4 * Copyright (C) 1991-1997, Thomas G. Lane.
5 * Modified 2006-2020 by Guido Vollbeding.
6 * This file is part of the Independent JPEG Group's software.
7 * For conditions of distribution and use, see the accompanying README file.
9 * This file contains Huffman entropy encoding routines.
10 * Both sequential and progressive modes are supported in this single module.
12 * Much of the complexity here has to do with supporting output suspension.
13 * If the data destination module demands suspension, we want to be able to
14 * back up to the start of the current MCU. To do this, we copy state
15 * variables into local working storage, and update them back to the
16 * permanent JPEG objects only upon successful completion of an MCU.
18 * We do not support output suspension for the progressive JPEG mode, since
19 * the library currently does not allow multiple-scan files to be written
20 * with output suspension.
23 #define JPEG_INTERNALS
28 /* The legal range of a DCT coefficient is
29 * -1024 .. +1023 for 8-bit data;
30 * -16384 .. +16383 for 12-bit data.
31 * Hence the magnitude should always fit in 10 or 14 bits respectively.
34 #if BITS_IN_JSAMPLE == 8
35 #define MAX_COEF_BITS 10
37 #define MAX_COEF_BITS 14
40 /* Derived data constructed for each Huffman table */
43 unsigned int ehufco
[256]; /* code for each symbol */
44 char ehufsi
[256]; /* length of code for each symbol */
45 /* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */
49 /* Expanded entropy encoder object for Huffman encoding.
51 * The savable_state subrecord contains fields that change within an MCU,
52 * but must not be updated permanently until we complete the MCU.
56 INT32 put_buffer
; /* current bit-accumulation buffer */
57 int put_bits
; /* # of bits now in it */
58 int last_dc_val
[MAX_COMPS_IN_SCAN
]; /* last DC coef for each component */
61 /* This macro is to work around compilers with missing or broken
62 * structure assignment. You'll need to fix this code if you have
63 * such a compiler and you change MAX_COMPS_IN_SCAN.
66 #ifndef NO_STRUCT_ASSIGN
67 #define ASSIGN_STATE(dest,src) ((dest) = (src))
69 #if MAX_COMPS_IN_SCAN == 4
70 #define ASSIGN_STATE(dest,src) \
71 ((dest).put_buffer = (src).put_buffer, \
72 (dest).put_bits = (src).put_bits, \
73 (dest).last_dc_val[0] = (src).last_dc_val[0], \
74 (dest).last_dc_val[1] = (src).last_dc_val[1], \
75 (dest).last_dc_val[2] = (src).last_dc_val[2], \
76 (dest).last_dc_val[3] = (src).last_dc_val[3])
82 struct jpeg_entropy_encoder pub
; /* public fields */
84 savable_state saved
; /* Bit buffer & DC state at start of MCU */
86 /* These fields are NOT loaded into local working state. */
87 unsigned int restarts_to_go
; /* MCUs left in this restart interval */
88 int next_restart_num
; /* next restart number to write (0-7) */
90 /* Pointers to derived tables (these workspaces have image lifespan) */
91 c_derived_tbl
* dc_derived_tbls
[NUM_HUFF_TBLS
];
92 c_derived_tbl
* ac_derived_tbls
[NUM_HUFF_TBLS
];
94 /* Statistics tables for optimization */
95 long * dc_count_ptrs
[NUM_HUFF_TBLS
];
96 long * ac_count_ptrs
[NUM_HUFF_TBLS
];
98 /* Following fields used only in progressive mode */
100 /* Mode flag: TRUE for optimization, FALSE for actual data output */
101 boolean gather_statistics
;
103 /* next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
105 JOCTET
* next_output_byte
; /* => next byte to write in buffer */
106 size_t free_in_buffer
; /* # of byte spaces remaining in buffer */
107 j_compress_ptr cinfo
; /* link to cinfo (needed for dump_buffer) */
109 /* Coding status for AC components */
110 int ac_tbl_no
; /* the table number of the single component */
111 unsigned int EOBRUN
; /* run length of EOBs */
112 unsigned int BE
; /* # of buffered correction bits before MCU */
113 char * bit_buffer
; /* buffer for correction bits (1 per char) */
114 /* packing correction bits tightly would save some space but cost time... */
115 } huff_entropy_encoder
;
117 typedef huff_entropy_encoder
* huff_entropy_ptr
;
119 /* Working state while writing an MCU (sequential mode).
120 * This struct contains all the fields that are needed by subroutines.
124 JOCTET
* next_output_byte
; /* => next byte to write in buffer */
125 size_t free_in_buffer
; /* # of byte spaces remaining in buffer */
126 savable_state cur
; /* Current bit buffer & DC state */
127 j_compress_ptr cinfo
; /* dump_buffer needs access to this */
130 /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
131 * buffer can hold. Larger sizes may slightly improve compression, but
132 * 1000 is already well into the realm of overkill.
133 * The minimum safe size is 64 bits.
136 #define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */
138 /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
139 * We assume that int right shift is unsigned if INT32 right shift is,
140 * which should be safe.
143 #ifdef RIGHT_SHIFT_IS_UNSIGNED
144 #define ISHIFT_TEMPS int ishift_temp;
145 #define IRIGHT_SHIFT(x,shft) \
146 ((ishift_temp = (x)) < 0 ? \
147 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
148 (ishift_temp >> (shft)))
151 #define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
156 * Compute the derived values for a Huffman table.
157 * This routine also performs some validation checks on the table.
161 jpeg_make_c_derived_tbl (j_compress_ptr cinfo
, boolean isDC
, int tblno
,
162 c_derived_tbl
** pdtbl
)
166 int p
, i
, l
, lastp
, si
, maxsymbol
;
168 unsigned int huffcode
[257];
171 /* Note that huffsize[] and huffcode[] are filled in code-length order,
172 * paralleling the order of the symbols themselves in htbl->huffval[].
175 /* Find the input Huffman table */
176 if (tblno
< 0 || tblno
>= NUM_HUFF_TBLS
)
177 ERREXIT1(cinfo
, JERR_NO_HUFF_TABLE
, tblno
);
179 isDC
? cinfo
->dc_huff_tbl_ptrs
[tblno
] : cinfo
->ac_huff_tbl_ptrs
[tblno
];
181 htbl
= jpeg_std_huff_table((j_common_ptr
) cinfo
, isDC
, tblno
);
183 /* Allocate a workspace if we haven't already done so. */
185 *pdtbl
= (c_derived_tbl
*) (*cinfo
->mem
->alloc_small
)
186 ((j_common_ptr
) cinfo
, JPOOL_IMAGE
, SIZEOF(c_derived_tbl
));
189 /* Figure C.1: make table of Huffman code length for each symbol */
192 for (l
= 1; l
<= 16; l
++) {
193 i
= (int) htbl
->bits
[l
];
194 if (i
< 0 || p
+ i
> 256) /* protect against table overrun */
195 ERREXIT(cinfo
, JERR_BAD_HUFF_TABLE
);
197 huffsize
[p
++] = (char) l
;
202 /* Figure C.2: generate the codes themselves */
203 /* We also validate that the counts represent a legal Huffman code tree. */
208 while (huffsize
[p
]) {
209 while (((int) huffsize
[p
]) == si
) {
210 huffcode
[p
++] = code
;
213 /* code is now 1 more than the last code used for codelength si; but
214 * it must still fit in si bits, since no code is allowed to be all ones.
216 if (((INT32
) code
) >= (((INT32
) 1) << si
))
217 ERREXIT(cinfo
, JERR_BAD_HUFF_TABLE
);
222 /* Figure C.3: generate encoding tables */
223 /* These are code and size indexed by symbol value */
225 /* Set all codeless symbols to have code length 0;
226 * this lets us detect duplicate VAL entries here, and later
227 * allows emit_bits to detect any attempt to emit such symbols.
229 MEMZERO(dtbl
->ehufsi
, SIZEOF(dtbl
->ehufsi
));
231 /* This is also a convenient place to check for out-of-range
232 * and duplicated VAL entries. We allow 0..255 for AC symbols
233 * but only 0..15 for DC. (We could constrain them further
234 * based on data depth and mode, but this seems enough.)
236 maxsymbol
= isDC
? 15 : 255;
238 for (p
= 0; p
< lastp
; p
++) {
239 i
= htbl
->huffval
[p
];
240 if (i
< 0 || i
> maxsymbol
|| dtbl
->ehufsi
[i
])
241 ERREXIT(cinfo
, JERR_BAD_HUFF_TABLE
);
242 dtbl
->ehufco
[i
] = huffcode
[p
];
243 dtbl
->ehufsi
[i
] = huffsize
[p
];
248 /* Outputting bytes to the file.
249 * NB: these must be called only when actually outputting,
250 * that is, entropy->gather_statistics == FALSE.
253 /* Emit a byte, taking 'action' if must suspend. */
254 #define emit_byte_s(state,val,action) \
255 { *(state)->next_output_byte++ = (JOCTET) (val); \
256 if (--(state)->free_in_buffer == 0) \
257 if (! dump_buffer_s(state)) \
261 #define emit_byte_e(entropy,val) \
262 { *(entropy)->next_output_byte++ = (JOCTET) (val); \
263 if (--(entropy)->free_in_buffer == 0) \
264 dump_buffer_e(entropy); }
268 dump_buffer_s (working_state
* state
)
269 /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
271 struct jpeg_destination_mgr
* dest
= state
->cinfo
->dest
;
273 if (! (*dest
->empty_output_buffer
) (state
->cinfo
))
275 /* After a successful buffer dump, must reset buffer pointers */
276 state
->next_output_byte
= dest
->next_output_byte
;
277 state
->free_in_buffer
= dest
->free_in_buffer
;
283 dump_buffer_e (huff_entropy_ptr entropy
)
284 /* Empty the output buffer; we do not support suspension in this case. */
286 struct jpeg_destination_mgr
* dest
= entropy
->cinfo
->dest
;
288 if (! (*dest
->empty_output_buffer
) (entropy
->cinfo
))
289 ERREXIT(entropy
->cinfo
, JERR_CANT_SUSPEND
);
290 /* After a successful buffer dump, must reset buffer pointers */
291 entropy
->next_output_byte
= dest
->next_output_byte
;
292 entropy
->free_in_buffer
= dest
->free_in_buffer
;
296 /* Outputting bits to the file */
298 /* Only the right 24 bits of put_buffer are used; the valid bits are
299 * left-justified in this part. At most 16 bits can be passed to emit_bits
300 * in one call, and we never retain more than 7 bits in put_buffer
301 * between calls, so 24 bits are sufficient.
306 emit_bits_s (working_state
* state
, unsigned int code
, int size
)
307 /* Emit some bits; return TRUE if successful, FALSE if must suspend */
309 /* This routine is heavily used, so it's worth coding tightly. */
310 register INT32 put_buffer
;
311 register int put_bits
;
313 /* if size is 0, caller used an invalid Huffman table entry */
315 ERREXIT(state
->cinfo
, JERR_HUFF_MISSING_CODE
);
317 /* mask off any extra bits in code */
318 put_buffer
= ((INT32
) code
) & ((((INT32
) 1) << size
) - 1);
320 /* new number of bits in buffer */
321 put_bits
= size
+ state
->cur
.put_bits
;
323 put_buffer
<<= 24 - put_bits
; /* align incoming bits */
325 /* and merge with old buffer contents */
326 put_buffer
|= state
->cur
.put_buffer
;
328 while (put_bits
>= 8) {
329 int c
= (int) ((put_buffer
>> 16) & 0xFF);
331 emit_byte_s(state
, c
, return FALSE
);
332 if (c
== 0xFF) { /* need to stuff a zero byte? */
333 emit_byte_s(state
, 0, return FALSE
);
339 state
->cur
.put_buffer
= put_buffer
; /* update state variables */
340 state
->cur
.put_bits
= put_bits
;
348 emit_bits_e (huff_entropy_ptr entropy
, unsigned int code
, int size
)
349 /* Emit some bits, unless we are in gather mode */
351 /* This routine is heavily used, so it's worth coding tightly. */
352 register INT32 put_buffer
;
353 register int put_bits
;
355 /* if size is 0, caller used an invalid Huffman table entry */
357 ERREXIT(entropy
->cinfo
, JERR_HUFF_MISSING_CODE
);
359 if (entropy
->gather_statistics
)
360 return; /* do nothing if we're only getting stats */
362 /* mask off any extra bits in code */
363 put_buffer
= ((INT32
) code
) & ((((INT32
) 1) << size
) - 1);
365 /* new number of bits in buffer */
366 put_bits
= size
+ entropy
->saved
.put_bits
;
368 put_buffer
<<= 24 - put_bits
; /* align incoming bits */
370 /* and merge with old buffer contents */
371 put_buffer
|= entropy
->saved
.put_buffer
;
373 while (put_bits
>= 8) {
374 int c
= (int) ((put_buffer
>> 16) & 0xFF);
376 emit_byte_e(entropy
, c
);
377 if (c
== 0xFF) { /* need to stuff a zero byte? */
378 emit_byte_e(entropy
, 0);
384 entropy
->saved
.put_buffer
= put_buffer
; /* update variables */
385 entropy
->saved
.put_bits
= put_bits
;
390 flush_bits_s (working_state
* state
)
392 if (! emit_bits_s(state
, 0x7F, 7)) /* fill any partial byte with ones */
394 state
->cur
.put_buffer
= 0; /* and reset bit-buffer to empty */
395 state
->cur
.put_bits
= 0;
401 flush_bits_e (huff_entropy_ptr entropy
)
403 emit_bits_e(entropy
, 0x7F, 7); /* fill any partial byte with ones */
404 entropy
->saved
.put_buffer
= 0; /* and reset bit-buffer to empty */
405 entropy
->saved
.put_bits
= 0;
410 * Emit (or just count) a Huffman symbol.
415 emit_dc_symbol (huff_entropy_ptr entropy
, int tbl_no
, int symbol
)
417 if (entropy
->gather_statistics
)
418 entropy
->dc_count_ptrs
[tbl_no
][symbol
]++;
420 c_derived_tbl
* tbl
= entropy
->dc_derived_tbls
[tbl_no
];
421 emit_bits_e(entropy
, tbl
->ehufco
[symbol
], tbl
->ehufsi
[symbol
]);
428 emit_ac_symbol (huff_entropy_ptr entropy
, int tbl_no
, int symbol
)
430 if (entropy
->gather_statistics
)
431 entropy
->ac_count_ptrs
[tbl_no
][symbol
]++;
433 c_derived_tbl
* tbl
= entropy
->ac_derived_tbls
[tbl_no
];
434 emit_bits_e(entropy
, tbl
->ehufco
[symbol
], tbl
->ehufsi
[symbol
]);
440 * Emit bits from a correction bit buffer.
444 emit_buffered_bits (huff_entropy_ptr entropy
, char * bufstart
,
447 if (entropy
->gather_statistics
)
448 return; /* no real work */
451 emit_bits_e(entropy
, (unsigned int) (*bufstart
), 1);
459 * Emit any pending EOBRUN symbol.
463 emit_eobrun (huff_entropy_ptr entropy
)
465 register int temp
, nbits
;
467 if (entropy
->EOBRUN
> 0) { /* if there is any pending EOBRUN */
468 temp
= entropy
->EOBRUN
;
472 /* safety check: shouldn't happen given limited correction-bit buffer */
474 ERREXIT(entropy
->cinfo
, JERR_HUFF_MISSING_CODE
);
476 emit_ac_symbol(entropy
, entropy
->ac_tbl_no
, nbits
<< 4);
478 emit_bits_e(entropy
, entropy
->EOBRUN
, nbits
);
482 /* Emit any buffered correction bits */
483 emit_buffered_bits(entropy
, entropy
->bit_buffer
, entropy
->BE
);
490 * Emit a restart marker & resynchronize predictions.
494 emit_restart_s (working_state
* state
, int restart_num
)
498 if (! flush_bits_s(state
))
501 emit_byte_s(state
, 0xFF, return FALSE
);
502 emit_byte_s(state
, JPEG_RST0
+ restart_num
, return FALSE
);
504 /* Re-initialize DC predictions to 0 */
505 for (ci
= 0; ci
< state
->cinfo
->comps_in_scan
; ci
++)
506 state
->cur
.last_dc_val
[ci
] = 0;
508 /* The restart counter is not updated until we successfully write the MCU. */
515 emit_restart_e (huff_entropy_ptr entropy
, int restart_num
)
519 emit_eobrun(entropy
);
521 if (! entropy
->gather_statistics
) {
522 flush_bits_e(entropy
);
523 emit_byte_e(entropy
, 0xFF);
524 emit_byte_e(entropy
, JPEG_RST0
+ restart_num
);
527 if (entropy
->cinfo
->Ss
== 0) {
528 /* Re-initialize DC predictions to 0 */
529 for (ci
= 0; ci
< entropy
->cinfo
->comps_in_scan
; ci
++)
530 entropy
->saved
.last_dc_val
[ci
] = 0;
532 /* Re-initialize all AC-related fields to 0 */
540 * MCU encoding for DC initial scan (either spectral selection,
541 * or first pass of successive approximation).
545 encode_mcu_DC_first (j_compress_ptr cinfo
, JBLOCKARRAY MCU_data
)
547 huff_entropy_ptr entropy
= (huff_entropy_ptr
) cinfo
->entropy
;
548 register int temp
, temp2
;
553 entropy
->next_output_byte
= cinfo
->dest
->next_output_byte
;
554 entropy
->free_in_buffer
= cinfo
->dest
->free_in_buffer
;
556 /* Emit restart marker if needed */
557 if (cinfo
->restart_interval
)
558 if (entropy
->restarts_to_go
== 0)
559 emit_restart_e(entropy
, entropy
->next_restart_num
);
561 /* Encode the MCU data blocks */
562 for (blkn
= 0; blkn
< cinfo
->blocks_in_MCU
; blkn
++) {
563 ci
= cinfo
->MCU_membership
[blkn
];
564 tbl
= cinfo
->cur_comp_info
[ci
]->dc_tbl_no
;
566 /* Compute the DC value after the required point transform by Al.
567 * This is simply an arithmetic right shift.
569 temp
= IRIGHT_SHIFT((int) (MCU_data
[blkn
][0][0]), cinfo
->Al
);
571 /* DC differences are figured on the point-transformed values. */
572 temp2
= temp
- entropy
->saved
.last_dc_val
[ci
];
573 entropy
->saved
.last_dc_val
[ci
] = temp
;
575 /* Encode the DC coefficient difference per section G.1.2.1 */
578 temp
= -temp
; /* temp is abs value of input */
579 /* For a negative input, want temp2 = bitwise complement of abs(input) */
580 /* This code assumes we are on a two's complement machine */
584 /* Find the number of bits needed for the magnitude of the coefficient */
590 /* Check for out-of-range coefficient values.
591 * Since we're encoding a difference, the range limit is twice as much.
593 if (nbits
> MAX_COEF_BITS
+1)
594 ERREXIT(cinfo
, JERR_BAD_DCT_COEF
);
596 /* Count/emit the Huffman-coded symbol for the number of bits */
597 emit_dc_symbol(entropy
, tbl
, nbits
);
599 /* Emit that number of bits of the value, if positive, */
600 /* or the complement of its magnitude, if negative. */
601 if (nbits
) /* emit_bits rejects calls with size 0 */
602 emit_bits_e(entropy
, (unsigned int) temp2
, nbits
);
605 cinfo
->dest
->next_output_byte
= entropy
->next_output_byte
;
606 cinfo
->dest
->free_in_buffer
= entropy
->free_in_buffer
;
608 /* Update restart-interval state too */
609 if (cinfo
->restart_interval
) {
610 if (entropy
->restarts_to_go
== 0) {
611 entropy
->restarts_to_go
= cinfo
->restart_interval
;
612 entropy
->next_restart_num
++;
613 entropy
->next_restart_num
&= 7;
615 entropy
->restarts_to_go
--;
623 * MCU encoding for AC initial scan (either spectral selection,
624 * or first pass of successive approximation).
628 encode_mcu_AC_first (j_compress_ptr cinfo
, JBLOCKARRAY MCU_data
)
630 huff_entropy_ptr entropy
= (huff_entropy_ptr
) cinfo
->entropy
;
631 const int * natural_order
;
633 register int temp
, temp2
;
638 entropy
->next_output_byte
= cinfo
->dest
->next_output_byte
;
639 entropy
->free_in_buffer
= cinfo
->dest
->free_in_buffer
;
641 /* Emit restart marker if needed */
642 if (cinfo
->restart_interval
)
643 if (entropy
->restarts_to_go
== 0)
644 emit_restart_e(entropy
, entropy
->next_restart_num
);
648 natural_order
= cinfo
->natural_order
;
650 /* Encode the MCU data block */
653 /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
655 r
= 0; /* r = run length of zeros */
657 for (k
= cinfo
->Ss
; k
<= Se
; k
++) {
658 if ((temp
= (*block
)[natural_order
[k
]]) == 0) {
662 /* We must apply the point transform by Al. For AC coefficients this
663 * is an integer division with rounding towards 0. To do this portably
664 * in C, we shift after obtaining the absolute value; so the code is
665 * interwoven with finding the abs value (temp) and output bits (temp2).
668 temp
= -temp
; /* temp is abs value of input */
669 temp
>>= Al
; /* apply the point transform */
670 /* For a negative coef, want temp2 = bitwise complement of abs(coef) */
673 temp
>>= Al
; /* apply the point transform */
676 /* Watch out for case that nonzero coef is zero after point transform */
682 /* Emit any pending EOBRUN */
683 if (entropy
->EOBRUN
> 0)
684 emit_eobrun(entropy
);
685 /* if run length > 15, must emit special run-length-16 codes (0xF0) */
687 emit_ac_symbol(entropy
, entropy
->ac_tbl_no
, 0xF0);
691 /* Find the number of bits needed for the magnitude of the coefficient */
692 nbits
= 1; /* there must be at least one 1 bit */
695 /* Check for out-of-range coefficient values */
696 if (nbits
> MAX_COEF_BITS
)
697 ERREXIT(cinfo
, JERR_BAD_DCT_COEF
);
699 /* Count/emit Huffman symbol for run length / number of bits */
700 emit_ac_symbol(entropy
, entropy
->ac_tbl_no
, (r
<< 4) + nbits
);
702 /* Emit that number of bits of the value, if positive, */
703 /* or the complement of its magnitude, if negative. */
704 emit_bits_e(entropy
, (unsigned int) temp2
, nbits
);
706 r
= 0; /* reset zero run length */
709 if (r
> 0) { /* If there are trailing zeroes, */
710 entropy
->EOBRUN
++; /* count an EOB */
711 if (entropy
->EOBRUN
== 0x7FFF)
712 emit_eobrun(entropy
); /* force it out to avoid overflow */
715 cinfo
->dest
->next_output_byte
= entropy
->next_output_byte
;
716 cinfo
->dest
->free_in_buffer
= entropy
->free_in_buffer
;
718 /* Update restart-interval state too */
719 if (cinfo
->restart_interval
) {
720 if (entropy
->restarts_to_go
== 0) {
721 entropy
->restarts_to_go
= cinfo
->restart_interval
;
722 entropy
->next_restart_num
++;
723 entropy
->next_restart_num
&= 7;
725 entropy
->restarts_to_go
--;
733 * MCU encoding for DC successive approximation refinement scan.
734 * Note: we assume such scans can be multi-component,
735 * although the spec is not very clear on the point.
739 encode_mcu_DC_refine (j_compress_ptr cinfo
, JBLOCKARRAY MCU_data
)
741 huff_entropy_ptr entropy
= (huff_entropy_ptr
) cinfo
->entropy
;
744 entropy
->next_output_byte
= cinfo
->dest
->next_output_byte
;
745 entropy
->free_in_buffer
= cinfo
->dest
->free_in_buffer
;
747 /* Emit restart marker if needed */
748 if (cinfo
->restart_interval
)
749 if (entropy
->restarts_to_go
== 0)
750 emit_restart_e(entropy
, entropy
->next_restart_num
);
754 /* Encode the MCU data blocks */
755 for (blkn
= 0; blkn
< cinfo
->blocks_in_MCU
; blkn
++) {
756 /* We simply emit the Al'th bit of the DC coefficient value. */
757 emit_bits_e(entropy
, (unsigned int) (MCU_data
[blkn
][0][0] >> Al
), 1);
760 cinfo
->dest
->next_output_byte
= entropy
->next_output_byte
;
761 cinfo
->dest
->free_in_buffer
= entropy
->free_in_buffer
;
763 /* Update restart-interval state too */
764 if (cinfo
->restart_interval
) {
765 if (entropy
->restarts_to_go
== 0) {
766 entropy
->restarts_to_go
= cinfo
->restart_interval
;
767 entropy
->next_restart_num
++;
768 entropy
->next_restart_num
&= 7;
770 entropy
->restarts_to_go
--;
778 * MCU encoding for AC successive approximation refinement scan.
782 encode_mcu_AC_refine (j_compress_ptr cinfo
, JBLOCKARRAY MCU_data
)
784 huff_entropy_ptr entropy
= (huff_entropy_ptr
) cinfo
->entropy
;
785 const int * natural_order
;
793 int absvalues
[DCTSIZE2
];
795 entropy
->next_output_byte
= cinfo
->dest
->next_output_byte
;
796 entropy
->free_in_buffer
= cinfo
->dest
->free_in_buffer
;
798 /* Emit restart marker if needed */
799 if (cinfo
->restart_interval
)
800 if (entropy
->restarts_to_go
== 0)
801 emit_restart_e(entropy
, entropy
->next_restart_num
);
805 natural_order
= cinfo
->natural_order
;
807 /* Encode the MCU data block */
810 /* It is convenient to make a pre-pass to determine the transformed
811 * coefficients' absolute values and the EOB position.
814 for (k
= cinfo
->Ss
; k
<= Se
; k
++) {
815 temp
= (*block
)[natural_order
[k
]];
816 /* We must apply the point transform by Al. For AC coefficients this
817 * is an integer division with rounding towards 0. To do this portably
818 * in C, we shift after obtaining the absolute value.
821 temp
= -temp
; /* temp is abs value of input */
822 temp
>>= Al
; /* apply the point transform */
823 absvalues
[k
] = temp
; /* save abs value for main pass */
825 EOB
= k
; /* EOB = index of last newly-nonzero coef */
828 /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
830 r
= 0; /* r = run length of zeros */
831 BR
= 0; /* BR = count of buffered bits added now */
832 BR_buffer
= entropy
->bit_buffer
+ entropy
->BE
; /* Append bits to buffer */
834 for (k
= cinfo
->Ss
; k
<= Se
; k
++) {
835 if ((temp
= absvalues
[k
]) == 0) {
840 /* Emit any required ZRLs, but not if they can be folded into EOB */
841 while (r
> 15 && k
<= EOB
) {
842 /* emit any pending EOBRUN and the BE correction bits */
843 emit_eobrun(entropy
);
845 emit_ac_symbol(entropy
, entropy
->ac_tbl_no
, 0xF0);
847 /* Emit buffered correction bits that must be associated with ZRL */
848 emit_buffered_bits(entropy
, BR_buffer
, BR
);
849 BR_buffer
= entropy
->bit_buffer
; /* BE bits are gone now */
853 /* If the coef was previously nonzero, it only needs a correction bit.
854 * NOTE: a straight translation of the spec's figure G.7 would suggest
855 * that we also need to test r > 15. But if r > 15, we can only get here
856 * if k > EOB, which implies that this coefficient is not 1.
859 /* The correction bit is the next bit of the absolute value. */
860 BR_buffer
[BR
++] = (char) (temp
& 1);
864 /* Emit any pending EOBRUN and the BE correction bits */
865 emit_eobrun(entropy
);
867 /* Count/emit Huffman symbol for run length / number of bits */
868 emit_ac_symbol(entropy
, entropy
->ac_tbl_no
, (r
<< 4) + 1);
870 /* Emit output bit for newly-nonzero coef */
871 temp
= ((*block
)[natural_order
[k
]] < 0) ? 0 : 1;
872 emit_bits_e(entropy
, (unsigned int) temp
, 1);
874 /* Emit buffered correction bits that must be associated with this code */
875 emit_buffered_bits(entropy
, BR_buffer
, BR
);
876 BR_buffer
= entropy
->bit_buffer
; /* BE bits are gone now */
878 r
= 0; /* reset zero run length */
881 if (r
> 0 || BR
> 0) { /* If there are trailing zeroes, */
882 entropy
->EOBRUN
++; /* count an EOB */
883 entropy
->BE
+= BR
; /* concat my correction bits to older ones */
884 /* We force out the EOB if we risk either:
885 * 1. overflow of the EOB counter;
886 * 2. overflow of the correction bit buffer during the next MCU.
888 if (entropy
->EOBRUN
== 0x7FFF || entropy
->BE
> (MAX_CORR_BITS
-DCTSIZE2
+1))
889 emit_eobrun(entropy
);
892 cinfo
->dest
->next_output_byte
= entropy
->next_output_byte
;
893 cinfo
->dest
->free_in_buffer
= entropy
->free_in_buffer
;
895 /* Update restart-interval state too */
896 if (cinfo
->restart_interval
) {
897 if (entropy
->restarts_to_go
== 0) {
898 entropy
->restarts_to_go
= cinfo
->restart_interval
;
899 entropy
->next_restart_num
++;
900 entropy
->next_restart_num
&= 7;
902 entropy
->restarts_to_go
--;
909 /* Encode a single block's worth of coefficients */
912 encode_one_block (working_state
* state
, JCOEFPTR block
, int last_dc_val
,
913 c_derived_tbl
*dctbl
, c_derived_tbl
*actbl
)
915 register int temp
, temp2
;
918 int Se
= state
->cinfo
->lim_Se
;
919 const int * natural_order
= state
->cinfo
->natural_order
;
921 /* Encode the DC coefficient difference per section F.1.2.1 */
923 temp
= temp2
= block
[0] - last_dc_val
;
926 temp
= -temp
; /* temp is abs value of input */
927 /* For a negative input, want temp2 = bitwise complement of abs(input) */
928 /* This code assumes we are on a two's complement machine */
932 /* Find the number of bits needed for the magnitude of the coefficient */
938 /* Check for out-of-range coefficient values.
939 * Since we're encoding a difference, the range limit is twice as much.
941 if (nbits
> MAX_COEF_BITS
+1)
942 ERREXIT(state
->cinfo
, JERR_BAD_DCT_COEF
);
944 /* Emit the Huffman-coded symbol for the number of bits */
945 if (! emit_bits_s(state
, dctbl
->ehufco
[nbits
], dctbl
->ehufsi
[nbits
]))
948 /* Emit that number of bits of the value, if positive, */
949 /* or the complement of its magnitude, if negative. */
950 if (nbits
) /* emit_bits rejects calls with size 0 */
951 if (! emit_bits_s(state
, (unsigned int) temp2
, nbits
))
954 /* Encode the AC coefficients per section F.1.2.2 */
956 r
= 0; /* r = run length of zeros */
958 for (k
= 1; k
<= Se
; k
++) {
959 if ((temp2
= block
[natural_order
[k
]]) == 0) {
962 /* if run length > 15, must emit special run-length-16 codes (0xF0) */
964 if (! emit_bits_s(state
, actbl
->ehufco
[0xF0], actbl
->ehufsi
[0xF0]))
971 temp
= -temp
; /* temp is abs value of input */
972 /* This code assumes we are on a two's complement machine */
976 /* Find the number of bits needed for the magnitude of the coefficient */
977 nbits
= 1; /* there must be at least one 1 bit */
980 /* Check for out-of-range coefficient values */
981 if (nbits
> MAX_COEF_BITS
)
982 ERREXIT(state
->cinfo
, JERR_BAD_DCT_COEF
);
984 /* Emit Huffman symbol for run length / number of bits */
985 temp
= (r
<< 4) + nbits
;
986 if (! emit_bits_s(state
, actbl
->ehufco
[temp
], actbl
->ehufsi
[temp
]))
989 /* Emit that number of bits of the value, if positive, */
990 /* or the complement of its magnitude, if negative. */
991 if (! emit_bits_s(state
, (unsigned int) temp2
, nbits
))
998 /* If the last coef(s) were zero, emit an end-of-block code */
1000 if (! emit_bits_s(state
, actbl
->ehufco
[0], actbl
->ehufsi
[0]))
1008 * Encode and output one MCU's worth of Huffman-compressed coefficients.
1012 encode_mcu_huff (j_compress_ptr cinfo
, JBLOCKARRAY MCU_data
)
1014 huff_entropy_ptr entropy
= (huff_entropy_ptr
) cinfo
->entropy
;
1015 working_state state
;
1017 jpeg_component_info
* compptr
;
1019 /* Load up working state */
1020 state
.next_output_byte
= cinfo
->dest
->next_output_byte
;
1021 state
.free_in_buffer
= cinfo
->dest
->free_in_buffer
;
1022 ASSIGN_STATE(state
.cur
, entropy
->saved
);
1023 state
.cinfo
= cinfo
;
1025 /* Emit restart marker if needed */
1026 if (cinfo
->restart_interval
) {
1027 if (entropy
->restarts_to_go
== 0)
1028 if (! emit_restart_s(&state
, entropy
->next_restart_num
))
1032 /* Encode the MCU data blocks */
1033 for (blkn
= 0; blkn
< cinfo
->blocks_in_MCU
; blkn
++) {
1034 ci
= cinfo
->MCU_membership
[blkn
];
1035 compptr
= cinfo
->cur_comp_info
[ci
];
1036 if (! encode_one_block(&state
,
1037 MCU_data
[blkn
][0], state
.cur
.last_dc_val
[ci
],
1038 entropy
->dc_derived_tbls
[compptr
->dc_tbl_no
],
1039 entropy
->ac_derived_tbls
[compptr
->ac_tbl_no
]))
1041 /* Update last_dc_val */
1042 state
.cur
.last_dc_val
[ci
] = MCU_data
[blkn
][0][0];
1045 /* Completed MCU, so update state */
1046 cinfo
->dest
->next_output_byte
= state
.next_output_byte
;
1047 cinfo
->dest
->free_in_buffer
= state
.free_in_buffer
;
1048 ASSIGN_STATE(entropy
->saved
, state
.cur
);
1050 /* Update restart-interval state too */
1051 if (cinfo
->restart_interval
) {
1052 if (entropy
->restarts_to_go
== 0) {
1053 entropy
->restarts_to_go
= cinfo
->restart_interval
;
1054 entropy
->next_restart_num
++;
1055 entropy
->next_restart_num
&= 7;
1057 entropy
->restarts_to_go
--;
1065 * Finish up at the end of a Huffman-compressed scan.
1069 finish_pass_huff (j_compress_ptr cinfo
)
1071 huff_entropy_ptr entropy
= (huff_entropy_ptr
) cinfo
->entropy
;
1072 working_state state
;
1074 if (cinfo
->progressive_mode
) {
1075 entropy
->next_output_byte
= cinfo
->dest
->next_output_byte
;
1076 entropy
->free_in_buffer
= cinfo
->dest
->free_in_buffer
;
1078 /* Flush out any buffered data */
1079 emit_eobrun(entropy
);
1080 flush_bits_e(entropy
);
1082 cinfo
->dest
->next_output_byte
= entropy
->next_output_byte
;
1083 cinfo
->dest
->free_in_buffer
= entropy
->free_in_buffer
;
1085 /* Load up working state ... flush_bits needs it */
1086 state
.next_output_byte
= cinfo
->dest
->next_output_byte
;
1087 state
.free_in_buffer
= cinfo
->dest
->free_in_buffer
;
1088 ASSIGN_STATE(state
.cur
, entropy
->saved
);
1089 state
.cinfo
= cinfo
;
1091 /* Flush out the last data */
1092 if (! flush_bits_s(&state
))
1093 ERREXIT(cinfo
, JERR_CANT_SUSPEND
);
1096 cinfo
->dest
->next_output_byte
= state
.next_output_byte
;
1097 cinfo
->dest
->free_in_buffer
= state
.free_in_buffer
;
1098 ASSIGN_STATE(entropy
->saved
, state
.cur
);
1104 * Huffman coding optimization.
1106 * We first scan the supplied data and count the number of uses of each symbol
1107 * that is to be Huffman-coded. (This process MUST agree with the code above.)
1108 * Then we build a Huffman coding tree for the observed counts.
1109 * Symbols which are not needed at all for the particular image are not
1110 * assigned any code, which saves space in the DHT marker as well as in
1111 * the compressed data.
1115 /* Process a single block's worth of coefficients */
1118 htest_one_block (j_compress_ptr cinfo
, JCOEFPTR block
, int last_dc_val
,
1119 long dc_counts
[], long ac_counts
[])
1124 int Se
= cinfo
->lim_Se
;
1125 const int * natural_order
= cinfo
->natural_order
;
1127 /* Encode the DC coefficient difference per section F.1.2.1 */
1129 temp
= block
[0] - last_dc_val
;
1133 /* Find the number of bits needed for the magnitude of the coefficient */
1139 /* Check for out-of-range coefficient values.
1140 * Since we're encoding a difference, the range limit is twice as much.
1142 if (nbits
> MAX_COEF_BITS
+1)
1143 ERREXIT(cinfo
, JERR_BAD_DCT_COEF
);
1145 /* Count the Huffman symbol for the number of bits */
1148 /* Encode the AC coefficients per section F.1.2.2 */
1150 r
= 0; /* r = run length of zeros */
1152 for (k
= 1; k
<= Se
; k
++) {
1153 if ((temp
= block
[natural_order
[k
]]) == 0) {
1156 /* if run length > 15, must emit special run-length-16 codes (0xF0) */
1162 /* Find the number of bits needed for the magnitude of the coefficient */
1166 /* Find the number of bits needed for the magnitude of the coefficient */
1167 nbits
= 1; /* there must be at least one 1 bit */
1168 while ((temp
>>= 1))
1170 /* Check for out-of-range coefficient values */
1171 if (nbits
> MAX_COEF_BITS
)
1172 ERREXIT(cinfo
, JERR_BAD_DCT_COEF
);
1174 /* Count Huffman symbol for run length / number of bits */
1175 ac_counts
[(r
<< 4) + nbits
]++;
1181 /* If the last coef(s) were zero, emit an end-of-block code */
1188 * Trial-encode one MCU's worth of Huffman-compressed coefficients.
1189 * No data is actually output, so no suspension return is possible.
1193 encode_mcu_gather (j_compress_ptr cinfo
, JBLOCKARRAY MCU_data
)
1195 huff_entropy_ptr entropy
= (huff_entropy_ptr
) cinfo
->entropy
;
1197 jpeg_component_info
* compptr
;
1199 /* Take care of restart intervals if needed */
1200 if (cinfo
->restart_interval
) {
1201 if (entropy
->restarts_to_go
== 0) {
1202 /* Re-initialize DC predictions to 0 */
1203 for (ci
= 0; ci
< cinfo
->comps_in_scan
; ci
++)
1204 entropy
->saved
.last_dc_val
[ci
] = 0;
1205 /* Update restart state */
1206 entropy
->restarts_to_go
= cinfo
->restart_interval
;
1208 entropy
->restarts_to_go
--;
1211 for (blkn
= 0; blkn
< cinfo
->blocks_in_MCU
; blkn
++) {
1212 ci
= cinfo
->MCU_membership
[blkn
];
1213 compptr
= cinfo
->cur_comp_info
[ci
];
1214 htest_one_block(cinfo
, MCU_data
[blkn
][0], entropy
->saved
.last_dc_val
[ci
],
1215 entropy
->dc_count_ptrs
[compptr
->dc_tbl_no
],
1216 entropy
->ac_count_ptrs
[compptr
->ac_tbl_no
]);
1217 entropy
->saved
.last_dc_val
[ci
] = MCU_data
[blkn
][0][0];
1225 * Generate the best Huffman code table for the given counts, fill htbl.
1227 * The JPEG standard requires that no symbol be assigned a codeword of all
1228 * one bits (so that padding bits added at the end of a compressed segment
1229 * can't look like a valid code). Because of the canonical ordering of
1230 * codewords, this just means that there must be an unused slot in the
1231 * longest codeword length category. Section K.2 of the JPEG spec suggests
1232 * reserving such a slot by pretending that symbol 256 is a valid symbol
1233 * with count 1. In theory that's not optimal; giving it count zero but
1234 * including it in the symbol set anyway should give a better Huffman code.
1235 * But the theoretically better code actually seems to come out worse in
1236 * practice, because it produces more all-ones bytes (which incur stuffed
1237 * zero bytes in the final file). In any case the difference is tiny.
1239 * The JPEG standard requires Huffman codes to be no more than 16 bits long.
1240 * If some symbols have a very small but nonzero probability, the Huffman tree
1241 * must be adjusted to meet the code length restriction. We currently use
1242 * the adjustment method suggested in JPEG section K.2. This method is *not*
1243 * optimal; it may not choose the best possible limited-length code. But
1244 * typically only very-low-frequency symbols will be given less-than-optimal
1245 * lengths, so the code is almost optimal. Experimental comparisons against
1246 * an optimal limited-length-code algorithm indicate that the difference is
1247 * microscopic --- usually less than a hundredth of a percent of total size.
1248 * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
1252 jpeg_gen_optimal_table (j_compress_ptr cinfo
, JHUFF_TBL
* htbl
, long freq
[])
1254 #define MAX_CLEN 32 /* assumed maximum initial code length */
1255 UINT8 bits
[MAX_CLEN
+1]; /* bits[k] = # of symbols with code length k */
1256 int codesize
[257]; /* codesize[k] = code length of symbol k */
1257 int others
[257]; /* next symbol in current branch of tree */
1262 freq
[256] = 1; /* make sure 256 has a nonzero count */
1263 /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
1264 * that no real symbol is given code-value of all ones, because 256
1265 * will be placed last in the largest codeword category.
1266 * In the symbol list build procedure this element serves as sentinel
1267 * for the zero run loop.
1270 #ifndef DONT_USE_FANCY_HUFF_OPT
1272 /* Build list of symbols sorted in order of descending frequency */
1273 /* This approach has several benefits (thank to John Korejwa for the idea):
1275 * If a codelength category is split during the length limiting procedure
1276 * below, the feature that more frequent symbols are assigned shorter
1277 * codewords remains valid for the adjusted code.
1279 * To reduce consecutive ones in a Huffman data stream (thus reducing the
1280 * number of stuff bytes in JPEG) it is preferable to follow 0 branches
1281 * (and avoid 1 branches) as much as possible. This is easily done by
1282 * assigning symbols to leaves of the Huffman tree in order of decreasing
1283 * frequency, with no secondary sort based on codelengths.
1285 * The symbol list can be built independently from the assignment of code
1286 * lengths by the Huffman procedure below.
1287 * Note: The symbol list build procedure must be performed first, because
1288 * the Huffman procedure assigning the codelengths clobbers the frequency
1292 /* Here we use the others array as a linked list of nonzero frequencies
1293 * to be sorted. Already sorted elements are removed from the list.
1298 /* This item does not correspond to a valid symbol frequency and is used
1299 * as starting index.
1304 if (freq
[i
] == 0) /* skip zero frequencies */
1308 others
[j
] = i
; /* this symbol value */
1309 j
= i
; /* previous symbol value */
1311 others
[j
] = -1; /* mark end of list */
1316 while ((c1
= others
[256]) >= 0) {
1318 i
= c1
; /* first symbol value */
1319 j
= 256; /* pseudo symbol value for starting index */
1320 while ((c2
= others
[c1
]) >= 0) {
1323 i
= c2
; /* this symbol value */
1324 j
= c1
; /* previous symbol value */
1328 others
[j
] = others
[i
]; /* remove this symbol i from list */
1332 #endif /* DONT_USE_FANCY_HUFF_OPT */
1334 /* This algorithm is explained in section K.2 of the JPEG standard */
1336 MEMZERO(bits
, SIZEOF(bits
));
1337 MEMZERO(codesize
, SIZEOF(codesize
));
1338 for (i
= 0; i
< 257; i
++)
1339 others
[i
] = -1; /* init links to empty */
1341 /* Huffman's basic algorithm to assign optimal code lengths to symbols */
1344 /* Find the smallest nonzero frequency, set c1 = its symbol */
1345 /* In case of ties, take the larger symbol number */
1348 for (i
= 0; i
<= 256; i
++) {
1349 if (freq
[i
] && freq
[i
] <= v
) {
1355 /* Find the next smallest nonzero frequency, set c2 = its symbol */
1356 /* In case of ties, take the larger symbol number */
1359 for (i
= 0; i
<= 256; i
++) {
1360 if (freq
[i
] && freq
[i
] <= v
&& i
!= c1
) {
1366 /* Done if we've merged everything into one frequency */
1370 /* Else merge the two counts/trees */
1371 freq
[c1
] += freq
[c2
];
1374 /* Increment the codesize of everything in c1's tree branch */
1376 while (others
[c1
] >= 0) {
1381 others
[c1
] = c2
; /* chain c2 onto c1's tree branch */
1383 /* Increment the codesize of everything in c2's tree branch */
1385 while (others
[c2
] >= 0) {
1391 /* Now count the number of symbols of each code length */
1392 for (i
= 0; i
<= 256; i
++) {
1394 /* The JPEG standard seems to think that this can't happen, */
1395 /* but I'm paranoid... */
1396 if (codesize
[i
] > MAX_CLEN
)
1397 ERREXIT(cinfo
, JERR_HUFF_CLEN_OUTOFBOUNDS
);
1399 bits
[codesize
[i
]]++;
1403 /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
1404 * Huffman procedure assigned any such lengths, we must adjust the coding.
1405 * Here is what the JPEG spec says about how this next bit works:
1406 * Since symbols are paired for the longest Huffman code, the symbols are
1407 * removed from this length category two at a time. The prefix for the pair
1408 * (which is one bit shorter) is allocated to one of the pair; then,
1409 * skipping the BITS entry for that prefix length, a code word from the next
1410 * shortest nonzero BITS entry is converted into a prefix for two code words
1414 for (i
= MAX_CLEN
; i
> 16; i
--) {
1415 while (bits
[i
] > 0) {
1416 j
= i
- 2; /* find length of new prefix to be used */
1417 while (bits
[j
] == 0) {
1419 ERREXIT(cinfo
, JERR_HUFF_CLEN_OUTOFBOUNDS
);
1423 bits
[i
] -= 2; /* remove two symbols */
1424 bits
[i
-1]++; /* one goes in this length */
1425 bits
[j
+1] += 2; /* two new symbols in this length */
1426 bits
[j
]--; /* symbol of this length is now a prefix */
1430 /* Remove the count for the pseudo-symbol 256 from the largest codelength */
1431 while (bits
[i
] == 0) /* find largest codelength still in use */
1435 /* Return final symbol counts (only for lengths 0..16) */
1436 MEMCOPY(htbl
->bits
, bits
, SIZEOF(htbl
->bits
));
1438 #ifdef DONT_USE_FANCY_HUFF_OPT
1440 /* Return a list of the symbols sorted by code length */
1441 /* Note: Due to the codelength changes made above, it can happen
1442 * that more frequent symbols are assigned longer codewords.
1445 for (i
= 1; i
<= MAX_CLEN
; i
++) {
1446 for (j
= 0; j
<= 255; j
++) {
1447 if (codesize
[j
] == i
) {
1453 #endif /* DONT_USE_FANCY_HUFF_OPT */
1455 /* Set sent_table FALSE so updated table will be written to JPEG file. */
1456 htbl
->sent_table
= FALSE
;
1461 * Finish up a statistics-gathering pass and create the new Huffman tables.
1465 finish_pass_gather (j_compress_ptr cinfo
)
1467 huff_entropy_ptr entropy
= (huff_entropy_ptr
) cinfo
->entropy
;
1469 jpeg_component_info
* compptr
;
1470 JHUFF_TBL
**htblptr
;
1471 boolean did_dc
[NUM_HUFF_TBLS
];
1472 boolean did_ac
[NUM_HUFF_TBLS
];
1474 if (cinfo
->progressive_mode
)
1475 /* Flush out buffered data (all we care about is counting the EOB symbol) */
1476 emit_eobrun(entropy
);
1478 /* It's important not to apply jpeg_gen_optimal_table more than once
1479 * per table, because it clobbers the input frequency counts!
1481 MEMZERO(did_dc
, SIZEOF(did_dc
));
1482 MEMZERO(did_ac
, SIZEOF(did_ac
));
1484 for (ci
= 0; ci
< cinfo
->comps_in_scan
; ci
++) {
1485 compptr
= cinfo
->cur_comp_info
[ci
];
1486 /* DC needs no table for refinement scan */
1487 if (cinfo
->Ss
== 0 && cinfo
->Ah
== 0) {
1488 tbl
= compptr
->dc_tbl_no
;
1489 if (! did_dc
[tbl
]) {
1490 htblptr
= & cinfo
->dc_huff_tbl_ptrs
[tbl
];
1491 if (*htblptr
== NULL
)
1492 *htblptr
= jpeg_alloc_huff_table((j_common_ptr
) cinfo
);
1493 jpeg_gen_optimal_table(cinfo
, *htblptr
, entropy
->dc_count_ptrs
[tbl
]);
1497 /* AC needs no table when not present */
1499 tbl
= compptr
->ac_tbl_no
;
1500 if (! did_ac
[tbl
]) {
1501 htblptr
= & cinfo
->ac_huff_tbl_ptrs
[tbl
];
1502 if (*htblptr
== NULL
)
1503 *htblptr
= jpeg_alloc_huff_table((j_common_ptr
) cinfo
);
1504 jpeg_gen_optimal_table(cinfo
, *htblptr
, entropy
->ac_count_ptrs
[tbl
]);
1513 * Initialize for a Huffman-compressed scan.
1514 * If gather_statistics is TRUE, we do not output anything during the scan,
1515 * just count the Huffman symbols used and generate Huffman code tables.
1519 start_pass_huff (j_compress_ptr cinfo
, boolean gather_statistics
)
1521 huff_entropy_ptr entropy
= (huff_entropy_ptr
) cinfo
->entropy
;
1523 jpeg_component_info
* compptr
;
1525 if (gather_statistics
)
1526 entropy
->pub
.finish_pass
= finish_pass_gather
;
1528 entropy
->pub
.finish_pass
= finish_pass_huff
;
1530 if (cinfo
->progressive_mode
) {
1531 entropy
->cinfo
= cinfo
;
1532 entropy
->gather_statistics
= gather_statistics
;
1534 /* We assume jcmaster.c already validated the scan parameters. */
1536 /* Select execution routine */
1537 if (cinfo
->Ah
== 0) {
1539 entropy
->pub
.encode_mcu
= encode_mcu_DC_first
;
1541 entropy
->pub
.encode_mcu
= encode_mcu_AC_first
;
1544 entropy
->pub
.encode_mcu
= encode_mcu_DC_refine
;
1546 entropy
->pub
.encode_mcu
= encode_mcu_AC_refine
;
1547 /* AC refinement needs a correction bit buffer */
1548 if (entropy
->bit_buffer
== NULL
)
1549 entropy
->bit_buffer
= (char *) (*cinfo
->mem
->alloc_small
)
1550 ((j_common_ptr
) cinfo
, JPOOL_IMAGE
, MAX_CORR_BITS
* SIZEOF(char));
1554 /* Initialize AC stuff */
1555 entropy
->ac_tbl_no
= cinfo
->cur_comp_info
[0]->ac_tbl_no
;
1556 entropy
->EOBRUN
= 0;
1559 if (gather_statistics
)
1560 entropy
->pub
.encode_mcu
= encode_mcu_gather
;
1562 entropy
->pub
.encode_mcu
= encode_mcu_huff
;
1565 for (ci
= 0; ci
< cinfo
->comps_in_scan
; ci
++) {
1566 compptr
= cinfo
->cur_comp_info
[ci
];
1567 /* DC needs no table for refinement scan */
1568 if (cinfo
->Ss
== 0 && cinfo
->Ah
== 0) {
1569 tbl
= compptr
->dc_tbl_no
;
1570 if (gather_statistics
) {
1571 /* Check for invalid table index */
1572 /* (make_c_derived_tbl does this in the other path) */
1573 if (tbl
< 0 || tbl
>= NUM_HUFF_TBLS
)
1574 ERREXIT1(cinfo
, JERR_NO_HUFF_TABLE
, tbl
);
1575 /* Allocate and zero the statistics tables */
1576 /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
1577 if (entropy
->dc_count_ptrs
[tbl
] == NULL
)
1578 entropy
->dc_count_ptrs
[tbl
] = (long *) (*cinfo
->mem
->alloc_small
)
1579 ((j_common_ptr
) cinfo
, JPOOL_IMAGE
, 257 * SIZEOF(long));
1580 MEMZERO(entropy
->dc_count_ptrs
[tbl
], 257 * SIZEOF(long));
1582 /* Compute derived values for Huffman tables */
1583 /* We may do this more than once for a table, but it's not expensive */
1584 jpeg_make_c_derived_tbl(cinfo
, TRUE
, tbl
,
1585 & entropy
->dc_derived_tbls
[tbl
]);
1587 /* Initialize DC predictions to 0 */
1588 entropy
->saved
.last_dc_val
[ci
] = 0;
1590 /* AC needs no table when not present */
1592 tbl
= compptr
->ac_tbl_no
;
1593 if (gather_statistics
) {
1594 if (tbl
< 0 || tbl
>= NUM_HUFF_TBLS
)
1595 ERREXIT1(cinfo
, JERR_NO_HUFF_TABLE
, tbl
);
1596 if (entropy
->ac_count_ptrs
[tbl
] == NULL
)
1597 entropy
->ac_count_ptrs
[tbl
] = (long *) (*cinfo
->mem
->alloc_small
)
1598 ((j_common_ptr
) cinfo
, JPOOL_IMAGE
, 257 * SIZEOF(long));
1599 MEMZERO(entropy
->ac_count_ptrs
[tbl
], 257 * SIZEOF(long));
1601 jpeg_make_c_derived_tbl(cinfo
, FALSE
, tbl
,
1602 & entropy
->ac_derived_tbls
[tbl
]);
1607 /* Initialize bit buffer to empty */
1608 entropy
->saved
.put_buffer
= 0;
1609 entropy
->saved
.put_bits
= 0;
1611 /* Initialize restart stuff */
1612 entropy
->restarts_to_go
= cinfo
->restart_interval
;
1613 entropy
->next_restart_num
= 0;
1618 * Module initialization routine for Huffman entropy encoding.
1622 jinit_huff_encoder (j_compress_ptr cinfo
)
1624 huff_entropy_ptr entropy
;
1627 entropy
= (huff_entropy_ptr
) (*cinfo
->mem
->alloc_small
)
1628 ((j_common_ptr
) cinfo
, JPOOL_IMAGE
, SIZEOF(huff_entropy_encoder
));
1629 cinfo
->entropy
= &entropy
->pub
;
1630 entropy
->pub
.start_pass
= start_pass_huff
;
1632 /* Mark tables unallocated */
1633 for (i
= 0; i
< NUM_HUFF_TBLS
; i
++) {
1634 entropy
->dc_derived_tbls
[i
] = entropy
->ac_derived_tbls
[i
] = NULL
;
1635 entropy
->dc_count_ptrs
[i
] = entropy
->ac_count_ptrs
[i
] = NULL
;
1638 if (cinfo
->progressive_mode
)
1639 entropy
->bit_buffer
= NULL
; /* needed only in AC refinement scan */