ia2comproxy: Introduce new proxy stub DLL for IAccessible2.
[wine.git] / dlls / rsaenh / rsaenh.c
blobbeac3c7e850fea33446854d129ed060eaf75117c
1 /*
2 * dlls/rsaenh/rsaenh.c
3 * RSAENH - RSA encryption for Wine
5 * Copyright 2002 TransGaming Technologies (David Hammerton)
6 * Copyright 2004 Mike McCormack for CodeWeavers
7 * Copyright 2004, 2005 Michael Jung
8 * Copyright 2007 Vijay Kiran Kamuju
10 * This library is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2.1 of the License, or (at your option) any later version.
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with this library; if not, write to the Free Software
22 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <assert.h>
30 #include "windef.h"
31 #include "winbase.h"
32 #include "winreg.h"
33 #include "wincrypt.h"
34 #include "handle.h"
35 #include "implglue.h"
36 #include "objbase.h"
37 #include "rpcproxy.h"
38 #include "aclapi.h"
39 #include "wine/debug.h"
41 WINE_DEFAULT_DEBUG_CHANNEL(crypt);
43 #define RSAENH_MAGIC_KEY 0x73620457u
44 #define RSAENH_MAX_KEY_SIZE 64
45 #define RSAENH_MAX_BLOCK_SIZE 24
46 #define RSAENH_KEYSTATE_IDLE 0
47 #define RSAENH_KEYSTATE_ENCRYPTING 1
48 #define RSAENH_KEYSTATE_MASTERKEY 2
50 /******************************************************************************
51 * CRYPTHASH - hash objects
53 #define RSAENH_MAGIC_HASH 0x85938417u
54 #define RSAENH_HASHSTATE_HASHING 1
55 #define RSAENH_HASHSTATE_FINISHED 2
56 typedef struct _RSAENH_TLS1PRF_PARAMS
58 CRYPT_DATA_BLOB blobLabel;
59 CRYPT_DATA_BLOB blobSeed;
60 } RSAENH_TLS1PRF_PARAMS;
62 typedef struct tagCRYPTHASH
64 OBJECTHDR header;
65 ALG_ID aiAlgid;
66 HCRYPTKEY hKey;
67 HCRYPTPROV hProv;
68 DWORD dwHashSize;
69 DWORD dwState;
70 BCRYPT_HASH_HANDLE hash_handle;
71 BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
72 PHMAC_INFO pHMACInfo;
73 RSAENH_TLS1PRF_PARAMS tpPRFParams;
74 DWORD buffered_hash_bytes;
75 ALG_ID key_alg_id;
76 KEY_CONTEXT key_context;
77 BYTE abChainVector[RSAENH_MAX_BLOCK_SIZE];
78 } CRYPTHASH;
80 /******************************************************************************
81 * CRYPTKEY - key objects
83 typedef struct _RSAENH_SCHANNEL_INFO
85 SCHANNEL_ALG saEncAlg;
86 SCHANNEL_ALG saMACAlg;
87 CRYPT_DATA_BLOB blobClientRandom;
88 CRYPT_DATA_BLOB blobServerRandom;
89 } RSAENH_SCHANNEL_INFO;
91 typedef struct tagCRYPTKEY
93 OBJECTHDR header;
94 ALG_ID aiAlgid;
95 HCRYPTPROV hProv;
96 DWORD dwMode;
97 DWORD dwModeBits;
98 DWORD dwPermissions;
99 DWORD dwKeyLen;
100 DWORD dwEffectiveKeyLen;
101 DWORD dwSaltLen;
102 DWORD dwBlockLen;
103 DWORD dwState;
104 KEY_CONTEXT context;
105 BYTE abKeyValue[RSAENH_MAX_KEY_SIZE];
106 BYTE abInitVector[RSAENH_MAX_BLOCK_SIZE];
107 BYTE abChainVector[RSAENH_MAX_BLOCK_SIZE];
108 RSAENH_SCHANNEL_INFO siSChannelInfo;
109 CRYPT_DATA_BLOB blobHmacKey;
110 } CRYPTKEY;
112 /******************************************************************************
113 * KEYCONTAINER - key containers
115 #define RSAENH_PERSONALITY_BASE 0u
116 #define RSAENH_PERSONALITY_STRONG 1u
117 #define RSAENH_PERSONALITY_ENHANCED 2u
118 #define RSAENH_PERSONALITY_SCHANNEL 3u
119 #define RSAENH_PERSONALITY_AES 4u
121 #define RSAENH_MAGIC_CONTAINER 0x26384993u
122 typedef struct tagKEYCONTAINER
124 OBJECTHDR header;
125 DWORD dwFlags;
126 DWORD dwPersonality;
127 DWORD dwEnumAlgsCtr;
128 DWORD dwEnumContainersCtr;
129 CHAR szName[MAX_PATH];
130 CHAR szProvName[MAX_PATH];
131 HCRYPTKEY hKeyExchangeKeyPair;
132 HCRYPTKEY hSignatureKeyPair;
133 } KEYCONTAINER;
135 /******************************************************************************
136 * Some magic constants
138 #define RSAENH_ENCRYPT 1
139 #define RSAENH_DECRYPT 0
140 #define RSAENH_HMAC_DEF_IPAD_CHAR 0x36
141 #define RSAENH_HMAC_DEF_OPAD_CHAR 0x5c
142 #define RSAENH_HMAC_DEF_PAD_LEN 64
143 #define RSAENH_HMAC_BLOCK_LEN 64
144 #define RSAENH_DES_EFFECTIVE_KEYLEN 56
145 #define RSAENH_DES_STORAGE_KEYLEN 64
146 #define RSAENH_3DES112_EFFECTIVE_KEYLEN 112
147 #define RSAENH_3DES112_STORAGE_KEYLEN 128
148 #define RSAENH_3DES_EFFECTIVE_KEYLEN 168
149 #define RSAENH_3DES_STORAGE_KEYLEN 192
150 #define RSAENH_MAGIC_RSA2 0x32415352
151 #define RSAENH_MAGIC_RSA1 0x31415352
152 #define RSAENH_PKC_BLOCKTYPE 0x02
153 #define RSAENH_SSL3_VERSION_MAJOR 3
154 #define RSAENH_SSL3_VERSION_MINOR 0
155 #define RSAENH_TLS1_VERSION_MAJOR 3
156 #define RSAENH_TLS1_VERSION_MINOR 1
157 #define RSAENH_REGKEY "Software\\Wine\\Crypto\\RSA\\%s"
159 #define RSAENH_MIN(a,b) ((a)<(b)?(a):(b))
160 /******************************************************************************
161 * aProvEnumAlgsEx - Defines the capabilities of the CSP personalities.
163 #define RSAENH_MAX_ENUMALGS 24
164 #define RSAENH_PCT1_SSL2_SSL3_TLS1 (CRYPT_FLAG_PCT1|CRYPT_FLAG_SSL2|CRYPT_FLAG_SSL3|CRYPT_FLAG_TLS1)
165 #define S(s) sizeof(s), s
166 static const PROV_ENUMALGS_EX aProvEnumAlgsEx[5][RSAENH_MAX_ENUMALGS+1] =
169 {CALG_RC2, 40, 40, 56, 0, S("RC2"), S("RSA Data Security's RC2")},
170 {CALG_RC4, 40, 40, 56, 0, S("RC4"), S("RSA Data Security's RC4")},
171 {CALG_DES, 56, 56, 56, 0, S("DES"), S("Data Encryption Standard (DES)")},
172 {CALG_SHA, 160, 160, 160, CRYPT_FLAG_SIGNING, S("SHA-1"), S("Secure Hash Algorithm (SHA-1)")},
173 {CALG_MD2, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD2"), S("Message Digest 2 (MD2)")},
174 {CALG_MD4, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD4"), S("Message Digest 4 (MD4)")},
175 {CALG_MD5, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD5"), S("Message Digest 5 (MD5)")},
176 {CALG_SSL3_SHAMD5, 288, 288, 288, 0, S("SSL3 SHAMD5"), S("SSL3 SHAMD5")},
177 {CALG_MAC, 0, 0, 0, 0, S("MAC"), S("Message Authentication Code")},
178 {CALG_RSA_SIGN, 512, 384, 16384, CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC, S("RSA_SIGN"), S("RSA Signature")},
179 {CALG_RSA_KEYX, 512, 384, 1024, CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC, S("RSA_KEYX"), S("RSA Key Exchange")},
180 {CALG_HMAC, 0, 0, 0, 0, S("HMAC"), S("Hugo's MAC (HMAC)")},
181 {0, 0, 0, 0, 0, S(""), S("")}
184 {CALG_RC2, 128, 40, 128, 0, S("RC2"), S("RSA Data Security's RC2")},
185 {CALG_RC4, 128, 40, 128, 0, S("RC4"), S("RSA Data Security's RC4")},
186 {CALG_DES, 56, 56, 56, 0, S("DES"), S("Data Encryption Standard (DES)")},
187 {CALG_3DES_112, 112, 112, 112, 0, S("3DES TWO KEY"), S("Two Key Triple DES")},
188 {CALG_3DES, 168, 168, 168, 0, S("3DES"), S("Three Key Triple DES")},
189 {CALG_SHA, 160, 160, 160, CRYPT_FLAG_SIGNING, S("SHA-1"), S("Secure Hash Algorithm (SHA-1)")},
190 {CALG_MD2, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD2"), S("Message Digest 2 (MD2)")},
191 {CALG_MD4, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD4"), S("Message Digest 4 (MD4)")},
192 {CALG_MD5, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD5"), S("Message Digest 5 (MD5)")},
193 {CALG_SSL3_SHAMD5, 288, 288, 288, 0, S("SSL3 SHAMD5"), S("SSL3 SHAMD5")},
194 {CALG_MAC, 0, 0, 0, 0, S("MAC"), S("Message Authentication Code")},
195 {CALG_RSA_SIGN, 1024, 384, 16384, CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC, S("RSA_SIGN"), S("RSA Signature")},
196 {CALG_RSA_KEYX, 1024, 384, 16384, CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC, S("RSA_KEYX"), S("RSA Key Exchange")},
197 {CALG_HMAC, 0, 0, 0, 0, S("HMAC"), S("Hugo's MAC (HMAC)")},
198 {0, 0, 0, 0, 0, S(""), S("")}
201 {CALG_RC2, 128, 40, 128, 0, S("RC2"), S("RSA Data Security's RC2")},
202 {CALG_RC4, 128, 40, 128, 0, S("RC4"), S("RSA Data Security's RC4")},
203 {CALG_DES, 56, 56, 56, 0, S("DES"), S("Data Encryption Standard (DES)")},
204 {CALG_3DES_112, 112, 112, 112, 0, S("3DES TWO KEY"), S("Two Key Triple DES")},
205 {CALG_3DES, 168, 168, 168, 0, S("3DES"), S("Three Key Triple DES")},
206 {CALG_SHA, 160, 160, 160, CRYPT_FLAG_SIGNING, S("SHA-1"), S("Secure Hash Algorithm (SHA-1)")},
207 {CALG_MD2, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD2"), S("Message Digest 2 (MD2)")},
208 {CALG_MD4, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD4"), S("Message Digest 4 (MD4)")},
209 {CALG_MD5, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD5"), S("Message Digest 5 (MD5)")},
210 {CALG_SSL3_SHAMD5, 288, 288, 288, 0, S("SSL3 SHAMD5"), S("SSL3 SHAMD5")},
211 {CALG_MAC, 0, 0, 0, 0, S("MAC"), S("Message Authentication Code")},
212 {CALG_RSA_SIGN, 1024, 384, 16384, CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC, S("RSA_SIGN"), S("RSA Signature")},
213 {CALG_RSA_KEYX, 1024, 384, 16384, CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC, S("RSA_KEYX"), S("RSA Key Exchange")},
214 {CALG_HMAC, 0, 0, 0, 0, S("HMAC"), S("Hugo's MAC (HMAC)")},
215 {0, 0, 0, 0, 0, S(""), S("")}
218 {CALG_RC2, 128, 40, 128, RSAENH_PCT1_SSL2_SSL3_TLS1, S("RC2"), S("RSA Data Security's RC2")},
219 {CALG_RC4, 128, 40, 128, RSAENH_PCT1_SSL2_SSL3_TLS1, S("RC4"), S("RSA Data Security's RC4")},
220 {CALG_DES, 56, 56, 56, RSAENH_PCT1_SSL2_SSL3_TLS1, S("DES"), S("Data Encryption Standard (DES)")},
221 {CALG_3DES_112, 112, 112, 112, RSAENH_PCT1_SSL2_SSL3_TLS1, S("3DES TWO KEY"), S("Two Key Triple DES")},
222 {CALG_3DES, 168, 168, 168, RSAENH_PCT1_SSL2_SSL3_TLS1, S("3DES"), S("Three Key Triple DES")},
223 {CALG_SHA, 160, 160, 160, CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1, S("SHA-1"), S("Secure Hash Algorithm (SHA-1)")},
224 {CALG_MD5, 128, 128, 128, CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1, S("MD5"), S("Message Digest 5 (MD5)")},
225 {CALG_SSL3_SHAMD5, 288, 288, 288, 0, S("SSL3 SHAMD5"), S("SSL3 SHAMD5")},
226 {CALG_MAC, 0, 0, 0, 0, S("MAC"), S("Message Authentication Code")},
227 {CALG_RSA_SIGN, 1024, 384, 16384, CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1, S("RSA_SIGN"), S("RSA Signature")},
228 {CALG_RSA_KEYX, 1024, 384, 16384, CRYPT_FLAG_SIGNING|RSAENH_PCT1_SSL2_SSL3_TLS1, S("RSA_KEYX"), S("RSA Key Exchange")},
229 {CALG_HMAC, 0, 0, 0, 0, S("HMAC"), S("Hugo's MAC (HMAC)")},
230 {CALG_PCT1_MASTER, 128, 128, 128, CRYPT_FLAG_PCT1, S("PCT1 MASTER"), S("PCT1 Master")},
231 {CALG_SSL2_MASTER, 40, 40, 192, CRYPT_FLAG_SSL2, S("SSL2 MASTER"), S("SSL2 Master")},
232 {CALG_SSL3_MASTER, 384, 384, 384, CRYPT_FLAG_SSL3, S("SSL3 MASTER"), S("SSL3 Master")},
233 {CALG_TLS1_MASTER, 384, 384, 384, CRYPT_FLAG_TLS1, S("TLS1 MASTER"), S("TLS1 Master")},
234 {CALG_SCHANNEL_MASTER_HASH, 0, 0, -1, 0, S("SCH MASTER HASH"), S("SChannel Master Hash")},
235 {CALG_SCHANNEL_MAC_KEY, 0, 0, -1, 0, S("SCH MAC KEY"), S("SChannel MAC Key")},
236 {CALG_SCHANNEL_ENC_KEY, 0, 0, -1, 0, S("SCH ENC KEY"), S("SChannel Encryption Key")},
237 {CALG_TLS1PRF, 0, 0, -1, 0, S("TLS1 PRF"), S("TLS1 Pseudo Random Function")},
238 {0, 0, 0, 0, 0, S(""), S("")}
241 {CALG_RC2, 128, 40, 128, 0, S("RC2"), S("RSA Data Security's RC2")},
242 {CALG_RC4, 128, 40, 128, 0, S("RC4"), S("RSA Data Security's RC4")},
243 {CALG_DES, 56, 56, 56, 0, S("DES"), S("Data Encryption Standard (DES)")},
244 {CALG_3DES_112, 112, 112, 112, 0, S("3DES TWO KEY"), S("Two Key Triple DES")},
245 {CALG_3DES, 168, 168, 168, 0, S("3DES"), S("Three Key Triple DES")},
246 {CALG_AES_128, 128, 128, 128, 0, S("AES-128"), S("Advanced Encryption Standard (AES-128)")},
247 {CALG_AES_192, 192, 192, 192, 0, S("AES-192"), S("Advanced Encryption Standard (AES-192)")},
248 {CALG_AES_256, 256, 256, 256, 0, S("AES-256"), S("Advanced Encryption Standard (AES-256)")},
249 {CALG_SHA, 160, 160, 160, CRYPT_FLAG_SIGNING, S("SHA-1"), S("Secure Hash Algorithm (SHA-1)")},
250 {CALG_SHA_256, 256, 256, 256, CRYPT_FLAG_SIGNING, S("SHA-256"), S("Secure Hash Algorithm (SHA-256)")},
251 {CALG_SHA_384, 384, 384, 384, CRYPT_FLAG_SIGNING, S("SHA-384"), S("Secure Hash Algorithm (SHA-384)")},
252 {CALG_SHA_512, 512, 512, 512, CRYPT_FLAG_SIGNING, S("SHA-512"), S("Secure Hash Algorithm (SHA-512)")},
253 {CALG_MD2, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD2"), S("Message Digest 2 (MD2)")},
254 {CALG_MD4, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD4"), S("Message Digest 4 (MD4)")},
255 {CALG_MD5, 128, 128, 128, CRYPT_FLAG_SIGNING, S("MD5"), S("Message Digest 5 (MD5)")},
256 {CALG_SSL3_SHAMD5, 288, 288, 288, 0, S("SSL3 SHAMD5"), S("SSL3 SHAMD5")},
257 {CALG_MAC, 0, 0, 0, 0, S("MAC"), S("Message Authentication Code")},
258 {CALG_RSA_SIGN, 1024, 384, 16384, CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC, S("RSA_SIGN"), S("RSA Signature")},
259 {CALG_RSA_KEYX, 1024, 384, 16384, CRYPT_FLAG_SIGNING|CRYPT_FLAG_IPSEC, S("RSA_KEYX"), S("RSA Key Exchange")},
260 {CALG_HMAC, 0, 0, 0, 0, S("HMAC"), S("Hugo's MAC (HMAC)")},
261 {0, 0, 0, 0, 0, S(""), S("")}
264 #undef S
266 /******************************************************************************
267 * API forward declarations
269 BOOL WINAPI
270 RSAENH_CPGetKeyParam(
271 HCRYPTPROV hProv,
272 HCRYPTKEY hKey,
273 DWORD dwParam,
274 BYTE *pbData,
275 DWORD *pdwDataLen,
276 DWORD dwFlags
279 BOOL WINAPI
280 RSAENH_CPCreateHash(
281 HCRYPTPROV hProv,
282 ALG_ID Algid,
283 HCRYPTKEY hKey,
284 DWORD dwFlags,
285 HCRYPTHASH *phHash
288 BOOL WINAPI
289 RSAENH_CPSetHashParam(
290 HCRYPTPROV hProv,
291 HCRYPTHASH hHash,
292 DWORD dwParam,
293 BYTE *pbData, DWORD dwFlags
296 BOOL WINAPI
297 RSAENH_CPGetHashParam(
298 HCRYPTPROV hProv,
299 HCRYPTHASH hHash,
300 DWORD dwParam,
301 BYTE *pbData,
302 DWORD *pdwDataLen,
303 DWORD dwFlags
306 BOOL WINAPI
307 RSAENH_CPDestroyHash(
308 HCRYPTPROV hProv,
309 HCRYPTHASH hHash
312 static BOOL crypt_export_key(
313 CRYPTKEY *pCryptKey,
314 HCRYPTKEY hPubKey,
315 DWORD dwBlobType,
316 DWORD dwFlags,
317 BOOL force,
318 BYTE *pbData,
319 DWORD *pdwDataLen
322 static BOOL import_key(
323 HCRYPTPROV hProv,
324 const BYTE *pbData,
325 DWORD dwDataLen,
326 HCRYPTKEY hPubKey,
327 DWORD dwFlags,
328 BOOL fStoreKey,
329 HCRYPTKEY *phKey
332 BOOL WINAPI
333 RSAENH_CPHashData(
334 HCRYPTPROV hProv,
335 HCRYPTHASH hHash,
336 const BYTE *pbData,
337 DWORD dwDataLen,
338 DWORD dwFlags
341 /******************************************************************************
342 * CSP's handle table (used by all acquired key containers)
344 static struct handle_table handle_table;
346 /******************************************************************************
347 * DllMain (RSAENH.@)
349 * Initializes and destroys the handle table for the CSP's handles.
351 BOOL WINAPI DllMain(HINSTANCE hInstance, DWORD fdwReason, PVOID reserved)
353 switch (fdwReason)
355 case DLL_PROCESS_ATTACH:
356 DisableThreadLibraryCalls(hInstance);
357 init_handle_table(&handle_table);
358 break;
360 case DLL_PROCESS_DETACH:
361 if (reserved) break;
362 destroy_handle_table(&handle_table);
363 break;
365 return TRUE;
368 /******************************************************************************
369 * copy_param [Internal]
371 * Helper function that supports the standard WINAPI protocol for querying data
372 * of dynamic size.
374 * PARAMS
375 * pbBuffer [O] Buffer where the queried parameter is copied to, if it is large enough.
376 * May be NUL if the required buffer size is to be queried only.
377 * pdwBufferSize [I/O] In: Size of the buffer at pbBuffer
378 * Out: Size of parameter pbParam
379 * pbParam [I] Parameter value.
380 * dwParamSize [I] Size of pbParam
382 * RETURN
383 * Success: TRUE (pbParam was copied into pbBuffer or pbBuffer is NULL)
384 * Failure: FALSE (pbBuffer is not large enough to hold pbParam). Last error: ERROR_MORE_DATA
386 static inline BOOL copy_param(BYTE *pbBuffer, DWORD *pdwBufferSize, const BYTE *pbParam,
387 DWORD dwParamSize)
389 if (pbBuffer)
391 if (dwParamSize > *pdwBufferSize)
393 SetLastError(ERROR_MORE_DATA);
394 *pdwBufferSize = dwParamSize;
395 return FALSE;
397 memcpy(pbBuffer, pbParam, dwParamSize);
399 *pdwBufferSize = dwParamSize;
400 return TRUE;
403 static inline KEYCONTAINER* get_key_container(HCRYPTPROV hProv)
405 KEYCONTAINER *pKeyContainer;
407 if (!lookup_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER,
408 (OBJECTHDR**)&pKeyContainer))
410 SetLastError(NTE_BAD_UID);
411 return NULL;
413 return pKeyContainer;
416 /******************************************************************************
417 * get_algid_info [Internal]
419 * Query CSP capabilities for a given crypto algorithm.
421 * PARAMS
422 * hProv [I] Handle to a key container of the CSP whose capabilities are to be queried.
423 * algid [I] Identifier of the crypto algorithm about which information is requested.
425 * RETURNS
426 * Success: Pointer to a PROV_ENUMALGS_EX struct containing information about the crypto algorithm.
427 * Failure: NULL (algid not supported)
429 static inline const PROV_ENUMALGS_EX* get_algid_info(HCRYPTPROV hProv, ALG_ID algid) {
430 const PROV_ENUMALGS_EX *iterator;
431 KEYCONTAINER *pKeyContainer;
433 if (!(pKeyContainer = get_key_container(hProv))) return NULL;
435 for (iterator = aProvEnumAlgsEx[pKeyContainer->dwPersonality]; iterator->aiAlgid; iterator++) {
436 if (iterator->aiAlgid == algid) return iterator;
439 SetLastError(NTE_BAD_ALGID);
440 return NULL;
443 /******************************************************************************
444 * copy_data_blob [Internal]
446 * deeply copies a DATA_BLOB
448 * PARAMS
449 * dst [O] That's where the blob will be copied to
450 * src [I] Source blob
452 * RETURNS
453 * Success: TRUE
454 * Failure: FALSE (GetLastError() == NTE_NO_MEMORY
456 * NOTES
457 * Use free_data_blob to release resources occupied by copy_data_blob.
459 static inline BOOL copy_data_blob(PCRYPT_DATA_BLOB dst, const PCRYPT_DATA_BLOB src)
461 dst->pbData = malloc(src->cbData);
462 if (!dst->pbData) {
463 SetLastError(NTE_NO_MEMORY);
464 return FALSE;
466 dst->cbData = src->cbData;
467 memcpy(dst->pbData, src->pbData, src->cbData);
468 return TRUE;
471 /******************************************************************************
472 * concat_data_blobs [Internal]
474 * Concatenates two blobs
476 * PARAMS
477 * dst [O] The new blob will be copied here
478 * src1 [I] Prefix blob
479 * src2 [I] Appendix blob
481 * RETURNS
482 * Success: TRUE
483 * Failure: FALSE (GetLastError() == NTE_NO_MEMORY)
485 * NOTES
486 * Release resources occupied by concat_data_blobs with free_data_blobs
488 static inline BOOL concat_data_blobs(PCRYPT_DATA_BLOB dst, const PCRYPT_DATA_BLOB src1,
489 const PCRYPT_DATA_BLOB src2)
491 dst->cbData = src1->cbData + src2->cbData;
492 dst->pbData = malloc(dst->cbData);
493 if (!dst->pbData) {
494 SetLastError(NTE_NO_MEMORY);
495 return FALSE;
497 memcpy(dst->pbData, src1->pbData, src1->cbData);
498 memcpy(dst->pbData + src1->cbData, src2->pbData, src2->cbData);
499 return TRUE;
502 /******************************************************************************
503 * free_data_blob [Internal]
505 * releases resource occupied by a dynamically allocated CRYPT_DATA_BLOB
507 * PARAMS
508 * pBlob [I] Heap space occupied by pBlob->pbData is released
510 static inline void free_data_blob(PCRYPT_DATA_BLOB pBlob) {
511 free(pBlob->pbData);
514 /******************************************************************************
515 * init_data_blob [Internal]
517 static inline void init_data_blob(PCRYPT_DATA_BLOB pBlob) {
518 pBlob->pbData = NULL;
519 pBlob->cbData = 0;
522 /******************************************************************************
523 * block_encrypt [Internal]
525 BOOL block_encrypt(CRYPTKEY *key, BYTE *data, DWORD *data_len, DWORD buf_len,
526 BOOL final, KEY_CONTEXT *context, BYTE *chain_vector)
528 BYTE *in, out[RSAENH_MAX_BLOCK_SIZE], o[RSAENH_MAX_BLOCK_SIZE];
529 unsigned int encrypted_len, i, j, k;
531 if (!final && (*data_len % key->dwBlockLen))
533 SetLastError(NTE_BAD_DATA);
534 return FALSE;
537 encrypted_len = (*data_len / key->dwBlockLen + (final ? 1 : 0)) * key->dwBlockLen;
539 if (data == NULL)
541 *data_len = encrypted_len;
542 return TRUE;
544 if (encrypted_len > buf_len)
546 *data_len = encrypted_len;
547 SetLastError(ERROR_MORE_DATA);
548 return FALSE;
551 /* Pad final block with length bytes */
552 for (i = *data_len; i < encrypted_len; i++) data[i] = encrypted_len - *data_len;
553 *data_len = encrypted_len;
555 for (i = 0, in = data; i < *data_len; i += key->dwBlockLen, in += key->dwBlockLen)
557 switch (key->dwMode) {
558 case CRYPT_MODE_ECB:
559 encrypt_block_impl(key->aiAlgid, 0, context, in, out,
560 RSAENH_ENCRYPT);
561 break;
562 case CRYPT_MODE_CBC:
563 for (j = 0; j < key->dwBlockLen; j++)
564 in[j] ^= chain_vector[j];
565 encrypt_block_impl(key->aiAlgid, 0, context, in, out,
566 RSAENH_ENCRYPT);
567 memcpy(chain_vector, out, key->dwBlockLen);
568 break;
569 case CRYPT_MODE_CFB:
570 for (j = 0; j < key->dwBlockLen; j++)
572 encrypt_block_impl(key->aiAlgid, 0, context,
573 chain_vector, o, RSAENH_ENCRYPT);
574 out[j] = in[j] ^ o[0];
575 for (k = 0; k < key->dwBlockLen - 1; k++)
576 chain_vector[k] = chain_vector[k+1];
577 chain_vector[k] = out[j];
579 break;
580 default:
581 SetLastError(NTE_BAD_ALGID);
582 return FALSE;
584 memcpy(in, out, key->dwBlockLen);
586 return TRUE;
589 /******************************************************************************
590 * free_hmac_info [Internal]
592 * Deeply free an HMAC_INFO struct.
594 * PARAMS
595 * hmac_info [I] Pointer to the HMAC_INFO struct to be freed.
597 * NOTES
598 * See Internet RFC 2104 for details on the HMAC algorithm.
600 static inline void free_hmac_info(PHMAC_INFO hmac_info) {
601 if (!hmac_info) return;
602 free(hmac_info->pbInnerString);
603 free(hmac_info->pbOuterString);
604 free(hmac_info);
607 /******************************************************************************
608 * copy_hmac_info [Internal]
610 * Deeply copy an HMAC_INFO struct
612 * PARAMS
613 * dst [O] Pointer to a location where the pointer to the HMAC_INFO copy will be stored.
614 * src [I] Pointer to the HMAC_INFO struct to be copied.
616 * RETURNS
617 * Success: TRUE
618 * Failure: FALSE
620 * NOTES
621 * See Internet RFC 2104 for details on the HMAC algorithm.
623 static BOOL copy_hmac_info(PHMAC_INFO *dst, const HMAC_INFO *src) {
624 if (!src) return FALSE;
625 *dst = malloc(sizeof(HMAC_INFO));
626 if (!*dst) return FALSE;
627 **dst = *src;
628 (*dst)->pbInnerString = NULL;
629 (*dst)->pbOuterString = NULL;
630 if ((*dst)->cbInnerString == 0) (*dst)->cbInnerString = RSAENH_HMAC_DEF_PAD_LEN;
631 (*dst)->pbInnerString = malloc((*dst)->cbInnerString);
632 if (!(*dst)->pbInnerString) {
633 free_hmac_info(*dst);
634 return FALSE;
636 if (src->cbInnerString)
637 memcpy((*dst)->pbInnerString, src->pbInnerString, src->cbInnerString);
638 else
639 memset((*dst)->pbInnerString, RSAENH_HMAC_DEF_IPAD_CHAR, RSAENH_HMAC_DEF_PAD_LEN);
640 if ((*dst)->cbOuterString == 0) (*dst)->cbOuterString = RSAENH_HMAC_DEF_PAD_LEN;
641 (*dst)->pbOuterString = malloc((*dst)->cbOuterString);
642 if (!(*dst)->pbOuterString) {
643 free_hmac_info(*dst);
644 return FALSE;
646 if (src->cbOuterString)
647 memcpy((*dst)->pbOuterString, src->pbOuterString, src->cbOuterString);
648 else
649 memset((*dst)->pbOuterString, RSAENH_HMAC_DEF_OPAD_CHAR, RSAENH_HMAC_DEF_PAD_LEN);
650 return TRUE;
653 /******************************************************************************
654 * destroy_hash [Internal]
656 * Destructor for hash objects
658 * PARAMS
659 * pCryptHash [I] Pointer to the hash object to be destroyed.
660 * Will be invalid after function returns!
662 static void destroy_hash(OBJECTHDR *pObject)
664 CRYPTHASH *pCryptHash = (CRYPTHASH*)pObject;
666 BCryptDestroyHash(pCryptHash->hash_handle);
667 free_hmac_info(pCryptHash->pHMACInfo);
668 free_data_blob(&pCryptHash->tpPRFParams.blobLabel);
669 free_data_blob(&pCryptHash->tpPRFParams.blobSeed);
670 if (pCryptHash->aiAlgid == CALG_MAC)
671 free_key_impl(pCryptHash->key_alg_id, &pCryptHash->key_context);
672 free(pCryptHash);
675 /******************************************************************************
676 * init_hash [Internal]
678 * Initialize (or reset) a hash object
680 * PARAMS
681 * pCryptHash [I] The hash object to be initialized.
683 static inline BOOL init_hash(CRYPTHASH *pCryptHash) {
684 DWORD dwLen;
686 switch (pCryptHash->aiAlgid)
688 case CALG_HMAC:
689 if (pCryptHash->pHMACInfo) {
690 const PROV_ENUMALGS_EX *pAlgInfo;
692 pAlgInfo = get_algid_info(pCryptHash->hProv, pCryptHash->pHMACInfo->HashAlgid);
693 if (!pAlgInfo)
695 /* A number of hash algorithms (e. g., _SHA256) are supported for HMAC even for providers
696 * which don't list the algorithm, so print a fixme here. */
697 FIXME("Hash algroithm %#x not found.\n", pCryptHash->pHMACInfo->HashAlgid);
698 return FALSE;
700 pCryptHash->dwHashSize = pAlgInfo->dwDefaultLen >> 3;
701 init_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->hash_handle);
702 update_hash_impl(pCryptHash->hash_handle,
703 pCryptHash->pHMACInfo->pbInnerString,
704 pCryptHash->pHMACInfo->cbInnerString);
706 return TRUE;
708 case CALG_MAC:
709 dwLen = sizeof(DWORD);
710 RSAENH_CPGetKeyParam(pCryptHash->hProv, pCryptHash->hKey, KP_BLOCKLEN,
711 (BYTE*)&pCryptHash->dwHashSize, &dwLen, 0);
712 pCryptHash->dwHashSize >>= 3;
713 return TRUE;
715 default:
716 return init_hash_impl(pCryptHash->aiAlgid, &pCryptHash->hash_handle);
720 /******************************************************************************
721 * update_hash [Internal]
723 * Hashes the given data and updates the hash object's state accordingly
725 * PARAMS
726 * pCryptHash [I] Hash object to be updated.
727 * pbData [I] Pointer to data stream to be hashed.
728 * dwDataLen [I] Length of data stream.
730 static inline void update_hash(CRYPTHASH *pCryptHash, const BYTE *pbData, DWORD dwDataLen)
732 CRYPTKEY *key;
733 BYTE *pbTemp;
734 DWORD len;
736 switch (pCryptHash->aiAlgid)
738 case CALG_HMAC:
739 if (pCryptHash->pHMACInfo)
740 update_hash_impl(pCryptHash->hash_handle, pbData, dwDataLen);
741 break;
743 case CALG_MAC:
744 if (!lookup_handle(&handle_table, pCryptHash->hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&key))
746 FIXME("Key lookup failed.\n");
747 return;
749 if (pCryptHash->buffered_hash_bytes)
751 len = min(pCryptHash->dwHashSize - pCryptHash->buffered_hash_bytes, dwDataLen);
752 memcpy(pCryptHash->abHashValue + pCryptHash->buffered_hash_bytes, pbData, len);
753 pbData += len;
754 dwDataLen -= len;
755 pCryptHash->buffered_hash_bytes += len;
756 if (pCryptHash->buffered_hash_bytes < pCryptHash->dwHashSize)
757 return;
758 pCryptHash->buffered_hash_bytes = 0;
759 len = pCryptHash->dwHashSize;
760 if (!block_encrypt(key, pCryptHash->abHashValue, &len, len, FALSE,
761 &pCryptHash->key_context, pCryptHash->abChainVector))
763 FIXME("block_encrypt failed.\n");
764 return;
767 len = dwDataLen - dwDataLen % pCryptHash->dwHashSize;
768 if (len)
770 pbTemp = malloc(len);
771 if (!pbTemp)
773 ERR("No memory.\n");
774 return;
776 memcpy(pbTemp, pbData, len);
777 pbData += len;
778 dwDataLen -= len;
779 if (!block_encrypt(key, pbTemp, &len, len, FALSE,
780 &pCryptHash->key_context, pCryptHash->abChainVector))
782 FIXME("block_encrypt failed.\n");
783 return;
785 free(pbTemp);
787 if (dwDataLen)
789 memcpy(pCryptHash->abHashValue, pbData, dwDataLen);
790 pCryptHash->buffered_hash_bytes = dwDataLen;
792 break;
794 default:
795 update_hash_impl(pCryptHash->hash_handle, pbData, dwDataLen);
799 /******************************************************************************
800 * finalize_hash [Internal]
802 * Finalizes the hash, after all data has been hashed with update_hash.
803 * No additional data can be hashed afterwards until the hash gets initialized again.
805 * PARAMS
806 * pCryptHash [I] Hash object to be finalized.
808 static inline void finalize_hash(CRYPTHASH *pCryptHash)
810 DWORD dwDataLen;
811 CRYPTKEY *key;
813 switch (pCryptHash->aiAlgid)
815 case CALG_HMAC:
816 if (pCryptHash->pHMACInfo) {
817 BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
819 finalize_hash_impl(pCryptHash->hash_handle, pCryptHash->abHashValue);
820 memcpy(abHashValue, pCryptHash->abHashValue, pCryptHash->dwHashSize);
821 init_hash_impl(pCryptHash->pHMACInfo->HashAlgid, &pCryptHash->hash_handle);
822 update_hash_impl(pCryptHash->hash_handle,
823 pCryptHash->pHMACInfo->pbOuterString,
824 pCryptHash->pHMACInfo->cbOuterString);
825 update_hash_impl(pCryptHash->hash_handle,
826 abHashValue, pCryptHash->dwHashSize);
827 finalize_hash_impl(pCryptHash->hash_handle, pCryptHash->abHashValue);
828 pCryptHash->hash_handle = NULL;
830 break;
832 case CALG_MAC:
833 if (!lookup_handle(&handle_table, pCryptHash->hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&key))
835 FIXME("Key lookup failed.\n");
836 return;
838 dwDataLen = pCryptHash->buffered_hash_bytes;
839 if (!block_encrypt(key, pCryptHash->abHashValue, &dwDataLen, pCryptHash->dwHashSize, TRUE,
840 &pCryptHash->key_context, pCryptHash->abChainVector))
841 FIXME("block_encrypt failed.\n");
842 break;
844 default:
845 finalize_hash_impl(pCryptHash->hash_handle, pCryptHash->abHashValue);
846 pCryptHash->hash_handle = NULL;
850 /******************************************************************************
851 * destroy_key [Internal]
853 * Destructor for key objects
855 * PARAMS
856 * pCryptKey [I] Pointer to the key object to be destroyed.
857 * Will be invalid after function returns!
859 static void destroy_key(OBJECTHDR *pObject)
861 CRYPTKEY *pCryptKey = (CRYPTKEY*)pObject;
863 free_key_impl(pCryptKey->aiAlgid, &pCryptKey->context);
864 free_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom);
865 free_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom);
866 free_data_blob(&pCryptKey->blobHmacKey);
867 free(pCryptKey);
870 /******************************************************************************
871 * setup_key [Internal]
873 * Initialize (or reset) a key object
875 * PARAMS
876 * pCryptKey [I] The key object to be initialized.
878 static inline void setup_key(CRYPTKEY *pCryptKey) {
879 pCryptKey->dwState = RSAENH_KEYSTATE_IDLE;
880 memcpy(pCryptKey->abChainVector, pCryptKey->abInitVector, sizeof(pCryptKey->abChainVector));
881 setup_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen,
882 pCryptKey->dwEffectiveKeyLen, pCryptKey->dwSaltLen,
883 pCryptKey->abKeyValue);
886 /******************************************************************************
887 * alloc_key [Internal]
890 static HCRYPTKEY alloc_key(HCRYPTPROV hprov, ALG_ID alg_id, DWORD flags, DWORD key_len, CRYPTKEY **ret_key)
892 KEYCONTAINER *key_container = get_key_container(hprov);
893 HCRYPTKEY hkey;
894 CRYPTKEY *key;
896 hkey = new_object(&handle_table, sizeof(CRYPTKEY), RSAENH_MAGIC_KEY,
897 destroy_key, (OBJECTHDR**)&key);
898 if (hkey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
899 return hkey;
901 key->aiAlgid = alg_id;
902 key->hProv = hprov;
903 key->dwModeBits = 0;
904 key->dwPermissions = CRYPT_ENCRYPT | CRYPT_DECRYPT | CRYPT_READ | CRYPT_WRITE | CRYPT_MAC;
905 if (flags & CRYPT_EXPORTABLE)
906 key->dwPermissions |= CRYPT_EXPORT;
907 key->dwKeyLen = key_len >> 3;
908 key->dwEffectiveKeyLen = 0;
911 * For compatibility reasons a 40 bit key on the Enhanced
912 * provider will not have salt
914 if (key_container->dwPersonality == RSAENH_PERSONALITY_ENHANCED
915 && (alg_id == CALG_RC2 || alg_id == CALG_RC4)
916 && (flags & CRYPT_CREATE_SALT) && key_len == 40)
917 key->dwSaltLen = 0;
918 else if ((flags & CRYPT_CREATE_SALT) || (key_len == 40 && !(flags & CRYPT_NO_SALT)))
919 key->dwSaltLen = 16 /*FIXME*/ - key->dwKeyLen;
920 else
921 key->dwSaltLen = 0;
922 memset(key->abKeyValue, 0, sizeof(key->abKeyValue));
923 memset(key->abInitVector, 0, sizeof(key->abInitVector));
924 memset(&key->siSChannelInfo.saEncAlg, 0, sizeof(key->siSChannelInfo.saEncAlg));
925 memset(&key->siSChannelInfo.saMACAlg, 0, sizeof(key->siSChannelInfo.saMACAlg));
926 init_data_blob(&key->siSChannelInfo.blobClientRandom);
927 init_data_blob(&key->siSChannelInfo.blobServerRandom);
928 init_data_blob(&key->blobHmacKey);
930 switch(alg_id)
932 case CALG_PCT1_MASTER:
933 case CALG_SSL2_MASTER:
934 case CALG_SSL3_MASTER:
935 case CALG_TLS1_MASTER:
936 case CALG_RC4:
937 key->dwBlockLen = 0;
938 key->dwMode = 0;
939 break;
941 case CALG_RC2:
942 case CALG_DES:
943 case CALG_3DES_112:
944 case CALG_3DES:
945 key->dwBlockLen = 8;
946 key->dwMode = CRYPT_MODE_CBC;
947 break;
949 case CALG_AES_128:
950 case CALG_AES_192:
951 case CALG_AES_256:
952 key->dwBlockLen = 16;
953 key->dwMode = CRYPT_MODE_CBC;
954 break;
956 case CALG_RSA_KEYX:
957 case CALG_RSA_SIGN:
958 key->dwBlockLen = key_len >> 3;
959 key->dwMode = 0;
960 break;
962 case CALG_HMAC:
963 key->dwBlockLen = 0;
964 key->dwMode = 0;
965 break;
968 *ret_key = key;
969 return hkey;
972 /******************************************************************************
973 * new_key [Internal]
975 * Creates a new key object without assigning the actual binary key value.
976 * This is done by CPDeriveKey, CPGenKey or CPImportKey, which call this function.
978 * PARAMS
979 * hProv [I] Handle to the provider to which the created key will belong.
980 * aiAlgid [I] The new key shall use the crypto algorithm identified by aiAlgid.
981 * dwFlags [I] Upper 16 bits give the key length.
982 * Lower 16 bits: CRYPT_EXPORTABLE, CRYPT_CREATE_SALT,
983 * CRYPT_NO_SALT
984 * ppCryptKey [O] Pointer to the created key
986 * RETURNS
987 * Success: Handle to the created key.
988 * Failure: INVALID_HANDLE_VALUE
990 static HCRYPTKEY new_key(HCRYPTPROV hProv, ALG_ID aiAlgid, DWORD dwFlags, CRYPTKEY **ppCryptKey)
992 DWORD dwKeyLen = HIWORD(dwFlags);
993 const PROV_ENUMALGS_EX *peaAlgidInfo;
995 *ppCryptKey = NULL;
998 * Retrieve the CSP's capabilities for the given ALG_ID value
1000 peaAlgidInfo = get_algid_info(hProv, aiAlgid);
1001 if (!peaAlgidInfo) return (HCRYPTKEY)INVALID_HANDLE_VALUE;
1003 TRACE("alg = %s, dwKeyLen = %ld\n", debugstr_a(peaAlgidInfo->szName),
1004 dwKeyLen);
1006 * Assume the default key length, if none is specified explicitly
1008 if (dwKeyLen == 0) dwKeyLen = peaAlgidInfo->dwDefaultLen;
1011 * Check if the requested key length is supported by the current CSP.
1012 * Adjust key length's for DES algorithms.
1014 switch (aiAlgid) {
1015 case CALG_DES:
1016 if (dwKeyLen == RSAENH_DES_EFFECTIVE_KEYLEN) {
1017 dwKeyLen = RSAENH_DES_STORAGE_KEYLEN;
1019 if (dwKeyLen != RSAENH_DES_STORAGE_KEYLEN) {
1020 SetLastError(NTE_BAD_FLAGS);
1021 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
1023 break;
1025 case CALG_3DES_112:
1026 if (dwKeyLen == RSAENH_3DES112_EFFECTIVE_KEYLEN) {
1027 dwKeyLen = RSAENH_3DES112_STORAGE_KEYLEN;
1029 if (dwKeyLen != RSAENH_3DES112_STORAGE_KEYLEN) {
1030 SetLastError(NTE_BAD_FLAGS);
1031 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
1033 break;
1035 case CALG_3DES:
1036 if (dwKeyLen == RSAENH_3DES_EFFECTIVE_KEYLEN) {
1037 dwKeyLen = RSAENH_3DES_STORAGE_KEYLEN;
1039 if (dwKeyLen != RSAENH_3DES_STORAGE_KEYLEN) {
1040 SetLastError(NTE_BAD_FLAGS);
1041 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
1043 break;
1045 case CALG_HMAC:
1046 /* Avoid the key length check for HMAC keys, which have unlimited
1047 * length.
1049 break;
1051 default:
1052 if (dwKeyLen % 8 ||
1053 dwKeyLen > peaAlgidInfo->dwMaxLen ||
1054 dwKeyLen < peaAlgidInfo->dwMinLen)
1056 TRACE("key len %ld out of bounds (%ld, %ld)\n", dwKeyLen,
1057 peaAlgidInfo->dwMinLen, peaAlgidInfo->dwMaxLen);
1058 SetLastError(NTE_BAD_DATA);
1059 return (HCRYPTKEY)INVALID_HANDLE_VALUE;
1063 return alloc_key(hProv, aiAlgid, dwFlags, dwKeyLen, ppCryptKey);
1066 /******************************************************************************
1067 * map_key_spec_to_key_pair_name [Internal]
1069 * Returns the name of the registry value associated with a key spec.
1071 * PARAMS
1072 * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
1074 * RETURNS
1075 * Success: Name of registry value.
1076 * Failure: NULL
1078 static LPCSTR map_key_spec_to_key_pair_name(DWORD dwKeySpec)
1080 LPCSTR szValueName;
1082 switch (dwKeySpec)
1084 case AT_KEYEXCHANGE:
1085 szValueName = "KeyExchangeKeyPair";
1086 break;
1087 case AT_SIGNATURE:
1088 szValueName = "SignatureKeyPair";
1089 break;
1090 default:
1091 WARN("invalid key spec %ld\n", dwKeySpec);
1092 szValueName = NULL;
1094 return szValueName;
1097 /******************************************************************************
1098 * store_key_pair [Internal]
1100 * Stores a key pair to the registry
1102 * PARAMS
1103 * hCryptKey [I] Handle to the key to be stored
1104 * hKey [I] Registry key where the key pair is to be stored
1105 * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
1106 * dwFlags [I] Flags for protecting the key
1108 static void store_key_pair(HCRYPTKEY hCryptKey, HKEY hKey, DWORD dwKeySpec, DWORD dwFlags)
1110 LPCSTR szValueName;
1111 DATA_BLOB blobIn, blobOut;
1112 CRYPTKEY *pKey;
1113 DWORD dwLen;
1114 BYTE *pbKey;
1116 if (!(szValueName = map_key_spec_to_key_pair_name(dwKeySpec)))
1117 return;
1118 if (lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY,
1119 (OBJECTHDR**)&pKey))
1121 if (crypt_export_key(pKey, 0, PRIVATEKEYBLOB, 0, TRUE, 0, &dwLen))
1123 pbKey = malloc(dwLen);
1124 if (pbKey)
1126 if (crypt_export_key(pKey, 0, PRIVATEKEYBLOB, 0, TRUE, pbKey,
1127 &dwLen))
1129 blobIn.pbData = pbKey;
1130 blobIn.cbData = dwLen;
1132 if (CryptProtectData(&blobIn, NULL, NULL, NULL, NULL,
1133 dwFlags, &blobOut))
1135 RegSetValueExA(hKey, szValueName, 0, REG_BINARY,
1136 blobOut.pbData, blobOut.cbData);
1137 LocalFree(blobOut.pbData);
1140 free(pbKey);
1146 /******************************************************************************
1147 * map_key_spec_to_permissions_name [Internal]
1149 * Returns the name of the registry value associated with the permissions for
1150 * a key spec.
1152 * PARAMS
1153 * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
1155 * RETURNS
1156 * Success: Name of registry value.
1157 * Failure: NULL
1159 static LPCSTR map_key_spec_to_permissions_name(DWORD dwKeySpec)
1161 LPCSTR szValueName;
1163 switch (dwKeySpec)
1165 case AT_KEYEXCHANGE:
1166 szValueName = "KeyExchangePermissions";
1167 break;
1168 case AT_SIGNATURE:
1169 szValueName = "SignaturePermissions";
1170 break;
1171 default:
1172 WARN("invalid key spec %ld\n", dwKeySpec);
1173 szValueName = NULL;
1175 return szValueName;
1178 /******************************************************************************
1179 * store_key_permissions [Internal]
1181 * Stores a key's permissions to the registry
1183 * PARAMS
1184 * hCryptKey [I] Handle to the key whose permissions are to be stored
1185 * hKey [I] Registry key where the key permissions are to be stored
1186 * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
1188 static void store_key_permissions(HCRYPTKEY hCryptKey, HKEY hKey, DWORD dwKeySpec)
1190 LPCSTR szValueName;
1191 CRYPTKEY *pKey;
1193 if (!(szValueName = map_key_spec_to_permissions_name(dwKeySpec)))
1194 return;
1195 if (lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY,
1196 (OBJECTHDR**)&pKey))
1197 RegSetValueExA(hKey, szValueName, 0, REG_DWORD,
1198 (BYTE *)&pKey->dwPermissions,
1199 sizeof(pKey->dwPermissions));
1202 /******************************************************************************
1203 * create_container_key [Internal]
1205 * Creates the registry key for a key container's persistent storage.
1207 * PARAMS
1208 * pKeyContainer [I] Pointer to the key container
1209 * sam [I] Desired registry access
1210 * phKey [O] Returned key
1212 static BOOL create_container_key(KEYCONTAINER *pKeyContainer, REGSAM sam, HKEY *phKey)
1214 CHAR szRSABase[sizeof(RSAENH_REGKEY) + MAX_PATH];
1215 HKEY hRootKey;
1217 sprintf(szRSABase, RSAENH_REGKEY, pKeyContainer->szName);
1219 if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET)
1220 hRootKey = HKEY_LOCAL_MACHINE;
1221 else
1222 hRootKey = HKEY_CURRENT_USER;
1224 /* @@ Wine registry key: HKLM\Software\Wine\Crypto\RSA */
1225 /* @@ Wine registry key: HKCU\Software\Wine\Crypto\RSA */
1226 return RegCreateKeyExA(hRootKey, szRSABase, 0, NULL,
1227 REG_OPTION_NON_VOLATILE, sam, NULL, phKey, NULL)
1228 == ERROR_SUCCESS;
1231 /******************************************************************************
1232 * open_container_key [Internal]
1234 * Opens a key container's persistent storage for reading.
1236 * PARAMS
1237 * pszContainerName [I] Name of the container to be opened. May be the empty
1238 * string if the parent key of all containers is to be
1239 * opened.
1240 * dwFlags [I] Flags indicating which keyset to be opened.
1241 * phKey [O] Returned key
1243 static BOOL open_container_key(LPCSTR pszContainerName, DWORD dwFlags, REGSAM access, HKEY *phKey)
1245 CHAR szRSABase[sizeof(RSAENH_REGKEY) + MAX_PATH];
1246 HKEY hRootKey;
1248 sprintf(szRSABase, RSAENH_REGKEY, pszContainerName);
1250 if (dwFlags & CRYPT_MACHINE_KEYSET)
1251 hRootKey = HKEY_LOCAL_MACHINE;
1252 else
1253 hRootKey = HKEY_CURRENT_USER;
1255 /* @@ Wine registry key: HKLM\Software\Wine\Crypto\RSA */
1256 /* @@ Wine registry key: HKCU\Software\Wine\Crypto\RSA */
1257 return RegOpenKeyExA(hRootKey, szRSABase, 0, access, phKey) ==
1258 ERROR_SUCCESS;
1261 /******************************************************************************
1262 * delete_container_key [Internal]
1264 * Deletes a key container's persistent storage.
1266 * PARAMS
1267 * pszContainerName [I] Name of the container to be opened.
1268 * dwFlags [I] Flags indicating which keyset to be opened.
1270 static BOOL delete_container_key(LPCSTR pszContainerName, DWORD dwFlags)
1272 CHAR szRegKey[sizeof(RSAENH_REGKEY) + MAX_PATH];
1273 HKEY hRootKey;
1275 sprintf(szRegKey, RSAENH_REGKEY, pszContainerName);
1277 if (dwFlags & CRYPT_MACHINE_KEYSET)
1278 hRootKey = HKEY_LOCAL_MACHINE;
1279 else
1280 hRootKey = HKEY_CURRENT_USER;
1281 if (!RegDeleteKeyA(hRootKey, szRegKey)) {
1282 SetLastError(ERROR_SUCCESS);
1283 return TRUE;
1284 } else {
1285 SetLastError(NTE_BAD_KEYSET);
1286 return FALSE;
1290 /******************************************************************************
1291 * store_key_container_keys [Internal]
1293 * Stores key container's keys in a persistent location.
1295 * PARAMS
1296 * pKeyContainer [I] Pointer to the key container whose keys are to be saved
1298 static void store_key_container_keys(KEYCONTAINER *pKeyContainer)
1300 HKEY hKey;
1301 DWORD dwFlags;
1303 /* On WinXP, persistent keys are stored in a file located at:
1304 * $AppData$\\Microsoft\\Crypto\\RSA\\$SID$\\some_hex_string
1307 if (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET)
1308 dwFlags = CRYPTPROTECT_LOCAL_MACHINE;
1309 else
1310 dwFlags = 0;
1312 if (create_container_key(pKeyContainer, KEY_WRITE, &hKey))
1314 store_key_pair(pKeyContainer->hKeyExchangeKeyPair, hKey,
1315 AT_KEYEXCHANGE, dwFlags);
1316 store_key_pair(pKeyContainer->hSignatureKeyPair, hKey,
1317 AT_SIGNATURE, dwFlags);
1318 RegCloseKey(hKey);
1322 /******************************************************************************
1323 * store_key_container_permissions [Internal]
1325 * Stores key container's key permissions in a persistent location.
1327 * PARAMS
1328 * pKeyContainer [I] Pointer to the key container whose key permissions are to
1329 * be saved
1331 static void store_key_container_permissions(KEYCONTAINER *pKeyContainer)
1333 HKEY hKey;
1335 if (create_container_key(pKeyContainer, KEY_WRITE, &hKey))
1337 store_key_permissions(pKeyContainer->hKeyExchangeKeyPair, hKey,
1338 AT_KEYEXCHANGE);
1339 store_key_permissions(pKeyContainer->hSignatureKeyPair, hKey,
1340 AT_SIGNATURE);
1341 RegCloseKey(hKey);
1345 /******************************************************************************
1346 * release_key_container_keys [Internal]
1348 * Releases key container's keys.
1350 * PARAMS
1351 * pKeyContainer [I] Pointer to the key container whose keys are to be released.
1353 static void release_key_container_keys(KEYCONTAINER *pKeyContainer)
1355 release_handle(&handle_table, pKeyContainer->hKeyExchangeKeyPair,
1356 RSAENH_MAGIC_KEY);
1357 release_handle(&handle_table, pKeyContainer->hSignatureKeyPair,
1358 RSAENH_MAGIC_KEY);
1361 /******************************************************************************
1362 * destroy_key_container [Internal]
1364 * Destructor for key containers.
1366 * PARAMS
1367 * pObjectHdr [I] Pointer to the key container to be destroyed.
1369 static void destroy_key_container(OBJECTHDR *pObjectHdr)
1371 KEYCONTAINER *pKeyContainer = (KEYCONTAINER*)pObjectHdr;
1373 if (!(pKeyContainer->dwFlags & CRYPT_VERIFYCONTEXT))
1375 store_key_container_keys(pKeyContainer);
1376 store_key_container_permissions(pKeyContainer);
1377 release_key_container_keys(pKeyContainer);
1379 else
1380 release_key_container_keys(pKeyContainer);
1381 free( pKeyContainer );
1384 /******************************************************************************
1385 * new_key_container [Internal]
1387 * Create a new key container. The personality (RSA Base, Strong or Enhanced CP)
1388 * of the CSP is determined via the pVTable->pszProvName string.
1390 * PARAMS
1391 * pszContainerName [I] Name of the key container.
1392 * pVTable [I] Callback functions and context info provided by the OS
1394 * RETURNS
1395 * Success: Handle to the new key container.
1396 * Failure: INVALID_HANDLE_VALUE
1398 static HCRYPTPROV new_key_container(PCCH pszContainerName, DWORD dwFlags, const VTableProvStruc *pVTable)
1400 KEYCONTAINER *pKeyContainer;
1401 HCRYPTPROV hKeyContainer;
1403 hKeyContainer = new_object(&handle_table, sizeof(KEYCONTAINER), RSAENH_MAGIC_CONTAINER,
1404 destroy_key_container, (OBJECTHDR**)&pKeyContainer);
1405 if (hKeyContainer != (HCRYPTPROV)INVALID_HANDLE_VALUE)
1407 lstrcpynA(pKeyContainer->szName, pszContainerName, MAX_PATH);
1408 pKeyContainer->dwFlags = dwFlags;
1409 pKeyContainer->dwEnumAlgsCtr = 0;
1410 pKeyContainer->hKeyExchangeKeyPair = (HCRYPTKEY)INVALID_HANDLE_VALUE;
1411 pKeyContainer->hSignatureKeyPair = (HCRYPTKEY)INVALID_HANDLE_VALUE;
1412 if (pVTable && pVTable->pszProvName) {
1413 lstrcpynA(pKeyContainer->szProvName, pVTable->pszProvName, MAX_PATH);
1414 if (!strcmp(pVTable->pszProvName, MS_DEF_PROV_A)) {
1415 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_BASE;
1416 } else if (!strcmp(pVTable->pszProvName, MS_ENHANCED_PROV_A)) {
1417 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_ENHANCED;
1418 } else if (!strcmp(pVTable->pszProvName, MS_DEF_RSA_SCHANNEL_PROV_A)) {
1419 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_SCHANNEL;
1420 } else if (!strcmp(pVTable->pszProvName, MS_ENH_RSA_AES_PROV_A) ||
1421 !strcmp(pVTable->pszProvName, MS_ENH_RSA_AES_PROV_XP_A)) {
1422 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_AES;
1423 } else {
1424 pKeyContainer->dwPersonality = RSAENH_PERSONALITY_STRONG;
1428 /* The new key container has to be inserted into the CSP immediately
1429 * after creation to be available for CPGetProvParam's PP_ENUMCONTAINERS. */
1430 if (!(dwFlags & CRYPT_VERIFYCONTEXT)) {
1431 HKEY hKey;
1433 if (create_container_key(pKeyContainer, KEY_WRITE, &hKey))
1434 RegCloseKey(hKey);
1438 return hKeyContainer;
1441 /******************************************************************************
1442 * read_key_value [Internal]
1444 * Reads a key pair value from the registry
1446 * PARAMS
1447 * hKeyContainer [I] Crypt provider to use to import the key
1448 * hKey [I] Registry key from which to read the key pair
1449 * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
1450 * dwFlags [I] Flags for unprotecting the key
1451 * phCryptKey [O] Returned key
1453 static BOOL read_key_value(HCRYPTPROV hKeyContainer, HKEY hKey, DWORD dwKeySpec, DWORD dwFlags, HCRYPTKEY *phCryptKey)
1455 LPCSTR szValueName;
1456 DWORD dwValueType, dwLen;
1457 BYTE *pbKey;
1458 DATA_BLOB blobIn, blobOut;
1459 BOOL ret = FALSE;
1461 if (!(szValueName = map_key_spec_to_key_pair_name(dwKeySpec)))
1462 return FALSE;
1463 if (RegQueryValueExA(hKey, szValueName, 0, &dwValueType, NULL, &dwLen) ==
1464 ERROR_SUCCESS)
1466 pbKey = malloc(dwLen);
1467 if (pbKey)
1469 if (RegQueryValueExA(hKey, szValueName, 0, &dwValueType, pbKey, &dwLen) ==
1470 ERROR_SUCCESS)
1472 blobIn.pbData = pbKey;
1473 blobIn.cbData = dwLen;
1475 if (CryptUnprotectData(&blobIn, NULL, NULL, NULL, NULL,
1476 dwFlags, &blobOut))
1478 ret = import_key(hKeyContainer, blobOut.pbData, blobOut.cbData, 0, 0,
1479 FALSE, phCryptKey);
1480 LocalFree(blobOut.pbData);
1483 free(pbKey);
1486 if (ret)
1488 CRYPTKEY *pKey;
1490 if (lookup_handle(&handle_table, *phCryptKey, RSAENH_MAGIC_KEY,
1491 (OBJECTHDR**)&pKey))
1493 if ((szValueName = map_key_spec_to_permissions_name(dwKeySpec)))
1495 dwLen = sizeof(pKey->dwPermissions);
1496 RegQueryValueExA(hKey, szValueName, 0, NULL,
1497 (BYTE *)&pKey->dwPermissions, &dwLen);
1501 return ret;
1504 /******************************************************************************
1505 * read_key_container [Internal]
1507 * Tries to read the persistent state of the key container (mainly the signature
1508 * and key exchange private keys) given by pszContainerName.
1510 * PARAMS
1511 * pszContainerName [I] Name of the key container to read from the registry
1512 * pVTable [I] Pointer to context data provided by the operating system
1514 * RETURNS
1515 * Success: Handle to the key container read from the registry
1516 * Failure: INVALID_HANDLE_VALUE
1518 static HCRYPTPROV read_key_container(PCHAR pszContainerName, DWORD dwFlags, const VTableProvStruc *pVTable)
1520 HKEY hKey;
1521 KEYCONTAINER *pKeyContainer;
1522 HCRYPTPROV hKeyContainer;
1523 HCRYPTKEY hCryptKey;
1525 if (!open_container_key(pszContainerName, dwFlags, KEY_READ, &hKey))
1527 SetLastError(NTE_BAD_KEYSET);
1528 return (HCRYPTPROV)INVALID_HANDLE_VALUE;
1531 hKeyContainer = new_key_container(pszContainerName, dwFlags, pVTable);
1532 if (hKeyContainer != (HCRYPTPROV)INVALID_HANDLE_VALUE)
1534 DWORD dwProtectFlags = (dwFlags & CRYPT_MACHINE_KEYSET) ?
1535 CRYPTPROTECT_LOCAL_MACHINE : 0;
1537 if (!lookup_handle(&handle_table, hKeyContainer, RSAENH_MAGIC_CONTAINER,
1538 (OBJECTHDR**)&pKeyContainer))
1539 return (HCRYPTPROV)INVALID_HANDLE_VALUE;
1541 /* read_key_value calls import_key, which calls import_private_key,
1542 * which implicitly installs the key value into the appropriate key
1543 * container key. Thus the ref count is incremented twice, once for
1544 * the output key value, and once for the implicit install, and needs
1545 * to be decremented to balance the two.
1547 if (read_key_value(hKeyContainer, hKey, AT_KEYEXCHANGE,
1548 dwProtectFlags, &hCryptKey))
1549 release_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY);
1550 if (read_key_value(hKeyContainer, hKey, AT_SIGNATURE,
1551 dwProtectFlags, &hCryptKey))
1552 release_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY);
1555 return hKeyContainer;
1558 /******************************************************************************
1559 * build_hash_signature [Internal]
1561 * Builds a padded version of a hash to match the length of the RSA key modulus.
1563 * PARAMS
1564 * pbSignature [O] The padded hash object is stored here.
1565 * dwLen [I] Length of the pbSignature buffer.
1566 * aiAlgid [I] Algorithm identifier of the hash to be padded.
1567 * abHashValue [I] The value of the hash object.
1568 * dwHashLen [I] Length of the hash value.
1569 * dwFlags [I] Selection of padding algorithm.
1571 * RETURNS
1572 * Success: TRUE
1573 * Failure: FALSE (NTE_BAD_ALGID)
1575 static BOOL build_hash_signature(BYTE *pbSignature, DWORD dwLen, ALG_ID aiAlgid,
1576 const BYTE *abHashValue, DWORD dwHashLen, DWORD dwFlags)
1578 /* These prefixes are meant to be concatenated with hash values of the
1579 * respective kind to form a PKCS #7 DigestInfo. */
1580 static const struct tagOIDDescriptor {
1581 ALG_ID aiAlgid;
1582 DWORD dwLen;
1583 const BYTE abOID[19];
1584 } aOIDDescriptor[] = {
1585 { CALG_MD2, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
1586 0x86, 0xf7, 0x0d, 0x02, 0x02, 0x05, 0x00, 0x04, 0x10 } },
1587 { CALG_MD4, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
1588 0x86, 0xf7, 0x0d, 0x02, 0x04, 0x05, 0x00, 0x04, 0x10 } },
1589 { CALG_MD5, 18, { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48,
1590 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10 } },
1591 { CALG_SHA, 15, { 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03,
1592 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14 } },
1593 { CALG_SHA_256, 19, { 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
1594 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
1595 0x05, 0x00, 0x04, 0x20 } },
1596 { CALG_SHA_384, 19, { 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
1597 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02,
1598 0x05, 0x00, 0x04, 0x30 } },
1599 { CALG_SHA_512, 19, { 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
1600 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03,
1601 0x05, 0x00, 0x04, 0x40 } },
1602 { CALG_SSL3_SHAMD5, 0, { 0 } },
1603 { 0, 0, { 0 } }
1605 DWORD dwIdxOID, i, j;
1607 for (dwIdxOID = 0; aOIDDescriptor[dwIdxOID].aiAlgid; dwIdxOID++) {
1608 if (aOIDDescriptor[dwIdxOID].aiAlgid == aiAlgid) break;
1611 if (!aOIDDescriptor[dwIdxOID].aiAlgid) {
1612 SetLastError(NTE_BAD_ALGID);
1613 return FALSE;
1616 /* Build the padded signature */
1617 if (dwFlags & CRYPT_X931_FORMAT) {
1618 pbSignature[0] = 0x6b;
1619 for (i=1; i < dwLen - dwHashLen - 3; i++) {
1620 pbSignature[i] = 0xbb;
1622 pbSignature[i++] = 0xba;
1623 for (j=0; j < dwHashLen; j++, i++) {
1624 pbSignature[i] = abHashValue[j];
1626 pbSignature[i++] = 0x33;
1627 pbSignature[i++] = 0xcc;
1628 } else {
1629 pbSignature[0] = 0x00;
1630 pbSignature[1] = 0x01;
1631 if (dwFlags & CRYPT_NOHASHOID) {
1632 for (i=2; i < dwLen - 1 - dwHashLen; i++) {
1633 pbSignature[i] = 0xff;
1635 pbSignature[i++] = 0x00;
1636 } else {
1637 for (i=2; i < dwLen - 1 - aOIDDescriptor[dwIdxOID].dwLen - dwHashLen; i++) {
1638 pbSignature[i] = 0xff;
1640 pbSignature[i++] = 0x00;
1641 for (j=0; j < aOIDDescriptor[dwIdxOID].dwLen; j++) {
1642 pbSignature[i++] = aOIDDescriptor[dwIdxOID].abOID[j];
1645 for (j=0; j < dwHashLen; j++) {
1646 pbSignature[i++] = abHashValue[j];
1650 return TRUE;
1653 /******************************************************************************
1654 * tls1_p [Internal]
1656 * This is an implementation of the 'P_hash' helper function for TLS1's PRF.
1657 * It is used exclusively by tls1_prf. For details see RFC 2246, chapter 5.
1658 * The pseudo random stream generated by this function is exclusive or'ed with
1659 * the data in pbBuffer.
1661 * PARAMS
1662 * hHMAC [I] HMAC object, which will be used in pseudo random generation
1663 * pblobSeed [I] Seed value
1664 * pbBuffer [I/O] Pseudo random stream will be xor'ed to the provided data
1665 * dwBufferLen [I] Number of pseudo random bytes desired
1667 * RETURNS
1668 * Success: TRUE
1669 * Failure: FALSE
1671 static BOOL tls1_p(HCRYPTHASH hHMAC, const PCRYPT_DATA_BLOB pblobSeed, BYTE *pbBuffer,
1672 DWORD dwBufferLen)
1674 CRYPTHASH *pHMAC;
1675 BYTE abAi[RSAENH_MAX_HASH_SIZE];
1676 DWORD i = 0;
1678 if (!lookup_handle(&handle_table, hHMAC, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pHMAC)) {
1679 SetLastError(NTE_BAD_HASH);
1680 return FALSE;
1683 /* compute A_1 = HMAC(seed) */
1684 init_hash(pHMAC);
1685 update_hash(pHMAC, pblobSeed->pbData, pblobSeed->cbData);
1686 finalize_hash(pHMAC);
1687 memcpy(abAi, pHMAC->abHashValue, pHMAC->dwHashSize);
1689 do {
1690 /* compute HMAC(A_i + seed) */
1691 init_hash(pHMAC);
1692 update_hash(pHMAC, abAi, pHMAC->dwHashSize);
1693 update_hash(pHMAC, pblobSeed->pbData, pblobSeed->cbData);
1694 finalize_hash(pHMAC);
1696 /* pseudo random stream := CONCAT_{i=1..n} ( HMAC(A_i + seed) ) */
1697 do {
1698 if (i >= dwBufferLen) break;
1699 pbBuffer[i] ^= pHMAC->abHashValue[i % pHMAC->dwHashSize];
1700 i++;
1701 } while (i % pHMAC->dwHashSize);
1703 /* compute A_{i+1} = HMAC(A_i) */
1704 init_hash(pHMAC);
1705 update_hash(pHMAC, abAi, pHMAC->dwHashSize);
1706 finalize_hash(pHMAC);
1707 memcpy(abAi, pHMAC->abHashValue, pHMAC->dwHashSize);
1708 } while (i < dwBufferLen);
1710 return TRUE;
1713 /******************************************************************************
1714 * tls1_prf [Internal]
1716 * TLS1 pseudo random function as specified in RFC 2246, chapter 5
1718 * PARAMS
1719 * hProv [I] Key container used to compute the pseudo random stream
1720 * hSecret [I] Key that holds the (pre-)master secret
1721 * pblobLabel [I] Descriptive label
1722 * pblobSeed [I] Seed value
1723 * pbBuffer [O] Pseudo random numbers will be stored here
1724 * dwBufferLen [I] Number of pseudo random bytes desired
1726 * RETURNS
1727 * Success: TRUE
1728 * Failure: FALSE
1730 static BOOL tls1_prf(HCRYPTPROV hProv, HCRYPTPROV hSecret, const PCRYPT_DATA_BLOB pblobLabel,
1731 const PCRYPT_DATA_BLOB pblobSeed, BYTE *pbBuffer, DWORD dwBufferLen)
1733 HMAC_INFO hmacInfo = { 0, NULL, 0, NULL, 0 };
1734 HCRYPTHASH hHMAC = (HCRYPTHASH)INVALID_HANDLE_VALUE;
1735 HCRYPTKEY hHalfSecret = (HCRYPTKEY)INVALID_HANDLE_VALUE;
1736 CRYPTKEY *pHalfSecret, *pSecret;
1737 DWORD dwHalfSecretLen;
1738 BOOL result = FALSE;
1739 CRYPT_DATA_BLOB blobLabelSeed;
1741 TRACE("(hProv=%08Ix, hSecret=%08Ix, pblobLabel=%p, pblobSeed=%p, pbBuffer=%p, dwBufferLen=%ld)\n",
1742 hProv, hSecret, pblobLabel, pblobSeed, pbBuffer, dwBufferLen);
1744 if (!lookup_handle(&handle_table, hSecret, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pSecret)) {
1745 SetLastError(NTE_FAIL);
1746 return FALSE;
1749 dwHalfSecretLen = (pSecret->dwKeyLen+1)/2;
1751 /* concatenation of the label and the seed */
1752 if (!concat_data_blobs(&blobLabelSeed, pblobLabel, pblobSeed)) goto exit;
1754 /* zero out the buffer, since two random streams will be xor'ed into it. */
1755 memset(pbBuffer, 0, dwBufferLen);
1757 /* build a 'fake' key, to hold the secret. CALG_SSL2_MASTER is used since it provides
1758 * the biggest range of valid key lengths. */
1759 hHalfSecret = new_key(hProv, CALG_SSL2_MASTER, MAKELONG(0,dwHalfSecretLen*8), &pHalfSecret);
1760 if (hHalfSecret == (HCRYPTKEY)INVALID_HANDLE_VALUE) goto exit;
1762 /* Derive an HMAC_MD5 hash and call the helper function. */
1763 memcpy(pHalfSecret->abKeyValue, pSecret->abKeyValue, dwHalfSecretLen);
1764 if (!RSAENH_CPCreateHash(hProv, CALG_HMAC, hHalfSecret, 0, &hHMAC)) goto exit;
1765 hmacInfo.HashAlgid = CALG_MD5;
1766 if (!RSAENH_CPSetHashParam(hProv, hHMAC, HP_HMAC_INFO, (BYTE*)&hmacInfo, 0)) goto exit;
1767 if (!tls1_p(hHMAC, &blobLabelSeed, pbBuffer, dwBufferLen)) goto exit;
1769 /* Reconfigure to HMAC_SHA hash and call helper function again. */
1770 memcpy(pHalfSecret->abKeyValue, pSecret->abKeyValue + (pSecret->dwKeyLen/2), dwHalfSecretLen);
1771 hmacInfo.HashAlgid = CALG_SHA;
1772 if (!RSAENH_CPSetHashParam(hProv, hHMAC, HP_HMAC_INFO, (BYTE*)&hmacInfo, 0)) goto exit;
1773 if (!tls1_p(hHMAC, &blobLabelSeed, pbBuffer, dwBufferLen)) goto exit;
1775 result = TRUE;
1776 exit:
1777 release_handle(&handle_table, hHalfSecret, RSAENH_MAGIC_KEY);
1778 if (hHMAC != (HCRYPTHASH)INVALID_HANDLE_VALUE) RSAENH_CPDestroyHash(hProv, hHMAC);
1779 free_data_blob(&blobLabelSeed);
1780 return result;
1783 /******************************************************************************
1784 * pad_data_pkcs1 [Internal]
1786 * Helper function for data padding according to PKCS1 #2
1788 * PARAMS
1789 * abData [I] The data to be padded
1790 * dwDataLen [I] Length of the data
1791 * abBuffer [O] Padded data will be stored here
1792 * dwBufferLen [I] Length of the buffer (also length of padded data)
1793 * dwFlags [I] Padding format (CRYPT_SSL2_FALLBACK)
1795 * RETURN
1796 * Success: TRUE
1797 * Failure: FALSE (NTE_BAD_LEN, too much data to pad)
1799 static BOOL pad_data_pkcs1(const BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD dwBufferLen, DWORD dwFlags)
1801 DWORD i;
1803 /* Ensure there is enough space for PKCS1 #2 padding */
1804 if (dwDataLen > dwBufferLen-11) {
1805 SetLastError(NTE_BAD_LEN);
1806 return FALSE;
1809 memmove(abBuffer + dwBufferLen - dwDataLen, abData, dwDataLen);
1811 abBuffer[0] = 0x00;
1812 abBuffer[1] = RSAENH_PKC_BLOCKTYPE;
1813 for (i=2; i < dwBufferLen - dwDataLen - 1; i++)
1814 do gen_rand_impl(&abBuffer[i], 1); while (!abBuffer[i]);
1815 if (dwFlags & CRYPT_SSL2_FALLBACK)
1816 for (i-=8; i < dwBufferLen - dwDataLen - 1; i++)
1817 abBuffer[i] = 0x03;
1818 abBuffer[i] = 0x00;
1820 return TRUE;
1823 /******************************************************************************
1824 * pkcs1_mgf1 [Internal]
1826 * MGF function for RSA EM-OAEP as specified in RFC 8017 PKCS #1 V2.2, Appendix B.2.1. MGF1
1828 * PARAMS
1829 * hProv [I] Cryptographic provider handle
1830 * pbSeed [I] Seed from which mask is generated
1831 * dwSeedLength [I] Length of pbSeed
1832 * dwLength [I] Intended length in octets of the mask
1833 * pbMask [O] Generated mask if success. Caller is responsible for freeing the mask when it's done
1835 * RETURNS
1836 * Success: TRUE
1837 * Failure: FALSE
1839 static BOOL pkcs1_mgf1(HCRYPTPROV hProv, const BYTE *pbSeed, DWORD dwSeedLength, DWORD dwLength, PCRYPT_DATA_BLOB pbMask)
1841 HCRYPTHASH hHash;
1842 BYTE *pbHashInput, *pbCounter;
1843 DWORD dwCounter;
1844 DWORD dwLen, dwHashLen;
1846 RSAENH_CPCreateHash(hProv, CALG_SHA1, 0, 0, &hHash);
1847 RSAENH_CPHashData(hProv, hHash, 0, 0, 0);
1848 dwLen = sizeof(dwHashLen);
1849 RSAENH_CPGetHashParam(hProv, hHash, HP_HASHSIZE, (BYTE *)&dwHashLen, &dwLen, 0);
1850 RSAENH_CPDestroyHash(hProv, hHash);
1852 /* Allocate multiples of hash value */
1853 pbMask->pbData = malloc((dwLength + dwHashLen - 1) / dwHashLen * dwHashLen);
1854 if (!pbMask->pbData)
1856 SetLastError(NTE_NO_MEMORY);
1857 return FALSE;
1859 pbMask->cbData = dwLength;
1861 pbHashInput = malloc(dwSeedLength + sizeof(DWORD));
1862 if (!pbHashInput)
1864 free_data_blob(pbMask);
1865 SetLastError(NTE_NO_MEMORY);
1866 return FALSE;
1869 dwLen = dwHashLen;
1870 memcpy(pbHashInput, pbSeed, dwSeedLength);
1871 pbCounter = pbHashInput + dwSeedLength;
1872 for (dwCounter = 0; dwCounter < (dwLength + dwHashLen - 1) / dwHashLen; dwCounter++)
1874 *(pbCounter) = (BYTE)((dwCounter >> 24) & 0xff);
1875 *(pbCounter + 1) = (BYTE)((dwCounter >> 16) & 0xff);
1876 *(pbCounter + 2) = (BYTE)((dwCounter >> 8) & 0xff);
1877 *(pbCounter + 3) = (BYTE)(dwCounter & 0xff);
1878 RSAENH_CPCreateHash(hProv, CALG_SHA1, 0, 0, &hHash);
1879 RSAENH_CPHashData(hProv, hHash, pbHashInput, dwSeedLength + sizeof(DWORD), 0);
1880 /* pbMask->pbData = old pbMask->pbData || Hash(Seed || Counter) */
1881 RSAENH_CPGetHashParam(hProv, hHash, HP_HASHVAL, pbMask->pbData + dwCounter * dwHashLen, &dwLen, 0);
1882 RSAENH_CPDestroyHash(hProv, hHash);
1885 free(pbHashInput);
1886 return TRUE;
1889 /******************************************************************************
1890 * pad_data_oaep [Internal]
1892 * Helper function for data OAEP padding scheme according to RFC 8017 PKCS #1 V2.2
1894 * PARAMS
1895 * hProv [I] Cryptographic provider handle
1896 * abData [I] The data to be padded
1897 * dwDataLen [I] Length of the data
1898 * abBuffer [O] Padded data will be stored here
1899 * dwBufferLen [I] Length of the buffer (also length of padded data)
1900 * dwFlags [I] Currently only CRYPT_OAEP is defined
1902 * RETURN
1903 * Success: TRUE
1904 * Failure: FALSE
1906 static BOOL pad_data_oaep(HCRYPTPROV hProv, const BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD dwBufferLen,
1907 DWORD dwFlags)
1909 CRYPT_DATA_BLOB blobDbMask = {0}, blobSeedMask = {0};
1910 HCRYPTHASH hHash;
1911 BYTE *pbPadded = NULL, *pbDb, *pbSeed;
1912 DWORD dwLen, dwHashLen;
1913 DWORD dwDbLen, dwSeedLen;
1914 BOOL result, ret = FALSE;
1915 DWORD i;
1917 RSAENH_CPCreateHash(hProv, CALG_SHA1, 0, 0, &hHash);
1918 /* Empty label */
1919 RSAENH_CPHashData(hProv, hHash, 0, 0, 0);
1920 dwLen = sizeof(dwHashLen);
1921 RSAENH_CPGetHashParam(hProv, hHash, HP_HASHSIZE, (BYTE *)&dwHashLen, &dwLen, 0);
1923 if (dwDataLen > dwBufferLen - 2 * dwHashLen - 2)
1925 SetLastError(NTE_BAD_LEN);
1926 goto done;
1929 if (dwBufferLen < 2 * dwHashLen + 2)
1931 SetLastError(ERROR_MORE_DATA);
1932 goto done;
1935 pbPadded = malloc(dwBufferLen);
1936 if (!pbPadded)
1938 SetLastError(NTE_NO_MEMORY);
1939 goto done;
1942 /* EM = 00 || maskedSeed || maskedDB */
1943 pbPadded[0] = 0;
1944 pbSeed = pbPadded + 1;
1945 dwSeedLen = dwHashLen;
1946 pbDb = pbPadded + 1 + dwHashLen;
1947 dwDbLen = dwBufferLen - dwSeedLen - 1;
1949 /* DB = pHash || PS || 01 || M */
1950 /* Set pHash in DB */
1951 dwLen = dwHashLen;
1952 RSAENH_CPGetHashParam(hProv, hHash, HP_HASHVAL, pbDb, &dwLen, 0);
1953 /* Set PS(zeros) in DB */
1954 memset(pbDb + dwHashLen, 0, dwDbLen - dwHashLen - 1 - dwDataLen);
1955 /* Set 01 in DB */
1956 pbDb[dwDbLen - dwDataLen - 1] = 1;
1957 /* Set M in DB */
1958 memcpy(pbDb + dwDbLen - dwDataLen, abData, dwDataLen);
1960 /* Get seed */
1961 gen_rand_impl(pbSeed, dwHashLen);
1962 /* Get masked DB */
1963 result = pkcs1_mgf1(hProv, pbSeed, dwHashLen, dwDbLen, &blobDbMask);
1964 if (!result) goto done;
1965 for (i = 0; i < dwDbLen; i++) pbDb[i] ^= blobDbMask.pbData[i];
1967 /* Get masked seed */
1968 result = pkcs1_mgf1(hProv, pbDb, dwDbLen, dwHashLen, &blobSeedMask);
1969 if (!result) goto done;
1970 for (i = 0; i < dwHashLen; i++) pbSeed[i] ^= blobSeedMask.pbData[i];
1972 memcpy(abBuffer, pbPadded, dwBufferLen);
1973 ret = TRUE;
1974 done:
1975 RSAENH_CPDestroyHash(hProv, hHash);
1976 free(pbPadded);
1977 free_data_blob(&blobDbMask);
1978 free_data_blob(&blobSeedMask);
1979 return ret;
1982 /******************************************************************************
1983 * pad_data [Internal]
1985 * Helper function for data padding according to padding format
1987 * PARAMS
1988 * hProv [I] Cryptographic provider handle
1989 * abData [I] The data to be padded
1990 * dwDataLen [I] Length of the data
1991 * abBuffer [O] Padded data will be stored here
1992 * dwBufferLen [I] Length of the buffer (also length of padded data)
1993 * dwFlags [I] 0, CRYPT_SSL2_FALLBACK or CRYPT_OAEP
1995 * RETURN
1996 * Success: TRUE
1997 * Failure: FALSE
1999 static BOOL pad_data(HCRYPTPROV hProv, const BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD dwBufferLen,
2000 DWORD dwFlags)
2002 if (dwFlags == CRYPT_OAEP)
2003 return pad_data_oaep(hProv, abData, dwDataLen, abBuffer, dwBufferLen, dwFlags);
2004 else
2005 return pad_data_pkcs1(abData, dwDataLen, abBuffer, dwBufferLen, dwFlags);
2008 /******************************************************************************
2009 * unpad_data_pkcs1 [Internal]
2011 * Remove the PKCS1 padding from RSA decrypted data
2013 * PARAMS
2014 * abData [I] The padded data
2015 * dwDataLen [I] Length of the padded data
2016 * abBuffer [O] Data without padding will be stored here
2017 * dwBufferLen [I/O] I: Length of the buffer, O: Length of unpadded data
2018 * dwFlags [I] Currently none defined
2020 * RETURNS
2021 * Success: TRUE
2022 * Failure: FALSE, (NTE_BAD_DATA, no valid PKCS1 padding or buffer too small)
2024 static BOOL unpad_data_pkcs1(const BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD *dwBufferLen, DWORD dwFlags)
2026 DWORD i;
2028 if (dwDataLen < 3)
2030 SetLastError(NTE_BAD_DATA);
2031 return FALSE;
2033 for (i=2; i<dwDataLen; i++)
2034 if (!abData[i])
2035 break;
2037 if ((i == dwDataLen) || (*dwBufferLen < dwDataLen - i - 1) ||
2038 (abData[0] != 0x00) || (abData[1] != RSAENH_PKC_BLOCKTYPE))
2040 SetLastError(NTE_BAD_DATA);
2041 return FALSE;
2044 *dwBufferLen = dwDataLen - i - 1;
2045 memmove(abBuffer, abData + i + 1, *dwBufferLen);
2046 return TRUE;
2049 /******************************************************************************
2050 * unpad_data_oaep [Internal]
2052 * Remove the OAEP padding from RSA decrypted data
2054 * PARAMS
2055 * hProv [I] Cryptographic provider handle
2056 * abData [I] The padded data
2057 * dwDataLen [I] Length of the padded data
2058 * abBuffer [O] Data without padding will be stored here
2059 * dwBufferLen [I/O] I: Length of the buffer, O: Length of unpadded data
2060 * dwFlags [I] Currently only CRYPT_OAEP is defined
2062 * RETURNS
2063 * Success: TRUE
2064 * Failure: FALSE
2066 static BOOL unpad_data_oaep(HCRYPTPROV hProv, const BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD *dwBufferLen,
2067 DWORD dwFlags)
2069 CRYPT_DATA_BLOB blobDbMask = {0}, blobSeedMask = {0};
2070 HCRYPTHASH hHash;
2071 BYTE *pbBuffer = NULL, *pbHashValue = NULL;
2072 const BYTE *pbPaddedSeed, *pbPaddedDb;
2073 BYTE *pbUnpaddedSeed, *pbUnpaddedDb;
2074 DWORD dwLen, dwHashLen;
2075 DWORD dwSeedLen, dwDbLen;
2076 DWORD dwZeroCount, dwMsgCount;
2077 BOOL result, ret = FALSE;
2078 DWORD i;
2080 RSAENH_CPCreateHash(hProv, CALG_SHA1, 0, 0, &hHash);
2081 RSAENH_CPHashData(hProv, hHash, 0, 0, 0);
2082 dwLen = sizeof(dwHashLen);
2083 RSAENH_CPGetHashParam(hProv, hHash, HP_HASHSIZE, (BYTE *)&dwHashLen, &dwLen, 0);
2084 if (dwDataLen < 2 * dwHashLen + 2)
2086 SetLastError(NTE_BAD_DATA);
2087 goto done;
2090 /* Get default hash value */
2091 pbHashValue = malloc(dwHashLen);
2092 if (!pbHashValue)
2094 SetLastError(NTE_NO_MEMORY);
2095 goto done;
2097 dwLen = dwHashLen;
2098 RSAENH_CPGetHashParam(hProv, hHash, HP_HASHVAL, pbHashValue, &dwLen, 0);
2100 /* Store seed and DB */
2101 pbBuffer = malloc(dwDataLen - 1);
2102 if (!pbBuffer)
2104 SetLastError(NTE_NO_MEMORY);
2105 goto done;
2108 pbPaddedSeed = abData + 1;
2109 pbPaddedDb = abData + 1 + dwHashLen;
2110 pbUnpaddedSeed = pbBuffer;
2111 pbUnpaddedDb = pbBuffer + dwHashLen;
2112 dwSeedLen = dwHashLen;
2113 dwDbLen = dwDataLen - dwHashLen - 1;
2115 /* Get unpadded seed */
2116 result = pkcs1_mgf1(hProv, pbPaddedDb, dwDbLen, dwSeedLen, &blobSeedMask);
2117 if (!result) goto done;
2118 for (i = 0; i < dwSeedLen; i++) pbUnpaddedSeed[i] = pbPaddedSeed[i] ^ blobSeedMask.pbData[i];
2120 /* Get unpadded DB */
2121 result = pkcs1_mgf1(hProv, pbUnpaddedSeed, dwSeedLen, dwDbLen, &blobDbMask);
2122 if (!result) goto done;
2123 for (i = 0; i < dwDbLen; i++) pbUnpaddedDb[i] = pbPaddedDb[i] ^ blobDbMask.pbData[i];
2125 /* Compare hash in DB */
2126 result = memcmp(pbUnpaddedDb, pbHashValue, dwHashLen);
2128 /* Get count of zero paddings(PS) */
2129 dwZeroCount = 0;
2130 while (dwHashLen + dwZeroCount + 1 <= dwDbLen && pbUnpaddedDb[dwHashLen + dwZeroCount] == 0) dwZeroCount++;
2131 dwMsgCount = dwDbLen - dwHashLen - dwZeroCount - 1;
2133 if (dwHashLen + dwZeroCount + 1 > dwDbLen || abData[0] || result || pbUnpaddedDb[dwHashLen + dwZeroCount] != 1
2134 || *dwBufferLen < dwMsgCount)
2136 SetLastError(NTE_BAD_DATA);
2137 goto done;
2140 *dwBufferLen = dwMsgCount;
2141 memcpy(abBuffer, pbUnpaddedDb + dwHashLen + dwZeroCount + 1, dwMsgCount);
2142 ret = TRUE;
2143 done:
2144 RSAENH_CPDestroyHash(hProv, hHash);
2145 free(pbHashValue);
2146 free(pbBuffer);
2147 free_data_blob(&blobDbMask);
2148 free_data_blob(&blobSeedMask);
2149 return ret;
2152 /******************************************************************************
2153 * unpad_data [Internal]
2155 * Remove the padding from RSA decrypted data according to padding format
2157 * PARAMS
2158 * hProv [I] Cryptographic provider handle
2159 * abData [I] The padded data
2160 * dwDataLen [I] Length of the padded data
2161 * abBuffer [O] Data without padding will be stored here
2162 * dwBufferLen [I/O] I: Length of the buffer, O: Length of unpadded data
2163 * dwFlags [I] 0 or CRYPT_OAEP
2165 * RETURNS
2166 * Success: TRUE
2167 * Failure: FALSE
2169 static BOOL unpad_data(HCRYPTPROV hProv, const BYTE *abData, DWORD dwDataLen, BYTE *abBuffer, DWORD *dwBufferLen,
2170 DWORD dwFlags)
2172 if (dwFlags == CRYPT_OAEP)
2173 return unpad_data_oaep(hProv, abData, dwDataLen, abBuffer, dwBufferLen, dwFlags);
2174 else
2175 return unpad_data_pkcs1(abData, dwDataLen, abBuffer, dwBufferLen, dwFlags);
2178 /******************************************************************************
2179 * CPAcquireContext (RSAENH.@)
2181 * Acquire a handle to the key container specified by pszContainer
2183 * PARAMS
2184 * phProv [O] Pointer to the location the acquired handle will be written to.
2185 * pszContainer [I] Name of the desired key container. See Notes
2186 * dwFlags [I] Flags. See Notes.
2187 * pVTable [I] Pointer to a PVTableProvStruct containing callbacks.
2189 * RETURNS
2190 * Success: TRUE
2191 * Failure: FALSE
2193 * NOTES
2194 * If pszContainer is NULL or points to a zero length string the user's login
2195 * name will be used as the key container name.
2197 * If the CRYPT_NEW_KEYSET flag is set in dwFlags a new keyset will be created.
2198 * If a keyset with the given name already exists, the function fails and sets
2199 * last error to NTE_EXISTS. If CRYPT_NEW_KEYSET is not set and the specified
2200 * key container does not exist, function fails and sets last error to
2201 * NTE_BAD_KEYSET.
2203 BOOL WINAPI RSAENH_CPAcquireContext(HCRYPTPROV *phProv, LPSTR pszContainer,
2204 DWORD dwFlags, PVTableProvStruc pVTable)
2206 CHAR szKeyContainerName[MAX_PATH];
2208 TRACE("(phProv=%p, pszContainer=%s, dwFlags=%08lx, pVTable=%p)\n", phProv,
2209 debugstr_a(pszContainer), dwFlags, pVTable);
2211 if (pszContainer && *pszContainer)
2213 lstrcpynA(szKeyContainerName, pszContainer, MAX_PATH);
2215 else
2217 DWORD dwLen = sizeof(szKeyContainerName);
2218 if (!GetUserNameA(szKeyContainerName, &dwLen)) return FALSE;
2221 switch (dwFlags & (CRYPT_NEWKEYSET|CRYPT_VERIFYCONTEXT|CRYPT_DELETEKEYSET))
2223 case 0:
2224 *phProv = read_key_container(szKeyContainerName, dwFlags, pVTable);
2225 break;
2227 case CRYPT_DELETEKEYSET:
2228 return delete_container_key(szKeyContainerName, dwFlags);
2230 case CRYPT_NEWKEYSET:
2231 *phProv = read_key_container(szKeyContainerName, dwFlags, pVTable);
2232 if (*phProv != (HCRYPTPROV)INVALID_HANDLE_VALUE)
2234 release_handle(&handle_table, *phProv, RSAENH_MAGIC_CONTAINER);
2235 TRACE("Can't create new keyset, already exists\n");
2236 SetLastError(NTE_EXISTS);
2237 return FALSE;
2239 *phProv = new_key_container(szKeyContainerName, dwFlags, pVTable);
2240 break;
2242 case CRYPT_VERIFYCONTEXT|CRYPT_NEWKEYSET:
2243 case CRYPT_VERIFYCONTEXT:
2244 if (pszContainer && *pszContainer) {
2245 TRACE("pszContainer should be empty\n");
2246 SetLastError(NTE_BAD_FLAGS);
2247 return FALSE;
2249 *phProv = new_key_container("", dwFlags, pVTable);
2250 break;
2252 default:
2253 *phProv = (HCRYPTPROV)INVALID_HANDLE_VALUE;
2254 SetLastError(NTE_BAD_FLAGS);
2255 return FALSE;
2258 if (*phProv != (HCRYPTPROV)INVALID_HANDLE_VALUE) {
2259 SetLastError(ERROR_SUCCESS);
2260 return TRUE;
2261 } else {
2262 return FALSE;
2266 /******************************************************************************
2267 * CPCreateHash (RSAENH.@)
2269 * CPCreateHash creates and initializes a new hash object.
2271 * PARAMS
2272 * hProv [I] Handle to the key container to which the new hash will belong.
2273 * Algid [I] Identifies the hash algorithm, which will be used for the hash.
2274 * hKey [I] Handle to a session key applied for keyed hashes.
2275 * dwFlags [I] Currently no flags defined. Must be zero.
2276 * phHash [O] Points to the location where a handle to the new hash will be stored.
2278 * RETURNS
2279 * Success: TRUE
2280 * Failure: FALSE
2282 * NOTES
2283 * hKey is a handle to a session key applied in keyed hashes like MAC and HMAC.
2284 * If a normal hash object is to be created (like e.g. MD2 or SHA1) hKey must be zero.
2286 BOOL WINAPI RSAENH_CPCreateHash(HCRYPTPROV hProv, ALG_ID Algid, HCRYPTKEY hKey, DWORD dwFlags,
2287 HCRYPTHASH *phHash)
2289 CRYPTKEY *pCryptKey = NULL;
2290 CRYPTHASH *pCryptHash;
2291 const PROV_ENUMALGS_EX *peaAlgidInfo;
2293 TRACE("(hProv=%08Ix, Algid=%08x, hKey=%08Ix, dwFlags=%08lx, phHash=%p)\n", hProv, Algid, hKey,
2294 dwFlags, phHash);
2296 peaAlgidInfo = get_algid_info(hProv, Algid);
2297 if (!peaAlgidInfo) return FALSE;
2299 if (dwFlags)
2301 SetLastError(NTE_BAD_FLAGS);
2302 return FALSE;
2305 if (Algid == CALG_MAC || Algid == CALG_HMAC || Algid == CALG_SCHANNEL_MASTER_HASH ||
2306 Algid == CALG_TLS1PRF)
2308 if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey)) {
2309 SetLastError(NTE_BAD_KEY);
2310 return FALSE;
2313 if ((Algid == CALG_MAC) && (GET_ALG_TYPE(pCryptKey->aiAlgid) != ALG_TYPE_BLOCK)) {
2314 SetLastError(NTE_BAD_KEY);
2315 return FALSE;
2318 if ((Algid == CALG_SCHANNEL_MASTER_HASH || Algid == CALG_TLS1PRF) &&
2319 (pCryptKey->aiAlgid != CALG_TLS1_MASTER))
2321 SetLastError(NTE_BAD_KEY);
2322 return FALSE;
2324 if (Algid == CALG_SCHANNEL_MASTER_HASH &&
2325 ((!pCryptKey->siSChannelInfo.blobClientRandom.cbData) ||
2326 (!pCryptKey->siSChannelInfo.blobServerRandom.cbData)))
2328 SetLastError(ERROR_INVALID_PARAMETER);
2329 return FALSE;
2332 if ((Algid == CALG_TLS1PRF) && (pCryptKey->dwState != RSAENH_KEYSTATE_MASTERKEY)) {
2333 SetLastError(NTE_BAD_KEY_STATE);
2334 return FALSE;
2338 *phHash = new_object(&handle_table, sizeof(CRYPTHASH), RSAENH_MAGIC_HASH,
2339 destroy_hash, (OBJECTHDR**)&pCryptHash);
2340 if (!pCryptHash) return FALSE;
2342 pCryptHash->aiAlgid = Algid;
2343 pCryptHash->hKey = hKey;
2344 if (Algid == CALG_MAC)
2346 pCryptHash->key_alg_id = pCryptKey->aiAlgid;
2347 setup_key(pCryptKey);
2348 duplicate_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, &pCryptHash->key_context);
2349 memcpy(pCryptHash->abChainVector, pCryptKey->abChainVector, sizeof(pCryptHash->abChainVector));
2351 pCryptHash->hProv = hProv;
2352 pCryptHash->dwState = RSAENH_HASHSTATE_HASHING;
2353 pCryptHash->pHMACInfo = NULL;
2354 pCryptHash->hash_handle = NULL;
2355 pCryptHash->dwHashSize = peaAlgidInfo->dwDefaultLen >> 3;
2356 pCryptHash->buffered_hash_bytes = 0;
2357 init_data_blob(&pCryptHash->tpPRFParams.blobLabel);
2358 init_data_blob(&pCryptHash->tpPRFParams.blobSeed);
2360 if (Algid == CALG_SCHANNEL_MASTER_HASH) {
2361 static const char keyex[] = "key expansion";
2362 BYTE key_expansion[sizeof keyex];
2363 CRYPT_DATA_BLOB blobRandom, blobKeyExpansion = { 13, key_expansion };
2365 memcpy( key_expansion, keyex, sizeof keyex );
2367 if (pCryptKey->dwState != RSAENH_KEYSTATE_MASTERKEY) {
2368 static const char msec[] = "master secret";
2369 BYTE master_secret[sizeof msec];
2370 CRYPT_DATA_BLOB blobLabel = { 13, master_secret };
2371 BYTE abKeyValue[48];
2373 memcpy( master_secret, msec, sizeof msec );
2375 /* See RFC 2246, chapter 8.1 */
2376 if (!concat_data_blobs(&blobRandom,
2377 &pCryptKey->siSChannelInfo.blobClientRandom,
2378 &pCryptKey->siSChannelInfo.blobServerRandom))
2380 return FALSE;
2382 tls1_prf(hProv, hKey, &blobLabel, &blobRandom, abKeyValue, 48);
2383 pCryptKey->dwState = RSAENH_KEYSTATE_MASTERKEY;
2384 memcpy(pCryptKey->abKeyValue, abKeyValue, 48);
2385 free_data_blob(&blobRandom);
2388 /* See RFC 2246, chapter 6.3 */
2389 if (!concat_data_blobs(&blobRandom,
2390 &pCryptKey->siSChannelInfo.blobServerRandom,
2391 &pCryptKey->siSChannelInfo.blobClientRandom))
2393 return FALSE;
2395 tls1_prf(hProv, hKey, &blobKeyExpansion, &blobRandom, pCryptHash->abHashValue,
2396 RSAENH_MAX_HASH_SIZE);
2397 free_data_blob(&blobRandom);
2400 return init_hash(pCryptHash);
2403 /******************************************************************************
2404 * CPDestroyHash (RSAENH.@)
2406 * Releases the handle to a hash object. The object is destroyed if its reference
2407 * count reaches zero.
2409 * PARAMS
2410 * hProv [I] Handle to the key container to which the hash object belongs.
2411 * hHash [I] Handle to the hash object to be released.
2413 * RETURNS
2414 * Success: TRUE
2415 * Failure: FALSE
2417 BOOL WINAPI RSAENH_CPDestroyHash(HCRYPTPROV hProv, HCRYPTHASH hHash)
2419 TRACE("(hProv=%08Ix, hHash=%08Ix)\n", hProv, hHash);
2421 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2423 SetLastError(NTE_BAD_UID);
2424 return FALSE;
2427 if (!release_handle(&handle_table, hHash, RSAENH_MAGIC_HASH))
2429 SetLastError(NTE_BAD_HASH);
2430 return FALSE;
2433 return TRUE;
2436 /******************************************************************************
2437 * CPDestroyKey (RSAENH.@)
2439 * Releases the handle to a key object. The object is destroyed if its reference
2440 * count reaches zero.
2442 * PARAMS
2443 * hProv [I] Handle to the key container to which the key object belongs.
2444 * hKey [I] Handle to the key object to be released.
2446 * RETURNS
2447 * Success: TRUE
2448 * Failure: FALSE
2450 BOOL WINAPI RSAENH_CPDestroyKey(HCRYPTPROV hProv, HCRYPTKEY hKey)
2452 TRACE("(hProv=%08Ix, hKey=%08Ix)\n", hProv, hKey);
2454 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2456 SetLastError(NTE_BAD_UID);
2457 return FALSE;
2460 if (!release_handle(&handle_table, hKey, RSAENH_MAGIC_KEY))
2462 SetLastError(NTE_BAD_KEY);
2463 return FALSE;
2466 return TRUE;
2469 /******************************************************************************
2470 * CPDuplicateHash (RSAENH.@)
2472 * Clones a hash object including its current state.
2474 * PARAMS
2475 * hUID [I] Handle to the key container the hash belongs to.
2476 * hHash [I] Handle to the hash object to be cloned.
2477 * pdwReserved [I] Reserved. Must be NULL.
2478 * dwFlags [I] No flags are currently defined. Must be 0.
2479 * phHash [O] Handle to the cloned hash object.
2481 * RETURNS
2482 * Success: TRUE.
2483 * Failure: FALSE.
2485 BOOL WINAPI RSAENH_CPDuplicateHash(HCRYPTPROV hUID, HCRYPTHASH hHash, DWORD *pdwReserved,
2486 DWORD dwFlags, HCRYPTHASH *phHash)
2488 CRYPTHASH *pSrcHash, *pDestHash;
2490 TRACE("(hUID=%08Ix, hHash=%08Ix, pdwReserved=%p, dwFlags=%08lx, phHash=%p)\n", hUID, hHash,
2491 pdwReserved, dwFlags, phHash);
2493 if (!is_valid_handle(&handle_table, hUID, RSAENH_MAGIC_CONTAINER))
2495 SetLastError(NTE_BAD_UID);
2496 return FALSE;
2499 if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH, (OBJECTHDR**)&pSrcHash))
2501 SetLastError(NTE_BAD_HASH);
2502 return FALSE;
2505 if (!phHash || pdwReserved || dwFlags)
2507 SetLastError(ERROR_INVALID_PARAMETER);
2508 return FALSE;
2511 *phHash = new_object(&handle_table, sizeof(CRYPTHASH), RSAENH_MAGIC_HASH,
2512 destroy_hash, (OBJECTHDR**)&pDestHash);
2513 if (*phHash != (HCRYPTHASH)INVALID_HANDLE_VALUE)
2515 *pDestHash = *pSrcHash;
2516 duplicate_hash_impl(pSrcHash->hash_handle, &pDestHash->hash_handle);
2517 copy_hmac_info(&pDestHash->pHMACInfo, pSrcHash->pHMACInfo);
2518 copy_data_blob(&pDestHash->tpPRFParams.blobLabel, &pSrcHash->tpPRFParams.blobLabel);
2519 copy_data_blob(&pDestHash->tpPRFParams.blobSeed, &pSrcHash->tpPRFParams.blobSeed);
2522 return *phHash != (HCRYPTHASH)INVALID_HANDLE_VALUE;
2525 /******************************************************************************
2526 * CPDuplicateKey (RSAENH.@)
2528 * Clones a key object including its current state.
2530 * PARAMS
2531 * hUID [I] Handle to the key container the hash belongs to.
2532 * hKey [I] Handle to the key object to be cloned.
2533 * pdwReserved [I] Reserved. Must be NULL.
2534 * dwFlags [I] No flags are currently defined. Must be 0.
2535 * phHash [O] Handle to the cloned key object.
2537 * RETURNS
2538 * Success: TRUE.
2539 * Failure: FALSE.
2541 BOOL WINAPI RSAENH_CPDuplicateKey(HCRYPTPROV hUID, HCRYPTKEY hKey, DWORD *pdwReserved,
2542 DWORD dwFlags, HCRYPTKEY *phKey)
2544 CRYPTKEY *pSrcKey, *pDestKey;
2546 TRACE("(hUID=%08Ix, hKey=%08Ix, pdwReserved=%p, dwFlags=%08lx, phKey=%p)\n", hUID, hKey,
2547 pdwReserved, dwFlags, phKey);
2549 if (!is_valid_handle(&handle_table, hUID, RSAENH_MAGIC_CONTAINER))
2551 SetLastError(NTE_BAD_UID);
2552 return FALSE;
2555 if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pSrcKey))
2557 SetLastError(NTE_BAD_KEY);
2558 return FALSE;
2561 if (!phKey || pdwReserved || dwFlags)
2563 SetLastError(ERROR_INVALID_PARAMETER);
2564 return FALSE;
2567 *phKey = new_object(&handle_table, sizeof(CRYPTKEY), RSAENH_MAGIC_KEY, destroy_key,
2568 (OBJECTHDR**)&pDestKey);
2569 if (*phKey != (HCRYPTKEY)INVALID_HANDLE_VALUE)
2571 *pDestKey = *pSrcKey;
2572 copy_data_blob(&pDestKey->siSChannelInfo.blobServerRandom,
2573 &pSrcKey->siSChannelInfo.blobServerRandom);
2574 copy_data_blob(&pDestKey->siSChannelInfo.blobClientRandom,
2575 &pSrcKey->siSChannelInfo.blobClientRandom);
2576 duplicate_key_impl(pSrcKey->aiAlgid, &pSrcKey->context, &pDestKey->context);
2577 return TRUE;
2579 else
2581 return FALSE;
2585 /******************************************************************************
2586 * CPEncrypt (RSAENH.@)
2588 * Encrypt data.
2590 * PARAMS
2591 * hProv [I] The key container hKey and hHash belong to.
2592 * hKey [I] The key used to encrypt the data.
2593 * hHash [I] An optional hash object for parallel hashing. See notes.
2594 * Final [I] Indicates if this is the last block of data to encrypt.
2595 * dwFlags [I] Must be zero or CRYPT_OAEP
2596 * pbData [I/O] Pointer to the data to encrypt. Encrypted data will also be stored there.
2597 * pdwDataLen [I/O] I: Length of data to encrypt, O: Length of encrypted data.
2598 * dwBufLen [I] Size of the buffer at pbData.
2600 * RETURNS
2601 * Success: TRUE.
2602 * Failure: FALSE.
2604 * NOTES
2605 * If a hash object handle is provided in hHash, it will be updated with the plaintext.
2606 * This is useful for message signatures.
2608 * This function uses the standard WINAPI protocol for querying data of dynamic length.
2610 BOOL WINAPI RSAENH_CPEncrypt(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTHASH hHash, BOOL Final,
2611 DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen, DWORD dwBufLen)
2613 CRYPTKEY *pCryptKey;
2615 TRACE("(hProv=%08Ix, hKey=%08Ix, hHash=%08Ix, Final=%d, dwFlags=%08lx, pbData=%p, "
2616 "pdwDataLen=%p, dwBufLen=%ld)\n", hProv, hKey, hHash, Final, dwFlags, pbData, pdwDataLen,
2617 dwBufLen);
2619 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2621 SetLastError(NTE_BAD_UID);
2622 return FALSE;
2625 if (dwFlags != 0 && dwFlags != CRYPT_OAEP)
2627 SetLastError(NTE_BAD_FLAGS);
2628 return FALSE;
2631 if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2633 SetLastError(NTE_BAD_KEY);
2634 return FALSE;
2637 if (pCryptKey->aiAlgid == CALG_RC2)
2639 const PROV_ENUMALGS_EX *info;
2641 if (!(info = get_algid_info(hProv, pCryptKey->aiAlgid)))
2643 FIXME("Can't get algid info.\n");
2644 SetLastError(NTE_BAD_KEY);
2645 return FALSE;
2647 if (pCryptKey->dwKeyLen > info->dwMaxLen / 8)
2649 SetLastError(NTE_BAD_KEY);
2650 return FALSE;
2654 if (pCryptKey->dwState == RSAENH_KEYSTATE_IDLE)
2655 pCryptKey->dwState = RSAENH_KEYSTATE_ENCRYPTING;
2657 if (pCryptKey->dwState != RSAENH_KEYSTATE_ENCRYPTING)
2659 SetLastError(NTE_BAD_DATA);
2660 return FALSE;
2663 if (is_valid_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) {
2664 if (!RSAENH_CPHashData(hProv, hHash, pbData, *pdwDataLen, 0)) return FALSE;
2667 if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_BLOCK) {
2668 if (!block_encrypt(pCryptKey, pbData, pdwDataLen, dwBufLen, Final,
2669 &pCryptKey->context, pCryptKey->abChainVector))
2670 return FALSE;
2671 } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_STREAM) {
2672 if (pbData == NULL) {
2673 *pdwDataLen = dwBufLen;
2674 return TRUE;
2676 encrypt_stream_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, *pdwDataLen);
2677 } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_RSA) {
2678 if (pCryptKey->aiAlgid == CALG_RSA_SIGN) {
2679 SetLastError(NTE_BAD_KEY);
2680 return FALSE;
2682 if (!pbData) {
2683 *pdwDataLen = pCryptKey->dwBlockLen;
2684 return TRUE;
2686 if (dwBufLen < pCryptKey->dwBlockLen) {
2687 SetLastError(ERROR_MORE_DATA);
2688 return FALSE;
2690 if (!pad_data(hProv, pbData, *pdwDataLen, pbData, pCryptKey->dwBlockLen, dwFlags)) return FALSE;
2691 encrypt_block_impl(pCryptKey->aiAlgid, PK_PUBLIC, &pCryptKey->context, pbData, pbData, RSAENH_ENCRYPT);
2692 *pdwDataLen = pCryptKey->dwBlockLen;
2693 Final = TRUE;
2694 } else {
2695 SetLastError(NTE_BAD_TYPE);
2696 return FALSE;
2699 if (Final) setup_key(pCryptKey);
2701 return TRUE;
2704 /******************************************************************************
2705 * CPDecrypt (RSAENH.@)
2707 * Decrypt data.
2709 * PARAMS
2710 * hProv [I] The key container hKey and hHash belong to.
2711 * hKey [I] The key used to decrypt the data.
2712 * hHash [I] An optional hash object for parallel hashing. See notes.
2713 * Final [I] Indicates if this is the last block of data to decrypt.
2714 * dwFlags [I] Must be zero or CRYPT_OAEP
2715 * pbData [I/O] Pointer to the data to decrypt. Plaintext will also be stored there.
2716 * pdwDataLen [I/O] I: Length of ciphertext, O: Length of plaintext.
2718 * RETURNS
2719 * Success: TRUE.
2720 * Failure: FALSE.
2722 * NOTES
2723 * If a hash object handle is provided in hHash, it will be updated with the plaintext.
2724 * This is useful for message signatures.
2726 * This function uses the standard WINAPI protocol for querying data of dynamic length.
2728 BOOL WINAPI RSAENH_CPDecrypt(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTHASH hHash, BOOL Final,
2729 DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
2731 CRYPTKEY *pCryptKey;
2732 BYTE *in, out[RSAENH_MAX_BLOCK_SIZE], o[RSAENH_MAX_BLOCK_SIZE];
2733 DWORD i, j, k;
2734 DWORD dwMax;
2736 TRACE("(hProv=%08Ix, hKey=%08Ix, hHash=%08Ix, Final=%d, dwFlags=%08lx, pbData=%p, "
2737 "pdwDataLen=%p)\n", hProv, hKey, hHash, Final, dwFlags, pbData, pdwDataLen);
2739 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
2741 SetLastError(NTE_BAD_UID);
2742 return FALSE;
2745 if (dwFlags != 0 && dwFlags != CRYPT_OAEP)
2747 SetLastError(NTE_BAD_FLAGS);
2748 return FALSE;
2751 if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
2753 SetLastError(NTE_BAD_KEY);
2754 return FALSE;
2757 if (pCryptKey->dwState == RSAENH_KEYSTATE_IDLE)
2758 pCryptKey->dwState = RSAENH_KEYSTATE_ENCRYPTING;
2760 if (pCryptKey->dwState != RSAENH_KEYSTATE_ENCRYPTING)
2762 SetLastError(NTE_BAD_DATA);
2763 return FALSE;
2766 dwMax=*pdwDataLen;
2768 if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_BLOCK) {
2769 for (i=0, in=pbData; i<*pdwDataLen; i+=pCryptKey->dwBlockLen, in+=pCryptKey->dwBlockLen) {
2770 switch (pCryptKey->dwMode) {
2771 case CRYPT_MODE_ECB:
2772 encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out,
2773 RSAENH_DECRYPT);
2774 break;
2776 case CRYPT_MODE_CBC:
2777 encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context, in, out,
2778 RSAENH_DECRYPT);
2779 for (j=0; j<pCryptKey->dwBlockLen; j++) out[j] ^= pCryptKey->abChainVector[j];
2780 memcpy(pCryptKey->abChainVector, in, pCryptKey->dwBlockLen);
2781 break;
2783 case CRYPT_MODE_CFB:
2784 for (j=0; j<pCryptKey->dwBlockLen; j++) {
2785 encrypt_block_impl(pCryptKey->aiAlgid, 0, &pCryptKey->context,
2786 pCryptKey->abChainVector, o, RSAENH_ENCRYPT);
2787 out[j] = in[j] ^ o[0];
2788 for (k=0; k<pCryptKey->dwBlockLen-1; k++)
2789 pCryptKey->abChainVector[k] = pCryptKey->abChainVector[k+1];
2790 pCryptKey->abChainVector[k] = in[j];
2792 break;
2794 default:
2795 SetLastError(NTE_BAD_ALGID);
2796 return FALSE;
2798 memcpy(in, out, pCryptKey->dwBlockLen);
2800 if (Final) {
2801 if (pbData[*pdwDataLen-1] &&
2802 pbData[*pdwDataLen-1] <= pCryptKey->dwBlockLen &&
2803 pbData[*pdwDataLen-1] <= *pdwDataLen) {
2804 BOOL padOkay = TRUE;
2806 /* check that every pad byte has the same value */
2807 for (i = 1; padOkay && i < pbData[*pdwDataLen-1]; i++)
2808 if (pbData[*pdwDataLen - i - 1] != pbData[*pdwDataLen - 1])
2809 padOkay = FALSE;
2810 if (padOkay)
2811 *pdwDataLen -= pbData[*pdwDataLen-1];
2812 else {
2813 SetLastError(NTE_BAD_DATA);
2814 setup_key(pCryptKey);
2815 return FALSE;
2818 else {
2819 SetLastError(NTE_BAD_DATA);
2820 setup_key(pCryptKey);
2821 return FALSE;
2825 } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_STREAM) {
2826 encrypt_stream_impl(pCryptKey->aiAlgid, &pCryptKey->context, pbData, *pdwDataLen);
2827 } else if (GET_ALG_TYPE(pCryptKey->aiAlgid) == ALG_TYPE_RSA) {
2828 if (pCryptKey->aiAlgid == CALG_RSA_SIGN) {
2829 SetLastError(NTE_BAD_KEY);
2830 return FALSE;
2832 encrypt_block_impl(pCryptKey->aiAlgid, PK_PRIVATE, &pCryptKey->context, pbData, pbData, RSAENH_DECRYPT);
2833 if (!unpad_data(hProv, pbData, pCryptKey->dwBlockLen, pbData, pdwDataLen, dwFlags)) return FALSE;
2834 Final = TRUE;
2835 } else {
2836 SetLastError(NTE_BAD_TYPE);
2837 return FALSE;
2840 if (Final) setup_key(pCryptKey);
2842 if (is_valid_handle(&handle_table, hHash, RSAENH_MAGIC_HASH)) {
2843 if (*pdwDataLen>dwMax ||
2844 !RSAENH_CPHashData(hProv, hHash, pbData, *pdwDataLen, 0)) return FALSE;
2847 return TRUE;
2850 static BOOL crypt_export_simple(CRYPTKEY *pCryptKey, CRYPTKEY *pPubKey,
2851 DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
2853 BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2854 ALG_ID *pAlgid = (ALG_ID*)(pBlobHeader+1);
2855 DWORD dwDataLen;
2857 if (!(GET_ALG_CLASS(pCryptKey->aiAlgid)&(ALG_CLASS_DATA_ENCRYPT|ALG_CLASS_MSG_ENCRYPT))) {
2858 SetLastError(NTE_BAD_KEY); /* FIXME: error code? */
2859 return FALSE;
2862 dwDataLen = sizeof(BLOBHEADER) + sizeof(ALG_ID) + pPubKey->dwBlockLen;
2863 if (pbData) {
2864 if (*pdwDataLen < dwDataLen) {
2865 SetLastError(ERROR_MORE_DATA);
2866 *pdwDataLen = dwDataLen;
2867 return FALSE;
2870 pBlobHeader->bType = SIMPLEBLOB;
2871 pBlobHeader->bVersion = CUR_BLOB_VERSION;
2872 pBlobHeader->reserved = 0;
2873 pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2875 *pAlgid = pPubKey->aiAlgid;
2877 if (!pad_data(pCryptKey->hProv, pCryptKey->abKeyValue, pCryptKey->dwKeyLen, (BYTE*)(pAlgid+1),
2878 pPubKey->dwBlockLen, dwFlags))
2880 return FALSE;
2883 encrypt_block_impl(pPubKey->aiAlgid, PK_PUBLIC, &pPubKey->context, (BYTE*)(pAlgid+1),
2884 (BYTE*)(pAlgid+1), RSAENH_ENCRYPT);
2886 *pdwDataLen = dwDataLen;
2887 return TRUE;
2890 static BOOL crypt_export_public_key(CRYPTKEY *pCryptKey, BYTE *pbData,
2891 DWORD *pdwDataLen)
2893 BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2894 RSAPUBKEY *pRSAPubKey = (RSAPUBKEY*)(pBlobHeader+1);
2895 DWORD dwDataLen;
2897 if ((pCryptKey->aiAlgid != CALG_RSA_KEYX) && (pCryptKey->aiAlgid != CALG_RSA_SIGN)) {
2898 SetLastError(NTE_BAD_KEY);
2899 return FALSE;
2902 dwDataLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + pCryptKey->dwKeyLen;
2903 if (pbData) {
2904 if (*pdwDataLen < dwDataLen) {
2905 SetLastError(ERROR_MORE_DATA);
2906 *pdwDataLen = dwDataLen;
2907 return FALSE;
2910 pBlobHeader->bType = PUBLICKEYBLOB;
2911 pBlobHeader->bVersion = CUR_BLOB_VERSION;
2912 pBlobHeader->reserved = 0;
2913 pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2915 pRSAPubKey->magic = RSAENH_MAGIC_RSA1;
2916 pRSAPubKey->bitlen = pCryptKey->dwKeyLen << 3;
2918 export_public_key_impl((BYTE*)(pRSAPubKey+1), &pCryptKey->context,
2919 pCryptKey->dwKeyLen, &pRSAPubKey->pubexp);
2921 *pdwDataLen = dwDataLen;
2922 return TRUE;
2925 static BOOL crypt_export_private_key(CRYPTKEY *pCryptKey, BOOL force,
2926 BYTE *pbData, DWORD *pdwDataLen)
2928 BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2929 RSAPUBKEY *pRSAPubKey = (RSAPUBKEY*)(pBlobHeader+1);
2930 DWORD dwDataLen;
2932 if ((pCryptKey->aiAlgid != CALG_RSA_KEYX) && (pCryptKey->aiAlgid != CALG_RSA_SIGN)) {
2933 SetLastError(NTE_BAD_KEY);
2934 return FALSE;
2936 if (!force && !(pCryptKey->dwPermissions & CRYPT_EXPORT))
2938 SetLastError(NTE_BAD_KEY_STATE);
2939 return FALSE;
2942 dwDataLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) +
2943 2 * pCryptKey->dwKeyLen + 5 * ((pCryptKey->dwKeyLen + 1) >> 1);
2944 if (pbData) {
2945 if (*pdwDataLen < dwDataLen) {
2946 SetLastError(ERROR_MORE_DATA);
2947 *pdwDataLen = dwDataLen;
2948 return FALSE;
2951 pBlobHeader->bType = PRIVATEKEYBLOB;
2952 pBlobHeader->bVersion = CUR_BLOB_VERSION;
2953 pBlobHeader->reserved = 0;
2954 pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2956 pRSAPubKey->magic = RSAENH_MAGIC_RSA2;
2957 pRSAPubKey->bitlen = pCryptKey->dwKeyLen << 3;
2959 export_private_key_impl((BYTE*)(pRSAPubKey+1), &pCryptKey->context,
2960 pCryptKey->dwKeyLen, &pRSAPubKey->pubexp);
2962 *pdwDataLen = dwDataLen;
2963 return TRUE;
2966 static BOOL crypt_export_plaintext_key(CRYPTKEY *pCryptKey, BYTE *pbData,
2967 DWORD *pdwDataLen)
2969 BLOBHEADER *pBlobHeader = (BLOBHEADER*)pbData;
2970 DWORD *pKeyLen = (DWORD*)(pBlobHeader+1);
2971 BYTE *pbKey = (BYTE*)(pKeyLen+1);
2972 DWORD dwDataLen;
2974 dwDataLen = sizeof(BLOBHEADER) + sizeof(DWORD) + pCryptKey->dwKeyLen;
2975 if (pbData) {
2976 if (*pdwDataLen < dwDataLen) {
2977 SetLastError(ERROR_MORE_DATA);
2978 *pdwDataLen = dwDataLen;
2979 return FALSE;
2982 pBlobHeader->bType = PLAINTEXTKEYBLOB;
2983 pBlobHeader->bVersion = CUR_BLOB_VERSION;
2984 pBlobHeader->reserved = 0;
2985 pBlobHeader->aiKeyAlg = pCryptKey->aiAlgid;
2987 *pKeyLen = pCryptKey->dwKeyLen;
2988 memcpy(pbKey, pCryptKey->abKeyValue, pCryptKey->dwKeyLen);
2990 *pdwDataLen = dwDataLen;
2991 return TRUE;
2993 /******************************************************************************
2994 * crypt_export_key [Internal]
2996 * Export a key into a binary large object (BLOB). Called by CPExportKey and
2997 * by store_key_pair.
2999 * PARAMS
3000 * pCryptKey [I] Key to be exported.
3001 * hPubKey [I] Key used to encrypt sensitive BLOB data.
3002 * dwBlobType [I] SIMPLEBLOB, PUBLICKEYBLOB or PRIVATEKEYBLOB.
3003 * dwFlags [I] Currently none defined.
3004 * force [I] If TRUE, the key is written no matter what the key's
3005 * permissions are. Otherwise the key's permissions are
3006 * checked before exporting.
3007 * pbData [O] Pointer to a buffer where the BLOB will be written to.
3008 * pdwDataLen [I/O] I: Size of buffer at pbData, O: Size of BLOB
3010 * RETURNS
3011 * Success: TRUE.
3012 * Failure: FALSE.
3014 static BOOL crypt_export_key(CRYPTKEY *pCryptKey, HCRYPTKEY hPubKey,
3015 DWORD dwBlobType, DWORD dwFlags, BOOL force,
3016 BYTE *pbData, DWORD *pdwDataLen)
3018 CRYPTKEY *pPubKey;
3020 if (dwFlags & CRYPT_SSL2_FALLBACK) {
3021 if (pCryptKey->aiAlgid != CALG_SSL2_MASTER) {
3022 SetLastError(NTE_BAD_KEY);
3023 return FALSE;
3027 switch ((BYTE)dwBlobType)
3029 case SIMPLEBLOB:
3030 if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pPubKey)){
3031 SetLastError(NTE_BAD_PUBLIC_KEY); /* FIXME: error_code? */
3032 return FALSE;
3034 return crypt_export_simple(pCryptKey, pPubKey, dwFlags, pbData,
3035 pdwDataLen);
3037 case PUBLICKEYBLOB:
3038 if (is_valid_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY)) {
3039 SetLastError(NTE_BAD_KEY); /* FIXME: error code? */
3040 return FALSE;
3043 return crypt_export_public_key(pCryptKey, pbData, pdwDataLen);
3045 case PRIVATEKEYBLOB:
3046 return crypt_export_private_key(pCryptKey, force, pbData, pdwDataLen);
3048 case PLAINTEXTKEYBLOB:
3049 return crypt_export_plaintext_key(pCryptKey, pbData, pdwDataLen);
3051 default:
3052 SetLastError(NTE_BAD_TYPE); /* FIXME: error code? */
3053 return FALSE;
3057 /******************************************************************************
3058 * CPExportKey (RSAENH.@)
3060 * Export a key into a binary large object (BLOB).
3062 * PARAMS
3063 * hProv [I] Key container from which a key is to be exported.
3064 * hKey [I] Key to be exported.
3065 * hPubKey [I] Key used to encrypt sensitive BLOB data.
3066 * dwBlobType [I] SIMPLEBLOB, PUBLICKEYBLOB or PRIVATEKEYBLOB.
3067 * dwFlags [I] Currently none defined.
3068 * pbData [O] Pointer to a buffer where the BLOB will be written to.
3069 * pdwDataLen [I/O] I: Size of buffer at pbData, O: Size of BLOB
3071 * RETURNS
3072 * Success: TRUE.
3073 * Failure: FALSE.
3075 BOOL WINAPI RSAENH_CPExportKey(HCRYPTPROV hProv, HCRYPTKEY hKey, HCRYPTKEY hPubKey,
3076 DWORD dwBlobType, DWORD dwFlags, BYTE *pbData, DWORD *pdwDataLen)
3078 CRYPTKEY *pCryptKey;
3080 TRACE("(hProv=%08Ix, hKey=%08Ix, hPubKey=%08Ix, dwBlobType=%08lx, dwFlags=%08lx, pbData=%p,"
3081 "pdwDataLen=%p)\n", hProv, hKey, hPubKey, dwBlobType, dwFlags, pbData, pdwDataLen);
3083 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3085 SetLastError(NTE_BAD_UID);
3086 return FALSE;
3089 if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
3091 SetLastError(NTE_BAD_KEY);
3092 return FALSE;
3095 return crypt_export_key(pCryptKey, hPubKey, dwBlobType, dwFlags, FALSE,
3096 pbData, pdwDataLen);
3099 /******************************************************************************
3100 * release_and_install_key [Internal]
3102 * Release an existing key, if present, and replaces it with a new one.
3104 * PARAMS
3105 * hProv [I] Key container into which the key is to be imported.
3106 * src [I] Key which will replace *dest
3107 * dest [I] Points to key to be released and replaced with src
3108 * fStoreKey [I] If TRUE, the newly installed key is stored to the registry.
3110 static void release_and_install_key(HCRYPTPROV hProv, HCRYPTKEY src,
3111 HCRYPTKEY *dest, DWORD fStoreKey)
3113 RSAENH_CPDestroyKey(hProv, *dest);
3114 copy_handle(&handle_table, src, RSAENH_MAGIC_KEY, dest);
3115 if (fStoreKey)
3117 KEYCONTAINER *pKeyContainer;
3119 if ((pKeyContainer = get_key_container(hProv)))
3121 store_key_container_keys(pKeyContainer);
3122 store_key_container_permissions(pKeyContainer);
3127 /******************************************************************************
3128 * import_private_key [Internal]
3130 * Import a BLOB'ed private key into a key container.
3132 * PARAMS
3133 * hProv [I] Key container into which the private key is to be imported.
3134 * pbData [I] Pointer to a buffer which holds the private key BLOB.
3135 * dwDataLen [I] Length of data in buffer at pbData.
3136 * dwFlags [I] One of:
3137 * CRYPT_EXPORTABLE: the imported key is marked exportable
3138 * fStoreKey [I] If TRUE, the imported key is stored to the registry.
3139 * phKey [O] Handle to the imported key.
3142 * NOTES
3143 * Assumes the caller has already checked the BLOBHEADER at pbData to ensure
3144 * it's a PRIVATEKEYBLOB.
3146 * RETURNS
3147 * Success: TRUE.
3148 * Failure: FALSE.
3150 static BOOL import_private_key(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen,
3151 DWORD dwFlags, BOOL fStoreKey, HCRYPTKEY *phKey)
3153 KEYCONTAINER *pKeyContainer;
3154 CRYPTKEY *pCryptKey;
3155 const BLOBHEADER *pBlobHeader = (const BLOBHEADER*)pbData;
3156 const RSAPUBKEY *pRSAPubKey = (const RSAPUBKEY*)(pBlobHeader+1);
3157 BOOL ret;
3159 if (dwFlags & CRYPT_IPSEC_HMAC_KEY)
3161 FIXME("unimplemented for CRYPT_IPSEC_HMAC_KEY\n");
3162 SetLastError(NTE_BAD_FLAGS);
3163 return FALSE;
3165 if (!(pKeyContainer = get_key_container(hProv)))
3166 return FALSE;
3168 if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY)))
3170 ERR("datalen %ld not long enough for a BLOBHEADER + RSAPUBKEY\n",
3171 dwDataLen);
3172 SetLastError(NTE_BAD_DATA);
3173 return FALSE;
3175 if (pRSAPubKey->magic != RSAENH_MAGIC_RSA2)
3177 ERR("unexpected magic %08lx\n", pRSAPubKey->magic);
3178 SetLastError(NTE_BAD_DATA);
3179 return FALSE;
3181 if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) +
3182 (pRSAPubKey->bitlen >> 3) + (5 * ((pRSAPubKey->bitlen+8)>>4))))
3184 DWORD expectedLen = sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) +
3185 (pRSAPubKey->bitlen >> 3) + (5 * ((pRSAPubKey->bitlen+8)>>4));
3187 ERR("blob too short for pub key: expect %ld, got %ld\n",
3188 expectedLen, dwDataLen);
3189 SetLastError(NTE_BAD_DATA);
3190 return FALSE;
3193 *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, MAKELONG(0,pRSAPubKey->bitlen), &pCryptKey);
3194 if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
3195 setup_key(pCryptKey);
3196 ret = import_private_key_impl((const BYTE*)(pRSAPubKey+1), &pCryptKey->context,
3197 pRSAPubKey->bitlen/8, dwDataLen, pRSAPubKey->pubexp);
3198 if (ret) {
3199 if (dwFlags & CRYPT_EXPORTABLE)
3200 pCryptKey->dwPermissions |= CRYPT_EXPORT;
3201 switch (pBlobHeader->aiKeyAlg)
3203 case AT_SIGNATURE:
3204 case CALG_RSA_SIGN:
3205 TRACE("installing signing key\n");
3206 release_and_install_key(hProv, *phKey, &pKeyContainer->hSignatureKeyPair,
3207 fStoreKey);
3208 break;
3209 case AT_KEYEXCHANGE:
3210 case CALG_RSA_KEYX:
3211 TRACE("installing key exchange key\n");
3212 release_and_install_key(hProv, *phKey, &pKeyContainer->hKeyExchangeKeyPair,
3213 fStoreKey);
3214 break;
3217 return ret;
3220 /******************************************************************************
3221 * import_public_key [Internal]
3223 * Import a BLOB'ed public key.
3225 * PARAMS
3226 * hProv [I] A CSP.
3227 * pbData [I] Pointer to a buffer which holds the public key BLOB.
3228 * dwDataLen [I] Length of data in buffer at pbData.
3229 * dwFlags [I] One of:
3230 * CRYPT_EXPORTABLE: the imported key is marked exportable
3231 * phKey [O] Handle to the imported key.
3234 * NOTES
3235 * Assumes the caller has already checked the BLOBHEADER at pbData to ensure
3236 * it's a PUBLICKEYBLOB.
3238 * RETURNS
3239 * Success: TRUE.
3240 * Failure: FALSE.
3242 static BOOL import_public_key(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen,
3243 DWORD dwFlags, HCRYPTKEY *phKey)
3245 CRYPTKEY *pCryptKey;
3246 const BLOBHEADER *pBlobHeader = (const BLOBHEADER*)pbData;
3247 const RSAPUBKEY *pRSAPubKey = (const RSAPUBKEY*)(pBlobHeader+1);
3248 ALG_ID algID;
3249 BOOL ret;
3251 if (dwFlags & CRYPT_IPSEC_HMAC_KEY)
3253 FIXME("unimplemented for CRYPT_IPSEC_HMAC_KEY\n");
3254 SetLastError(NTE_BAD_FLAGS);
3255 return FALSE;
3258 if ((dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY)) ||
3259 (pRSAPubKey->magic != RSAENH_MAGIC_RSA1) ||
3260 (dwDataLen < sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) + (pRSAPubKey->bitlen >> 3)))
3262 SetLastError(NTE_BAD_DATA);
3263 return FALSE;
3266 /* Since this is a public key blob, only the public key is
3267 * available, so only signature verification is possible.
3269 algID = pBlobHeader->aiKeyAlg;
3270 *phKey = new_key(hProv, algID, MAKELONG(0,pRSAPubKey->bitlen), &pCryptKey);
3271 if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
3272 setup_key(pCryptKey);
3273 ret = import_public_key_impl((const BYTE*)(pRSAPubKey+1), &pCryptKey->context,
3274 pRSAPubKey->bitlen >> 3, pRSAPubKey->pubexp);
3275 if (ret) {
3276 if (dwFlags & CRYPT_EXPORTABLE)
3277 pCryptKey->dwPermissions |= CRYPT_EXPORT;
3279 return ret;
3282 /******************************************************************************
3283 * import_symmetric_key [Internal]
3285 * Import a BLOB'ed symmetric key into a key container.
3287 * PARAMS
3288 * hProv [I] Key container into which the symmetric key is to be imported.
3289 * pbData [I] Pointer to a buffer which holds the symmetric key BLOB.
3290 * dwDataLen [I] Length of data in buffer at pbData.
3291 * hPubKey [I] Key used to decrypt sensitive BLOB data.
3292 * dwFlags [I] One of:
3293 * CRYPT_EXPORTABLE: the imported key is marked exportable
3294 * phKey [O] Handle to the imported key.
3297 * NOTES
3298 * Assumes the caller has already checked the BLOBHEADER at pbData to ensure
3299 * it's a SIMPLEBLOB.
3301 * RETURNS
3302 * Success: TRUE.
3303 * Failure: FALSE.
3305 static BOOL import_symmetric_key(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen,
3306 HCRYPTKEY hPubKey, DWORD dwFlags, HCRYPTKEY *phKey)
3308 CRYPTKEY *pCryptKey, *pPubKey;
3309 const BLOBHEADER *pBlobHeader = (const BLOBHEADER*)pbData;
3310 const ALG_ID *pAlgid = (const ALG_ID*)(pBlobHeader+1);
3311 const BYTE *pbKeyStream = (const BYTE*)(pAlgid + 1);
3312 BYTE *pbDecrypted;
3313 DWORD dwKeyLen;
3315 if (dwFlags & CRYPT_IPSEC_HMAC_KEY)
3317 FIXME("unimplemented for CRYPT_IPSEC_HMAC_KEY\n");
3318 SetLastError(NTE_BAD_FLAGS);
3319 return FALSE;
3321 if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pPubKey) ||
3322 pPubKey->aiAlgid != CALG_RSA_KEYX)
3324 SetLastError(NTE_BAD_PUBLIC_KEY); /* FIXME: error code? */
3325 return FALSE;
3328 if (dwDataLen < sizeof(BLOBHEADER)+sizeof(ALG_ID)+pPubKey->dwBlockLen)
3330 SetLastError(NTE_BAD_DATA); /* FIXME: error code */
3331 return FALSE;
3334 pbDecrypted = malloc(pPubKey->dwBlockLen);
3335 if (!pbDecrypted) return FALSE;
3336 encrypt_block_impl(pPubKey->aiAlgid, PK_PRIVATE, &pPubKey->context, pbKeyStream, pbDecrypted,
3337 RSAENH_DECRYPT);
3339 dwKeyLen = RSAENH_MAX_KEY_SIZE;
3340 if (!unpad_data(hProv, pbDecrypted, pPubKey->dwBlockLen, pbDecrypted, &dwKeyLen, dwFlags)) {
3341 free(pbDecrypted);
3342 return FALSE;
3345 if (pBlobHeader->aiKeyAlg == CALG_RC2)
3347 const PROV_ENUMALGS_EX *info;
3349 info = get_algid_info(hProv, CALG_RC2);
3350 assert(info);
3351 if (!dwKeyLen)
3352 dwKeyLen = info->dwDefaultLen;
3353 if (dwKeyLen < info->dwMinLen / 8 || dwKeyLen > 128)
3355 WARN("Invalid RC2 key, len %ld.\n", dwKeyLen);
3356 *phKey = (HCRYPTKEY)INVALID_HANDLE_VALUE;
3357 SetLastError(NTE_BAD_DATA);
3359 else if ((*phKey = alloc_key(hProv, pBlobHeader->aiKeyAlg, 0, dwKeyLen << 3, &pCryptKey))
3360 != (HCRYPTKEY)INVALID_HANDLE_VALUE && info->dwDefaultLen == 40 && dwKeyLen > info->dwMaxLen / 8)
3362 pCryptKey->dwEffectiveKeyLen = 40;
3365 else
3367 *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, dwKeyLen<<19, &pCryptKey);
3369 if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
3371 free(pbDecrypted);
3372 return FALSE;
3374 memcpy(pCryptKey->abKeyValue, pbDecrypted, dwKeyLen);
3375 free(pbDecrypted);
3376 setup_key(pCryptKey);
3377 if (dwFlags & CRYPT_EXPORTABLE)
3378 pCryptKey->dwPermissions |= CRYPT_EXPORT;
3379 return TRUE;
3382 /******************************************************************************
3383 * import_plaintext_key [Internal]
3385 * Import a plaintext key into a key container.
3387 * PARAMS
3388 * hProv [I] Key container into which the symmetric key is to be imported.
3389 * pbData [I] Pointer to a buffer which holds the plaintext key BLOB.
3390 * dwDataLen [I] Length of data in buffer at pbData.
3391 * dwFlags [I] One of:
3392 * CRYPT_EXPORTABLE: the imported key is marked exportable
3393 * phKey [O] Handle to the imported key.
3396 * NOTES
3397 * Assumes the caller has already checked the BLOBHEADER at pbData to ensure
3398 * it's a PLAINTEXTKEYBLOB.
3400 * RETURNS
3401 * Success: TRUE.
3402 * Failure: FALSE.
3404 static BOOL import_plaintext_key(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen,
3405 DWORD dwFlags, HCRYPTKEY *phKey)
3407 CRYPTKEY *pCryptKey;
3408 const BLOBHEADER *pBlobHeader = (const BLOBHEADER*)pbData;
3409 const DWORD *pKeyLen = (const DWORD *)(pBlobHeader + 1);
3410 const BYTE *pbKeyStream = (const BYTE*)(pKeyLen + 1);
3412 if (dwDataLen < sizeof(BLOBHEADER)+sizeof(DWORD)+*pKeyLen)
3414 SetLastError(NTE_BAD_DATA); /* FIXME: error code */
3415 return FALSE;
3418 if (dwFlags & CRYPT_IPSEC_HMAC_KEY)
3420 *phKey = new_key(hProv, CALG_HMAC, 0, &pCryptKey);
3421 if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
3422 return FALSE;
3423 if (*pKeyLen <= RSAENH_MIN(sizeof(pCryptKey->abKeyValue), RSAENH_HMAC_BLOCK_LEN))
3425 memcpy(pCryptKey->abKeyValue, pbKeyStream, *pKeyLen);
3426 pCryptKey->dwKeyLen = *pKeyLen;
3428 else
3430 CRYPT_DATA_BLOB blobHmacKey = { *pKeyLen, (BYTE *)pbKeyStream };
3432 /* In order to initialize an HMAC key, the key material is hashed,
3433 * and the output of the hash function is used as the key material.
3434 * Unfortunately, the way the Crypto API is designed, we don't know
3435 * the hash algorithm yet, so we have to copy the entire key
3436 * material.
3438 if (!copy_data_blob(&pCryptKey->blobHmacKey, &blobHmacKey))
3440 release_handle(&handle_table, *phKey, RSAENH_MAGIC_KEY);
3441 *phKey = (HCRYPTKEY)INVALID_HANDLE_VALUE;
3442 return FALSE;
3445 setup_key(pCryptKey);
3446 if (dwFlags & CRYPT_EXPORTABLE)
3447 pCryptKey->dwPermissions |= CRYPT_EXPORT;
3449 else
3451 *phKey = new_key(hProv, pBlobHeader->aiKeyAlg, *pKeyLen<<19, &pCryptKey);
3452 if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
3453 return FALSE;
3454 memcpy(pCryptKey->abKeyValue, pbKeyStream, *pKeyLen);
3455 setup_key(pCryptKey);
3456 if (dwFlags & CRYPT_EXPORTABLE)
3457 pCryptKey->dwPermissions |= CRYPT_EXPORT;
3459 return TRUE;
3462 /******************************************************************************
3463 * import_key [Internal]
3465 * Import a BLOB'ed key into a key container, optionally storing the key's
3466 * value to the registry.
3468 * PARAMS
3469 * hProv [I] Key container into which the key is to be imported.
3470 * pbData [I] Pointer to a buffer which holds the BLOB.
3471 * dwDataLen [I] Length of data in buffer at pbData.
3472 * hPubKey [I] Key used to decrypt sensitive BLOB data.
3473 * dwFlags [I] One of:
3474 * CRYPT_EXPORTABLE: the imported key is marked exportable
3475 * fStoreKey [I] If TRUE, the imported key is stored to the registry.
3476 * phKey [O] Handle to the imported key.
3478 * RETURNS
3479 * Success: TRUE.
3480 * Failure: FALSE.
3482 static BOOL import_key(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen, HCRYPTKEY hPubKey,
3483 DWORD dwFlags, BOOL fStoreKey, HCRYPTKEY *phKey)
3485 KEYCONTAINER *pKeyContainer;
3486 const BLOBHEADER *pBlobHeader = (const BLOBHEADER*)pbData;
3488 if (!(pKeyContainer = get_key_container(hProv)))
3489 return FALSE;
3491 if (dwDataLen < sizeof(BLOBHEADER) ||
3492 pBlobHeader->bVersion != CUR_BLOB_VERSION ||
3493 pBlobHeader->reserved != 0)
3495 TRACE("bVersion = %d, reserved = %d\n", pBlobHeader->bVersion,
3496 pBlobHeader->reserved);
3497 SetLastError(NTE_BAD_DATA);
3498 return FALSE;
3501 /* If this is a verify-only context, the key is not persisted regardless of
3502 * fStoreKey's original value.
3504 fStoreKey = fStoreKey && !(dwFlags & CRYPT_VERIFYCONTEXT);
3505 TRACE("blob type: %x\n", pBlobHeader->bType);
3506 switch (pBlobHeader->bType)
3508 case PRIVATEKEYBLOB:
3509 return import_private_key(hProv, pbData, dwDataLen, dwFlags,
3510 fStoreKey, phKey);
3512 case PUBLICKEYBLOB:
3513 return import_public_key(hProv, pbData, dwDataLen, dwFlags,
3514 phKey);
3516 case SIMPLEBLOB:
3517 return import_symmetric_key(hProv, pbData, dwDataLen, hPubKey,
3518 dwFlags, phKey);
3520 case PLAINTEXTKEYBLOB:
3521 return import_plaintext_key(hProv, pbData, dwDataLen, dwFlags,
3522 phKey);
3524 default:
3525 SetLastError(NTE_BAD_TYPE); /* FIXME: error code? */
3526 return FALSE;
3530 /******************************************************************************
3531 * CPImportKey (RSAENH.@)
3533 * Import a BLOB'ed key into a key container.
3535 * PARAMS
3536 * hProv [I] Key container into which the key is to be imported.
3537 * pbData [I] Pointer to a buffer which holds the BLOB.
3538 * dwDataLen [I] Length of data in buffer at pbData.
3539 * hPubKey [I] Key used to decrypt sensitive BLOB data.
3540 * dwFlags [I] One of:
3541 * CRYPT_EXPORTABLE: the imported key is marked exportable
3542 * phKey [O] Handle to the imported key.
3544 * RETURNS
3545 * Success: TRUE.
3546 * Failure: FALSE.
3548 BOOL WINAPI RSAENH_CPImportKey(HCRYPTPROV hProv, const BYTE *pbData, DWORD dwDataLen,
3549 HCRYPTKEY hPubKey, DWORD dwFlags, HCRYPTKEY *phKey)
3551 TRACE("(hProv=%08Ix, pbData=%p, dwDataLen=%ld, hPubKey=%08Ix, dwFlags=%08lx, phKey=%p)\n",
3552 hProv, pbData, dwDataLen, hPubKey, dwFlags, phKey);
3554 return import_key(hProv, pbData, dwDataLen, hPubKey, dwFlags, TRUE, phKey);
3557 /******************************************************************************
3558 * CPGenKey (RSAENH.@)
3560 * Generate a key in the key container
3562 * PARAMS
3563 * hProv [I] Key container for which a key is to be generated.
3564 * Algid [I] Crypto algorithm identifier for the key to be generated.
3565 * dwFlags [I] Upper 16 bits: Binary length of key. Lower 16 bits: Flags. See Notes
3566 * phKey [O] Handle to the generated key.
3568 * RETURNS
3569 * Success: TRUE.
3570 * Failure: FALSE.
3572 * FIXME
3573 * Flags currently not considered.
3575 * NOTES
3576 * Private key-exchange- and signature-keys can be generated with Algid AT_KEYEXCHANGE
3577 * and AT_SIGNATURE values.
3579 BOOL WINAPI RSAENH_CPGenKey(HCRYPTPROV hProv, ALG_ID Algid, DWORD dwFlags, HCRYPTKEY *phKey)
3581 KEYCONTAINER *pKeyContainer;
3582 CRYPTKEY *pCryptKey;
3584 TRACE("(hProv=%08Ix, aiAlgid=%d, dwFlags=%08lx, phKey=%p)\n", hProv, Algid, dwFlags, phKey);
3586 if (!(pKeyContainer = get_key_container(hProv)))
3588 /* MSDN: hProv not containing valid context handle */
3589 return FALSE;
3592 switch (Algid)
3594 case AT_SIGNATURE:
3595 case CALG_RSA_SIGN:
3596 *phKey = new_key(hProv, CALG_RSA_SIGN, dwFlags, &pCryptKey);
3597 if (pCryptKey) {
3598 new_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen);
3599 setup_key(pCryptKey);
3600 release_and_install_key(hProv, *phKey,
3601 &pKeyContainer->hSignatureKeyPair,
3602 FALSE);
3604 break;
3606 case AT_KEYEXCHANGE:
3607 case CALG_RSA_KEYX:
3608 *phKey = new_key(hProv, CALG_RSA_KEYX, dwFlags, &pCryptKey);
3609 if (pCryptKey) {
3610 new_key_impl(pCryptKey->aiAlgid, &pCryptKey->context, pCryptKey->dwKeyLen);
3611 setup_key(pCryptKey);
3612 release_and_install_key(hProv, *phKey,
3613 &pKeyContainer->hKeyExchangeKeyPair,
3614 FALSE);
3616 break;
3618 case CALG_RC2:
3619 case CALG_RC4:
3620 case CALG_DES:
3621 case CALG_3DES_112:
3622 case CALG_3DES:
3623 case CALG_AES_128:
3624 case CALG_AES_192:
3625 case CALG_AES_256:
3626 case CALG_PCT1_MASTER:
3627 case CALG_SSL2_MASTER:
3628 case CALG_SSL3_MASTER:
3629 case CALG_TLS1_MASTER:
3630 *phKey = new_key(hProv, Algid, dwFlags, &pCryptKey);
3631 if (pCryptKey) {
3632 gen_rand_impl(pCryptKey->abKeyValue, RSAENH_MAX_KEY_SIZE);
3633 switch (Algid) {
3634 case CALG_SSL3_MASTER:
3635 pCryptKey->abKeyValue[0] = RSAENH_SSL3_VERSION_MAJOR;
3636 pCryptKey->abKeyValue[1] = RSAENH_SSL3_VERSION_MINOR;
3637 break;
3639 case CALG_TLS1_MASTER:
3640 pCryptKey->abKeyValue[0] = RSAENH_TLS1_VERSION_MAJOR;
3641 pCryptKey->abKeyValue[1] = RSAENH_TLS1_VERSION_MINOR;
3642 break;
3644 setup_key(pCryptKey);
3646 break;
3648 default:
3649 /* MSDN: Algorithm not supported specified by Algid */
3650 SetLastError(NTE_BAD_ALGID);
3651 return FALSE;
3654 return *phKey != (HCRYPTKEY)INVALID_HANDLE_VALUE;
3657 /******************************************************************************
3658 * CPGenRandom (RSAENH.@)
3660 * Generate a random byte stream.
3662 * PARAMS
3663 * hProv [I] Key container that is used to generate random bytes.
3664 * dwLen [I] Specifies the number of requested random data bytes.
3665 * pbBuffer [O] Random bytes will be stored here.
3667 * RETURNS
3668 * Success: TRUE
3669 * Failure: FALSE
3671 BOOL WINAPI RSAENH_CPGenRandom(HCRYPTPROV hProv, DWORD dwLen, BYTE *pbBuffer)
3673 TRACE("(hProv=%08Ix, dwLen=%ld, pbBuffer=%p)\n", hProv, dwLen, pbBuffer);
3675 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3677 /* MSDN: hProv not containing valid context handle */
3678 SetLastError(NTE_BAD_UID);
3679 return FALSE;
3682 return gen_rand_impl(pbBuffer, dwLen);
3685 /******************************************************************************
3686 * CPGetHashParam (RSAENH.@)
3688 * Query parameters of an hash object.
3690 * PARAMS
3691 * hProv [I] The kea container, which the hash belongs to.
3692 * hHash [I] The hash object that is to be queried.
3693 * dwParam [I] Specifies the parameter that is to be queried.
3694 * pbData [I] Pointer to the buffer where the parameter value will be stored.
3695 * pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
3696 * dwFlags [I] None currently defined.
3698 * RETURNS
3699 * Success: TRUE
3700 * Failure: FALSE
3702 * NOTES
3703 * Valid dwParams are: HP_ALGID, HP_HASHSIZE, HP_HASHVALUE. The hash will be
3704 * finalized if HP_HASHVALUE is queried.
3706 BOOL WINAPI RSAENH_CPGetHashParam(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwParam, BYTE *pbData,
3707 DWORD *pdwDataLen, DWORD dwFlags)
3709 CRYPTHASH *pCryptHash;
3711 TRACE("(hProv=%08Ix, hHash=%08Ix, dwParam=%08lx, pbData=%p, pdwDataLen=%p, dwFlags=%08lx)\n",
3712 hProv, hHash, dwParam, pbData, pdwDataLen, dwFlags);
3714 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3716 SetLastError(NTE_BAD_UID);
3717 return FALSE;
3720 if (dwFlags)
3722 SetLastError(NTE_BAD_FLAGS);
3723 return FALSE;
3726 if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH,
3727 (OBJECTHDR**)&pCryptHash))
3729 SetLastError(NTE_BAD_HASH);
3730 return FALSE;
3733 if (!pdwDataLen)
3735 SetLastError(ERROR_INVALID_PARAMETER);
3736 return FALSE;
3739 switch (dwParam)
3741 case HP_ALGID:
3742 return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptHash->aiAlgid,
3743 sizeof(ALG_ID));
3745 case HP_HASHSIZE:
3746 return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptHash->dwHashSize,
3747 sizeof(DWORD));
3749 case HP_HASHVAL:
3750 if (pCryptHash->aiAlgid == CALG_TLS1PRF) {
3751 return tls1_prf(hProv, pCryptHash->hKey, &pCryptHash->tpPRFParams.blobLabel,
3752 &pCryptHash->tpPRFParams.blobSeed, pbData, *pdwDataLen);
3755 if (pCryptHash->dwState != RSAENH_HASHSTATE_FINISHED)
3757 finalize_hash(pCryptHash);
3758 pCryptHash->dwState = RSAENH_HASHSTATE_FINISHED;
3761 if (!pbData)
3763 *pdwDataLen = pCryptHash->dwHashSize;
3764 return TRUE;
3767 return copy_param(pbData, pdwDataLen, pCryptHash->abHashValue,
3768 pCryptHash->dwHashSize);
3770 default:
3771 SetLastError(NTE_BAD_TYPE);
3772 return FALSE;
3776 /******************************************************************************
3777 * CPSetKeyParam (RSAENH.@)
3779 * Set a parameter of a key object
3781 * PARAMS
3782 * hProv [I] The key container to which the key belongs.
3783 * hKey [I] The key for which a parameter is to be set.
3784 * dwParam [I] Parameter type. See Notes.
3785 * pbData [I] Pointer to the parameter value.
3786 * dwFlags [I] Currently none defined.
3788 * RETURNS
3789 * Success: TRUE.
3790 * Failure: FALSE.
3792 * NOTES:
3793 * Defined dwParam types are:
3794 * - KP_MODE: Values MODE_CBC, MODE_ECB, MODE_CFB.
3795 * - KP_MODE_BITS: Shift width for cipher feedback mode. (Currently ignored by MS CSP's)
3796 * - KP_PERMISSIONS: Or'ed combination of CRYPT_ENCRYPT, CRYPT_DECRYPT,
3797 * CRYPT_EXPORT, CRYPT_READ, CRYPT_WRITE, CRYPT_MAC
3798 * - KP_IV: Initialization vector
3800 BOOL WINAPI RSAENH_CPSetKeyParam(HCRYPTPROV hProv, HCRYPTKEY hKey, DWORD dwParam, BYTE *pbData,
3801 DWORD dwFlags)
3803 CRYPTKEY *pCryptKey;
3805 TRACE("(hProv=%08Ix, hKey=%08Ix, dwParam=%08lx, pbData=%p, dwFlags=%08lx)\n", hProv, hKey,
3806 dwParam, pbData, dwFlags);
3808 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
3810 SetLastError(NTE_BAD_UID);
3811 return FALSE;
3814 if (dwFlags) {
3815 SetLastError(NTE_BAD_FLAGS);
3816 return FALSE;
3819 if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
3821 SetLastError(NTE_BAD_KEY);
3822 return FALSE;
3825 switch (dwParam) {
3826 case KP_PADDING:
3827 /* The MS providers only support PKCS5_PADDING */
3828 if (*(DWORD *)pbData != PKCS5_PADDING) {
3829 SetLastError(NTE_BAD_DATA);
3830 return FALSE;
3832 return TRUE;
3834 case KP_MODE:
3835 pCryptKey->dwMode = *(DWORD*)pbData;
3836 return TRUE;
3838 case KP_MODE_BITS:
3839 pCryptKey->dwModeBits = *(DWORD*)pbData;
3840 return TRUE;
3842 case KP_PERMISSIONS:
3844 DWORD perms = *(DWORD *)pbData;
3846 if ((perms & CRYPT_EXPORT) &&
3847 !(pCryptKey->dwPermissions & CRYPT_EXPORT))
3849 SetLastError(NTE_BAD_DATA);
3850 return FALSE;
3852 else if (!(perms & CRYPT_EXPORT) &&
3853 (pCryptKey->dwPermissions & CRYPT_EXPORT))
3855 /* Clearing the export permission appears to be ignored,
3856 * see tests.
3858 perms |= CRYPT_EXPORT;
3860 pCryptKey->dwPermissions = perms;
3861 return TRUE;
3864 case KP_IV:
3865 memcpy(pCryptKey->abInitVector, pbData, pCryptKey->dwBlockLen);
3866 setup_key(pCryptKey);
3867 return TRUE;
3869 case KP_SALT:
3870 switch (pCryptKey->aiAlgid) {
3871 case CALG_RC2:
3872 case CALG_RC4:
3874 KEYCONTAINER *pKeyContainer = get_key_container(pCryptKey->hProv);
3875 if (!pbData)
3877 SetLastError(ERROR_INVALID_PARAMETER);
3878 return FALSE;
3880 /* MSDN: the base provider always sets eleven bytes of
3881 * salt value.
3883 memcpy(pCryptKey->abKeyValue + pCryptKey->dwKeyLen,
3884 pbData, 11);
3885 pCryptKey->dwSaltLen = 11;
3886 setup_key(pCryptKey);
3887 /* After setting the salt value if the provider is not base or
3888 * strong the salt length will be reset. */
3889 if (pKeyContainer->dwPersonality != RSAENH_PERSONALITY_BASE &&
3890 pKeyContainer->dwPersonality != RSAENH_PERSONALITY_STRONG)
3891 pCryptKey->dwSaltLen = 0;
3892 break;
3894 default:
3895 SetLastError(NTE_BAD_KEY);
3896 return FALSE;
3898 return TRUE;
3900 case KP_SALT_EX:
3902 CRYPT_INTEGER_BLOB *blob = (CRYPT_INTEGER_BLOB *)pbData;
3904 /* salt length can't be greater than 184 bits = 24 bytes */
3905 if (blob->cbData > 24)
3907 SetLastError(NTE_BAD_DATA);
3908 return FALSE;
3910 memcpy(pCryptKey->abKeyValue + pCryptKey->dwKeyLen, blob->pbData,
3911 blob->cbData);
3912 pCryptKey->dwSaltLen = blob->cbData;
3913 setup_key(pCryptKey);
3914 return TRUE;
3917 case KP_EFFECTIVE_KEYLEN:
3918 switch (pCryptKey->aiAlgid) {
3919 case CALG_RC2:
3921 DWORD keylen, deflen;
3922 BOOL ret = TRUE;
3923 KEYCONTAINER *pKeyContainer = get_key_container(pCryptKey->hProv);
3925 if (!pbData)
3927 SetLastError(ERROR_INVALID_PARAMETER);
3928 return FALSE;
3930 keylen = *(DWORD *)pbData;
3931 if (!keylen || keylen > 1024)
3933 SetLastError(NTE_BAD_DATA);
3934 return FALSE;
3938 * The Base provider will force the key length to default
3939 * and set an error state if a key length different from
3940 * the default is tried.
3942 deflen = aProvEnumAlgsEx[pKeyContainer->dwPersonality]->dwDefaultLen;
3943 if (pKeyContainer->dwPersonality == RSAENH_PERSONALITY_BASE
3944 && keylen != deflen)
3946 keylen = deflen;
3947 SetLastError(NTE_BAD_DATA);
3948 ret = FALSE;
3950 pCryptKey->dwEffectiveKeyLen = keylen;
3951 setup_key(pCryptKey);
3952 return ret;
3954 default:
3955 SetLastError(NTE_BAD_TYPE);
3956 return FALSE;
3958 return TRUE;
3960 case KP_SCHANNEL_ALG:
3961 switch (((PSCHANNEL_ALG)pbData)->dwUse) {
3962 case SCHANNEL_ENC_KEY:
3963 memcpy(&pCryptKey->siSChannelInfo.saEncAlg, pbData, sizeof(SCHANNEL_ALG));
3964 break;
3966 case SCHANNEL_MAC_KEY:
3967 memcpy(&pCryptKey->siSChannelInfo.saMACAlg, pbData, sizeof(SCHANNEL_ALG));
3968 break;
3970 default:
3971 SetLastError(NTE_FAIL); /* FIXME: error code */
3972 return FALSE;
3974 return TRUE;
3976 case KP_CLIENT_RANDOM:
3977 return copy_data_blob(&pCryptKey->siSChannelInfo.blobClientRandom, (PCRYPT_DATA_BLOB)pbData);
3979 case KP_SERVER_RANDOM:
3980 return copy_data_blob(&pCryptKey->siSChannelInfo.blobServerRandom, (PCRYPT_DATA_BLOB)pbData);
3982 default:
3983 SetLastError(NTE_BAD_TYPE);
3984 return FALSE;
3988 /******************************************************************************
3989 * CPGetKeyParam (RSAENH.@)
3991 * Query a key parameter.
3993 * PARAMS
3994 * hProv [I] The key container, which the key belongs to.
3995 * hHash [I] The key object that is to be queried.
3996 * dwParam [I] Specifies the parameter that is to be queried.
3997 * pbData [I] Pointer to the buffer where the parameter value will be stored.
3998 * pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
3999 * dwFlags [I] None currently defined.
4001 * RETURNS
4002 * Success: TRUE
4003 * Failure: FALSE
4005 * NOTES
4006 * Defined dwParam types are:
4007 * - KP_MODE: Values MODE_CBC, MODE_ECB, MODE_CFB.
4008 * - KP_MODE_BITS: Shift width for cipher feedback mode.
4009 * (Currently ignored by MS CSP's - always eight)
4010 * - KP_PERMISSIONS: Or'ed combination of CRYPT_ENCRYPT, CRYPT_DECRYPT,
4011 * CRYPT_EXPORT, CRYPT_READ, CRYPT_WRITE, CRYPT_MAC
4012 * - KP_IV: Initialization vector.
4013 * - KP_KEYLEN: Bitwidth of the key.
4014 * - KP_BLOCKLEN: Size of a block cipher block.
4015 * - KP_SALT: Salt value.
4017 BOOL WINAPI RSAENH_CPGetKeyParam(HCRYPTPROV hProv, HCRYPTKEY hKey, DWORD dwParam, BYTE *pbData,
4018 DWORD *pdwDataLen, DWORD dwFlags)
4020 CRYPTKEY *pCryptKey;
4021 DWORD dwValue;
4023 TRACE("(hProv=%08Ix, hKey=%08Ix, dwParam=%08lx, pbData=%p, pdwDataLen=%p dwFlags=%08lx)\n",
4024 hProv, hKey, dwParam, pbData, pdwDataLen, dwFlags);
4026 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
4028 SetLastError(NTE_BAD_UID);
4029 return FALSE;
4032 if (dwFlags) {
4033 SetLastError(NTE_BAD_FLAGS);
4034 return FALSE;
4037 if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pCryptKey))
4039 SetLastError(NTE_BAD_KEY);
4040 return FALSE;
4043 switch (dwParam)
4045 case KP_IV:
4046 return copy_param(pbData, pdwDataLen, pCryptKey->abInitVector,
4047 pCryptKey->dwBlockLen);
4049 case KP_SALT:
4050 switch (pCryptKey->aiAlgid) {
4051 case CALG_RC2:
4052 case CALG_RC4:
4053 return copy_param(pbData, pdwDataLen,
4054 &pCryptKey->abKeyValue[pCryptKey->dwKeyLen],
4055 pCryptKey->dwSaltLen);
4056 default:
4057 SetLastError(NTE_BAD_KEY);
4058 return FALSE;
4061 case KP_PADDING:
4062 dwValue = PKCS5_PADDING;
4063 return copy_param(pbData, pdwDataLen, (const BYTE*)&dwValue, sizeof(DWORD));
4065 case KP_KEYLEN:
4066 dwValue = pCryptKey->dwKeyLen << 3;
4067 return copy_param(pbData, pdwDataLen, (const BYTE*)&dwValue, sizeof(DWORD));
4069 case KP_EFFECTIVE_KEYLEN:
4070 if (pCryptKey->dwEffectiveKeyLen)
4071 dwValue = pCryptKey->dwEffectiveKeyLen;
4072 else
4073 dwValue = pCryptKey->dwKeyLen << 3;
4074 return copy_param(pbData, pdwDataLen, (const BYTE*)&dwValue, sizeof(DWORD));
4076 case KP_BLOCKLEN:
4077 dwValue = pCryptKey->dwBlockLen << 3;
4078 return copy_param(pbData, pdwDataLen, (const BYTE*)&dwValue, sizeof(DWORD));
4080 case KP_MODE:
4081 return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptKey->dwMode, sizeof(DWORD));
4083 case KP_MODE_BITS:
4084 return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptKey->dwModeBits,
4085 sizeof(DWORD));
4087 case KP_PERMISSIONS:
4088 return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptKey->dwPermissions,
4089 sizeof(DWORD));
4091 case KP_ALGID:
4092 return copy_param(pbData, pdwDataLen, (const BYTE*)&pCryptKey->aiAlgid, sizeof(DWORD));
4094 default:
4095 SetLastError(NTE_BAD_TYPE);
4096 return FALSE;
4100 /******************************************************************************
4101 * CPGetProvParam (RSAENH.@)
4103 * Query a CSP parameter.
4105 * PARAMS
4106 * hProv [I] The key container that is to be queried.
4107 * dwParam [I] Specifies the parameter that is to be queried.
4108 * pbData [I] Pointer to the buffer where the parameter value will be stored.
4109 * pdwDataLen [I/O] I: Buffer length at pbData, O: Length of the parameter value.
4110 * dwFlags [I] CRYPT_FIRST: Start enumeration (for PP_ENUMALGS{_EX}).
4112 * RETURNS
4113 * Success: TRUE
4114 * Failure: FALSE
4115 * NOTES:
4116 * Defined dwParam types:
4117 * - PP_CONTAINER: Name of the key container.
4118 * - PP_NAME: Name of the cryptographic service provider.
4119 * - PP_SIG_KEYSIZE_INC: RSA signature keywidth granularity in bits.
4120 * - PP_KEYX_KEYSIZE_INC: RSA key-exchange keywidth granularity in bits.
4121 * - PP_ENUMALGS{_EX}: Query provider capabilities.
4122 * - PP_KEYSET_SEC_DESCR: Retrieve security descriptor on container.
4124 BOOL WINAPI RSAENH_CPGetProvParam(HCRYPTPROV hProv, DWORD dwParam, BYTE *pbData,
4125 DWORD *pdwDataLen, DWORD dwFlags)
4127 KEYCONTAINER *pKeyContainer;
4128 PROV_ENUMALGS provEnumalgs;
4129 DWORD dwTemp;
4130 HKEY hKey;
4132 /* This is for dwParam PP_CRYPT_COUNT_KEY_USE.
4133 * IE6 SP1 asks for it in the 'About' dialog.
4134 * Returning this BLOB seems to satisfy IE. The marked 0x00 seem
4135 * to be 'don't care's. If you know anything more specific about
4136 * this provider parameter, please contact the Wine developers */
4137 static const BYTE abWTF[96] = {
4138 0xb0, 0x25, 0x63, 0x86, 0x9c, 0xab, 0xb6, 0x37,
4139 0xe8, 0x82, /**/0x00,/**/ 0x72, 0x06, 0xb2, /**/0x00,/**/ 0x3b,
4140 0x60, 0x35, /**/0x00,/**/ 0x3b, 0x88, 0xce, /**/0x00,/**/ 0x82,
4141 0xbc, 0x7a, /**/0x00,/**/ 0xb7, 0x4f, 0x7e, /**/0x00,/**/ 0xde,
4142 0x92, 0xf1, /**/0x00,/**/ 0x83, 0xea, 0x5e, /**/0x00,/**/ 0xc8,
4143 0x12, 0x1e, 0xd4, 0x06, 0xf7, 0x66, /**/0x00,/**/ 0x01,
4144 0x29, 0xa4, /**/0x00,/**/ 0xf8, 0x24, 0x0c, /**/0x00,/**/ 0x33,
4145 0x06, 0x80, /**/0x00,/**/ 0x02, 0x46, 0x0b, /**/0x00,/**/ 0x6d,
4146 0x5b, 0xca, /**/0x00,/**/ 0x9a, 0x10, 0xf0, /**/0x00,/**/ 0x05,
4147 0x19, 0xd0, /**/0x00,/**/ 0x2c, 0xf6, 0x27, /**/0x00,/**/ 0xaa,
4148 0x7c, 0x6f, /**/0x00,/**/ 0xb9, 0xd8, 0x72, /**/0x00,/**/ 0x03,
4149 0xf3, 0x81, /**/0x00,/**/ 0xfa, 0xe8, 0x26, /**/0x00,/**/ 0xca
4152 TRACE("(hProv=%08Ix, dwParam=%08lx, pbData=%p, pdwDataLen=%p, dwFlags=%08lx)\n",
4153 hProv, dwParam, pbData, pdwDataLen, dwFlags);
4155 if (!pdwDataLen) {
4156 SetLastError(ERROR_INVALID_PARAMETER);
4157 return FALSE;
4160 if (!(pKeyContainer = get_key_container(hProv)))
4162 /* MSDN: hProv not containing valid context handle */
4163 return FALSE;
4166 switch (dwParam)
4168 case PP_CONTAINER:
4169 case PP_UNIQUE_CONTAINER:/* MSDN says we can return the same value as PP_CONTAINER */
4170 return copy_param(pbData, pdwDataLen, (const BYTE*)pKeyContainer->szName,
4171 strlen(pKeyContainer->szName)+1);
4173 case PP_NAME:
4174 return copy_param(pbData, pdwDataLen, (const BYTE*)pKeyContainer->szProvName,
4175 strlen(pKeyContainer->szProvName)+1);
4177 case PP_PROVTYPE:
4178 dwTemp = PROV_RSA_FULL;
4179 return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp));
4181 case PP_KEYSPEC:
4182 dwTemp = AT_SIGNATURE | AT_KEYEXCHANGE;
4183 return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp));
4185 case PP_KEYSET_TYPE:
4186 dwTemp = pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET;
4187 return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp));
4189 case PP_KEYSTORAGE:
4190 dwTemp = CRYPT_SEC_DESCR;
4191 return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp));
4193 case PP_SIG_KEYSIZE_INC:
4194 case PP_KEYX_KEYSIZE_INC:
4195 dwTemp = 8;
4196 return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp));
4198 case PP_IMPTYPE:
4199 dwTemp = CRYPT_IMPL_SOFTWARE;
4200 return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp));
4202 case PP_VERSION:
4203 dwTemp = 0x00000200;
4204 return copy_param(pbData, pdwDataLen, (const BYTE*)&dwTemp, sizeof(dwTemp));
4206 case PP_ENUMCONTAINERS:
4207 if ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) pKeyContainer->dwEnumContainersCtr = 0;
4209 if (!pbData) {
4210 *pdwDataLen = (DWORD)MAX_PATH + 1;
4211 return TRUE;
4214 if (!open_container_key("", dwFlags, KEY_READ, &hKey))
4216 SetLastError(ERROR_NO_MORE_ITEMS);
4217 return FALSE;
4220 dwTemp = *pdwDataLen;
4221 switch (RegEnumKeyExA(hKey, pKeyContainer->dwEnumContainersCtr, (LPSTR)pbData, &dwTemp,
4222 NULL, NULL, NULL, NULL))
4224 case ERROR_MORE_DATA:
4225 *pdwDataLen = (DWORD)MAX_PATH + 1;
4227 case ERROR_SUCCESS:
4228 pKeyContainer->dwEnumContainersCtr++;
4229 RegCloseKey(hKey);
4230 return TRUE;
4232 case ERROR_NO_MORE_ITEMS:
4233 default:
4234 SetLastError(ERROR_NO_MORE_ITEMS);
4235 RegCloseKey(hKey);
4236 return FALSE;
4239 case PP_ENUMALGS:
4240 case PP_ENUMALGS_EX:
4241 if (((pKeyContainer->dwEnumAlgsCtr >= RSAENH_MAX_ENUMALGS-1) ||
4242 (!aProvEnumAlgsEx[pKeyContainer->dwPersonality]
4243 [pKeyContainer->dwEnumAlgsCtr+1].aiAlgid)) &&
4244 ((dwFlags & CRYPT_FIRST) != CRYPT_FIRST))
4246 SetLastError(ERROR_NO_MORE_ITEMS);
4247 return FALSE;
4250 if (dwParam == PP_ENUMALGS) {
4251 if (pbData && (*pdwDataLen >= sizeof(PROV_ENUMALGS)))
4252 pKeyContainer->dwEnumAlgsCtr = ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) ?
4253 0 : pKeyContainer->dwEnumAlgsCtr+1;
4255 provEnumalgs.aiAlgid = aProvEnumAlgsEx
4256 [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].aiAlgid;
4257 provEnumalgs.dwBitLen = aProvEnumAlgsEx
4258 [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].dwDefaultLen;
4259 provEnumalgs.dwNameLen = aProvEnumAlgsEx
4260 [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].dwNameLen;
4261 memcpy(provEnumalgs.szName, aProvEnumAlgsEx
4262 [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr].szName,
4263 20*sizeof(CHAR));
4265 return copy_param(pbData, pdwDataLen, (const BYTE*)&provEnumalgs,
4266 sizeof(PROV_ENUMALGS));
4267 } else {
4268 if (pbData && (*pdwDataLen >= sizeof(PROV_ENUMALGS_EX)))
4269 pKeyContainer->dwEnumAlgsCtr = ((dwFlags & CRYPT_FIRST) == CRYPT_FIRST) ?
4270 0 : pKeyContainer->dwEnumAlgsCtr+1;
4272 return copy_param(pbData, pdwDataLen,
4273 (const BYTE*)&aProvEnumAlgsEx
4274 [pKeyContainer->dwPersonality][pKeyContainer->dwEnumAlgsCtr],
4275 sizeof(PROV_ENUMALGS_EX));
4278 case PP_CRYPT_COUNT_KEY_USE: /* Asked for by IE About dialog */
4279 return copy_param(pbData, pdwDataLen, abWTF, sizeof(abWTF));
4281 case PP_KEYSET_SEC_DESCR:
4283 SECURITY_DESCRIPTOR *sd;
4284 DWORD err, len, flags = (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET);
4286 if (!open_container_key(pKeyContainer->szName, flags, KEY_READ, &hKey))
4288 SetLastError(NTE_BAD_KEYSET);
4289 return FALSE;
4292 err = GetSecurityInfo(hKey, SE_REGISTRY_KEY, dwFlags, NULL, NULL, NULL, NULL, (void **)&sd);
4293 RegCloseKey(hKey);
4294 if (err)
4296 SetLastError(err);
4297 return FALSE;
4300 len = GetSecurityDescriptorLength(sd);
4301 if (*pdwDataLen >= len) memcpy(pbData, sd, len);
4302 else SetLastError(ERROR_INSUFFICIENT_BUFFER);
4303 *pdwDataLen = len;
4305 LocalFree(sd);
4306 return TRUE;
4309 default:
4310 /* MSDN: Unknown parameter number in dwParam */
4311 SetLastError(NTE_BAD_TYPE);
4312 return FALSE;
4316 /******************************************************************************
4317 * CPDeriveKey (RSAENH.@)
4319 * Derives a key from a hash value.
4321 * PARAMS
4322 * hProv [I] Key container for which a key is to be generated.
4323 * Algid [I] Crypto algorithm identifier for the key to be generated.
4324 * hBaseData [I] Hash from whose value the key will be derived.
4325 * dwFlags [I] See Notes.
4326 * phKey [O] The generated key.
4328 * RETURNS
4329 * Success: TRUE
4330 * Failure: FALSE
4332 * NOTES
4333 * Defined flags:
4334 * - CRYPT_EXPORTABLE: Key can be exported.
4335 * - CRYPT_NO_SALT: No salt is used for 40 bit keys.
4336 * - CRYPT_CREATE_SALT: Use remaining bits as salt value.
4338 BOOL WINAPI RSAENH_CPDeriveKey(HCRYPTPROV hProv, ALG_ID Algid, HCRYPTHASH hBaseData,
4339 DWORD dwFlags, HCRYPTKEY *phKey)
4341 CRYPTKEY *pCryptKey, *pMasterKey;
4342 CRYPTHASH *pCryptHash;
4343 BYTE abHashValue[RSAENH_MAX_HASH_SIZE*2];
4344 DWORD dwLen;
4346 TRACE("(hProv=%08Ix, Algid=%d, hBaseData=%08Ix, dwFlags=%08lx phKey=%p)\n", hProv, Algid,
4347 hBaseData, dwFlags, phKey);
4349 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
4351 SetLastError(NTE_BAD_UID);
4352 return FALSE;
4355 if (!lookup_handle(&handle_table, hBaseData, RSAENH_MAGIC_HASH,
4356 (OBJECTHDR**)&pCryptHash))
4358 SetLastError(NTE_BAD_HASH);
4359 return FALSE;
4362 if (!phKey)
4364 SetLastError(ERROR_INVALID_PARAMETER);
4365 return FALSE;
4368 switch (GET_ALG_CLASS(Algid))
4370 case ALG_CLASS_DATA_ENCRYPT:
4372 int need_padding, copy_len;
4373 *phKey = new_key(hProv, Algid, dwFlags, &pCryptKey);
4374 if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
4377 * We derive the key material from the hash.
4378 * If the hash value is not large enough for the claimed key, we have to construct
4379 * a larger binary value based on the hash. This is documented in MSDN: CryptDeriveKey.
4381 dwLen = RSAENH_MAX_HASH_SIZE;
4382 RSAENH_CPGetHashParam(pCryptHash->hProv, hBaseData, HP_HASHVAL, abHashValue, &dwLen, 0);
4385 * The usage of padding seems to vary from algorithm to algorithm.
4386 * For now the only different case found was for AES with 128 bit key.
4388 switch(Algid)
4390 case CALG_AES_128:
4391 /* To reduce the chance of regressions we will only deviate
4392 * from the old behavior for the tested hash lengths */
4393 if (dwLen == 16 || dwLen == 20)
4395 need_padding = 1;
4396 break;
4398 default:
4399 need_padding = dwLen < pCryptKey->dwKeyLen;
4402 copy_len = pCryptKey->dwKeyLen;
4403 if (need_padding)
4405 BYTE pad1[RSAENH_HMAC_DEF_PAD_LEN], pad2[RSAENH_HMAC_DEF_PAD_LEN];
4406 BYTE old_hashval[RSAENH_MAX_HASH_SIZE];
4407 DWORD i;
4409 memcpy(old_hashval, pCryptHash->abHashValue, RSAENH_MAX_HASH_SIZE);
4411 for (i=0; i<RSAENH_HMAC_DEF_PAD_LEN; i++) {
4412 pad1[i] = RSAENH_HMAC_DEF_IPAD_CHAR ^ (i<dwLen ? abHashValue[i] : 0);
4413 pad2[i] = RSAENH_HMAC_DEF_OPAD_CHAR ^ (i<dwLen ? abHashValue[i] : 0);
4416 init_hash(pCryptHash);
4417 update_hash(pCryptHash, pad1, RSAENH_HMAC_DEF_PAD_LEN);
4418 finalize_hash(pCryptHash);
4419 memcpy(abHashValue, pCryptHash->abHashValue, pCryptHash->dwHashSize);
4421 init_hash(pCryptHash);
4422 update_hash(pCryptHash, pad2, RSAENH_HMAC_DEF_PAD_LEN);
4423 finalize_hash(pCryptHash);
4424 memcpy(abHashValue+pCryptHash->dwHashSize, pCryptHash->abHashValue,
4425 pCryptHash->dwHashSize);
4427 memcpy(pCryptHash->abHashValue, old_hashval, RSAENH_MAX_HASH_SIZE);
4430 * Padding was not required, we have more hash than needed.
4431 * Do we need to use the remaining hash as salt?
4433 else if((dwFlags & CRYPT_CREATE_SALT) &&
4434 (Algid == CALG_RC2 || Algid == CALG_RC4))
4436 copy_len += pCryptKey->dwSaltLen;
4439 memcpy(pCryptKey->abKeyValue, abHashValue,
4440 RSAENH_MIN(copy_len, sizeof(pCryptKey->abKeyValue)));
4441 break;
4443 case ALG_CLASS_MSG_ENCRYPT:
4444 if (!lookup_handle(&handle_table, pCryptHash->hKey, RSAENH_MAGIC_KEY,
4445 (OBJECTHDR**)&pMasterKey))
4447 SetLastError(NTE_FAIL); /* FIXME error code */
4448 return FALSE;
4451 switch (Algid)
4453 /* See RFC 2246, chapter 6.3 Key calculation */
4454 case CALG_SCHANNEL_ENC_KEY:
4455 if (!pMasterKey->siSChannelInfo.saEncAlg.Algid ||
4456 !pMasterKey->siSChannelInfo.saEncAlg.cBits)
4458 SetLastError(NTE_BAD_FLAGS);
4459 return FALSE;
4461 *phKey = new_key(hProv, pMasterKey->siSChannelInfo.saEncAlg.Algid,
4462 MAKELONG(LOWORD(dwFlags),pMasterKey->siSChannelInfo.saEncAlg.cBits),
4463 &pCryptKey);
4464 if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
4465 memcpy(pCryptKey->abKeyValue,
4466 pCryptHash->abHashValue + (
4467 2 * (pMasterKey->siSChannelInfo.saMACAlg.cBits / 8) +
4468 ((dwFlags & CRYPT_SERVER) ?
4469 (pMasterKey->siSChannelInfo.saEncAlg.cBits / 8) : 0)),
4470 pMasterKey->siSChannelInfo.saEncAlg.cBits / 8);
4471 memcpy(pCryptKey->abInitVector,
4472 pCryptHash->abHashValue + (
4473 2 * (pMasterKey->siSChannelInfo.saMACAlg.cBits / 8) +
4474 2 * (pMasterKey->siSChannelInfo.saEncAlg.cBits / 8) +
4475 ((dwFlags & CRYPT_SERVER) ? pCryptKey->dwBlockLen : 0)),
4476 pCryptKey->dwBlockLen);
4477 break;
4479 case CALG_SCHANNEL_MAC_KEY:
4480 *phKey = new_key(hProv, Algid,
4481 MAKELONG(LOWORD(dwFlags),pMasterKey->siSChannelInfo.saMACAlg.cBits),
4482 &pCryptKey);
4483 if (*phKey == (HCRYPTKEY)INVALID_HANDLE_VALUE) return FALSE;
4484 memcpy(pCryptKey->abKeyValue,
4485 pCryptHash->abHashValue + ((dwFlags & CRYPT_SERVER) ?
4486 pMasterKey->siSChannelInfo.saMACAlg.cBits / 8 : 0),
4487 pMasterKey->siSChannelInfo.saMACAlg.cBits / 8);
4488 break;
4490 default:
4491 SetLastError(NTE_BAD_ALGID);
4492 return FALSE;
4494 break;
4496 default:
4497 SetLastError(NTE_BAD_ALGID);
4498 return FALSE;
4501 setup_key(pCryptKey);
4502 return TRUE;
4505 /******************************************************************************
4506 * CPGetUserKey (RSAENH.@)
4508 * Returns a handle to the user's private key-exchange- or signature-key.
4510 * PARAMS
4511 * hProv [I] The key container from which a user key is requested.
4512 * dwKeySpec [I] AT_KEYEXCHANGE or AT_SIGNATURE
4513 * phUserKey [O] Handle to the requested key or INVALID_HANDLE_VALUE in case of failure.
4515 * RETURNS
4516 * Success: TRUE.
4517 * Failure: FALSE.
4519 * NOTE
4520 * A newly created key container does not contain private user key. Create them with CPGenKey.
4522 BOOL WINAPI RSAENH_CPGetUserKey(HCRYPTPROV hProv, DWORD dwKeySpec, HCRYPTKEY *phUserKey)
4524 KEYCONTAINER *pKeyContainer;
4526 TRACE("(hProv=%08Ix, dwKeySpec=%08lx, phUserKey=%p)\n", hProv, dwKeySpec, phUserKey);
4528 if (!(pKeyContainer = get_key_container(hProv)))
4530 /* MSDN: hProv not containing valid context handle */
4531 return FALSE;
4534 switch (dwKeySpec)
4536 case AT_KEYEXCHANGE:
4537 copy_handle(&handle_table, pKeyContainer->hKeyExchangeKeyPair, RSAENH_MAGIC_KEY,
4538 phUserKey);
4539 break;
4541 case AT_SIGNATURE:
4542 copy_handle(&handle_table, pKeyContainer->hSignatureKeyPair, RSAENH_MAGIC_KEY,
4543 phUserKey);
4544 break;
4546 default:
4547 *phUserKey = (HCRYPTKEY)INVALID_HANDLE_VALUE;
4550 if (*phUserKey == (HCRYPTKEY)INVALID_HANDLE_VALUE)
4552 /* MSDN: dwKeySpec parameter specifies nonexistent key */
4553 SetLastError(NTE_NO_KEY);
4554 return FALSE;
4557 return TRUE;
4560 /******************************************************************************
4561 * CPHashData (RSAENH.@)
4563 * Updates a hash object with the given data.
4565 * PARAMS
4566 * hProv [I] Key container to which the hash object belongs.
4567 * hHash [I] Hash object which is to be updated.
4568 * pbData [I] Pointer to data with which the hash object is to be updated.
4569 * dwDataLen [I] Length of the data.
4570 * dwFlags [I] Currently none defined.
4572 * RETURNS
4573 * Success: TRUE.
4574 * Failure: FALSE.
4576 * NOTES
4577 * The actual hash value is queried with CPGetHashParam, which will finalize
4578 * the hash. Updating a finalized hash will fail with a last error NTE_BAD_HASH_STATE.
4580 BOOL WINAPI RSAENH_CPHashData(HCRYPTPROV hProv, HCRYPTHASH hHash, const BYTE *pbData,
4581 DWORD dwDataLen, DWORD dwFlags)
4583 CRYPTHASH *pCryptHash;
4585 TRACE("(hProv=%08Ix, hHash=%08Ix, pbData=%p, dwDataLen=%ld, dwFlags=%08lx)\n",
4586 hProv, hHash, pbData, dwDataLen, dwFlags);
4588 if (dwFlags & ~CRYPT_USERDATA)
4590 SetLastError(NTE_BAD_FLAGS);
4591 return FALSE;
4594 if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH,
4595 (OBJECTHDR**)&pCryptHash))
4597 SetLastError(NTE_BAD_HASH);
4598 return FALSE;
4601 if (!get_algid_info(hProv, pCryptHash->aiAlgid) || pCryptHash->aiAlgid == CALG_SSL3_SHAMD5)
4603 SetLastError(NTE_BAD_ALGID);
4604 return FALSE;
4607 if (pCryptHash->dwState != RSAENH_HASHSTATE_HASHING)
4609 SetLastError(NTE_BAD_HASH_STATE);
4610 return FALSE;
4613 update_hash(pCryptHash, pbData, dwDataLen);
4614 return TRUE;
4617 /******************************************************************************
4618 * CPHashSessionKey (RSAENH.@)
4620 * Updates a hash object with the binary representation of a symmetric key.
4622 * PARAMS
4623 * hProv [I] Key container to which the hash object belongs.
4624 * hHash [I] Hash object which is to be updated.
4625 * hKey [I] The symmetric key, whose binary value will be added to the hash.
4626 * dwFlags [I] CRYPT_LITTLE_ENDIAN, if the binary key value shall be interpreted as little endian.
4628 * RETURNS
4629 * Success: TRUE.
4630 * Failure: FALSE.
4632 BOOL WINAPI RSAENH_CPHashSessionKey(HCRYPTPROV hProv, HCRYPTHASH hHash, HCRYPTKEY hKey,
4633 DWORD dwFlags)
4635 BYTE abKeyValue[RSAENH_MAX_KEY_SIZE], bTemp;
4636 CRYPTKEY *pKey;
4637 DWORD i;
4639 TRACE("(hProv=%08Ix, hHash=%08Ix, hKey=%08Ix, dwFlags=%08lx)\n", hProv, hHash, hKey, dwFlags);
4641 if (!lookup_handle(&handle_table, hKey, RSAENH_MAGIC_KEY, (OBJECTHDR**)&pKey) ||
4642 (GET_ALG_CLASS(pKey->aiAlgid) != ALG_CLASS_DATA_ENCRYPT))
4644 SetLastError(NTE_BAD_KEY);
4645 return FALSE;
4648 if (dwFlags & ~CRYPT_LITTLE_ENDIAN) {
4649 SetLastError(NTE_BAD_FLAGS);
4650 return FALSE;
4653 memcpy(abKeyValue, pKey->abKeyValue, pKey->dwKeyLen);
4654 if (!(dwFlags & CRYPT_LITTLE_ENDIAN)) {
4655 for (i=0; i<pKey->dwKeyLen/2; i++) {
4656 bTemp = abKeyValue[i];
4657 abKeyValue[i] = abKeyValue[pKey->dwKeyLen-i-1];
4658 abKeyValue[pKey->dwKeyLen-i-1] = bTemp;
4662 return RSAENH_CPHashData(hProv, hHash, abKeyValue, pKey->dwKeyLen, 0);
4665 /******************************************************************************
4666 * CPReleaseContext (RSAENH.@)
4668 * Release a key container.
4670 * PARAMS
4671 * hProv [I] Key container to be released.
4672 * dwFlags [I] Currently none defined.
4674 * RETURNS
4675 * Success: TRUE
4676 * Failure: FALSE
4678 BOOL WINAPI RSAENH_CPReleaseContext(HCRYPTPROV hProv, DWORD dwFlags)
4680 TRACE("(hProv=%08Ix, dwFlags=%08lx)\n", hProv, dwFlags);
4682 if (!release_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
4684 /* MSDN: hProv not containing valid context handle */
4685 SetLastError(NTE_BAD_UID);
4686 return FALSE;
4689 if (dwFlags) {
4690 SetLastError(NTE_BAD_FLAGS);
4691 return FALSE;
4694 return TRUE;
4697 /******************************************************************************
4698 * CPSetHashParam (RSAENH.@)
4700 * Set a parameter of a hash object
4702 * PARAMS
4703 * hProv [I] The key container to which the key belongs.
4704 * hHash [I] The hash object for which a parameter is to be set.
4705 * dwParam [I] Parameter type. See Notes.
4706 * pbData [I] Pointer to the parameter value.
4707 * dwFlags [I] Currently none defined.
4709 * RETURNS
4710 * Success: TRUE.
4711 * Failure: FALSE.
4713 * NOTES
4714 * Currently only the HP_HMAC_INFO dwParam type is defined.
4715 * The HMAC_INFO struct will be deep copied into the hash object.
4716 * See Internet RFC 2104 for details on the HMAC algorithm.
4718 BOOL WINAPI RSAENH_CPSetHashParam(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwParam,
4719 BYTE *pbData, DWORD dwFlags)
4721 CRYPTHASH *pCryptHash;
4722 CRYPTKEY *pCryptKey;
4723 DWORD i;
4725 TRACE("(hProv=%08Ix, hHash=%08Ix, dwParam=%08lx, pbData=%p, dwFlags=%08lx)\n",
4726 hProv, hHash, dwParam, pbData, dwFlags);
4728 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
4730 SetLastError(NTE_BAD_UID);
4731 return FALSE;
4734 if (dwFlags) {
4735 SetLastError(NTE_BAD_FLAGS);
4736 return FALSE;
4739 if (!lookup_handle(&handle_table, hHash, RSAENH_MAGIC_HASH,
4740 (OBJECTHDR**)&pCryptHash))
4742 SetLastError(NTE_BAD_HASH);
4743 return FALSE;
4746 switch (dwParam) {
4747 case HP_HMAC_INFO:
4748 free_hmac_info(pCryptHash->pHMACInfo);
4749 if (!copy_hmac_info(&pCryptHash->pHMACInfo, (PHMAC_INFO)pbData)) return FALSE;
4751 if (!lookup_handle(&handle_table, pCryptHash->hKey, RSAENH_MAGIC_KEY,
4752 (OBJECTHDR**)&pCryptKey))
4754 SetLastError(NTE_FAIL); /* FIXME: correct error code? */
4755 return FALSE;
4758 if (pCryptKey->aiAlgid == CALG_HMAC && !pCryptKey->dwKeyLen) {
4759 HCRYPTHASH hKeyHash;
4760 DWORD keyLen;
4762 if (!RSAENH_CPCreateHash(hProv, ((PHMAC_INFO)pbData)->HashAlgid, 0, 0,
4763 &hKeyHash))
4764 return FALSE;
4765 if (!RSAENH_CPHashData(hProv, hKeyHash, pCryptKey->blobHmacKey.pbData,
4766 pCryptKey->blobHmacKey.cbData, 0))
4768 RSAENH_CPDestroyHash(hProv, hKeyHash);
4769 return FALSE;
4771 keyLen = sizeof(pCryptKey->abKeyValue);
4772 if (!RSAENH_CPGetHashParam(hProv, hKeyHash, HP_HASHVAL, pCryptKey->abKeyValue,
4773 &keyLen, 0))
4775 RSAENH_CPDestroyHash(hProv, hKeyHash);
4776 return FALSE;
4778 pCryptKey->dwKeyLen = keyLen;
4779 RSAENH_CPDestroyHash(hProv, hKeyHash);
4781 for (i=0; i<RSAENH_MIN(pCryptKey->dwKeyLen,pCryptHash->pHMACInfo->cbInnerString); i++) {
4782 pCryptHash->pHMACInfo->pbInnerString[i] ^= pCryptKey->abKeyValue[i];
4784 for (i=0; i<RSAENH_MIN(pCryptKey->dwKeyLen,pCryptHash->pHMACInfo->cbOuterString); i++) {
4785 pCryptHash->pHMACInfo->pbOuterString[i] ^= pCryptKey->abKeyValue[i];
4788 init_hash(pCryptHash);
4789 return TRUE;
4791 case HP_HASHVAL:
4792 memcpy(pCryptHash->abHashValue, pbData, pCryptHash->dwHashSize);
4793 pCryptHash->dwState = RSAENH_HASHSTATE_FINISHED;
4794 return TRUE;
4796 case HP_TLS1PRF_SEED:
4797 return copy_data_blob(&pCryptHash->tpPRFParams.blobSeed, (PCRYPT_DATA_BLOB)pbData);
4799 case HP_TLS1PRF_LABEL:
4800 return copy_data_blob(&pCryptHash->tpPRFParams.blobLabel, (PCRYPT_DATA_BLOB)pbData);
4802 default:
4803 SetLastError(NTE_BAD_TYPE);
4804 return FALSE;
4808 /******************************************************************************
4809 * CPSetProvParam (RSAENH.@)
4811 BOOL WINAPI RSAENH_CPSetProvParam(HCRYPTPROV hProv, DWORD dwParam, BYTE *pbData, DWORD dwFlags)
4813 KEYCONTAINER *pKeyContainer;
4814 HKEY hKey;
4816 TRACE("(hProv=%08Ix, dwParam=%08lx, pbData=%p, dwFlags=%08lx)\n", hProv, dwParam, pbData, dwFlags);
4818 if (!(pKeyContainer = get_key_container(hProv)))
4819 return FALSE;
4821 switch (dwParam)
4823 case PP_KEYSET_SEC_DESCR:
4825 SECURITY_DESCRIPTOR *sd = (SECURITY_DESCRIPTOR *)pbData;
4826 DWORD err, flags = (pKeyContainer->dwFlags & CRYPT_MACHINE_KEYSET);
4827 BOOL def, present;
4828 REGSAM access = WRITE_DAC | WRITE_OWNER | ACCESS_SYSTEM_SECURITY;
4829 PSID owner = NULL, group = NULL;
4830 PACL dacl = NULL, sacl = NULL;
4832 if (!open_container_key(pKeyContainer->szName, flags, access, &hKey))
4834 SetLastError(NTE_BAD_KEYSET);
4835 return FALSE;
4838 if ((dwFlags & OWNER_SECURITY_INFORMATION && !GetSecurityDescriptorOwner(sd, &owner, &def)) ||
4839 (dwFlags & GROUP_SECURITY_INFORMATION && !GetSecurityDescriptorGroup(sd, &group, &def)) ||
4840 (dwFlags & DACL_SECURITY_INFORMATION && !GetSecurityDescriptorDacl(sd, &present, &dacl, &def)) ||
4841 (dwFlags & SACL_SECURITY_INFORMATION && !GetSecurityDescriptorSacl(sd, &present, &sacl, &def)))
4843 RegCloseKey(hKey);
4844 return FALSE;
4847 err = SetSecurityInfo(hKey, SE_REGISTRY_KEY, dwFlags, owner, group, dacl, sacl);
4848 RegCloseKey(hKey);
4849 if (err)
4851 SetLastError(err);
4852 return FALSE;
4854 return TRUE;
4856 default:
4857 FIXME("unimplemented parameter %08lx\n", dwParam);
4858 return FALSE;
4862 /******************************************************************************
4863 * CPSignHash (RSAENH.@)
4865 * Sign a hash object
4867 * PARAMS
4868 * hProv [I] The key container, to which the hash object belongs.
4869 * hHash [I] The hash object to be signed.
4870 * dwKeySpec [I] AT_SIGNATURE or AT_KEYEXCHANGE: Key used to generate the signature.
4871 * sDescription [I] Should be NULL for security reasons.
4872 * dwFlags [I] 0, CRYPT_NOHASHOID or CRYPT_X931_FORMAT: Format of the signature.
4873 * pbSignature [O] Buffer, to which the signature will be stored. May be NULL to query SigLen.
4874 * pdwSigLen [I/O] Size of the buffer (in), Length of the signature (out)
4876 * RETURNS
4877 * Success: TRUE
4878 * Failure: FALSE
4880 BOOL WINAPI RSAENH_CPSignHash(HCRYPTPROV hProv, HCRYPTHASH hHash, DWORD dwKeySpec,
4881 LPCWSTR sDescription, DWORD dwFlags, BYTE *pbSignature,
4882 DWORD *pdwSigLen)
4884 HCRYPTKEY hCryptKey = (HCRYPTKEY)INVALID_HANDLE_VALUE;
4885 CRYPTKEY *pCryptKey;
4886 DWORD dwHashLen;
4887 BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
4888 ALG_ID aiAlgid;
4889 BOOL ret = FALSE;
4891 TRACE("(hProv=%08Ix, hHash=%08Ix, dwKeySpec=%08lx, sDescription=%s, dwFlags=%08lx, "
4892 "pbSignature=%p, pdwSigLen=%p)\n", hProv, hHash, dwKeySpec, debugstr_w(sDescription),
4893 dwFlags, pbSignature, pdwSigLen);
4895 if (dwFlags & ~(CRYPT_NOHASHOID|CRYPT_X931_FORMAT)) {
4896 SetLastError(NTE_BAD_FLAGS);
4897 return FALSE;
4900 if (!RSAENH_CPGetUserKey(hProv, dwKeySpec, &hCryptKey)) return FALSE;
4902 if (!lookup_handle(&handle_table, hCryptKey, RSAENH_MAGIC_KEY,
4903 (OBJECTHDR**)&pCryptKey))
4905 SetLastError(NTE_NO_KEY);
4906 goto out;
4909 if (!pbSignature) {
4910 *pdwSigLen = pCryptKey->dwKeyLen;
4911 ret = TRUE;
4912 goto out;
4914 if (pCryptKey->dwKeyLen > *pdwSigLen)
4916 SetLastError(ERROR_MORE_DATA);
4917 *pdwSigLen = pCryptKey->dwKeyLen;
4918 goto out;
4920 *pdwSigLen = pCryptKey->dwKeyLen;
4922 if (sDescription) {
4923 if (!RSAENH_CPHashData(hProv, hHash, (const BYTE*)sDescription,
4924 (DWORD)lstrlenW(sDescription)*sizeof(WCHAR), 0))
4926 goto out;
4930 dwHashLen = sizeof(DWORD);
4931 if (!RSAENH_CPGetHashParam(hProv, hHash, HP_ALGID, (BYTE*)&aiAlgid, &dwHashLen, 0)) goto out;
4933 dwHashLen = RSAENH_MAX_HASH_SIZE;
4934 if (!RSAENH_CPGetHashParam(hProv, hHash, HP_HASHVAL, abHashValue, &dwHashLen, 0)) goto out;
4937 if (!build_hash_signature(pbSignature, *pdwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags)) {
4938 goto out;
4941 ret = encrypt_block_impl(pCryptKey->aiAlgid, PK_PRIVATE, &pCryptKey->context, pbSignature, pbSignature, RSAENH_ENCRYPT);
4942 out:
4943 RSAENH_CPDestroyKey(hProv, hCryptKey);
4944 return ret;
4947 /******************************************************************************
4948 * CPVerifySignature (RSAENH.@)
4950 * Verify the signature of a hash object.
4952 * PARAMS
4953 * hProv [I] The key container, to which the hash belongs.
4954 * hHash [I] The hash for which the signature is verified.
4955 * pbSignature [I] The binary signature.
4956 * dwSigLen [I] Length of the signature BLOB.
4957 * hPubKey [I] Public key used to verify the signature.
4958 * sDescription [I] Should be NULL for security reasons.
4959 * dwFlags [I] 0, CRYPT_NOHASHOID or CRYPT_X931_FORMAT: Format of the signature.
4961 * RETURNS
4962 * Success: TRUE (Signature is valid)
4963 * Failure: FALSE (GetLastError() == NTE_BAD_SIGNATURE, if signature is invalid)
4965 BOOL WINAPI RSAENH_CPVerifySignature(HCRYPTPROV hProv, HCRYPTHASH hHash, const BYTE *pbSignature,
4966 DWORD dwSigLen, HCRYPTKEY hPubKey, LPCWSTR sDescription,
4967 DWORD dwFlags)
4969 BYTE *pbConstructed = NULL, *pbDecrypted = NULL;
4970 CRYPTKEY *pCryptKey;
4971 DWORD dwHashLen;
4972 ALG_ID aiAlgid;
4973 BYTE abHashValue[RSAENH_MAX_HASH_SIZE];
4974 BOOL res = FALSE;
4976 TRACE("(hProv=%08Ix, hHash=%08Ix, pbSignature=%p, dwSigLen=%ld, hPubKey=%08Ix, sDescription=%s, "
4977 "dwFlags=%08lx)\n", hProv, hHash, pbSignature, dwSigLen, hPubKey, debugstr_w(sDescription),
4978 dwFlags);
4980 if (dwFlags & ~(CRYPT_NOHASHOID|CRYPT_X931_FORMAT)) {
4981 SetLastError(NTE_BAD_FLAGS);
4982 return FALSE;
4985 if (!is_valid_handle(&handle_table, hProv, RSAENH_MAGIC_CONTAINER))
4987 SetLastError(NTE_BAD_UID);
4988 return FALSE;
4991 if (!lookup_handle(&handle_table, hPubKey, RSAENH_MAGIC_KEY,
4992 (OBJECTHDR**)&pCryptKey))
4994 SetLastError(NTE_BAD_KEY);
4995 return FALSE;
4998 /* in Microsoft implementation, the signature length is checked before
4999 * the signature pointer.
5001 if (dwSigLen != pCryptKey->dwKeyLen)
5003 SetLastError(NTE_BAD_SIGNATURE);
5004 return FALSE;
5007 if (!hHash || !pbSignature)
5009 SetLastError(ERROR_INVALID_PARAMETER);
5010 return FALSE;
5013 if (sDescription) {
5014 if (!RSAENH_CPHashData(hProv, hHash, (const BYTE*)sDescription,
5015 (DWORD)lstrlenW(sDescription)*sizeof(WCHAR), 0))
5017 return FALSE;
5021 dwHashLen = sizeof(DWORD);
5022 if (!RSAENH_CPGetHashParam(hProv, hHash, HP_ALGID, (BYTE*)&aiAlgid, &dwHashLen, 0)) return FALSE;
5024 dwHashLen = RSAENH_MAX_HASH_SIZE;
5025 if (!RSAENH_CPGetHashParam(hProv, hHash, HP_HASHVAL, abHashValue, &dwHashLen, 0)) return FALSE;
5027 pbConstructed = malloc(dwSigLen);
5028 if (!pbConstructed) {
5029 SetLastError(NTE_NO_MEMORY);
5030 goto cleanup;
5033 pbDecrypted = malloc(dwSigLen);
5034 if (!pbDecrypted) {
5035 SetLastError(NTE_NO_MEMORY);
5036 goto cleanup;
5039 if (!encrypt_block_impl(pCryptKey->aiAlgid, PK_PUBLIC, &pCryptKey->context, pbSignature, pbDecrypted,
5040 RSAENH_DECRYPT))
5042 goto cleanup;
5045 if (build_hash_signature(pbConstructed, dwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags) &&
5046 !memcmp(pbDecrypted, pbConstructed, dwSigLen)) {
5047 res = TRUE;
5048 goto cleanup;
5051 if (!(dwFlags & CRYPT_NOHASHOID) &&
5052 build_hash_signature(pbConstructed, dwSigLen, aiAlgid, abHashValue, dwHashLen, dwFlags|CRYPT_NOHASHOID) &&
5053 !memcmp(pbDecrypted, pbConstructed, dwSigLen)) {
5054 res = TRUE;
5055 goto cleanup;
5058 SetLastError(NTE_BAD_SIGNATURE);
5060 cleanup:
5061 free(pbConstructed);
5062 free(pbDecrypted);
5063 return res;