2 * Various storage structures (pool allocation, vector, hash table)
4 * Copyright (C) 1993, Eric Youngdale.
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
26 #include "wine/debug.h"
28 #include "dbghelp_private.h"
33 WINE_DEFAULT_DEBUG_CHANNEL(dbghelp
);
42 void pool_init(struct pool
* a
, size_t arena_size
)
44 list_init( &a
->arena_list
);
45 list_init( &a
->arena_full
);
46 a
->arena_size
= arena_size
;
49 void pool_destroy(struct pool
* pool
)
51 struct pool_arena
* arena
;
52 struct pool_arena
* next
;
55 size_t alloc
, used
, num
;
57 alloc
= used
= num
= 0;
58 LIST_FOR_EACH_ENTRY( arena
, &pool
->arena_list
, struct pool_arena
, entry
)
60 alloc
+= arena
->end
- (char *)arena
;
61 used
+= arena
->current
- (char*)arena
;
64 LIST_FOR_EACH_ENTRY( arena
, &pool
->arena_full
, struct pool_arena
, entry
)
66 alloc
+= arena
->end
- (char *)arena
;
67 used
+= arena
->current
- (char*)arena
;
70 if (alloc
== 0) alloc
= 1; /* avoid division by zero */
71 FIXME("STATS: pool %p has allocated %u kbytes, used %u kbytes in %u arenas, non-allocation ratio: %.2f%%\n",
72 pool
, (unsigned)(alloc
>> 10), (unsigned)(used
>> 10), (unsigned)num
,
73 100.0 - (float)used
/ (float)alloc
* 100.0);
76 LIST_FOR_EACH_ENTRY_SAFE( arena
, next
, &pool
->arena_list
, struct pool_arena
, entry
)
78 list_remove( &arena
->entry
);
79 HeapFree(GetProcessHeap(), 0, arena
);
81 LIST_FOR_EACH_ENTRY_SAFE( arena
, next
, &pool
->arena_full
, struct pool_arena
, entry
)
83 list_remove( &arena
->entry
);
84 HeapFree(GetProcessHeap(), 0, arena
);
88 void* pool_alloc(struct pool
* pool
, size_t len
)
90 struct pool_arena
* arena
;
94 len
= (len
+ 3) & ~3; /* round up size on DWORD boundary */
96 LIST_FOR_EACH_ENTRY( arena
, &pool
->arena_list
, struct pool_arena
, entry
)
98 if (arena
->end
- arena
->current
>= len
)
100 ret
= arena
->current
;
101 arena
->current
+= len
;
102 if (arena
->current
+ 16 >= arena
->end
)
104 list_remove( &arena
->entry
);
105 list_add_tail( &pool
->arena_full
, &arena
->entry
);
111 size
= max( pool
->arena_size
, len
);
112 arena
= HeapAlloc(GetProcessHeap(), 0, size
+ sizeof(struct pool_arena
));
113 if (!arena
) return NULL
;
116 arena
->current
= (char*)ret
+ len
;
117 arena
->end
= (char*)ret
+ size
;
118 if (arena
->current
+ 16 >= arena
->end
)
119 list_add_tail( &pool
->arena_full
, &arena
->entry
);
121 list_add_head( &pool
->arena_list
, &arena
->entry
);
125 char* pool_strdup(struct pool
* pool
, const char* str
)
128 if ((ret
= pool_alloc(pool
, strlen(str
) + 1))) strcpy(ret
, str
);
132 void vector_init(struct vector
* v
, unsigned esz
, unsigned bucket_sz
)
135 /* align size on DWORD boundaries */
136 v
->elt_size
= (esz
+ 3) & ~3;
139 case 2: v
->shift
= 1; break;
140 case 4: v
->shift
= 2; break;
141 case 8: v
->shift
= 3; break;
142 case 16: v
->shift
= 4; break;
143 case 32: v
->shift
= 5; break;
144 case 64: v
->shift
= 6; break;
145 case 128: v
->shift
= 7; break;
146 case 256: v
->shift
= 8; break;
147 case 512: v
->shift
= 9; break;
148 case 1024: v
->shift
= 10; break;
152 v
->buckets_allocated
= 0;
156 unsigned vector_length(const struct vector
* v
)
161 void* vector_at(const struct vector
* v
, unsigned pos
)
165 if (pos
>= v
->num_elts
) return NULL
;
166 o
= pos
& ((1 << v
->shift
) - 1);
167 return (char*)v
->buckets
[pos
>> v
->shift
] + o
* v
->elt_size
;
170 void* vector_add(struct vector
* v
, struct pool
* pool
)
172 unsigned ncurr
= v
->num_elts
++;
174 /* check that we don't wrap around */
175 assert(v
->num_elts
> ncurr
);
176 if (ncurr
== (v
->num_buckets
<< v
->shift
))
178 if(v
->num_buckets
== v
->buckets_allocated
)
180 /* Double the bucket cache, so it scales well with big vectors.*/
181 unsigned new_reserved
;
184 new_reserved
= 2*v
->buckets_allocated
;
185 if(new_reserved
== 0) new_reserved
= 1;
187 /* Don't even try to resize memory.
188 Pool datastructure is very inefficient with reallocs. */
189 new = pool_alloc(pool
, new_reserved
* sizeof(void*));
190 memcpy(new, v
->buckets
, v
->buckets_allocated
* sizeof(void*));
192 v
->buckets_allocated
= new_reserved
;
194 v
->buckets
[v
->num_buckets
] = pool_alloc(pool
, v
->elt_size
<< v
->shift
);
195 return v
->buckets
[v
->num_buckets
++];
197 return vector_at(v
, ncurr
);
200 /* We construct the sparse array as two vectors (of equal size)
201 * The first vector (key2index) is the lookup table between the key and
202 * an index in the second vector (elements)
203 * When inserting an element, it's always appended in second vector (and
204 * never moved in memory later on), only the first vector is reordered
212 void sparse_array_init(struct sparse_array
* sa
, unsigned elt_sz
, unsigned bucket_sz
)
214 vector_init(&sa
->key2index
, sizeof(struct key2index
), bucket_sz
);
215 vector_init(&sa
->elements
, elt_sz
, bucket_sz
);
218 /******************************************************************
219 * sparse_array_lookup
221 * Returns the first index which key is >= at passed key
223 static struct key2index
* sparse_array_lookup(const struct sparse_array
* sa
,
224 unsigned long key
, unsigned* idx
)
226 struct key2index
* pk2i
;
229 if (!sa
->elements
.num_elts
)
234 high
= sa
->elements
.num_elts
;
235 pk2i
= vector_at(&sa
->key2index
, high
- 1);
241 if (pk2i
->key
== key
)
247 pk2i
= vector_at(&sa
->key2index
, low
);
248 if (pk2i
->key
>= key
)
253 /* now we have: sa(lowest key) < key < sa(highest key) */
256 *idx
= (low
+ high
) / 2;
257 pk2i
= vector_at(&sa
->key2index
, *idx
);
258 if (pk2i
->key
> key
) high
= *idx
;
259 else if (pk2i
->key
< key
) low
= *idx
+ 1;
262 /* binary search could return exact item, we search for highest one
266 pk2i
= vector_at(&sa
->key2index
, ++(*idx
));
270 void* sparse_array_find(const struct sparse_array
* sa
, unsigned long key
)
273 struct key2index
* pk2i
;
275 if ((pk2i
= sparse_array_lookup(sa
, key
, &idx
)) && pk2i
->key
== key
)
276 return vector_at(&sa
->elements
, pk2i
->index
);
280 void* sparse_array_add(struct sparse_array
* sa
, unsigned long key
,
284 struct key2index
* pk2i
;
285 struct key2index
* to
;
287 pk2i
= sparse_array_lookup(sa
, key
, &idx
);
288 if (pk2i
&& pk2i
->key
== key
)
290 FIXME("re-adding an existing key\n");
293 to
= vector_add(&sa
->key2index
, pool
);
296 /* we need to shift vector's content... */
297 /* let's do it brute force... (FIXME) */
298 assert(sa
->key2index
.num_elts
>= 2);
299 for (i
= sa
->key2index
.num_elts
- 1; i
> idx
; i
--)
301 pk2i
= vector_at(&sa
->key2index
, i
- 1);
308 to
->index
= sa
->elements
.num_elts
;
310 return vector_add(&sa
->elements
, pool
);
313 unsigned sparse_array_length(const struct sparse_array
* sa
)
315 return sa
->elements
.num_elts
;
318 static unsigned hash_table_hash(const char* name
, unsigned num_buckets
)
324 hash
+= (hash
<< 10);
328 hash
^= (hash
>> 11);
329 hash
+= (hash
<< 15);
330 return hash
% num_buckets
;
333 void hash_table_init(struct pool
* pool
, struct hash_table
* ht
, unsigned num_buckets
)
336 ht
->num_buckets
= num_buckets
;
341 void hash_table_destroy(struct hash_table
* ht
)
343 #if defined(USE_STATS)
346 unsigned min
= 0xffffffff, max
= 0, sq
= 0;
347 struct hash_table_elt
* elt
;
348 double mean
, variance
;
350 for (i
= 0; i
< ht
->num_buckets
; i
++)
352 for (len
= 0, elt
= ht
->buckets
[i
]; elt
; elt
= elt
->next
) len
++;
353 if (len
< min
) min
= len
;
354 if (len
> max
) max
= len
;
357 mean
= (double)ht
->num_elts
/ ht
->num_buckets
;
358 variance
= (double)sq
/ ht
->num_buckets
- mean
* mean
;
359 FIXME("STATS: elts[num:%-4u size:%u mean:%f] buckets[min:%-4u variance:%+f max:%-4u]\n",
360 ht
->num_elts
, ht
->num_buckets
, mean
, min
, variance
, max
);
362 for (i
= 0; i
< ht
->num_buckets
; i
++)
364 for (len
= 0, elt
= ht
->buckets
[i
]; elt
; elt
= elt
->next
) len
++;
367 FIXME("Longest bucket:\n");
368 for (elt
= ht
->buckets
[i
]; elt
; elt
= elt
->next
)
369 FIXME("\t%s\n", elt
->name
);
377 void hash_table_add(struct hash_table
* ht
, struct hash_table_elt
* elt
)
379 unsigned hash
= hash_table_hash(elt
->name
, ht
->num_buckets
);
383 ht
->buckets
= pool_alloc(ht
->pool
, ht
->num_buckets
* sizeof(struct hash_table_bucket
));
385 memset(ht
->buckets
, 0, ht
->num_buckets
* sizeof(struct hash_table_bucket
));
388 /* in some cases, we need to get back the symbols of same name in the order
389 * in which they've been inserted. So insert new elements at the end of the list.
391 if (!ht
->buckets
[hash
].first
)
393 ht
->buckets
[hash
].first
= elt
;
397 ht
->buckets
[hash
].last
->next
= elt
;
399 ht
->buckets
[hash
].last
= elt
;
404 void hash_table_iter_init(const struct hash_table
* ht
,
405 struct hash_table_iter
* hti
, const char* name
)
410 hti
->last
= hash_table_hash(name
, ht
->num_buckets
);
411 hti
->index
= hti
->last
- 1;
415 hti
->last
= ht
->num_buckets
- 1;
421 void* hash_table_iter_up(struct hash_table_iter
* hti
)
423 if (!hti
->ht
->buckets
) return NULL
;
425 if (hti
->element
) hti
->element
= hti
->element
->next
;
426 while (!hti
->element
&& hti
->index
< hti
->last
)
427 hti
->element
= hti
->ht
->buckets
[++hti
->index
].first
;