wined3d: Pass a texture and sub-resource index to wined3d_volume_download_data().
[wine.git] / dlls / oleaut32 / variant.c
blob6fbb3201200cee470a9d340188116fbcf75477cb
1 /*
2 * VARIANT
4 * Copyright 1998 Jean-Claude Cote
5 * Copyright 2003 Jon Griffiths
6 * Copyright 2005 Daniel Remenak
7 * Copyright 2006 Google (Benjamin Arai)
9 * The algorithm for conversion from Julian days to day/month/year is based on
10 * that devised by Henry Fliegel, as implemented in PostgreSQL, which is
11 * Copyright 1994-7 Regents of the University of California
13 * This library is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU Lesser General Public
15 * License as published by the Free Software Foundation; either
16 * version 2.1 of the License, or (at your option) any later version.
18 * This library is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * Lesser General Public License for more details.
23 * You should have received a copy of the GNU Lesser General Public
24 * License along with this library; if not, write to the Free Software
25 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
28 #include "config.h"
30 #include <string.h>
31 #include <stdlib.h>
32 #include <stdarg.h>
34 #define COBJMACROS
35 #define NONAMELESSUNION
36 #define NONAMELESSSTRUCT
38 #include "windef.h"
39 #include "winbase.h"
40 #include "wine/unicode.h"
41 #include "winerror.h"
42 #include "variant.h"
43 #include "resource.h"
44 #include "wine/debug.h"
46 WINE_DEFAULT_DEBUG_CHANNEL(variant);
48 static CRITICAL_SECTION cache_cs;
49 static CRITICAL_SECTION_DEBUG critsect_debug =
51 0, 0, &cache_cs,
52 { &critsect_debug.ProcessLocksList, &critsect_debug.ProcessLocksList },
53 0, 0, { (DWORD_PTR)(__FILE__ ": cache_cs") }
55 static CRITICAL_SECTION cache_cs = { &critsect_debug, -1, 0, 0, 0, 0 };
57 /* Convert a variant from one type to another */
58 static inline HRESULT VARIANT_Coerce(VARIANTARG* pd, LCID lcid, USHORT wFlags,
59 VARIANTARG* ps, VARTYPE vt)
61 HRESULT res = DISP_E_TYPEMISMATCH;
62 VARTYPE vtFrom = V_TYPE(ps);
63 DWORD dwFlags = 0;
65 TRACE("(%s,0x%08x,0x%04x,%s,%s)\n", debugstr_variant(pd), lcid, wFlags,
66 debugstr_variant(ps), debugstr_vt(vt));
68 if (vt == VT_BSTR || vtFrom == VT_BSTR)
70 /* All flags passed to low level function are only used for
71 * changing to or from strings. Map these here.
73 if (wFlags & VARIANT_LOCALBOOL)
74 dwFlags |= VAR_LOCALBOOL;
75 if (wFlags & VARIANT_CALENDAR_HIJRI)
76 dwFlags |= VAR_CALENDAR_HIJRI;
77 if (wFlags & VARIANT_CALENDAR_THAI)
78 dwFlags |= VAR_CALENDAR_THAI;
79 if (wFlags & VARIANT_CALENDAR_GREGORIAN)
80 dwFlags |= VAR_CALENDAR_GREGORIAN;
81 if (wFlags & VARIANT_NOUSEROVERRIDE)
82 dwFlags |= LOCALE_NOUSEROVERRIDE;
83 if (wFlags & VARIANT_USE_NLS)
84 dwFlags |= LOCALE_USE_NLS;
87 /* Map int/uint to i4/ui4 */
88 if (vt == VT_INT)
89 vt = VT_I4;
90 else if (vt == VT_UINT)
91 vt = VT_UI4;
93 if (vtFrom == VT_INT)
94 vtFrom = VT_I4;
95 else if (vtFrom == VT_UINT)
96 vtFrom = VT_UI4;
98 if (vt == vtFrom)
99 return VariantCopy(pd, ps);
101 if (wFlags & VARIANT_NOVALUEPROP && vtFrom == VT_DISPATCH && vt != VT_UNKNOWN)
103 /* VARIANT_NOVALUEPROP prevents IDispatch objects from being coerced by
104 * accessing the default object property.
106 return DISP_E_TYPEMISMATCH;
109 switch (vt)
111 case VT_EMPTY:
112 if (vtFrom == VT_NULL)
113 return DISP_E_TYPEMISMATCH;
114 /* ... Fall through */
115 case VT_NULL:
116 if (vtFrom <= VT_UINT && vtFrom != (VARTYPE)15 && vtFrom != VT_ERROR)
118 res = VariantClear( pd );
119 if (vt == VT_NULL && SUCCEEDED(res))
120 V_VT(pd) = VT_NULL;
122 return res;
124 case VT_I1:
125 switch (vtFrom)
127 case VT_EMPTY: V_I1(pd) = 0; return S_OK;
128 case VT_I2: return VarI1FromI2(V_I2(ps), &V_I1(pd));
129 case VT_I4: return VarI1FromI4(V_I4(ps), &V_I1(pd));
130 case VT_UI1: V_I1(pd) = V_UI1(ps); return S_OK;
131 case VT_UI2: return VarI1FromUI2(V_UI2(ps), &V_I1(pd));
132 case VT_UI4: return VarI1FromUI4(V_UI4(ps), &V_I1(pd));
133 case VT_I8: return VarI1FromI8(V_I8(ps), &V_I1(pd));
134 case VT_UI8: return VarI1FromUI8(V_UI8(ps), &V_I1(pd));
135 case VT_R4: return VarI1FromR4(V_R4(ps), &V_I1(pd));
136 case VT_R8: return VarI1FromR8(V_R8(ps), &V_I1(pd));
137 case VT_DATE: return VarI1FromDate(V_DATE(ps), &V_I1(pd));
138 case VT_BOOL: return VarI1FromBool(V_BOOL(ps), &V_I1(pd));
139 case VT_CY: return VarI1FromCy(V_CY(ps), &V_I1(pd));
140 case VT_DECIMAL: return VarI1FromDec(&V_DECIMAL(ps), &V_I1(pd) );
141 case VT_DISPATCH: return VarI1FromDisp(V_DISPATCH(ps), lcid, &V_I1(pd) );
142 case VT_BSTR: return VarI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_I1(pd) );
144 break;
146 case VT_I2:
147 switch (vtFrom)
149 case VT_EMPTY: V_I2(pd) = 0; return S_OK;
150 case VT_I1: return VarI2FromI1(V_I1(ps), &V_I2(pd));
151 case VT_I4: return VarI2FromI4(V_I4(ps), &V_I2(pd));
152 case VT_UI1: return VarI2FromUI1(V_UI1(ps), &V_I2(pd));
153 case VT_UI2: V_I2(pd) = V_UI2(ps); return S_OK;
154 case VT_UI4: return VarI2FromUI4(V_UI4(ps), &V_I2(pd));
155 case VT_I8: return VarI2FromI8(V_I8(ps), &V_I2(pd));
156 case VT_UI8: return VarI2FromUI8(V_UI8(ps), &V_I2(pd));
157 case VT_R4: return VarI2FromR4(V_R4(ps), &V_I2(pd));
158 case VT_R8: return VarI2FromR8(V_R8(ps), &V_I2(pd));
159 case VT_DATE: return VarI2FromDate(V_DATE(ps), &V_I2(pd));
160 case VT_BOOL: return VarI2FromBool(V_BOOL(ps), &V_I2(pd));
161 case VT_CY: return VarI2FromCy(V_CY(ps), &V_I2(pd));
162 case VT_DECIMAL: return VarI2FromDec(&V_DECIMAL(ps), &V_I2(pd));
163 case VT_DISPATCH: return VarI2FromDisp(V_DISPATCH(ps), lcid, &V_I2(pd));
164 case VT_BSTR: return VarI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_I2(pd));
166 break;
168 case VT_I4:
169 switch (vtFrom)
171 case VT_EMPTY: V_I4(pd) = 0; return S_OK;
172 case VT_I1: return VarI4FromI1(V_I1(ps), &V_I4(pd));
173 case VT_I2: return VarI4FromI2(V_I2(ps), &V_I4(pd));
174 case VT_UI1: return VarI4FromUI1(V_UI1(ps), &V_I4(pd));
175 case VT_UI2: return VarI4FromUI2(V_UI2(ps), &V_I4(pd));
176 case VT_UI4: V_I4(pd) = V_UI4(ps); return S_OK;
177 case VT_I8: return VarI4FromI8(V_I8(ps), &V_I4(pd));
178 case VT_UI8: return VarI4FromUI8(V_UI8(ps), &V_I4(pd));
179 case VT_R4: return VarI4FromR4(V_R4(ps), &V_I4(pd));
180 case VT_R8: return VarI4FromR8(V_R8(ps), &V_I4(pd));
181 case VT_DATE: return VarI4FromDate(V_DATE(ps), &V_I4(pd));
182 case VT_BOOL: return VarI4FromBool(V_BOOL(ps), &V_I4(pd));
183 case VT_CY: return VarI4FromCy(V_CY(ps), &V_I4(pd));
184 case VT_DECIMAL: return VarI4FromDec(&V_DECIMAL(ps), &V_I4(pd));
185 case VT_DISPATCH: return VarI4FromDisp(V_DISPATCH(ps), lcid, &V_I4(pd));
186 case VT_BSTR: return VarI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_I4(pd));
188 break;
190 case VT_UI1:
191 switch (vtFrom)
193 case VT_EMPTY: V_UI1(pd) = 0; return S_OK;
194 case VT_I1: V_UI1(pd) = V_I1(ps); return S_OK;
195 case VT_I2: return VarUI1FromI2(V_I2(ps), &V_UI1(pd));
196 case VT_I4: return VarUI1FromI4(V_I4(ps), &V_UI1(pd));
197 case VT_UI2: return VarUI1FromUI2(V_UI2(ps), &V_UI1(pd));
198 case VT_UI4: return VarUI1FromUI4(V_UI4(ps), &V_UI1(pd));
199 case VT_I8: return VarUI1FromI8(V_I8(ps), &V_UI1(pd));
200 case VT_UI8: return VarUI1FromUI8(V_UI8(ps), &V_UI1(pd));
201 case VT_R4: return VarUI1FromR4(V_R4(ps), &V_UI1(pd));
202 case VT_R8: return VarUI1FromR8(V_R8(ps), &V_UI1(pd));
203 case VT_DATE: return VarUI1FromDate(V_DATE(ps), &V_UI1(pd));
204 case VT_BOOL: return VarUI1FromBool(V_BOOL(ps), &V_UI1(pd));
205 case VT_CY: return VarUI1FromCy(V_CY(ps), &V_UI1(pd));
206 case VT_DECIMAL: return VarUI1FromDec(&V_DECIMAL(ps), &V_UI1(pd));
207 case VT_DISPATCH: return VarUI1FromDisp(V_DISPATCH(ps), lcid, &V_UI1(pd));
208 case VT_BSTR: return VarUI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI1(pd));
210 break;
212 case VT_UI2:
213 switch (vtFrom)
215 case VT_EMPTY: V_UI2(pd) = 0; return S_OK;
216 case VT_I1: return VarUI2FromI1(V_I1(ps), &V_UI2(pd));
217 case VT_I2: V_UI2(pd) = V_I2(ps); return S_OK;
218 case VT_I4: return VarUI2FromI4(V_I4(ps), &V_UI2(pd));
219 case VT_UI1: return VarUI2FromUI1(V_UI1(ps), &V_UI2(pd));
220 case VT_UI4: return VarUI2FromUI4(V_UI4(ps), &V_UI2(pd));
221 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
222 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
223 case VT_R4: return VarUI2FromR4(V_R4(ps), &V_UI2(pd));
224 case VT_R8: return VarUI2FromR8(V_R8(ps), &V_UI2(pd));
225 case VT_DATE: return VarUI2FromDate(V_DATE(ps), &V_UI2(pd));
226 case VT_BOOL: return VarUI2FromBool(V_BOOL(ps), &V_UI2(pd));
227 case VT_CY: return VarUI2FromCy(V_CY(ps), &V_UI2(pd));
228 case VT_DECIMAL: return VarUI2FromDec(&V_DECIMAL(ps), &V_UI2(pd));
229 case VT_DISPATCH: return VarUI2FromDisp(V_DISPATCH(ps), lcid, &V_UI2(pd));
230 case VT_BSTR: return VarUI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI2(pd));
232 break;
234 case VT_UI4:
235 switch (vtFrom)
237 case VT_EMPTY: V_UI4(pd) = 0; return S_OK;
238 case VT_I1: return VarUI4FromI1(V_I1(ps), &V_UI4(pd));
239 case VT_I2: return VarUI4FromI2(V_I2(ps), &V_UI4(pd));
240 case VT_I4: V_UI4(pd) = V_I4(ps); return S_OK;
241 case VT_UI1: return VarUI4FromUI1(V_UI1(ps), &V_UI4(pd));
242 case VT_UI2: return VarUI4FromUI2(V_UI2(ps), &V_UI4(pd));
243 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
244 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
245 case VT_R4: return VarUI4FromR4(V_R4(ps), &V_UI4(pd));
246 case VT_R8: return VarUI4FromR8(V_R8(ps), &V_UI4(pd));
247 case VT_DATE: return VarUI4FromDate(V_DATE(ps), &V_UI4(pd));
248 case VT_BOOL: return VarUI4FromBool(V_BOOL(ps), &V_UI4(pd));
249 case VT_CY: return VarUI4FromCy(V_CY(ps), &V_UI4(pd));
250 case VT_DECIMAL: return VarUI4FromDec(&V_DECIMAL(ps), &V_UI4(pd));
251 case VT_DISPATCH: return VarUI4FromDisp(V_DISPATCH(ps), lcid, &V_UI4(pd));
252 case VT_BSTR: return VarUI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI4(pd));
254 break;
256 case VT_UI8:
257 switch (vtFrom)
259 case VT_EMPTY: V_UI8(pd) = 0; return S_OK;
260 case VT_I4: if (V_I4(ps) < 0) return DISP_E_OVERFLOW; V_UI8(pd) = V_I4(ps); return S_OK;
261 case VT_I1: return VarUI8FromI1(V_I1(ps), &V_UI8(pd));
262 case VT_I2: return VarUI8FromI2(V_I2(ps), &V_UI8(pd));
263 case VT_UI1: return VarUI8FromUI1(V_UI1(ps), &V_UI8(pd));
264 case VT_UI2: return VarUI8FromUI2(V_UI2(ps), &V_UI8(pd));
265 case VT_UI4: return VarUI8FromUI4(V_UI4(ps), &V_UI8(pd));
266 case VT_I8: V_UI8(pd) = V_I8(ps); return S_OK;
267 case VT_R4: return VarUI8FromR4(V_R4(ps), &V_UI8(pd));
268 case VT_R8: return VarUI8FromR8(V_R8(ps), &V_UI8(pd));
269 case VT_DATE: return VarUI8FromDate(V_DATE(ps), &V_UI8(pd));
270 case VT_BOOL: return VarUI8FromBool(V_BOOL(ps), &V_UI8(pd));
271 case VT_CY: return VarUI8FromCy(V_CY(ps), &V_UI8(pd));
272 case VT_DECIMAL: return VarUI8FromDec(&V_DECIMAL(ps), &V_UI8(pd));
273 case VT_DISPATCH: return VarUI8FromDisp(V_DISPATCH(ps), lcid, &V_UI8(pd));
274 case VT_BSTR: return VarUI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI8(pd));
276 break;
278 case VT_I8:
279 switch (vtFrom)
281 case VT_EMPTY: V_I8(pd) = 0; return S_OK;
282 case VT_I4: V_I8(pd) = V_I4(ps); return S_OK;
283 case VT_I1: return VarI8FromI1(V_I1(ps), &V_I8(pd));
284 case VT_I2: return VarI8FromI2(V_I2(ps), &V_I8(pd));
285 case VT_UI1: return VarI8FromUI1(V_UI1(ps), &V_I8(pd));
286 case VT_UI2: return VarI8FromUI2(V_UI2(ps), &V_I8(pd));
287 case VT_UI4: return VarI8FromUI4(V_UI4(ps), &V_I8(pd));
288 case VT_UI8: V_I8(pd) = V_UI8(ps); return S_OK;
289 case VT_R4: return VarI8FromR4(V_R4(ps), &V_I8(pd));
290 case VT_R8: return VarI8FromR8(V_R8(ps), &V_I8(pd));
291 case VT_DATE: return VarI8FromDate(V_DATE(ps), &V_I8(pd));
292 case VT_BOOL: return VarI8FromBool(V_BOOL(ps), &V_I8(pd));
293 case VT_CY: return VarI8FromCy(V_CY(ps), &V_I8(pd));
294 case VT_DECIMAL: return VarI8FromDec(&V_DECIMAL(ps), &V_I8(pd));
295 case VT_DISPATCH: return VarI8FromDisp(V_DISPATCH(ps), lcid, &V_I8(pd));
296 case VT_BSTR: return VarI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_I8(pd));
298 break;
300 case VT_R4:
301 switch (vtFrom)
303 case VT_EMPTY: V_R4(pd) = 0.0f; return S_OK;
304 case VT_I1: return VarR4FromI1(V_I1(ps), &V_R4(pd));
305 case VT_I2: return VarR4FromI2(V_I2(ps), &V_R4(pd));
306 case VT_I4: return VarR4FromI4(V_I4(ps), &V_R4(pd));
307 case VT_UI1: return VarR4FromUI1(V_UI1(ps), &V_R4(pd));
308 case VT_UI2: return VarR4FromUI2(V_UI2(ps), &V_R4(pd));
309 case VT_UI4: return VarR4FromUI4(V_UI4(ps), &V_R4(pd));
310 case VT_I8: return VarR4FromI8(V_I8(ps), &V_R4(pd));
311 case VT_UI8: return VarR4FromUI8(V_UI8(ps), &V_R4(pd));
312 case VT_R8: return VarR4FromR8(V_R8(ps), &V_R4(pd));
313 case VT_DATE: return VarR4FromDate(V_DATE(ps), &V_R4(pd));
314 case VT_BOOL: return VarR4FromBool(V_BOOL(ps), &V_R4(pd));
315 case VT_CY: return VarR4FromCy(V_CY(ps), &V_R4(pd));
316 case VT_DECIMAL: return VarR4FromDec(&V_DECIMAL(ps), &V_R4(pd));
317 case VT_DISPATCH: return VarR4FromDisp(V_DISPATCH(ps), lcid, &V_R4(pd));
318 case VT_BSTR: return VarR4FromStr(V_BSTR(ps), lcid, dwFlags, &V_R4(pd));
320 break;
322 case VT_R8:
323 switch (vtFrom)
325 case VT_EMPTY: V_R8(pd) = 0.0; return S_OK;
326 case VT_I1: return VarR8FromI1(V_I1(ps), &V_R8(pd));
327 case VT_I2: return VarR8FromI2(V_I2(ps), &V_R8(pd));
328 case VT_I4: return VarR8FromI4(V_I4(ps), &V_R8(pd));
329 case VT_UI1: return VarR8FromUI1(V_UI1(ps), &V_R8(pd));
330 case VT_UI2: return VarR8FromUI2(V_UI2(ps), &V_R8(pd));
331 case VT_UI4: return VarR8FromUI4(V_UI4(ps), &V_R8(pd));
332 case VT_I8: return VarR8FromI8(V_I8(ps), &V_R8(pd));
333 case VT_UI8: return VarR8FromUI8(V_UI8(ps), &V_R8(pd));
334 case VT_R4: return VarR8FromR4(V_R4(ps), &V_R8(pd));
335 case VT_DATE: return VarR8FromDate(V_DATE(ps), &V_R8(pd));
336 case VT_BOOL: return VarR8FromBool(V_BOOL(ps), &V_R8(pd));
337 case VT_CY: return VarR8FromCy(V_CY(ps), &V_R8(pd));
338 case VT_DECIMAL: return VarR8FromDec(&V_DECIMAL(ps), &V_R8(pd));
339 case VT_DISPATCH: return VarR8FromDisp(V_DISPATCH(ps), lcid, &V_R8(pd));
340 case VT_BSTR: return VarR8FromStr(V_BSTR(ps), lcid, dwFlags, &V_R8(pd));
342 break;
344 case VT_DATE:
345 switch (vtFrom)
347 case VT_EMPTY: V_DATE(pd) = 0.0; return S_OK;
348 case VT_I1: return VarDateFromI1(V_I1(ps), &V_DATE(pd));
349 case VT_I2: return VarDateFromI2(V_I2(ps), &V_DATE(pd));
350 case VT_I4: return VarDateFromI4(V_I4(ps), &V_DATE(pd));
351 case VT_UI1: return VarDateFromUI1(V_UI1(ps), &V_DATE(pd));
352 case VT_UI2: return VarDateFromUI2(V_UI2(ps), &V_DATE(pd));
353 case VT_UI4: return VarDateFromUI4(V_UI4(ps), &V_DATE(pd));
354 case VT_I8: return VarDateFromI8(V_I8(ps), &V_DATE(pd));
355 case VT_UI8: return VarDateFromUI8(V_UI8(ps), &V_DATE(pd));
356 case VT_R4: return VarDateFromR4(V_R4(ps), &V_DATE(pd));
357 case VT_R8: return VarDateFromR8(V_R8(ps), &V_DATE(pd));
358 case VT_BOOL: return VarDateFromBool(V_BOOL(ps), &V_DATE(pd));
359 case VT_CY: return VarDateFromCy(V_CY(ps), &V_DATE(pd));
360 case VT_DECIMAL: return VarDateFromDec(&V_DECIMAL(ps), &V_DATE(pd));
361 case VT_DISPATCH: return VarDateFromDisp(V_DISPATCH(ps), lcid, &V_DATE(pd));
362 case VT_BSTR: return VarDateFromStr(V_BSTR(ps), lcid, dwFlags, &V_DATE(pd));
364 break;
366 case VT_BOOL:
367 switch (vtFrom)
369 case VT_EMPTY: V_BOOL(pd) = 0; return S_OK;
370 case VT_I1: return VarBoolFromI1(V_I1(ps), &V_BOOL(pd));
371 case VT_I2: return VarBoolFromI2(V_I2(ps), &V_BOOL(pd));
372 case VT_I4: return VarBoolFromI4(V_I4(ps), &V_BOOL(pd));
373 case VT_UI1: return VarBoolFromUI1(V_UI1(ps), &V_BOOL(pd));
374 case VT_UI2: return VarBoolFromUI2(V_UI2(ps), &V_BOOL(pd));
375 case VT_UI4: return VarBoolFromUI4(V_UI4(ps), &V_BOOL(pd));
376 case VT_I8: return VarBoolFromI8(V_I8(ps), &V_BOOL(pd));
377 case VT_UI8: return VarBoolFromUI8(V_UI8(ps), &V_BOOL(pd));
378 case VT_R4: return VarBoolFromR4(V_R4(ps), &V_BOOL(pd));
379 case VT_R8: return VarBoolFromR8(V_R8(ps), &V_BOOL(pd));
380 case VT_DATE: return VarBoolFromDate(V_DATE(ps), &V_BOOL(pd));
381 case VT_CY: return VarBoolFromCy(V_CY(ps), &V_BOOL(pd));
382 case VT_DECIMAL: return VarBoolFromDec(&V_DECIMAL(ps), &V_BOOL(pd));
383 case VT_DISPATCH: return VarBoolFromDisp(V_DISPATCH(ps), lcid, &V_BOOL(pd));
384 case VT_BSTR: return VarBoolFromStr(V_BSTR(ps), lcid, dwFlags, &V_BOOL(pd));
386 break;
388 case VT_BSTR:
389 switch (vtFrom)
391 case VT_EMPTY:
392 V_BSTR(pd) = SysAllocStringLen(NULL, 0);
393 return V_BSTR(pd) ? S_OK : E_OUTOFMEMORY;
394 case VT_BOOL:
395 if (wFlags & (VARIANT_ALPHABOOL|VARIANT_LOCALBOOL))
396 return VarBstrFromBool(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
397 return VarBstrFromI2(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
398 case VT_I1: return VarBstrFromI1(V_I1(ps), lcid, dwFlags, &V_BSTR(pd));
399 case VT_I2: return VarBstrFromI2(V_I2(ps), lcid, dwFlags, &V_BSTR(pd));
400 case VT_I4: return VarBstrFromI4(V_I4(ps), lcid, dwFlags, &V_BSTR(pd));
401 case VT_UI1: return VarBstrFromUI1(V_UI1(ps), lcid, dwFlags, &V_BSTR(pd));
402 case VT_UI2: return VarBstrFromUI2(V_UI2(ps), lcid, dwFlags, &V_BSTR(pd));
403 case VT_UI4: return VarBstrFromUI4(V_UI4(ps), lcid, dwFlags, &V_BSTR(pd));
404 case VT_I8: return VarBstrFromI8(V_I8(ps), lcid, dwFlags, &V_BSTR(pd));
405 case VT_UI8: return VarBstrFromUI8(V_UI8(ps), lcid, dwFlags, &V_BSTR(pd));
406 case VT_R4: return VarBstrFromR4(V_R4(ps), lcid, dwFlags, &V_BSTR(pd));
407 case VT_R8: return VarBstrFromR8(V_R8(ps), lcid, dwFlags, &V_BSTR(pd));
408 case VT_DATE: return VarBstrFromDate(V_DATE(ps), lcid, dwFlags, &V_BSTR(pd));
409 case VT_CY: return VarBstrFromCy(V_CY(ps), lcid, dwFlags, &V_BSTR(pd));
410 case VT_DECIMAL: return VarBstrFromDec(&V_DECIMAL(ps), lcid, dwFlags, &V_BSTR(pd));
411 case VT_DISPATCH: return VarBstrFromDisp(V_DISPATCH(ps), lcid, dwFlags, &V_BSTR(pd));
413 break;
415 case VT_CY:
416 switch (vtFrom)
418 case VT_EMPTY: V_CY(pd).int64 = 0; return S_OK;
419 case VT_I1: return VarCyFromI1(V_I1(ps), &V_CY(pd));
420 case VT_I2: return VarCyFromI2(V_I2(ps), &V_CY(pd));
421 case VT_I4: return VarCyFromI4(V_I4(ps), &V_CY(pd));
422 case VT_UI1: return VarCyFromUI1(V_UI1(ps), &V_CY(pd));
423 case VT_UI2: return VarCyFromUI2(V_UI2(ps), &V_CY(pd));
424 case VT_UI4: return VarCyFromUI4(V_UI4(ps), &V_CY(pd));
425 case VT_I8: return VarCyFromI8(V_I8(ps), &V_CY(pd));
426 case VT_UI8: return VarCyFromUI8(V_UI8(ps), &V_CY(pd));
427 case VT_R4: return VarCyFromR4(V_R4(ps), &V_CY(pd));
428 case VT_R8: return VarCyFromR8(V_R8(ps), &V_CY(pd));
429 case VT_DATE: return VarCyFromDate(V_DATE(ps), &V_CY(pd));
430 case VT_BOOL: return VarCyFromBool(V_BOOL(ps), &V_CY(pd));
431 case VT_DECIMAL: return VarCyFromDec(&V_DECIMAL(ps), &V_CY(pd));
432 case VT_DISPATCH: return VarCyFromDisp(V_DISPATCH(ps), lcid, &V_CY(pd));
433 case VT_BSTR: return VarCyFromStr(V_BSTR(ps), lcid, dwFlags, &V_CY(pd));
435 break;
437 case VT_DECIMAL:
438 switch (vtFrom)
440 case VT_EMPTY:
441 case VT_BOOL:
442 DEC_SIGNSCALE(&V_DECIMAL(pd)) = SIGNSCALE(DECIMAL_POS,0);
443 DEC_HI32(&V_DECIMAL(pd)) = 0;
444 DEC_MID32(&V_DECIMAL(pd)) = 0;
445 /* VarDecFromBool() coerces to -1/0, ChangeTypeEx() coerces to 1/0.
446 * VT_NULL and VT_EMPTY always give a 0 value.
448 DEC_LO32(&V_DECIMAL(pd)) = vtFrom == VT_BOOL && V_BOOL(ps) ? 1 : 0;
449 return S_OK;
450 case VT_I1: return VarDecFromI1(V_I1(ps), &V_DECIMAL(pd));
451 case VT_I2: return VarDecFromI2(V_I2(ps), &V_DECIMAL(pd));
452 case VT_I4: return VarDecFromI4(V_I4(ps), &V_DECIMAL(pd));
453 case VT_UI1: return VarDecFromUI1(V_UI1(ps), &V_DECIMAL(pd));
454 case VT_UI2: return VarDecFromUI2(V_UI2(ps), &V_DECIMAL(pd));
455 case VT_UI4: return VarDecFromUI4(V_UI4(ps), &V_DECIMAL(pd));
456 case VT_I8: return VarDecFromI8(V_I8(ps), &V_DECIMAL(pd));
457 case VT_UI8: return VarDecFromUI8(V_UI8(ps), &V_DECIMAL(pd));
458 case VT_R4: return VarDecFromR4(V_R4(ps), &V_DECIMAL(pd));
459 case VT_R8: return VarDecFromR8(V_R8(ps), &V_DECIMAL(pd));
460 case VT_DATE: return VarDecFromDate(V_DATE(ps), &V_DECIMAL(pd));
461 case VT_CY: return VarDecFromCy(V_CY(ps), &V_DECIMAL(pd));
462 case VT_DISPATCH: return VarDecFromDisp(V_DISPATCH(ps), lcid, &V_DECIMAL(pd));
463 case VT_BSTR: return VarDecFromStr(V_BSTR(ps), lcid, dwFlags, &V_DECIMAL(pd));
465 break;
467 case VT_UNKNOWN:
468 switch (vtFrom)
470 case VT_DISPATCH:
471 if (V_DISPATCH(ps) == NULL)
472 V_UNKNOWN(pd) = NULL;
473 else
474 res = IDispatch_QueryInterface(V_DISPATCH(ps), &IID_IUnknown, (LPVOID*)&V_UNKNOWN(pd));
475 break;
477 break;
479 case VT_DISPATCH:
480 switch (vtFrom)
482 case VT_UNKNOWN:
483 if (V_UNKNOWN(ps) == NULL)
484 V_DISPATCH(pd) = NULL;
485 else
486 res = IUnknown_QueryInterface(V_UNKNOWN(ps), &IID_IDispatch, (LPVOID*)&V_DISPATCH(pd));
487 break;
489 break;
491 case VT_RECORD:
492 break;
494 return res;
497 /* Coerce to/from an array */
498 static inline HRESULT VARIANT_CoerceArray(VARIANTARG* pd, VARIANTARG* ps, VARTYPE vt)
500 if (vt == VT_BSTR && V_VT(ps) == (VT_ARRAY|VT_UI1))
501 return BstrFromVector(V_ARRAY(ps), &V_BSTR(pd));
503 if (V_VT(ps) == VT_BSTR && vt == (VT_ARRAY|VT_UI1))
504 return VectorFromBstr(V_BSTR(ps), &V_ARRAY(pd));
506 if (V_VT(ps) == vt)
507 return SafeArrayCopy(V_ARRAY(ps), &V_ARRAY(pd));
509 return DISP_E_TYPEMISMATCH;
512 /******************************************************************************
513 * Check if a variants type is valid.
515 static inline HRESULT VARIANT_ValidateType(VARTYPE vt)
517 VARTYPE vtExtra = vt & VT_EXTRA_TYPE;
519 vt &= VT_TYPEMASK;
521 if (!(vtExtra & (VT_VECTOR|VT_RESERVED)))
523 if (vt < VT_VOID || vt == VT_RECORD || vt == VT_CLSID)
525 if ((vtExtra & (VT_BYREF|VT_ARRAY)) && vt <= VT_NULL)
526 return DISP_E_BADVARTYPE;
527 if (vt != (VARTYPE)15)
528 return S_OK;
531 return DISP_E_BADVARTYPE;
534 /******************************************************************************
535 * VariantInit [OLEAUT32.8]
537 * Initialise a variant.
539 * PARAMS
540 * pVarg [O] Variant to initialise
542 * RETURNS
543 * Nothing.
545 * NOTES
546 * This function simply sets the type of the variant to VT_EMPTY. It does not
547 * free any existing value, use VariantClear() for that.
549 void WINAPI VariantInit(VARIANTARG* pVarg)
551 TRACE("(%p)\n", pVarg);
553 /* Win8.1 zeroes whole struct. Previous implementations don't set any other fields. */
554 V_VT(pVarg) = VT_EMPTY;
557 HRESULT VARIANT_ClearInd(VARIANTARG *pVarg)
559 HRESULT hres;
561 TRACE("(%s)\n", debugstr_variant(pVarg));
563 hres = VARIANT_ValidateType(V_VT(pVarg));
564 if (FAILED(hres))
565 return hres;
567 switch (V_VT(pVarg))
569 case VT_DISPATCH:
570 case VT_UNKNOWN:
571 if (V_UNKNOWN(pVarg))
572 IUnknown_Release(V_UNKNOWN(pVarg));
573 break;
574 case VT_UNKNOWN | VT_BYREF:
575 case VT_DISPATCH | VT_BYREF:
576 if(*V_UNKNOWNREF(pVarg))
577 IUnknown_Release(*V_UNKNOWNREF(pVarg));
578 break;
579 case VT_BSTR:
580 SysFreeString(V_BSTR(pVarg));
581 break;
582 case VT_BSTR | VT_BYREF:
583 SysFreeString(*V_BSTRREF(pVarg));
584 break;
585 case VT_VARIANT | VT_BYREF:
586 VariantClear(V_VARIANTREF(pVarg));
587 break;
588 case VT_RECORD:
589 case VT_RECORD | VT_BYREF:
591 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
592 if (pBr->pRecInfo)
594 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
595 IRecordInfo_Release(pBr->pRecInfo);
597 break;
599 default:
600 if (V_ISARRAY(pVarg) || (V_VT(pVarg) & ~VT_BYREF) == VT_SAFEARRAY)
602 if (V_ISBYREF(pVarg))
604 if (*V_ARRAYREF(pVarg))
605 hres = SafeArrayDestroy(*V_ARRAYREF(pVarg));
607 else if (V_ARRAY(pVarg))
608 hres = SafeArrayDestroy(V_ARRAY(pVarg));
610 break;
613 V_VT(pVarg) = VT_EMPTY;
614 return hres;
617 /******************************************************************************
618 * VariantClear [OLEAUT32.9]
620 * Clear a variant.
622 * PARAMS
623 * pVarg [I/O] Variant to clear
625 * RETURNS
626 * Success: S_OK. Any previous value in pVarg is freed and its type is set to VT_EMPTY.
627 * Failure: DISP_E_BADVARTYPE, if the variant is not a valid variant type.
629 HRESULT WINAPI VariantClear(VARIANTARG* pVarg)
631 HRESULT hres;
633 TRACE("(%s)\n", debugstr_variant(pVarg));
635 hres = VARIANT_ValidateType(V_VT(pVarg));
637 if (SUCCEEDED(hres))
639 if (!V_ISBYREF(pVarg))
641 if (V_ISARRAY(pVarg) || V_VT(pVarg) == VT_SAFEARRAY)
643 hres = SafeArrayDestroy(V_ARRAY(pVarg));
645 else if (V_VT(pVarg) == VT_BSTR)
647 SysFreeString(V_BSTR(pVarg));
649 else if (V_VT(pVarg) == VT_RECORD)
651 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
652 if (pBr->pRecInfo)
654 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
655 IRecordInfo_Release(pBr->pRecInfo);
658 else if (V_VT(pVarg) == VT_DISPATCH ||
659 V_VT(pVarg) == VT_UNKNOWN)
661 if (V_UNKNOWN(pVarg))
662 IUnknown_Release(V_UNKNOWN(pVarg));
665 V_VT(pVarg) = VT_EMPTY;
667 return hres;
670 /******************************************************************************
671 * Copy an IRecordInfo object contained in a variant.
673 static HRESULT VARIANT_CopyIRecordInfo(VARIANT *dest, VARIANT *src)
675 struct __tagBRECORD *dest_rec = &V_UNION(dest, brecVal);
676 struct __tagBRECORD *src_rec = &V_UNION(src, brecVal);
677 HRESULT hr = S_OK;
678 ULONG size;
680 if (!src_rec->pRecInfo)
682 if (src_rec->pvRecord) return E_INVALIDARG;
683 return S_OK;
686 hr = IRecordInfo_GetSize(src_rec->pRecInfo, &size);
687 if (FAILED(hr)) return hr;
689 /* This could look cleaner if only RecordCreate() was used, but native doesn't use it.
690 Memory should be allocated in a same way as RecordCreate() does, so RecordDestroy()
691 could free it later. */
692 dest_rec->pvRecord = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, size);
693 if (!dest_rec->pvRecord) return E_OUTOFMEMORY;
695 dest_rec->pRecInfo = src_rec->pRecInfo;
696 IRecordInfo_AddRef(src_rec->pRecInfo);
698 return IRecordInfo_RecordCopy(src_rec->pRecInfo, src_rec->pvRecord, dest_rec->pvRecord);
701 /******************************************************************************
702 * VariantCopy [OLEAUT32.10]
704 * Copy a variant.
706 * PARAMS
707 * pvargDest [O] Destination for copy
708 * pvargSrc [I] Source variant to copy
710 * RETURNS
711 * Success: S_OK. pvargDest contains a copy of pvargSrc.
712 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid type.
713 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
714 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
715 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
717 * NOTES
718 * - If pvargSrc == pvargDest, this function does nothing, and succeeds if
719 * pvargSrc is valid. Otherwise, pvargDest is always cleared using
720 * VariantClear() before pvargSrc is copied to it. If clearing pvargDest
721 * fails, so does this function.
722 * - VT_CLSID is a valid type type for pvargSrc, but not for pvargDest.
723 * - For by-value non-intrinsic types, a deep copy is made, i.e. The whole value
724 * is copied rather than just any pointers to it.
725 * - For by-value object types the object pointer is copied and the objects
726 * reference count increased using IUnknown_AddRef().
727 * - For all by-reference types, only the referencing pointer is copied.
729 HRESULT WINAPI VariantCopy(VARIANTARG* pvargDest, VARIANTARG* pvargSrc)
731 HRESULT hres = S_OK;
733 TRACE("(%s,%s)\n", debugstr_variant(pvargDest), debugstr_variant(pvargSrc));
735 if (V_TYPE(pvargSrc) == VT_CLSID || /* VT_CLSID is a special case */
736 FAILED(VARIANT_ValidateType(V_VT(pvargSrc))))
737 return DISP_E_BADVARTYPE;
739 if (pvargSrc != pvargDest &&
740 SUCCEEDED(hres = VariantClear(pvargDest)))
742 *pvargDest = *pvargSrc; /* Shallow copy the value */
744 if (!V_ISBYREF(pvargSrc))
746 switch (V_VT(pvargSrc))
748 case VT_BSTR:
749 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)V_BSTR(pvargSrc), SysStringByteLen(V_BSTR(pvargSrc)));
750 if (!V_BSTR(pvargDest))
751 hres = E_OUTOFMEMORY;
752 break;
753 case VT_RECORD:
754 hres = VARIANT_CopyIRecordInfo(pvargDest, pvargSrc);
755 break;
756 case VT_DISPATCH:
757 case VT_UNKNOWN:
758 V_UNKNOWN(pvargDest) = V_UNKNOWN(pvargSrc);
759 if (V_UNKNOWN(pvargSrc))
760 IUnknown_AddRef(V_UNKNOWN(pvargSrc));
761 break;
762 default:
763 if (V_ISARRAY(pvargSrc))
764 hres = SafeArrayCopy(V_ARRAY(pvargSrc), &V_ARRAY(pvargDest));
768 return hres;
771 /* Return the byte size of a variants data */
772 static inline size_t VARIANT_DataSize(const VARIANT* pv)
774 switch (V_TYPE(pv))
776 case VT_I1:
777 case VT_UI1: return sizeof(BYTE);
778 case VT_I2:
779 case VT_UI2: return sizeof(SHORT);
780 case VT_INT:
781 case VT_UINT:
782 case VT_I4:
783 case VT_UI4: return sizeof(LONG);
784 case VT_I8:
785 case VT_UI8: return sizeof(LONGLONG);
786 case VT_R4: return sizeof(float);
787 case VT_R8: return sizeof(double);
788 case VT_DATE: return sizeof(DATE);
789 case VT_BOOL: return sizeof(VARIANT_BOOL);
790 case VT_DISPATCH:
791 case VT_UNKNOWN:
792 case VT_BSTR: return sizeof(void*);
793 case VT_CY: return sizeof(CY);
794 case VT_ERROR: return sizeof(SCODE);
796 TRACE("Shouldn't be called for variant %s!\n", debugstr_variant(pv));
797 return 0;
800 /******************************************************************************
801 * VariantCopyInd [OLEAUT32.11]
803 * Copy a variant, dereferencing it if it is by-reference.
805 * PARAMS
806 * pvargDest [O] Destination for copy
807 * pvargSrc [I] Source variant to copy
809 * RETURNS
810 * Success: S_OK. pvargDest contains a copy of pvargSrc.
811 * Failure: An HRESULT error code indicating the error.
813 * NOTES
814 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid by-value type.
815 * E_INVALIDARG, if pvargSrc is an invalid by-reference type.
816 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
817 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
818 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
820 * NOTES
821 * - If pvargSrc is by-value, this function behaves exactly as VariantCopy().
822 * - If pvargSrc is by-reference, the value copied to pvargDest is the pointed-to
823 * value.
824 * - if pvargSrc == pvargDest, this function dereferences in place. Otherwise,
825 * pvargDest is always cleared using VariantClear() before pvargSrc is copied
826 * to it. If clearing pvargDest fails, so does this function.
828 HRESULT WINAPI VariantCopyInd(VARIANT* pvargDest, VARIANTARG* pvargSrc)
830 VARIANTARG vTmp, *pSrc = pvargSrc;
831 VARTYPE vt;
832 HRESULT hres = S_OK;
834 TRACE("(%s,%s)\n", debugstr_variant(pvargDest), debugstr_variant(pvargSrc));
836 if (!V_ISBYREF(pvargSrc))
837 return VariantCopy(pvargDest, pvargSrc);
839 /* Argument checking is more lax than VariantCopy()... */
840 vt = V_TYPE(pvargSrc);
841 if (V_ISARRAY(pvargSrc) || (V_VT(pvargSrc) == (VT_RECORD|VT_BYREF)) ||
842 (vt > VT_NULL && vt != (VARTYPE)15 && vt < VT_VOID &&
843 !(V_VT(pvargSrc) & (VT_VECTOR|VT_RESERVED))))
845 /* OK */
847 else
848 return E_INVALIDARG; /* ...And the return value for invalid types differs too */
850 if (pvargSrc == pvargDest)
852 /* In place copy. Use a shallow copy of pvargSrc & init pvargDest.
853 * This avoids an expensive VariantCopy() call - e.g. SafeArrayCopy().
855 vTmp = *pvargSrc;
856 pSrc = &vTmp;
857 V_VT(pvargDest) = VT_EMPTY;
859 else
861 /* Copy into another variant. Free the variant in pvargDest */
862 if (FAILED(hres = VariantClear(pvargDest)))
864 TRACE("VariantClear() of destination failed\n");
865 return hres;
869 if (V_ISARRAY(pSrc))
871 /* Native doesn't check that *V_ARRAYREF(pSrc) is valid */
872 hres = SafeArrayCopy(*V_ARRAYREF(pSrc), &V_ARRAY(pvargDest));
874 else if (V_VT(pSrc) == (VT_BSTR|VT_BYREF))
876 /* Native doesn't check that *V_BSTRREF(pSrc) is valid */
877 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)*V_BSTRREF(pSrc), SysStringByteLen(*V_BSTRREF(pSrc)));
879 else if (V_VT(pSrc) == (VT_RECORD|VT_BYREF))
881 hres = VARIANT_CopyIRecordInfo(pvargDest, pvargSrc);
883 else if (V_VT(pSrc) == (VT_DISPATCH|VT_BYREF) ||
884 V_VT(pSrc) == (VT_UNKNOWN|VT_BYREF))
886 /* Native doesn't check that *V_UNKNOWNREF(pSrc) is valid */
887 V_UNKNOWN(pvargDest) = *V_UNKNOWNREF(pSrc);
888 if (*V_UNKNOWNREF(pSrc))
889 IUnknown_AddRef(*V_UNKNOWNREF(pSrc));
891 else if (V_VT(pSrc) == (VT_VARIANT|VT_BYREF))
893 /* Native doesn't check that *V_VARIANTREF(pSrc) is valid */
894 if (V_VT(V_VARIANTREF(pSrc)) == (VT_VARIANT|VT_BYREF))
895 hres = E_INVALIDARG; /* Don't dereference more than one level */
896 else
897 hres = VariantCopyInd(pvargDest, V_VARIANTREF(pSrc));
899 /* Use the dereferenced variants type value, not VT_VARIANT */
900 goto VariantCopyInd_Return;
902 else if (V_VT(pSrc) == (VT_DECIMAL|VT_BYREF))
904 memcpy(&DEC_SCALE(&V_DECIMAL(pvargDest)), &DEC_SCALE(V_DECIMALREF(pSrc)),
905 sizeof(DECIMAL) - sizeof(USHORT));
907 else
909 /* Copy the pointed to data into this variant */
910 memcpy(&V_BYREF(pvargDest), V_BYREF(pSrc), VARIANT_DataSize(pSrc));
913 V_VT(pvargDest) = V_VT(pSrc) & ~VT_BYREF;
915 VariantCopyInd_Return:
917 if (pSrc != pvargSrc)
918 VariantClear(pSrc);
920 TRACE("returning 0x%08x, %s\n", hres, debugstr_variant(pvargDest));
921 return hres;
924 /******************************************************************************
925 * VariantChangeType [OLEAUT32.12]
927 * Change the type of a variant.
929 * PARAMS
930 * pvargDest [O] Destination for the converted variant
931 * pvargSrc [O] Source variant to change the type of
932 * wFlags [I] VARIANT_ flags from "oleauto.h"
933 * vt [I] Variant type to change pvargSrc into
935 * RETURNS
936 * Success: S_OK. pvargDest contains the converted value.
937 * Failure: An HRESULT error code describing the failure.
939 * NOTES
940 * The LCID used for the conversion is LOCALE_USER_DEFAULT.
941 * See VariantChangeTypeEx.
943 HRESULT WINAPI VariantChangeType(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
944 USHORT wFlags, VARTYPE vt)
946 return VariantChangeTypeEx( pvargDest, pvargSrc, LOCALE_USER_DEFAULT, wFlags, vt );
949 /******************************************************************************
950 * VariantChangeTypeEx [OLEAUT32.147]
952 * Change the type of a variant.
954 * PARAMS
955 * pvargDest [O] Destination for the converted variant
956 * pvargSrc [O] Source variant to change the type of
957 * lcid [I] LCID for the conversion
958 * wFlags [I] VARIANT_ flags from "oleauto.h"
959 * vt [I] Variant type to change pvargSrc into
961 * RETURNS
962 * Success: S_OK. pvargDest contains the converted value.
963 * Failure: An HRESULT error code describing the failure.
965 * NOTES
966 * pvargDest and pvargSrc can point to the same variant to perform an in-place
967 * conversion. If the conversion is successful, pvargSrc will be freed.
969 HRESULT WINAPI VariantChangeTypeEx(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
970 LCID lcid, USHORT wFlags, VARTYPE vt)
972 HRESULT res = S_OK;
974 TRACE("(%s,%s,0x%08x,0x%04x,%s)\n", debugstr_variant(pvargDest),
975 debugstr_variant(pvargSrc), lcid, wFlags, debugstr_vt(vt));
977 if (vt == VT_CLSID)
978 res = DISP_E_BADVARTYPE;
979 else
981 res = VARIANT_ValidateType(V_VT(pvargSrc));
983 if (SUCCEEDED(res))
985 res = VARIANT_ValidateType(vt);
987 if (SUCCEEDED(res))
989 VARIANTARG vTmp, vSrcDeref;
991 if(V_ISBYREF(pvargSrc) && !V_BYREF(pvargSrc))
992 res = DISP_E_TYPEMISMATCH;
993 else
995 V_VT(&vTmp) = VT_EMPTY;
996 V_VT(&vSrcDeref) = VT_EMPTY;
997 VariantClear(&vTmp);
998 VariantClear(&vSrcDeref);
1001 if (SUCCEEDED(res))
1003 res = VariantCopyInd(&vSrcDeref, pvargSrc);
1004 if (SUCCEEDED(res))
1006 if (V_ISARRAY(&vSrcDeref) || (vt & VT_ARRAY))
1007 res = VARIANT_CoerceArray(&vTmp, &vSrcDeref, vt);
1008 else
1009 res = VARIANT_Coerce(&vTmp, lcid, wFlags, &vSrcDeref, vt);
1011 if (SUCCEEDED(res)) {
1012 V_VT(&vTmp) = vt;
1013 res = VariantCopy(pvargDest, &vTmp);
1015 VariantClear(&vTmp);
1016 VariantClear(&vSrcDeref);
1023 TRACE("returning 0x%08x, %s\n", res, debugstr_variant(pvargDest));
1024 return res;
1027 /* Date Conversions */
1029 #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
1031 /* Convert a VT_DATE value to a Julian Date */
1032 static inline int VARIANT_JulianFromDate(int dateIn)
1034 int julianDays = dateIn;
1036 julianDays -= DATE_MIN; /* Convert to + days from 1 Jan 100 AD */
1037 julianDays += 1757585; /* Convert to + days from 23 Nov 4713 BC (Julian) */
1038 return julianDays;
1041 /* Convert a Julian Date to a VT_DATE value */
1042 static inline int VARIANT_DateFromJulian(int dateIn)
1044 int julianDays = dateIn;
1046 julianDays -= 1757585; /* Convert to + days from 1 Jan 100 AD */
1047 julianDays += DATE_MIN; /* Convert to +/- days from 1 Jan 1899 AD */
1048 return julianDays;
1051 /* Convert a Julian date to Day/Month/Year - from PostgreSQL */
1052 static inline void VARIANT_DMYFromJulian(int jd, USHORT *year, USHORT *month, USHORT *day)
1054 int j, i, l, n;
1056 l = jd + 68569;
1057 n = l * 4 / 146097;
1058 l -= (n * 146097 + 3) / 4;
1059 i = (4000 * (l + 1)) / 1461001;
1060 l += 31 - (i * 1461) / 4;
1061 j = (l * 80) / 2447;
1062 *day = l - (j * 2447) / 80;
1063 l = j / 11;
1064 *month = (j + 2) - (12 * l);
1065 *year = 100 * (n - 49) + i + l;
1068 /* Convert Day/Month/Year to a Julian date - from PostgreSQL */
1069 static inline double VARIANT_JulianFromDMY(USHORT year, USHORT month, USHORT day)
1071 int m12 = (month - 14) / 12;
1073 return ((1461 * (year + 4800 + m12)) / 4 + (367 * (month - 2 - 12 * m12)) / 12 -
1074 (3 * ((year + 4900 + m12) / 100)) / 4 + day - 32075);
1077 /* Macros for accessing DOS format date/time fields */
1078 #define DOS_YEAR(x) (1980 + (x >> 9))
1079 #define DOS_MONTH(x) ((x >> 5) & 0xf)
1080 #define DOS_DAY(x) (x & 0x1f)
1081 #define DOS_HOUR(x) (x >> 11)
1082 #define DOS_MINUTE(x) ((x >> 5) & 0x3f)
1083 #define DOS_SECOND(x) ((x & 0x1f) << 1)
1084 /* Create a DOS format date/time */
1085 #define DOS_DATE(d,m,y) (d | (m << 5) | ((y-1980) << 9))
1086 #define DOS_TIME(h,m,s) ((s >> 1) | (m << 5) | (h << 11))
1088 /* Roll a date forwards or backwards to correct it */
1089 static HRESULT VARIANT_RollUdate(UDATE *lpUd)
1091 static const BYTE days[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
1092 short iYear, iMonth, iDay, iHour, iMinute, iSecond;
1094 /* interpret values signed */
1095 iYear = lpUd->st.wYear;
1096 iMonth = lpUd->st.wMonth;
1097 iDay = lpUd->st.wDay;
1098 iHour = lpUd->st.wHour;
1099 iMinute = lpUd->st.wMinute;
1100 iSecond = lpUd->st.wSecond;
1102 TRACE("Raw date: %d/%d/%d %d:%d:%d\n", iDay, iMonth,
1103 iYear, iHour, iMinute, iSecond);
1105 if (iYear > 9999 || iYear < -9999)
1106 return E_INVALIDARG; /* Invalid value */
1107 /* Year 0 to 29 are treated as 2000 + year */
1108 if (iYear >= 0 && iYear < 30)
1109 iYear += 2000;
1110 /* Remaining years < 100 are treated as 1900 + year */
1111 else if (iYear >= 30 && iYear < 100)
1112 iYear += 1900;
1114 iMinute += iSecond / 60;
1115 iSecond = iSecond % 60;
1116 iHour += iMinute / 60;
1117 iMinute = iMinute % 60;
1118 iDay += iHour / 24;
1119 iHour = iHour % 24;
1120 iYear += iMonth / 12;
1121 iMonth = iMonth % 12;
1122 if (iMonth<=0) {iMonth+=12; iYear--;}
1123 while (iDay > days[iMonth])
1125 if (iMonth == 2 && IsLeapYear(iYear))
1126 iDay -= 29;
1127 else
1128 iDay -= days[iMonth];
1129 iMonth++;
1130 iYear += iMonth / 12;
1131 iMonth = iMonth % 12;
1133 while (iDay <= 0)
1135 iMonth--;
1136 if (iMonth<=0) {iMonth+=12; iYear--;}
1137 if (iMonth == 2 && IsLeapYear(iYear))
1138 iDay += 29;
1139 else
1140 iDay += days[iMonth];
1143 if (iSecond<0){iSecond+=60; iMinute--;}
1144 if (iMinute<0){iMinute+=60; iHour--;}
1145 if (iHour<0) {iHour+=24; iDay--;}
1146 if (iYear<=0) iYear+=2000;
1148 lpUd->st.wYear = iYear;
1149 lpUd->st.wMonth = iMonth;
1150 lpUd->st.wDay = iDay;
1151 lpUd->st.wHour = iHour;
1152 lpUd->st.wMinute = iMinute;
1153 lpUd->st.wSecond = iSecond;
1155 TRACE("Rolled date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth,
1156 lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond);
1157 return S_OK;
1160 /**********************************************************************
1161 * DosDateTimeToVariantTime [OLEAUT32.14]
1163 * Convert a Dos format date and time into variant VT_DATE format.
1165 * PARAMS
1166 * wDosDate [I] Dos format date
1167 * wDosTime [I] Dos format time
1168 * pDateOut [O] Destination for VT_DATE format
1170 * RETURNS
1171 * Success: TRUE. pDateOut contains the converted time.
1172 * Failure: FALSE, if wDosDate or wDosTime are invalid (see notes).
1174 * NOTES
1175 * - Dos format dates can only hold dates from 1-Jan-1980 to 31-Dec-2099.
1176 * - Dos format times are accurate to only 2 second precision.
1177 * - The format of a Dos Date is:
1178 *| Bits Values Meaning
1179 *| ---- ------ -------
1180 *| 0-4 1-31 Day of the week. 0 rolls back one day. A value greater than
1181 *| the days in the month rolls forward the extra days.
1182 *| 5-8 1-12 Month of the year. 0 rolls back to December of the previous
1183 *| year. 13-15 are invalid.
1184 *| 9-15 0-119 Year based from 1980 (Max 2099). 120-127 are invalid.
1185 * - The format of a Dos Time is:
1186 *| Bits Values Meaning
1187 *| ---- ------ -------
1188 *| 0-4 0-29 Seconds/2. 30 and 31 are invalid.
1189 *| 5-10 0-59 Minutes. 60-63 are invalid.
1190 *| 11-15 0-23 Hours (24 hour clock). 24-32 are invalid.
1192 INT WINAPI DosDateTimeToVariantTime(USHORT wDosDate, USHORT wDosTime,
1193 double *pDateOut)
1195 UDATE ud;
1197 TRACE("(0x%x(%d/%d/%d),0x%x(%d:%d:%d),%p)\n",
1198 wDosDate, DOS_YEAR(wDosDate), DOS_MONTH(wDosDate), DOS_DAY(wDosDate),
1199 wDosTime, DOS_HOUR(wDosTime), DOS_MINUTE(wDosTime), DOS_SECOND(wDosTime),
1200 pDateOut);
1202 ud.st.wYear = DOS_YEAR(wDosDate);
1203 ud.st.wMonth = DOS_MONTH(wDosDate);
1204 if (ud.st.wYear > 2099 || ud.st.wMonth > 12)
1205 return FALSE;
1206 ud.st.wDay = DOS_DAY(wDosDate);
1207 ud.st.wHour = DOS_HOUR(wDosTime);
1208 ud.st.wMinute = DOS_MINUTE(wDosTime);
1209 ud.st.wSecond = DOS_SECOND(wDosTime);
1210 ud.st.wDayOfWeek = ud.st.wMilliseconds = 0;
1211 if (ud.st.wHour > 23 || ud.st.wMinute > 59 || ud.st.wSecond > 59)
1212 return FALSE; /* Invalid values in Dos*/
1214 return VarDateFromUdate(&ud, 0, pDateOut) == S_OK;
1217 /**********************************************************************
1218 * VariantTimeToDosDateTime [OLEAUT32.13]
1220 * Convert a variant format date into a Dos format date and time.
1222 * dateIn [I] VT_DATE time format
1223 * pwDosDate [O] Destination for Dos format date
1224 * pwDosTime [O] Destination for Dos format time
1226 * RETURNS
1227 * Success: TRUE. pwDosDate and pwDosTime contains the converted values.
1228 * Failure: FALSE, if dateIn cannot be represented in Dos format.
1230 * NOTES
1231 * See DosDateTimeToVariantTime() for Dos format details and bugs.
1233 INT WINAPI VariantTimeToDosDateTime(double dateIn, USHORT *pwDosDate, USHORT *pwDosTime)
1235 UDATE ud;
1237 TRACE("(%g,%p,%p)\n", dateIn, pwDosDate, pwDosTime);
1239 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1240 return FALSE;
1242 if (ud.st.wYear < 1980 || ud.st.wYear > 2099)
1243 return FALSE;
1245 *pwDosDate = DOS_DATE(ud.st.wDay, ud.st.wMonth, ud.st.wYear);
1246 *pwDosTime = DOS_TIME(ud.st.wHour, ud.st.wMinute, ud.st.wSecond);
1248 TRACE("Returning 0x%x(%d/%d/%d), 0x%x(%d:%d:%d)\n",
1249 *pwDosDate, DOS_YEAR(*pwDosDate), DOS_MONTH(*pwDosDate), DOS_DAY(*pwDosDate),
1250 *pwDosTime, DOS_HOUR(*pwDosTime), DOS_MINUTE(*pwDosTime), DOS_SECOND(*pwDosTime));
1251 return TRUE;
1254 /***********************************************************************
1255 * SystemTimeToVariantTime [OLEAUT32.184]
1257 * Convert a System format date and time into variant VT_DATE format.
1259 * PARAMS
1260 * lpSt [I] System format date and time
1261 * pDateOut [O] Destination for VT_DATE format date
1263 * RETURNS
1264 * Success: TRUE. *pDateOut contains the converted value.
1265 * Failure: FALSE, if lpSt cannot be represented in VT_DATE format.
1267 INT WINAPI SystemTimeToVariantTime(LPSYSTEMTIME lpSt, double *pDateOut)
1269 UDATE ud;
1271 TRACE("(%p->%d/%d/%d %d:%d:%d,%p)\n", lpSt, lpSt->wDay, lpSt->wMonth,
1272 lpSt->wYear, lpSt->wHour, lpSt->wMinute, lpSt->wSecond, pDateOut);
1274 if (lpSt->wMonth > 12)
1275 return FALSE;
1276 if (lpSt->wDay > 31)
1277 return FALSE;
1278 if ((short)lpSt->wYear < 0)
1279 return FALSE;
1281 ud.st = *lpSt;
1282 return VarDateFromUdate(&ud, 0, pDateOut) == S_OK;
1285 /***********************************************************************
1286 * VariantTimeToSystemTime [OLEAUT32.185]
1288 * Convert a variant VT_DATE into a System format date and time.
1290 * PARAMS
1291 * datein [I] Variant VT_DATE format date
1292 * lpSt [O] Destination for System format date and time
1294 * RETURNS
1295 * Success: TRUE. *lpSt contains the converted value.
1296 * Failure: FALSE, if dateIn is too large or small.
1298 INT WINAPI VariantTimeToSystemTime(double dateIn, LPSYSTEMTIME lpSt)
1300 UDATE ud;
1302 TRACE("(%g,%p)\n", dateIn, lpSt);
1304 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1305 return FALSE;
1307 *lpSt = ud.st;
1308 return TRUE;
1311 /***********************************************************************
1312 * VarDateFromUdateEx [OLEAUT32.319]
1314 * Convert an unpacked format date and time to a variant VT_DATE.
1316 * PARAMS
1317 * pUdateIn [I] Unpacked format date and time to convert
1318 * lcid [I] Locale identifier for the conversion
1319 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1320 * pDateOut [O] Destination for variant VT_DATE.
1322 * RETURNS
1323 * Success: S_OK. *pDateOut contains the converted value.
1324 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1326 HRESULT WINAPI VarDateFromUdateEx(UDATE *pUdateIn, LCID lcid, ULONG dwFlags, DATE *pDateOut)
1328 UDATE ud;
1329 double dateVal = 0;
1331 TRACE("(%p->%d/%d/%d %d:%d:%d:%d %d %d,0x%08x,0x%08x,%p)\n", pUdateIn,
1332 pUdateIn->st.wMonth, pUdateIn->st.wDay, pUdateIn->st.wYear,
1333 pUdateIn->st.wHour, pUdateIn->st.wMinute, pUdateIn->st.wSecond,
1334 pUdateIn->st.wMilliseconds, pUdateIn->st.wDayOfWeek,
1335 pUdateIn->wDayOfYear, lcid, dwFlags, pDateOut);
1337 if (lcid != MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT))
1338 FIXME("lcid possibly not handled, treating as en-us\n");
1339 if (dwFlags & ~(VAR_TIMEVALUEONLY|VAR_DATEVALUEONLY))
1340 FIXME("unsupported flags: %x\n", dwFlags);
1342 ud = *pUdateIn;
1344 if (dwFlags & VAR_VALIDDATE)
1345 WARN("Ignoring VAR_VALIDDATE\n");
1347 if (FAILED(VARIANT_RollUdate(&ud)))
1348 return E_INVALIDARG;
1350 /* Date */
1351 if (!(dwFlags & VAR_TIMEVALUEONLY))
1352 dateVal = VARIANT_DateFromJulian(VARIANT_JulianFromDMY(ud.st.wYear, ud.st.wMonth, ud.st.wDay));
1354 if ((dwFlags & VAR_TIMEVALUEONLY) || !(dwFlags & VAR_DATEVALUEONLY))
1356 double dateSign = (dateVal < 0.0) ? -1.0 : 1.0;
1358 /* Time */
1359 dateVal += ud.st.wHour / 24.0 * dateSign;
1360 dateVal += ud.st.wMinute / 1440.0 * dateSign;
1361 dateVal += ud.st.wSecond / 86400.0 * dateSign;
1364 TRACE("Returning %g\n", dateVal);
1365 *pDateOut = dateVal;
1366 return S_OK;
1369 /***********************************************************************
1370 * VarDateFromUdate [OLEAUT32.330]
1372 * Convert an unpacked format date and time to a variant VT_DATE.
1374 * PARAMS
1375 * pUdateIn [I] Unpacked format date and time to convert
1376 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1377 * pDateOut [O] Destination for variant VT_DATE.
1379 * RETURNS
1380 * Success: S_OK. *pDateOut contains the converted value.
1381 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1383 * NOTES
1384 * This function uses the United States English locale for the conversion. Use
1385 * VarDateFromUdateEx() for alternate locales.
1387 HRESULT WINAPI VarDateFromUdate(UDATE *pUdateIn, ULONG dwFlags, DATE *pDateOut)
1389 LCID lcid = MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT);
1391 return VarDateFromUdateEx(pUdateIn, lcid, dwFlags, pDateOut);
1394 /***********************************************************************
1395 * VarUdateFromDate [OLEAUT32.331]
1397 * Convert a variant VT_DATE into an unpacked format date and time.
1399 * PARAMS
1400 * datein [I] Variant VT_DATE format date
1401 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1402 * lpUdate [O] Destination for unpacked format date and time
1404 * RETURNS
1405 * Success: S_OK. *lpUdate contains the converted value.
1406 * Failure: E_INVALIDARG, if dateIn is too large or small.
1408 HRESULT WINAPI VarUdateFromDate(DATE dateIn, ULONG dwFlags, UDATE *lpUdate)
1410 /* Cumulative totals of days per month */
1411 static const USHORT cumulativeDays[] =
1413 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
1415 double datePart, timePart;
1416 int julianDays;
1418 TRACE("(%g,0x%08x,%p)\n", dateIn, dwFlags, lpUdate);
1420 if (dateIn <= (DATE_MIN - 1.0) || dateIn >= (DATE_MAX + 1.0))
1421 return E_INVALIDARG;
1423 datePart = dateIn < 0.0 ? ceil(dateIn) : floor(dateIn);
1424 /* Compensate for int truncation (always downwards) */
1425 timePart = fabs(dateIn - datePart) + 0.00000000001;
1426 if (timePart >= 1.0)
1427 timePart -= 0.00000000001;
1429 /* Date */
1430 julianDays = VARIANT_JulianFromDate(dateIn);
1431 VARIANT_DMYFromJulian(julianDays, &lpUdate->st.wYear, &lpUdate->st.wMonth,
1432 &lpUdate->st.wDay);
1434 datePart = (datePart + 1.5) / 7.0;
1435 lpUdate->st.wDayOfWeek = (datePart - floor(datePart)) * 7;
1436 if (lpUdate->st.wDayOfWeek == 0)
1437 lpUdate->st.wDayOfWeek = 5;
1438 else if (lpUdate->st.wDayOfWeek == 1)
1439 lpUdate->st.wDayOfWeek = 6;
1440 else
1441 lpUdate->st.wDayOfWeek -= 2;
1443 if (lpUdate->st.wMonth > 2 && IsLeapYear(lpUdate->st.wYear))
1444 lpUdate->wDayOfYear = 1; /* After February, in a leap year */
1445 else
1446 lpUdate->wDayOfYear = 0;
1448 lpUdate->wDayOfYear += cumulativeDays[lpUdate->st.wMonth];
1449 lpUdate->wDayOfYear += lpUdate->st.wDay;
1451 /* Time */
1452 timePart *= 24.0;
1453 lpUdate->st.wHour = timePart;
1454 timePart -= lpUdate->st.wHour;
1455 timePart *= 60.0;
1456 lpUdate->st.wMinute = timePart;
1457 timePart -= lpUdate->st.wMinute;
1458 timePart *= 60.0;
1459 lpUdate->st.wSecond = timePart;
1460 timePart -= lpUdate->st.wSecond;
1461 lpUdate->st.wMilliseconds = 0;
1462 if (timePart > 0.5)
1464 /* Round the milliseconds, adjusting the time/date forward if needed */
1465 if (lpUdate->st.wSecond < 59)
1466 lpUdate->st.wSecond++;
1467 else
1469 lpUdate->st.wSecond = 0;
1470 if (lpUdate->st.wMinute < 59)
1471 lpUdate->st.wMinute++;
1472 else
1474 lpUdate->st.wMinute = 0;
1475 if (lpUdate->st.wHour < 23)
1476 lpUdate->st.wHour++;
1477 else
1479 lpUdate->st.wHour = 0;
1480 /* Roll over a whole day */
1481 if (++lpUdate->st.wDay > 28)
1482 VARIANT_RollUdate(lpUdate);
1487 return S_OK;
1490 #define GET_NUMBER_TEXT(fld,name) \
1491 buff[0] = 0; \
1492 if (!GetLocaleInfoW(lcid, lctype|fld, buff, 2)) \
1493 WARN("buffer too small for " #fld "\n"); \
1494 else \
1495 if (buff[0]) lpChars->name = buff[0]; \
1496 TRACE("lcid 0x%x, " #name "=%d '%c'\n", lcid, lpChars->name, lpChars->name)
1498 /* Get the valid number characters for an lcid */
1499 static void VARIANT_GetLocalisedNumberChars(VARIANT_NUMBER_CHARS *lpChars, LCID lcid, DWORD dwFlags)
1501 static const VARIANT_NUMBER_CHARS defaultChars = { '-','+','.',',','$',0,'.',',' };
1502 static VARIANT_NUMBER_CHARS lastChars;
1503 static LCID lastLcid = -1;
1504 static DWORD lastFlags = 0;
1505 LCTYPE lctype = dwFlags & LOCALE_NOUSEROVERRIDE;
1506 WCHAR buff[4];
1508 /* To make caching thread-safe, a critical section is needed */
1509 EnterCriticalSection(&cache_cs);
1511 /* Asking for default locale entries is very expensive: It is a registry
1512 server call. So cache one locally, as Microsoft does it too */
1513 if(lcid == lastLcid && dwFlags == lastFlags)
1515 memcpy(lpChars, &lastChars, sizeof(defaultChars));
1516 LeaveCriticalSection(&cache_cs);
1517 return;
1520 memcpy(lpChars, &defaultChars, sizeof(defaultChars));
1521 GET_NUMBER_TEXT(LOCALE_SNEGATIVESIGN, cNegativeSymbol);
1522 GET_NUMBER_TEXT(LOCALE_SPOSITIVESIGN, cPositiveSymbol);
1523 GET_NUMBER_TEXT(LOCALE_SDECIMAL, cDecimalPoint);
1524 GET_NUMBER_TEXT(LOCALE_STHOUSAND, cDigitSeparator);
1525 GET_NUMBER_TEXT(LOCALE_SMONDECIMALSEP, cCurrencyDecimalPoint);
1526 GET_NUMBER_TEXT(LOCALE_SMONTHOUSANDSEP, cCurrencyDigitSeparator);
1528 /* Local currency symbols are often 2 characters */
1529 lpChars->cCurrencyLocal2 = '\0';
1530 switch(GetLocaleInfoW(lcid, lctype|LOCALE_SCURRENCY, buff, sizeof(buff)/sizeof(WCHAR)))
1532 case 3: lpChars->cCurrencyLocal2 = buff[1]; /* Fall through */
1533 case 2: lpChars->cCurrencyLocal = buff[0];
1534 break;
1535 default: WARN("buffer too small for LOCALE_SCURRENCY\n");
1537 TRACE("lcid 0x%x, cCurrencyLocal =%d,%d '%c','%c'\n", lcid, lpChars->cCurrencyLocal,
1538 lpChars->cCurrencyLocal2, lpChars->cCurrencyLocal, lpChars->cCurrencyLocal2);
1540 memcpy(&lastChars, lpChars, sizeof(defaultChars));
1541 lastLcid = lcid;
1542 lastFlags = dwFlags;
1543 LeaveCriticalSection(&cache_cs);
1546 /* Number Parsing States */
1547 #define B_PROCESSING_EXPONENT 0x1
1548 #define B_NEGATIVE_EXPONENT 0x2
1549 #define B_EXPONENT_START 0x4
1550 #define B_INEXACT_ZEROS 0x8
1551 #define B_LEADING_ZERO 0x10
1552 #define B_PROCESSING_HEX 0x20
1553 #define B_PROCESSING_OCT 0x40
1555 /**********************************************************************
1556 * VarParseNumFromStr [OLEAUT32.46]
1558 * Parse a string containing a number into a NUMPARSE structure.
1560 * PARAMS
1561 * lpszStr [I] String to parse number from
1562 * lcid [I] Locale Id for the conversion
1563 * dwFlags [I] 0, or LOCALE_NOUSEROVERRIDE to use system default number chars
1564 * pNumprs [I/O] Destination for parsed number
1565 * rgbDig [O] Destination for digits read in
1567 * RETURNS
1568 * Success: S_OK. pNumprs and rgbDig contain the parsed representation of
1569 * the number.
1570 * Failure: E_INVALIDARG, if any parameter is invalid.
1571 * DISP_E_TYPEMISMATCH, if the string is not a number or is formatted
1572 * incorrectly.
1573 * DISP_E_OVERFLOW, if rgbDig is too small to hold the number.
1575 * NOTES
1576 * pNumprs must have the following fields set:
1577 * cDig: Set to the size of rgbDig.
1578 * dwInFlags: Set to the allowable syntax of the number using NUMPRS_ flags
1579 * from "oleauto.h".
1581 * FIXME
1582 * - I am unsure if this function should parse non-Arabic (e.g. Thai)
1583 * numerals, so this has not been implemented.
1585 HRESULT WINAPI VarParseNumFromStr(OLECHAR *lpszStr, LCID lcid, ULONG dwFlags,
1586 NUMPARSE *pNumprs, BYTE *rgbDig)
1588 VARIANT_NUMBER_CHARS chars;
1589 BYTE rgbTmp[1024];
1590 DWORD dwState = B_EXPONENT_START|B_INEXACT_ZEROS;
1591 int iMaxDigits = sizeof(rgbTmp) / sizeof(BYTE);
1592 int cchUsed = 0;
1594 TRACE("(%s,%d,0x%08x,%p,%p)\n", debugstr_w(lpszStr), lcid, dwFlags, pNumprs, rgbDig);
1596 if (!pNumprs || !rgbDig)
1597 return E_INVALIDARG;
1599 if (pNumprs->cDig < iMaxDigits)
1600 iMaxDigits = pNumprs->cDig;
1602 pNumprs->cDig = 0;
1603 pNumprs->dwOutFlags = 0;
1604 pNumprs->cchUsed = 0;
1605 pNumprs->nBaseShift = 0;
1606 pNumprs->nPwr10 = 0;
1608 if (!lpszStr)
1609 return DISP_E_TYPEMISMATCH;
1611 VARIANT_GetLocalisedNumberChars(&chars, lcid, dwFlags);
1613 /* First consume all the leading symbols and space from the string */
1614 while (1)
1616 if (pNumprs->dwInFlags & NUMPRS_LEADING_WHITE && isspaceW(*lpszStr))
1618 pNumprs->dwOutFlags |= NUMPRS_LEADING_WHITE;
1621 cchUsed++;
1622 lpszStr++;
1623 } while (isspaceW(*lpszStr));
1625 else if (pNumprs->dwInFlags & NUMPRS_LEADING_PLUS &&
1626 *lpszStr == chars.cPositiveSymbol &&
1627 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS))
1629 pNumprs->dwOutFlags |= NUMPRS_LEADING_PLUS;
1630 cchUsed++;
1631 lpszStr++;
1633 else if (pNumprs->dwInFlags & NUMPRS_LEADING_MINUS &&
1634 *lpszStr == chars.cNegativeSymbol &&
1635 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS))
1637 pNumprs->dwOutFlags |= (NUMPRS_LEADING_MINUS|NUMPRS_NEG);
1638 cchUsed++;
1639 lpszStr++;
1641 else if (pNumprs->dwInFlags & NUMPRS_CURRENCY &&
1642 !(pNumprs->dwOutFlags & NUMPRS_CURRENCY) &&
1643 *lpszStr == chars.cCurrencyLocal &&
1644 (!chars.cCurrencyLocal2 || lpszStr[1] == chars.cCurrencyLocal2))
1646 pNumprs->dwOutFlags |= NUMPRS_CURRENCY;
1647 cchUsed++;
1648 lpszStr++;
1649 /* Only accept currency characters */
1650 chars.cDecimalPoint = chars.cCurrencyDecimalPoint;
1651 chars.cDigitSeparator = chars.cCurrencyDigitSeparator;
1653 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == '(' &&
1654 !(pNumprs->dwOutFlags & NUMPRS_PARENS))
1656 pNumprs->dwOutFlags |= NUMPRS_PARENS;
1657 cchUsed++;
1658 lpszStr++;
1660 else
1661 break;
1664 if (!(pNumprs->dwOutFlags & NUMPRS_CURRENCY))
1666 /* Only accept non-currency characters */
1667 chars.cCurrencyDecimalPoint = chars.cDecimalPoint;
1668 chars.cCurrencyDigitSeparator = chars.cDigitSeparator;
1671 if ((*lpszStr == '&' && (*(lpszStr+1) == 'H' || *(lpszStr+1) == 'h')) &&
1672 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1674 dwState |= B_PROCESSING_HEX;
1675 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1676 cchUsed=cchUsed+2;
1677 lpszStr=lpszStr+2;
1679 else if ((*lpszStr == '&' && (*(lpszStr+1) == 'O' || *(lpszStr+1) == 'o')) &&
1680 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1682 dwState |= B_PROCESSING_OCT;
1683 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1684 cchUsed=cchUsed+2;
1685 lpszStr=lpszStr+2;
1688 /* Strip Leading zeros */
1689 while (*lpszStr == '0')
1691 dwState |= B_LEADING_ZERO;
1692 cchUsed++;
1693 lpszStr++;
1696 while (*lpszStr)
1698 if (isdigitW(*lpszStr))
1700 if (dwState & B_PROCESSING_EXPONENT)
1702 int exponentSize = 0;
1703 if (dwState & B_EXPONENT_START)
1705 if (!isdigitW(*lpszStr))
1706 break; /* No exponent digits - invalid */
1707 while (*lpszStr == '0')
1709 /* Skip leading zero's in the exponent */
1710 cchUsed++;
1711 lpszStr++;
1715 while (isdigitW(*lpszStr))
1717 exponentSize *= 10;
1718 exponentSize += *lpszStr - '0';
1719 cchUsed++;
1720 lpszStr++;
1722 if (dwState & B_NEGATIVE_EXPONENT)
1723 exponentSize = -exponentSize;
1724 /* Add the exponent into the powers of 10 */
1725 pNumprs->nPwr10 += exponentSize;
1726 dwState &= ~(B_PROCESSING_EXPONENT|B_EXPONENT_START);
1727 lpszStr--; /* back up to allow processing of next char */
1729 else
1731 if ((pNumprs->cDig >= iMaxDigits) && !(dwState & B_PROCESSING_HEX)
1732 && !(dwState & B_PROCESSING_OCT))
1734 pNumprs->dwOutFlags |= NUMPRS_INEXACT;
1736 if (*lpszStr != '0')
1737 dwState &= ~B_INEXACT_ZEROS; /* Inexact number with non-trailing zeros */
1739 /* This digit can't be represented, but count it in nPwr10 */
1740 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1741 pNumprs->nPwr10--;
1742 else
1743 pNumprs->nPwr10++;
1745 else
1747 if ((dwState & B_PROCESSING_OCT) && ((*lpszStr == '8') || (*lpszStr == '9')))
1748 break;
1750 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1751 pNumprs->nPwr10--; /* Count decimal points in nPwr10 */
1753 rgbTmp[pNumprs->cDig] = *lpszStr - '0';
1755 pNumprs->cDig++;
1756 cchUsed++;
1759 else if (*lpszStr == chars.cDigitSeparator && pNumprs->dwInFlags & NUMPRS_THOUSANDS)
1761 pNumprs->dwOutFlags |= NUMPRS_THOUSANDS;
1762 cchUsed++;
1764 else if (*lpszStr == chars.cDecimalPoint &&
1765 pNumprs->dwInFlags & NUMPRS_DECIMAL &&
1766 !(pNumprs->dwOutFlags & (NUMPRS_DECIMAL|NUMPRS_EXPONENT)))
1768 pNumprs->dwOutFlags |= NUMPRS_DECIMAL;
1769 cchUsed++;
1771 /* If we have no digits so far, skip leading zeros */
1772 if (!pNumprs->cDig)
1774 while (lpszStr[1] == '0')
1776 dwState |= B_LEADING_ZERO;
1777 cchUsed++;
1778 lpszStr++;
1779 pNumprs->nPwr10--;
1783 else if (((*lpszStr >= 'a' && *lpszStr <= 'f') ||
1784 (*lpszStr >= 'A' && *lpszStr <= 'F')) &&
1785 dwState & B_PROCESSING_HEX)
1787 if (pNumprs->cDig >= iMaxDigits)
1789 return DISP_E_OVERFLOW;
1791 else
1793 if (*lpszStr >= 'a')
1794 rgbTmp[pNumprs->cDig] = *lpszStr - 'a' + 10;
1795 else
1796 rgbTmp[pNumprs->cDig] = *lpszStr - 'A' + 10;
1798 pNumprs->cDig++;
1799 cchUsed++;
1801 else if ((*lpszStr == 'e' || *lpszStr == 'E') &&
1802 pNumprs->dwInFlags & NUMPRS_EXPONENT &&
1803 !(pNumprs->dwOutFlags & NUMPRS_EXPONENT))
1805 dwState |= B_PROCESSING_EXPONENT;
1806 pNumprs->dwOutFlags |= NUMPRS_EXPONENT;
1807 cchUsed++;
1809 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cPositiveSymbol)
1811 cchUsed++; /* Ignore positive exponent */
1813 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cNegativeSymbol)
1815 dwState |= B_NEGATIVE_EXPONENT;
1816 cchUsed++;
1818 else
1819 break; /* Stop at an unrecognised character */
1821 lpszStr++;
1824 if (!pNumprs->cDig && dwState & B_LEADING_ZERO)
1826 /* Ensure a 0 on its own gets stored */
1827 pNumprs->cDig = 1;
1828 rgbTmp[0] = 0;
1831 if (pNumprs->dwOutFlags & NUMPRS_EXPONENT && dwState & B_PROCESSING_EXPONENT)
1833 pNumprs->cchUsed = cchUsed;
1834 WARN("didn't completely parse exponent\n");
1835 return DISP_E_TYPEMISMATCH; /* Failed to completely parse the exponent */
1838 if (pNumprs->dwOutFlags & NUMPRS_INEXACT)
1840 if (dwState & B_INEXACT_ZEROS)
1841 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* All zeros doesn't set NUMPRS_INEXACT */
1842 } else if(pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1844 /* copy all of the digits into the output digit buffer */
1845 /* this is exactly what windows does although it also returns */
1846 /* cDig of X and writes X+Y where Y>=0 number of digits to rgbDig */
1847 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1849 if (dwState & B_PROCESSING_HEX) {
1850 /* hex numbers have always the same format */
1851 pNumprs->nPwr10=0;
1852 pNumprs->nBaseShift=4;
1853 } else {
1854 if (dwState & B_PROCESSING_OCT) {
1855 /* oct numbers have always the same format */
1856 pNumprs->nPwr10=0;
1857 pNumprs->nBaseShift=3;
1858 } else {
1859 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1861 pNumprs->nPwr10++;
1862 pNumprs->cDig--;
1866 } else
1868 /* Remove trailing zeros from the last (whole number or decimal) part */
1869 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1871 pNumprs->nPwr10++;
1872 pNumprs->cDig--;
1876 if (pNumprs->cDig <= iMaxDigits)
1877 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* Ignore stripped zeros for NUMPRS_INEXACT */
1878 else
1879 pNumprs->cDig = iMaxDigits; /* Only return iMaxDigits worth of digits */
1881 /* Copy the digits we processed into rgbDig */
1882 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1884 /* Consume any trailing symbols and space */
1885 while (1)
1887 if ((pNumprs->dwInFlags & NUMPRS_TRAILING_WHITE) && isspaceW(*lpszStr))
1889 pNumprs->dwOutFlags |= NUMPRS_TRAILING_WHITE;
1892 cchUsed++;
1893 lpszStr++;
1894 } while (isspaceW(*lpszStr));
1896 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_PLUS &&
1897 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS) &&
1898 *lpszStr == chars.cPositiveSymbol)
1900 pNumprs->dwOutFlags |= NUMPRS_TRAILING_PLUS;
1901 cchUsed++;
1902 lpszStr++;
1904 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_MINUS &&
1905 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS) &&
1906 *lpszStr == chars.cNegativeSymbol)
1908 pNumprs->dwOutFlags |= (NUMPRS_TRAILING_MINUS|NUMPRS_NEG);
1909 cchUsed++;
1910 lpszStr++;
1912 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == ')' &&
1913 pNumprs->dwOutFlags & NUMPRS_PARENS)
1915 cchUsed++;
1916 lpszStr++;
1917 pNumprs->dwOutFlags |= NUMPRS_NEG;
1919 else
1920 break;
1923 if (pNumprs->dwOutFlags & NUMPRS_PARENS && !(pNumprs->dwOutFlags & NUMPRS_NEG))
1925 pNumprs->cchUsed = cchUsed;
1926 return DISP_E_TYPEMISMATCH; /* Opening parenthesis not matched */
1929 if (pNumprs->dwInFlags & NUMPRS_USE_ALL && *lpszStr != '\0')
1930 return DISP_E_TYPEMISMATCH; /* Not all chars were consumed */
1932 if (!pNumprs->cDig)
1933 return DISP_E_TYPEMISMATCH; /* No Number found */
1935 pNumprs->cchUsed = cchUsed;
1936 return S_OK;
1939 /* VTBIT flags indicating an integer value */
1940 #define INTEGER_VTBITS (VTBIT_I1|VTBIT_UI1|VTBIT_I2|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_I8|VTBIT_UI8)
1941 /* VTBIT flags indicating a real number value */
1942 #define REAL_VTBITS (VTBIT_R4|VTBIT_R8|VTBIT_CY)
1944 /* Helper macros to check whether bit pattern fits in VARIANT (x is a ULONG64 ) */
1945 #define FITS_AS_I1(x) ((x) >> 8 == 0)
1946 #define FITS_AS_I2(x) ((x) >> 16 == 0)
1947 #define FITS_AS_I4(x) ((x) >> 32 == 0)
1949 /**********************************************************************
1950 * VarNumFromParseNum [OLEAUT32.47]
1952 * Convert a NUMPARSE structure into a numeric Variant type.
1954 * PARAMS
1955 * pNumprs [I] Source for parsed number. cDig must be set to the size of rgbDig
1956 * rgbDig [I] Source for the numbers digits
1957 * dwVtBits [I] VTBIT_ flags from "oleauto.h" indicating the acceptable dest types
1958 * pVarDst [O] Destination for the converted Variant value.
1960 * RETURNS
1961 * Success: S_OK. pVarDst contains the converted value.
1962 * Failure: E_INVALIDARG, if any parameter is invalid.
1963 * DISP_E_OVERFLOW, if the number is too big for the types set in dwVtBits.
1965 * NOTES
1966 * - The smallest favoured type present in dwVtBits that can represent the
1967 * number in pNumprs without losing precision is used.
1968 * - Signed types are preferred over unsigned types of the same size.
1969 * - Preferred types in order are: integer, float, double, currency then decimal.
1970 * - Rounding (dropping of decimal points) occurs without error. See VarI8FromR8()
1971 * for details of the rounding method.
1972 * - pVarDst is not cleared before the result is stored in it.
1973 * - WinXP and Win2003 support VTBIT_I8, VTBIT_UI8 but that's buggy (by
1974 * design?): If some other VTBIT's for integers are specified together
1975 * with VTBIT_I8 and the number will fit only in a VT_I8 Windows will "cast"
1976 * the number to the smallest requested integer truncating this way the
1977 * number. Wine doesn't implement this "feature" (yet?).
1979 HRESULT WINAPI VarNumFromParseNum(NUMPARSE *pNumprs, BYTE *rgbDig,
1980 ULONG dwVtBits, VARIANT *pVarDst)
1982 /* Scale factors and limits for double arithmetic */
1983 static const double dblMultipliers[11] = {
1984 1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0,
1985 1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0
1987 static const double dblMinimums[11] = {
1988 R8_MIN, R8_MIN*10.0, R8_MIN*100.0, R8_MIN*1000.0, R8_MIN*10000.0,
1989 R8_MIN*100000.0, R8_MIN*1000000.0, R8_MIN*10000000.0,
1990 R8_MIN*100000000.0, R8_MIN*1000000000.0, R8_MIN*10000000000.0
1992 static const double dblMaximums[11] = {
1993 R8_MAX, R8_MAX/10.0, R8_MAX/100.0, R8_MAX/1000.0, R8_MAX/10000.0,
1994 R8_MAX/100000.0, R8_MAX/1000000.0, R8_MAX/10000000.0,
1995 R8_MAX/100000000.0, R8_MAX/1000000000.0, R8_MAX/10000000000.0
1998 int wholeNumberDigits, fractionalDigits, divisor10 = 0, multiplier10 = 0;
2000 TRACE("(%p,%p,0x%x,%p)\n", pNumprs, rgbDig, dwVtBits, pVarDst);
2002 if (pNumprs->nBaseShift)
2004 /* nBaseShift indicates a hex or octal number */
2005 ULONG64 ul64 = 0;
2006 LONG64 l64;
2007 int i;
2009 /* Convert the hex or octal number string into a UI64 */
2010 for (i = 0; i < pNumprs->cDig; i++)
2012 if (ul64 > ((UI8_MAX>>pNumprs->nBaseShift) - rgbDig[i]))
2014 TRACE("Overflow multiplying digits\n");
2015 return DISP_E_OVERFLOW;
2017 ul64 = (ul64<<pNumprs->nBaseShift) + rgbDig[i];
2020 /* also make a negative representation */
2021 l64=-ul64;
2023 /* Try signed and unsigned types in size order */
2024 if (dwVtBits & VTBIT_I1 && FITS_AS_I1(ul64))
2026 V_VT(pVarDst) = VT_I1;
2027 V_I1(pVarDst) = ul64;
2028 return S_OK;
2030 else if (dwVtBits & VTBIT_UI1 && FITS_AS_I1(ul64))
2032 V_VT(pVarDst) = VT_UI1;
2033 V_UI1(pVarDst) = ul64;
2034 return S_OK;
2036 else if (dwVtBits & VTBIT_I2 && FITS_AS_I2(ul64))
2038 V_VT(pVarDst) = VT_I2;
2039 V_I2(pVarDst) = ul64;
2040 return S_OK;
2042 else if (dwVtBits & VTBIT_UI2 && FITS_AS_I2(ul64))
2044 V_VT(pVarDst) = VT_UI2;
2045 V_UI2(pVarDst) = ul64;
2046 return S_OK;
2048 else if (dwVtBits & VTBIT_I4 && FITS_AS_I4(ul64))
2050 V_VT(pVarDst) = VT_I4;
2051 V_I4(pVarDst) = ul64;
2052 return S_OK;
2054 else if (dwVtBits & VTBIT_UI4 && FITS_AS_I4(ul64))
2056 V_VT(pVarDst) = VT_UI4;
2057 V_UI4(pVarDst) = ul64;
2058 return S_OK;
2060 else if (dwVtBits & VTBIT_I8 && ((ul64 <= I8_MAX)||(l64>=I8_MIN)))
2062 V_VT(pVarDst) = VT_I8;
2063 V_I8(pVarDst) = ul64;
2064 return S_OK;
2066 else if (dwVtBits & VTBIT_UI8)
2068 V_VT(pVarDst) = VT_UI8;
2069 V_UI8(pVarDst) = ul64;
2070 return S_OK;
2072 else if ((dwVtBits & VTBIT_DECIMAL) == VTBIT_DECIMAL)
2074 V_VT(pVarDst) = VT_DECIMAL;
2075 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2076 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2077 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2078 return S_OK;
2080 else if (dwVtBits & VTBIT_R4 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2082 V_VT(pVarDst) = VT_R4;
2083 if (ul64 <= I4_MAX)
2084 V_R4(pVarDst) = ul64;
2085 else
2086 V_R4(pVarDst) = l64;
2087 return S_OK;
2089 else if (dwVtBits & VTBIT_R8 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2091 V_VT(pVarDst) = VT_R8;
2092 if (ul64 <= I4_MAX)
2093 V_R8(pVarDst) = ul64;
2094 else
2095 V_R8(pVarDst) = l64;
2096 return S_OK;
2099 TRACE("Overflow: possible return types: 0x%x, value: %s\n", dwVtBits, wine_dbgstr_longlong(ul64));
2100 return DISP_E_OVERFLOW;
2103 /* Count the number of relevant fractional and whole digits stored,
2104 * And compute the divisor/multiplier to scale the number by.
2106 if (pNumprs->nPwr10 < 0)
2108 if (-pNumprs->nPwr10 >= pNumprs->cDig)
2110 /* A real number < +/- 1.0 e.g. 0.1024 or 0.01024 */
2111 wholeNumberDigits = 0;
2112 fractionalDigits = pNumprs->cDig;
2113 divisor10 = -pNumprs->nPwr10;
2115 else
2117 /* An exactly represented real number e.g. 1.024 */
2118 wholeNumberDigits = pNumprs->cDig + pNumprs->nPwr10;
2119 fractionalDigits = pNumprs->cDig - wholeNumberDigits;
2120 divisor10 = pNumprs->cDig - wholeNumberDigits;
2123 else if (pNumprs->nPwr10 == 0)
2125 /* An exactly represented whole number e.g. 1024 */
2126 wholeNumberDigits = pNumprs->cDig;
2127 fractionalDigits = 0;
2129 else /* pNumprs->nPwr10 > 0 */
2131 /* A whole number followed by nPwr10 0's e.g. 102400 */
2132 wholeNumberDigits = pNumprs->cDig;
2133 fractionalDigits = 0;
2134 multiplier10 = pNumprs->nPwr10;
2137 TRACE("cDig %d; nPwr10 %d, whole %d, frac %d mult %d; div %d\n",
2138 pNumprs->cDig, pNumprs->nPwr10, wholeNumberDigits, fractionalDigits,
2139 multiplier10, divisor10);
2141 if (dwVtBits & (INTEGER_VTBITS|VTBIT_DECIMAL) &&
2142 (!fractionalDigits || !(dwVtBits & (REAL_VTBITS|VTBIT_CY|VTBIT_DECIMAL))))
2144 /* We have one or more integer output choices, and either:
2145 * 1) An integer input value, or
2146 * 2) A real number input value but no floating output choices.
2147 * Alternately, we have a DECIMAL output available and an integer input.
2149 * So, place the integer value into pVarDst, using the smallest type
2150 * possible and preferring signed over unsigned types.
2152 BOOL bOverflow = FALSE, bNegative;
2153 ULONG64 ul64 = 0;
2154 int i;
2156 /* Convert the integer part of the number into a UI8 */
2157 for (i = 0; i < wholeNumberDigits; i++)
2159 if (ul64 > UI8_MAX / 10 || (ul64 == UI8_MAX / 10 && rgbDig[i] > UI8_MAX % 10))
2161 TRACE("Overflow multiplying digits\n");
2162 bOverflow = TRUE;
2163 break;
2165 ul64 = ul64 * 10 + rgbDig[i];
2168 /* Account for the scale of the number */
2169 if (!bOverflow && multiplier10)
2171 for (i = 0; i < multiplier10; i++)
2173 if (ul64 > (UI8_MAX / 10))
2175 TRACE("Overflow scaling number\n");
2176 bOverflow = TRUE;
2177 break;
2179 ul64 = ul64 * 10;
2183 /* If we have any fractional digits, round the value.
2184 * Note we don't have to do this if divisor10 is < 1,
2185 * because this means the fractional part must be < 0.5
2187 if (!bOverflow && fractionalDigits && divisor10 > 0)
2189 const BYTE* fracDig = rgbDig + wholeNumberDigits;
2190 BOOL bAdjust = FALSE;
2192 TRACE("first decimal value is %d\n", *fracDig);
2194 if (*fracDig > 5)
2195 bAdjust = TRUE; /* > 0.5 */
2196 else if (*fracDig == 5)
2198 for (i = 1; i < fractionalDigits; i++)
2200 if (fracDig[i])
2202 bAdjust = TRUE; /* > 0.5 */
2203 break;
2206 /* If exactly 0.5, round only odd values */
2207 if (i == fractionalDigits && (ul64 & 1))
2208 bAdjust = TRUE;
2211 if (bAdjust)
2213 if (ul64 == UI8_MAX)
2215 TRACE("Overflow after rounding\n");
2216 bOverflow = TRUE;
2218 ul64++;
2222 /* Zero is not a negative number */
2223 bNegative = pNumprs->dwOutFlags & NUMPRS_NEG && ul64;
2225 TRACE("Integer value is 0x%s, bNeg %d\n", wine_dbgstr_longlong(ul64), bNegative);
2227 /* For negative integers, try the signed types in size order */
2228 if (!bOverflow && bNegative)
2230 if (dwVtBits & (VTBIT_I1|VTBIT_I2|VTBIT_I4|VTBIT_I8))
2232 if (dwVtBits & VTBIT_I1 && ul64 <= -I1_MIN)
2234 V_VT(pVarDst) = VT_I1;
2235 V_I1(pVarDst) = -ul64;
2236 return S_OK;
2238 else if (dwVtBits & VTBIT_I2 && ul64 <= -I2_MIN)
2240 V_VT(pVarDst) = VT_I2;
2241 V_I2(pVarDst) = -ul64;
2242 return S_OK;
2244 else if (dwVtBits & VTBIT_I4 && ul64 <= -((LONGLONG)I4_MIN))
2246 V_VT(pVarDst) = VT_I4;
2247 V_I4(pVarDst) = -ul64;
2248 return S_OK;
2250 else if (dwVtBits & VTBIT_I8 && ul64 <= (ULONGLONG)I8_MAX + 1)
2252 V_VT(pVarDst) = VT_I8;
2253 V_I8(pVarDst) = -ul64;
2254 return S_OK;
2256 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2258 /* Decimal is only output choice left - fast path */
2259 V_VT(pVarDst) = VT_DECIMAL;
2260 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_NEG,0);
2261 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2262 DEC_LO64(&V_DECIMAL(pVarDst)) = -ul64;
2263 return S_OK;
2267 else if (!bOverflow)
2269 /* For positive integers, try signed then unsigned types in size order */
2270 if (dwVtBits & VTBIT_I1 && ul64 <= I1_MAX)
2272 V_VT(pVarDst) = VT_I1;
2273 V_I1(pVarDst) = ul64;
2274 return S_OK;
2276 else if (dwVtBits & VTBIT_UI1 && ul64 <= UI1_MAX)
2278 V_VT(pVarDst) = VT_UI1;
2279 V_UI1(pVarDst) = ul64;
2280 return S_OK;
2282 else if (dwVtBits & VTBIT_I2 && ul64 <= I2_MAX)
2284 V_VT(pVarDst) = VT_I2;
2285 V_I2(pVarDst) = ul64;
2286 return S_OK;
2288 else if (dwVtBits & VTBIT_UI2 && ul64 <= UI2_MAX)
2290 V_VT(pVarDst) = VT_UI2;
2291 V_UI2(pVarDst) = ul64;
2292 return S_OK;
2294 else if (dwVtBits & VTBIT_I4 && ul64 <= I4_MAX)
2296 V_VT(pVarDst) = VT_I4;
2297 V_I4(pVarDst) = ul64;
2298 return S_OK;
2300 else if (dwVtBits & VTBIT_UI4 && ul64 <= UI4_MAX)
2302 V_VT(pVarDst) = VT_UI4;
2303 V_UI4(pVarDst) = ul64;
2304 return S_OK;
2306 else if (dwVtBits & VTBIT_I8 && ul64 <= I8_MAX)
2308 V_VT(pVarDst) = VT_I8;
2309 V_I8(pVarDst) = ul64;
2310 return S_OK;
2312 else if (dwVtBits & VTBIT_UI8)
2314 V_VT(pVarDst) = VT_UI8;
2315 V_UI8(pVarDst) = ul64;
2316 return S_OK;
2318 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2320 /* Decimal is only output choice left - fast path */
2321 V_VT(pVarDst) = VT_DECIMAL;
2322 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2323 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2324 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2325 return S_OK;
2330 if (dwVtBits & REAL_VTBITS)
2332 /* Try to put the number into a float or real */
2333 BOOL bOverflow = FALSE, bNegative = pNumprs->dwOutFlags & NUMPRS_NEG;
2334 double whole = 0.0;
2335 int i;
2337 /* Convert the number into a double */
2338 for (i = 0; i < pNumprs->cDig; i++)
2339 whole = whole * 10.0 + rgbDig[i];
2341 TRACE("Whole double value is %16.16g\n", whole);
2343 /* Account for the scale */
2344 while (multiplier10 > 10)
2346 if (whole > dblMaximums[10])
2348 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2349 bOverflow = TRUE;
2350 break;
2352 whole = whole * dblMultipliers[10];
2353 multiplier10 -= 10;
2355 if (multiplier10 && !bOverflow)
2357 if (whole > dblMaximums[multiplier10])
2359 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2360 bOverflow = TRUE;
2362 else
2363 whole = whole * dblMultipliers[multiplier10];
2366 if (!bOverflow)
2367 TRACE("Scaled double value is %16.16g\n", whole);
2369 while (divisor10 > 10 && !bOverflow)
2371 if (whole < dblMinimums[10] && whole != 0)
2373 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2374 bOverflow = TRUE;
2375 break;
2377 whole = whole / dblMultipliers[10];
2378 divisor10 -= 10;
2380 if (divisor10 && !bOverflow)
2382 if (whole < dblMinimums[divisor10] && whole != 0)
2384 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2385 bOverflow = TRUE;
2387 else
2388 whole = whole / dblMultipliers[divisor10];
2390 if (!bOverflow)
2391 TRACE("Final double value is %16.16g\n", whole);
2393 if (dwVtBits & VTBIT_R4 &&
2394 ((whole <= R4_MAX && whole >= R4_MIN) || whole == 0.0))
2396 TRACE("Set R4 to final value\n");
2397 V_VT(pVarDst) = VT_R4; /* Fits into a float */
2398 V_R4(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2399 return S_OK;
2402 if (dwVtBits & VTBIT_R8)
2404 TRACE("Set R8 to final value\n");
2405 V_VT(pVarDst) = VT_R8; /* Fits into a double */
2406 V_R8(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2407 return S_OK;
2410 if (dwVtBits & VTBIT_CY)
2412 if (SUCCEEDED(VarCyFromR8(bNegative ? -whole : whole, &V_CY(pVarDst))))
2414 V_VT(pVarDst) = VT_CY; /* Fits into a currency */
2415 TRACE("Set CY to final value\n");
2416 return S_OK;
2418 TRACE("Value Overflows CY\n");
2422 if (dwVtBits & VTBIT_DECIMAL)
2424 int i;
2425 ULONG carry;
2426 ULONG64 tmp;
2427 DECIMAL* pDec = &V_DECIMAL(pVarDst);
2429 DECIMAL_SETZERO(*pDec);
2430 DEC_LO32(pDec) = 0;
2432 if (pNumprs->dwOutFlags & NUMPRS_NEG)
2433 DEC_SIGN(pDec) = DECIMAL_NEG;
2434 else
2435 DEC_SIGN(pDec) = DECIMAL_POS;
2437 /* Factor the significant digits */
2438 for (i = 0; i < pNumprs->cDig; i++)
2440 tmp = (ULONG64)DEC_LO32(pDec) * 10 + rgbDig[i];
2441 carry = (ULONG)(tmp >> 32);
2442 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2443 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2444 carry = (ULONG)(tmp >> 32);
2445 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2446 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2447 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2449 if (tmp >> 32 & UI4_MAX)
2451 VarNumFromParseNum_DecOverflow:
2452 TRACE("Overflow\n");
2453 DEC_LO32(pDec) = DEC_MID32(pDec) = DEC_HI32(pDec) = UI4_MAX;
2454 return DISP_E_OVERFLOW;
2458 /* Account for the scale of the number */
2459 while (multiplier10 > 0)
2461 tmp = (ULONG64)DEC_LO32(pDec) * 10;
2462 carry = (ULONG)(tmp >> 32);
2463 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2464 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2465 carry = (ULONG)(tmp >> 32);
2466 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2467 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2468 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2470 if (tmp >> 32 & UI4_MAX)
2471 goto VarNumFromParseNum_DecOverflow;
2472 multiplier10--;
2474 DEC_SCALE(pDec) = divisor10;
2476 V_VT(pVarDst) = VT_DECIMAL;
2477 return S_OK;
2479 return DISP_E_OVERFLOW; /* No more output choices */
2482 /**********************************************************************
2483 * VarCat [OLEAUT32.318]
2485 * Concatenates one variant onto another.
2487 * PARAMS
2488 * left [I] First variant
2489 * right [I] Second variant
2490 * result [O] Result variant
2492 * RETURNS
2493 * Success: S_OK.
2494 * Failure: An HRESULT error code indicating the error.
2496 HRESULT WINAPI VarCat(LPVARIANT left, LPVARIANT right, LPVARIANT out)
2498 VARTYPE leftvt,rightvt,resultvt;
2499 HRESULT hres;
2500 static WCHAR str_true[32];
2501 static WCHAR str_false[32];
2502 static const WCHAR sz_empty[] = {'\0'};
2503 leftvt = V_VT(left);
2504 rightvt = V_VT(right);
2506 TRACE("%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), out);
2508 if (!str_true[0]) {
2509 VARIANT_GetLocalisedText(LOCALE_USER_DEFAULT, IDS_FALSE, str_false);
2510 VARIANT_GetLocalisedText(LOCALE_USER_DEFAULT, IDS_TRUE, str_true);
2513 /* when both left and right are NULL the result is NULL */
2514 if (leftvt == VT_NULL && rightvt == VT_NULL)
2516 V_VT(out) = VT_NULL;
2517 return S_OK;
2520 hres = S_OK;
2521 resultvt = VT_EMPTY;
2523 /* There are many special case for errors and return types */
2524 if (leftvt == VT_VARIANT && (rightvt == VT_ERROR ||
2525 rightvt == VT_DATE || rightvt == VT_DECIMAL))
2526 hres = DISP_E_TYPEMISMATCH;
2527 else if ((leftvt == VT_I2 || leftvt == VT_I4 ||
2528 leftvt == VT_R4 || leftvt == VT_R8 ||
2529 leftvt == VT_CY || leftvt == VT_BOOL ||
2530 leftvt == VT_BSTR || leftvt == VT_I1 ||
2531 leftvt == VT_UI1 || leftvt == VT_UI2 ||
2532 leftvt == VT_UI4 || leftvt == VT_I8 ||
2533 leftvt == VT_UI8 || leftvt == VT_INT ||
2534 leftvt == VT_UINT || leftvt == VT_EMPTY ||
2535 leftvt == VT_NULL || leftvt == VT_DATE ||
2536 leftvt == VT_DECIMAL || leftvt == VT_DISPATCH)
2538 (rightvt == VT_I2 || rightvt == VT_I4 ||
2539 rightvt == VT_R4 || rightvt == VT_R8 ||
2540 rightvt == VT_CY || rightvt == VT_BOOL ||
2541 rightvt == VT_BSTR || rightvt == VT_I1 ||
2542 rightvt == VT_UI1 || rightvt == VT_UI2 ||
2543 rightvt == VT_UI4 || rightvt == VT_I8 ||
2544 rightvt == VT_UI8 || rightvt == VT_INT ||
2545 rightvt == VT_UINT || rightvt == VT_EMPTY ||
2546 rightvt == VT_NULL || rightvt == VT_DATE ||
2547 rightvt == VT_DECIMAL || rightvt == VT_DISPATCH))
2548 resultvt = VT_BSTR;
2549 else if (rightvt == VT_ERROR && leftvt < VT_VOID)
2550 hres = DISP_E_TYPEMISMATCH;
2551 else if (leftvt == VT_ERROR && (rightvt == VT_DATE ||
2552 rightvt == VT_ERROR || rightvt == VT_DECIMAL))
2553 hres = DISP_E_TYPEMISMATCH;
2554 else if (rightvt == VT_DATE || rightvt == VT_ERROR ||
2555 rightvt == VT_DECIMAL)
2556 hres = DISP_E_BADVARTYPE;
2557 else if (leftvt == VT_ERROR || rightvt == VT_ERROR)
2558 hres = DISP_E_TYPEMISMATCH;
2559 else if (leftvt == VT_VARIANT)
2560 hres = DISP_E_TYPEMISMATCH;
2561 else if (rightvt == VT_VARIANT && (leftvt == VT_EMPTY ||
2562 leftvt == VT_NULL || leftvt == VT_I2 ||
2563 leftvt == VT_I4 || leftvt == VT_R4 ||
2564 leftvt == VT_R8 || leftvt == VT_CY ||
2565 leftvt == VT_DATE || leftvt == VT_BSTR ||
2566 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
2567 leftvt == VT_I1 || leftvt == VT_UI1 ||
2568 leftvt == VT_UI2 || leftvt == VT_UI4 ||
2569 leftvt == VT_I8 || leftvt == VT_UI8 ||
2570 leftvt == VT_INT || leftvt == VT_UINT))
2571 hres = DISP_E_TYPEMISMATCH;
2572 else
2573 hres = DISP_E_BADVARTYPE;
2575 /* if result type is not S_OK, then no need to go further */
2576 if (hres != S_OK)
2578 V_VT(out) = resultvt;
2579 return hres;
2581 /* Else proceed with formatting inputs to strings */
2582 else
2584 VARIANT bstrvar_left, bstrvar_right;
2585 V_VT(out) = VT_BSTR;
2587 VariantInit(&bstrvar_left);
2588 VariantInit(&bstrvar_right);
2590 /* Convert left side variant to string */
2591 if (leftvt != VT_BSTR)
2593 if (leftvt == VT_BOOL)
2595 /* Bools are handled as localized True/False strings instead of 0/-1 as in MSDN */
2596 V_VT(&bstrvar_left) = VT_BSTR;
2597 if (V_BOOL(left))
2598 V_BSTR(&bstrvar_left) = SysAllocString(str_true);
2599 else
2600 V_BSTR(&bstrvar_left) = SysAllocString(str_false);
2602 /* Fill with empty string for later concat with right side */
2603 else if (leftvt == VT_NULL)
2605 V_VT(&bstrvar_left) = VT_BSTR;
2606 V_BSTR(&bstrvar_left) = SysAllocString(sz_empty);
2608 else
2610 hres = VariantChangeTypeEx(&bstrvar_left,left,0,0,VT_BSTR);
2611 if (hres != S_OK) {
2612 VariantClear(&bstrvar_left);
2613 VariantClear(&bstrvar_right);
2614 if (leftvt == VT_NULL && (rightvt == VT_EMPTY ||
2615 rightvt == VT_NULL || rightvt == VT_I2 ||
2616 rightvt == VT_I4 || rightvt == VT_R4 ||
2617 rightvt == VT_R8 || rightvt == VT_CY ||
2618 rightvt == VT_DATE || rightvt == VT_BSTR ||
2619 rightvt == VT_BOOL || rightvt == VT_DECIMAL ||
2620 rightvt == VT_I1 || rightvt == VT_UI1 ||
2621 rightvt == VT_UI2 || rightvt == VT_UI4 ||
2622 rightvt == VT_I8 || rightvt == VT_UI8 ||
2623 rightvt == VT_INT || rightvt == VT_UINT))
2624 return DISP_E_BADVARTYPE;
2625 return hres;
2630 /* convert right side variant to string */
2631 if (rightvt != VT_BSTR)
2633 if (rightvt == VT_BOOL)
2635 /* Bools are handled as localized True/False strings instead of 0/-1 as in MSDN */
2636 V_VT(&bstrvar_right) = VT_BSTR;
2637 if (V_BOOL(right))
2638 V_BSTR(&bstrvar_right) = SysAllocString(str_true);
2639 else
2640 V_BSTR(&bstrvar_right) = SysAllocString(str_false);
2642 /* Fill with empty string for later concat with right side */
2643 else if (rightvt == VT_NULL)
2645 V_VT(&bstrvar_right) = VT_BSTR;
2646 V_BSTR(&bstrvar_right) = SysAllocString(sz_empty);
2648 else
2650 hres = VariantChangeTypeEx(&bstrvar_right,right,0,0,VT_BSTR);
2651 if (hres != S_OK) {
2652 VariantClear(&bstrvar_left);
2653 VariantClear(&bstrvar_right);
2654 if (rightvt == VT_NULL && (leftvt == VT_EMPTY ||
2655 leftvt == VT_NULL || leftvt == VT_I2 ||
2656 leftvt == VT_I4 || leftvt == VT_R4 ||
2657 leftvt == VT_R8 || leftvt == VT_CY ||
2658 leftvt == VT_DATE || leftvt == VT_BSTR ||
2659 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
2660 leftvt == VT_I1 || leftvt == VT_UI1 ||
2661 leftvt == VT_UI2 || leftvt == VT_UI4 ||
2662 leftvt == VT_I8 || leftvt == VT_UI8 ||
2663 leftvt == VT_INT || leftvt == VT_UINT))
2664 return DISP_E_BADVARTYPE;
2665 return hres;
2670 /* Concat the resulting strings together */
2671 if (leftvt == VT_BSTR && rightvt == VT_BSTR)
2672 VarBstrCat (V_BSTR(left), V_BSTR(right), &V_BSTR(out));
2673 else if (leftvt != VT_BSTR && rightvt != VT_BSTR)
2674 VarBstrCat (V_BSTR(&bstrvar_left), V_BSTR(&bstrvar_right), &V_BSTR(out));
2675 else if (leftvt != VT_BSTR && rightvt == VT_BSTR)
2676 VarBstrCat (V_BSTR(&bstrvar_left), V_BSTR(right), &V_BSTR(out));
2677 else if (leftvt == VT_BSTR && rightvt != VT_BSTR)
2678 VarBstrCat (V_BSTR(left), V_BSTR(&bstrvar_right), &V_BSTR(out));
2680 VariantClear(&bstrvar_left);
2681 VariantClear(&bstrvar_right);
2682 return S_OK;
2687 /* Wrapper around VariantChangeTypeEx() which permits changing a
2688 variant with VT_RESERVED flag set. Needed by VarCmp. */
2689 static HRESULT _VarChangeTypeExWrap (VARIANTARG* pvargDest,
2690 VARIANTARG* pvargSrc, LCID lcid, USHORT wFlags, VARTYPE vt)
2692 VARIANTARG vtmpsrc = *pvargSrc;
2694 V_VT(&vtmpsrc) &= ~VT_RESERVED;
2695 return VariantChangeTypeEx(pvargDest,&vtmpsrc,lcid,wFlags,vt);
2698 /**********************************************************************
2699 * VarCmp [OLEAUT32.176]
2701 * Compare two variants.
2703 * PARAMS
2704 * left [I] First variant
2705 * right [I] Second variant
2706 * lcid [I] LCID (locale identifier) for the comparison
2707 * flags [I] Flags to be used in the comparison:
2708 * NORM_IGNORECASE, NORM_IGNORENONSPACE, NORM_IGNORESYMBOLS,
2709 * NORM_IGNOREWIDTH, NORM_IGNOREKANATYPE, NORM_IGNOREKASHIDA
2711 * RETURNS
2712 * VARCMP_LT: left variant is less than right variant.
2713 * VARCMP_EQ: input variants are equal.
2714 * VARCMP_GT: left variant is greater than right variant.
2715 * VARCMP_NULL: either one of the input variants is NULL.
2716 * Failure: An HRESULT error code indicating the error.
2718 * NOTES
2719 * Native VarCmp up to and including WinXP doesn't like I1, UI2, VT_UI4,
2720 * UI8 and UINT as input variants. INT is accepted only as left variant.
2722 * If both input variants are ERROR then VARCMP_EQ will be returned, else
2723 * an ERROR variant will trigger an error.
2725 * Both input variants can have VT_RESERVED flag set which is ignored
2726 * unless one and only one of the variants is a BSTR and the other one
2727 * is not an EMPTY variant. All four VT_RESERVED combinations have a
2728 * different meaning:
2729 * - BSTR and other: BSTR is always greater than the other variant.
2730 * - BSTR|VT_RESERVED and other: a string comparison is performed.
2731 * - BSTR and other|VT_RESERVED: If the BSTR is a number a numeric
2732 * comparison will take place else the BSTR is always greater.
2733 * - BSTR|VT_RESERVED and other|VT_RESERVED: It seems that the other
2734 * variant is ignored and the return value depends only on the sign
2735 * of the BSTR if it is a number else the BSTR is always greater. A
2736 * positive BSTR is greater, a negative one is smaller than the other
2737 * variant.
2739 * SEE
2740 * VarBstrCmp for the lcid and flags usage.
2742 HRESULT WINAPI VarCmp(LPVARIANT left, LPVARIANT right, LCID lcid, DWORD flags)
2744 VARTYPE lvt, rvt, vt;
2745 VARIANT rv,lv;
2746 DWORD xmask;
2747 HRESULT rc;
2749 TRACE("(%s,%s,0x%08x,0x%08x)\n", debugstr_variant(left), debugstr_variant(right), lcid, flags);
2751 lvt = V_VT(left) & VT_TYPEMASK;
2752 rvt = V_VT(right) & VT_TYPEMASK;
2753 xmask = (1 << lvt) | (1 << rvt);
2755 /* If we have any flag set except VT_RESERVED bail out.
2756 Same for the left input variant type > VT_INT and for the
2757 right input variant type > VT_I8. Yes, VT_INT is only supported
2758 as left variant. Go figure */
2759 if (((V_VT(left) | V_VT(right)) & ~VT_TYPEMASK & ~VT_RESERVED) ||
2760 lvt > VT_INT || rvt > VT_I8) {
2761 return DISP_E_BADVARTYPE;
2764 /* Don't ask me why but native VarCmp cannot handle: VT_I1, VT_UI2, VT_UI4,
2765 VT_UINT and VT_UI8. Tested with DCOM98, Win2k, WinXP */
2766 if (rvt == VT_INT || xmask & (VTBIT_I1 | VTBIT_UI2 | VTBIT_UI4 | VTBIT_UI8 |
2767 VTBIT_DISPATCH | VTBIT_VARIANT | VTBIT_UNKNOWN | VTBIT_15))
2768 return DISP_E_TYPEMISMATCH;
2770 /* If both variants are VT_ERROR return VARCMP_EQ */
2771 if (xmask == VTBIT_ERROR)
2772 return VARCMP_EQ;
2773 else if (xmask & VTBIT_ERROR)
2774 return DISP_E_TYPEMISMATCH;
2776 if (xmask & VTBIT_NULL)
2777 return VARCMP_NULL;
2779 VariantInit(&lv);
2780 VariantInit(&rv);
2782 /* Two BSTRs, ignore VT_RESERVED */
2783 if (xmask == VTBIT_BSTR)
2784 return VarBstrCmp(V_BSTR(left), V_BSTR(right), lcid, flags);
2786 /* A BSTR and another variant; we have to take care of VT_RESERVED */
2787 if (xmask & VTBIT_BSTR) {
2788 VARIANT *bstrv, *nonbv;
2789 VARTYPE nonbvt;
2790 int swap = 0;
2792 /* Swap the variants so the BSTR is always on the left */
2793 if (lvt == VT_BSTR) {
2794 bstrv = left;
2795 nonbv = right;
2796 nonbvt = rvt;
2797 } else {
2798 swap = 1;
2799 bstrv = right;
2800 nonbv = left;
2801 nonbvt = lvt;
2804 /* BSTR and EMPTY: ignore VT_RESERVED */
2805 if (nonbvt == VT_EMPTY)
2806 rc = (!V_BSTR(bstrv) || !*V_BSTR(bstrv)) ? VARCMP_EQ : VARCMP_GT;
2807 else {
2808 VARTYPE breserv = V_VT(bstrv) & ~VT_TYPEMASK;
2809 VARTYPE nreserv = V_VT(nonbv) & ~VT_TYPEMASK;
2811 if (!breserv && !nreserv)
2812 /* No VT_RESERVED set ==> BSTR always greater */
2813 rc = VARCMP_GT;
2814 else if (breserv && !nreserv) {
2815 /* BSTR has VT_RESERVED set. Do a string comparison */
2816 rc = VariantChangeTypeEx(&rv,nonbv,lcid,0,VT_BSTR);
2817 if (FAILED(rc))
2818 return rc;
2819 rc = VarBstrCmp(V_BSTR(bstrv), V_BSTR(&rv), lcid, flags);
2820 VariantClear(&rv);
2821 } else if (V_BSTR(bstrv) && *V_BSTR(bstrv)) {
2822 /* Non NULL nor empty BSTR */
2823 /* If the BSTR is not a number the BSTR is greater */
2824 rc = _VarChangeTypeExWrap(&lv,bstrv,lcid,0,VT_R8);
2825 if (FAILED(rc))
2826 rc = VARCMP_GT;
2827 else if (breserv && nreserv)
2828 /* FIXME: This is strange: with both VT_RESERVED set it
2829 looks like the result depends only on the sign of
2830 the BSTR number */
2831 rc = (V_R8(&lv) >= 0) ? VARCMP_GT : VARCMP_LT;
2832 else
2833 /* Numeric comparison, will be handled below.
2834 VARCMP_NULL used only to break out. */
2835 rc = VARCMP_NULL;
2836 VariantClear(&lv);
2837 VariantClear(&rv);
2838 } else
2839 /* Empty or NULL BSTR */
2840 rc = VARCMP_GT;
2842 /* Fixup the return code if we swapped left and right */
2843 if (swap) {
2844 if (rc == VARCMP_GT)
2845 rc = VARCMP_LT;
2846 else if (rc == VARCMP_LT)
2847 rc = VARCMP_GT;
2849 if (rc != VARCMP_NULL)
2850 return rc;
2853 if (xmask & VTBIT_DECIMAL)
2854 vt = VT_DECIMAL;
2855 else if (xmask & VTBIT_BSTR)
2856 vt = VT_R8;
2857 else if (xmask & VTBIT_R4)
2858 vt = VT_R4;
2859 else if (xmask & (VTBIT_R8 | VTBIT_DATE))
2860 vt = VT_R8;
2861 else if (xmask & VTBIT_CY)
2862 vt = VT_CY;
2863 else
2864 /* default to I8 */
2865 vt = VT_I8;
2867 /* Coerce the variants */
2868 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2869 if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2870 /* Overflow, change to R8 */
2871 vt = VT_R8;
2872 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2874 if (FAILED(rc))
2875 return rc;
2876 rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2877 if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2878 /* Overflow, change to R8 */
2879 vt = VT_R8;
2880 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2881 if (FAILED(rc))
2882 return rc;
2883 rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2885 if (FAILED(rc))
2886 return rc;
2888 #define _VARCMP(a,b) \
2889 (((a) == (b)) ? VARCMP_EQ : (((a) < (b)) ? VARCMP_LT : VARCMP_GT))
2891 switch (vt) {
2892 case VT_CY:
2893 return VarCyCmp(V_CY(&lv), V_CY(&rv));
2894 case VT_DECIMAL:
2895 return VarDecCmp(&V_DECIMAL(&lv), &V_DECIMAL(&rv));
2896 case VT_I8:
2897 return _VARCMP(V_I8(&lv), V_I8(&rv));
2898 case VT_R4:
2899 return _VARCMP(V_R4(&lv), V_R4(&rv));
2900 case VT_R8:
2901 return _VARCMP(V_R8(&lv), V_R8(&rv));
2902 default:
2903 /* We should never get here */
2904 return E_FAIL;
2906 #undef _VARCMP
2909 static HRESULT VARIANT_FetchDispatchValue(LPVARIANT pvDispatch, LPVARIANT pValue)
2911 HRESULT hres;
2912 static DISPPARAMS emptyParams = { NULL, NULL, 0, 0 };
2914 if ((V_VT(pvDispatch) & VT_TYPEMASK) == VT_DISPATCH) {
2915 if (NULL == V_DISPATCH(pvDispatch)) return DISP_E_TYPEMISMATCH;
2916 hres = IDispatch_Invoke(V_DISPATCH(pvDispatch), DISPID_VALUE, &IID_NULL,
2917 LOCALE_USER_DEFAULT, DISPATCH_PROPERTYGET, &emptyParams, pValue,
2918 NULL, NULL);
2919 } else {
2920 hres = DISP_E_TYPEMISMATCH;
2922 return hres;
2925 /**********************************************************************
2926 * VarAnd [OLEAUT32.142]
2928 * Computes the logical AND of two variants.
2930 * PARAMS
2931 * left [I] First variant
2932 * right [I] Second variant
2933 * result [O] Result variant
2935 * RETURNS
2936 * Success: S_OK.
2937 * Failure: An HRESULT error code indicating the error.
2939 HRESULT WINAPI VarAnd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2941 HRESULT hres = S_OK;
2942 VARTYPE resvt = VT_EMPTY;
2943 VARTYPE leftvt,rightvt;
2944 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
2945 VARIANT varLeft, varRight;
2946 VARIANT tempLeft, tempRight;
2948 VariantInit(&varLeft);
2949 VariantInit(&varRight);
2950 VariantInit(&tempLeft);
2951 VariantInit(&tempRight);
2953 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
2955 /* Handle VT_DISPATCH by storing and taking address of returned value */
2956 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
2958 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
2959 if (FAILED(hres)) goto VarAnd_Exit;
2960 left = &tempLeft;
2962 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
2964 hres = VARIANT_FetchDispatchValue(right, &tempRight);
2965 if (FAILED(hres)) goto VarAnd_Exit;
2966 right = &tempRight;
2969 leftvt = V_VT(left)&VT_TYPEMASK;
2970 rightvt = V_VT(right)&VT_TYPEMASK;
2971 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
2972 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
2974 if (leftExtraFlags != rightExtraFlags)
2976 hres = DISP_E_BADVARTYPE;
2977 goto VarAnd_Exit;
2979 ExtraFlags = leftExtraFlags;
2981 /* Native VarAnd always returns an error when using extra
2982 * flags or if the variant combination is I8 and INT.
2984 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
2985 (leftvt == VT_INT && rightvt == VT_I8) ||
2986 ExtraFlags != 0)
2988 hres = DISP_E_BADVARTYPE;
2989 goto VarAnd_Exit;
2992 /* Determine return type */
2993 else if (leftvt == VT_I8 || rightvt == VT_I8)
2994 resvt = VT_I8;
2995 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
2996 leftvt == VT_UINT || rightvt == VT_UINT ||
2997 leftvt == VT_INT || rightvt == VT_INT ||
2998 leftvt == VT_R4 || rightvt == VT_R4 ||
2999 leftvt == VT_R8 || rightvt == VT_R8 ||
3000 leftvt == VT_CY || rightvt == VT_CY ||
3001 leftvt == VT_DATE || rightvt == VT_DATE ||
3002 leftvt == VT_I1 || rightvt == VT_I1 ||
3003 leftvt == VT_UI2 || rightvt == VT_UI2 ||
3004 leftvt == VT_UI4 || rightvt == VT_UI4 ||
3005 leftvt == VT_UI8 || rightvt == VT_UI8 ||
3006 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3007 resvt = VT_I4;
3008 else if (leftvt == VT_UI1 || rightvt == VT_UI1 ||
3009 leftvt == VT_I2 || rightvt == VT_I2 ||
3010 leftvt == VT_EMPTY || rightvt == VT_EMPTY)
3011 if ((leftvt == VT_NULL && rightvt == VT_UI1) ||
3012 (leftvt == VT_UI1 && rightvt == VT_NULL) ||
3013 (leftvt == VT_UI1 && rightvt == VT_UI1))
3014 resvt = VT_UI1;
3015 else
3016 resvt = VT_I2;
3017 else if (leftvt == VT_BOOL || rightvt == VT_BOOL ||
3018 (leftvt == VT_BSTR && rightvt == VT_BSTR))
3019 resvt = VT_BOOL;
3020 else if (leftvt == VT_NULL || rightvt == VT_NULL ||
3021 leftvt == VT_BSTR || rightvt == VT_BSTR)
3022 resvt = VT_NULL;
3023 else
3025 hres = DISP_E_BADVARTYPE;
3026 goto VarAnd_Exit;
3029 if (leftvt == VT_NULL || rightvt == VT_NULL)
3032 * Special cases for when left variant is VT_NULL
3033 * (VT_NULL & 0 = VT_NULL, VT_NULL & value = value)
3035 if (leftvt == VT_NULL)
3037 VARIANT_BOOL b;
3038 switch(rightvt)
3040 case VT_I1: if (V_I1(right)) resvt = VT_NULL; break;
3041 case VT_UI1: if (V_UI1(right)) resvt = VT_NULL; break;
3042 case VT_I2: if (V_I2(right)) resvt = VT_NULL; break;
3043 case VT_UI2: if (V_UI2(right)) resvt = VT_NULL; break;
3044 case VT_I4: if (V_I4(right)) resvt = VT_NULL; break;
3045 case VT_UI4: if (V_UI4(right)) resvt = VT_NULL; break;
3046 case VT_I8: if (V_I8(right)) resvt = VT_NULL; break;
3047 case VT_UI8: if (V_UI8(right)) resvt = VT_NULL; break;
3048 case VT_INT: if (V_INT(right)) resvt = VT_NULL; break;
3049 case VT_UINT: if (V_UINT(right)) resvt = VT_NULL; break;
3050 case VT_BOOL: if (V_BOOL(right)) resvt = VT_NULL; break;
3051 case VT_R4: if (V_R4(right)) resvt = VT_NULL; break;
3052 case VT_R8: if (V_R8(right)) resvt = VT_NULL; break;
3053 case VT_CY:
3054 if(V_CY(right).int64)
3055 resvt = VT_NULL;
3056 break;
3057 case VT_DECIMAL:
3058 if (DEC_HI32(&V_DECIMAL(right)) ||
3059 DEC_LO64(&V_DECIMAL(right)))
3060 resvt = VT_NULL;
3061 break;
3062 case VT_BSTR:
3063 hres = VarBoolFromStr(V_BSTR(right),
3064 LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
3065 if (FAILED(hres))
3066 return hres;
3067 else if (b)
3068 V_VT(result) = VT_NULL;
3069 else
3071 V_VT(result) = VT_BOOL;
3072 V_BOOL(result) = b;
3074 goto VarAnd_Exit;
3077 V_VT(result) = resvt;
3078 goto VarAnd_Exit;
3081 hres = VariantCopy(&varLeft, left);
3082 if (FAILED(hres)) goto VarAnd_Exit;
3084 hres = VariantCopy(&varRight, right);
3085 if (FAILED(hres)) goto VarAnd_Exit;
3087 if (resvt == VT_I4 && V_VT(&varLeft) == VT_UI4)
3088 V_VT(&varLeft) = VT_I4; /* Don't overflow */
3089 else
3091 double d;
3093 if (V_VT(&varLeft) == VT_BSTR &&
3094 FAILED(VarR8FromStr(V_BSTR(&varLeft),
3095 LOCALE_USER_DEFAULT, 0, &d)))
3096 hres = VariantChangeType(&varLeft,&varLeft,
3097 VARIANT_LOCALBOOL, VT_BOOL);
3098 if (SUCCEEDED(hres) && V_VT(&varLeft) != resvt)
3099 hres = VariantChangeType(&varLeft,&varLeft,0,resvt);
3100 if (FAILED(hres)) goto VarAnd_Exit;
3103 if (resvt == VT_I4 && V_VT(&varRight) == VT_UI4)
3104 V_VT(&varRight) = VT_I4; /* Don't overflow */
3105 else
3107 double d;
3109 if (V_VT(&varRight) == VT_BSTR &&
3110 FAILED(VarR8FromStr(V_BSTR(&varRight),
3111 LOCALE_USER_DEFAULT, 0, &d)))
3112 hres = VariantChangeType(&varRight, &varRight,
3113 VARIANT_LOCALBOOL, VT_BOOL);
3114 if (SUCCEEDED(hres) && V_VT(&varRight) != resvt)
3115 hres = VariantChangeType(&varRight, &varRight, 0, resvt);
3116 if (FAILED(hres)) goto VarAnd_Exit;
3119 V_VT(result) = resvt;
3120 switch(resvt)
3122 case VT_I8:
3123 V_I8(result) = V_I8(&varLeft) & V_I8(&varRight);
3124 break;
3125 case VT_I4:
3126 V_I4(result) = V_I4(&varLeft) & V_I4(&varRight);
3127 break;
3128 case VT_I2:
3129 V_I2(result) = V_I2(&varLeft) & V_I2(&varRight);
3130 break;
3131 case VT_UI1:
3132 V_UI1(result) = V_UI1(&varLeft) & V_UI1(&varRight);
3133 break;
3134 case VT_BOOL:
3135 V_BOOL(result) = V_BOOL(&varLeft) & V_BOOL(&varRight);
3136 break;
3137 default:
3138 FIXME("Couldn't bitwise AND variant types %d,%d\n",
3139 leftvt,rightvt);
3142 VarAnd_Exit:
3143 VariantClear(&varLeft);
3144 VariantClear(&varRight);
3145 VariantClear(&tempLeft);
3146 VariantClear(&tempRight);
3148 return hres;
3151 /**********************************************************************
3152 * VarAdd [OLEAUT32.141]
3154 * Add two variants.
3156 * PARAMS
3157 * left [I] First variant
3158 * right [I] Second variant
3159 * result [O] Result variant
3161 * RETURNS
3162 * Success: S_OK.
3163 * Failure: An HRESULT error code indicating the error.
3165 * NOTES
3166 * Native VarAdd up to and including WinXP doesn't like I1, UI2, UI4,
3167 * UI8, INT and UINT as input variants.
3169 * Native VarAdd doesn't check for NULL in/out pointers and crashes. We do the
3170 * same here.
3172 * FIXME
3173 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3174 * case.
3176 HRESULT WINAPI VarAdd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3178 HRESULT hres;
3179 VARTYPE lvt, rvt, resvt, tvt;
3180 VARIANT lv, rv, tv;
3181 VARIANT tempLeft, tempRight;
3182 double r8res;
3184 /* Variant priority for coercion. Sorted from lowest to highest.
3185 VT_ERROR shows an invalid input variant type. */
3186 enum coerceprio { vt_EMPTY, vt_UI1, vt_I2, vt_I4, vt_I8, vt_BSTR,vt_R4,
3187 vt_R8, vt_CY, vt_DATE, vt_DECIMAL, vt_DISPATCH, vt_NULL,
3188 vt_ERROR };
3189 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3190 static const VARTYPE prio2vt[] = { VT_EMPTY, VT_UI1, VT_I2, VT_I4, VT_I8, VT_BSTR, VT_R4,
3191 VT_R8, VT_CY, VT_DATE, VT_DECIMAL, VT_DISPATCH,
3192 VT_NULL, VT_ERROR };
3194 /* Mapping for coercion from input variant to priority of result variant. */
3195 static const VARTYPE coerce[] = {
3196 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3197 vt_EMPTY, vt_NULL, vt_I2, vt_I4, vt_R4,
3198 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3199 vt_R8, vt_CY, vt_DATE, vt_BSTR, vt_DISPATCH,
3200 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3201 vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3202 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3203 vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3206 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3208 VariantInit(&lv);
3209 VariantInit(&rv);
3210 VariantInit(&tv);
3211 VariantInit(&tempLeft);
3212 VariantInit(&tempRight);
3214 /* Handle VT_DISPATCH by storing and taking address of returned value */
3215 if ((V_VT(left) & VT_TYPEMASK) != VT_NULL && (V_VT(right) & VT_TYPEMASK) != VT_NULL)
3217 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3219 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3220 if (FAILED(hres)) goto end;
3221 left = &tempLeft;
3223 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3225 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3226 if (FAILED(hres)) goto end;
3227 right = &tempRight;
3231 lvt = V_VT(left)&VT_TYPEMASK;
3232 rvt = V_VT(right)&VT_TYPEMASK;
3234 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3235 Same for any input variant type > VT_I8 */
3236 if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3237 lvt > VT_I8 || rvt > VT_I8) {
3238 hres = DISP_E_BADVARTYPE;
3239 goto end;
3242 /* Determine the variant type to coerce to. */
3243 if (coerce[lvt] > coerce[rvt]) {
3244 resvt = prio2vt[coerce[lvt]];
3245 tvt = prio2vt[coerce[rvt]];
3246 } else {
3247 resvt = prio2vt[coerce[rvt]];
3248 tvt = prio2vt[coerce[lvt]];
3251 /* Special cases where the result variant type is defined by both
3252 input variants and not only that with the highest priority */
3253 if (resvt == VT_BSTR) {
3254 if (tvt == VT_EMPTY || tvt == VT_BSTR)
3255 resvt = VT_BSTR;
3256 else
3257 resvt = VT_R8;
3259 if (resvt == VT_R4 && (tvt == VT_BSTR || tvt == VT_I8 || tvt == VT_I4))
3260 resvt = VT_R8;
3262 /* For overflow detection use the biggest compatible type for the
3263 addition */
3264 switch (resvt) {
3265 case VT_ERROR:
3266 hres = DISP_E_BADVARTYPE;
3267 goto end;
3268 case VT_NULL:
3269 hres = S_OK;
3270 V_VT(result) = VT_NULL;
3271 goto end;
3272 case VT_DISPATCH:
3273 FIXME("cannot handle variant type VT_DISPATCH\n");
3274 hres = DISP_E_TYPEMISMATCH;
3275 goto end;
3276 case VT_EMPTY:
3277 resvt = VT_I2;
3278 /* Fall through */
3279 case VT_UI1:
3280 case VT_I2:
3281 case VT_I4:
3282 case VT_I8:
3283 tvt = VT_I8;
3284 break;
3285 case VT_DATE:
3286 case VT_R4:
3287 tvt = VT_R8;
3288 break;
3289 default:
3290 tvt = resvt;
3293 /* Now coerce the variants */
3294 hres = VariantChangeType(&lv, left, 0, tvt);
3295 if (FAILED(hres))
3296 goto end;
3297 hres = VariantChangeType(&rv, right, 0, tvt);
3298 if (FAILED(hres))
3299 goto end;
3301 /* Do the math */
3302 hres = S_OK;
3303 V_VT(result) = resvt;
3304 switch (tvt) {
3305 case VT_DECIMAL:
3306 hres = VarDecAdd(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3307 &V_DECIMAL(result));
3308 goto end;
3309 case VT_CY:
3310 hres = VarCyAdd(V_CY(&lv), V_CY(&rv), &V_CY(result));
3311 goto end;
3312 case VT_BSTR:
3313 /* We do not add those, we concatenate them. */
3314 hres = VarBstrCat(V_BSTR(&lv), V_BSTR(&rv), &V_BSTR(result));
3315 goto end;
3316 case VT_I8:
3317 /* Overflow detection */
3318 r8res = (double)V_I8(&lv) + (double)V_I8(&rv);
3319 if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3320 V_VT(result) = VT_R8;
3321 V_R8(result) = r8res;
3322 goto end;
3323 } else {
3324 V_VT(&tv) = tvt;
3325 V_I8(&tv) = V_I8(&lv) + V_I8(&rv);
3327 break;
3328 case VT_R8:
3329 V_VT(&tv) = tvt;
3330 /* FIXME: overflow detection */
3331 V_R8(&tv) = V_R8(&lv) + V_R8(&rv);
3332 break;
3333 default:
3334 ERR("We shouldn't get here! tvt = %d!\n", tvt);
3335 break;
3337 if (resvt != tvt) {
3338 if ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3339 /* Overflow! Change to the vartype with the next higher priority.
3340 With one exception: I4 ==> R8 even if it would fit in I8 */
3341 if (resvt == VT_I4)
3342 resvt = VT_R8;
3343 else
3344 resvt = prio2vt[coerce[resvt] + 1];
3345 hres = VariantChangeType(result, &tv, 0, resvt);
3347 } else
3348 hres = VariantCopy(result, &tv);
3350 end:
3351 if (hres != S_OK) {
3352 V_VT(result) = VT_EMPTY;
3353 V_I4(result) = 0; /* No V_EMPTY */
3355 VariantClear(&lv);
3356 VariantClear(&rv);
3357 VariantClear(&tv);
3358 VariantClear(&tempLeft);
3359 VariantClear(&tempRight);
3360 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3361 return hres;
3364 /**********************************************************************
3365 * VarMul [OLEAUT32.156]
3367 * Multiply two variants.
3369 * PARAMS
3370 * left [I] First variant
3371 * right [I] Second variant
3372 * result [O] Result variant
3374 * RETURNS
3375 * Success: S_OK.
3376 * Failure: An HRESULT error code indicating the error.
3378 * NOTES
3379 * Native VarMul up to and including WinXP doesn't like I1, UI2, UI4,
3380 * UI8, INT and UINT as input variants. But it can multiply apples with oranges.
3382 * Native VarMul doesn't check for NULL in/out pointers and crashes. We do the
3383 * same here.
3385 * FIXME
3386 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3387 * case.
3389 HRESULT WINAPI VarMul(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3391 HRESULT hres;
3392 VARTYPE lvt, rvt, resvt, tvt;
3393 VARIANT lv, rv, tv;
3394 VARIANT tempLeft, tempRight;
3395 double r8res;
3397 /* Variant priority for coercion. Sorted from lowest to highest.
3398 VT_ERROR shows an invalid input variant type. */
3399 enum coerceprio { vt_UI1 = 0, vt_I2, vt_I4, vt_I8, vt_CY, vt_R4, vt_R8,
3400 vt_DECIMAL, vt_NULL, vt_ERROR };
3401 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3402 static const VARTYPE prio2vt[] = { VT_UI1, VT_I2, VT_I4, VT_I8, VT_CY, VT_R4, VT_R8,
3403 VT_DECIMAL, VT_NULL, VT_ERROR };
3405 /* Mapping for coercion from input variant to priority of result variant. */
3406 static const VARTYPE coerce[] = {
3407 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3408 vt_UI1, vt_NULL, vt_I2, vt_I4, vt_R4,
3409 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3410 vt_R8, vt_CY, vt_R8, vt_R8, vt_ERROR,
3411 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3412 vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3413 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3414 vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3417 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3419 VariantInit(&lv);
3420 VariantInit(&rv);
3421 VariantInit(&tv);
3422 VariantInit(&tempLeft);
3423 VariantInit(&tempRight);
3425 /* Handle VT_DISPATCH by storing and taking address of returned value */
3426 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3428 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3429 if (FAILED(hres)) goto end;
3430 left = &tempLeft;
3432 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3434 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3435 if (FAILED(hres)) goto end;
3436 right = &tempRight;
3439 lvt = V_VT(left)&VT_TYPEMASK;
3440 rvt = V_VT(right)&VT_TYPEMASK;
3442 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3443 Same for any input variant type > VT_I8 */
3444 if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3445 lvt > VT_I8 || rvt > VT_I8) {
3446 hres = DISP_E_BADVARTYPE;
3447 goto end;
3450 /* Determine the variant type to coerce to. */
3451 if (coerce[lvt] > coerce[rvt]) {
3452 resvt = prio2vt[coerce[lvt]];
3453 tvt = prio2vt[coerce[rvt]];
3454 } else {
3455 resvt = prio2vt[coerce[rvt]];
3456 tvt = prio2vt[coerce[lvt]];
3459 /* Special cases where the result variant type is defined by both
3460 input variants and not only that with the highest priority */
3461 if (resvt == VT_R4 && (tvt == VT_CY || tvt == VT_I8 || tvt == VT_I4))
3462 resvt = VT_R8;
3463 if (lvt == VT_EMPTY && rvt == VT_EMPTY)
3464 resvt = VT_I2;
3466 /* For overflow detection use the biggest compatible type for the
3467 multiplication */
3468 switch (resvt) {
3469 case VT_ERROR:
3470 hres = DISP_E_BADVARTYPE;
3471 goto end;
3472 case VT_NULL:
3473 hres = S_OK;
3474 V_VT(result) = VT_NULL;
3475 goto end;
3476 case VT_UI1:
3477 case VT_I2:
3478 case VT_I4:
3479 case VT_I8:
3480 tvt = VT_I8;
3481 break;
3482 case VT_R4:
3483 tvt = VT_R8;
3484 break;
3485 default:
3486 tvt = resvt;
3489 /* Now coerce the variants */
3490 hres = VariantChangeType(&lv, left, 0, tvt);
3491 if (FAILED(hres))
3492 goto end;
3493 hres = VariantChangeType(&rv, right, 0, tvt);
3494 if (FAILED(hres))
3495 goto end;
3497 /* Do the math */
3498 hres = S_OK;
3499 V_VT(&tv) = tvt;
3500 V_VT(result) = resvt;
3501 switch (tvt) {
3502 case VT_DECIMAL:
3503 hres = VarDecMul(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3504 &V_DECIMAL(result));
3505 goto end;
3506 case VT_CY:
3507 hres = VarCyMul(V_CY(&lv), V_CY(&rv), &V_CY(result));
3508 goto end;
3509 case VT_I8:
3510 /* Overflow detection */
3511 r8res = (double)V_I8(&lv) * (double)V_I8(&rv);
3512 if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3513 V_VT(result) = VT_R8;
3514 V_R8(result) = r8res;
3515 goto end;
3516 } else
3517 V_I8(&tv) = V_I8(&lv) * V_I8(&rv);
3518 break;
3519 case VT_R8:
3520 /* FIXME: overflow detection */
3521 V_R8(&tv) = V_R8(&lv) * V_R8(&rv);
3522 break;
3523 default:
3524 ERR("We shouldn't get here! tvt = %d!\n", tvt);
3525 break;
3527 if (resvt != tvt) {
3528 while ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3529 /* Overflow! Change to the vartype with the next higher priority.
3530 With one exception: I4 ==> R8 even if it would fit in I8 */
3531 if (resvt == VT_I4)
3532 resvt = VT_R8;
3533 else
3534 resvt = prio2vt[coerce[resvt] + 1];
3536 } else
3537 hres = VariantCopy(result, &tv);
3539 end:
3540 if (hres != S_OK) {
3541 V_VT(result) = VT_EMPTY;
3542 V_I4(result) = 0; /* No V_EMPTY */
3544 VariantClear(&lv);
3545 VariantClear(&rv);
3546 VariantClear(&tv);
3547 VariantClear(&tempLeft);
3548 VariantClear(&tempRight);
3549 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3550 return hres;
3553 /**********************************************************************
3554 * VarDiv [OLEAUT32.143]
3556 * Divides one variant with another.
3558 * PARAMS
3559 * left [I] First variant
3560 * right [I] Second variant
3561 * result [O] Result variant
3563 * RETURNS
3564 * Success: S_OK.
3565 * Failure: An HRESULT error code indicating the error.
3567 HRESULT WINAPI VarDiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3569 HRESULT hres = S_OK;
3570 VARTYPE resvt = VT_EMPTY;
3571 VARTYPE leftvt,rightvt;
3572 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3573 VARIANT lv,rv;
3574 VARIANT tempLeft, tempRight;
3576 VariantInit(&tempLeft);
3577 VariantInit(&tempRight);
3578 VariantInit(&lv);
3579 VariantInit(&rv);
3581 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3583 /* Handle VT_DISPATCH by storing and taking address of returned value */
3584 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3586 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3587 if (FAILED(hres)) goto end;
3588 left = &tempLeft;
3590 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3592 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3593 if (FAILED(hres)) goto end;
3594 right = &tempRight;
3597 leftvt = V_VT(left)&VT_TYPEMASK;
3598 rightvt = V_VT(right)&VT_TYPEMASK;
3599 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3600 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3602 if (leftExtraFlags != rightExtraFlags)
3604 hres = DISP_E_BADVARTYPE;
3605 goto end;
3607 ExtraFlags = leftExtraFlags;
3609 /* Native VarDiv always returns an error when using extra flags */
3610 if (ExtraFlags != 0)
3612 hres = DISP_E_BADVARTYPE;
3613 goto end;
3616 /* Determine return type */
3617 if (rightvt != VT_EMPTY)
3619 if (leftvt == VT_NULL || rightvt == VT_NULL)
3621 V_VT(result) = VT_NULL;
3622 hres = S_OK;
3623 goto end;
3625 else if (leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3626 resvt = VT_DECIMAL;
3627 else if (leftvt == VT_I8 || rightvt == VT_I8 ||
3628 leftvt == VT_CY || rightvt == VT_CY ||
3629 leftvt == VT_DATE || rightvt == VT_DATE ||
3630 leftvt == VT_I4 || rightvt == VT_I4 ||
3631 leftvt == VT_BSTR || rightvt == VT_BSTR ||
3632 leftvt == VT_I2 || rightvt == VT_I2 ||
3633 leftvt == VT_BOOL || rightvt == VT_BOOL ||
3634 leftvt == VT_R8 || rightvt == VT_R8 ||
3635 leftvt == VT_UI1 || rightvt == VT_UI1)
3637 if ((leftvt == VT_UI1 && rightvt == VT_R4) ||
3638 (leftvt == VT_R4 && rightvt == VT_UI1))
3639 resvt = VT_R4;
3640 else if ((leftvt == VT_R4 && (rightvt == VT_BOOL ||
3641 rightvt == VT_I2)) || (rightvt == VT_R4 &&
3642 (leftvt == VT_BOOL || leftvt == VT_I2)))
3643 resvt = VT_R4;
3644 else
3645 resvt = VT_R8;
3647 else if (leftvt == VT_R4 || rightvt == VT_R4)
3648 resvt = VT_R4;
3650 else if (leftvt == VT_NULL)
3652 V_VT(result) = VT_NULL;
3653 hres = S_OK;
3654 goto end;
3656 else
3658 hres = DISP_E_BADVARTYPE;
3659 goto end;
3662 /* coerce to the result type */
3663 hres = VariantChangeType(&lv, left, 0, resvt);
3664 if (hres != S_OK) goto end;
3666 hres = VariantChangeType(&rv, right, 0, resvt);
3667 if (hres != S_OK) goto end;
3669 /* do the math */
3670 V_VT(result) = resvt;
3671 switch (resvt)
3673 case VT_R4:
3674 if (V_R4(&lv) == 0.0 && V_R4(&rv) == 0.0)
3676 hres = DISP_E_OVERFLOW;
3677 V_VT(result) = VT_EMPTY;
3679 else if (V_R4(&rv) == 0.0)
3681 hres = DISP_E_DIVBYZERO;
3682 V_VT(result) = VT_EMPTY;
3684 else
3685 V_R4(result) = V_R4(&lv) / V_R4(&rv);
3686 break;
3687 case VT_R8:
3688 if (V_R8(&lv) == 0.0 && V_R8(&rv) == 0.0)
3690 hres = DISP_E_OVERFLOW;
3691 V_VT(result) = VT_EMPTY;
3693 else if (V_R8(&rv) == 0.0)
3695 hres = DISP_E_DIVBYZERO;
3696 V_VT(result) = VT_EMPTY;
3698 else
3699 V_R8(result) = V_R8(&lv) / V_R8(&rv);
3700 break;
3701 case VT_DECIMAL:
3702 hres = VarDecDiv(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
3703 break;
3706 end:
3707 VariantClear(&lv);
3708 VariantClear(&rv);
3709 VariantClear(&tempLeft);
3710 VariantClear(&tempRight);
3711 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3712 return hres;
3715 /**********************************************************************
3716 * VarSub [OLEAUT32.159]
3718 * Subtract two variants.
3720 * PARAMS
3721 * left [I] First variant
3722 * right [I] Second variant
3723 * result [O] Result variant
3725 * RETURNS
3726 * Success: S_OK.
3727 * Failure: An HRESULT error code indicating the error.
3729 HRESULT WINAPI VarSub(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3731 HRESULT hres = S_OK;
3732 VARTYPE resvt = VT_EMPTY;
3733 VARTYPE leftvt,rightvt;
3734 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3735 VARIANT lv,rv;
3736 VARIANT tempLeft, tempRight;
3738 VariantInit(&lv);
3739 VariantInit(&rv);
3740 VariantInit(&tempLeft);
3741 VariantInit(&tempRight);
3743 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3745 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH &&
3746 (V_VT(left)&(~VT_TYPEMASK)) == 0 &&
3747 (V_VT(right) & VT_TYPEMASK) != VT_NULL)
3749 if (NULL == V_DISPATCH(left)) {
3750 if ((V_VT(right) & VT_TYPEMASK) >= VT_INT_PTR)
3751 hres = DISP_E_BADVARTYPE;
3752 else if ((V_VT(right) & VT_TYPEMASK) >= VT_UI8 &&
3753 (V_VT(right) & VT_TYPEMASK) < VT_RECORD)
3754 hres = DISP_E_BADVARTYPE;
3755 else switch (V_VT(right) & VT_TYPEMASK)
3757 case VT_VARIANT:
3758 case VT_UNKNOWN:
3759 case 15:
3760 case VT_I1:
3761 case VT_UI2:
3762 case VT_UI4:
3763 hres = DISP_E_BADVARTYPE;
3765 if (FAILED(hres)) goto end;
3767 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3768 if (FAILED(hres)) goto end;
3769 left = &tempLeft;
3771 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH &&
3772 (V_VT(right)&(~VT_TYPEMASK)) == 0 &&
3773 (V_VT(left) & VT_TYPEMASK) != VT_NULL)
3775 if (NULL == V_DISPATCH(right))
3777 if ((V_VT(left) & VT_TYPEMASK) >= VT_INT_PTR)
3778 hres = DISP_E_BADVARTYPE;
3779 else if ((V_VT(left) & VT_TYPEMASK) >= VT_UI8 &&
3780 (V_VT(left) & VT_TYPEMASK) < VT_RECORD)
3781 hres = DISP_E_BADVARTYPE;
3782 else switch (V_VT(left) & VT_TYPEMASK)
3784 case VT_VARIANT:
3785 case VT_UNKNOWN:
3786 case 15:
3787 case VT_I1:
3788 case VT_UI2:
3789 case VT_UI4:
3790 hres = DISP_E_BADVARTYPE;
3792 if (FAILED(hres)) goto end;
3794 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3795 if (FAILED(hres)) goto end;
3796 right = &tempRight;
3799 leftvt = V_VT(left)&VT_TYPEMASK;
3800 rightvt = V_VT(right)&VT_TYPEMASK;
3801 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3802 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3804 if (leftExtraFlags != rightExtraFlags)
3806 hres = DISP_E_BADVARTYPE;
3807 goto end;
3809 ExtraFlags = leftExtraFlags;
3811 /* determine return type and return code */
3812 /* All extra flags produce errors */
3813 if (ExtraFlags == (VT_VECTOR|VT_BYREF|VT_RESERVED) ||
3814 ExtraFlags == (VT_VECTOR|VT_RESERVED) ||
3815 ExtraFlags == (VT_VECTOR|VT_BYREF) ||
3816 ExtraFlags == (VT_BYREF|VT_RESERVED) ||
3817 ExtraFlags == VT_VECTOR ||
3818 ExtraFlags == VT_BYREF ||
3819 ExtraFlags == VT_RESERVED)
3821 hres = DISP_E_BADVARTYPE;
3822 goto end;
3824 else if (ExtraFlags >= VT_ARRAY)
3826 hres = DISP_E_TYPEMISMATCH;
3827 goto end;
3829 /* Native VarSub cannot handle: VT_I1, VT_UI2, VT_UI4,
3830 VT_INT, VT_UINT and VT_UI8. Tested with WinXP */
3831 else if (leftvt == VT_CLSID || rightvt == VT_CLSID ||
3832 leftvt == VT_VARIANT || rightvt == VT_VARIANT ||
3833 leftvt == VT_I1 || rightvt == VT_I1 ||
3834 leftvt == VT_UI2 || rightvt == VT_UI2 ||
3835 leftvt == VT_UI4 || rightvt == VT_UI4 ||
3836 leftvt == VT_UI8 || rightvt == VT_UI8 ||
3837 leftvt == VT_INT || rightvt == VT_INT ||
3838 leftvt == VT_UINT || rightvt == VT_UINT ||
3839 leftvt == VT_UNKNOWN || rightvt == VT_UNKNOWN ||
3840 leftvt == VT_RECORD || rightvt == VT_RECORD)
3842 if (leftvt == VT_RECORD && rightvt == VT_I8)
3843 hres = DISP_E_TYPEMISMATCH;
3844 else if (leftvt < VT_UI1 && rightvt == VT_RECORD)
3845 hres = DISP_E_TYPEMISMATCH;
3846 else if (leftvt >= VT_UI1 && rightvt == VT_RECORD)
3847 hres = DISP_E_TYPEMISMATCH;
3848 else if (leftvt == VT_RECORD && rightvt <= VT_UI1)
3849 hres = DISP_E_TYPEMISMATCH;
3850 else if (leftvt == VT_RECORD && rightvt > VT_UI1)
3851 hres = DISP_E_BADVARTYPE;
3852 else
3853 hres = DISP_E_BADVARTYPE;
3854 goto end;
3856 /* The following flags/types are invalid for left variant */
3857 else if (!((leftvt <= VT_LPWSTR || leftvt == VT_RECORD ||
3858 leftvt == VT_CLSID) && leftvt != (VARTYPE)15 /* undefined vt */ &&
3859 (leftvt < VT_VOID || leftvt > VT_LPWSTR)))
3861 hres = DISP_E_BADVARTYPE;
3862 goto end;
3864 /* The following flags/types are invalid for right variant */
3865 else if (!((rightvt <= VT_LPWSTR || rightvt == VT_RECORD ||
3866 rightvt == VT_CLSID) && rightvt != (VARTYPE)15 /* undefined vt */ &&
3867 (rightvt < VT_VOID || rightvt > VT_LPWSTR)))
3869 hres = DISP_E_BADVARTYPE;
3870 goto end;
3872 else if ((leftvt == VT_NULL && rightvt == VT_DISPATCH) ||
3873 (leftvt == VT_DISPATCH && rightvt == VT_NULL))
3874 resvt = VT_NULL;
3875 else if (leftvt == VT_DISPATCH || rightvt == VT_DISPATCH ||
3876 leftvt == VT_ERROR || rightvt == VT_ERROR)
3878 hres = DISP_E_TYPEMISMATCH;
3879 goto end;
3881 else if (leftvt == VT_NULL || rightvt == VT_NULL)
3882 resvt = VT_NULL;
3883 else if ((leftvt == VT_EMPTY && rightvt == VT_BSTR) ||
3884 (leftvt == VT_DATE && rightvt == VT_DATE) ||
3885 (leftvt == VT_BSTR && rightvt == VT_EMPTY) ||
3886 (leftvt == VT_BSTR && rightvt == VT_BSTR))
3887 resvt = VT_R8;
3888 else if (leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3889 resvt = VT_DECIMAL;
3890 else if (leftvt == VT_DATE || rightvt == VT_DATE)
3891 resvt = VT_DATE;
3892 else if (leftvt == VT_CY || rightvt == VT_CY)
3893 resvt = VT_CY;
3894 else if (leftvt == VT_R8 || rightvt == VT_R8)
3895 resvt = VT_R8;
3896 else if (leftvt == VT_BSTR || rightvt == VT_BSTR)
3897 resvt = VT_R8;
3898 else if (leftvt == VT_R4 || rightvt == VT_R4)
3900 if (leftvt == VT_I4 || rightvt == VT_I4 ||
3901 leftvt == VT_I8 || rightvt == VT_I8)
3902 resvt = VT_R8;
3903 else
3904 resvt = VT_R4;
3906 else if (leftvt == VT_I8 || rightvt == VT_I8)
3907 resvt = VT_I8;
3908 else if (leftvt == VT_I4 || rightvt == VT_I4)
3909 resvt = VT_I4;
3910 else if (leftvt == VT_I2 || rightvt == VT_I2 ||
3911 leftvt == VT_BOOL || rightvt == VT_BOOL ||
3912 (leftvt == VT_EMPTY && rightvt == VT_EMPTY))
3913 resvt = VT_I2;
3914 else if (leftvt == VT_UI1 || rightvt == VT_UI1)
3915 resvt = VT_UI1;
3916 else
3918 hres = DISP_E_TYPEMISMATCH;
3919 goto end;
3922 /* coerce to the result type */
3923 if (leftvt == VT_BSTR && rightvt == VT_DATE)
3924 hres = VariantChangeType(&lv, left, 0, VT_R8);
3925 else
3926 hres = VariantChangeType(&lv, left, 0, resvt);
3927 if (hres != S_OK) goto end;
3928 if (leftvt == VT_DATE && rightvt == VT_BSTR)
3929 hres = VariantChangeType(&rv, right, 0, VT_R8);
3930 else
3931 hres = VariantChangeType(&rv, right, 0, resvt);
3932 if (hres != S_OK) goto end;
3934 /* do the math */
3935 V_VT(result) = resvt;
3936 switch (resvt)
3938 case VT_NULL:
3939 break;
3940 case VT_DATE:
3941 V_DATE(result) = V_DATE(&lv) - V_DATE(&rv);
3942 break;
3943 case VT_CY:
3944 hres = VarCySub(V_CY(&lv), V_CY(&rv), &(V_CY(result)));
3945 break;
3946 case VT_R4:
3947 V_R4(result) = V_R4(&lv) - V_R4(&rv);
3948 break;
3949 case VT_I8:
3950 V_I8(result) = V_I8(&lv) - V_I8(&rv);
3951 break;
3952 case VT_I4:
3953 V_I4(result) = V_I4(&lv) - V_I4(&rv);
3954 break;
3955 case VT_I2:
3956 V_I2(result) = V_I2(&lv) - V_I2(&rv);
3957 break;
3958 case VT_UI1:
3959 V_UI1(result) = V_UI2(&lv) - V_UI1(&rv);
3960 break;
3961 case VT_R8:
3962 V_R8(result) = V_R8(&lv) - V_R8(&rv);
3963 break;
3964 case VT_DECIMAL:
3965 hres = VarDecSub(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
3966 break;
3969 end:
3970 VariantClear(&lv);
3971 VariantClear(&rv);
3972 VariantClear(&tempLeft);
3973 VariantClear(&tempRight);
3974 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3975 return hres;
3979 /**********************************************************************
3980 * VarOr [OLEAUT32.157]
3982 * Perform a logical or (OR) operation on two variants.
3984 * PARAMS
3985 * pVarLeft [I] First variant
3986 * pVarRight [I] Variant to OR with pVarLeft
3987 * pVarOut [O] Destination for OR result
3989 * RETURNS
3990 * Success: S_OK. pVarOut contains the result of the operation with its type
3991 * taken from the table listed under VarXor().
3992 * Failure: An HRESULT error code indicating the error.
3994 * NOTES
3995 * See the Notes section of VarXor() for further information.
3997 HRESULT WINAPI VarOr(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
3999 VARTYPE vt = VT_I4;
4000 VARIANT varLeft, varRight, varStr;
4001 HRESULT hRet;
4002 VARIANT tempLeft, tempRight;
4004 VariantInit(&tempLeft);
4005 VariantInit(&tempRight);
4006 VariantInit(&varLeft);
4007 VariantInit(&varRight);
4008 VariantInit(&varStr);
4010 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
4012 /* Handle VT_DISPATCH by storing and taking address of returned value */
4013 if ((V_VT(pVarLeft) & VT_TYPEMASK) == VT_DISPATCH)
4015 hRet = VARIANT_FetchDispatchValue(pVarLeft, &tempLeft);
4016 if (FAILED(hRet)) goto VarOr_Exit;
4017 pVarLeft = &tempLeft;
4019 if ((V_VT(pVarRight) & VT_TYPEMASK) == VT_DISPATCH)
4021 hRet = VARIANT_FetchDispatchValue(pVarRight, &tempRight);
4022 if (FAILED(hRet)) goto VarOr_Exit;
4023 pVarRight = &tempRight;
4026 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
4027 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
4028 V_VT(pVarLeft) == VT_DISPATCH || V_VT(pVarRight) == VT_DISPATCH ||
4029 V_VT(pVarLeft) == VT_RECORD || V_VT(pVarRight) == VT_RECORD)
4031 hRet = DISP_E_BADVARTYPE;
4032 goto VarOr_Exit;
4035 V_VT(&varLeft) = V_VT(&varRight) = V_VT(&varStr) = VT_EMPTY;
4037 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
4039 /* NULL OR Zero is NULL, NULL OR value is value */
4040 if (V_VT(pVarLeft) == VT_NULL)
4041 pVarLeft = pVarRight; /* point to the non-NULL var */
4043 V_VT(pVarOut) = VT_NULL;
4044 V_I4(pVarOut) = 0;
4046 switch (V_VT(pVarLeft))
4048 case VT_DATE: case VT_R8:
4049 if (V_R8(pVarLeft))
4050 goto VarOr_AsEmpty;
4051 hRet = S_OK;
4052 goto VarOr_Exit;
4053 case VT_BOOL:
4054 if (V_BOOL(pVarLeft))
4055 *pVarOut = *pVarLeft;
4056 hRet = S_OK;
4057 goto VarOr_Exit;
4058 case VT_I2: case VT_UI2:
4059 if (V_I2(pVarLeft))
4060 goto VarOr_AsEmpty;
4061 hRet = S_OK;
4062 goto VarOr_Exit;
4063 case VT_I1:
4064 if (V_I1(pVarLeft))
4065 goto VarOr_AsEmpty;
4066 hRet = S_OK;
4067 goto VarOr_Exit;
4068 case VT_UI1:
4069 if (V_UI1(pVarLeft))
4070 *pVarOut = *pVarLeft;
4071 hRet = S_OK;
4072 goto VarOr_Exit;
4073 case VT_R4:
4074 if (V_R4(pVarLeft))
4075 goto VarOr_AsEmpty;
4076 hRet = S_OK;
4077 goto VarOr_Exit;
4078 case VT_I4: case VT_UI4: case VT_INT: case VT_UINT:
4079 if (V_I4(pVarLeft))
4080 goto VarOr_AsEmpty;
4081 hRet = S_OK;
4082 goto VarOr_Exit;
4083 case VT_CY:
4084 if (V_CY(pVarLeft).int64)
4085 goto VarOr_AsEmpty;
4086 hRet = S_OK;
4087 goto VarOr_Exit;
4088 case VT_I8: case VT_UI8:
4089 if (V_I8(pVarLeft))
4090 goto VarOr_AsEmpty;
4091 hRet = S_OK;
4092 goto VarOr_Exit;
4093 case VT_DECIMAL:
4094 if (DEC_HI32(&V_DECIMAL(pVarLeft)) || DEC_LO64(&V_DECIMAL(pVarLeft)))
4095 goto VarOr_AsEmpty;
4096 hRet = S_OK;
4097 goto VarOr_Exit;
4098 case VT_BSTR:
4100 VARIANT_BOOL b;
4102 if (!V_BSTR(pVarLeft))
4104 hRet = DISP_E_BADVARTYPE;
4105 goto VarOr_Exit;
4108 hRet = VarBoolFromStr(V_BSTR(pVarLeft), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
4109 if (SUCCEEDED(hRet) && b)
4111 V_VT(pVarOut) = VT_BOOL;
4112 V_BOOL(pVarOut) = b;
4114 goto VarOr_Exit;
4116 case VT_NULL: case VT_EMPTY:
4117 V_VT(pVarOut) = VT_NULL;
4118 hRet = S_OK;
4119 goto VarOr_Exit;
4120 default:
4121 hRet = DISP_E_BADVARTYPE;
4122 goto VarOr_Exit;
4126 if (V_VT(pVarLeft) == VT_EMPTY || V_VT(pVarRight) == VT_EMPTY)
4128 if (V_VT(pVarLeft) == VT_EMPTY)
4129 pVarLeft = pVarRight; /* point to the non-EMPTY var */
4131 VarOr_AsEmpty:
4132 /* Since one argument is empty (0), OR'ing it with the other simply
4133 * gives the others value (as 0|x => x). So just convert the other
4134 * argument to the required result type.
4136 switch (V_VT(pVarLeft))
4138 case VT_BSTR:
4139 if (!V_BSTR(pVarLeft))
4141 hRet = DISP_E_BADVARTYPE;
4142 goto VarOr_Exit;
4145 hRet = VariantCopy(&varStr, pVarLeft);
4146 if (FAILED(hRet))
4147 goto VarOr_Exit;
4148 pVarLeft = &varStr;
4149 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
4150 if (FAILED(hRet))
4151 goto VarOr_Exit;
4152 /* Fall Through ... */
4153 case VT_EMPTY: case VT_UI1: case VT_BOOL: case VT_I2:
4154 V_VT(pVarOut) = VT_I2;
4155 break;
4156 case VT_DATE: case VT_CY: case VT_DECIMAL: case VT_R4: case VT_R8:
4157 case VT_I1: case VT_UI2: case VT_I4: case VT_UI4:
4158 case VT_INT: case VT_UINT: case VT_UI8:
4159 V_VT(pVarOut) = VT_I4;
4160 break;
4161 case VT_I8:
4162 V_VT(pVarOut) = VT_I8;
4163 break;
4164 default:
4165 hRet = DISP_E_BADVARTYPE;
4166 goto VarOr_Exit;
4168 hRet = VariantCopy(&varLeft, pVarLeft);
4169 if (FAILED(hRet))
4170 goto VarOr_Exit;
4171 pVarLeft = &varLeft;
4172 hRet = VariantChangeType(pVarOut, pVarLeft, 0, V_VT(pVarOut));
4173 goto VarOr_Exit;
4176 if (V_VT(pVarLeft) == VT_BOOL && V_VT(pVarRight) == VT_BOOL)
4178 V_VT(pVarOut) = VT_BOOL;
4179 V_BOOL(pVarOut) = V_BOOL(pVarLeft) | V_BOOL(pVarRight);
4180 hRet = S_OK;
4181 goto VarOr_Exit;
4184 if (V_VT(pVarLeft) == VT_UI1 && V_VT(pVarRight) == VT_UI1)
4186 V_VT(pVarOut) = VT_UI1;
4187 V_UI1(pVarOut) = V_UI1(pVarLeft) | V_UI1(pVarRight);
4188 hRet = S_OK;
4189 goto VarOr_Exit;
4192 if (V_VT(pVarLeft) == VT_BSTR)
4194 hRet = VariantCopy(&varStr, pVarLeft);
4195 if (FAILED(hRet))
4196 goto VarOr_Exit;
4197 pVarLeft = &varStr;
4198 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
4199 if (FAILED(hRet))
4200 goto VarOr_Exit;
4203 if (V_VT(pVarLeft) == VT_BOOL &&
4204 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_BSTR))
4206 vt = VT_BOOL;
4208 else if ((V_VT(pVarLeft) == VT_BOOL || V_VT(pVarLeft) == VT_UI1 ||
4209 V_VT(pVarLeft) == VT_I2 || V_VT(pVarLeft) == VT_BSTR) &&
4210 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_UI1 ||
4211 V_VT(pVarRight) == VT_I2 || V_VT(pVarRight) == VT_BSTR))
4213 vt = VT_I2;
4215 else if (V_VT(pVarLeft) == VT_I8 || V_VT(pVarRight) == VT_I8)
4217 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
4219 hRet = DISP_E_TYPEMISMATCH;
4220 goto VarOr_Exit;
4222 vt = VT_I8;
4225 hRet = VariantCopy(&varLeft, pVarLeft);
4226 if (FAILED(hRet))
4227 goto VarOr_Exit;
4229 hRet = VariantCopy(&varRight, pVarRight);
4230 if (FAILED(hRet))
4231 goto VarOr_Exit;
4233 if (vt == VT_I4 && V_VT(&varLeft) == VT_UI4)
4234 V_VT(&varLeft) = VT_I4; /* Don't overflow */
4235 else
4237 double d;
4239 if (V_VT(&varLeft) == VT_BSTR &&
4240 FAILED(VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d)))
4241 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL, VT_BOOL);
4242 if (SUCCEEDED(hRet) && V_VT(&varLeft) != vt)
4243 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
4244 if (FAILED(hRet))
4245 goto VarOr_Exit;
4248 if (vt == VT_I4 && V_VT(&varRight) == VT_UI4)
4249 V_VT(&varRight) = VT_I4; /* Don't overflow */
4250 else
4252 double d;
4254 if (V_VT(&varRight) == VT_BSTR &&
4255 FAILED(VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d)))
4256 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL, VT_BOOL);
4257 if (SUCCEEDED(hRet) && V_VT(&varRight) != vt)
4258 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
4259 if (FAILED(hRet))
4260 goto VarOr_Exit;
4263 V_VT(pVarOut) = vt;
4264 if (vt == VT_I8)
4266 V_I8(pVarOut) = V_I8(&varLeft) | V_I8(&varRight);
4268 else if (vt == VT_I4)
4270 V_I4(pVarOut) = V_I4(&varLeft) | V_I4(&varRight);
4272 else
4274 V_I2(pVarOut) = V_I2(&varLeft) | V_I2(&varRight);
4277 VarOr_Exit:
4278 VariantClear(&varStr);
4279 VariantClear(&varLeft);
4280 VariantClear(&varRight);
4281 VariantClear(&tempLeft);
4282 VariantClear(&tempRight);
4283 return hRet;
4286 /**********************************************************************
4287 * VarAbs [OLEAUT32.168]
4289 * Convert a variant to its absolute value.
4291 * PARAMS
4292 * pVarIn [I] Source variant
4293 * pVarOut [O] Destination for converted value
4295 * RETURNS
4296 * Success: S_OK. pVarOut contains the absolute value of pVarIn.
4297 * Failure: An HRESULT error code indicating the error.
4299 * NOTES
4300 * - This function does not process by-reference variants.
4301 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4302 * according to the following table:
4303 *| Input Type Output Type
4304 *| ---------- -----------
4305 *| VT_BOOL VT_I2
4306 *| VT_BSTR VT_R8
4307 *| (All others) Unchanged
4309 HRESULT WINAPI VarAbs(LPVARIANT pVarIn, LPVARIANT pVarOut)
4311 VARIANT varIn;
4312 HRESULT hRet = S_OK;
4313 VARIANT temp;
4315 VariantInit(&temp);
4317 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4319 /* Handle VT_DISPATCH by storing and taking address of returned value */
4320 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4322 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4323 if (FAILED(hRet)) goto VarAbs_Exit;
4324 pVarIn = &temp;
4327 if (V_ISARRAY(pVarIn) || V_VT(pVarIn) == VT_UNKNOWN ||
4328 V_VT(pVarIn) == VT_DISPATCH || V_VT(pVarIn) == VT_RECORD ||
4329 V_VT(pVarIn) == VT_ERROR)
4331 hRet = DISP_E_TYPEMISMATCH;
4332 goto VarAbs_Exit;
4334 *pVarOut = *pVarIn; /* Shallow copy the value, and invert it if needed */
4336 #define ABS_CASE(typ,min) \
4337 case VT_##typ: if (V_##typ(pVarIn) == min) hRet = DISP_E_OVERFLOW; \
4338 else if (V_##typ(pVarIn) < 0) V_##typ(pVarOut) = -V_##typ(pVarIn); \
4339 break
4341 switch (V_VT(pVarIn))
4343 ABS_CASE(I1,I1_MIN);
4344 case VT_BOOL:
4345 V_VT(pVarOut) = VT_I2;
4346 /* BOOL->I2, Fall through ... */
4347 ABS_CASE(I2,I2_MIN);
4348 case VT_INT:
4349 ABS_CASE(I4,I4_MIN);
4350 ABS_CASE(I8,I8_MIN);
4351 ABS_CASE(R4,R4_MIN);
4352 case VT_BSTR:
4353 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
4354 if (FAILED(hRet))
4355 break;
4356 V_VT(pVarOut) = VT_R8;
4357 pVarIn = &varIn;
4358 /* Fall through ... */
4359 case VT_DATE:
4360 ABS_CASE(R8,R8_MIN);
4361 case VT_CY:
4362 hRet = VarCyAbs(V_CY(pVarIn), & V_CY(pVarOut));
4363 break;
4364 case VT_DECIMAL:
4365 DEC_SIGN(&V_DECIMAL(pVarOut)) &= ~DECIMAL_NEG;
4366 break;
4367 case VT_UI1:
4368 case VT_UI2:
4369 case VT_UINT:
4370 case VT_UI4:
4371 case VT_UI8:
4372 /* No-Op */
4373 break;
4374 case VT_EMPTY:
4375 V_VT(pVarOut) = VT_I2;
4376 case VT_NULL:
4377 V_I2(pVarOut) = 0;
4378 break;
4379 default:
4380 hRet = DISP_E_BADVARTYPE;
4383 VarAbs_Exit:
4384 VariantClear(&temp);
4385 return hRet;
4388 /**********************************************************************
4389 * VarFix [OLEAUT32.169]
4391 * Truncate a variants value to a whole number.
4393 * PARAMS
4394 * pVarIn [I] Source variant
4395 * pVarOut [O] Destination for converted value
4397 * RETURNS
4398 * Success: S_OK. pVarOut contains the converted value.
4399 * Failure: An HRESULT error code indicating the error.
4401 * NOTES
4402 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4403 * according to the following table:
4404 *| Input Type Output Type
4405 *| ---------- -----------
4406 *| VT_BOOL VT_I2
4407 *| VT_EMPTY VT_I2
4408 *| VT_BSTR VT_R8
4409 *| All Others Unchanged
4410 * - The difference between this function and VarInt() is that VarInt() rounds
4411 * negative numbers away from 0, while this function rounds them towards zero.
4413 HRESULT WINAPI VarFix(LPVARIANT pVarIn, LPVARIANT pVarOut)
4415 HRESULT hRet = S_OK;
4416 VARIANT temp;
4418 VariantInit(&temp);
4420 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4422 /* Handle VT_DISPATCH by storing and taking address of returned value */
4423 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4425 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4426 if (FAILED(hRet)) goto VarFix_Exit;
4427 pVarIn = &temp;
4429 V_VT(pVarOut) = V_VT(pVarIn);
4431 switch (V_VT(pVarIn))
4433 case VT_UI1:
4434 V_UI1(pVarOut) = V_UI1(pVarIn);
4435 break;
4436 case VT_BOOL:
4437 V_VT(pVarOut) = VT_I2;
4438 /* Fall through */
4439 case VT_I2:
4440 V_I2(pVarOut) = V_I2(pVarIn);
4441 break;
4442 case VT_I4:
4443 V_I4(pVarOut) = V_I4(pVarIn);
4444 break;
4445 case VT_I8:
4446 V_I8(pVarOut) = V_I8(pVarIn);
4447 break;
4448 case VT_R4:
4449 if (V_R4(pVarIn) < 0.0f)
4450 V_R4(pVarOut) = (float)ceil(V_R4(pVarIn));
4451 else
4452 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
4453 break;
4454 case VT_BSTR:
4455 V_VT(pVarOut) = VT_R8;
4456 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4457 pVarIn = pVarOut;
4458 /* Fall through */
4459 case VT_DATE:
4460 case VT_R8:
4461 if (V_R8(pVarIn) < 0.0)
4462 V_R8(pVarOut) = ceil(V_R8(pVarIn));
4463 else
4464 V_R8(pVarOut) = floor(V_R8(pVarIn));
4465 break;
4466 case VT_CY:
4467 hRet = VarCyFix(V_CY(pVarIn), &V_CY(pVarOut));
4468 break;
4469 case VT_DECIMAL:
4470 hRet = VarDecFix(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4471 break;
4472 case VT_EMPTY:
4473 V_VT(pVarOut) = VT_I2;
4474 V_I2(pVarOut) = 0;
4475 break;
4476 case VT_NULL:
4477 /* No-Op */
4478 break;
4479 default:
4480 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4481 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4482 hRet = DISP_E_BADVARTYPE;
4483 else
4484 hRet = DISP_E_TYPEMISMATCH;
4486 VarFix_Exit:
4487 if (FAILED(hRet))
4488 V_VT(pVarOut) = VT_EMPTY;
4489 VariantClear(&temp);
4491 return hRet;
4494 /**********************************************************************
4495 * VarInt [OLEAUT32.172]
4497 * Truncate a variants value to a whole number.
4499 * PARAMS
4500 * pVarIn [I] Source variant
4501 * pVarOut [O] Destination for converted value
4503 * RETURNS
4504 * Success: S_OK. pVarOut contains the converted value.
4505 * Failure: An HRESULT error code indicating the error.
4507 * NOTES
4508 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4509 * according to the following table:
4510 *| Input Type Output Type
4511 *| ---------- -----------
4512 *| VT_BOOL VT_I2
4513 *| VT_EMPTY VT_I2
4514 *| VT_BSTR VT_R8
4515 *| All Others Unchanged
4516 * - The difference between this function and VarFix() is that VarFix() rounds
4517 * negative numbers towards 0, while this function rounds them away from zero.
4519 HRESULT WINAPI VarInt(LPVARIANT pVarIn, LPVARIANT pVarOut)
4521 HRESULT hRet = S_OK;
4522 VARIANT temp;
4524 VariantInit(&temp);
4526 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4528 /* Handle VT_DISPATCH by storing and taking address of returned value */
4529 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4531 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4532 if (FAILED(hRet)) goto VarInt_Exit;
4533 pVarIn = &temp;
4535 V_VT(pVarOut) = V_VT(pVarIn);
4537 switch (V_VT(pVarIn))
4539 case VT_R4:
4540 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
4541 break;
4542 case VT_BSTR:
4543 V_VT(pVarOut) = VT_R8;
4544 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4545 pVarIn = pVarOut;
4546 /* Fall through */
4547 case VT_DATE:
4548 case VT_R8:
4549 V_R8(pVarOut) = floor(V_R8(pVarIn));
4550 break;
4551 case VT_CY:
4552 hRet = VarCyInt(V_CY(pVarIn), &V_CY(pVarOut));
4553 break;
4554 case VT_DECIMAL:
4555 hRet = VarDecInt(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4556 break;
4557 default:
4558 hRet = VarFix(pVarIn, pVarOut);
4560 VarInt_Exit:
4561 VariantClear(&temp);
4563 return hRet;
4566 /**********************************************************************
4567 * VarXor [OLEAUT32.167]
4569 * Perform a logical exclusive-or (XOR) operation on two variants.
4571 * PARAMS
4572 * pVarLeft [I] First variant
4573 * pVarRight [I] Variant to XOR with pVarLeft
4574 * pVarOut [O] Destination for XOR result
4576 * RETURNS
4577 * Success: S_OK. pVarOut contains the result of the operation with its type
4578 * taken from the table below).
4579 * Failure: An HRESULT error code indicating the error.
4581 * NOTES
4582 * - Neither pVarLeft or pVarRight are modified by this function.
4583 * - This function does not process by-reference variants.
4584 * - Input types of VT_BSTR may be numeric strings or boolean text.
4585 * - The type of result stored in pVarOut depends on the types of pVarLeft
4586 * and pVarRight, and will be one of VT_UI1, VT_I2, VT_I4, VT_I8, VT_BOOL,
4587 * or VT_NULL if the function succeeds.
4588 * - Type promotion is inconsistent and as a result certain combinations of
4589 * values will return DISP_E_OVERFLOW even when they could be represented.
4590 * This matches the behaviour of native oleaut32.
4592 HRESULT WINAPI VarXor(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4594 VARTYPE vt;
4595 VARIANT varLeft, varRight;
4596 VARIANT tempLeft, tempRight;
4597 double d;
4598 HRESULT hRet;
4600 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
4602 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
4603 V_VT(pVarLeft) > VT_UINT || V_VT(pVarRight) > VT_UINT ||
4604 V_VT(pVarLeft) == VT_VARIANT || V_VT(pVarRight) == VT_VARIANT ||
4605 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
4606 V_VT(pVarLeft) == (VARTYPE)15 || V_VT(pVarRight) == (VARTYPE)15 ||
4607 V_VT(pVarLeft) == VT_ERROR || V_VT(pVarRight) == VT_ERROR)
4608 return DISP_E_BADVARTYPE;
4610 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
4612 /* NULL XOR anything valid is NULL */
4613 V_VT(pVarOut) = VT_NULL;
4614 return S_OK;
4617 VariantInit(&tempLeft);
4618 VariantInit(&tempRight);
4620 /* Handle VT_DISPATCH by storing and taking address of returned value */
4621 if ((V_VT(pVarLeft) & VT_TYPEMASK) == VT_DISPATCH)
4623 hRet = VARIANT_FetchDispatchValue(pVarLeft, &tempLeft);
4624 if (FAILED(hRet)) goto VarXor_Exit;
4625 pVarLeft = &tempLeft;
4627 if ((V_VT(pVarRight) & VT_TYPEMASK) == VT_DISPATCH)
4629 hRet = VARIANT_FetchDispatchValue(pVarRight, &tempRight);
4630 if (FAILED(hRet)) goto VarXor_Exit;
4631 pVarRight = &tempRight;
4634 /* Copy our inputs so we don't disturb anything */
4635 V_VT(&varLeft) = V_VT(&varRight) = VT_EMPTY;
4637 hRet = VariantCopy(&varLeft, pVarLeft);
4638 if (FAILED(hRet))
4639 goto VarXor_Exit;
4641 hRet = VariantCopy(&varRight, pVarRight);
4642 if (FAILED(hRet))
4643 goto VarXor_Exit;
4645 /* Try any strings first as numbers, then as VT_BOOL */
4646 if (V_VT(&varLeft) == VT_BSTR)
4648 hRet = VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d);
4649 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL,
4650 FAILED(hRet) ? VT_BOOL : VT_I4);
4651 if (FAILED(hRet))
4652 goto VarXor_Exit;
4655 if (V_VT(&varRight) == VT_BSTR)
4657 hRet = VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d);
4658 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL,
4659 FAILED(hRet) ? VT_BOOL : VT_I4);
4660 if (FAILED(hRet))
4661 goto VarXor_Exit;
4664 /* Determine the result type */
4665 if (V_VT(&varLeft) == VT_I8 || V_VT(&varRight) == VT_I8)
4667 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
4669 hRet = DISP_E_TYPEMISMATCH;
4670 goto VarXor_Exit;
4672 vt = VT_I8;
4674 else
4676 switch ((V_VT(&varLeft) << 16) | V_VT(&varRight))
4678 case (VT_BOOL << 16) | VT_BOOL:
4679 vt = VT_BOOL;
4680 break;
4681 case (VT_UI1 << 16) | VT_UI1:
4682 vt = VT_UI1;
4683 break;
4684 case (VT_EMPTY << 16) | VT_EMPTY:
4685 case (VT_EMPTY << 16) | VT_UI1:
4686 case (VT_EMPTY << 16) | VT_I2:
4687 case (VT_EMPTY << 16) | VT_BOOL:
4688 case (VT_UI1 << 16) | VT_EMPTY:
4689 case (VT_UI1 << 16) | VT_I2:
4690 case (VT_UI1 << 16) | VT_BOOL:
4691 case (VT_I2 << 16) | VT_EMPTY:
4692 case (VT_I2 << 16) | VT_UI1:
4693 case (VT_I2 << 16) | VT_I2:
4694 case (VT_I2 << 16) | VT_BOOL:
4695 case (VT_BOOL << 16) | VT_EMPTY:
4696 case (VT_BOOL << 16) | VT_UI1:
4697 case (VT_BOOL << 16) | VT_I2:
4698 vt = VT_I2;
4699 break;
4700 default:
4701 vt = VT_I4;
4702 break;
4706 /* VT_UI4 does not overflow */
4707 if (vt != VT_I8)
4709 if (V_VT(&varLeft) == VT_UI4)
4710 V_VT(&varLeft) = VT_I4;
4711 if (V_VT(&varRight) == VT_UI4)
4712 V_VT(&varRight) = VT_I4;
4715 /* Convert our input copies to the result type */
4716 if (V_VT(&varLeft) != vt)
4717 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
4718 if (FAILED(hRet))
4719 goto VarXor_Exit;
4721 if (V_VT(&varRight) != vt)
4722 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
4723 if (FAILED(hRet))
4724 goto VarXor_Exit;
4726 V_VT(pVarOut) = vt;
4728 /* Calculate the result */
4729 switch (vt)
4731 case VT_I8:
4732 V_I8(pVarOut) = V_I8(&varLeft) ^ V_I8(&varRight);
4733 break;
4734 case VT_I4:
4735 V_I4(pVarOut) = V_I4(&varLeft) ^ V_I4(&varRight);
4736 break;
4737 case VT_BOOL:
4738 case VT_I2:
4739 V_I2(pVarOut) = V_I2(&varLeft) ^ V_I2(&varRight);
4740 break;
4741 case VT_UI1:
4742 V_UI1(pVarOut) = V_UI1(&varLeft) ^ V_UI1(&varRight);
4743 break;
4746 VarXor_Exit:
4747 VariantClear(&varLeft);
4748 VariantClear(&varRight);
4749 VariantClear(&tempLeft);
4750 VariantClear(&tempRight);
4751 return hRet;
4754 /**********************************************************************
4755 * VarEqv [OLEAUT32.172]
4757 * Determine if two variants contain the same value.
4759 * PARAMS
4760 * pVarLeft [I] First variant to compare
4761 * pVarRight [I] Variant to compare to pVarLeft
4762 * pVarOut [O] Destination for comparison result
4764 * RETURNS
4765 * Success: S_OK. pVarOut contains the result of the comparison (VARIANT_TRUE
4766 * if equivalent or non-zero otherwise.
4767 * Failure: An HRESULT error code indicating the error.
4769 * NOTES
4770 * - This function simply calls VarXor() on pVarLeft and pVarRight and inverts
4771 * the result.
4773 HRESULT WINAPI VarEqv(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4775 HRESULT hRet;
4777 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
4779 hRet = VarXor(pVarLeft, pVarRight, pVarOut);
4780 if (SUCCEEDED(hRet))
4782 if (V_VT(pVarOut) == VT_I8)
4783 V_I8(pVarOut) = ~V_I8(pVarOut);
4784 else
4785 V_UI4(pVarOut) = ~V_UI4(pVarOut);
4787 return hRet;
4790 /**********************************************************************
4791 * VarNeg [OLEAUT32.173]
4793 * Negate the value of a variant.
4795 * PARAMS
4796 * pVarIn [I] Source variant
4797 * pVarOut [O] Destination for converted value
4799 * RETURNS
4800 * Success: S_OK. pVarOut contains the converted value.
4801 * Failure: An HRESULT error code indicating the error.
4803 * NOTES
4804 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4805 * according to the following table:
4806 *| Input Type Output Type
4807 *| ---------- -----------
4808 *| VT_EMPTY VT_I2
4809 *| VT_UI1 VT_I2
4810 *| VT_BOOL VT_I2
4811 *| VT_BSTR VT_R8
4812 *| All Others Unchanged (unless promoted)
4813 * - Where the negated value of a variant does not fit in its base type, the type
4814 * is promoted according to the following table:
4815 *| Input Type Promoted To
4816 *| ---------- -----------
4817 *| VT_I2 VT_I4
4818 *| VT_I4 VT_R8
4819 *| VT_I8 VT_R8
4820 * - The native version of this function returns DISP_E_BADVARTYPE for valid
4821 * variant types that cannot be negated, and returns DISP_E_TYPEMISMATCH
4822 * for types which are not valid. Since this is in contravention of the
4823 * meaning of those error codes and unlikely to be relied on by applications,
4824 * this implementation returns errors consistent with the other high level
4825 * variant math functions.
4827 HRESULT WINAPI VarNeg(LPVARIANT pVarIn, LPVARIANT pVarOut)
4829 HRESULT hRet = S_OK;
4830 VARIANT temp;
4832 VariantInit(&temp);
4834 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4836 /* Handle VT_DISPATCH by storing and taking address of returned value */
4837 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4839 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4840 if (FAILED(hRet)) goto VarNeg_Exit;
4841 pVarIn = &temp;
4843 V_VT(pVarOut) = V_VT(pVarIn);
4845 switch (V_VT(pVarIn))
4847 case VT_UI1:
4848 V_VT(pVarOut) = VT_I2;
4849 V_I2(pVarOut) = -V_UI1(pVarIn);
4850 break;
4851 case VT_BOOL:
4852 V_VT(pVarOut) = VT_I2;
4853 /* Fall through */
4854 case VT_I2:
4855 if (V_I2(pVarIn) == I2_MIN)
4857 V_VT(pVarOut) = VT_I4;
4858 V_I4(pVarOut) = -(int)V_I2(pVarIn);
4860 else
4861 V_I2(pVarOut) = -V_I2(pVarIn);
4862 break;
4863 case VT_I4:
4864 if (V_I4(pVarIn) == I4_MIN)
4866 V_VT(pVarOut) = VT_R8;
4867 V_R8(pVarOut) = -(double)V_I4(pVarIn);
4869 else
4870 V_I4(pVarOut) = -V_I4(pVarIn);
4871 break;
4872 case VT_I8:
4873 if (V_I8(pVarIn) == I8_MIN)
4875 V_VT(pVarOut) = VT_R8;
4876 hRet = VarR8FromI8(V_I8(pVarIn), &V_R8(pVarOut));
4877 V_R8(pVarOut) *= -1.0;
4879 else
4880 V_I8(pVarOut) = -V_I8(pVarIn);
4881 break;
4882 case VT_R4:
4883 V_R4(pVarOut) = -V_R4(pVarIn);
4884 break;
4885 case VT_DATE:
4886 case VT_R8:
4887 V_R8(pVarOut) = -V_R8(pVarIn);
4888 break;
4889 case VT_CY:
4890 hRet = VarCyNeg(V_CY(pVarIn), &V_CY(pVarOut));
4891 break;
4892 case VT_DECIMAL:
4893 hRet = VarDecNeg(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4894 break;
4895 case VT_BSTR:
4896 V_VT(pVarOut) = VT_R8;
4897 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4898 V_R8(pVarOut) = -V_R8(pVarOut);
4899 break;
4900 case VT_EMPTY:
4901 V_VT(pVarOut) = VT_I2;
4902 V_I2(pVarOut) = 0;
4903 break;
4904 case VT_NULL:
4905 /* No-Op */
4906 break;
4907 default:
4908 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4909 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4910 hRet = DISP_E_BADVARTYPE;
4911 else
4912 hRet = DISP_E_TYPEMISMATCH;
4914 VarNeg_Exit:
4915 if (FAILED(hRet))
4916 V_VT(pVarOut) = VT_EMPTY;
4917 VariantClear(&temp);
4919 return hRet;
4922 /**********************************************************************
4923 * VarNot [OLEAUT32.174]
4925 * Perform a not operation on a variant.
4927 * PARAMS
4928 * pVarIn [I] Source variant
4929 * pVarOut [O] Destination for converted value
4931 * RETURNS
4932 * Success: S_OK. pVarOut contains the converted value.
4933 * Failure: An HRESULT error code indicating the error.
4935 * NOTES
4936 * - Strictly speaking, this function performs a bitwise ones complement
4937 * on the variants value (after possibly converting to VT_I4, see below).
4938 * This only behaves like a boolean not operation if the value in
4939 * pVarIn is either VARIANT_TRUE or VARIANT_FALSE and the type is signed.
4940 * - To perform a genuine not operation, convert the variant to a VT_BOOL
4941 * before calling this function.
4942 * - This function does not process by-reference variants.
4943 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4944 * according to the following table:
4945 *| Input Type Output Type
4946 *| ---------- -----------
4947 *| VT_EMPTY VT_I2
4948 *| VT_R4 VT_I4
4949 *| VT_R8 VT_I4
4950 *| VT_BSTR VT_I4
4951 *| VT_DECIMAL VT_I4
4952 *| VT_CY VT_I4
4953 *| (All others) Unchanged
4955 HRESULT WINAPI VarNot(LPVARIANT pVarIn, LPVARIANT pVarOut)
4957 VARIANT varIn;
4958 HRESULT hRet = S_OK;
4959 VARIANT temp;
4961 VariantInit(&temp);
4963 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4965 /* Handle VT_DISPATCH by storing and taking address of returned value */
4966 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4968 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4969 if (FAILED(hRet)) goto VarNot_Exit;
4970 pVarIn = &temp;
4973 if (V_VT(pVarIn) == VT_BSTR)
4975 V_VT(&varIn) = VT_R8;
4976 hRet = VarR8FromStr( V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn) );
4977 if (FAILED(hRet))
4979 V_VT(&varIn) = VT_BOOL;
4980 hRet = VarBoolFromStr( V_BSTR(pVarIn), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &V_BOOL(&varIn) );
4982 if (FAILED(hRet)) goto VarNot_Exit;
4983 pVarIn = &varIn;
4986 V_VT(pVarOut) = V_VT(pVarIn);
4988 switch (V_VT(pVarIn))
4990 case VT_I1:
4991 V_I4(pVarOut) = ~V_I1(pVarIn);
4992 V_VT(pVarOut) = VT_I4;
4993 break;
4994 case VT_UI1: V_UI1(pVarOut) = ~V_UI1(pVarIn); break;
4995 case VT_BOOL:
4996 case VT_I2: V_I2(pVarOut) = ~V_I2(pVarIn); break;
4997 case VT_UI2:
4998 V_I4(pVarOut) = ~V_UI2(pVarIn);
4999 V_VT(pVarOut) = VT_I4;
5000 break;
5001 case VT_DECIMAL:
5002 hRet = VarI4FromDec(&V_DECIMAL(pVarIn), &V_I4(&varIn));
5003 if (FAILED(hRet))
5004 break;
5005 pVarIn = &varIn;
5006 /* Fall through ... */
5007 case VT_INT:
5008 V_VT(pVarOut) = VT_I4;
5009 /* Fall through ... */
5010 case VT_I4: V_I4(pVarOut) = ~V_I4(pVarIn); break;
5011 case VT_UINT:
5012 case VT_UI4:
5013 V_I4(pVarOut) = ~V_UI4(pVarIn);
5014 V_VT(pVarOut) = VT_I4;
5015 break;
5016 case VT_I8: V_I8(pVarOut) = ~V_I8(pVarIn); break;
5017 case VT_UI8:
5018 V_I4(pVarOut) = ~V_UI8(pVarIn);
5019 V_VT(pVarOut) = VT_I4;
5020 break;
5021 case VT_R4:
5022 hRet = VarI4FromR4(V_R4(pVarIn), &V_I4(pVarOut));
5023 V_I4(pVarOut) = ~V_I4(pVarOut);
5024 V_VT(pVarOut) = VT_I4;
5025 break;
5026 case VT_DATE:
5027 case VT_R8:
5028 hRet = VarI4FromR8(V_R8(pVarIn), &V_I4(pVarOut));
5029 V_I4(pVarOut) = ~V_I4(pVarOut);
5030 V_VT(pVarOut) = VT_I4;
5031 break;
5032 case VT_CY:
5033 hRet = VarI4FromCy(V_CY(pVarIn), &V_I4(pVarOut));
5034 V_I4(pVarOut) = ~V_I4(pVarOut);
5035 V_VT(pVarOut) = VT_I4;
5036 break;
5037 case VT_EMPTY:
5038 V_I2(pVarOut) = ~0;
5039 V_VT(pVarOut) = VT_I2;
5040 break;
5041 case VT_NULL:
5042 /* No-Op */
5043 break;
5044 default:
5045 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
5046 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
5047 hRet = DISP_E_BADVARTYPE;
5048 else
5049 hRet = DISP_E_TYPEMISMATCH;
5051 VarNot_Exit:
5052 if (FAILED(hRet))
5053 V_VT(pVarOut) = VT_EMPTY;
5054 VariantClear(&temp);
5056 return hRet;
5059 /**********************************************************************
5060 * VarRound [OLEAUT32.175]
5062 * Perform a round operation on a variant.
5064 * PARAMS
5065 * pVarIn [I] Source variant
5066 * deci [I] Number of decimals to round to
5067 * pVarOut [O] Destination for converted value
5069 * RETURNS
5070 * Success: S_OK. pVarOut contains the converted value.
5071 * Failure: An HRESULT error code indicating the error.
5073 * NOTES
5074 * - Floating point values are rounded to the desired number of decimals.
5075 * - Some integer types are just copied to the return variable.
5076 * - Some other integer types are not handled and fail.
5078 HRESULT WINAPI VarRound(LPVARIANT pVarIn, int deci, LPVARIANT pVarOut)
5080 VARIANT varIn;
5081 HRESULT hRet = S_OK;
5082 float factor;
5083 VARIANT temp;
5085 VariantInit(&temp);
5087 TRACE("(%s,%d)\n", debugstr_variant(pVarIn), deci);
5089 /* Handle VT_DISPATCH by storing and taking address of returned value */
5090 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
5092 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
5093 if (FAILED(hRet)) goto VarRound_Exit;
5094 pVarIn = &temp;
5097 switch (V_VT(pVarIn))
5099 /* cases that fail on windows */
5100 case VT_I1:
5101 case VT_I8:
5102 case VT_UI2:
5103 case VT_UI4:
5104 hRet = DISP_E_BADVARTYPE;
5105 break;
5107 /* cases just copying in to out */
5108 case VT_UI1:
5109 V_VT(pVarOut) = V_VT(pVarIn);
5110 V_UI1(pVarOut) = V_UI1(pVarIn);
5111 break;
5112 case VT_I2:
5113 V_VT(pVarOut) = V_VT(pVarIn);
5114 V_I2(pVarOut) = V_I2(pVarIn);
5115 break;
5116 case VT_I4:
5117 V_VT(pVarOut) = V_VT(pVarIn);
5118 V_I4(pVarOut) = V_I4(pVarIn);
5119 break;
5120 case VT_NULL:
5121 V_VT(pVarOut) = V_VT(pVarIn);
5122 /* value unchanged */
5123 break;
5125 /* cases that change type */
5126 case VT_EMPTY:
5127 V_VT(pVarOut) = VT_I2;
5128 V_I2(pVarOut) = 0;
5129 break;
5130 case VT_BOOL:
5131 V_VT(pVarOut) = VT_I2;
5132 V_I2(pVarOut) = V_BOOL(pVarIn);
5133 break;
5134 case VT_BSTR:
5135 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
5136 if (FAILED(hRet))
5137 break;
5138 V_VT(&varIn)=VT_R8;
5139 pVarIn = &varIn;
5140 /* Fall through ... */
5142 /* cases we need to do math */
5143 case VT_R8:
5144 if (V_R8(pVarIn)>0) {
5145 V_R8(pVarOut)=floor(V_R8(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5146 } else {
5147 V_R8(pVarOut)=ceil(V_R8(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5149 V_VT(pVarOut) = V_VT(pVarIn);
5150 break;
5151 case VT_R4:
5152 if (V_R4(pVarIn)>0) {
5153 V_R4(pVarOut)=floor(V_R4(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5154 } else {
5155 V_R4(pVarOut)=ceil(V_R4(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5157 V_VT(pVarOut) = V_VT(pVarIn);
5158 break;
5159 case VT_DATE:
5160 if (V_DATE(pVarIn)>0) {
5161 V_DATE(pVarOut)=floor(V_DATE(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5162 } else {
5163 V_DATE(pVarOut)=ceil(V_DATE(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5165 V_VT(pVarOut) = V_VT(pVarIn);
5166 break;
5167 case VT_CY:
5168 if (deci>3)
5169 factor=1;
5170 else
5171 factor=pow(10, 4-deci);
5173 if (V_CY(pVarIn).int64>0) {
5174 V_CY(pVarOut).int64=floor(V_CY(pVarIn).int64/factor)*factor;
5175 } else {
5176 V_CY(pVarOut).int64=ceil(V_CY(pVarIn).int64/factor)*factor;
5178 V_VT(pVarOut) = V_VT(pVarIn);
5179 break;
5181 /* cases we don't know yet */
5182 default:
5183 FIXME("unimplemented part, V_VT(pVarIn) == 0x%X, deci == %d\n",
5184 V_VT(pVarIn) & VT_TYPEMASK, deci);
5185 hRet = DISP_E_BADVARTYPE;
5187 VarRound_Exit:
5188 if (FAILED(hRet))
5189 V_VT(pVarOut) = VT_EMPTY;
5190 VariantClear(&temp);
5192 TRACE("returning 0x%08x %s\n", hRet, debugstr_variant(pVarOut));
5193 return hRet;
5196 /**********************************************************************
5197 * VarIdiv [OLEAUT32.153]
5199 * Converts input variants to integers and divides them.
5201 * PARAMS
5202 * left [I] Left hand variant
5203 * right [I] Right hand variant
5204 * result [O] Destination for quotient
5206 * RETURNS
5207 * Success: S_OK. result contains the quotient.
5208 * Failure: An HRESULT error code indicating the error.
5210 * NOTES
5211 * If either expression is null, null is returned, as per MSDN
5213 HRESULT WINAPI VarIdiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5215 HRESULT hres = S_OK;
5216 VARTYPE resvt = VT_EMPTY;
5217 VARTYPE leftvt,rightvt;
5218 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5219 VARIANT lv,rv;
5220 VARIANT tempLeft, tempRight;
5222 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5224 VariantInit(&lv);
5225 VariantInit(&rv);
5226 VariantInit(&tempLeft);
5227 VariantInit(&tempRight);
5229 leftvt = V_VT(left)&VT_TYPEMASK;
5230 rightvt = V_VT(right)&VT_TYPEMASK;
5231 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5232 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5234 if (leftExtraFlags != rightExtraFlags)
5236 hres = DISP_E_BADVARTYPE;
5237 goto end;
5239 ExtraFlags = leftExtraFlags;
5241 /* Native VarIdiv always returns an error when using extra
5242 * flags or if the variant combination is I8 and INT.
5244 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
5245 (leftvt == VT_INT && rightvt == VT_I8) ||
5246 (rightvt == VT_EMPTY && leftvt != VT_NULL) ||
5247 ExtraFlags != 0)
5249 hres = DISP_E_BADVARTYPE;
5250 goto end;
5253 /* Determine variant type */
5254 else if (leftvt == VT_NULL || rightvt == VT_NULL)
5256 V_VT(result) = VT_NULL;
5257 hres = S_OK;
5258 goto end;
5260 else if (leftvt == VT_I8 || rightvt == VT_I8)
5261 resvt = VT_I8;
5262 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
5263 leftvt == VT_INT || rightvt == VT_INT ||
5264 leftvt == VT_UINT || rightvt == VT_UINT ||
5265 leftvt == VT_UI8 || rightvt == VT_UI8 ||
5266 leftvt == VT_UI4 || rightvt == VT_UI4 ||
5267 leftvt == VT_UI2 || rightvt == VT_UI2 ||
5268 leftvt == VT_I1 || rightvt == VT_I1 ||
5269 leftvt == VT_BSTR || rightvt == VT_BSTR ||
5270 leftvt == VT_DATE || rightvt == VT_DATE ||
5271 leftvt == VT_CY || rightvt == VT_CY ||
5272 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL ||
5273 leftvt == VT_R8 || rightvt == VT_R8 ||
5274 leftvt == VT_R4 || rightvt == VT_R4)
5275 resvt = VT_I4;
5276 else if (leftvt == VT_I2 || rightvt == VT_I2 ||
5277 leftvt == VT_BOOL || rightvt == VT_BOOL ||
5278 leftvt == VT_EMPTY)
5279 resvt = VT_I2;
5280 else if (leftvt == VT_UI1 || rightvt == VT_UI1)
5281 resvt = VT_UI1;
5282 else
5284 hres = DISP_E_BADVARTYPE;
5285 goto end;
5288 /* coerce to the result type */
5289 hres = VariantChangeType(&lv, left, 0, resvt);
5290 if (hres != S_OK) goto end;
5291 hres = VariantChangeType(&rv, right, 0, resvt);
5292 if (hres != S_OK) goto end;
5294 /* do the math */
5295 V_VT(result) = resvt;
5296 switch (resvt)
5298 case VT_UI1:
5299 if (V_UI1(&rv) == 0)
5301 hres = DISP_E_DIVBYZERO;
5302 V_VT(result) = VT_EMPTY;
5304 else
5305 V_UI1(result) = V_UI1(&lv) / V_UI1(&rv);
5306 break;
5307 case VT_I2:
5308 if (V_I2(&rv) == 0)
5310 hres = DISP_E_DIVBYZERO;
5311 V_VT(result) = VT_EMPTY;
5313 else
5314 V_I2(result) = V_I2(&lv) / V_I2(&rv);
5315 break;
5316 case VT_I4:
5317 if (V_I4(&rv) == 0)
5319 hres = DISP_E_DIVBYZERO;
5320 V_VT(result) = VT_EMPTY;
5322 else
5323 V_I4(result) = V_I4(&lv) / V_I4(&rv);
5324 break;
5325 case VT_I8:
5326 if (V_I8(&rv) == 0)
5328 hres = DISP_E_DIVBYZERO;
5329 V_VT(result) = VT_EMPTY;
5331 else
5332 V_I8(result) = V_I8(&lv) / V_I8(&rv);
5333 break;
5334 default:
5335 FIXME("Couldn't integer divide variant types %d,%d\n",
5336 leftvt,rightvt);
5339 end:
5340 VariantClear(&lv);
5341 VariantClear(&rv);
5342 VariantClear(&tempLeft);
5343 VariantClear(&tempRight);
5345 return hres;
5349 /**********************************************************************
5350 * VarMod [OLEAUT32.155]
5352 * Perform the modulus operation of the right hand variant on the left
5354 * PARAMS
5355 * left [I] Left hand variant
5356 * right [I] Right hand variant
5357 * result [O] Destination for converted value
5359 * RETURNS
5360 * Success: S_OK. result contains the remainder.
5361 * Failure: An HRESULT error code indicating the error.
5363 * NOTE:
5364 * If an error occurs the type of result will be modified but the value will not be.
5365 * Doesn't support arrays or any special flags yet.
5367 HRESULT WINAPI VarMod(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5369 BOOL lOk = TRUE;
5370 HRESULT rc = E_FAIL;
5371 int resT = 0;
5372 VARIANT lv,rv;
5373 VARIANT tempLeft, tempRight;
5375 VariantInit(&tempLeft);
5376 VariantInit(&tempRight);
5377 VariantInit(&lv);
5378 VariantInit(&rv);
5380 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5382 /* Handle VT_DISPATCH by storing and taking address of returned value */
5383 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5385 rc = VARIANT_FetchDispatchValue(left, &tempLeft);
5386 if (FAILED(rc)) goto end;
5387 left = &tempLeft;
5389 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5391 rc = VARIANT_FetchDispatchValue(right, &tempRight);
5392 if (FAILED(rc)) goto end;
5393 right = &tempRight;
5396 /* check for invalid inputs */
5397 lOk = TRUE;
5398 switch (V_VT(left) & VT_TYPEMASK) {
5399 case VT_BOOL :
5400 case VT_I1 :
5401 case VT_I2 :
5402 case VT_I4 :
5403 case VT_I8 :
5404 case VT_INT :
5405 case VT_UI1 :
5406 case VT_UI2 :
5407 case VT_UI4 :
5408 case VT_UI8 :
5409 case VT_UINT :
5410 case VT_R4 :
5411 case VT_R8 :
5412 case VT_CY :
5413 case VT_EMPTY:
5414 case VT_DATE :
5415 case VT_BSTR :
5416 case VT_DECIMAL:
5417 break;
5418 case VT_VARIANT:
5419 case VT_UNKNOWN:
5420 V_VT(result) = VT_EMPTY;
5421 rc = DISP_E_TYPEMISMATCH;
5422 goto end;
5423 case VT_ERROR:
5424 rc = DISP_E_TYPEMISMATCH;
5425 goto end;
5426 case VT_RECORD:
5427 V_VT(result) = VT_EMPTY;
5428 rc = DISP_E_TYPEMISMATCH;
5429 goto end;
5430 case VT_NULL:
5431 break;
5432 default:
5433 V_VT(result) = VT_EMPTY;
5434 rc = DISP_E_BADVARTYPE;
5435 goto end;
5439 switch (V_VT(right) & VT_TYPEMASK) {
5440 case VT_BOOL :
5441 case VT_I1 :
5442 case VT_I2 :
5443 case VT_I4 :
5444 case VT_I8 :
5445 if((V_VT(left) == VT_INT) && (V_VT(right) == VT_I8))
5447 V_VT(result) = VT_EMPTY;
5448 rc = DISP_E_TYPEMISMATCH;
5449 goto end;
5451 case VT_INT :
5452 if((V_VT(right) == VT_INT) && (V_VT(left) == VT_I8))
5454 V_VT(result) = VT_EMPTY;
5455 rc = DISP_E_TYPEMISMATCH;
5456 goto end;
5458 case VT_UI1 :
5459 case VT_UI2 :
5460 case VT_UI4 :
5461 case VT_UI8 :
5462 case VT_UINT :
5463 case VT_R4 :
5464 case VT_R8 :
5465 case VT_CY :
5466 if(V_VT(left) == VT_EMPTY)
5468 V_VT(result) = VT_I4;
5469 rc = S_OK;
5470 goto end;
5472 case VT_EMPTY:
5473 case VT_DATE :
5474 case VT_DECIMAL:
5475 if(V_VT(left) == VT_ERROR)
5477 V_VT(result) = VT_EMPTY;
5478 rc = DISP_E_TYPEMISMATCH;
5479 goto end;
5481 case VT_BSTR:
5482 if(V_VT(left) == VT_NULL)
5484 V_VT(result) = VT_NULL;
5485 rc = S_OK;
5486 goto end;
5488 break;
5490 case VT_VOID:
5491 V_VT(result) = VT_EMPTY;
5492 rc = DISP_E_BADVARTYPE;
5493 goto end;
5494 case VT_NULL:
5495 if(V_VT(left) == VT_VOID)
5497 V_VT(result) = VT_EMPTY;
5498 rc = DISP_E_BADVARTYPE;
5499 } else if((V_VT(left) == VT_NULL) || (V_VT(left) == VT_EMPTY) || (V_VT(left) == VT_ERROR) ||
5500 lOk)
5502 V_VT(result) = VT_NULL;
5503 rc = S_OK;
5504 } else
5506 V_VT(result) = VT_NULL;
5507 rc = DISP_E_BADVARTYPE;
5509 goto end;
5510 case VT_VARIANT:
5511 case VT_UNKNOWN:
5512 V_VT(result) = VT_EMPTY;
5513 rc = DISP_E_TYPEMISMATCH;
5514 goto end;
5515 case VT_ERROR:
5516 rc = DISP_E_TYPEMISMATCH;
5517 goto end;
5518 case VT_RECORD:
5519 if((V_VT(left) == 15) || ((V_VT(left) >= 24) && (V_VT(left) <= 35)) || !lOk)
5521 V_VT(result) = VT_EMPTY;
5522 rc = DISP_E_BADVARTYPE;
5523 } else
5525 V_VT(result) = VT_EMPTY;
5526 rc = DISP_E_TYPEMISMATCH;
5528 goto end;
5529 default:
5530 V_VT(result) = VT_EMPTY;
5531 rc = DISP_E_BADVARTYPE;
5532 goto end;
5535 /* determine the result type */
5536 if((V_VT(left) == VT_I8) || (V_VT(right) == VT_I8)) resT = VT_I8;
5537 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5538 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_UI1)) resT = VT_UI1;
5539 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_I2)) resT = VT_I2;
5540 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5541 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_UI1)) resT = VT_I2;
5542 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_I2)) resT = VT_I2;
5543 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5544 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_UI1)) resT = VT_I2;
5545 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_I2)) resT = VT_I2;
5546 else resT = VT_I4; /* most outputs are I4 */
5548 /* convert to I8 for the modulo */
5549 rc = VariantChangeType(&lv, left, 0, VT_I8);
5550 if(FAILED(rc))
5552 FIXME("Could not convert left type %d to %d? rc == 0x%X\n", V_VT(left), VT_I8, rc);
5553 goto end;
5556 rc = VariantChangeType(&rv, right, 0, VT_I8);
5557 if(FAILED(rc))
5559 FIXME("Could not convert right type %d to %d? rc == 0x%X\n", V_VT(right), VT_I8, rc);
5560 goto end;
5563 /* if right is zero set VT_EMPTY and return divide by zero */
5564 if(V_I8(&rv) == 0)
5566 V_VT(result) = VT_EMPTY;
5567 rc = DISP_E_DIVBYZERO;
5568 goto end;
5571 /* perform the modulo operation */
5572 V_VT(result) = VT_I8;
5573 V_I8(result) = V_I8(&lv) % V_I8(&rv);
5575 TRACE("V_I8(left) == %s, V_I8(right) == %s, V_I8(result) == %s\n",
5576 wine_dbgstr_longlong(V_I8(&lv)), wine_dbgstr_longlong(V_I8(&rv)),
5577 wine_dbgstr_longlong(V_I8(result)));
5579 /* convert left and right to the destination type */
5580 rc = VariantChangeType(result, result, 0, resT);
5581 if(FAILED(rc))
5583 FIXME("Could not convert 0x%x to %d?\n", V_VT(result), resT);
5584 /* fall to end of function */
5587 end:
5588 VariantClear(&lv);
5589 VariantClear(&rv);
5590 VariantClear(&tempLeft);
5591 VariantClear(&tempRight);
5592 return rc;
5595 /**********************************************************************
5596 * VarPow [OLEAUT32.158]
5598 * Computes the power of one variant to another variant.
5600 * PARAMS
5601 * left [I] First variant
5602 * right [I] Second variant
5603 * result [O] Result variant
5605 * RETURNS
5606 * Success: S_OK.
5607 * Failure: An HRESULT error code indicating the error.
5609 HRESULT WINAPI VarPow(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5611 HRESULT hr = S_OK;
5612 VARIANT dl,dr;
5613 VARTYPE resvt = VT_EMPTY;
5614 VARTYPE leftvt,rightvt;
5615 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5616 VARIANT tempLeft, tempRight;
5618 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5620 VariantInit(&dl);
5621 VariantInit(&dr);
5622 VariantInit(&tempLeft);
5623 VariantInit(&tempRight);
5625 /* Handle VT_DISPATCH by storing and taking address of returned value */
5626 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5628 hr = VARIANT_FetchDispatchValue(left, &tempLeft);
5629 if (FAILED(hr)) goto end;
5630 left = &tempLeft;
5632 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5634 hr = VARIANT_FetchDispatchValue(right, &tempRight);
5635 if (FAILED(hr)) goto end;
5636 right = &tempRight;
5639 leftvt = V_VT(left)&VT_TYPEMASK;
5640 rightvt = V_VT(right)&VT_TYPEMASK;
5641 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5642 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5644 if (leftExtraFlags != rightExtraFlags)
5646 hr = DISP_E_BADVARTYPE;
5647 goto end;
5649 ExtraFlags = leftExtraFlags;
5651 /* Native VarPow always returns an error when using extra flags */
5652 if (ExtraFlags != 0)
5654 hr = DISP_E_BADVARTYPE;
5655 goto end;
5658 /* Determine return type */
5659 else if (leftvt == VT_NULL || rightvt == VT_NULL) {
5660 V_VT(result) = VT_NULL;
5661 hr = S_OK;
5662 goto end;
5664 else if ((leftvt == VT_EMPTY || leftvt == VT_I2 ||
5665 leftvt == VT_I4 || leftvt == VT_R4 ||
5666 leftvt == VT_R8 || leftvt == VT_CY ||
5667 leftvt == VT_DATE || leftvt == VT_BSTR ||
5668 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
5669 (leftvt >= VT_I1 && leftvt <= VT_UINT)) &&
5670 (rightvt == VT_EMPTY || rightvt == VT_I2 ||
5671 rightvt == VT_I4 || rightvt == VT_R4 ||
5672 rightvt == VT_R8 || rightvt == VT_CY ||
5673 rightvt == VT_DATE || rightvt == VT_BSTR ||
5674 rightvt == VT_BOOL || rightvt == VT_DECIMAL ||
5675 (rightvt >= VT_I1 && rightvt <= VT_UINT)))
5676 resvt = VT_R8;
5677 else
5679 hr = DISP_E_BADVARTYPE;
5680 goto end;
5683 hr = VariantChangeType(&dl,left,0,resvt);
5684 if (FAILED(hr)) {
5685 ERR("Could not change passed left argument to VT_R8, handle it differently.\n");
5686 hr = E_FAIL;
5687 goto end;
5690 hr = VariantChangeType(&dr,right,0,resvt);
5691 if (FAILED(hr)) {
5692 ERR("Could not change passed right argument to VT_R8, handle it differently.\n");
5693 hr = E_FAIL;
5694 goto end;
5697 V_VT(result) = VT_R8;
5698 V_R8(result) = pow(V_R8(&dl),V_R8(&dr));
5700 end:
5701 VariantClear(&dl);
5702 VariantClear(&dr);
5703 VariantClear(&tempLeft);
5704 VariantClear(&tempRight);
5706 return hr;
5709 /**********************************************************************
5710 * VarImp [OLEAUT32.154]
5712 * Bitwise implication of two variants.
5714 * PARAMS
5715 * left [I] First variant
5716 * right [I] Second variant
5717 * result [O] Result variant
5719 * RETURNS
5720 * Success: S_OK.
5721 * Failure: An HRESULT error code indicating the error.
5723 HRESULT WINAPI VarImp(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5725 HRESULT hres = S_OK;
5726 VARTYPE resvt = VT_EMPTY;
5727 VARTYPE leftvt,rightvt;
5728 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5729 VARIANT lv,rv;
5730 double d;
5731 VARIANT tempLeft, tempRight;
5733 VariantInit(&lv);
5734 VariantInit(&rv);
5735 VariantInit(&tempLeft);
5736 VariantInit(&tempRight);
5738 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5740 /* Handle VT_DISPATCH by storing and taking address of returned value */
5741 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5743 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
5744 if (FAILED(hres)) goto VarImp_Exit;
5745 left = &tempLeft;
5747 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5749 hres = VARIANT_FetchDispatchValue(right, &tempRight);
5750 if (FAILED(hres)) goto VarImp_Exit;
5751 right = &tempRight;
5754 leftvt = V_VT(left)&VT_TYPEMASK;
5755 rightvt = V_VT(right)&VT_TYPEMASK;
5756 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5757 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5759 if (leftExtraFlags != rightExtraFlags)
5761 hres = DISP_E_BADVARTYPE;
5762 goto VarImp_Exit;
5764 ExtraFlags = leftExtraFlags;
5766 /* Native VarImp always returns an error when using extra
5767 * flags or if the variants are I8 and INT.
5769 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
5770 ExtraFlags != 0)
5772 hres = DISP_E_BADVARTYPE;
5773 goto VarImp_Exit;
5776 /* Determine result type */
5777 else if ((leftvt == VT_NULL && rightvt == VT_NULL) ||
5778 (leftvt == VT_NULL && rightvt == VT_EMPTY))
5780 V_VT(result) = VT_NULL;
5781 hres = S_OK;
5782 goto VarImp_Exit;
5784 else if (leftvt == VT_I8 || rightvt == VT_I8)
5785 resvt = VT_I8;
5786 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
5787 leftvt == VT_INT || rightvt == VT_INT ||
5788 leftvt == VT_UINT || rightvt == VT_UINT ||
5789 leftvt == VT_UI4 || rightvt == VT_UI4 ||
5790 leftvt == VT_UI8 || rightvt == VT_UI8 ||
5791 leftvt == VT_UI2 || rightvt == VT_UI2 ||
5792 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL ||
5793 leftvt == VT_DATE || rightvt == VT_DATE ||
5794 leftvt == VT_CY || rightvt == VT_CY ||
5795 leftvt == VT_R8 || rightvt == VT_R8 ||
5796 leftvt == VT_R4 || rightvt == VT_R4 ||
5797 leftvt == VT_I1 || rightvt == VT_I1)
5798 resvt = VT_I4;
5799 else if ((leftvt == VT_UI1 && rightvt == VT_UI1) ||
5800 (leftvt == VT_UI1 && rightvt == VT_NULL) ||
5801 (leftvt == VT_NULL && rightvt == VT_UI1))
5802 resvt = VT_UI1;
5803 else if (leftvt == VT_EMPTY || rightvt == VT_EMPTY ||
5804 leftvt == VT_I2 || rightvt == VT_I2 ||
5805 leftvt == VT_UI1 || rightvt == VT_UI1)
5806 resvt = VT_I2;
5807 else if (leftvt == VT_BOOL || rightvt == VT_BOOL ||
5808 leftvt == VT_BSTR || rightvt == VT_BSTR)
5809 resvt = VT_BOOL;
5811 /* VT_NULL requires special handling for when the opposite
5812 * variant is equal to something other than -1.
5813 * (NULL Imp 0 = NULL, NULL Imp n = n)
5815 if (leftvt == VT_NULL)
5817 VARIANT_BOOL b;
5818 switch(rightvt)
5820 case VT_I1: if (!V_I1(right)) resvt = VT_NULL; break;
5821 case VT_UI1: if (!V_UI1(right)) resvt = VT_NULL; break;
5822 case VT_I2: if (!V_I2(right)) resvt = VT_NULL; break;
5823 case VT_UI2: if (!V_UI2(right)) resvt = VT_NULL; break;
5824 case VT_I4: if (!V_I4(right)) resvt = VT_NULL; break;
5825 case VT_UI4: if (!V_UI4(right)) resvt = VT_NULL; break;
5826 case VT_I8: if (!V_I8(right)) resvt = VT_NULL; break;
5827 case VT_UI8: if (!V_UI8(right)) resvt = VT_NULL; break;
5828 case VT_INT: if (!V_INT(right)) resvt = VT_NULL; break;
5829 case VT_UINT: if (!V_UINT(right)) resvt = VT_NULL; break;
5830 case VT_BOOL: if (!V_BOOL(right)) resvt = VT_NULL; break;
5831 case VT_R4: if (!V_R4(right)) resvt = VT_NULL; break;
5832 case VT_R8: if (!V_R8(right)) resvt = VT_NULL; break;
5833 case VT_DATE: if (!V_DATE(right)) resvt = VT_NULL; break;
5834 case VT_CY: if (!V_CY(right).int64) resvt = VT_NULL; break;
5835 case VT_DECIMAL:
5836 if (!(DEC_HI32(&V_DECIMAL(right)) || DEC_LO64(&V_DECIMAL(right))))
5837 resvt = VT_NULL;
5838 break;
5839 case VT_BSTR:
5840 hres = VarBoolFromStr(V_BSTR(right),LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
5841 if (FAILED(hres)) goto VarImp_Exit;
5842 else if (!b)
5843 V_VT(result) = VT_NULL;
5844 else
5846 V_VT(result) = VT_BOOL;
5847 V_BOOL(result) = b;
5849 goto VarImp_Exit;
5851 if (resvt == VT_NULL)
5853 V_VT(result) = resvt;
5854 goto VarImp_Exit;
5856 else
5858 hres = VariantChangeType(result,right,0,resvt);
5859 goto VarImp_Exit;
5863 /* Special handling is required when NULL is the right variant.
5864 * (-1 Imp NULL = NULL, n Imp NULL = n Imp 0)
5866 else if (rightvt == VT_NULL)
5868 VARIANT_BOOL b;
5869 switch(leftvt)
5871 case VT_I1: if (V_I1(left) == -1) resvt = VT_NULL; break;
5872 case VT_UI1: if (V_UI1(left) == 0xff) resvt = VT_NULL; break;
5873 case VT_I2: if (V_I2(left) == -1) resvt = VT_NULL; break;
5874 case VT_UI2: if (V_UI2(left) == 0xffff) resvt = VT_NULL; break;
5875 case VT_INT: if (V_INT(left) == -1) resvt = VT_NULL; break;
5876 case VT_UINT: if (V_UINT(left) == ~0u) resvt = VT_NULL; break;
5877 case VT_I4: if (V_I4(left) == -1) resvt = VT_NULL; break;
5878 case VT_UI4: if (V_UI4(left) == ~0u) resvt = VT_NULL; break;
5879 case VT_I8: if (V_I8(left) == -1) resvt = VT_NULL; break;
5880 case VT_UI8: if (V_UI8(left) == ~(ULONGLONG)0) resvt = VT_NULL; break;
5881 case VT_BOOL: if (V_BOOL(left) == VARIANT_TRUE) resvt = VT_NULL; break;
5882 case VT_R4: if (V_R4(left) == -1.0) resvt = VT_NULL; break;
5883 case VT_R8: if (V_R8(left) == -1.0) resvt = VT_NULL; break;
5884 case VT_CY: if (V_CY(left).int64 == -1) resvt = VT_NULL; break;
5885 case VT_DECIMAL:
5886 if (DEC_HI32(&V_DECIMAL(left)) == 0xffffffff)
5887 resvt = VT_NULL;
5888 break;
5889 case VT_BSTR:
5890 hres = VarBoolFromStr(V_BSTR(left),LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
5891 if (FAILED(hres)) goto VarImp_Exit;
5892 else if (b == VARIANT_TRUE)
5893 resvt = VT_NULL;
5895 if (resvt == VT_NULL)
5897 V_VT(result) = resvt;
5898 goto VarImp_Exit;
5902 hres = VariantCopy(&lv, left);
5903 if (FAILED(hres)) goto VarImp_Exit;
5905 if (rightvt == VT_NULL)
5907 memset( &rv, 0, sizeof(rv) );
5908 V_VT(&rv) = resvt;
5910 else
5912 hres = VariantCopy(&rv, right);
5913 if (FAILED(hres)) goto VarImp_Exit;
5916 if (V_VT(&lv) == VT_BSTR &&
5917 FAILED(VarR8FromStr(V_BSTR(&lv),LOCALE_USER_DEFAULT, 0, &d)))
5918 hres = VariantChangeType(&lv,&lv,VARIANT_LOCALBOOL, VT_BOOL);
5919 if (SUCCEEDED(hres) && V_VT(&lv) != resvt)
5920 hres = VariantChangeType(&lv,&lv,0,resvt);
5921 if (FAILED(hres)) goto VarImp_Exit;
5923 if (V_VT(&rv) == VT_BSTR &&
5924 FAILED(VarR8FromStr(V_BSTR(&rv),LOCALE_USER_DEFAULT, 0, &d)))
5925 hres = VariantChangeType(&rv, &rv,VARIANT_LOCALBOOL, VT_BOOL);
5926 if (SUCCEEDED(hres) && V_VT(&rv) != resvt)
5927 hres = VariantChangeType(&rv, &rv, 0, resvt);
5928 if (FAILED(hres)) goto VarImp_Exit;
5930 /* do the math */
5931 V_VT(result) = resvt;
5932 switch (resvt)
5934 case VT_I8:
5935 V_I8(result) = (~V_I8(&lv)) | V_I8(&rv);
5936 break;
5937 case VT_I4:
5938 V_I4(result) = (~V_I4(&lv)) | V_I4(&rv);
5939 break;
5940 case VT_I2:
5941 V_I2(result) = (~V_I2(&lv)) | V_I2(&rv);
5942 break;
5943 case VT_UI1:
5944 V_UI1(result) = (~V_UI1(&lv)) | V_UI1(&rv);
5945 break;
5946 case VT_BOOL:
5947 V_BOOL(result) = (~V_BOOL(&lv)) | V_BOOL(&rv);
5948 break;
5949 default:
5950 FIXME("Couldn't perform bitwise implication on variant types %d,%d\n",
5951 leftvt,rightvt);
5954 VarImp_Exit:
5956 VariantClear(&lv);
5957 VariantClear(&rv);
5958 VariantClear(&tempLeft);
5959 VariantClear(&tempRight);
5961 return hres;