gdiplus: Implement GdipCloneFontFamily.
[wine.git] / dlls / ntdll / tests / rtl.c
blob415f0dbbf17e849f4f8599f7db5c86788492b34c
1 /* Unit test suite for Rtl* API functions
3 * Copyright 2003 Thomas Mertes
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2.1 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
19 * NOTES
20 * We use function pointers here as there is no import library for NTDLL on
21 * windows.
24 #include <stdlib.h>
26 #include "ntdll_test.h"
28 #ifndef __WINE_WINTERNL_H
30 typedef struct _RTL_HANDLE
32 struct _RTL_HANDLE * Next;
33 } RTL_HANDLE;
35 typedef struct _RTL_HANDLE_TABLE
37 ULONG MaxHandleCount;
38 ULONG HandleSize;
39 ULONG Unused[2];
40 PVOID NextFree;
41 PVOID FirstHandle;
42 PVOID ReservedMemory;
43 PVOID MaxHandle;
44 } RTL_HANDLE_TABLE;
46 #endif
48 /* Function ptrs for ntdll calls */
49 static HMODULE hntdll = 0;
50 static SIZE_T (WINAPI *pRtlCompareMemory)(LPCVOID,LPCVOID,SIZE_T);
51 static SIZE_T (WINAPI *pRtlCompareMemoryUlong)(PULONG, SIZE_T, ULONG);
52 static VOID (WINAPI *pRtlMoveMemory)(LPVOID,LPCVOID,SIZE_T);
53 static VOID (WINAPI *pRtlFillMemory)(LPVOID,SIZE_T,BYTE);
54 static VOID (WINAPI *pRtlFillMemoryUlong)(LPVOID,SIZE_T,ULONG);
55 static VOID (WINAPI *pRtlZeroMemory)(LPVOID,SIZE_T);
56 static ULONGLONG (WINAPIV *pRtlUlonglongByteSwap)(ULONGLONG source);
57 static ULONG (WINAPI *pRtlUniform)(PULONG);
58 static ULONG (WINAPI *pRtlRandom)(PULONG);
59 static BOOLEAN (WINAPI *pRtlAreAllAccessesGranted)(ACCESS_MASK, ACCESS_MASK);
60 static BOOLEAN (WINAPI *pRtlAreAnyAccessesGranted)(ACCESS_MASK, ACCESS_MASK);
61 static DWORD (WINAPI *pRtlComputeCrc32)(DWORD,const BYTE*,INT);
62 static void (WINAPI * pRtlInitializeHandleTable)(ULONG, ULONG, RTL_HANDLE_TABLE *);
63 static BOOLEAN (WINAPI * pRtlIsValidIndexHandle)(const RTL_HANDLE_TABLE *, ULONG, RTL_HANDLE **);
64 static NTSTATUS (WINAPI * pRtlDestroyHandleTable)(RTL_HANDLE_TABLE *);
65 static RTL_HANDLE * (WINAPI * pRtlAllocateHandle)(RTL_HANDLE_TABLE *, ULONG *);
66 static BOOLEAN (WINAPI * pRtlFreeHandle)(RTL_HANDLE_TABLE *, RTL_HANDLE *);
67 static NTSTATUS (WINAPI *pRtlAllocateAndInitializeSid)(PSID_IDENTIFIER_AUTHORITY,BYTE,DWORD,DWORD,DWORD,DWORD,DWORD,DWORD,DWORD,DWORD,PSID*);
68 static NTSTATUS (WINAPI *pRtlFreeSid)(PSID);
69 #define LEN 16
70 static const char* src_src = "This is a test!"; /* 16 bytes long, incl NUL */
71 static ULONG src_aligned_block[4];
72 static ULONG dest_aligned_block[32];
73 static const char *src = (const char*)src_aligned_block;
74 static char* dest = (char*)dest_aligned_block;
76 static void InitFunctionPtrs(void)
78 hntdll = LoadLibraryA("ntdll.dll");
79 ok(hntdll != 0, "LoadLibrary failed\n");
80 if (hntdll) {
81 pRtlCompareMemory = (void *)GetProcAddress(hntdll, "RtlCompareMemory");
82 pRtlCompareMemoryUlong = (void *)GetProcAddress(hntdll, "RtlCompareMemoryUlong");
83 pRtlMoveMemory = (void *)GetProcAddress(hntdll, "RtlMoveMemory");
84 pRtlFillMemory = (void *)GetProcAddress(hntdll, "RtlFillMemory");
85 pRtlFillMemoryUlong = (void *)GetProcAddress(hntdll, "RtlFillMemoryUlong");
86 pRtlZeroMemory = (void *)GetProcAddress(hntdll, "RtlZeroMemory");
87 pRtlUlonglongByteSwap = (void *)GetProcAddress(hntdll, "RtlUlonglongByteSwap");
88 pRtlUniform = (void *)GetProcAddress(hntdll, "RtlUniform");
89 pRtlRandom = (void *)GetProcAddress(hntdll, "RtlRandom");
90 pRtlAreAllAccessesGranted = (void *)GetProcAddress(hntdll, "RtlAreAllAccessesGranted");
91 pRtlAreAnyAccessesGranted = (void *)GetProcAddress(hntdll, "RtlAreAnyAccessesGranted");
92 pRtlComputeCrc32 = (void *)GetProcAddress(hntdll, "RtlComputeCrc32");
93 pRtlInitializeHandleTable = (void *)GetProcAddress(hntdll, "RtlInitializeHandleTable");
94 pRtlIsValidIndexHandle = (void *)GetProcAddress(hntdll, "RtlIsValidIndexHandle");
95 pRtlDestroyHandleTable = (void *)GetProcAddress(hntdll, "RtlDestroyHandleTable");
96 pRtlAllocateHandle = (void *)GetProcAddress(hntdll, "RtlAllocateHandle");
97 pRtlFreeHandle = (void *)GetProcAddress(hntdll, "RtlFreeHandle");
98 pRtlAllocateAndInitializeSid = (void *)GetProcAddress(hntdll, "RtlAllocateAndInitializeSid");
99 pRtlFreeSid = (void *)GetProcAddress(hntdll, "RtlFreeSid");
101 strcpy((char*)src_aligned_block, src_src);
102 ok(strlen(src) == 15, "Source must be 16 bytes long!\n");
105 #define COMP(str1,str2,cmplen,len) size = pRtlCompareMemory(str1, str2, cmplen); \
106 ok(size == len, "Expected %ld, got %ld\n", size, (SIZE_T)len)
108 static void test_RtlCompareMemory(void)
110 SIZE_T size;
112 if (!pRtlCompareMemory)
113 return;
115 strcpy(dest, src);
117 COMP(src,src,0,0);
118 COMP(src,src,LEN,LEN);
119 dest[0] = 'x';
120 COMP(src,dest,LEN,0);
123 static void test_RtlCompareMemoryUlong(void)
125 ULONG a[10];
126 ULONG result;
128 a[0]= 0x0123;
129 a[1]= 0x4567;
130 a[2]= 0x89ab;
131 a[3]= 0xcdef;
132 result = pRtlCompareMemoryUlong(a, 0, 0x0123);
133 ok(result == 0, "RtlCompareMemoryUlong(%p, 0, 0x0123) returns %u, expected 0\n", a, result);
134 result = pRtlCompareMemoryUlong(a, 3, 0x0123);
135 ok(result == 0, "RtlCompareMemoryUlong(%p, 3, 0x0123) returns %u, expected 0\n", a, result);
136 result = pRtlCompareMemoryUlong(a, 4, 0x0123);
137 ok(result == 4, "RtlCompareMemoryUlong(%p, 4, 0x0123) returns %u, expected 4\n", a, result);
138 result = pRtlCompareMemoryUlong(a, 5, 0x0123);
139 ok(result == 4, "RtlCompareMemoryUlong(%p, 5, 0x0123) returns %u, expected 4\n", a, result);
140 result = pRtlCompareMemoryUlong(a, 7, 0x0123);
141 ok(result == 4, "RtlCompareMemoryUlong(%p, 7, 0x0123) returns %u, expected 4\n", a, result);
142 result = pRtlCompareMemoryUlong(a, 8, 0x0123);
143 ok(result == 4, "RtlCompareMemoryUlong(%p, 8, 0x0123) returns %u, expected 4\n", a, result);
144 result = pRtlCompareMemoryUlong(a, 9, 0x0123);
145 ok(result == 4, "RtlCompareMemoryUlong(%p, 9, 0x0123) returns %u, expected 4\n", a, result);
146 result = pRtlCompareMemoryUlong(a, 4, 0x0127);
147 ok(result == 0, "RtlCompareMemoryUlong(%p, 4, 0x0127) returns %u, expected 0\n", a, result);
148 result = pRtlCompareMemoryUlong(a, 4, 0x7123);
149 ok(result == 0, "RtlCompareMemoryUlong(%p, 4, 0x7123) returns %u, expected 0\n", a, result);
150 result = pRtlCompareMemoryUlong(a, 16, 0x4567);
151 ok(result == 0, "RtlCompareMemoryUlong(%p, 16, 0x4567) returns %u, expected 0\n", a, result);
153 a[1]= 0x0123;
154 result = pRtlCompareMemoryUlong(a, 3, 0x0123);
155 ok(result == 0, "RtlCompareMemoryUlong(%p, 3, 0x0123) returns %u, expected 0\n", a, result);
156 result = pRtlCompareMemoryUlong(a, 4, 0x0123);
157 ok(result == 4, "RtlCompareMemoryUlong(%p, 4, 0x0123) returns %u, expected 4\n", a, result);
158 result = pRtlCompareMemoryUlong(a, 5, 0x0123);
159 ok(result == 4, "RtlCompareMemoryUlong(%p, 5, 0x0123) returns %u, expected 4\n", a, result);
160 result = pRtlCompareMemoryUlong(a, 7, 0x0123);
161 ok(result == 4, "RtlCompareMemoryUlong(%p, 7, 0x0123) returns %u, expected 4\n", a, result);
162 result = pRtlCompareMemoryUlong(a, 8, 0x0123);
163 ok(result == 8, "RtlCompareMemoryUlong(%p, 8, 0x0123) returns %u, expected 8\n", a, result);
164 result = pRtlCompareMemoryUlong(a, 9, 0x0123);
165 ok(result == 8, "RtlCompareMemoryUlong(%p, 9, 0x0123) returns %u, expected 8\n", a, result);
168 #define COPY(len) memset(dest,0,sizeof(dest_aligned_block)); pRtlMoveMemory(dest, src, len)
169 #define CMP(str) ok(strcmp(dest,str) == 0, "Expected '%s', got '%s'\n", str, dest)
171 static void test_RtlMoveMemory(void)
173 if (!pRtlMoveMemory)
174 return;
176 /* Length should be in bytes and not rounded. Use strcmp to ensure we
177 * didn't write past the end (it checks for the final NUL left by memset)
179 COPY(0); CMP("");
180 COPY(1); CMP("T");
181 COPY(2); CMP("Th");
182 COPY(3); CMP("Thi");
183 COPY(4); CMP("This");
184 COPY(5); CMP("This ");
185 COPY(6); CMP("This i");
186 COPY(7); CMP("This is");
187 COPY(8); CMP("This is ");
188 COPY(9); CMP("This is a");
190 /* Overlapping */
191 strcpy(dest, src); pRtlMoveMemory(dest, dest + 1, strlen(src) - 1);
192 CMP("his is a test!!");
193 strcpy(dest, src); pRtlMoveMemory(dest + 1, dest, strlen(src));
194 CMP("TThis is a test!");
197 #define FILL(len) memset(dest,0,sizeof(dest_aligned_block)); strcpy(dest, src); pRtlFillMemory(dest,len,'x')
199 static void test_RtlFillMemory(void)
201 if (!pRtlFillMemory)
202 return;
204 /* Length should be in bytes and not rounded. Use strcmp to ensure we
205 * didn't write past the end (the remainder of the string should match)
207 FILL(0); CMP("This is a test!");
208 FILL(1); CMP("xhis is a test!");
209 FILL(2); CMP("xxis is a test!");
210 FILL(3); CMP("xxxs is a test!");
211 FILL(4); CMP("xxxx is a test!");
212 FILL(5); CMP("xxxxxis a test!");
213 FILL(6); CMP("xxxxxxs a test!");
214 FILL(7); CMP("xxxxxxx a test!");
215 FILL(8); CMP("xxxxxxxxa test!");
216 FILL(9); CMP("xxxxxxxxx test!");
219 #define LFILL(len) memset(dest,0,sizeof(dest_aligned_block)); strcpy(dest, src); pRtlFillMemoryUlong(dest,len,val)
221 static void test_RtlFillMemoryUlong(void)
223 ULONG val = ('x' << 24) | ('x' << 16) | ('x' << 8) | 'x';
224 if (!pRtlFillMemoryUlong)
225 return;
227 /* Length should be in bytes and not rounded. Use strcmp to ensure we
228 * didn't write past the end (the remainder of the string should match)
230 LFILL(0); CMP("This is a test!");
231 LFILL(1); CMP("This is a test!");
232 LFILL(2); CMP("This is a test!");
233 LFILL(3); CMP("This is a test!");
234 LFILL(4); CMP("xxxx is a test!");
235 LFILL(5); CMP("xxxx is a test!");
236 LFILL(6); CMP("xxxx is a test!");
237 LFILL(7); CMP("xxxx is a test!");
238 LFILL(8); CMP("xxxxxxxxa test!");
239 LFILL(9); CMP("xxxxxxxxa test!");
242 #define ZERO(len) memset(dest,0,sizeof(dest_aligned_block)); strcpy(dest, src); pRtlZeroMemory(dest,len)
243 #define MCMP(str) ok(memcmp(dest,str,LEN) == 0, "Memcmp failed\n")
245 static void test_RtlZeroMemory(void)
247 if (!pRtlZeroMemory)
248 return;
250 /* Length should be in bytes and not rounded. */
251 ZERO(0); MCMP("This is a test!");
252 ZERO(1); MCMP("\0his is a test!");
253 ZERO(2); MCMP("\0\0is is a test!");
254 ZERO(3); MCMP("\0\0\0s is a test!");
255 ZERO(4); MCMP("\0\0\0\0 is a test!");
256 ZERO(5); MCMP("\0\0\0\0\0is a test!");
257 ZERO(6); MCMP("\0\0\0\0\0\0s a test!");
258 ZERO(7); MCMP("\0\0\0\0\0\0\0 a test!");
259 ZERO(8); MCMP("\0\0\0\0\0\0\0\0a test!");
260 ZERO(9); MCMP("\0\0\0\0\0\0\0\0\0 test!");
263 static void test_RtlUlonglongByteSwap(void)
265 ULONGLONG result;
267 if ( pRtlUlonglongByteSwap( 0 ) != 0 )
269 win_skip("Broken RtlUlonglongByteSwap in win2k\n");
270 return;
273 result = pRtlUlonglongByteSwap( ((ULONGLONG)0x76543210 << 32) | 0x87654321 );
274 ok( (((ULONGLONG)0x21436587 << 32) | 0x10325476) == result,
275 "RtlUlonglongByteSwap(0x7654321087654321) returns 0x%x%08x, expected 0x2143658710325476\n",
276 (DWORD)(result >> 32), (DWORD)result);
280 static void test_RtlUniform(void)
282 ULONGLONG num;
283 ULONG seed;
284 ULONG seed_bak;
285 ULONG expected;
286 ULONG result;
289 * According to the documentation RtlUniform is using D.H. Lehmer's 1948
290 * algorithm. This algorithm is:
292 * seed = (seed * const_1 + const_2) % const_3;
294 * According to the documentation the random number is distributed over
295 * [0..MAXLONG]. Therefore const_3 is MAXLONG + 1:
297 * seed = (seed * const_1 + const_2) % (MAXLONG + 1);
299 * Because MAXLONG is 0x7fffffff (and MAXLONG + 1 is 0x80000000) the
300 * algorithm can be expressed without division as:
302 * seed = (seed * const_1 + const_2) & MAXLONG;
304 * To find out const_2 we just call RtlUniform with seed set to 0:
306 seed = 0;
307 expected = 0x7fffffc3;
308 result = pRtlUniform(&seed);
309 ok(result == expected,
310 "RtlUniform(&seed (seed == 0)) returns %x, expected %x\n",
311 result, expected);
313 * The algorithm is now:
315 * seed = (seed * const_1 + 0x7fffffc3) & MAXLONG;
317 * To find out const_1 we can use:
319 * const_1 = RtlUniform(1) - 0x7fffffc3;
321 * If that does not work a search loop can try all possible values of
322 * const_1 and compare to the result to RtlUniform(1).
323 * This way we find out that const_1 is 0xffffffed.
325 * For seed = 1 the const_2 is 0x7fffffc4:
327 seed = 1;
328 expected = seed * 0xffffffed + 0x7fffffc3 + 1;
329 result = pRtlUniform(&seed);
330 ok(result == expected,
331 "RtlUniform(&seed (seed == 1)) returns %x, expected %x\n",
332 result, expected);
334 * For seed = 2 the const_2 is 0x7fffffc3:
336 seed = 2;
337 expected = seed * 0xffffffed + 0x7fffffc3;
338 result = pRtlUniform(&seed);
341 * Windows Vista uses different algorithms, so skip the rest of the tests
342 * until that is figured out. Trace output for the failures is about 10.5 MB!
345 if (result == 0x7fffff9f) {
346 skip("Most likely running on Windows Vista which uses a different algorithm\n");
347 return;
350 ok(result == expected,
351 "RtlUniform(&seed (seed == 2)) returns %x, expected %x\n",
352 result, expected);
355 * More tests show that if seed is odd the result must be incremented by 1:
357 seed = 3;
358 expected = seed * 0xffffffed + 0x7fffffc3 + (seed & 1);
359 result = pRtlUniform(&seed);
360 ok(result == expected,
361 "RtlUniform(&seed (seed == 3)) returns %x, expected %x\n",
362 result, expected);
364 seed = 0x6bca1aa;
365 expected = seed * 0xffffffed + 0x7fffffc3;
366 result = pRtlUniform(&seed);
367 ok(result == expected,
368 "RtlUniform(&seed (seed == 0x6bca1aa)) returns %x, expected %x\n",
369 result, expected);
371 seed = 0x6bca1ab;
372 expected = seed * 0xffffffed + 0x7fffffc3 + 1;
373 result = pRtlUniform(&seed);
374 ok(result == expected,
375 "RtlUniform(&seed (seed == 0x6bca1ab)) returns %x, expected %x\n",
376 result, expected);
378 * When seed is 0x6bca1ac there is an exception:
380 seed = 0x6bca1ac;
381 expected = seed * 0xffffffed + 0x7fffffc3 + 2;
382 result = pRtlUniform(&seed);
383 ok(result == expected,
384 "RtlUniform(&seed (seed == 0x6bca1ac)) returns %x, expected %x\n",
385 result, expected);
387 * Note that up to here const_3 is not used
388 * (the highest bit of the result is not set).
390 * Starting with 0x6bca1ad: If seed is even the result must be incremented by 1:
392 seed = 0x6bca1ad;
393 expected = (seed * 0xffffffed + 0x7fffffc3) & MAXLONG;
394 result = pRtlUniform(&seed);
395 ok(result == expected,
396 "RtlUniform(&seed (seed == 0x6bca1ad)) returns %x, expected %x\n",
397 result, expected);
399 seed = 0x6bca1ae;
400 expected = (seed * 0xffffffed + 0x7fffffc3 + 1) & MAXLONG;
401 result = pRtlUniform(&seed);
402 ok(result == expected,
403 "RtlUniform(&seed (seed == 0x6bca1ae)) returns %x, expected %x\n",
404 result, expected);
406 * There are several ranges where for odd or even seed the result must be
407 * incremented by 1. You can see this ranges in the following test.
409 * For a full test use one of the following loop heads:
411 * for (num = 0; num <= 0xffffffff; num++) {
412 * seed = num;
413 * ...
415 * seed = 0;
416 * for (num = 0; num <= 0xffffffff; num++) {
417 * ...
419 seed = 0;
420 for (num = 0; num <= 100000; num++) {
422 expected = seed * 0xffffffed + 0x7fffffc3;
423 if (seed < 0x6bca1ac) {
424 expected = expected + (seed & 1);
425 } else if (seed == 0x6bca1ac) {
426 expected = (expected + 2) & MAXLONG;
427 } else if (seed < 0xd79435c) {
428 expected = (expected + (~seed & 1)) & MAXLONG;
429 } else if (seed < 0x1435e50b) {
430 expected = expected + (seed & 1);
431 } else if (seed < 0x1af286ba) {
432 expected = (expected + (~seed & 1)) & MAXLONG;
433 } else if (seed < 0x21af2869) {
434 expected = expected + (seed & 1);
435 } else if (seed < 0x286bca18) {
436 expected = (expected + (~seed & 1)) & MAXLONG;
437 } else if (seed < 0x2f286bc7) {
438 expected = expected + (seed & 1);
439 } else if (seed < 0x35e50d77) {
440 expected = (expected + (~seed & 1)) & MAXLONG;
441 } else if (seed < 0x3ca1af26) {
442 expected = expected + (seed & 1);
443 } else if (seed < 0x435e50d5) {
444 expected = (expected + (~seed & 1)) & MAXLONG;
445 } else if (seed < 0x4a1af284) {
446 expected = expected + (seed & 1);
447 } else if (seed < 0x50d79433) {
448 expected = (expected + (~seed & 1)) & MAXLONG;
449 } else if (seed < 0x579435e2) {
450 expected = expected + (seed & 1);
451 } else if (seed < 0x5e50d792) {
452 expected = (expected + (~seed & 1)) & MAXLONG;
453 } else if (seed < 0x650d7941) {
454 expected = expected + (seed & 1);
455 } else if (seed < 0x6bca1af0) {
456 expected = (expected + (~seed & 1)) & MAXLONG;
457 } else if (seed < 0x7286bc9f) {
458 expected = expected + (seed & 1);
459 } else if (seed < 0x79435e4e) {
460 expected = (expected + (~seed & 1)) & MAXLONG;
461 } else if (seed < 0x7ffffffd) {
462 expected = expected + (seed & 1);
463 } else if (seed < 0x86bca1ac) {
464 expected = (expected + (~seed & 1)) & MAXLONG;
465 } else if (seed == 0x86bca1ac) {
466 expected = (expected + 1) & MAXLONG;
467 } else if (seed < 0x8d79435c) {
468 expected = expected + (seed & 1);
469 } else if (seed < 0x9435e50b) {
470 expected = (expected + (~seed & 1)) & MAXLONG;
471 } else if (seed < 0x9af286ba) {
472 expected = expected + (seed & 1);
473 } else if (seed < 0xa1af2869) {
474 expected = (expected + (~seed & 1)) & MAXLONG;
475 } else if (seed < 0xa86bca18) {
476 expected = expected + (seed & 1);
477 } else if (seed < 0xaf286bc7) {
478 expected = (expected + (~seed & 1)) & MAXLONG;
479 } else if (seed == 0xaf286bc7) {
480 expected = (expected + 2) & MAXLONG;
481 } else if (seed < 0xb5e50d77) {
482 expected = expected + (seed & 1);
483 } else if (seed < 0xbca1af26) {
484 expected = (expected + (~seed & 1)) & MAXLONG;
485 } else if (seed < 0xc35e50d5) {
486 expected = expected + (seed & 1);
487 } else if (seed < 0xca1af284) {
488 expected = (expected + (~seed & 1)) & MAXLONG;
489 } else if (seed < 0xd0d79433) {
490 expected = expected + (seed & 1);
491 } else if (seed < 0xd79435e2) {
492 expected = (expected + (~seed & 1)) & MAXLONG;
493 } else if (seed < 0xde50d792) {
494 expected = expected + (seed & 1);
495 } else if (seed < 0xe50d7941) {
496 expected = (expected + (~seed & 1)) & MAXLONG;
497 } else if (seed < 0xebca1af0) {
498 expected = expected + (seed & 1);
499 } else if (seed < 0xf286bc9f) {
500 expected = (expected + (~seed & 1)) & MAXLONG;
501 } else if (seed < 0xf9435e4e) {
502 expected = expected + (seed & 1);
503 } else if (seed < 0xfffffffd) {
504 expected = (expected + (~seed & 1)) & MAXLONG;
505 } else {
506 expected = expected + (seed & 1);
507 } /* if */
508 seed_bak = seed;
509 result = pRtlUniform(&seed);
510 ok(result == expected,
511 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) returns %x, expected %x\n",
512 (DWORD)(num >> 32), (DWORD)num, seed_bak, result, expected);
513 ok(seed == expected,
514 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) sets seed to %x, expected %x\n",
515 (DWORD)(num >> 32), (DWORD)num, seed_bak, result, expected);
516 } /* for */
518 * Further investigation shows: In the different regions the highest bit
519 * is set or cleared when even or odd seeds need an increment by 1.
520 * This leads to a simplified algorithm:
522 * seed = seed * 0xffffffed + 0x7fffffc3;
523 * if (seed == 0xffffffff || seed == 0x7ffffffe) {
524 * seed = (seed + 2) & MAXLONG;
525 * } else if (seed == 0x7fffffff) {
526 * seed = 0;
527 * } else if ((seed & 0x80000000) == 0) {
528 * seed = seed + (~seed & 1);
529 * } else {
530 * seed = (seed + (seed & 1)) & MAXLONG;
533 * This is also the algorithm used for RtlUniform of wine (see dlls/ntdll/rtl.c).
535 * Now comes the funny part:
536 * It took me one weekend, to find the complicated algorithm and one day more,
537 * to find the simplified algorithm. Several weeks later I found out: The value
538 * MAXLONG (=0x7fffffff) is never returned, neither with the native function
539 * nor with the simplified algorithm. In reality the native function and our
540 * function return a random number distributed over [0..MAXLONG-1]. Note
541 * that this is different from what native documentation states [0..MAXLONG].
542 * Expressed with D.H. Lehmer's 1948 algorithm it looks like:
544 * seed = (seed * const_1 + const_2) % MAXLONG;
546 * Further investigations show that the real algorithm is:
548 * seed = (seed * 0x7fffffed + 0x7fffffc3) % MAXLONG;
550 * This is checked with the test below:
552 seed = 0;
553 for (num = 0; num <= 100000; num++) {
554 expected = (seed * 0x7fffffed + 0x7fffffc3) % 0x7fffffff;
555 seed_bak = seed;
556 result = pRtlUniform(&seed);
557 ok(result == expected,
558 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) returns %x, expected %x\n",
559 (DWORD)(num >> 32), (DWORD)num, seed_bak, result, expected);
560 ok(seed == expected,
561 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) sets seed to %x, expected %x\n",
562 (DWORD)(num >> 32), (DWORD)num, seed_bak, result, expected);
563 } /* for */
565 * More tests show that RtlUniform does not return 0x7ffffffd for seed values
566 * in the range [0..MAXLONG-1]. Additionally 2 is returned twice. This shows
567 * that there is more than one cycle of generated randon numbers ...
572 static ULONG WINAPI my_RtlRandom(PULONG seed)
574 static ULONG saved_value[128] =
575 { /* 0 */ 0x4c8bc0aa, 0x4c022957, 0x2232827a, 0x2f1e7626, 0x7f8bdafb, 0x5c37d02a, 0x0ab48f72, 0x2f0c4ffa,
576 /* 8 */ 0x290e1954, 0x6b635f23, 0x5d3885c0, 0x74b49ff8, 0x5155fa54, 0x6214ad3f, 0x111e9c29, 0x242a3a09,
577 /* 16 */ 0x75932ae1, 0x40ac432e, 0x54f7ba7a, 0x585ccbd5, 0x6df5c727, 0x0374dad1, 0x7112b3f1, 0x735fc311,
578 /* 24 */ 0x404331a9, 0x74d97781, 0x64495118, 0x323e04be, 0x5974b425, 0x4862e393, 0x62389c1d, 0x28a68b82,
579 /* 32 */ 0x0f95da37, 0x7a50bbc6, 0x09b0091c, 0x22cdb7b4, 0x4faaed26, 0x66417ccd, 0x189e4bfa, 0x1ce4e8dd,
580 /* 40 */ 0x5274c742, 0x3bdcf4dc, 0x2d94e907, 0x32eac016, 0x26d33ca3, 0x60415a8a, 0x31f57880, 0x68c8aa52,
581 /* 48 */ 0x23eb16da, 0x6204f4a1, 0x373927c1, 0x0d24eb7c, 0x06dd7379, 0x2b3be507, 0x0f9c55b1, 0x2c7925eb,
582 /* 56 */ 0x36d67c9a, 0x42f831d9, 0x5e3961cb, 0x65d637a8, 0x24bb3820, 0x4d08e33d, 0x2188754f, 0x147e409e,
583 /* 64 */ 0x6a9620a0, 0x62e26657, 0x7bd8ce81, 0x11da0abb, 0x5f9e7b50, 0x23e444b6, 0x25920c78, 0x5fc894f0,
584 /* 72 */ 0x5e338cbb, 0x404237fd, 0x1d60f80f, 0x320a1743, 0x76013d2b, 0x070294ee, 0x695e243b, 0x56b177fd,
585 /* 80 */ 0x752492e1, 0x6decd52f, 0x125f5219, 0x139d2e78, 0x1898d11e, 0x2f7ee785, 0x4db405d8, 0x1a028a35,
586 /* 88 */ 0x63f6f323, 0x1f6d0078, 0x307cfd67, 0x3f32a78a, 0x6980796c, 0x462b3d83, 0x34b639f2, 0x53fce379,
587 /* 96 */ 0x74ba50f4, 0x1abc2c4b, 0x5eeaeb8d, 0x335a7a0d, 0x3973dd20, 0x0462d66b, 0x159813ff, 0x1e4643fd,
588 /* 104 */ 0x06bc5c62, 0x3115e3fc, 0x09101613, 0x47af2515, 0x4f11ec54, 0x78b99911, 0x3db8dd44, 0x1ec10b9b,
589 /* 112 */ 0x5b5506ca, 0x773ce092, 0x567be81a, 0x5475b975, 0x7a2cde1a, 0x494536f5, 0x34737bb4, 0x76d9750b,
590 /* 120 */ 0x2a1f6232, 0x2e49644d, 0x7dddcbe7, 0x500cebdb, 0x619dab9e, 0x48c626fe, 0x1cda3193, 0x52dabe9d };
591 ULONG rand;
592 int pos;
593 ULONG result;
595 rand = (*seed * 0x7fffffed + 0x7fffffc3) % 0x7fffffff;
596 *seed = (rand * 0x7fffffed + 0x7fffffc3) % 0x7fffffff;
597 pos = *seed & 0x7f;
598 result = saved_value[pos];
599 saved_value[pos] = rand;
600 return(result);
604 static void test_RtlRandom(void)
606 ULONGLONG num;
607 ULONG seed;
608 ULONG seed_bak;
609 ULONG seed_expected;
610 ULONG result;
611 ULONG result_expected;
614 * Unlike RtlUniform, RtlRandom is not documented. We guess that for
615 * RtlRandom D.H. Lehmer's 1948 algorithm is used like stated in
616 * the documentation of the RtlUniform function. This algorithm is:
618 * seed = (seed * const_1 + const_2) % const_3;
620 * According to the RtlUniform documentation the random number is
621 * distributed over [0..MAXLONG], but in reality it is distributed
622 * over [0..MAXLONG-1]. Therefore const_3 might be MAXLONG + 1 or
623 * MAXLONG:
625 * seed = (seed * const_1 + const_2) % (MAXLONG + 1);
627 * or
629 * seed = (seed * const_1 + const_2) % MAXLONG;
631 * To find out const_2 we just call RtlRandom with seed set to 0:
633 seed = 0;
634 result_expected = 0x320a1743;
635 seed_expected =0x44b;
636 result = pRtlRandom(&seed);
639 * Windows Vista uses different algorithms, so skip the rest of the tests
640 * until that is figured out. Trace output for the failures is about 10.5 MB!
643 if (seed == 0x3fc) {
644 skip("Most likely running on Windows Vista which uses a different algorithm\n");
645 return;
648 ok(result == result_expected,
649 "pRtlRandom(&seed (seed == 0)) returns %x, expected %x\n",
650 result, result_expected);
651 ok(seed == seed_expected,
652 "pRtlRandom(&seed (seed == 0)) sets seed to %x, expected %x\n",
653 seed, seed_expected);
655 * Seed is not equal to result as with RtlUniform. To see more we
656 * call RtlRandom again with seed set to 0:
658 seed = 0;
659 result_expected = 0x7fffffc3;
660 seed_expected =0x44b;
661 result = pRtlRandom(&seed);
662 ok(result == result_expected,
663 "RtlRandom(&seed (seed == 0)) returns %x, expected %x\n",
664 result, result_expected);
665 ok(seed == seed_expected,
666 "RtlRandom(&seed (seed == 0)) sets seed to %x, expected %x\n",
667 seed, seed_expected);
669 * Seed is set to the same value as before but the result is different.
670 * To see more we call RtlRandom again with seed set to 0:
672 seed = 0;
673 result_expected = 0x7fffffc3;
674 seed_expected =0x44b;
675 result = pRtlRandom(&seed);
676 ok(result == result_expected,
677 "RtlRandom(&seed (seed == 0)) returns %x, expected %x\n",
678 result, result_expected);
679 ok(seed == seed_expected,
680 "RtlRandom(&seed (seed == 0)) sets seed to %x, expected %x\n",
681 seed, seed_expected);
683 * Seed is again set to the same value as before. This time we also
684 * have the same result as before. Interestingly the value of the
685 * result is 0x7fffffc3 which is the same value used in RtlUniform
686 * as const_2. If we do
688 * seed = 0;
689 * result = RtlUniform(&seed);
691 * we get the same result (0x7fffffc3) as with
693 * seed = 0;
694 * RtlRandom(&seed);
695 * seed = 0;
696 * result = RtlRandom(&seed);
698 * And there is another interesting thing. If we do
700 * seed = 0;
701 * RtlUniform(&seed);
702 * RtlUniform(&seed);
704 * seed is set to the value 0x44b which ist the same value that
706 * seed = 0;
707 * RtlRandom(&seed);
709 * assigns to seed. Putting these two findings together leads to
710 * the conclusion that RtlRandom saves the value in some variable,
711 * like in the following algorithm:
713 * result = saved_value;
714 * saved_value = RtlUniform(&seed);
715 * RtlUniform(&seed);
716 * return(result);
718 * Now we do further tests with seed set to 1:
720 seed = 1;
721 result_expected = 0x7a50bbc6;
722 seed_expected =0x5a1;
723 result = pRtlRandom(&seed);
724 ok(result == result_expected,
725 "RtlRandom(&seed (seed == 1)) returns %x, expected %x\n",
726 result, result_expected);
727 ok(seed == seed_expected,
728 "RtlRandom(&seed (seed == 1)) sets seed to %x, expected %x\n",
729 seed, seed_expected);
731 * If there is just one saved_value the result now would be
732 * 0x7fffffc3. From this test we can see that there is more than
733 * one saved_value, like with this algorithm:
735 * result = saved_value[pos];
736 * saved_value[pos] = RtlUniform(&seed);
737 * RtlUniform(&seed);
738 * return(result);
740 * But how is the value of pos determined? The calls to RtlUniform
741 * create a sequence of random numbers. Every second random number
742 * is put into the saved_value array and is used in some later call
743 * of RtlRandom as result. The only reasonable source to determine
744 * pos are the random numbers generated by RtlUniform which are not
745 * put into the saved_value array. This are the values of seed
746 * between the two calls of RtlUniform as in this algorithm:
748 * rand = RtlUniform(&seed);
749 * RtlUniform(&seed);
750 * pos = position(seed);
751 * result = saved_value[pos];
752 * saved_value[pos] = rand;
753 * return(result);
755 * What remains to be determined is: The size of the saved_value array,
756 * the initial values of the saved_value array and the function
757 * position(seed). These tests are not shown here.
758 * The result of these tests is: The size of the saved_value array
759 * is 128, the initial values can be seen in the my_RtlRandom
760 * function and the position(seed) function is (seed & 0x7f).
762 * For a full test of RtlRandom use one of the following loop heads:
764 * for (num = 0; num <= 0xffffffff; num++) {
765 * seed = num;
766 * ...
768 * seed = 0;
769 * for (num = 0; num <= 0xffffffff; num++) {
770 * ...
772 seed = 0;
773 for (num = 0; num <= 100000; num++) {
774 seed_bak = seed;
775 seed_expected = seed;
776 result_expected = my_RtlRandom(&seed_expected);
777 /* The following corrections are necessary because the */
778 /* previous tests changed the saved_value array */
779 if (num == 0) {
780 result_expected = 0x7fffffc3;
781 } else if (num == 81) {
782 result_expected = 0x7fffffb1;
783 } /* if */
784 result = pRtlRandom(&seed);
785 ok(result == result_expected,
786 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) returns %x, expected %x\n",
787 (DWORD)(num >> 32), (DWORD)num, seed_bak, result, result_expected);
788 ok(seed == seed_expected,
789 "test: 0x%x%08x RtlUniform(&seed (seed == %x)) sets seed to %x, expected %x\n",
790 (DWORD)(num >> 32), (DWORD)num, seed_bak, result, seed_expected);
791 } /* for */
795 typedef struct {
796 ACCESS_MASK GrantedAccess;
797 ACCESS_MASK DesiredAccess;
798 BOOLEAN result;
799 } all_accesses_t;
801 static const all_accesses_t all_accesses[] = {
802 {0xFEDCBA76, 0xFEDCBA76, 1},
803 {0x00000000, 0xFEDCBA76, 0},
804 {0xFEDCBA76, 0x00000000, 1},
805 {0x00000000, 0x00000000, 1},
806 {0xFEDCBA76, 0xFEDCBA70, 1},
807 {0xFEDCBA70, 0xFEDCBA76, 0},
808 {0xFEDCBA76, 0xFEDC8A76, 1},
809 {0xFEDC8A76, 0xFEDCBA76, 0},
810 {0xFEDCBA76, 0xC8C4B242, 1},
811 {0xC8C4B242, 0xFEDCBA76, 0},
813 #define NB_ALL_ACCESSES (sizeof(all_accesses)/sizeof(*all_accesses))
816 static void test_RtlAreAllAccessesGranted(void)
818 unsigned int test_num;
819 BOOLEAN result;
821 for (test_num = 0; test_num < NB_ALL_ACCESSES; test_num++) {
822 result = pRtlAreAllAccessesGranted(all_accesses[test_num].GrantedAccess,
823 all_accesses[test_num].DesiredAccess);
824 ok(all_accesses[test_num].result == result,
825 "(test %d): RtlAreAllAccessesGranted(%08x, %08x) returns %d, expected %d\n",
826 test_num, all_accesses[test_num].GrantedAccess,
827 all_accesses[test_num].DesiredAccess,
828 result, all_accesses[test_num].result);
829 } /* for */
833 typedef struct {
834 ACCESS_MASK GrantedAccess;
835 ACCESS_MASK DesiredAccess;
836 BOOLEAN result;
837 } any_accesses_t;
839 static const any_accesses_t any_accesses[] = {
840 {0xFEDCBA76, 0xFEDCBA76, 1},
841 {0x00000000, 0xFEDCBA76, 0},
842 {0xFEDCBA76, 0x00000000, 0},
843 {0x00000000, 0x00000000, 0},
844 {0xFEDCBA76, 0x01234589, 0},
845 {0x00040000, 0xFEDCBA76, 1},
846 {0x00040000, 0xFED8BA76, 0},
847 {0xFEDCBA76, 0x00040000, 1},
848 {0xFED8BA76, 0x00040000, 0},
850 #define NB_ANY_ACCESSES (sizeof(any_accesses)/sizeof(*any_accesses))
853 static void test_RtlAreAnyAccessesGranted(void)
855 unsigned int test_num;
856 BOOLEAN result;
858 for (test_num = 0; test_num < NB_ANY_ACCESSES; test_num++) {
859 result = pRtlAreAnyAccessesGranted(any_accesses[test_num].GrantedAccess,
860 any_accesses[test_num].DesiredAccess);
861 ok(any_accesses[test_num].result == result,
862 "(test %d): RtlAreAnyAccessesGranted(%08x, %08x) returns %d, expected %d\n",
863 test_num, any_accesses[test_num].GrantedAccess,
864 any_accesses[test_num].DesiredAccess,
865 result, any_accesses[test_num].result);
866 } /* for */
869 static void test_RtlComputeCrc32(void)
871 DWORD crc = 0;
873 if (!pRtlComputeCrc32)
874 return;
876 crc = pRtlComputeCrc32(crc, (const BYTE *)src, LEN);
877 ok(crc == 0x40861dc2,"Expected 0x40861dc2, got %8x\n", crc);
881 typedef struct MY_HANDLE
883 RTL_HANDLE RtlHandle;
884 void * MyValue;
885 } MY_HANDLE;
887 static inline void RtlpMakeHandleAllocated(RTL_HANDLE * Handle)
889 ULONG_PTR *AllocatedBit = (ULONG_PTR *)(&Handle->Next);
890 *AllocatedBit = *AllocatedBit | 1;
893 static void test_HandleTables(void)
895 BOOLEAN result;
896 NTSTATUS status;
897 ULONG Index;
898 MY_HANDLE * MyHandle;
899 RTL_HANDLE_TABLE HandleTable;
901 pRtlInitializeHandleTable(0x3FFF, sizeof(MY_HANDLE), &HandleTable);
902 MyHandle = (MY_HANDLE *)pRtlAllocateHandle(&HandleTable, &Index);
903 ok(MyHandle != NULL, "RtlAllocateHandle failed\n");
904 RtlpMakeHandleAllocated(&MyHandle->RtlHandle);
905 MyHandle = NULL;
906 result = pRtlIsValidIndexHandle(&HandleTable, Index, (RTL_HANDLE **)&MyHandle);
907 ok(result, "Handle %p wasn't valid\n", MyHandle);
908 result = pRtlFreeHandle(&HandleTable, &MyHandle->RtlHandle);
909 ok(result, "Couldn't free handle %p\n", MyHandle);
910 status = pRtlDestroyHandleTable(&HandleTable);
911 ok(status == STATUS_SUCCESS, "RtlDestroyHandleTable failed with error 0x%08x\n", status);
914 static void test_RtlAllocateAndInitializeSid(void)
916 NTSTATUS ret;
917 SID_IDENTIFIER_AUTHORITY sia = {{ 1, 2, 3, 4, 5, 6 }};
918 PSID psid;
920 ret = pRtlAllocateAndInitializeSid(&sia, 0, 1, 2, 3, 4, 5, 6, 7, 8, &psid);
921 ok(!ret, "RtlAllocateAndInitializeSid error %08x\n", ret);
922 ret = pRtlFreeSid(psid);
923 ok(!ret, "RtlFreeSid error %08x\n", ret);
925 /* these tests crash on XP
926 ret = pRtlAllocateAndInitializeSid(NULL, 0, 1, 2, 3, 4, 5, 6, 7, 8, &psid);
927 ret = pRtlAllocateAndInitializeSid(&sia, 0, 1, 2, 3, 4, 5, 6, 7, 8, NULL);*/
929 ret = pRtlAllocateAndInitializeSid(&sia, 9, 1, 2, 3, 4, 5, 6, 7, 8, &psid);
930 ok(ret == STATUS_INVALID_SID, "wrong error %08x\n", ret);
933 START_TEST(rtl)
935 InitFunctionPtrs();
937 if (pRtlCompareMemory)
938 test_RtlCompareMemory();
939 if (pRtlCompareMemoryUlong)
940 test_RtlCompareMemoryUlong();
941 if (pRtlMoveMemory)
942 test_RtlMoveMemory();
943 if (pRtlFillMemory)
944 test_RtlFillMemory();
945 if (pRtlFillMemoryUlong)
946 test_RtlFillMemoryUlong();
947 if (pRtlZeroMemory)
948 test_RtlZeroMemory();
949 if (pRtlUlonglongByteSwap)
950 test_RtlUlonglongByteSwap();
951 if (pRtlUniform)
952 test_RtlUniform();
953 if (pRtlRandom)
954 test_RtlRandom();
955 if (pRtlAreAllAccessesGranted)
956 test_RtlAreAllAccessesGranted();
957 if (pRtlAreAnyAccessesGranted)
958 test_RtlAreAnyAccessesGranted();
959 if (pRtlComputeCrc32)
960 test_RtlComputeCrc32();
961 if (pRtlInitializeHandleTable)
962 test_HandleTables();
963 if (pRtlAllocateAndInitializeSid)
964 test_RtlAllocateAndInitializeSid();