5103 } else {
5104 V_R8(pVarOut)=ceil(V_R8(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5106 V_VT(pVarOut) = V_VT(pVarIn);
5107 break;
5108 case VT_R4:
5109 if (V_R4(pVarIn)>0) {
5110 V_R4(pVarOut)=floor(V_R4(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5111 } else {
5112 V_R4(pVarOut)=ceil(V_R4(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5114 V_VT(pVarOut) = V_VT(pVarIn);
5115 break;
5116 case VT_DATE:
5117 if (V_DATE(pVarIn)>0) {
5118 V_DATE(pVarOut)=floor(V_DATE(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5119 } else {
5120 V_DATE(pVarOut)=ceil(V_DATE(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5122 V_VT(pVarOut) = V_VT(pVarIn);
5123 break;
5124 case VT_CY:
5125 if (deci>3)
5126 factor=1;
5127 else
5128 factor=pow(10, 4-deci);
5130 if (V_CY(pVarIn).int64>0) {
5131 V_CY(pVarOut).int64=floor(V_CY(pVarIn).int64/factor)*factor;
5132 } else {
5133 V_CY(pVarOut).int64=ceil(V_CY(pVarIn).int64/factor)*factor;
5135 V_VT(pVarOut) = V_VT(pVarIn);
5136 break;
5138 /* cases we don't know yet */
5139 default:
5140 FIXME("unimplemented part, V_VT(pVarIn) == 0x%X, deci == %d\n",
5141 V_VT(pVarIn) & VT_TYPEMASK, deci);
5142 hRet = DISP_E_BADVARTYPE;
5144 VarRound_Exit:
5145 if (FAILED(hRet))
5146 V_VT(pVarOut) = VT_EMPTY;
5147 VariantClear(&temp);
5149 TRACE("returning 0x%08x %s\n", hRet, debugstr_variant(pVarOut));
5150 return hRet;
5153 /**********************************************************************
5154 * VarIdiv [OLEAUT32.153]
5156 * Converts input variants to integers and divides them.
5158 * PARAMS
5159 * left [I] Left hand variant
5160 * right [I] Right hand variant
5161 * result [O] Destination for quotient
5163 * RETURNS
5164 * Success: S_OK. result contains the quotient.
5165 * Failure: An HRESULT error code indicating the error.
5167 * NOTES
5168 * If either expression is null, null is returned, as per MSDN
5170 HRESULT WINAPI VarIdiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5172 HRESULT hres = S_OK;
5173 VARTYPE resvt = VT_EMPTY;
5174 VARTYPE leftvt,rightvt;
5175 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5176 VARIANT lv,rv;
5177 VARIANT tempLeft, tempRight;
5179 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5181 VariantInit(&lv);
5182 VariantInit(&rv);
5183 VariantInit(&tempLeft);
5184 VariantInit(&tempRight);
5186 leftvt = V_VT(left)&VT_TYPEMASK;
5187 rightvt = V_VT(right)&VT_TYPEMASK;
5188 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5189 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5191 if (leftExtraFlags != rightExtraFlags)
5193 hres = DISP_E_BADVARTYPE;
5194 goto end;
5196 ExtraFlags = leftExtraFlags;
5198 /* Native VarIdiv always returns an error when using extra
5199 * flags or if the variant combination is I8 and INT.
5201 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
5202 (leftvt == VT_INT && rightvt == VT_I8) ||
5203 (rightvt == VT_EMPTY && leftvt != VT_NULL) ||
5204 ExtraFlags != 0)
5206 hres = DISP_E_BADVARTYPE;
5207 goto end;
5210 /* Determine variant type */
5211 else if (leftvt == VT_NULL || rightvt == VT_NULL)
5213 V_VT(result) = VT_NULL;
5214 hres = S_OK;
5215 goto end;
5217 else if (leftvt == VT_I8 || rightvt == VT_I8)
5218 resvt = VT_I8;
5219 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
5220 leftvt == VT_INT || rightvt == VT_INT ||
5221 leftvt == VT_UINT || rightvt == VT_UINT ||
5222 leftvt == VT_UI8 || rightvt == VT_UI8 ||
5223 leftvt == VT_UI4 || rightvt == VT_UI4 ||
5224 leftvt == VT_UI2 || rightvt == VT_UI2 ||
5225 leftvt == VT_I1 || rightvt == VT_I1 ||
5226 leftvt == VT_BSTR || rightvt == VT_BSTR ||
5227 leftvt == VT_DATE || rightvt == VT_DATE ||
5228 leftvt == VT_CY || rightvt == VT_CY ||
5229 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL ||
5230 leftvt == VT_R8 || rightvt == VT_R8 ||
5231 leftvt == VT_R4 || rightvt == VT_R4)
5232 resvt = VT_I4;
5233 else if (leftvt == VT_I2 || rightvt == VT_I2 ||
5234 leftvt == VT_BOOL || rightvt == VT_BOOL ||
5235 leftvt == VT_EMPTY)
5236 resvt = VT_I2;
5237 else if (leftvt == VT_UI1 || rightvt == VT_UI1)
5238 resvt = VT_UI1;
5239 else
5241 hres = DISP_E_BADVARTYPE;
5242 goto end;
5245 /* coerce to the result type */
5246 hres = VariantChangeType(&lv, left, 0, resvt);
5247 if (hres != S_OK) goto end;
5248 hres = VariantChangeType(&rv, right, 0, resvt);
5249 if (hres != S_OK) goto end;
5251 /* do the math */
5252 V_VT(result) = resvt;
5253 switch (resvt)
5255 case VT_UI1:
5256 if (V_UI1(&rv) == 0)
5258 hres = DISP_E_DIVBYZERO;
5259 V_VT(result) = VT_EMPTY;
5261 else
5262 V_UI1(result) = V_UI1(&lv) / V_UI1(&rv);
5263 break;
5264 case VT_I2:
5265 if (V_I2(&rv) == 0)
5267 hres = DISP_E_DIVBYZERO;
5268 V_VT(result) = VT_EMPTY;
5270 else
5271 V_I2(result) = V_I2(&lv) / V_I2(&rv);
5272 break;
5273 case VT_I4:
5274 if (V_I4(&rv) == 0)
5276 hres = DISP_E_DIVBYZERO;
5277 V_VT(result) = VT_EMPTY;
5279 else
5280 V_I4(result) = V_I4(&lv) / V_I4(&rv);
5281 break;
5282 case VT_I8:
5283 if (V_I8(&rv) == 0)
5285 hres = DISP_E_DIVBYZERO;
5286 V_VT(result) = VT_EMPTY;
5288 else
5289 V_I8(result) = V_I8(&lv) / V_I8(&rv);
5290 break;
5291 default:
5292 FIXME("Couldn't integer divide variant types %d,%d\n",
5293 leftvt,rightvt);
5296 end:
5297 VariantClear(&lv);
5298 VariantClear(&rv);
5299 VariantClear(&tempLeft);
5300 VariantClear(&tempRight);
5302 return hres;
5306 /**********************************************************************
5307 * VarMod [OLEAUT32.155]
5309 * Perform the modulus operation of the right hand variant on the left
5311 * PARAMS
5312 * left [I] Left hand variant
5313 * right [I] Right hand variant
5314 * result [O] Destination for converted value
5316 * RETURNS
5317 * Success: S_OK. result contains the remainder.
5318 * Failure: An HRESULT error code indicating the error.
5320 * NOTE:
5321 * If an error occurs the type of result will be modified but the value will not be.
5322 * Doesn't support arrays or any special flags yet.
5324 HRESULT WINAPI VarMod(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5326 BOOL lOk = TRUE;
5327 HRESULT rc = E_FAIL;
5328 int resT = 0;
5329 VARIANT lv,rv;
5330 VARIANT tempLeft, tempRight;
5332 VariantInit(&tempLeft);
5333 VariantInit(&tempRight);
5334 VariantInit(&lv);
5335 VariantInit(&rv);
5337 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5339 /* Handle VT_DISPATCH by storing and taking address of returned value */
5340 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5342 rc = VARIANT_FetchDispatchValue(left, &tempLeft);
5343 if (FAILED(rc)) goto end;
5344 left = &tempLeft;
5346 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5348 rc = VARIANT_FetchDispatchValue(right, &tempRight);
5349 if (FAILED(rc)) goto end;
5350 right = &tempRight;
5353 /* check for invalid inputs */
5354 lOk = TRUE;
5355 switch (V_VT(left) & VT_TYPEMASK) {
5356 case VT_BOOL :
5357 case VT_I1 :
5358 case VT_I2 :
5359 case VT_I4 :
5360 case VT_I8 :
5361 case VT_INT :
5362 case VT_UI1 :
5363 case VT_UI2 :
5364 case VT_UI4 :
5365 case VT_UI8 :
5366 case VT_UINT :
5367 case VT_R4 :
5368 case VT_R8 :
5369 case VT_CY :
5370 case VT_EMPTY:
5371 case VT_DATE :
5372 case VT_BSTR :
5373 case VT_DECIMAL:
5374 break;
5375 case VT_VARIANT:
5376 case VT_UNKNOWN:
5377 V_VT(result) = VT_EMPTY;
5378 rc = DISP_E_TYPEMISMATCH;
5379 goto end;
5380 case VT_ERROR:
5381 rc = DISP_E_TYPEMISMATCH;
5382 goto end;
5383 case VT_RECORD:
5384 V_VT(result) = VT_EMPTY;
5385 rc = DISP_E_TYPEMISMATCH;
5386 goto end;
5387 case VT_NULL:
5388 break;
5389 default:
5390 V_VT(result) = VT_EMPTY;
5391 rc = DISP_E_BADVARTYPE;
5392 goto end;
5396 switch (V_VT(right) & VT_TYPEMASK) {
5397 case VT_BOOL :
5398 case VT_I1 :
5399 case VT_I2 :
5400 case VT_I4 :
5401 case VT_I8 :
5402 if((V_VT(left) == VT_INT) && (V_VT(right) == VT_I8))
5404 V_VT(result) = VT_EMPTY;
5405 rc = DISP_E_TYPEMISMATCH;
5406 goto end;
5408 case VT_INT :
5409 if((V_VT(right) == VT_INT) && (V_VT(left) == VT_I8))
5411 V_VT(result) = VT_EMPTY;
5412 rc = DISP_E_TYPEMISMATCH;
5413 goto end;
5415 case VT_UI1 :
5416 case VT_UI2 :
5417 case VT_UI4 :
5418 case VT_UI8 :
5419 case VT_UINT :
5420 case VT_R4 :
5421 case VT_R8 :
5422 case VT_CY :
5423 if(V_VT(left) == VT_EMPTY)
5425 V_VT(result) = VT_I4;
5426 rc = S_OK;
5427 goto end;
5429 case VT_EMPTY:
5430 case VT_DATE :
5431 case VT_DECIMAL:
5432 if(V_VT(left) == VT_ERROR)
5434 V_VT(result) = VT_EMPTY;
5435 rc = DISP_E_TYPEMISMATCH;
5436 goto end;
5438 case VT_BSTR:
5439 if(V_VT(left) == VT_NULL)
5441 V_VT(result) = VT_NULL;
5442 rc = S_OK;
5443 goto end;
5445 break;
5447 case VT_VOID:
5448 V_VT(result) = VT_EMPTY;
5449 rc = DISP_E_BADVARTYPE;
5450 goto end;
5451 case VT_NULL:
5452 if(V_VT(left) == VT_VOID)
5454 V_VT(result) = VT_EMPTY;
5455 rc = DISP_E_BADVARTYPE;
5456 } else if((V_VT(left) == VT_NULL) || (V_VT(left) == VT_EMPTY) || (V_VT(left) == VT_ERROR) ||
5457 lOk)
5459 V_VT(result) = VT_NULL;
5460 rc = S_OK;
5461 } else
5463 V_VT(result) = VT_NULL;
5464 rc = DISP_E_BADVARTYPE;
5466 goto end;
5467 case VT_VARIANT:
5468 case VT_UNKNOWN:
5469 V_VT(result) = VT_EMPTY;
5470 rc = DISP_E_TYPEMISMATCH;
5471 goto end;
5472 case VT_ERROR:
5473 rc = DISP_E_TYPEMISMATCH;
5474 goto end;
5475 case VT_RECORD:
5476 if((V_VT(left) == 15) || ((V_VT(left) >= 24) && (V_VT(left) <= 35)) || !lOk)
5478 V_VT(result) = VT_EMPTY;
5479 rc = DISP_E_BADVARTYPE;
5480 } else
5482 V_VT(result) = VT_EMPTY;
5483 rc = DISP_E_TYPEMISMATCH;
5485 goto end;
5486 default:
5487 V_VT(result) = VT_EMPTY;
5488 rc = DISP_E_BADVARTYPE;
5489 goto end;
5492 /* determine the result type */
5493 if((V_VT(left) == VT_I8) || (V_VT(right) == VT_I8)) resT = VT_I8;
5494 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5495 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_UI1)) resT = VT_UI1;
5496 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_I2)) resT = VT_I2;
5497 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5498 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_UI1)) resT = VT_I2;
5499 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_I2)) resT = VT_I2;
5500 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5501 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_UI1)) resT = VT_I2;
5502 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_I2)) resT = VT_I2;
5503 else resT = VT_I4; /* most outputs are I4 */
5505 /* convert to I8 for the modulo */
5506 rc = VariantChangeType(&lv, left, 0, VT_I8);
5507 if(FAILED(rc))
5509 FIXME("Could not convert left type %d to %d? rc == 0x%X\n", V_VT(left), VT_I8, rc);
5510 goto end;
5513 rc = VariantChangeType(&rv, right, 0, VT_I8);
5514 if(FAILED(rc))
5516 FIXME("Could not convert right type %d to %d? rc == 0x%X\n", V_VT(right), VT_I8, rc);
5517 goto end;
5520 /* if right is zero set VT_EMPTY and return divide by zero */
5521 if(V_I8(&rv) == 0)
5523 V_VT(result) = VT_EMPTY;
5524 rc = DISP_E_DIVBYZERO;
5525 goto end;
5528 /* perform the modulo operation */
5529 V_VT(result) = VT_I8;
5530 V_I8(result) = V_I8(&lv) % V_I8(&rv);
5532 TRACE("V_I8(left) == %s, V_I8(right) == %s, V_I8(result) == %s\n",
5533 wine_dbgstr_longlong(V_I8(&lv)), wine_dbgstr_longlong(V_I8(&rv)),
5534 wine_dbgstr_longlong(V_I8(result)));
5536 /* convert left and right to the destination type */
5537 rc = VariantChangeType(result, result, 0, resT);
5538 if(FAILED(rc))
5540 FIXME("Could not convert 0x%x to %d?\n", V_VT(result), resT);
5541 /* fall to end of function */
5544 end:
5545 VariantClear(&lv);
5546 VariantClear(&rv);
5547 VariantClear(&tempLeft);
5548 VariantClear(&tempRight);
5549 return rc;
5552 /**********************************************************************
5553 * VarPow [OLEAUT32.158]
5555 * Computes the power of one variant to another variant.
5557 * PARAMS
5558 * left [I] First variant
5559 * right [I] Second variant
5560 * result [O] Result variant
5562 * RETURNS
5563 * Success: S_OK.
5564 * Failure: An HRESULT error code indicating the error.
5566 HRESULT WINAPI VarPow(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5568 HRESULT hr = S_OK;
5569 VARIANT dl,dr;
5570 VARTYPE resvt = VT_EMPTY;
5571 VARTYPE leftvt,rightvt;
5572 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5573 VARIANT tempLeft, tempRight;
5575 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5577 VariantInit(&dl);
5578 VariantInit(&dr);
5579 VariantInit(&tempLeft);
5580 VariantInit(&tempRight);
5582 /* Handle VT_DISPATCH by storing and taking address of returned value */
5583 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5585 hr = VARIANT_FetchDispatchValue(left, &tempLeft);
5586 if (FAILED(hr)) goto end;
5587 left = &tempLeft;
5589 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5591 hr = VARIANT_FetchDispatchValue(right, &tempRight);
5592 if (FAILED(hr)) goto end;
5593 right = &tempRight;
5596 leftvt = V_VT(left)&VT_TYPEMASK;
5597 rightvt = V_VT(right)&VT_TYPEMASK;
5598 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5599 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5601 if (leftExtraFlags != rightExtraFlags)
5603 hr = DISP_E_BADVARTYPE;
5604 goto end;
5606 ExtraFlags = leftExtraFlags;
5608 /* Native VarPow always returns an error when using extra flags */
5609 if (ExtraFlags != 0)
5611 hr = DISP_E_BADVARTYPE;
5612 goto end;
5615 /* Determine return type */
5616 else if (leftvt == VT_NULL || rightvt == VT_NULL) {
5617 V_VT(result) = VT_NULL;
5618 hr = S_OK;
5619 goto end;
5621 else if ((leftvt == VT_EMPTY || leftvt == VT_I2 ||
5622 leftvt == VT_I4 || leftvt == VT_R4 ||
5623 leftvt == VT_R8 || leftvt == VT_CY ||
5624 leftvt == VT_DATE || leftvt == VT_BSTR ||
5625 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
5626 (leftvt >= VT_I1 && leftvt <= VT_UINT)) &&
5627 (rightvt == VT_EMPTY || rightvt == VT_I2 ||
5628 rightvt == VT_I4 || rightvt == VT_R4 ||
5629 rightvt == VT_R8 || rightvt == VT_CY ||
5630 rightvt == VT_DATE || rightvt == VT_BSTR ||
5631 rightvt == VT_BOOL || rightvt == VT_DECIMAL ||
5632 (rightvt >= VT_I1 && rightvt <= VT_UINT)))
5633 resvt = VT_R8;
5634 else
5636 hr = DISP_E_BADVARTYPE;
5637 goto end;
5640 hr = VariantChangeType(&dl,left,0,resvt);
5641 if (FAILED(hr)) {
5642 ERR("Could not change passed left argument to VT_R8, handle it differently.\n");
5643 hr = E_FAIL;
5644 goto end;
5647 hr = VariantChangeType(&dr,right,0,resvt);
5648 if (FAILED(hr)) {
5649 ERR("Could not change passed right argument to VT_R8, handle it differently.\n");
5650 hr = E_FAIL;
5651 goto end;
5654 V_VT(result) = VT_R8;
5655 V_R8(result) = pow(V_R8(&dl),V_R8(&dr));
5657 end:
5658 VariantClear(&dl);
5659 VariantClear(&dr);
5660 VariantClear(&tempLeft);
5661 VariantClear(&tempRight);
5663 return hr;
5666 /**********************************************************************
5667 * VarImp [OLEAUT32.154]
5669 * Bitwise implication of two variants.
5671 * PARAMS
5672 * left [I] First variant
5673 * right [I] Second variant
5674 * result [O] Result variant
5676 * RETURNS
5677 * Success: S_OK.
5678 * Failure: An HRESULT error code indicating the error.
5680 HRESULT WINAPI VarImp(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5682 HRESULT hres = S_OK;
5683 VARTYPE resvt = VT_EMPTY;
5684 VARTYPE leftvt,rightvt;
5685 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5686 VARIANT lv,rv;
5687 double d;
5688 VARIANT tempLeft, tempRight;
5690 VariantInit(&lv);
5691 VariantInit(&rv);
5692 VariantInit(&tempLeft);
5693 VariantInit(&tempRight);
5695 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5697 /* Handle VT_DISPATCH by storing and taking address of returned value */
5698 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5700 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
5701 if (FAILED(hres)) goto VarImp_Exit;
5702 left = &tempLeft;
5704 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5706 hres = VARIANT_FetchDispatchValue(right, &tempRight);
5707 if (FAILED(hres)) goto VarImp_Exit;
5708 right = &tempRight;
5711 leftvt = V_VT(left)&VT_TYPEMASK;
5712 rightvt = V_VT(right)&VT_TYPEMASK;
5713 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5714 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5716 if (leftExtraFlags != rightExtraFlags)
5718 hres = DISP_E_BADVARTYPE;
5719 goto VarImp_Exit;
5721 ExtraFlags = leftExtraFlags;
5723 /* Native VarImp always returns an error when using extra
5724 * flags or if the variants are I8 and INT.
5726 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
5727 ExtraFlags != 0)
5729 hres = DISP_E_BADVARTYPE;
5730 goto VarImp_Exit;
5733 /* Determine result type */
5734 else if ((leftvt == VT_NULL && rightvt == VT_NULL) ||
5735 (leftvt == VT_NULL && rightvt == VT_EMPTY))
5737 V_VT(result) = VT_NULL;
5738 hres = S_OK;
5739 goto VarImp_Exit;
5741 else if (leftvt == VT_I8 || rightvt == VT_I8)
5742 resvt = VT_I8;
5743 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
5744 leftvt == VT_INT || rightvt == VT_INT ||
5745 leftvt == VT_UINT || rightvt == VT_UINT ||
5746 leftvt == VT_UI4 || rightvt == VT_UI4 ||
5747 leftvt == VT_UI8 || rightvt == VT_UI8 ||
5748 leftvt == VT_UI2 || rightvt == VT_UI2 ||
5749 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL ||
5750 leftvt == VT_DATE || rightvt == VT_DATE ||
5751 leftvt == VT_CY || rightvt == VT_CY ||
5752 leftvt == VT_R8 || rightvt == VT_R8 ||
5753 leftvt == VT_R4 || rightvt == VT_R4 ||
5754 leftvt == VT_I1 || rightvt == VT_I1)
5755 resvt = VT_I4;
5756 else if ((leftvt == VT_UI1 && rightvt == VT_UI1) ||
5757 (leftvt == VT_UI1 && rightvt == VT_NULL) ||
5758 (leftvt == VT_NULL && rightvt == VT_UI1))
5759 resvt = VT_UI1;
5760 else if (leftvt == VT_EMPTY || rightvt == VT_EMPTY ||
5761 leftvt == VT_I2 || rightvt == VT_I2 ||
5762 leftvt == VT_UI1 || rightvt == VT_UI1)
5763 resvt = VT_I2;
5764 else if (leftvt == VT_BOOL || rightvt == VT_BOOL ||
5765 leftvt == VT_BSTR || rightvt == VT_BSTR)
5766 resvt = VT_BOOL;
5768 /* VT_NULL requires special handling for when the opposite
5769 * variant is equal to something other than -1.
5770 * (NULL Imp 0 = NULL, NULL Imp n = n)
5772 if (leftvt == VT_NULL)
5774 VARIANT_BOOL b;
5775 switch(rightvt)
5777 case VT_I1: if (!V_I1(right)) resvt = VT_NULL; break;
5778 case VT_UI1: if (!V_UI1(right)) resvt = VT_NULL; break;
5779 case VT_I2: if (!V_I2(right)) resvt = VT_NULL; break;
5780 case VT_UI2: if (!V_UI2(right)) resvt = VT_NULL; break;
5781 case VT_I4: if (!V_I4(right)) resvt = VT_NULL; break;
5782 case VT_UI4: if (!V_UI4(right)) resvt = VT_NULL; break;
5783 case VT_I8: if (!V_I8(right)) resvt = VT_NULL; break;
5784 case VT_UI8: if (!V_UI8(right)) resvt = VT_NULL; break;
5785 case VT_INT: if (!V_INT(right)) resvt = VT_NULL; break;
5786 case VT_UINT: if (!V_UINT(right)) resvt = VT_NULL; break;
5787 case VT_BOOL: if (!V_BOOL(right)) resvt = VT_NULL; break;
5788 case VT_R4: if (!V_R4(right)) resvt = VT_NULL; break;
5789 case VT_R8: if (!V_R8(right)) resvt = VT_NULL; break;
5790 case VT_DATE: if (!V_DATE(right)) resvt = VT_NULL; break;
5791 case VT_CY: if (!V_CY(right).int64) resvt = VT_NULL; break;
5792 case VT_DECIMAL:
5793 if (!(DEC_HI32(&V_DECIMAL(right)) || DEC_LO64(&V_DECIMAL(right))))
5794 resvt = VT_NULL;
5795 break;
5796 case VT_BSTR:
5797 hres = VarBoolFromStr(V_BSTR(right),LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
5798 if (FAILED(hres)) goto VarImp_Exit;
5799 else if (!b)
5800 V_VT(result) = VT_NULL;
5801 else
5803 V_VT(result) = VT_BOOL;
5804 V_BOOL(result) = b;
5806 goto VarImp_Exit;
5808 if (resvt == VT_NULL)
5810 V_VT(result) = resvt;
5811 goto VarImp_Exit;
5813 else
5815 hres = VariantChangeType(result,right,0,resvt);
5816 goto VarImp_Exit;
5820 /* Special handling is required when NULL is the right variant.
5821 * (-1 Imp NULL = NULL, n Imp NULL = n Imp 0)
5823 else if (rightvt == VT_NULL)
5825 VARIANT_BOOL b;
5826 switch(leftvt)
5828 case VT_I1: if (V_I1(left) == -1) resvt = VT_NULL; break;
5829 case VT_UI1: if (V_UI1(left) == 0xff) resvt = VT_NULL; break;
5830 case VT_I2: if (V_I2(left) == -1) resvt = VT_NULL; break;
5831 case VT_UI2: if (V_UI2(left) == 0xffff) resvt = VT_NULL; break;
5832 case VT_INT: if (V_INT(left) == -1) resvt = VT_NULL; break;
5833 case VT_UINT: if (V_UINT(left) == ~0u) resvt = VT_NULL; break;
5834 case VT_I4: if (V_I4(left) == -1) resvt = VT_NULL; break;
5835 case VT_UI4: if (V_UI4(left) == ~0u) resvt = VT_NULL; break;
5836 case VT_I8: if (V_I8(left) == -1) resvt = VT_NULL; break;
5837 case VT_UI8: if (V_UI8(left) == ~(ULONGLONG)0) resvt = VT_NULL; break;
5838 case VT_BOOL: if (V_BOOL(left) == VARIANT_TRUE) resvt = VT_NULL; break;
5839 case VT_R4: if (V_R4(left) == -1.0) resvt = VT_NULL; break;
5840 case VT_R8: if (V_R8(left) == -1.0) resvt = VT_NULL; break;
5841 case VT_CY: if (V_CY(left).int64 == -1) resvt = VT_NULL; break;
5842 case VT_DECIMAL:
5843 if (DEC_HI32(&V_DECIMAL(left)) == 0xffffffff)
5844 resvt = VT_NULL;
5845 break;
5846 case VT_BSTR:
5847 hres = VarBoolFromStr(V_BSTR(left),LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
5848 if (FAILED(hres)) goto VarImp_Exit;
5849 else if (b == VARIANT_TRUE)
5850 resvt = VT_NULL;
5852 if (resvt == VT_NULL)
5854 V_VT(result) = resvt;
5855 goto VarImp_Exit;
5859 hres = VariantCopy(&lv, left);
5860 if (FAILED(hres)) goto VarImp_Exit;
5862 if (rightvt == VT_NULL)
5864 memset( &rv, 0, sizeof(rv) );
5865 V_VT(&rv) = resvt;
5867 else
5869 hres = VariantCopy(&rv, right);
5870 if (FAILED(hres)) goto VarImp_Exit;
5873 if (V_VT(&lv) == VT_BSTR &&
5874 FAILED(VarR8FromStr(V_BSTR(&lv),LOCALE_USER_DEFAULT, 0, &d)))
5875 hres = VariantChangeType(&lv,&lv,VARIANT_LOCALBOOL, VT_BOOL);
5876 if (SUCCEEDED(hres) && V_VT(&lv) != resvt)
5877 hres = VariantChangeType(&lv,&lv,0,resvt);
5878 if (FAILED(hres)) goto VarImp_Exit;
5880 if (V_VT(&rv) == VT_BSTR &&
5881 FAILED(VarR8FromStr(V_BSTR(&rv),LOCALE_USER_DEFAULT, 0, &d)))
5882 hres = VariantChangeType(&rv, &rv,VARIANT_LOCALBOOL, VT_BOOL);
5883 if (SUCCEEDED(hres) && V_VT(&rv) != resvt)
5884 hres = VariantChangeType(&rv, &rv, 0, resvt);
5885 if (FAILED(hres)) goto VarImp_Exit;
5887 /* do the math */
5888 V_VT(result) = resvt;
5889 switch (resvt)
5891 case VT_I8:
5892 V_I8(result) = (~V_I8(&lv)) | V_I8(&rv);
5893 break;
5894 case VT_I4:
5895 V_I4(result) = (~V_I4(&lv)) | V_I4(&rv);
5896 break;
5897 case VT_I2:
5898 V_I2(result) = (~V_I2(&lv)) | V_I2(&rv);
5899 break;
5900 case VT_UI1:
5901 V_UI1(result) = (~V_UI1(&lv)) | V_UI1(&rv);
5902 break;
5903 case VT_BOOL:
5904 V_BOOL(result) = (~V_BOOL(&lv)) | V_BOOL(&rv);
5905 break;
5906 default:
5907 FIXME("Couldn't perform bitwise implication on variant types %d,%d\n",
5908 leftvt,rightvt);
5911 VarImp_Exit:
5913 VariantClear(&lv);
5914 VariantClear(&rv);
5915 VariantClear(&tempLeft);
5916 VariantClear(&tempRight);
5918 return hres;