2 * dlls/rsaenh/tomcrypt.h
3 * Function prototypes, type definitions and constant definitions
4 * for LibTomCrypt code.
6 * Copyright 2004 Michael Jung
7 * Based on public domain code by Tom St Denis (tomstdenis@iahu.ca)
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
25 * This file contains code from the LibTomCrypt cryptographic
26 * library written by Tom St Denis (tomstdenis@iahu.ca). LibTomCrypt
27 * is in the public domain. The code in this file is tailored to
28 * special requirements. Take a look at http://libtomcrypt.org for the
32 #ifndef __WINE_TOMCRYPT_H_
33 #define __WINE_TOMCRYPT_H_
41 /* error codes [will be expanded in future releases] */
43 CRYPT_OK
=0, /* Result OK */
44 CRYPT_ERROR
, /* Generic Error */
45 CRYPT_NOP
, /* Not a failure but no operation was performed */
47 CRYPT_INVALID_KEYSIZE
, /* Invalid key size given */
48 CRYPT_INVALID_ROUNDS
, /* Invalid number of rounds */
49 CRYPT_FAIL_TESTVECTOR
, /* Algorithm failed test vectors */
51 CRYPT_BUFFER_OVERFLOW
, /* Not enough space for output */
52 CRYPT_INVALID_PACKET
, /* Invalid input packet given */
54 CRYPT_INVALID_PRNGSIZE
, /* Invalid number of bits for a PRNG */
55 CRYPT_ERROR_READPRNG
, /* Could not read enough from PRNG */
57 CRYPT_INVALID_CIPHER
, /* Invalid cipher specified */
58 CRYPT_INVALID_HASH
, /* Invalid hash specified */
59 CRYPT_INVALID_PRNG
, /* Invalid PRNG specified */
61 CRYPT_MEM
, /* Out of memory */
63 CRYPT_PK_TYPE_MISMATCH
, /* Not equivalent types of PK keys */
64 CRYPT_PK_NOT_PRIVATE
, /* Requires a private PK key */
66 CRYPT_INVALID_ARG
, /* Generic invalid argument */
67 CRYPT_FILE_NOTFOUND
, /* File Not Found */
69 CRYPT_PK_INVALID_TYPE
, /* Invalid type of PK key */
70 CRYPT_PK_INVALID_SYSTEM
,/* Invalid PK system specified */
71 CRYPT_PK_DUP
, /* Duplicate key already in key ring */
72 CRYPT_PK_NOT_FOUND
, /* Key not found in keyring */
73 CRYPT_PK_INVALID_SIZE
, /* Invalid size input for PK parameters */
75 CRYPT_INVALID_PRIME_SIZE
/* Invalid size of prime requested */
78 #define CONST64(a,b) ((((ULONG64)(a)) << 32) | (b))
79 typedef ULONG64 ulong64
;
81 /* this is the "32-bit at least" data type
82 * Re-define it to suit your platform but it must be at least 32-bits
84 typedef ULONG32 ulong32
;
86 /* ---- HELPER MACROS ---- */
87 #define STORE32H(x, y) \
88 { (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255); \
89 (y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); }
91 #define LOAD32H(x, y) \
92 { x = ((unsigned long)((y)[0] & 255)<<24) | \
93 ((unsigned long)((y)[1] & 255)<<16) | \
94 ((unsigned long)((y)[2] & 255)<<8) | \
95 ((unsigned long)((y)[3] & 255)); }
97 #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) && !defined(INTEL_CC)
99 static inline unsigned ROR(unsigned word
, int i
)
101 __asm__("rorl %%cl,%0"
103 :"0" (word
),"c" (i
));
109 /* rotates the hard way */
110 #define ROR(x, y) ( ((((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)((y)&31)) | \
111 ((unsigned long)(x)<<(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL)
116 #define MIN(x, y) ( ((x)<(y))?(x):(y) )
118 #define byte(x, n) (((x) >> (8 * (n))) & 255)
120 typedef struct tag_rc2_key
{
124 typedef struct tag_des_key
{
125 ulong32 ek
[32], dk
[32];
128 typedef struct tag_des3_key
{
129 ulong32 ek
[3][32], dk
[3][32];
132 int rc2_setup(const unsigned char *key
, int keylen
, int bits
, int num_rounds
, rc2_key
*skey
);
133 void rc2_ecb_encrypt(const unsigned char *pt
, unsigned char *ct
, rc2_key
*key
);
134 void rc2_ecb_decrypt(const unsigned char *ct
, unsigned char *pt
, rc2_key
*key
);
136 int des_setup(const unsigned char *key
, int keylen
, int num_rounds
, des_key
*skey
);
137 void des_ecb_encrypt(const unsigned char *pt
, unsigned char *ct
, des_key
*key
);
138 void des_ecb_decrypt(const unsigned char *ct
, unsigned char *pt
, des_key
*key
);
140 int des3_setup(const unsigned char *key
, int keylen
, int num_rounds
, des3_key
*skey
);
141 void des3_ecb_encrypt(const unsigned char *pt
, unsigned char *ct
, des3_key
*key
);
142 void des3_ecb_decrypt(const unsigned char *ct
, unsigned char *pt
, des3_key
*key
);
144 typedef struct tag_md2_state
{
145 unsigned char chksum
[16], X
[48], buf
[16];
146 unsigned long curlen
;
149 int md2_init(md2_state
* md
);
150 int md2_process(md2_state
* md
, const unsigned char *buf
, unsigned long len
);
151 int md2_done(md2_state
* md
, unsigned char *hash
);
155 unsigned char buf
[256];
158 typedef union Prng_state
{
162 int rc4_start(prng_state
*prng
);
163 int rc4_add_entropy(const unsigned char *buf
, unsigned long len
, prng_state
*prng
);
164 int rc4_ready(prng_state
*prng
);
165 unsigned long rc4_read(unsigned char *buf
, unsigned long len
, prng_state
*prng
);
167 /* some default configurations.
169 * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
170 * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits
172 * At the very least a mp_digit must be able to hold 7 bits
173 * [any size beyond that is ok provided it doesn't overflow the data type]
175 typedef unsigned long mp_digit
;
176 typedef ulong64 mp_word
;
179 #define MP_DIGIT_BIT DIGIT_BIT
180 #define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
181 #define MP_DIGIT_MAX MP_MASK
184 #define MP_LT -1 /* less than */
185 #define MP_EQ 0 /* equal to */
186 #define MP_GT 1 /* greater than */
188 #define MP_ZPOS 0 /* positive integer */
189 #define MP_NEG 1 /* negative */
191 #define MP_OKAY 0 /* ok result */
192 #define MP_MEM -2 /* out of mem */
193 #define MP_VAL -3 /* invalid input */
194 #define MP_RANGE MP_VAL
196 #define MP_YES 1 /* yes response */
197 #define MP_NO 0 /* no response */
199 /* Primality generation flags */
200 #define LTM_PRIME_BBS 0x0001 /* BBS style prime */
201 #define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */
202 #define LTM_PRIME_2MSB_OFF 0x0004 /* force 2nd MSB to 0 */
203 #define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */
207 /* define this to use lower memory usage routines (exptmods mostly) */
208 /* #define MP_LOW_MEM */
210 #define MP_PREC 64 /* default digits of precision */
212 /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
213 #define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
215 /* the infamous mp_int structure */
217 int used
, alloc
, sign
;
221 /* callback for mp_prime_random, should fill dst with random bytes and return how many read [up to len] */
222 typedef int ltm_prime_callback(unsigned char *dst
, int len
, void *dat
);
224 #define DIGIT(m,k) ((m)->dp[(k)])
226 /* error code to char* string */
227 char *mp_error_to_string(int code
);
229 /* ---> init and deinit bignum functions <--- */
231 int mp_init(mp_int
*a
);
234 void mp_clear(mp_int
*a
);
236 /* init a null terminated series of arguments */
237 int mp_init_multi(mp_int
*mp
, ...);
239 /* clear a null terminated series of arguments */
240 void mp_clear_multi(mp_int
*mp
, ...);
242 /* exchange two ints */
243 void mp_exch(mp_int
*a
, mp_int
*b
);
245 /* shrink ram required for a bignum */
246 int mp_shrink(mp_int
*a
);
248 /* grow an int to a given size */
249 int mp_grow(mp_int
*a
, int size
);
251 /* init to a given number of digits */
252 int mp_init_size(mp_int
*a
, int size
);
254 /* ---> Basic Manipulations <--- */
255 #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
256 #define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
257 #define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
260 void mp_zero(mp_int
*a
);
263 void mp_set(mp_int
*a
, mp_digit b
);
265 /* set a 32-bit const */
266 int mp_set_int(mp_int
*a
, unsigned long b
);
268 /* get a 32-bit value */
269 unsigned long mp_get_int(mp_int
* a
);
271 /* initialize and set a digit */
272 int mp_init_set (mp_int
* a
, mp_digit b
);
274 /* initialize and set 32-bit value */
275 int mp_init_set_int (mp_int
* a
, unsigned long b
);
278 int mp_copy(const mp_int
*a
, mp_int
*b
);
280 /* inits and copies, a = b */
281 int mp_init_copy(mp_int
*a
, const mp_int
*b
);
283 /* trim unused digits */
284 void mp_clamp(mp_int
*a
);
286 /* ---> digit manipulation <--- */
288 /* right shift by "b" digits */
289 void mp_rshd(mp_int
*a
, int b
);
291 /* left shift by "b" digits */
292 int mp_lshd(mp_int
*a
, int b
);
295 int mp_div_2d(mp_int
*a
, int b
, mp_int
*c
, mp_int
*d
);
298 int mp_div_2(mp_int
*a
, mp_int
*b
);
301 int mp_mul_2d(mp_int
*a
, int b
, mp_int
*c
);
304 int mp_mul_2(mp_int
*a
, mp_int
*b
);
307 int mp_mod_2d(mp_int
*a
, int b
, mp_int
*c
);
309 /* computes a = 2**b */
310 int mp_2expt(mp_int
*a
, int b
);
312 /* Counts the number of lsbs which are zero before the first zero bit */
313 int mp_cnt_lsb(mp_int
*a
);
317 /* makes a pseudo-random int of a given size */
318 int mp_rand(mp_int
*a
, int digits
);
320 /* ---> binary operations <--- */
322 int mp_xor(mp_int
*a
, mp_int
*b
, mp_int
*c
);
325 int mp_or(mp_int
*a
, mp_int
*b
, mp_int
*c
);
328 int mp_and(mp_int
*a
, mp_int
*b
, mp_int
*c
);
330 /* ---> Basic arithmetic <--- */
333 int mp_neg(mp_int
*a
, mp_int
*b
);
336 int mp_abs(mp_int
*a
, mp_int
*b
);
339 int mp_cmp(mp_int
*a
, mp_int
*b
);
341 /* compare |a| to |b| */
342 int mp_cmp_mag(mp_int
*a
, mp_int
*b
);
345 int mp_add(mp_int
*a
, mp_int
*b
, mp_int
*c
);
348 int mp_sub(mp_int
*a
, mp_int
*b
, mp_int
*c
);
351 int mp_mul(mp_int
*a
, mp_int
*b
, mp_int
*c
);
354 int mp_sqr(mp_int
*a
, mp_int
*b
);
356 /* a/b => cb + d == a */
357 int mp_div(mp_int
*a
, mp_int
*b
, mp_int
*c
, mp_int
*d
);
359 /* c = a mod b, 0 <= c < b */
360 int mp_mod(mp_int
*a
, mp_int
*b
, mp_int
*c
);
362 /* ---> single digit functions <--- */
364 /* compare against a single digit */
365 int mp_cmp_d(mp_int
*a
, mp_digit b
);
368 int mp_add_d(mp_int
*a
, mp_digit b
, mp_int
*c
);
371 int mp_sub_d(mp_int
*a
, mp_digit b
, mp_int
*c
);
374 int mp_mul_d(mp_int
*a
, mp_digit b
, mp_int
*c
);
376 /* a/b => cb + d == a */
377 int mp_div_d(mp_int
*a
, mp_digit b
, mp_int
*c
, mp_digit
*d
);
379 /* a/3 => 3c + d == a */
380 int mp_div_3(mp_int
*a
, mp_int
*c
, mp_digit
*d
);
383 int mp_expt_d(mp_int
*a
, mp_digit b
, mp_int
*c
);
385 /* c = a mod b, 0 <= c < b */
386 int mp_mod_d(mp_int
*a
, mp_digit b
, mp_digit
*c
);
388 /* ---> number theory <--- */
390 /* d = a + b (mod c) */
391 int mp_addmod(mp_int
*a
, mp_int
*b
, mp_int
*c
, mp_int
*d
);
393 /* d = a - b (mod c) */
394 int mp_submod(mp_int
*a
, mp_int
*b
, mp_int
*c
, mp_int
*d
);
396 /* d = a * b (mod c) */
397 int mp_mulmod(mp_int
*a
, mp_int
*b
, mp_int
*c
, mp_int
*d
);
399 /* c = a * a (mod b) */
400 int mp_sqrmod(mp_int
*a
, mp_int
*b
, mp_int
*c
);
402 /* c = 1/a (mod b) */
403 int mp_invmod(mp_int
*a
, mp_int
*b
, mp_int
*c
);
406 int mp_gcd(mp_int
*a
, mp_int
*b
, mp_int
*c
);
408 /* produces value such that U1*a + U2*b = U3 */
409 int mp_exteuclid(mp_int
*a
, mp_int
*b
, mp_int
*U1
, mp_int
*U2
, mp_int
*U3
);
411 /* c = [a, b] or (a*b)/(a, b) */
412 int mp_lcm(mp_int
*a
, mp_int
*b
, mp_int
*c
);
414 /* finds one of the b'th root of a, such that |c|**b <= |a|
416 * returns error if a < 0 and b is even
418 int mp_n_root(mp_int
*a
, mp_digit b
, mp_int
*c
);
420 /* special sqrt algo */
421 int mp_sqrt(mp_int
*arg
, mp_int
*ret
);
423 /* is number a square? */
424 int mp_is_square(mp_int
*arg
, int *ret
);
426 /* computes the jacobi c = (a | n) (or Legendre if b is prime) */
427 int mp_jacobi(mp_int
*a
, mp_int
*n
, int *c
);
429 /* used to setup the Barrett reduction for a given modulus b */
430 int mp_reduce_setup(mp_int
*a
, mp_int
*b
);
432 /* Barrett Reduction, computes a (mod b) with a precomputed value c
434 * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
435 * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
437 int mp_reduce(mp_int
*a
, mp_int
*b
, mp_int
*c
);
439 /* setups the montgomery reduction */
440 int mp_montgomery_setup(mp_int
*a
, mp_digit
*mp
);
442 /* computes a = B**n mod b without division or multiplication useful for
443 * normalizing numbers in a Montgomery system.
445 int mp_montgomery_calc_normalization(mp_int
*a
, mp_int
*b
);
447 /* computes x/R == x (mod N) via Montgomery Reduction */
448 int mp_montgomery_reduce(mp_int
*a
, mp_int
*m
, mp_digit mp
);
450 /* returns 1 if a is a valid DR modulus */
451 int mp_dr_is_modulus(mp_int
*a
);
453 /* sets the value of "d" required for mp_dr_reduce */
454 void mp_dr_setup(mp_int
*a
, mp_digit
*d
);
456 /* reduces a modulo b using the Diminished Radix method */
457 int mp_dr_reduce(mp_int
*a
, mp_int
*b
, mp_digit mp
);
459 /* returns true if a can be reduced with mp_reduce_2k */
460 int mp_reduce_is_2k(mp_int
*a
);
462 /* determines k value for 2k reduction */
463 int mp_reduce_2k_setup(mp_int
*a
, mp_digit
*d
);
465 /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
466 int mp_reduce_2k(mp_int
*a
, mp_int
*n
, mp_digit d
);
468 /* d = a**b (mod c) */
469 int mp_exptmod(mp_int
*a
, mp_int
*b
, mp_int
*c
, mp_int
*d
);
471 /* ---> Primes <--- */
473 /* number of primes */
474 #define PRIME_SIZE 256
476 /* table of first PRIME_SIZE primes */
477 extern const mp_digit __prime_tab
[];
479 /* result=1 if a is divisible by one of the first PRIME_SIZE primes */
480 int mp_prime_is_divisible(mp_int
*a
, int *result
);
482 /* performs one Fermat test of "a" using base "b".
483 * Sets result to 0 if composite or 1 if probable prime
485 int mp_prime_fermat(mp_int
*a
, mp_int
*b
, int *result
);
487 /* performs one Miller-Rabin test of "a" using base "b".
488 * Sets result to 0 if composite or 1 if probable prime
490 int mp_prime_miller_rabin(mp_int
*a
, mp_int
*b
, int *result
);
492 /* This gives [for a given bit size] the number of trials required
493 * such that Miller-Rabin gives a prob of failure lower than 2^-96
495 int mp_prime_rabin_miller_trials(int size
);
497 /* performs t rounds of Miller-Rabin on "a" using the first
498 * t prime bases. Also performs an initial sieve of trial
499 * division. Determines if "a" is prime with probability
500 * of error no more than (1/4)**t.
502 * Sets result to 1 if probably prime, 0 otherwise
504 int mp_prime_is_prime(mp_int
*a
, int t
, int *result
);
506 /* finds the next prime after the number "a" using "t" trials
509 * bbs_style = 1 means the prime must be congruent to 3 mod 4
511 int mp_prime_next_prime(mp_int
*a
, int t
, int bbs_style
);
513 /* makes a truly random prime of a given size (bytes),
514 * call with bbs = 1 if you want it to be congruent to 3 mod 4
516 * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
517 * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
520 * The prime generated will be larger than 2^(8*size).
522 #define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat)
524 /* makes a truly random prime of a given size (bits),
526 * Flags are as follows:
528 * LTM_PRIME_BBS - make prime congruent to 3 mod 4
529 * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
530 * LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
531 * LTM_PRIME_2MSB_ON - make the 2nd highest bit one
533 * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
534 * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
538 int mp_prime_random_ex(mp_int
*a
, int t
, int size
, int flags
, ltm_prime_callback cb
, void *dat
);
540 /* ---> radix conversion <--- */
541 int mp_count_bits(mp_int
*a
);
543 int mp_unsigned_bin_size(mp_int
*a
);
544 int mp_read_unsigned_bin(mp_int
*a
, const unsigned char *b
, int c
);
545 int mp_to_unsigned_bin(mp_int
*a
, unsigned char *b
);
547 int mp_signed_bin_size(mp_int
*a
);
548 int mp_read_signed_bin(mp_int
*a
, unsigned char *b
, int c
);
549 int mp_to_signed_bin(mp_int
*a
, unsigned char *b
);
551 int mp_read_radix(mp_int
*a
, char *str
, int radix
);
552 int mp_toradix(mp_int
*a
, char *str
, int radix
);
553 int mp_toradix_n(mp_int
* a
, char *str
, int radix
, int maxlen
);
554 int mp_radix_size(mp_int
*a
, int radix
, int *size
);
556 int mp_fread(mp_int
*a
, int radix
, FILE *stream
);
557 int mp_fwrite(mp_int
*a
, int radix
, FILE *stream
);
559 #define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
560 #define mp_raw_size(mp) mp_signed_bin_size(mp)
561 #define mp_toraw(mp, str) mp_to_signed_bin((mp), (str))
562 #define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
563 #define mp_mag_size(mp) mp_unsigned_bin_size(mp)
564 #define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str))
566 #define mp_tobinary(M, S) mp_toradix((M), (S), 2)
567 #define mp_tooctal(M, S) mp_toradix((M), (S), 8)
568 #define mp_todecimal(M, S) mp_toradix((M), (S), 10)
569 #define mp_tohex(M, S) mp_toradix((M), (S), 16)
571 /* lowlevel functions, do not call! */
572 int s_mp_add(mp_int
*a
, mp_int
*b
, mp_int
*c
);
573 int s_mp_sub(mp_int
*a
, mp_int
*b
, mp_int
*c
);
574 #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
575 int fast_s_mp_mul_digs(mp_int
*a
, mp_int
*b
, mp_int
*c
, int digs
);
576 int s_mp_mul_digs(mp_int
*a
, mp_int
*b
, mp_int
*c
, int digs
);
577 int fast_s_mp_mul_high_digs(mp_int
*a
, mp_int
*b
, mp_int
*c
, int digs
);
578 int s_mp_mul_high_digs(mp_int
*a
, mp_int
*b
, mp_int
*c
, int digs
);
579 int fast_s_mp_sqr(mp_int
*a
, mp_int
*b
);
580 int s_mp_sqr(mp_int
*a
, mp_int
*b
);
581 int mp_karatsuba_mul(mp_int
*a
, mp_int
*b
, mp_int
*c
);
582 int mp_toom_mul(mp_int
*a
, mp_int
*b
, mp_int
*c
);
583 int mp_karatsuba_sqr(mp_int
*a
, mp_int
*b
);
584 int mp_toom_sqr(mp_int
*a
, mp_int
*b
);
585 int fast_mp_invmod(mp_int
*a
, mp_int
*b
, mp_int
*c
);
586 int mp_invmod_slow (mp_int
* a
, mp_int
* b
, mp_int
* c
);
587 int fast_mp_montgomery_reduce(mp_int
*a
, mp_int
*m
, mp_digit mp
);
588 int mp_exptmod_fast(mp_int
*G
, mp_int
*X
, mp_int
*P
, mp_int
*Y
, int mode
);
589 int s_mp_exptmod (mp_int
* G
, mp_int
* X
, mp_int
* P
, mp_int
* Y
);
590 void bn_reverse(unsigned char *s
, int len
);
592 extern const char *mp_s_rmap
;
594 #define PK_PRIVATE 0 /* PK private keys */
595 #define PK_PUBLIC 1 /* PK public keys */
597 /* Min and Max RSA key sizes (in bits) */
598 #define MIN_RSA_SIZE 384
599 #define MAX_RSA_SIZE 16384
601 typedef struct Rsa_key
{
603 mp_int e
, d
, N
, p
, q
, qP
, dP
, dQ
;
606 int rsa_make_key(int size
, long e
, rsa_key
*key
);
608 int rsa_exptmod(const unsigned char *in
, unsigned long inlen
,
609 unsigned char *out
, unsigned long *outlen
, int which
,
612 void rsa_free(rsa_key
*key
);
614 #endif /* __WINE_TOMCRYPT_H_ */