2 * Low level variant functions
4 * Copyright 2003 Jon Griffiths
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
22 #define NONAMELESSUNION
23 #define NONAMELESSSTRUCT
25 #include "wine/debug.h"
26 #include "wine/unicode.h"
33 WINE_DEFAULT_DEBUG_CHANNEL(variant
);
35 extern HMODULE hProxyDll DECLSPEC_HIDDEN
;
37 #define CY_MULTIPLIER 10000 /* 4 dp of precision */
38 #define CY_MULTIPLIER_F 10000.0
39 #define CY_HALF (CY_MULTIPLIER/2) /* 0.5 */
40 #define CY_HALF_F (CY_MULTIPLIER_F/2.0)
42 static const WCHAR szFloatFormatW
[] = { '%','.','7','G','\0' };
43 static const WCHAR szDoubleFormatW
[] = { '%','.','1','5','G','\0' };
45 /* Copy data from one variant to another. */
46 static inline void VARIANT_CopyData(const VARIANT
*srcVar
, VARTYPE vt
, void *pOut
)
51 case VT_UI1
: memcpy(pOut
, &V_UI1(srcVar
), sizeof(BYTE
)); break;
54 case VT_UI2
: memcpy(pOut
, &V_UI2(srcVar
), sizeof(SHORT
)); break;
59 case VT_UI4
: memcpy(pOut
, &V_UI4(srcVar
), sizeof (LONG
)); break;
64 case VT_UI8
: memcpy(pOut
, &V_UI8(srcVar
), sizeof (LONG64
)); break;
65 case VT_INT_PTR
: memcpy(pOut
, &V_INT_PTR(srcVar
), sizeof (INT_PTR
)); break;
66 case VT_DECIMAL
: memcpy(pOut
, &V_DECIMAL(srcVar
), sizeof (DECIMAL
)); break;
67 case VT_BSTR
: memcpy(pOut
, &V_BSTR(srcVar
), sizeof(BSTR
)); break;
69 FIXME("VT_ type %d unhandled, please report!\n", vt
);
73 /* Macro to inline conversion from a float or double to any integer type,
74 * rounding according to the 'dutch' convention.
76 #define VARIANT_DutchRound(typ, value, res) do { \
77 double whole = value < 0 ? ceil(value) : floor(value); \
78 double fract = value - whole; \
79 if (fract > 0.5) res = (typ)whole + (typ)1; \
80 else if (fract == 0.5) { typ is_odd = (typ)whole & 1; res = whole + is_odd; } \
81 else if (fract >= 0.0) res = (typ)whole; \
82 else if (fract == -0.5) { typ is_odd = (typ)whole & 1; res = whole - is_odd; } \
83 else if (fract > -0.5) res = (typ)whole; \
84 else res = (typ)whole - (typ)1; \
88 /* Coerce VT_BSTR to a numeric type */
89 static HRESULT
VARIANT_NumberFromBstr(OLECHAR
* pStrIn
, LCID lcid
, ULONG ulFlags
,
90 void* pOut
, VARTYPE vt
)
97 /* Use VarParseNumFromStr/VarNumFromParseNum as MSDN indicates */
98 np
.cDig
= sizeof(rgb
) / sizeof(BYTE
);
99 np
.dwInFlags
= NUMPRS_STD
;
101 hRet
= VarParseNumFromStr(pStrIn
, lcid
, ulFlags
, &np
, rgb
);
105 /* 1 << vt gives us the VTBIT constant for the destination number type */
106 hRet
= VarNumFromParseNum(&np
, rgb
, 1 << vt
, &dstVar
);
108 VARIANT_CopyData(&dstVar
, vt
, pOut
);
113 /* Coerce VT_DISPATCH to another type */
114 static HRESULT
VARIANT_FromDisp(IDispatch
* pdispIn
, LCID lcid
, void* pOut
,
115 VARTYPE vt
, DWORD dwFlags
)
117 static DISPPARAMS emptyParams
= { NULL
, NULL
, 0, 0 };
118 VARIANTARG srcVar
, dstVar
;
122 return DISP_E_BADVARTYPE
;
124 /* Get the default 'value' property from the IDispatch */
125 VariantInit(&srcVar
);
126 hRet
= IDispatch_Invoke(pdispIn
, DISPID_VALUE
, &IID_NULL
, lcid
, DISPATCH_PROPERTYGET
,
127 &emptyParams
, &srcVar
, NULL
, NULL
);
131 /* Convert the property to the requested type */
132 V_VT(&dstVar
) = VT_EMPTY
;
133 hRet
= VariantChangeTypeEx(&dstVar
, &srcVar
, lcid
, dwFlags
, vt
);
134 VariantClear(&srcVar
);
138 VARIANT_CopyData(&dstVar
, vt
, pOut
);
139 VariantClear(&srcVar
);
143 hRet
= DISP_E_TYPEMISMATCH
;
147 /* Inline return type */
148 #define RETTYP static inline HRESULT
151 /* Simple compiler cast from one type to another */
152 #define SIMPLE(dest, src, func) RETTYP _##func(src in, dest* out) { \
153 *out = in; return S_OK; }
155 /* Compiler cast where input cannot be negative */
156 #define NEGTST(dest, src, func) RETTYP _##func(src in, dest* out) { \
157 if (in < 0) return DISP_E_OVERFLOW; *out = in; return S_OK; }
159 /* Compiler cast where input cannot be > some number */
160 #define POSTST(dest, src, func, tst) RETTYP _##func(src in, dest* out) { \
161 if (in > (dest)tst) return DISP_E_OVERFLOW; *out = in; return S_OK; }
163 /* Compiler cast where input cannot be < some number or >= some other number */
164 #define BOTHTST(dest, src, func, lo, hi) RETTYP _##func(src in, dest* out) { \
165 if (in < (dest)lo || in > hi) return DISP_E_OVERFLOW; *out = in; return S_OK; }
168 POSTST(signed char, BYTE
, VarI1FromUI1
, I1_MAX
)
169 BOTHTST(signed char, SHORT
, VarI1FromI2
, I1_MIN
, I1_MAX
)
170 BOTHTST(signed char, LONG
, VarI1FromI4
, I1_MIN
, I1_MAX
)
171 SIMPLE(signed char, VARIANT_BOOL
, VarI1FromBool
)
172 POSTST(signed char, USHORT
, VarI1FromUI2
, I1_MAX
)
173 POSTST(signed char, ULONG
, VarI1FromUI4
, I1_MAX
)
174 BOTHTST(signed char, LONG64
, VarI1FromI8
, I1_MIN
, I1_MAX
)
175 POSTST(signed char, ULONG64
, VarI1FromUI8
, I1_MAX
)
178 BOTHTST(BYTE
, SHORT
, VarUI1FromI2
, UI1_MIN
, UI1_MAX
)
179 SIMPLE(BYTE
, VARIANT_BOOL
, VarUI1FromBool
)
180 NEGTST(BYTE
, signed char, VarUI1FromI1
)
181 POSTST(BYTE
, USHORT
, VarUI1FromUI2
, UI1_MAX
)
182 BOTHTST(BYTE
, LONG
, VarUI1FromI4
, UI1_MIN
, UI1_MAX
)
183 POSTST(BYTE
, ULONG
, VarUI1FromUI4
, UI1_MAX
)
184 BOTHTST(BYTE
, LONG64
, VarUI1FromI8
, UI1_MIN
, UI1_MAX
)
185 POSTST(BYTE
, ULONG64
, VarUI1FromUI8
, UI1_MAX
)
188 SIMPLE(SHORT
, BYTE
, VarI2FromUI1
)
189 BOTHTST(SHORT
, LONG
, VarI2FromI4
, I2_MIN
, I2_MAX
)
190 SIMPLE(SHORT
, VARIANT_BOOL
, VarI2FromBool
)
191 SIMPLE(SHORT
, signed char, VarI2FromI1
)
192 POSTST(SHORT
, USHORT
, VarI2FromUI2
, I2_MAX
)
193 POSTST(SHORT
, ULONG
, VarI2FromUI4
, I2_MAX
)
194 BOTHTST(SHORT
, LONG64
, VarI2FromI8
, I2_MIN
, I2_MAX
)
195 POSTST(SHORT
, ULONG64
, VarI2FromUI8
, I2_MAX
)
198 SIMPLE(USHORT
, BYTE
, VarUI2FromUI1
)
199 NEGTST(USHORT
, SHORT
, VarUI2FromI2
)
200 BOTHTST(USHORT
, LONG
, VarUI2FromI4
, UI2_MIN
, UI2_MAX
)
201 SIMPLE(USHORT
, VARIANT_BOOL
, VarUI2FromBool
)
202 NEGTST(USHORT
, signed char, VarUI2FromI1
)
203 POSTST(USHORT
, ULONG
, VarUI2FromUI4
, UI2_MAX
)
204 BOTHTST(USHORT
, LONG64
, VarUI2FromI8
, UI2_MIN
, UI2_MAX
)
205 POSTST(USHORT
, ULONG64
, VarUI2FromUI8
, UI2_MAX
)
208 SIMPLE(LONG
, BYTE
, VarI4FromUI1
)
209 SIMPLE(LONG
, SHORT
, VarI4FromI2
)
210 SIMPLE(LONG
, VARIANT_BOOL
, VarI4FromBool
)
211 SIMPLE(LONG
, signed char, VarI4FromI1
)
212 SIMPLE(LONG
, USHORT
, VarI4FromUI2
)
213 POSTST(LONG
, ULONG
, VarI4FromUI4
, I4_MAX
)
214 BOTHTST(LONG
, LONG64
, VarI4FromI8
, I4_MIN
, I4_MAX
)
215 POSTST(LONG
, ULONG64
, VarI4FromUI8
, I4_MAX
)
218 SIMPLE(ULONG
, BYTE
, VarUI4FromUI1
)
219 NEGTST(ULONG
, SHORT
, VarUI4FromI2
)
220 NEGTST(ULONG
, LONG
, VarUI4FromI4
)
221 SIMPLE(ULONG
, VARIANT_BOOL
, VarUI4FromBool
)
222 NEGTST(ULONG
, signed char, VarUI4FromI1
)
223 SIMPLE(ULONG
, USHORT
, VarUI4FromUI2
)
224 BOTHTST(ULONG
, LONG64
, VarUI4FromI8
, UI4_MIN
, UI4_MAX
)
225 POSTST(ULONG
, ULONG64
, VarUI4FromUI8
, UI4_MAX
)
228 SIMPLE(LONG64
, BYTE
, VarI8FromUI1
)
229 SIMPLE(LONG64
, SHORT
, VarI8FromI2
)
230 SIMPLE(LONG64
, signed char, VarI8FromI1
)
231 SIMPLE(LONG64
, USHORT
, VarI8FromUI2
)
232 SIMPLE(LONG64
, ULONG
, VarI8FromUI4
)
233 POSTST(LONG64
, ULONG64
, VarI8FromUI8
, I8_MAX
)
236 SIMPLE(ULONG64
, BYTE
, VarUI8FromUI1
)
237 NEGTST(ULONG64
, SHORT
, VarUI8FromI2
)
238 NEGTST(ULONG64
, signed char, VarUI8FromI1
)
239 SIMPLE(ULONG64
, USHORT
, VarUI8FromUI2
)
240 SIMPLE(ULONG64
, ULONG
, VarUI8FromUI4
)
241 NEGTST(ULONG64
, LONG64
, VarUI8FromI8
)
244 SIMPLE(float, BYTE
, VarR4FromUI1
)
245 SIMPLE(float, SHORT
, VarR4FromI2
)
246 SIMPLE(float, signed char, VarR4FromI1
)
247 SIMPLE(float, USHORT
, VarR4FromUI2
)
248 SIMPLE(float, LONG
, VarR4FromI4
)
249 SIMPLE(float, ULONG
, VarR4FromUI4
)
250 SIMPLE(float, LONG64
, VarR4FromI8
)
251 SIMPLE(float, ULONG64
, VarR4FromUI8
)
254 SIMPLE(double, BYTE
, VarR8FromUI1
)
255 SIMPLE(double, SHORT
, VarR8FromI2
)
256 SIMPLE(double, float, VarR8FromR4
)
257 RETTYP
_VarR8FromCy(CY i
, double* o
) { *o
= (double)i
.int64
/ CY_MULTIPLIER_F
; return S_OK
; }
258 SIMPLE(double, DATE
, VarR8FromDate
)
259 SIMPLE(double, signed char, VarR8FromI1
)
260 SIMPLE(double, USHORT
, VarR8FromUI2
)
261 SIMPLE(double, LONG
, VarR8FromI4
)
262 SIMPLE(double, ULONG
, VarR8FromUI4
)
263 SIMPLE(double, LONG64
, VarR8FromI8
)
264 SIMPLE(double, ULONG64
, VarR8FromUI8
)
270 /************************************************************************
271 * VarI1FromUI1 (OLEAUT32.244)
273 * Convert a VT_UI1 to a VT_I1.
277 * pcOut [O] Destination
281 * Failure: E_INVALIDARG, if the source value is invalid
282 * DISP_E_OVERFLOW, if the value will not fit in the destination
284 HRESULT WINAPI
VarI1FromUI1(BYTE bIn
, signed char* pcOut
)
286 return _VarI1FromUI1(bIn
, pcOut
);
289 /************************************************************************
290 * VarI1FromI2 (OLEAUT32.245)
292 * Convert a VT_I2 to a VT_I1.
296 * pcOut [O] Destination
300 * Failure: E_INVALIDARG, if the source value is invalid
301 * DISP_E_OVERFLOW, if the value will not fit in the destination
303 HRESULT WINAPI
VarI1FromI2(SHORT sIn
, signed char* pcOut
)
305 return _VarI1FromI2(sIn
, pcOut
);
308 /************************************************************************
309 * VarI1FromI4 (OLEAUT32.246)
311 * Convert a VT_I4 to a VT_I1.
315 * pcOut [O] Destination
319 * Failure: E_INVALIDARG, if the source value is invalid
320 * DISP_E_OVERFLOW, if the value will not fit in the destination
322 HRESULT WINAPI
VarI1FromI4(LONG iIn
, signed char* pcOut
)
324 return _VarI1FromI4(iIn
, pcOut
);
327 /************************************************************************
328 * VarI1FromR4 (OLEAUT32.247)
330 * Convert a VT_R4 to a VT_I1.
334 * pcOut [O] Destination
338 * Failure: E_INVALIDARG, if the source value is invalid
339 * DISP_E_OVERFLOW, if the value will not fit in the destination
341 HRESULT WINAPI
VarI1FromR4(FLOAT fltIn
, signed char* pcOut
)
343 return VarI1FromR8(fltIn
, pcOut
);
346 /************************************************************************
347 * VarI1FromR8 (OLEAUT32.248)
349 * Convert a VT_R8 to a VT_I1.
353 * pcOut [O] Destination
357 * Failure: E_INVALIDARG, if the source value is invalid
358 * DISP_E_OVERFLOW, if the value will not fit in the destination
361 * See VarI8FromR8() for details concerning rounding.
363 HRESULT WINAPI
VarI1FromR8(double dblIn
, signed char* pcOut
)
365 if (dblIn
< I1_MIN
- 0.5 || dblIn
>= I1_MAX
+ 0.5)
366 return DISP_E_OVERFLOW
;
367 VARIANT_DutchRound(CHAR
, dblIn
, *pcOut
);
371 /************************************************************************
372 * VarI1FromDate (OLEAUT32.249)
374 * Convert a VT_DATE to a VT_I1.
378 * pcOut [O] Destination
382 * Failure: E_INVALIDARG, if the source value is invalid
383 * DISP_E_OVERFLOW, if the value will not fit in the destination
385 HRESULT WINAPI
VarI1FromDate(DATE dateIn
, signed char* pcOut
)
387 return VarI1FromR8(dateIn
, pcOut
);
390 /************************************************************************
391 * VarI1FromCy (OLEAUT32.250)
393 * Convert a VT_CY to a VT_I1.
397 * pcOut [O] Destination
401 * Failure: E_INVALIDARG, if the source value is invalid
402 * DISP_E_OVERFLOW, if the value will not fit in the destination
404 HRESULT WINAPI
VarI1FromCy(CY cyIn
, signed char* pcOut
)
408 VarI4FromCy(cyIn
, &i
);
409 return _VarI1FromI4(i
, pcOut
);
412 /************************************************************************
413 * VarI1FromStr (OLEAUT32.251)
415 * Convert a VT_BSTR to a VT_I1.
419 * lcid [I] LCID for the conversion
420 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
421 * pcOut [O] Destination
425 * Failure: E_INVALIDARG, if the source value is invalid
426 * DISP_E_OVERFLOW, if the value will not fit in the destination
427 * DISP_E_TYPEMISMATCH, if the type cannot be converted
429 HRESULT WINAPI
VarI1FromStr(OLECHAR
* strIn
, LCID lcid
, ULONG dwFlags
, signed char* pcOut
)
431 return VARIANT_NumberFromBstr(strIn
, lcid
, dwFlags
, pcOut
, VT_I1
);
434 /************************************************************************
435 * VarI1FromDisp (OLEAUT32.252)
437 * Convert a VT_DISPATCH to a VT_I1.
441 * lcid [I] LCID for conversion
442 * pcOut [O] Destination
446 * Failure: E_INVALIDARG, if the source value is invalid
447 * DISP_E_OVERFLOW, if the value will not fit in the destination
448 * DISP_E_TYPEMISMATCH, if the type cannot be converted
450 HRESULT WINAPI
VarI1FromDisp(IDispatch
* pdispIn
, LCID lcid
, signed char* pcOut
)
452 return VARIANT_FromDisp(pdispIn
, lcid
, pcOut
, VT_I1
, 0);
455 /************************************************************************
456 * VarI1FromBool (OLEAUT32.253)
458 * Convert a VT_BOOL to a VT_I1.
462 * pcOut [O] Destination
467 HRESULT WINAPI
VarI1FromBool(VARIANT_BOOL boolIn
, signed char* pcOut
)
469 return _VarI1FromBool(boolIn
, pcOut
);
472 /************************************************************************
473 * VarI1FromUI2 (OLEAUT32.254)
475 * Convert a VT_UI2 to a VT_I1.
479 * pcOut [O] Destination
483 * Failure: E_INVALIDARG, if the source value is invalid
484 * DISP_E_OVERFLOW, if the value will not fit in the destination
486 HRESULT WINAPI
VarI1FromUI2(USHORT usIn
, signed char* pcOut
)
488 return _VarI1FromUI2(usIn
, pcOut
);
491 /************************************************************************
492 * VarI1FromUI4 (OLEAUT32.255)
494 * Convert a VT_UI4 to a VT_I1.
498 * pcOut [O] Destination
502 * Failure: E_INVALIDARG, if the source value is invalid
503 * DISP_E_OVERFLOW, if the value will not fit in the destination
504 * DISP_E_TYPEMISMATCH, if the type cannot be converted
506 HRESULT WINAPI
VarI1FromUI4(ULONG ulIn
, signed char* pcOut
)
508 return _VarI1FromUI4(ulIn
, pcOut
);
511 /************************************************************************
512 * VarI1FromDec (OLEAUT32.256)
514 * Convert a VT_DECIMAL to a VT_I1.
518 * pcOut [O] Destination
522 * Failure: E_INVALIDARG, if the source value is invalid
523 * DISP_E_OVERFLOW, if the value will not fit in the destination
525 HRESULT WINAPI
VarI1FromDec(DECIMAL
*pdecIn
, signed char* pcOut
)
530 hRet
= VarI8FromDec(pdecIn
, &i64
);
533 hRet
= _VarI1FromI8(i64
, pcOut
);
537 /************************************************************************
538 * VarI1FromI8 (OLEAUT32.376)
540 * Convert a VT_I8 to a VT_I1.
544 * pcOut [O] Destination
548 * Failure: E_INVALIDARG, if the source value is invalid
549 * DISP_E_OVERFLOW, if the value will not fit in the destination
551 HRESULT WINAPI
VarI1FromI8(LONG64 llIn
, signed char* pcOut
)
553 return _VarI1FromI8(llIn
, pcOut
);
556 /************************************************************************
557 * VarI1FromUI8 (OLEAUT32.377)
559 * Convert a VT_UI8 to a VT_I1.
563 * pcOut [O] Destination
567 * Failure: E_INVALIDARG, if the source value is invalid
568 * DISP_E_OVERFLOW, if the value will not fit in the destination
570 HRESULT WINAPI
VarI1FromUI8(ULONG64 ullIn
, signed char* pcOut
)
572 return _VarI1FromUI8(ullIn
, pcOut
);
578 /************************************************************************
579 * VarUI1FromI2 (OLEAUT32.130)
581 * Convert a VT_I2 to a VT_UI1.
585 * pbOut [O] Destination
589 * Failure: E_INVALIDARG, if the source value is invalid
590 * DISP_E_OVERFLOW, if the value will not fit in the destination
592 HRESULT WINAPI
VarUI1FromI2(SHORT sIn
, BYTE
* pbOut
)
594 return _VarUI1FromI2(sIn
, pbOut
);
597 /************************************************************************
598 * VarUI1FromI4 (OLEAUT32.131)
600 * Convert a VT_I4 to a VT_UI1.
604 * pbOut [O] Destination
608 * Failure: E_INVALIDARG, if the source value is invalid
609 * DISP_E_OVERFLOW, if the value will not fit in the destination
611 HRESULT WINAPI
VarUI1FromI4(LONG iIn
, BYTE
* pbOut
)
613 return _VarUI1FromI4(iIn
, pbOut
);
616 /************************************************************************
617 * VarUI1FromR4 (OLEAUT32.132)
619 * Convert a VT_R4 to a VT_UI1.
623 * pbOut [O] Destination
627 * Failure: E_INVALIDARG, if the source value is invalid
628 * DISP_E_OVERFLOW, if the value will not fit in the destination
629 * DISP_E_TYPEMISMATCH, if the type cannot be converted
631 HRESULT WINAPI
VarUI1FromR4(FLOAT fltIn
, BYTE
* pbOut
)
633 return VarUI1FromR8(fltIn
, pbOut
);
636 /************************************************************************
637 * VarUI1FromR8 (OLEAUT32.133)
639 * Convert a VT_R8 to a VT_UI1.
643 * pbOut [O] Destination
647 * Failure: E_INVALIDARG, if the source value is invalid
648 * DISP_E_OVERFLOW, if the value will not fit in the destination
651 * See VarI8FromR8() for details concerning rounding.
653 HRESULT WINAPI
VarUI1FromR8(double dblIn
, BYTE
* pbOut
)
655 if (dblIn
< -0.5 || dblIn
>= UI1_MAX
+ 0.5)
656 return DISP_E_OVERFLOW
;
657 VARIANT_DutchRound(BYTE
, dblIn
, *pbOut
);
661 /************************************************************************
662 * VarUI1FromCy (OLEAUT32.134)
664 * Convert a VT_CY to a VT_UI1.
668 * pbOut [O] Destination
672 * Failure: E_INVALIDARG, if the source value is invalid
673 * DISP_E_OVERFLOW, if the value will not fit in the destination
676 * Negative values >= -5000 will be converted to 0.
678 HRESULT WINAPI
VarUI1FromCy(CY cyIn
, BYTE
* pbOut
)
680 ULONG i
= UI1_MAX
+ 1;
682 VarUI4FromCy(cyIn
, &i
);
683 return _VarUI1FromUI4(i
, pbOut
);
686 /************************************************************************
687 * VarUI1FromDate (OLEAUT32.135)
689 * Convert a VT_DATE to a VT_UI1.
693 * pbOut [O] Destination
697 * Failure: E_INVALIDARG, if the source value is invalid
698 * DISP_E_OVERFLOW, if the value will not fit in the destination
700 HRESULT WINAPI
VarUI1FromDate(DATE dateIn
, BYTE
* pbOut
)
702 return VarUI1FromR8(dateIn
, pbOut
);
705 /************************************************************************
706 * VarUI1FromStr (OLEAUT32.136)
708 * Convert a VT_BSTR to a VT_UI1.
712 * lcid [I] LCID for the conversion
713 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
714 * pbOut [O] Destination
718 * Failure: E_INVALIDARG, if the source value is invalid
719 * DISP_E_OVERFLOW, if the value will not fit in the destination
720 * DISP_E_TYPEMISMATCH, if the type cannot be converted
722 HRESULT WINAPI
VarUI1FromStr(OLECHAR
* strIn
, LCID lcid
, ULONG dwFlags
, BYTE
* pbOut
)
724 return VARIANT_NumberFromBstr(strIn
, lcid
, dwFlags
, pbOut
, VT_UI1
);
727 /************************************************************************
728 * VarUI1FromDisp (OLEAUT32.137)
730 * Convert a VT_DISPATCH to a VT_UI1.
734 * lcid [I] LCID for conversion
735 * pbOut [O] Destination
739 * Failure: E_INVALIDARG, if the source value is invalid
740 * DISP_E_OVERFLOW, if the value will not fit in the destination
741 * DISP_E_TYPEMISMATCH, if the type cannot be converted
743 HRESULT WINAPI
VarUI1FromDisp(IDispatch
* pdispIn
, LCID lcid
, BYTE
* pbOut
)
745 return VARIANT_FromDisp(pdispIn
, lcid
, pbOut
, VT_UI1
, 0);
748 /************************************************************************
749 * VarUI1FromBool (OLEAUT32.138)
751 * Convert a VT_BOOL to a VT_UI1.
755 * pbOut [O] Destination
760 HRESULT WINAPI
VarUI1FromBool(VARIANT_BOOL boolIn
, BYTE
* pbOut
)
762 return _VarUI1FromBool(boolIn
, pbOut
);
765 /************************************************************************
766 * VarUI1FromI1 (OLEAUT32.237)
768 * Convert a VT_I1 to a VT_UI1.
772 * pbOut [O] Destination
776 * Failure: E_INVALIDARG, if the source value is invalid
777 * DISP_E_OVERFLOW, if the value will not fit in the destination
779 HRESULT WINAPI
VarUI1FromI1(signed char cIn
, BYTE
* pbOut
)
781 return _VarUI1FromI1(cIn
, pbOut
);
784 /************************************************************************
785 * VarUI1FromUI2 (OLEAUT32.238)
787 * Convert a VT_UI2 to a VT_UI1.
791 * pbOut [O] Destination
795 * Failure: E_INVALIDARG, if the source value is invalid
796 * DISP_E_OVERFLOW, if the value will not fit in the destination
798 HRESULT WINAPI
VarUI1FromUI2(USHORT usIn
, BYTE
* pbOut
)
800 return _VarUI1FromUI2(usIn
, pbOut
);
803 /************************************************************************
804 * VarUI1FromUI4 (OLEAUT32.239)
806 * Convert a VT_UI4 to a VT_UI1.
810 * pbOut [O] Destination
814 * Failure: E_INVALIDARG, if the source value is invalid
815 * DISP_E_OVERFLOW, if the value will not fit in the destination
817 HRESULT WINAPI
VarUI1FromUI4(ULONG ulIn
, BYTE
* pbOut
)
819 return _VarUI1FromUI4(ulIn
, pbOut
);
822 /************************************************************************
823 * VarUI1FromDec (OLEAUT32.240)
825 * Convert a VT_DECIMAL to a VT_UI1.
829 * pbOut [O] Destination
833 * Failure: E_INVALIDARG, if the source value is invalid
834 * DISP_E_OVERFLOW, if the value will not fit in the destination
836 HRESULT WINAPI
VarUI1FromDec(DECIMAL
*pdecIn
, BYTE
* pbOut
)
841 hRet
= VarI8FromDec(pdecIn
, &i64
);
844 hRet
= _VarUI1FromI8(i64
, pbOut
);
848 /************************************************************************
849 * VarUI1FromI8 (OLEAUT32.372)
851 * Convert a VT_I8 to a VT_UI1.
855 * pbOut [O] Destination
859 * Failure: E_INVALIDARG, if the source value is invalid
860 * DISP_E_OVERFLOW, if the value will not fit in the destination
862 HRESULT WINAPI
VarUI1FromI8(LONG64 llIn
, BYTE
* pbOut
)
864 return _VarUI1FromI8(llIn
, pbOut
);
867 /************************************************************************
868 * VarUI1FromUI8 (OLEAUT32.373)
870 * Convert a VT_UI8 to a VT_UI1.
874 * pbOut [O] Destination
878 * Failure: E_INVALIDARG, if the source value is invalid
879 * DISP_E_OVERFLOW, if the value will not fit in the destination
881 HRESULT WINAPI
VarUI1FromUI8(ULONG64 ullIn
, BYTE
* pbOut
)
883 return _VarUI1FromUI8(ullIn
, pbOut
);
890 /************************************************************************
891 * VarI2FromUI1 (OLEAUT32.48)
893 * Convert a VT_UI2 to a VT_I2.
897 * psOut [O] Destination
902 HRESULT WINAPI
VarI2FromUI1(BYTE bIn
, SHORT
* psOut
)
904 return _VarI2FromUI1(bIn
, psOut
);
907 /************************************************************************
908 * VarI2FromI4 (OLEAUT32.49)
910 * Convert a VT_I4 to a VT_I2.
914 * psOut [O] Destination
918 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
920 HRESULT WINAPI
VarI2FromI4(LONG iIn
, SHORT
* psOut
)
922 return _VarI2FromI4(iIn
, psOut
);
925 /************************************************************************
926 * VarI2FromR4 (OLEAUT32.50)
928 * Convert a VT_R4 to a VT_I2.
932 * psOut [O] Destination
936 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
938 HRESULT WINAPI
VarI2FromR4(FLOAT fltIn
, SHORT
* psOut
)
940 return VarI2FromR8(fltIn
, psOut
);
943 /************************************************************************
944 * VarI2FromR8 (OLEAUT32.51)
946 * Convert a VT_R8 to a VT_I2.
950 * psOut [O] Destination
954 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
957 * See VarI8FromR8() for details concerning rounding.
959 HRESULT WINAPI
VarI2FromR8(double dblIn
, SHORT
* psOut
)
961 if (dblIn
< I2_MIN
- 0.5 || dblIn
>= I2_MAX
+ 0.5)
962 return DISP_E_OVERFLOW
;
963 VARIANT_DutchRound(SHORT
, dblIn
, *psOut
);
967 /************************************************************************
968 * VarI2FromCy (OLEAUT32.52)
970 * Convert a VT_CY to a VT_I2.
974 * psOut [O] Destination
978 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
980 HRESULT WINAPI
VarI2FromCy(CY cyIn
, SHORT
* psOut
)
984 VarI4FromCy(cyIn
, &i
);
985 return _VarI2FromI4(i
, psOut
);
988 /************************************************************************
989 * VarI2FromDate (OLEAUT32.53)
991 * Convert a VT_DATE to a VT_I2.
995 * psOut [O] Destination
999 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1001 HRESULT WINAPI
VarI2FromDate(DATE dateIn
, SHORT
* psOut
)
1003 return VarI2FromR8(dateIn
, psOut
);
1006 /************************************************************************
1007 * VarI2FromStr (OLEAUT32.54)
1009 * Convert a VT_BSTR to a VT_I2.
1013 * lcid [I] LCID for the conversion
1014 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1015 * psOut [O] Destination
1019 * Failure: E_INVALIDARG, if any parameter is invalid
1020 * DISP_E_OVERFLOW, if the value will not fit in the destination
1021 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1023 HRESULT WINAPI
VarI2FromStr(OLECHAR
* strIn
, LCID lcid
, ULONG dwFlags
, SHORT
* psOut
)
1025 return VARIANT_NumberFromBstr(strIn
, lcid
, dwFlags
, psOut
, VT_I2
);
1028 /************************************************************************
1029 * VarI2FromDisp (OLEAUT32.55)
1031 * Convert a VT_DISPATCH to a VT_I2.
1034 * pdispIn [I] Source
1035 * lcid [I] LCID for conversion
1036 * psOut [O] Destination
1040 * Failure: E_INVALIDARG, if pdispIn is invalid,
1041 * DISP_E_OVERFLOW, if the value will not fit in the destination,
1042 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1044 HRESULT WINAPI
VarI2FromDisp(IDispatch
* pdispIn
, LCID lcid
, SHORT
* psOut
)
1046 return VARIANT_FromDisp(pdispIn
, lcid
, psOut
, VT_I2
, 0);
1049 /************************************************************************
1050 * VarI2FromBool (OLEAUT32.56)
1052 * Convert a VT_BOOL to a VT_I2.
1056 * psOut [O] Destination
1061 HRESULT WINAPI
VarI2FromBool(VARIANT_BOOL boolIn
, SHORT
* psOut
)
1063 return _VarI2FromBool(boolIn
, psOut
);
1066 /************************************************************************
1067 * VarI2FromI1 (OLEAUT32.205)
1069 * Convert a VT_I1 to a VT_I2.
1073 * psOut [O] Destination
1078 HRESULT WINAPI
VarI2FromI1(signed char cIn
, SHORT
* psOut
)
1080 return _VarI2FromI1(cIn
, psOut
);
1083 /************************************************************************
1084 * VarI2FromUI2 (OLEAUT32.206)
1086 * Convert a VT_UI2 to a VT_I2.
1090 * psOut [O] Destination
1094 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1096 HRESULT WINAPI
VarI2FromUI2(USHORT usIn
, SHORT
* psOut
)
1098 return _VarI2FromUI2(usIn
, psOut
);
1101 /************************************************************************
1102 * VarI2FromUI4 (OLEAUT32.207)
1104 * Convert a VT_UI4 to a VT_I2.
1108 * psOut [O] Destination
1112 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1114 HRESULT WINAPI
VarI2FromUI4(ULONG ulIn
, SHORT
* psOut
)
1116 return _VarI2FromUI4(ulIn
, psOut
);
1119 /************************************************************************
1120 * VarI2FromDec (OLEAUT32.208)
1122 * Convert a VT_DECIMAL to a VT_I2.
1126 * psOut [O] Destination
1130 * Failure: E_INVALIDARG, if the source value is invalid
1131 * DISP_E_OVERFLOW, if the value will not fit in the destination
1133 HRESULT WINAPI
VarI2FromDec(DECIMAL
*pdecIn
, SHORT
* psOut
)
1138 hRet
= VarI8FromDec(pdecIn
, &i64
);
1140 if (SUCCEEDED(hRet
))
1141 hRet
= _VarI2FromI8(i64
, psOut
);
1145 /************************************************************************
1146 * VarI2FromI8 (OLEAUT32.346)
1148 * Convert a VT_I8 to a VT_I2.
1152 * psOut [O] Destination
1156 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1158 HRESULT WINAPI
VarI2FromI8(LONG64 llIn
, SHORT
* psOut
)
1160 return _VarI2FromI8(llIn
, psOut
);
1163 /************************************************************************
1164 * VarI2FromUI8 (OLEAUT32.347)
1166 * Convert a VT_UI8 to a VT_I2.
1170 * psOut [O] Destination
1174 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1176 HRESULT WINAPI
VarI2FromUI8(ULONG64 ullIn
, SHORT
* psOut
)
1178 return _VarI2FromUI8(ullIn
, psOut
);
1184 /************************************************************************
1185 * VarUI2FromUI1 (OLEAUT32.257)
1187 * Convert a VT_UI1 to a VT_UI2.
1191 * pusOut [O] Destination
1196 HRESULT WINAPI
VarUI2FromUI1(BYTE bIn
, USHORT
* pusOut
)
1198 return _VarUI2FromUI1(bIn
, pusOut
);
1201 /************************************************************************
1202 * VarUI2FromI2 (OLEAUT32.258)
1204 * Convert a VT_I2 to a VT_UI2.
1208 * pusOut [O] Destination
1212 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1214 HRESULT WINAPI
VarUI2FromI2(SHORT sIn
, USHORT
* pusOut
)
1216 return _VarUI2FromI2(sIn
, pusOut
);
1219 /************************************************************************
1220 * VarUI2FromI4 (OLEAUT32.259)
1222 * Convert a VT_I4 to a VT_UI2.
1226 * pusOut [O] Destination
1230 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1232 HRESULT WINAPI
VarUI2FromI4(LONG iIn
, USHORT
* pusOut
)
1234 return _VarUI2FromI4(iIn
, pusOut
);
1237 /************************************************************************
1238 * VarUI2FromR4 (OLEAUT32.260)
1240 * Convert a VT_R4 to a VT_UI2.
1244 * pusOut [O] Destination
1248 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1250 HRESULT WINAPI
VarUI2FromR4(FLOAT fltIn
, USHORT
* pusOut
)
1252 return VarUI2FromR8(fltIn
, pusOut
);
1255 /************************************************************************
1256 * VarUI2FromR8 (OLEAUT32.261)
1258 * Convert a VT_R8 to a VT_UI2.
1262 * pusOut [O] Destination
1266 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1269 * See VarI8FromR8() for details concerning rounding.
1271 HRESULT WINAPI
VarUI2FromR8(double dblIn
, USHORT
* pusOut
)
1273 if (dblIn
< -0.5 || dblIn
>= UI2_MAX
+ 0.5)
1274 return DISP_E_OVERFLOW
;
1275 VARIANT_DutchRound(USHORT
, dblIn
, *pusOut
);
1279 /************************************************************************
1280 * VarUI2FromDate (OLEAUT32.262)
1282 * Convert a VT_DATE to a VT_UI2.
1286 * pusOut [O] Destination
1290 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1292 HRESULT WINAPI
VarUI2FromDate(DATE dateIn
, USHORT
* pusOut
)
1294 return VarUI2FromR8(dateIn
, pusOut
);
1297 /************************************************************************
1298 * VarUI2FromCy (OLEAUT32.263)
1300 * Convert a VT_CY to a VT_UI2.
1304 * pusOut [O] Destination
1308 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1311 * Negative values >= -5000 will be converted to 0.
1313 HRESULT WINAPI
VarUI2FromCy(CY cyIn
, USHORT
* pusOut
)
1315 ULONG i
= UI2_MAX
+ 1;
1317 VarUI4FromCy(cyIn
, &i
);
1318 return _VarUI2FromUI4(i
, pusOut
);
1321 /************************************************************************
1322 * VarUI2FromStr (OLEAUT32.264)
1324 * Convert a VT_BSTR to a VT_UI2.
1328 * lcid [I] LCID for the conversion
1329 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1330 * pusOut [O] Destination
1334 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1335 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1337 HRESULT WINAPI
VarUI2FromStr(OLECHAR
* strIn
, LCID lcid
, ULONG dwFlags
, USHORT
* pusOut
)
1339 return VARIANT_NumberFromBstr(strIn
, lcid
, dwFlags
, pusOut
, VT_UI2
);
1342 /************************************************************************
1343 * VarUI2FromDisp (OLEAUT32.265)
1345 * Convert a VT_DISPATCH to a VT_UI2.
1348 * pdispIn [I] Source
1349 * lcid [I] LCID for conversion
1350 * pusOut [O] Destination
1354 * Failure: E_INVALIDARG, if the source value is invalid
1355 * DISP_E_OVERFLOW, if the value will not fit in the destination
1356 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1358 HRESULT WINAPI
VarUI2FromDisp(IDispatch
* pdispIn
, LCID lcid
, USHORT
* pusOut
)
1360 return VARIANT_FromDisp(pdispIn
, lcid
, pusOut
, VT_UI2
, 0);
1363 /************************************************************************
1364 * VarUI2FromBool (OLEAUT32.266)
1366 * Convert a VT_BOOL to a VT_UI2.
1370 * pusOut [O] Destination
1375 HRESULT WINAPI
VarUI2FromBool(VARIANT_BOOL boolIn
, USHORT
* pusOut
)
1377 return _VarUI2FromBool(boolIn
, pusOut
);
1380 /************************************************************************
1381 * VarUI2FromI1 (OLEAUT32.267)
1383 * Convert a VT_I1 to a VT_UI2.
1387 * pusOut [O] Destination
1391 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1393 HRESULT WINAPI
VarUI2FromI1(signed char cIn
, USHORT
* pusOut
)
1395 return _VarUI2FromI1(cIn
, pusOut
);
1398 /************************************************************************
1399 * VarUI2FromUI4 (OLEAUT32.268)
1401 * Convert a VT_UI4 to a VT_UI2.
1405 * pusOut [O] Destination
1409 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1411 HRESULT WINAPI
VarUI2FromUI4(ULONG ulIn
, USHORT
* pusOut
)
1413 return _VarUI2FromUI4(ulIn
, pusOut
);
1416 /************************************************************************
1417 * VarUI2FromDec (OLEAUT32.269)
1419 * Convert a VT_DECIMAL to a VT_UI2.
1423 * pusOut [O] Destination
1427 * Failure: E_INVALIDARG, if the source value is invalid
1428 * DISP_E_OVERFLOW, if the value will not fit in the destination
1430 HRESULT WINAPI
VarUI2FromDec(DECIMAL
*pdecIn
, USHORT
* pusOut
)
1435 hRet
= VarI8FromDec(pdecIn
, &i64
);
1437 if (SUCCEEDED(hRet
))
1438 hRet
= _VarUI2FromI8(i64
, pusOut
);
1442 /************************************************************************
1443 * VarUI2FromI8 (OLEAUT32.378)
1445 * Convert a VT_I8 to a VT_UI2.
1449 * pusOut [O] Destination
1453 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1455 HRESULT WINAPI
VarUI2FromI8(LONG64 llIn
, USHORT
* pusOut
)
1457 return _VarUI2FromI8(llIn
, pusOut
);
1460 /************************************************************************
1461 * VarUI2FromUI8 (OLEAUT32.379)
1463 * Convert a VT_UI8 to a VT_UI2.
1467 * pusOut [O] Destination
1471 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1473 HRESULT WINAPI
VarUI2FromUI8(ULONG64 ullIn
, USHORT
* pusOut
)
1475 return _VarUI2FromUI8(ullIn
, pusOut
);
1481 /************************************************************************
1482 * VarI4FromUI1 (OLEAUT32.58)
1484 * Convert a VT_UI1 to a VT_I4.
1488 * piOut [O] Destination
1493 HRESULT WINAPI
VarI4FromUI1(BYTE bIn
, LONG
*piOut
)
1495 return _VarI4FromUI1(bIn
, piOut
);
1498 /************************************************************************
1499 * VarI4FromI2 (OLEAUT32.59)
1501 * Convert a VT_I2 to a VT_I4.
1505 * piOut [O] Destination
1509 * Failure: E_INVALIDARG, if the source value is invalid
1510 * DISP_E_OVERFLOW, if the value will not fit in the destination
1512 HRESULT WINAPI
VarI4FromI2(SHORT sIn
, LONG
*piOut
)
1514 return _VarI4FromI2(sIn
, piOut
);
1517 /************************************************************************
1518 * VarI4FromR4 (OLEAUT32.60)
1520 * Convert a VT_R4 to a VT_I4.
1524 * piOut [O] Destination
1528 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1530 HRESULT WINAPI
VarI4FromR4(FLOAT fltIn
, LONG
*piOut
)
1532 return VarI4FromR8(fltIn
, piOut
);
1535 /************************************************************************
1536 * VarI4FromR8 (OLEAUT32.61)
1538 * Convert a VT_R8 to a VT_I4.
1542 * piOut [O] Destination
1546 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1549 * See VarI8FromR8() for details concerning rounding.
1551 HRESULT WINAPI
VarI4FromR8(double dblIn
, LONG
*piOut
)
1553 if (dblIn
< I4_MIN
- 0.5 || dblIn
>= I4_MAX
+ 0.5)
1554 return DISP_E_OVERFLOW
;
1555 VARIANT_DutchRound(LONG
, dblIn
, *piOut
);
1559 /************************************************************************
1560 * VarI4FromCy (OLEAUT32.62)
1562 * Convert a VT_CY to a VT_I4.
1566 * piOut [O] Destination
1570 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1572 HRESULT WINAPI
VarI4FromCy(CY cyIn
, LONG
*piOut
)
1574 double d
= cyIn
.int64
/ CY_MULTIPLIER_F
;
1575 return VarI4FromR8(d
, piOut
);
1578 /************************************************************************
1579 * VarI4FromDate (OLEAUT32.63)
1581 * Convert a VT_DATE to a VT_I4.
1585 * piOut [O] Destination
1589 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1591 HRESULT WINAPI
VarI4FromDate(DATE dateIn
, LONG
*piOut
)
1593 return VarI4FromR8(dateIn
, piOut
);
1596 /************************************************************************
1597 * VarI4FromStr (OLEAUT32.64)
1599 * Convert a VT_BSTR to a VT_I4.
1603 * lcid [I] LCID for the conversion
1604 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1605 * piOut [O] Destination
1609 * Failure: E_INVALIDARG, if any parameter is invalid
1610 * DISP_E_OVERFLOW, if the value will not fit in the destination
1611 * DISP_E_TYPEMISMATCH, if strIn cannot be converted
1613 HRESULT WINAPI
VarI4FromStr(OLECHAR
* strIn
, LCID lcid
, ULONG dwFlags
, LONG
*piOut
)
1615 return VARIANT_NumberFromBstr(strIn
, lcid
, dwFlags
, piOut
, VT_I4
);
1618 /************************************************************************
1619 * VarI4FromDisp (OLEAUT32.65)
1621 * Convert a VT_DISPATCH to a VT_I4.
1624 * pdispIn [I] Source
1625 * lcid [I] LCID for conversion
1626 * piOut [O] Destination
1630 * Failure: E_INVALIDARG, if the source value is invalid
1631 * DISP_E_OVERFLOW, if the value will not fit in the destination
1632 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1634 HRESULT WINAPI
VarI4FromDisp(IDispatch
* pdispIn
, LCID lcid
, LONG
*piOut
)
1636 return VARIANT_FromDisp(pdispIn
, lcid
, piOut
, VT_I4
, 0);
1639 /************************************************************************
1640 * VarI4FromBool (OLEAUT32.66)
1642 * Convert a VT_BOOL to a VT_I4.
1646 * piOut [O] Destination
1651 HRESULT WINAPI
VarI4FromBool(VARIANT_BOOL boolIn
, LONG
*piOut
)
1653 return _VarI4FromBool(boolIn
, piOut
);
1656 /************************************************************************
1657 * VarI4FromI1 (OLEAUT32.209)
1659 * Convert a VT_I1 to a VT_I4.
1663 * piOut [O] Destination
1668 HRESULT WINAPI
VarI4FromI1(signed char cIn
, LONG
*piOut
)
1670 return _VarI4FromI1(cIn
, piOut
);
1673 /************************************************************************
1674 * VarI4FromUI2 (OLEAUT32.210)
1676 * Convert a VT_UI2 to a VT_I4.
1680 * piOut [O] Destination
1685 HRESULT WINAPI
VarI4FromUI2(USHORT usIn
, LONG
*piOut
)
1687 return _VarI4FromUI2(usIn
, piOut
);
1690 /************************************************************************
1691 * VarI4FromUI4 (OLEAUT32.211)
1693 * Convert a VT_UI4 to a VT_I4.
1697 * piOut [O] Destination
1701 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1703 HRESULT WINAPI
VarI4FromUI4(ULONG ulIn
, LONG
*piOut
)
1705 return _VarI4FromUI4(ulIn
, piOut
);
1708 /************************************************************************
1709 * VarI4FromDec (OLEAUT32.212)
1711 * Convert a VT_DECIMAL to a VT_I4.
1715 * piOut [O] Destination
1719 * Failure: E_INVALIDARG, if pdecIn is invalid
1720 * DISP_E_OVERFLOW, if the value will not fit in the destination
1722 HRESULT WINAPI
VarI4FromDec(DECIMAL
*pdecIn
, LONG
*piOut
)
1727 hRet
= VarI8FromDec(pdecIn
, &i64
);
1729 if (SUCCEEDED(hRet
))
1730 hRet
= _VarI4FromI8(i64
, piOut
);
1734 /************************************************************************
1735 * VarI4FromI8 (OLEAUT32.348)
1737 * Convert a VT_I8 to a VT_I4.
1741 * piOut [O] Destination
1745 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1747 HRESULT WINAPI
VarI4FromI8(LONG64 llIn
, LONG
*piOut
)
1749 return _VarI4FromI8(llIn
, piOut
);
1752 /************************************************************************
1753 * VarI4FromUI8 (OLEAUT32.349)
1755 * Convert a VT_UI8 to a VT_I4.
1759 * piOut [O] Destination
1763 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1765 HRESULT WINAPI
VarI4FromUI8(ULONG64 ullIn
, LONG
*piOut
)
1767 return _VarI4FromUI8(ullIn
, piOut
);
1773 /************************************************************************
1774 * VarUI4FromUI1 (OLEAUT32.270)
1776 * Convert a VT_UI1 to a VT_UI4.
1780 * pulOut [O] Destination
1785 HRESULT WINAPI
VarUI4FromUI1(BYTE bIn
, ULONG
*pulOut
)
1787 return _VarUI4FromUI1(bIn
, pulOut
);
1790 /************************************************************************
1791 * VarUI4FromI2 (OLEAUT32.271)
1793 * Convert a VT_I2 to a VT_UI4.
1797 * pulOut [O] Destination
1801 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1803 HRESULT WINAPI
VarUI4FromI2(SHORT sIn
, ULONG
*pulOut
)
1805 return _VarUI4FromI2(sIn
, pulOut
);
1808 /************************************************************************
1809 * VarUI4FromI4 (OLEAUT32.272)
1811 * Convert a VT_I4 to a VT_UI4.
1815 * pulOut [O] Destination
1819 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1821 HRESULT WINAPI
VarUI4FromI4(LONG iIn
, ULONG
*pulOut
)
1823 return _VarUI4FromI4(iIn
, pulOut
);
1826 /************************************************************************
1827 * VarUI4FromR4 (OLEAUT32.273)
1829 * Convert a VT_R4 to a VT_UI4.
1833 * pulOut [O] Destination
1837 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1839 HRESULT WINAPI
VarUI4FromR4(FLOAT fltIn
, ULONG
*pulOut
)
1841 return VarUI4FromR8(fltIn
, pulOut
);
1844 /************************************************************************
1845 * VarUI4FromR8 (OLEAUT32.274)
1847 * Convert a VT_R8 to a VT_UI4.
1851 * pulOut [O] Destination
1855 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1858 * See VarI8FromR8() for details concerning rounding.
1860 HRESULT WINAPI
VarUI4FromR8(double dblIn
, ULONG
*pulOut
)
1862 if (dblIn
< -0.5 || dblIn
>= UI4_MAX
+ 0.5)
1863 return DISP_E_OVERFLOW
;
1864 VARIANT_DutchRound(ULONG
, dblIn
, *pulOut
);
1868 /************************************************************************
1869 * VarUI4FromDate (OLEAUT32.275)
1871 * Convert a VT_DATE to a VT_UI4.
1875 * pulOut [O] Destination
1879 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1881 HRESULT WINAPI
VarUI4FromDate(DATE dateIn
, ULONG
*pulOut
)
1883 return VarUI4FromR8(dateIn
, pulOut
);
1886 /************************************************************************
1887 * VarUI4FromCy (OLEAUT32.276)
1889 * Convert a VT_CY to a VT_UI4.
1893 * pulOut [O] Destination
1897 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1899 HRESULT WINAPI
VarUI4FromCy(CY cyIn
, ULONG
*pulOut
)
1901 double d
= cyIn
.int64
/ CY_MULTIPLIER_F
;
1902 return VarUI4FromR8(d
, pulOut
);
1905 /************************************************************************
1906 * VarUI4FromStr (OLEAUT32.277)
1908 * Convert a VT_BSTR to a VT_UI4.
1912 * lcid [I] LCID for the conversion
1913 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1914 * pulOut [O] Destination
1918 * Failure: E_INVALIDARG, if any parameter is invalid
1919 * DISP_E_OVERFLOW, if the value will not fit in the destination
1920 * DISP_E_TYPEMISMATCH, if strIn cannot be converted
1922 HRESULT WINAPI
VarUI4FromStr(OLECHAR
* strIn
, LCID lcid
, ULONG dwFlags
, ULONG
*pulOut
)
1924 return VARIANT_NumberFromBstr(strIn
, lcid
, dwFlags
, pulOut
, VT_UI4
);
1927 /************************************************************************
1928 * VarUI4FromDisp (OLEAUT32.278)
1930 * Convert a VT_DISPATCH to a VT_UI4.
1933 * pdispIn [I] Source
1934 * lcid [I] LCID for conversion
1935 * pulOut [O] Destination
1939 * Failure: E_INVALIDARG, if the source value is invalid
1940 * DISP_E_OVERFLOW, if the value will not fit in the destination
1941 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1943 HRESULT WINAPI
VarUI4FromDisp(IDispatch
* pdispIn
, LCID lcid
, ULONG
*pulOut
)
1945 return VARIANT_FromDisp(pdispIn
, lcid
, pulOut
, VT_UI4
, 0);
1948 /************************************************************************
1949 * VarUI4FromBool (OLEAUT32.279)
1951 * Convert a VT_BOOL to a VT_UI4.
1955 * pulOut [O] Destination
1960 HRESULT WINAPI
VarUI4FromBool(VARIANT_BOOL boolIn
, ULONG
*pulOut
)
1962 return _VarUI4FromBool(boolIn
, pulOut
);
1965 /************************************************************************
1966 * VarUI4FromI1 (OLEAUT32.280)
1968 * Convert a VT_I1 to a VT_UI4.
1972 * pulOut [O] Destination
1976 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1978 HRESULT WINAPI
VarUI4FromI1(signed char cIn
, ULONG
*pulOut
)
1980 return _VarUI4FromI1(cIn
, pulOut
);
1983 /************************************************************************
1984 * VarUI4FromUI2 (OLEAUT32.281)
1986 * Convert a VT_UI2 to a VT_UI4.
1990 * pulOut [O] Destination
1995 HRESULT WINAPI
VarUI4FromUI2(USHORT usIn
, ULONG
*pulOut
)
1997 return _VarUI4FromUI2(usIn
, pulOut
);
2000 /************************************************************************
2001 * VarUI4FromDec (OLEAUT32.282)
2003 * Convert a VT_DECIMAL to a VT_UI4.
2007 * pulOut [O] Destination
2011 * Failure: E_INVALIDARG, if pdecIn is invalid
2012 * DISP_E_OVERFLOW, if the value will not fit in the destination
2014 HRESULT WINAPI
VarUI4FromDec(DECIMAL
*pdecIn
, ULONG
*pulOut
)
2019 hRet
= VarI8FromDec(pdecIn
, &i64
);
2021 if (SUCCEEDED(hRet
))
2022 hRet
= _VarUI4FromI8(i64
, pulOut
);
2026 /************************************************************************
2027 * VarUI4FromI8 (OLEAUT32.425)
2029 * Convert a VT_I8 to a VT_UI4.
2033 * pulOut [O] Destination
2037 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2039 HRESULT WINAPI
VarUI4FromI8(LONG64 llIn
, ULONG
*pulOut
)
2041 return _VarUI4FromI8(llIn
, pulOut
);
2044 /************************************************************************
2045 * VarUI4FromUI8 (OLEAUT32.426)
2047 * Convert a VT_UI8 to a VT_UI4.
2051 * pulOut [O] Destination
2055 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2057 HRESULT WINAPI
VarUI4FromUI8(ULONG64 ullIn
, ULONG
*pulOut
)
2059 return _VarUI4FromUI8(ullIn
, pulOut
);
2065 /************************************************************************
2066 * VarI8FromUI1 (OLEAUT32.333)
2068 * Convert a VT_UI1 to a VT_I8.
2072 * pi64Out [O] Destination
2077 HRESULT WINAPI
VarI8FromUI1(BYTE bIn
, LONG64
* pi64Out
)
2079 return _VarI8FromUI1(bIn
, pi64Out
);
2083 /************************************************************************
2084 * VarI8FromI2 (OLEAUT32.334)
2086 * Convert a VT_I2 to a VT_I8.
2090 * pi64Out [O] Destination
2095 HRESULT WINAPI
VarI8FromI2(SHORT sIn
, LONG64
* pi64Out
)
2097 return _VarI8FromI2(sIn
, pi64Out
);
2100 /************************************************************************
2101 * VarI8FromR4 (OLEAUT32.335)
2103 * Convert a VT_R4 to a VT_I8.
2107 * pi64Out [O] Destination
2111 * Failure: E_INVALIDARG, if the source value is invalid
2112 * DISP_E_OVERFLOW, if the value will not fit in the destination
2114 HRESULT WINAPI
VarI8FromR4(FLOAT fltIn
, LONG64
* pi64Out
)
2116 return VarI8FromR8(fltIn
, pi64Out
);
2119 /************************************************************************
2120 * VarI8FromR8 (OLEAUT32.336)
2122 * Convert a VT_R8 to a VT_I8.
2126 * pi64Out [O] Destination
2130 * Failure: E_INVALIDARG, if the source value is invalid
2131 * DISP_E_OVERFLOW, if the value will not fit in the destination
2134 * Only values that fit into 63 bits are accepted. Due to rounding issues,
2135 * very high or low values will not be accurately converted.
2137 * Numbers are rounded using Dutch rounding, as follows:
2139 *| Fractional Part Sign Direction Example
2140 *| --------------- ---- --------- -------
2141 *| < 0.5 + Down 0.4 -> 0.0
2142 *| < 0.5 - Up -0.4 -> 0.0
2143 *| > 0.5 + Up 0.6 -> 1.0
2144 *| < 0.5 - Up -0.6 -> -1.0
2145 *| = 0.5 + Up/Down Down if even, Up if odd
2146 *| = 0.5 - Up/Down Up if even, Down if odd
2148 * This system is often used in supermarkets.
2150 HRESULT WINAPI
VarI8FromR8(double dblIn
, LONG64
* pi64Out
)
2152 if ( dblIn
< -4611686018427387904.0 || dblIn
>= 4611686018427387904.0)
2153 return DISP_E_OVERFLOW
;
2154 VARIANT_DutchRound(LONG64
, dblIn
, *pi64Out
);
2158 /************************************************************************
2159 * VarI8FromCy (OLEAUT32.337)
2161 * Convert a VT_CY to a VT_I8.
2165 * pi64Out [O] Destination
2171 * All negative numbers are rounded down by 1, including those that are
2172 * evenly divisible by 10000 (this is a Win32 bug that Wine mimics).
2173 * Positive numbers are rounded using Dutch rounding: See VarI8FromR8()
2176 HRESULT WINAPI
VarI8FromCy(CY cyIn
, LONG64
* pi64Out
)
2178 *pi64Out
= cyIn
.int64
/ CY_MULTIPLIER
;
2181 (*pi64Out
)--; /* Mimic Win32 bug */
2184 cyIn
.int64
-= *pi64Out
* CY_MULTIPLIER
; /* cyIn.s.Lo now holds fractional remainder */
2186 if (cyIn
.s
.Lo
> CY_HALF
|| (cyIn
.s
.Lo
== CY_HALF
&& (*pi64Out
& 0x1)))
2192 /************************************************************************
2193 * VarI8FromDate (OLEAUT32.338)
2195 * Convert a VT_DATE to a VT_I8.
2199 * pi64Out [O] Destination
2203 * Failure: E_INVALIDARG, if the source value is invalid
2204 * DISP_E_OVERFLOW, if the value will not fit in the destination
2205 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2207 HRESULT WINAPI
VarI8FromDate(DATE dateIn
, LONG64
* pi64Out
)
2209 return VarI8FromR8(dateIn
, pi64Out
);
2212 /************************************************************************
2213 * VarI8FromStr (OLEAUT32.339)
2215 * Convert a VT_BSTR to a VT_I8.
2219 * lcid [I] LCID for the conversion
2220 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
2221 * pi64Out [O] Destination
2225 * Failure: E_INVALIDARG, if the source value is invalid
2226 * DISP_E_OVERFLOW, if the value will not fit in the destination
2227 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2229 HRESULT WINAPI
VarI8FromStr(OLECHAR
* strIn
, LCID lcid
, ULONG dwFlags
, LONG64
* pi64Out
)
2231 return VARIANT_NumberFromBstr(strIn
, lcid
, dwFlags
, pi64Out
, VT_I8
);
2234 /************************************************************************
2235 * VarI8FromDisp (OLEAUT32.340)
2237 * Convert a VT_DISPATCH to a VT_I8.
2240 * pdispIn [I] Source
2241 * lcid [I] LCID for conversion
2242 * pi64Out [O] Destination
2246 * Failure: E_INVALIDARG, if the source value is invalid
2247 * DISP_E_OVERFLOW, if the value will not fit in the destination
2248 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2250 HRESULT WINAPI
VarI8FromDisp(IDispatch
* pdispIn
, LCID lcid
, LONG64
* pi64Out
)
2252 return VARIANT_FromDisp(pdispIn
, lcid
, pi64Out
, VT_I8
, 0);
2255 /************************************************************************
2256 * VarI8FromBool (OLEAUT32.341)
2258 * Convert a VT_BOOL to a VT_I8.
2262 * pi64Out [O] Destination
2267 HRESULT WINAPI
VarI8FromBool(VARIANT_BOOL boolIn
, LONG64
* pi64Out
)
2269 return VarI8FromI2(boolIn
, pi64Out
);
2272 /************************************************************************
2273 * VarI8FromI1 (OLEAUT32.342)
2275 * Convert a VT_I1 to a VT_I8.
2279 * pi64Out [O] Destination
2284 HRESULT WINAPI
VarI8FromI1(signed char cIn
, LONG64
* pi64Out
)
2286 return _VarI8FromI1(cIn
, pi64Out
);
2289 /************************************************************************
2290 * VarI8FromUI2 (OLEAUT32.343)
2292 * Convert a VT_UI2 to a VT_I8.
2296 * pi64Out [O] Destination
2301 HRESULT WINAPI
VarI8FromUI2(USHORT usIn
, LONG64
* pi64Out
)
2303 return _VarI8FromUI2(usIn
, pi64Out
);
2306 /************************************************************************
2307 * VarI8FromUI4 (OLEAUT32.344)
2309 * Convert a VT_UI4 to a VT_I8.
2313 * pi64Out [O] Destination
2318 HRESULT WINAPI
VarI8FromUI4(ULONG ulIn
, LONG64
* pi64Out
)
2320 return _VarI8FromUI4(ulIn
, pi64Out
);
2323 /************************************************************************
2324 * VarI8FromDec (OLEAUT32.345)
2326 * Convert a VT_DECIMAL to a VT_I8.
2330 * pi64Out [O] Destination
2334 * Failure: E_INVALIDARG, if the source value is invalid
2335 * DISP_E_OVERFLOW, if the value will not fit in the destination
2337 HRESULT WINAPI
VarI8FromDec(DECIMAL
*pdecIn
, LONG64
* pi64Out
)
2339 if (!DEC_SCALE(pdecIn
))
2341 /* This decimal is just a 96 bit integer */
2342 if (DEC_SIGN(pdecIn
) & ~DECIMAL_NEG
)
2343 return E_INVALIDARG
;
2345 if (DEC_HI32(pdecIn
) || DEC_MID32(pdecIn
) & 0x80000000)
2346 return DISP_E_OVERFLOW
;
2348 if (DEC_SIGN(pdecIn
))
2349 *pi64Out
= -DEC_LO64(pdecIn
);
2351 *pi64Out
= DEC_LO64(pdecIn
);
2356 /* Decimal contains a floating point number */
2360 hRet
= VarR8FromDec(pdecIn
, &dbl
);
2361 if (SUCCEEDED(hRet
))
2362 hRet
= VarI8FromR8(dbl
, pi64Out
);
2367 /************************************************************************
2368 * VarI8FromUI8 (OLEAUT32.427)
2370 * Convert a VT_UI8 to a VT_I8.
2374 * pi64Out [O] Destination
2378 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2380 HRESULT WINAPI
VarI8FromUI8(ULONG64 ullIn
, LONG64
* pi64Out
)
2382 return _VarI8FromUI8(ullIn
, pi64Out
);
2388 /************************************************************************
2389 * VarUI8FromI8 (OLEAUT32.428)
2391 * Convert a VT_I8 to a VT_UI8.
2395 * pui64Out [O] Destination
2399 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2401 HRESULT WINAPI
VarUI8FromI8(LONG64 llIn
, ULONG64
* pui64Out
)
2403 return _VarUI8FromI8(llIn
, pui64Out
);
2406 /************************************************************************
2407 * VarUI8FromUI1 (OLEAUT32.429)
2409 * Convert a VT_UI1 to a VT_UI8.
2413 * pui64Out [O] Destination
2418 HRESULT WINAPI
VarUI8FromUI1(BYTE bIn
, ULONG64
* pui64Out
)
2420 return _VarUI8FromUI1(bIn
, pui64Out
);
2423 /************************************************************************
2424 * VarUI8FromI2 (OLEAUT32.430)
2426 * Convert a VT_I2 to a VT_UI8.
2430 * pui64Out [O] Destination
2435 HRESULT WINAPI
VarUI8FromI2(SHORT sIn
, ULONG64
* pui64Out
)
2437 return _VarUI8FromI2(sIn
, pui64Out
);
2440 /************************************************************************
2441 * VarUI8FromR4 (OLEAUT32.431)
2443 * Convert a VT_R4 to a VT_UI8.
2447 * pui64Out [O] Destination
2451 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2453 HRESULT WINAPI
VarUI8FromR4(FLOAT fltIn
, ULONG64
* pui64Out
)
2455 return VarUI8FromR8(fltIn
, pui64Out
);
2458 /************************************************************************
2459 * VarUI8FromR8 (OLEAUT32.432)
2461 * Convert a VT_R8 to a VT_UI8.
2465 * pui64Out [O] Destination
2469 * Failure: E_INVALIDARG, if the source value is invalid
2470 * DISP_E_OVERFLOW, if the value will not fit in the destination
2473 * See VarI8FromR8() for details concerning rounding.
2475 HRESULT WINAPI
VarUI8FromR8(double dblIn
, ULONG64
* pui64Out
)
2477 if (dblIn
< -0.5 || dblIn
> 1.844674407370955e19
)
2478 return DISP_E_OVERFLOW
;
2479 VARIANT_DutchRound(ULONG64
, dblIn
, *pui64Out
);
2483 /************************************************************************
2484 * VarUI8FromCy (OLEAUT32.433)
2486 * Convert a VT_CY to a VT_UI8.
2490 * pui64Out [O] Destination
2494 * Failure: E_INVALIDARG, if the source value is invalid
2495 * DISP_E_OVERFLOW, if the value will not fit in the destination
2498 * Negative values >= -5000 will be converted to 0.
2500 HRESULT WINAPI
VarUI8FromCy(CY cyIn
, ULONG64
* pui64Out
)
2504 if (cyIn
.int64
< -CY_HALF
)
2505 return DISP_E_OVERFLOW
;
2510 *pui64Out
= cyIn
.int64
/ CY_MULTIPLIER
;
2512 cyIn
.int64
-= *pui64Out
* CY_MULTIPLIER
; /* cyIn.s.Lo now holds fractional remainder */
2514 if (cyIn
.s
.Lo
> CY_HALF
|| (cyIn
.s
.Lo
== CY_HALF
&& (*pui64Out
& 0x1)))
2520 /************************************************************************
2521 * VarUI8FromDate (OLEAUT32.434)
2523 * Convert a VT_DATE to a VT_UI8.
2527 * pui64Out [O] Destination
2531 * Failure: E_INVALIDARG, if the source value is invalid
2532 * DISP_E_OVERFLOW, if the value will not fit in the destination
2533 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2535 HRESULT WINAPI
VarUI8FromDate(DATE dateIn
, ULONG64
* pui64Out
)
2537 return VarUI8FromR8(dateIn
, pui64Out
);
2540 /************************************************************************
2541 * VarUI8FromStr (OLEAUT32.435)
2543 * Convert a VT_BSTR to a VT_UI8.
2547 * lcid [I] LCID for the conversion
2548 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
2549 * pui64Out [O] Destination
2553 * Failure: E_INVALIDARG, if the source value is invalid
2554 * DISP_E_OVERFLOW, if the value will not fit in the destination
2555 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2557 HRESULT WINAPI
VarUI8FromStr(OLECHAR
* strIn
, LCID lcid
, ULONG dwFlags
, ULONG64
* pui64Out
)
2559 return VARIANT_NumberFromBstr(strIn
, lcid
, dwFlags
, pui64Out
, VT_UI8
);
2562 /************************************************************************
2563 * VarUI8FromDisp (OLEAUT32.436)
2565 * Convert a VT_DISPATCH to a VT_UI8.
2568 * pdispIn [I] Source
2569 * lcid [I] LCID for conversion
2570 * pui64Out [O] Destination
2574 * Failure: E_INVALIDARG, if the source value is invalid
2575 * DISP_E_OVERFLOW, if the value will not fit in the destination
2576 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2578 HRESULT WINAPI
VarUI8FromDisp(IDispatch
* pdispIn
, LCID lcid
, ULONG64
* pui64Out
)
2580 return VARIANT_FromDisp(pdispIn
, lcid
, pui64Out
, VT_UI8
, 0);
2583 /************************************************************************
2584 * VarUI8FromBool (OLEAUT32.437)
2586 * Convert a VT_BOOL to a VT_UI8.
2590 * pui64Out [O] Destination
2594 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2596 HRESULT WINAPI
VarUI8FromBool(VARIANT_BOOL boolIn
, ULONG64
* pui64Out
)
2598 return VarI8FromI2(boolIn
, (LONG64
*)pui64Out
);
2600 /************************************************************************
2601 * VarUI8FromI1 (OLEAUT32.438)
2603 * Convert a VT_I1 to a VT_UI8.
2607 * pui64Out [O] Destination
2611 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2613 HRESULT WINAPI
VarUI8FromI1(signed char cIn
, ULONG64
* pui64Out
)
2615 return _VarUI8FromI1(cIn
, pui64Out
);
2618 /************************************************************************
2619 * VarUI8FromUI2 (OLEAUT32.439)
2621 * Convert a VT_UI2 to a VT_UI8.
2625 * pui64Out [O] Destination
2630 HRESULT WINAPI
VarUI8FromUI2(USHORT usIn
, ULONG64
* pui64Out
)
2632 return _VarUI8FromUI2(usIn
, pui64Out
);
2635 /************************************************************************
2636 * VarUI8FromUI4 (OLEAUT32.440)
2638 * Convert a VT_UI4 to a VT_UI8.
2642 * pui64Out [O] Destination
2647 HRESULT WINAPI
VarUI8FromUI4(ULONG ulIn
, ULONG64
* pui64Out
)
2649 return _VarUI8FromUI4(ulIn
, pui64Out
);
2652 /************************************************************************
2653 * VarUI8FromDec (OLEAUT32.441)
2655 * Convert a VT_DECIMAL to a VT_UI8.
2659 * pui64Out [O] Destination
2663 * Failure: E_INVALIDARG, if the source value is invalid
2664 * DISP_E_OVERFLOW, if the value will not fit in the destination
2667 * Under native Win32, if the source value has a scale of 0, its sign is
2668 * ignored, i.e. this function takes the absolute value rather than fail
2669 * with DISP_E_OVERFLOW. This bug has been fixed in Wine's implementation
2670 * (use VarAbs() on pDecIn first if you really want this behaviour).
2672 HRESULT WINAPI
VarUI8FromDec(DECIMAL
*pdecIn
, ULONG64
* pui64Out
)
2674 if (!DEC_SCALE(pdecIn
))
2676 /* This decimal is just a 96 bit integer */
2677 if (DEC_SIGN(pdecIn
) & ~DECIMAL_NEG
)
2678 return E_INVALIDARG
;
2680 if (DEC_HI32(pdecIn
))
2681 return DISP_E_OVERFLOW
;
2683 if (DEC_SIGN(pdecIn
))
2685 WARN("Sign would be ignored under Win32!\n");
2686 return DISP_E_OVERFLOW
;
2689 *pui64Out
= DEC_LO64(pdecIn
);
2694 /* Decimal contains a floating point number */
2698 hRet
= VarR8FromDec(pdecIn
, &dbl
);
2699 if (SUCCEEDED(hRet
))
2700 hRet
= VarUI8FromR8(dbl
, pui64Out
);
2708 /************************************************************************
2709 * VarR4FromUI1 (OLEAUT32.68)
2711 * Convert a VT_UI1 to a VT_R4.
2715 * pFltOut [O] Destination
2720 HRESULT WINAPI
VarR4FromUI1(BYTE bIn
, float *pFltOut
)
2722 return _VarR4FromUI1(bIn
, pFltOut
);
2725 /************************************************************************
2726 * VarR4FromI2 (OLEAUT32.69)
2728 * Convert a VT_I2 to a VT_R4.
2732 * pFltOut [O] Destination
2737 HRESULT WINAPI
VarR4FromI2(SHORT sIn
, float *pFltOut
)
2739 return _VarR4FromI2(sIn
, pFltOut
);
2742 /************************************************************************
2743 * VarR4FromI4 (OLEAUT32.70)
2745 * Convert a VT_I4 to a VT_R4.
2749 * pFltOut [O] Destination
2754 HRESULT WINAPI
VarR4FromI4(LONG lIn
, float *pFltOut
)
2756 return _VarR4FromI4(lIn
, pFltOut
);
2759 /************************************************************************
2760 * VarR4FromR8 (OLEAUT32.71)
2762 * Convert a VT_R8 to a VT_R4.
2766 * pFltOut [O] Destination
2770 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination.
2772 HRESULT WINAPI
VarR4FromR8(double dblIn
, float *pFltOut
)
2774 double d
= dblIn
< 0.0 ? -dblIn
: dblIn
;
2775 if (d
> R4_MAX
) return DISP_E_OVERFLOW
;
2780 /************************************************************************
2781 * VarR4FromCy (OLEAUT32.72)
2783 * Convert a VT_CY to a VT_R4.
2787 * pFltOut [O] Destination
2792 HRESULT WINAPI
VarR4FromCy(CY cyIn
, float *pFltOut
)
2794 *pFltOut
= (double)cyIn
.int64
/ CY_MULTIPLIER_F
;
2798 /************************************************************************
2799 * VarR4FromDate (OLEAUT32.73)
2801 * Convert a VT_DATE to a VT_R4.
2805 * pFltOut [O] Destination
2809 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination.
2811 HRESULT WINAPI
VarR4FromDate(DATE dateIn
, float *pFltOut
)
2813 return VarR4FromR8(dateIn
, pFltOut
);
2816 /************************************************************************
2817 * VarR4FromStr (OLEAUT32.74)
2819 * Convert a VT_BSTR to a VT_R4.
2823 * lcid [I] LCID for the conversion
2824 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
2825 * pFltOut [O] Destination
2829 * Failure: E_INVALIDARG, if strIn or pFltOut is invalid.
2830 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2832 HRESULT WINAPI
VarR4FromStr(OLECHAR
* strIn
, LCID lcid
, ULONG dwFlags
, float *pFltOut
)
2834 return VARIANT_NumberFromBstr(strIn
, lcid
, dwFlags
, pFltOut
, VT_R4
);
2837 /************************************************************************
2838 * VarR4FromDisp (OLEAUT32.75)
2840 * Convert a VT_DISPATCH to a VT_R4.
2843 * pdispIn [I] Source
2844 * lcid [I] LCID for conversion
2845 * pFltOut [O] Destination
2849 * Failure: E_INVALIDARG, if the source value is invalid
2850 * DISP_E_OVERFLOW, if the value will not fit in the destination
2851 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2853 HRESULT WINAPI
VarR4FromDisp(IDispatch
* pdispIn
, LCID lcid
, float *pFltOut
)
2855 return VARIANT_FromDisp(pdispIn
, lcid
, pFltOut
, VT_R4
, 0);
2858 /************************************************************************
2859 * VarR4FromBool (OLEAUT32.76)
2861 * Convert a VT_BOOL to a VT_R4.
2865 * pFltOut [O] Destination
2870 HRESULT WINAPI
VarR4FromBool(VARIANT_BOOL boolIn
, float *pFltOut
)
2872 return VarR4FromI2(boolIn
, pFltOut
);
2875 /************************************************************************
2876 * VarR4FromI1 (OLEAUT32.213)
2878 * Convert a VT_I1 to a VT_R4.
2882 * pFltOut [O] Destination
2886 * Failure: E_INVALIDARG, if the source value is invalid
2887 * DISP_E_OVERFLOW, if the value will not fit in the destination
2888 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2890 HRESULT WINAPI
VarR4FromI1(signed char cIn
, float *pFltOut
)
2892 return _VarR4FromI1(cIn
, pFltOut
);
2895 /************************************************************************
2896 * VarR4FromUI2 (OLEAUT32.214)
2898 * Convert a VT_UI2 to a VT_R4.
2902 * pFltOut [O] Destination
2906 * Failure: E_INVALIDARG, if the source value is invalid
2907 * DISP_E_OVERFLOW, if the value will not fit in the destination
2908 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2910 HRESULT WINAPI
VarR4FromUI2(USHORT usIn
, float *pFltOut
)
2912 return _VarR4FromUI2(usIn
, pFltOut
);
2915 /************************************************************************
2916 * VarR4FromUI4 (OLEAUT32.215)
2918 * Convert a VT_UI4 to a VT_R4.
2922 * pFltOut [O] Destination
2926 * Failure: E_INVALIDARG, if the source value is invalid
2927 * DISP_E_OVERFLOW, if the value will not fit in the destination
2928 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2930 HRESULT WINAPI
VarR4FromUI4(ULONG ulIn
, float *pFltOut
)
2932 return _VarR4FromUI4(ulIn
, pFltOut
);
2935 /************************************************************************
2936 * VarR4FromDec (OLEAUT32.216)
2938 * Convert a VT_DECIMAL to a VT_R4.
2942 * pFltOut [O] Destination
2946 * Failure: E_INVALIDARG, if the source value is invalid.
2948 HRESULT WINAPI
VarR4FromDec(DECIMAL
* pDecIn
, float *pFltOut
)
2950 BYTE scale
= DEC_SCALE(pDecIn
);
2954 if (scale
> DEC_MAX_SCALE
|| DEC_SIGN(pDecIn
) & ~DECIMAL_NEG
)
2955 return E_INVALIDARG
;
2960 if (DEC_SIGN(pDecIn
))
2963 if (DEC_HI32(pDecIn
))
2965 highPart
= (double)DEC_HI32(pDecIn
) / (double)divisor
;
2966 highPart
*= 4294967296.0F
;
2967 highPart
*= 4294967296.0F
;
2972 *pFltOut
= (double)DEC_LO64(pDecIn
) / (double)divisor
+ highPart
;
2976 /************************************************************************
2977 * VarR4FromI8 (OLEAUT32.360)
2979 * Convert a VT_I8 to a VT_R4.
2983 * pFltOut [O] Destination
2988 HRESULT WINAPI
VarR4FromI8(LONG64 llIn
, float *pFltOut
)
2990 return _VarR4FromI8(llIn
, pFltOut
);
2993 /************************************************************************
2994 * VarR4FromUI8 (OLEAUT32.361)
2996 * Convert a VT_UI8 to a VT_R4.
3000 * pFltOut [O] Destination
3005 HRESULT WINAPI
VarR4FromUI8(ULONG64 ullIn
, float *pFltOut
)
3007 return _VarR4FromUI8(ullIn
, pFltOut
);
3010 /************************************************************************
3011 * VarR4CmpR8 (OLEAUT32.316)
3013 * Compare a VT_R4 to a VT_R8.
3016 * fltLeft [I] Source
3017 * dblRight [I] Value to compare
3020 * VARCMP_LT, VARCMP_EQ or VARCMP_GT indicating that fltLeft is less than,
3021 * equal to or greater than dblRight respectively.
3023 HRESULT WINAPI
VarR4CmpR8(float fltLeft
, double dblRight
)
3025 if (fltLeft
< dblRight
)
3027 else if (fltLeft
> dblRight
)
3035 /************************************************************************
3036 * VarR8FromUI1 (OLEAUT32.78)
3038 * Convert a VT_UI1 to a VT_R8.
3042 * pDblOut [O] Destination
3047 HRESULT WINAPI
VarR8FromUI1(BYTE bIn
, double *pDblOut
)
3049 return _VarR8FromUI1(bIn
, pDblOut
);
3052 /************************************************************************
3053 * VarR8FromI2 (OLEAUT32.79)
3055 * Convert a VT_I2 to a VT_R8.
3059 * pDblOut [O] Destination
3064 HRESULT WINAPI
VarR8FromI2(SHORT sIn
, double *pDblOut
)
3066 return _VarR8FromI2(sIn
, pDblOut
);
3069 /************************************************************************
3070 * VarR8FromI4 (OLEAUT32.80)
3072 * Convert a VT_I4 to a VT_R8.
3076 * pDblOut [O] Destination
3081 HRESULT WINAPI
VarR8FromI4(LONG lIn
, double *pDblOut
)
3083 return _VarR8FromI4(lIn
, pDblOut
);
3086 /************************************************************************
3087 * VarR8FromR4 (OLEAUT32.81)
3089 * Convert a VT_R4 to a VT_R8.
3093 * pDblOut [O] Destination
3098 HRESULT WINAPI
VarR8FromR4(FLOAT fltIn
, double *pDblOut
)
3100 return _VarR8FromR4(fltIn
, pDblOut
);
3103 /************************************************************************
3104 * VarR8FromCy (OLEAUT32.82)
3106 * Convert a VT_CY to a VT_R8.
3110 * pDblOut [O] Destination
3115 HRESULT WINAPI
VarR8FromCy(CY cyIn
, double *pDblOut
)
3117 return _VarR8FromCy(cyIn
, pDblOut
);
3120 /************************************************************************
3121 * VarR8FromDate (OLEAUT32.83)
3123 * Convert a VT_DATE to a VT_R8.
3127 * pDblOut [O] Destination
3132 HRESULT WINAPI
VarR8FromDate(DATE dateIn
, double *pDblOut
)
3134 return _VarR8FromDate(dateIn
, pDblOut
);
3137 /************************************************************************
3138 * VarR8FromStr (OLEAUT32.84)
3140 * Convert a VT_BSTR to a VT_R8.
3144 * lcid [I] LCID for the conversion
3145 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
3146 * pDblOut [O] Destination
3150 * Failure: E_INVALIDARG, if strIn or pDblOut is invalid.
3151 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3153 HRESULT WINAPI
VarR8FromStr(OLECHAR
* strIn
, LCID lcid
, ULONG dwFlags
, double *pDblOut
)
3155 return VARIANT_NumberFromBstr(strIn
, lcid
, dwFlags
, pDblOut
, VT_R8
);
3158 /************************************************************************
3159 * VarR8FromDisp (OLEAUT32.85)
3161 * Convert a VT_DISPATCH to a VT_R8.
3164 * pdispIn [I] Source
3165 * lcid [I] LCID for conversion
3166 * pDblOut [O] Destination
3170 * Failure: E_INVALIDARG, if the source value is invalid
3171 * DISP_E_OVERFLOW, if the value will not fit in the destination
3172 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3174 HRESULT WINAPI
VarR8FromDisp(IDispatch
* pdispIn
, LCID lcid
, double *pDblOut
)
3176 return VARIANT_FromDisp(pdispIn
, lcid
, pDblOut
, VT_R8
, 0);
3179 /************************************************************************
3180 * VarR8FromBool (OLEAUT32.86)
3182 * Convert a VT_BOOL to a VT_R8.
3186 * pDblOut [O] Destination
3191 HRESULT WINAPI
VarR8FromBool(VARIANT_BOOL boolIn
, double *pDblOut
)
3193 return VarR8FromI2(boolIn
, pDblOut
);
3196 /************************************************************************
3197 * VarR8FromI1 (OLEAUT32.217)
3199 * Convert a VT_I1 to a VT_R8.
3203 * pDblOut [O] Destination
3207 * Failure: E_INVALIDARG, if the source value is invalid
3208 * DISP_E_OVERFLOW, if the value will not fit in the destination
3209 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3211 HRESULT WINAPI
VarR8FromI1(signed char cIn
, double *pDblOut
)
3213 return _VarR8FromI1(cIn
, pDblOut
);
3216 /************************************************************************
3217 * VarR8FromUI2 (OLEAUT32.218)
3219 * Convert a VT_UI2 to a VT_R8.
3223 * pDblOut [O] Destination
3227 * Failure: E_INVALIDARG, if the source value is invalid
3228 * DISP_E_OVERFLOW, if the value will not fit in the destination
3229 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3231 HRESULT WINAPI
VarR8FromUI2(USHORT usIn
, double *pDblOut
)
3233 return _VarR8FromUI2(usIn
, pDblOut
);
3236 /************************************************************************
3237 * VarR8FromUI4 (OLEAUT32.219)
3239 * Convert a VT_UI4 to a VT_R8.
3243 * pDblOut [O] Destination
3247 * Failure: E_INVALIDARG, if the source value is invalid
3248 * DISP_E_OVERFLOW, if the value will not fit in the destination
3249 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3251 HRESULT WINAPI
VarR8FromUI4(ULONG ulIn
, double *pDblOut
)
3253 return _VarR8FromUI4(ulIn
, pDblOut
);
3256 /************************************************************************
3257 * VarR8FromDec (OLEAUT32.220)
3259 * Convert a VT_DECIMAL to a VT_R8.
3263 * pDblOut [O] Destination
3267 * Failure: E_INVALIDARG, if the source value is invalid.
3269 HRESULT WINAPI
VarR8FromDec(const DECIMAL
* pDecIn
, double *pDblOut
)
3271 BYTE scale
= DEC_SCALE(pDecIn
);
3272 double divisor
= 1.0, highPart
;
3274 if (scale
> DEC_MAX_SCALE
|| DEC_SIGN(pDecIn
) & ~DECIMAL_NEG
)
3275 return E_INVALIDARG
;
3280 if (DEC_SIGN(pDecIn
))
3283 if (DEC_HI32(pDecIn
))
3285 highPart
= (double)DEC_HI32(pDecIn
) / divisor
;
3286 highPart
*= 4294967296.0F
;
3287 highPart
*= 4294967296.0F
;
3292 *pDblOut
= (double)DEC_LO64(pDecIn
) / divisor
+ highPart
;
3296 /************************************************************************
3297 * VarR8FromI8 (OLEAUT32.362)
3299 * Convert a VT_I8 to a VT_R8.
3303 * pDblOut [O] Destination
3308 HRESULT WINAPI
VarR8FromI8(LONG64 llIn
, double *pDblOut
)
3310 return _VarR8FromI8(llIn
, pDblOut
);
3313 /************************************************************************
3314 * VarR8FromUI8 (OLEAUT32.363)
3316 * Convert a VT_UI8 to a VT_R8.
3320 * pDblOut [O] Destination
3325 HRESULT WINAPI
VarR8FromUI8(ULONG64 ullIn
, double *pDblOut
)
3327 return _VarR8FromUI8(ullIn
, pDblOut
);
3330 /************************************************************************
3331 * VarR8Pow (OLEAUT32.315)
3333 * Raise a VT_R8 to a power.
3336 * dblLeft [I] Source
3337 * dblPow [I] Power to raise dblLeft by
3338 * pDblOut [O] Destination
3341 * S_OK. pDblOut contains dblLeft to the power of dblRight.
3343 HRESULT WINAPI
VarR8Pow(double dblLeft
, double dblPow
, double *pDblOut
)
3345 *pDblOut
= pow(dblLeft
, dblPow
);
3349 /************************************************************************
3350 * VarR8Round (OLEAUT32.317)
3352 * Round a VT_R8 to a given number of decimal points.
3356 * nDig [I] Number of decimal points to round to
3357 * pDblOut [O] Destination for rounded number
3360 * Success: S_OK. pDblOut is rounded to nDig digits.
3361 * Failure: E_INVALIDARG, if cDecimals is less than 0.
3364 * The native version of this function rounds using the internal
3365 * binary representation of the number. Wine uses the dutch rounding
3366 * convention, so therefore small differences can occur in the value returned.
3367 * MSDN says that you should use your own rounding function if you want
3368 * rounding to be predictable in your application.
3370 HRESULT WINAPI
VarR8Round(double dblIn
, int nDig
, double *pDblOut
)
3372 double scale
, whole
, fract
;
3375 return E_INVALIDARG
;
3377 scale
= pow(10.0, nDig
);
3380 whole
= dblIn
< 0 ? ceil(dblIn
) : floor(dblIn
);
3381 fract
= dblIn
- whole
;
3384 dblIn
= whole
+ 1.0;
3385 else if (fract
== 0.5)
3386 dblIn
= whole
+ fmod(whole
, 2.0);
3387 else if (fract
>= 0.0)
3389 else if (fract
== -0.5)
3390 dblIn
= whole
- fmod(whole
, 2.0);
3391 else if (fract
> -0.5)
3394 dblIn
= whole
- 1.0;
3396 *pDblOut
= dblIn
/ scale
;
3403 /* Powers of 10 from 0..4 D.P. */
3404 static const int CY_Divisors
[5] = { CY_MULTIPLIER
/10000, CY_MULTIPLIER
/1000,
3405 CY_MULTIPLIER
/100, CY_MULTIPLIER
/10, CY_MULTIPLIER
};
3407 /************************************************************************
3408 * VarCyFromUI1 (OLEAUT32.98)
3410 * Convert a VT_UI1 to a VT_CY.
3414 * pCyOut [O] Destination
3418 * Failure: E_INVALIDARG, if the source value is invalid
3419 * DISP_E_OVERFLOW, if the value will not fit in the destination
3420 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3422 HRESULT WINAPI
VarCyFromUI1(BYTE bIn
, CY
* pCyOut
)
3424 pCyOut
->int64
= (ULONG64
)bIn
* CY_MULTIPLIER
;
3428 /************************************************************************
3429 * VarCyFromI2 (OLEAUT32.99)
3431 * Convert a VT_I2 to a VT_CY.
3435 * pCyOut [O] Destination
3439 * Failure: E_INVALIDARG, if the source value is invalid
3440 * DISP_E_OVERFLOW, if the value will not fit in the destination
3441 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3443 HRESULT WINAPI
VarCyFromI2(SHORT sIn
, CY
* pCyOut
)
3445 pCyOut
->int64
= (LONG64
)sIn
* CY_MULTIPLIER
;
3449 /************************************************************************
3450 * VarCyFromI4 (OLEAUT32.100)
3452 * Convert a VT_I4 to a VT_CY.
3456 * pCyOut [O] Destination
3460 * Failure: E_INVALIDARG, if the source value is invalid
3461 * DISP_E_OVERFLOW, if the value will not fit in the destination
3462 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3464 HRESULT WINAPI
VarCyFromI4(LONG lIn
, CY
* pCyOut
)
3466 pCyOut
->int64
= (LONG64
)lIn
* CY_MULTIPLIER
;
3470 /************************************************************************
3471 * VarCyFromR4 (OLEAUT32.101)
3473 * Convert a VT_R4 to a VT_CY.
3477 * pCyOut [O] Destination
3481 * Failure: E_INVALIDARG, if the source value is invalid
3482 * DISP_E_OVERFLOW, if the value will not fit in the destination
3483 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3485 HRESULT WINAPI
VarCyFromR4(FLOAT fltIn
, CY
* pCyOut
)
3487 return VarCyFromR8(fltIn
, pCyOut
);
3490 /************************************************************************
3491 * VarCyFromR8 (OLEAUT32.102)
3493 * Convert a VT_R8 to a VT_CY.
3497 * pCyOut [O] Destination
3501 * Failure: E_INVALIDARG, if the source value is invalid
3502 * DISP_E_OVERFLOW, if the value will not fit in the destination
3503 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3505 HRESULT WINAPI
VarCyFromR8(double dblIn
, CY
* pCyOut
)
3507 #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
3508 /* This code gives identical results to Win32 on Intel.
3509 * Here we use fp exceptions to catch overflows when storing the value.
3511 static const unsigned short r8_fpcontrol
= 0x137f;
3512 static const double r8_multiplier
= CY_MULTIPLIER_F
;
3513 unsigned short old_fpcontrol
, result_fpstatus
;
3515 /* Clear exceptions, save the old fp state and load the new state */
3516 __asm__
__volatile__( "fnclex" );
3517 __asm__
__volatile__( "fstcw %0" : "=m" (old_fpcontrol
) : );
3518 __asm__
__volatile__( "fldcw %0" : : "m" (r8_fpcontrol
) );
3519 /* Perform the conversion. */
3520 __asm__
__volatile__( "fldl %0" : : "m" (dblIn
) );
3521 __asm__
__volatile__( "fmull %0" : : "m" (r8_multiplier
) );
3522 __asm__
__volatile__( "fistpll %0" : : "m" (*pCyOut
) );
3523 /* Save the resulting fp state, load the old state and clear exceptions */
3524 __asm__
__volatile__( "fstsw %0" : "=m" (result_fpstatus
) : );
3525 __asm__
__volatile__( "fnclex" );
3526 __asm__
__volatile__( "fldcw %0" : : "m" (old_fpcontrol
) );
3528 if (result_fpstatus
& 0x9) /* Overflow | Invalid */
3529 return DISP_E_OVERFLOW
;
3531 /* This version produces slightly different results for boundary cases */
3532 if (dblIn
< -922337203685477.5807 || dblIn
>= 922337203685477.5807)
3533 return DISP_E_OVERFLOW
;
3534 dblIn
*= CY_MULTIPLIER_F
;
3535 VARIANT_DutchRound(LONG64
, dblIn
, pCyOut
->int64
);
3540 /************************************************************************
3541 * VarCyFromDate (OLEAUT32.103)
3543 * Convert a VT_DATE to a VT_CY.
3547 * pCyOut [O] Destination
3551 * Failure: E_INVALIDARG, if the source value is invalid
3552 * DISP_E_OVERFLOW, if the value will not fit in the destination
3553 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3555 HRESULT WINAPI
VarCyFromDate(DATE dateIn
, CY
* pCyOut
)
3557 return VarCyFromR8(dateIn
, pCyOut
);
3560 /************************************************************************
3561 * VarCyFromStr (OLEAUT32.104)
3563 * Convert a VT_BSTR to a VT_CY.
3567 * lcid [I] LCID for the conversion
3568 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
3569 * pCyOut [O] Destination
3573 * Failure: E_INVALIDARG, if the source value is invalid
3574 * DISP_E_OVERFLOW, if the value will not fit in the destination
3575 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3577 HRESULT WINAPI
VarCyFromStr(OLECHAR
* strIn
, LCID lcid
, ULONG dwFlags
, CY
* pCyOut
)
3579 return VARIANT_NumberFromBstr(strIn
, lcid
, dwFlags
, pCyOut
, VT_CY
);
3582 /************************************************************************
3583 * VarCyFromDisp (OLEAUT32.105)
3585 * Convert a VT_DISPATCH to a VT_CY.
3588 * pdispIn [I] Source
3589 * lcid [I] LCID for conversion
3590 * pCyOut [O] Destination
3594 * Failure: E_INVALIDARG, if the source value is invalid
3595 * DISP_E_OVERFLOW, if the value will not fit in the destination
3596 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3598 HRESULT WINAPI
VarCyFromDisp(IDispatch
* pdispIn
, LCID lcid
, CY
* pCyOut
)
3600 return VARIANT_FromDisp(pdispIn
, lcid
, pCyOut
, VT_CY
, 0);
3603 /************************************************************************
3604 * VarCyFromBool (OLEAUT32.106)
3606 * Convert a VT_BOOL to a VT_CY.
3610 * pCyOut [O] Destination
3614 * Failure: E_INVALIDARG, if the source value is invalid
3615 * DISP_E_OVERFLOW, if the value will not fit in the destination
3616 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3619 * While the sign of the boolean is stored in the currency, the value is
3620 * converted to either 0 or 1.
3622 HRESULT WINAPI
VarCyFromBool(VARIANT_BOOL boolIn
, CY
* pCyOut
)
3624 pCyOut
->int64
= (LONG64
)boolIn
* CY_MULTIPLIER
;
3628 /************************************************************************
3629 * VarCyFromI1 (OLEAUT32.225)
3631 * Convert a VT_I1 to a VT_CY.
3635 * pCyOut [O] Destination
3639 * Failure: E_INVALIDARG, if the source value is invalid
3640 * DISP_E_OVERFLOW, if the value will not fit in the destination
3641 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3643 HRESULT WINAPI
VarCyFromI1(signed char cIn
, CY
* pCyOut
)
3645 pCyOut
->int64
= (LONG64
)cIn
* CY_MULTIPLIER
;
3649 /************************************************************************
3650 * VarCyFromUI2 (OLEAUT32.226)
3652 * Convert a VT_UI2 to a VT_CY.
3656 * pCyOut [O] Destination
3660 * Failure: E_INVALIDARG, if the source value is invalid
3661 * DISP_E_OVERFLOW, if the value will not fit in the destination
3662 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3664 HRESULT WINAPI
VarCyFromUI2(USHORT usIn
, CY
* pCyOut
)
3666 pCyOut
->int64
= (ULONG64
)usIn
* CY_MULTIPLIER
;
3670 /************************************************************************
3671 * VarCyFromUI4 (OLEAUT32.227)
3673 * Convert a VT_UI4 to a VT_CY.
3677 * pCyOut [O] Destination
3681 * Failure: E_INVALIDARG, if the source value is invalid
3682 * DISP_E_OVERFLOW, if the value will not fit in the destination
3683 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3685 HRESULT WINAPI
VarCyFromUI4(ULONG ulIn
, CY
* pCyOut
)
3687 pCyOut
->int64
= (ULONG64
)ulIn
* CY_MULTIPLIER
;
3691 /************************************************************************
3692 * VarCyFromDec (OLEAUT32.228)
3694 * Convert a VT_DECIMAL to a VT_CY.
3698 * pCyOut [O] Destination
3702 * Failure: E_INVALIDARG, if the source value is invalid
3703 * DISP_E_OVERFLOW, if the value will not fit in the destination
3704 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3706 HRESULT WINAPI
VarCyFromDec(DECIMAL
* pdecIn
, CY
* pCyOut
)
3711 hRet
= VarDecRound(pdecIn
, 4, &rounded
);
3713 if (SUCCEEDED(hRet
))
3717 if (DEC_HI32(&rounded
))
3718 return DISP_E_OVERFLOW
;
3720 /* Note: Without the casts this promotes to int64 which loses precision */
3721 d
= (double)DEC_LO64(&rounded
) / (double)CY_Divisors
[DEC_SCALE(&rounded
)];
3722 if (DEC_SIGN(&rounded
))
3724 return VarCyFromR8(d
, pCyOut
);
3729 /************************************************************************
3730 * VarCyFromI8 (OLEAUT32.366)
3732 * Convert a VT_I8 to a VT_CY.
3736 * pCyOut [O] Destination
3740 * Failure: E_INVALIDARG, if the source value is invalid
3741 * DISP_E_OVERFLOW, if the value will not fit in the destination
3742 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3744 HRESULT WINAPI
VarCyFromI8(LONG64 llIn
, CY
* pCyOut
)
3746 if (llIn
<= (I8_MIN
/CY_MULTIPLIER
) || llIn
>= (I8_MAX
/CY_MULTIPLIER
)) return DISP_E_OVERFLOW
;
3747 pCyOut
->int64
= llIn
* CY_MULTIPLIER
;
3751 /************************************************************************
3752 * VarCyFromUI8 (OLEAUT32.375)
3754 * Convert a VT_UI8 to a VT_CY.
3758 * pCyOut [O] Destination
3762 * Failure: E_INVALIDARG, if the source value is invalid
3763 * DISP_E_OVERFLOW, if the value will not fit in the destination
3764 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3766 HRESULT WINAPI
VarCyFromUI8(ULONG64 ullIn
, CY
* pCyOut
)
3768 if (ullIn
> (I8_MAX
/CY_MULTIPLIER
)) return DISP_E_OVERFLOW
;
3769 pCyOut
->int64
= ullIn
* CY_MULTIPLIER
;
3773 /************************************************************************
3774 * VarCyAdd (OLEAUT32.299)
3776 * Add one CY to another.
3780 * cyRight [I] Value to add
3781 * pCyOut [O] Destination
3785 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3787 HRESULT WINAPI
VarCyAdd(const CY cyLeft
, const CY cyRight
, CY
* pCyOut
)
3790 _VarR8FromCy(cyLeft
, &l
);
3791 _VarR8FromCy(cyRight
, &r
);
3793 return VarCyFromR8(l
, pCyOut
);
3796 /************************************************************************
3797 * VarCyMul (OLEAUT32.303)
3799 * Multiply one CY by another.
3803 * cyRight [I] Value to multiply by
3804 * pCyOut [O] Destination
3808 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3810 HRESULT WINAPI
VarCyMul(const CY cyLeft
, const CY cyRight
, CY
* pCyOut
)
3813 _VarR8FromCy(cyLeft
, &l
);
3814 _VarR8FromCy(cyRight
, &r
);
3816 return VarCyFromR8(l
, pCyOut
);
3819 /************************************************************************
3820 * VarCyMulI4 (OLEAUT32.304)
3822 * Multiply one CY by a VT_I4.
3826 * lRight [I] Value to multiply by
3827 * pCyOut [O] Destination
3831 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3833 HRESULT WINAPI
VarCyMulI4(const CY cyLeft
, LONG lRight
, CY
* pCyOut
)
3837 _VarR8FromCy(cyLeft
, &d
);
3839 return VarCyFromR8(d
, pCyOut
);
3842 /************************************************************************
3843 * VarCySub (OLEAUT32.305)
3845 * Subtract one CY from another.
3849 * cyRight [I] Value to subtract
3850 * pCyOut [O] Destination
3854 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3856 HRESULT WINAPI
VarCySub(const CY cyLeft
, const CY cyRight
, CY
* pCyOut
)
3859 _VarR8FromCy(cyLeft
, &l
);
3860 _VarR8FromCy(cyRight
, &r
);
3862 return VarCyFromR8(l
, pCyOut
);
3865 /************************************************************************
3866 * VarCyAbs (OLEAUT32.306)
3868 * Convert a VT_CY into its absolute value.
3872 * pCyOut [O] Destination
3875 * Success: S_OK. pCyOut contains the absolute value.
3876 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3878 HRESULT WINAPI
VarCyAbs(const CY cyIn
, CY
* pCyOut
)
3880 if (cyIn
.s
.Hi
== (int)0x80000000 && !cyIn
.s
.Lo
)
3881 return DISP_E_OVERFLOW
;
3883 pCyOut
->int64
= cyIn
.int64
< 0 ? -cyIn
.int64
: cyIn
.int64
;
3887 /************************************************************************
3888 * VarCyFix (OLEAUT32.307)
3890 * Return the integer part of a VT_CY.
3894 * pCyOut [O] Destination
3898 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3901 * - The difference between this function and VarCyInt() is that VarCyInt() rounds
3902 * negative numbers away from 0, while this function rounds them towards zero.
3904 HRESULT WINAPI
VarCyFix(const CY cyIn
, CY
* pCyOut
)
3906 pCyOut
->int64
= cyIn
.int64
/ CY_MULTIPLIER
;
3907 pCyOut
->int64
*= CY_MULTIPLIER
;
3911 /************************************************************************
3912 * VarCyInt (OLEAUT32.308)
3914 * Return the integer part of a VT_CY.
3918 * pCyOut [O] Destination
3922 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3925 * - The difference between this function and VarCyFix() is that VarCyFix() rounds
3926 * negative numbers towards 0, while this function rounds them away from zero.
3928 HRESULT WINAPI
VarCyInt(const CY cyIn
, CY
* pCyOut
)
3930 pCyOut
->int64
= cyIn
.int64
/ CY_MULTIPLIER
;
3931 pCyOut
->int64
*= CY_MULTIPLIER
;
3933 if (cyIn
.int64
< 0 && cyIn
.int64
% CY_MULTIPLIER
!= 0)
3935 pCyOut
->int64
-= CY_MULTIPLIER
;
3940 /************************************************************************
3941 * VarCyNeg (OLEAUT32.309)
3943 * Change the sign of a VT_CY.
3947 * pCyOut [O] Destination
3951 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3953 HRESULT WINAPI
VarCyNeg(const CY cyIn
, CY
* pCyOut
)
3955 if (cyIn
.s
.Hi
== (int)0x80000000 && !cyIn
.s
.Lo
)
3956 return DISP_E_OVERFLOW
;
3958 pCyOut
->int64
= -cyIn
.int64
;
3962 /************************************************************************
3963 * VarCyRound (OLEAUT32.310)
3965 * Change the precision of a VT_CY.
3969 * cDecimals [I] New number of decimals to keep
3970 * pCyOut [O] Destination
3974 * Failure: E_INVALIDARG, if cDecimals is less than 0.
3976 HRESULT WINAPI
VarCyRound(const CY cyIn
, int cDecimals
, CY
* pCyOut
)
3979 return E_INVALIDARG
;
3983 /* Rounding to more precision than we have */
3989 double d
, div
= CY_Divisors
[cDecimals
];
3991 _VarR8FromCy(cyIn
, &d
);
3993 VARIANT_DutchRound(LONGLONG
, d
, pCyOut
->int64
);
3994 d
= (double)pCyOut
->int64
/ div
* CY_MULTIPLIER_F
;
3995 VARIANT_DutchRound(LONGLONG
, d
, pCyOut
->int64
);
4000 /************************************************************************
4001 * VarCyCmp (OLEAUT32.311)
4003 * Compare two VT_CY values.
4007 * cyRight [I] Value to compare
4010 * Success: VARCMP_LT, VARCMP_EQ or VARCMP_GT indicating that the value to
4011 * compare is less, equal or greater than source respectively.
4012 * Failure: DISP_E_OVERFLOW, if overflow occurs during the comparison
4014 HRESULT WINAPI
VarCyCmp(const CY cyLeft
, const CY cyRight
)
4019 /* Subtract right from left, and compare the result to 0 */
4020 hRet
= VarCySub(cyLeft
, cyRight
, &result
);
4022 if (SUCCEEDED(hRet
))
4024 if (result
.int64
< 0)
4025 hRet
= (HRESULT
)VARCMP_LT
;
4026 else if (result
.int64
> 0)
4027 hRet
= (HRESULT
)VARCMP_GT
;
4029 hRet
= (HRESULT
)VARCMP_EQ
;
4034 /************************************************************************
4035 * VarCyCmpR8 (OLEAUT32.312)
4037 * Compare a VT_CY to a double
4040 * cyLeft [I] Currency Source
4041 * dblRight [I] double to compare to cyLeft
4044 * Success: VARCMP_LT, VARCMP_EQ or VARCMP_GT indicating that dblRight is
4045 * less than, equal to or greater than cyLeft respectively.
4046 * Failure: DISP_E_OVERFLOW, if overflow occurs during the comparison
4048 HRESULT WINAPI
VarCyCmpR8(const CY cyLeft
, double dblRight
)
4053 hRet
= VarCyFromR8(dblRight
, &cyRight
);
4055 if (SUCCEEDED(hRet
))
4056 hRet
= VarCyCmp(cyLeft
, cyRight
);
4061 /************************************************************************
4062 * VarCyMulI8 (OLEAUT32.329)
4064 * Multiply a VT_CY by a VT_I8.
4068 * llRight [I] Value to multiply by
4069 * pCyOut [O] Destination
4073 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
4075 HRESULT WINAPI
VarCyMulI8(const CY cyLeft
, LONG64 llRight
, CY
* pCyOut
)
4079 _VarR8FromCy(cyLeft
, &d
);
4080 d
= d
* (double)llRight
;
4081 return VarCyFromR8(d
, pCyOut
);
4087 /************************************************************************
4088 * VarDecFromUI1 (OLEAUT32.190)
4090 * Convert a VT_UI1 to a DECIMAL.
4094 * pDecOut [O] Destination
4099 HRESULT WINAPI
VarDecFromUI1(BYTE bIn
, DECIMAL
* pDecOut
)
4101 return VarDecFromUI4(bIn
, pDecOut
);
4104 /************************************************************************
4105 * VarDecFromI2 (OLEAUT32.191)
4107 * Convert a VT_I2 to a DECIMAL.
4111 * pDecOut [O] Destination
4116 HRESULT WINAPI
VarDecFromI2(SHORT sIn
, DECIMAL
* pDecOut
)
4118 return VarDecFromI4(sIn
, pDecOut
);
4121 /************************************************************************
4122 * VarDecFromI4 (OLEAUT32.192)
4124 * Convert a VT_I4 to a DECIMAL.
4128 * pDecOut [O] Destination
4133 HRESULT WINAPI
VarDecFromI4(LONG lIn
, DECIMAL
* pDecOut
)
4135 DEC_HI32(pDecOut
) = 0;
4136 DEC_MID32(pDecOut
) = 0;
4140 DEC_SIGNSCALE(pDecOut
) = SIGNSCALE(DECIMAL_NEG
,0);
4141 DEC_LO32(pDecOut
) = -lIn
;
4145 DEC_SIGNSCALE(pDecOut
) = SIGNSCALE(DECIMAL_POS
,0);
4146 DEC_LO32(pDecOut
) = lIn
;
4151 #define LOCALE_EN_US (MAKELCID(MAKELANGID(LANG_ENGLISH,SUBLANG_ENGLISH_US),SORT_DEFAULT))
4153 /* internal representation of the value stored in a DECIMAL. The bytes are
4154 stored from LSB at index 0 to MSB at index 11
4156 typedef struct DECIMAL_internal
4158 DWORD bitsnum
[3]; /* 96 significant bits, unsigned */
4159 unsigned char scale
; /* number scaled * 10 ^ -(scale) */
4160 unsigned int sign
: 1; /* 0 - positive, 1 - negative */
4163 static HRESULT
VARIANT_DI_FromR4(float source
, VARIANT_DI
* dest
);
4164 static HRESULT
VARIANT_DI_FromR8(double source
, VARIANT_DI
* dest
);
4165 static void VARIANT_DIFromDec(const DECIMAL
* from
, VARIANT_DI
* to
);
4166 static void VARIANT_DecFromDI(const VARIANT_DI
* from
, DECIMAL
* to
);
4167 static unsigned char VARIANT_int_divbychar(DWORD
* p
, unsigned int n
, unsigned char divisor
);
4168 static BOOL
VARIANT_int_iszero(const DWORD
* p
, unsigned int n
);
4170 /************************************************************************
4171 * VarDecFromR4 (OLEAUT32.193)
4173 * Convert a VT_R4 to a DECIMAL.
4177 * pDecOut [O] Destination
4182 HRESULT WINAPI
VarDecFromR4(FLOAT fltIn
, DECIMAL
* pDecOut
)
4187 hres
= VARIANT_DI_FromR4(fltIn
, &di
);
4188 if (hres
== S_OK
) VARIANT_DecFromDI(&di
, pDecOut
);
4192 /************************************************************************
4193 * VarDecFromR8 (OLEAUT32.194)
4195 * Convert a VT_R8 to a DECIMAL.
4199 * pDecOut [O] Destination
4204 HRESULT WINAPI
VarDecFromR8(double dblIn
, DECIMAL
* pDecOut
)
4209 hres
= VARIANT_DI_FromR8(dblIn
, &di
);
4210 if (hres
== S_OK
) VARIANT_DecFromDI(&di
, pDecOut
);
4214 /************************************************************************
4215 * VarDecFromDate (OLEAUT32.195)
4217 * Convert a VT_DATE to a DECIMAL.
4221 * pDecOut [O] Destination
4226 HRESULT WINAPI
VarDecFromDate(DATE dateIn
, DECIMAL
* pDecOut
)
4228 return VarDecFromR8(dateIn
, pDecOut
);
4231 /************************************************************************
4232 * VarDecFromCy (OLEAUT32.196)
4234 * Convert a VT_CY to a DECIMAL.
4238 * pDecOut [O] Destination
4243 HRESULT WINAPI
VarDecFromCy(CY cyIn
, DECIMAL
* pDecOut
)
4245 DEC_HI32(pDecOut
) = 0;
4247 /* Note: This assumes 2s complement integer representation */
4248 if (cyIn
.s
.Hi
& 0x80000000)
4250 DEC_SIGNSCALE(pDecOut
) = SIGNSCALE(DECIMAL_NEG
,4);
4251 DEC_LO64(pDecOut
) = -cyIn
.int64
;
4255 DEC_SIGNSCALE(pDecOut
) = SIGNSCALE(DECIMAL_POS
,4);
4256 DEC_MID32(pDecOut
) = cyIn
.s
.Hi
;
4257 DEC_LO32(pDecOut
) = cyIn
.s
.Lo
;
4262 /************************************************************************
4263 * VarDecFromStr (OLEAUT32.197)
4265 * Convert a VT_BSTR to a DECIMAL.
4269 * lcid [I] LCID for the conversion
4270 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
4271 * pDecOut [O] Destination
4275 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
4277 HRESULT WINAPI
VarDecFromStr(OLECHAR
* strIn
, LCID lcid
, ULONG dwFlags
, DECIMAL
* pDecOut
)
4279 return VARIANT_NumberFromBstr(strIn
, lcid
, dwFlags
, pDecOut
, VT_DECIMAL
);
4282 /************************************************************************
4283 * VarDecFromDisp (OLEAUT32.198)
4285 * Convert a VT_DISPATCH to a DECIMAL.
4288 * pdispIn [I] Source
4289 * lcid [I] LCID for conversion
4290 * pDecOut [O] Destination
4294 * Failure: DISP_E_TYPEMISMATCH, if the type cannot be converted
4296 HRESULT WINAPI
VarDecFromDisp(IDispatch
* pdispIn
, LCID lcid
, DECIMAL
* pDecOut
)
4298 return VARIANT_FromDisp(pdispIn
, lcid
, pDecOut
, VT_DECIMAL
, 0);
4301 /************************************************************************
4302 * VarDecFromBool (OLEAUT32.199)
4304 * Convert a VT_BOOL to a DECIMAL.
4308 * pDecOut [O] Destination
4314 * The value is converted to either 0 (if bIn is FALSE) or -1 (TRUE).
4316 HRESULT WINAPI
VarDecFromBool(VARIANT_BOOL bIn
, DECIMAL
* pDecOut
)
4318 DEC_HI32(pDecOut
) = 0;
4319 DEC_MID32(pDecOut
) = 0;
4322 DEC_SIGNSCALE(pDecOut
) = SIGNSCALE(DECIMAL_NEG
,0);
4323 DEC_LO32(pDecOut
) = 1;
4327 DEC_SIGNSCALE(pDecOut
) = SIGNSCALE(DECIMAL_POS
,0);
4328 DEC_LO32(pDecOut
) = 0;
4333 /************************************************************************
4334 * VarDecFromI1 (OLEAUT32.241)
4336 * Convert a VT_I1 to a DECIMAL.
4340 * pDecOut [O] Destination
4345 HRESULT WINAPI
VarDecFromI1(signed char cIn
, DECIMAL
* pDecOut
)
4347 return VarDecFromI4(cIn
, pDecOut
);
4350 /************************************************************************
4351 * VarDecFromUI2 (OLEAUT32.242)
4353 * Convert a VT_UI2 to a DECIMAL.
4357 * pDecOut [O] Destination
4362 HRESULT WINAPI
VarDecFromUI2(USHORT usIn
, DECIMAL
* pDecOut
)
4364 return VarDecFromUI4(usIn
, pDecOut
);
4367 /************************************************************************
4368 * VarDecFromUI4 (OLEAUT32.243)
4370 * Convert a VT_UI4 to a DECIMAL.
4374 * pDecOut [O] Destination
4379 HRESULT WINAPI
VarDecFromUI4(ULONG ulIn
, DECIMAL
* pDecOut
)
4381 DEC_SIGNSCALE(pDecOut
) = SIGNSCALE(DECIMAL_POS
,0);
4382 DEC_HI32(pDecOut
) = 0;
4383 DEC_MID32(pDecOut
) = 0;
4384 DEC_LO32(pDecOut
) = ulIn
;
4388 /************************************************************************
4389 * VarDecFromI8 (OLEAUT32.374)
4391 * Convert a VT_I8 to a DECIMAL.
4395 * pDecOut [O] Destination
4400 HRESULT WINAPI
VarDecFromI8(LONG64 llIn
, DECIMAL
* pDecOut
)
4402 PULARGE_INTEGER pLi
= (PULARGE_INTEGER
)&llIn
;
4404 DEC_HI32(pDecOut
) = 0;
4406 /* Note: This assumes 2s complement integer representation */
4407 if (pLi
->u
.HighPart
& 0x80000000)
4409 DEC_SIGNSCALE(pDecOut
) = SIGNSCALE(DECIMAL_NEG
,0);
4410 DEC_LO64(pDecOut
) = -pLi
->QuadPart
;
4414 DEC_SIGNSCALE(pDecOut
) = SIGNSCALE(DECIMAL_POS
,0);
4415 DEC_MID32(pDecOut
) = pLi
->u
.HighPart
;
4416 DEC_LO32(pDecOut
) = pLi
->u
.LowPart
;
4421 /************************************************************************
4422 * VarDecFromUI8 (OLEAUT32.375)
4424 * Convert a VT_UI8 to a DECIMAL.
4428 * pDecOut [O] Destination
4433 HRESULT WINAPI
VarDecFromUI8(ULONG64 ullIn
, DECIMAL
* pDecOut
)
4435 DEC_SIGNSCALE(pDecOut
) = SIGNSCALE(DECIMAL_POS
,0);
4436 DEC_HI32(pDecOut
) = 0;
4437 DEC_LO64(pDecOut
) = ullIn
;
4441 /* Make two DECIMALS the same scale; used by math functions below */
4442 static HRESULT
VARIANT_DecScale(const DECIMAL
** ppDecLeft
,
4443 const DECIMAL
** ppDecRight
,
4446 static DECIMAL scaleFactor
;
4447 unsigned char remainder
;
4452 if (DEC_SIGN(*ppDecLeft
) & ~DECIMAL_NEG
|| DEC_SIGN(*ppDecRight
) & ~DECIMAL_NEG
)
4453 return E_INVALIDARG
;
4455 DEC_LO32(&scaleFactor
) = 10;
4457 i
= scaleAmount
= DEC_SCALE(*ppDecLeft
) - DEC_SCALE(*ppDecRight
);
4460 return S_OK
; /* Same scale */
4462 if (scaleAmount
> 0)
4464 decTemp
= *(*ppDecRight
); /* Left is bigger - scale the right hand side */
4465 *ppDecRight
= &pDecOut
[0];
4469 decTemp
= *(*ppDecLeft
); /* Right is bigger - scale the left hand side */
4470 *ppDecLeft
= &pDecOut
[0];
4474 /* Multiply up the value to be scaled by the correct amount (if possible) */
4475 while (i
> 0 && SUCCEEDED(VarDecMul(&decTemp
, &scaleFactor
, &pDecOut
[0])))
4477 decTemp
= pDecOut
[0];
4483 DEC_SCALE(&pDecOut
[0]) += (scaleAmount
> 0) ? scaleAmount
: (-scaleAmount
);
4484 return S_OK
; /* Same scale */
4487 /* Scaling further not possible, reduce accuracy of other argument */
4488 pDecOut
[0] = decTemp
;
4489 if (scaleAmount
> 0)
4491 DEC_SCALE(&pDecOut
[0]) += scaleAmount
- i
;
4492 VARIANT_DIFromDec(*ppDecLeft
, &di
);
4493 *ppDecLeft
= &pDecOut
[1];
4497 DEC_SCALE(&pDecOut
[0]) += (-scaleAmount
) - i
;
4498 VARIANT_DIFromDec(*ppDecRight
, &di
);
4499 *ppDecRight
= &pDecOut
[1];
4504 while (i
-- > 0 && !VARIANT_int_iszero(di
.bitsnum
, sizeof(di
.bitsnum
)/sizeof(DWORD
)))
4506 remainder
= VARIANT_int_divbychar(di
.bitsnum
, sizeof(di
.bitsnum
)/sizeof(DWORD
), 10);
4507 if (remainder
> 0) WARN("losing significant digits (remainder %u)...\n", remainder
);
4510 /* round up the result - native oleaut32 does this */
4511 if (remainder
>= 5) {
4512 for (remainder
= 1, i
= 0; i
< sizeof(di
.bitsnum
)/sizeof(DWORD
) && remainder
; i
++) {
4513 ULONGLONG digit
= di
.bitsnum
[i
] + 1;
4514 remainder
= (digit
> 0xFFFFFFFF) ? 1 : 0;
4515 di
.bitsnum
[i
] = digit
& 0xFFFFFFFF;
4519 VARIANT_DecFromDI(&di
, &pDecOut
[1]);
4523 /* Add two unsigned 32 bit values with overflow */
4524 static ULONG
VARIANT_Add(ULONG ulLeft
, ULONG ulRight
, ULONG
* pulHigh
)
4526 ULARGE_INTEGER ul64
;
4528 ul64
.QuadPart
= (ULONG64
)ulLeft
+ (ULONG64
)ulRight
+ (ULONG64
)*pulHigh
;
4529 *pulHigh
= ul64
.u
.HighPart
;
4530 return ul64
.u
.LowPart
;
4533 /* Subtract two unsigned 32 bit values with underflow */
4534 static ULONG
VARIANT_Sub(ULONG ulLeft
, ULONG ulRight
, ULONG
* pulHigh
)
4536 BOOL invert
= FALSE
;
4537 ULARGE_INTEGER ul64
;
4539 ul64
.QuadPart
= (LONG64
)ulLeft
- (ULONG64
)ulRight
;
4540 if (ulLeft
< ulRight
)
4543 if (ul64
.QuadPart
> (ULONG64
)*pulHigh
)
4544 ul64
.QuadPart
-= (ULONG64
)*pulHigh
;
4547 ul64
.QuadPart
-= (ULONG64
)*pulHigh
;
4551 ul64
.u
.HighPart
= -ul64
.u
.HighPart
;
4553 *pulHigh
= ul64
.u
.HighPart
;
4554 return ul64
.u
.LowPart
;
4557 /* Multiply two unsigned 32 bit values with overflow */
4558 static ULONG
VARIANT_Mul(ULONG ulLeft
, ULONG ulRight
, ULONG
* pulHigh
)
4560 ULARGE_INTEGER ul64
;
4562 ul64
.QuadPart
= (ULONG64
)ulLeft
* (ULONG64
)ulRight
+ (ULONG64
)*pulHigh
;
4563 *pulHigh
= ul64
.u
.HighPart
;
4564 return ul64
.u
.LowPart
;
4567 /* Compare two decimals that have the same scale */
4568 static inline int VARIANT_DecCmp(const DECIMAL
*pDecLeft
, const DECIMAL
*pDecRight
)
4570 if ( DEC_HI32(pDecLeft
) < DEC_HI32(pDecRight
) ||
4571 (DEC_HI32(pDecLeft
) <= DEC_HI32(pDecRight
) && DEC_LO64(pDecLeft
) < DEC_LO64(pDecRight
)))
4573 else if (DEC_HI32(pDecLeft
) == DEC_HI32(pDecRight
) && DEC_LO64(pDecLeft
) == DEC_LO64(pDecRight
))
4578 /************************************************************************
4579 * VarDecAdd (OLEAUT32.177)
4581 * Add one DECIMAL to another.
4584 * pDecLeft [I] Source
4585 * pDecRight [I] Value to add
4586 * pDecOut [O] Destination
4590 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
4592 HRESULT WINAPI
VarDecAdd(const DECIMAL
* pDecLeft
, const DECIMAL
* pDecRight
, DECIMAL
* pDecOut
)
4597 hRet
= VARIANT_DecScale(&pDecLeft
, &pDecRight
, scaled
);
4599 if (SUCCEEDED(hRet
))
4601 /* Our decimals now have the same scale, we can add them as 96 bit integers */
4603 BYTE sign
= DECIMAL_POS
;
4606 /* Correct for the sign of the result */
4607 if (DEC_SIGN(pDecLeft
) && DEC_SIGN(pDecRight
))
4609 /* -x + -y : Negative */
4611 goto VarDecAdd_AsPositive
;
4613 else if (DEC_SIGN(pDecLeft
) && !DEC_SIGN(pDecRight
))
4615 cmp
= VARIANT_DecCmp(pDecLeft
, pDecRight
);
4617 /* -x + y : Negative if x > y */
4621 VarDecAdd_AsNegative
:
4622 DEC_LO32(pDecOut
) = VARIANT_Sub(DEC_LO32(pDecLeft
), DEC_LO32(pDecRight
), &overflow
);
4623 DEC_MID32(pDecOut
) = VARIANT_Sub(DEC_MID32(pDecLeft
), DEC_MID32(pDecRight
), &overflow
);
4624 DEC_HI32(pDecOut
) = VARIANT_Sub(DEC_HI32(pDecLeft
), DEC_HI32(pDecRight
), &overflow
);
4628 VarDecAdd_AsInvertedNegative
:
4629 DEC_LO32(pDecOut
) = VARIANT_Sub(DEC_LO32(pDecRight
), DEC_LO32(pDecLeft
), &overflow
);
4630 DEC_MID32(pDecOut
) = VARIANT_Sub(DEC_MID32(pDecRight
), DEC_MID32(pDecLeft
), &overflow
);
4631 DEC_HI32(pDecOut
) = VARIANT_Sub(DEC_HI32(pDecRight
), DEC_HI32(pDecLeft
), &overflow
);
4634 else if (!DEC_SIGN(pDecLeft
) && DEC_SIGN(pDecRight
))
4636 cmp
= VARIANT_DecCmp(pDecLeft
, pDecRight
);
4638 /* x + -y : Negative if x <= y */
4642 goto VarDecAdd_AsInvertedNegative
;
4644 goto VarDecAdd_AsNegative
;
4648 /* x + y : Positive */
4649 VarDecAdd_AsPositive
:
4650 DEC_LO32(pDecOut
) = VARIANT_Add(DEC_LO32(pDecLeft
), DEC_LO32(pDecRight
), &overflow
);
4651 DEC_MID32(pDecOut
) = VARIANT_Add(DEC_MID32(pDecLeft
), DEC_MID32(pDecRight
), &overflow
);
4652 DEC_HI32(pDecOut
) = VARIANT_Add(DEC_HI32(pDecLeft
), DEC_HI32(pDecRight
), &overflow
);
4656 return DISP_E_OVERFLOW
; /* overflowed */
4658 DEC_SCALE(pDecOut
) = DEC_SCALE(pDecLeft
);
4659 DEC_SIGN(pDecOut
) = sign
;
4664 /* translate from external DECIMAL format into an internal representation */
4665 static void VARIANT_DIFromDec(const DECIMAL
* from
, VARIANT_DI
* to
)
4667 to
->scale
= DEC_SCALE(from
);
4668 to
->sign
= DEC_SIGN(from
) ? 1 : 0;
4670 to
->bitsnum
[0] = DEC_LO32(from
);
4671 to
->bitsnum
[1] = DEC_MID32(from
);
4672 to
->bitsnum
[2] = DEC_HI32(from
);
4675 static void VARIANT_DecFromDI(const VARIANT_DI
* from
, DECIMAL
* to
)
4678 DEC_SIGNSCALE(to
) = SIGNSCALE(DECIMAL_NEG
, from
->scale
);
4680 DEC_SIGNSCALE(to
) = SIGNSCALE(DECIMAL_POS
, from
->scale
);
4683 DEC_LO32(to
) = from
->bitsnum
[0];
4684 DEC_MID32(to
) = from
->bitsnum
[1];
4685 DEC_HI32(to
) = from
->bitsnum
[2];
4688 /* clear an internal representation of a DECIMAL */
4689 static void VARIANT_DI_clear(VARIANT_DI
* i
)
4691 memset(i
, 0, sizeof(VARIANT_DI
));
4694 /* divide the (unsigned) number stored in p (LSB) by a byte value (<= 0xff). Any nonzero
4695 size is supported. The value in p is replaced by the quotient of the division, and
4696 the remainder is returned as a result. This routine is most often used with a divisor
4697 of 10 in order to scale up numbers, and in the DECIMAL->string conversion.
4699 static unsigned char VARIANT_int_divbychar(DWORD
* p
, unsigned int n
, unsigned char divisor
)
4704 } else if (divisor
== 1) {
4705 /* dividend remains unchanged */
4708 unsigned char remainder
= 0;
4709 ULONGLONG iTempDividend
;
4712 for (i
= n
- 1; i
>= 0 && !p
[i
]; i
--); /* skip leading zeros */
4713 for (; i
>= 0; i
--) {
4714 iTempDividend
= ((ULONGLONG
)remainder
<< 32) + p
[i
];
4715 remainder
= iTempDividend
% divisor
;
4716 p
[i
] = iTempDividend
/ divisor
;
4723 /* check to test if encoded number is a zero. Returns 1 if zero, 0 for nonzero */
4724 static BOOL
VARIANT_int_iszero(const DWORD
* p
, unsigned int n
)
4726 for (; n
> 0; n
--) if (*p
++ != 0) return FALSE
;
4730 /* multiply two DECIMALS, without changing either one, and place result in third
4731 parameter. Result is normalized when scale is > 0. Attempts to remove significant
4732 digits when scale > 0 in order to fit an overflowing result. Final overflow
4735 static int VARIANT_DI_mul(const VARIANT_DI
* a
, const VARIANT_DI
* b
, VARIANT_DI
* result
)
4737 BOOL r_overflow
= FALSE
;
4739 signed int mulstart
;
4741 VARIANT_DI_clear(result
);
4742 result
->sign
= (a
->sign
^ b
->sign
) ? 1 : 0;
4744 /* Multiply 128-bit operands into a (max) 256-bit result. The scale
4745 of the result is formed by adding the scales of the operands.
4747 result
->scale
= a
->scale
+ b
->scale
;
4748 memset(running
, 0, sizeof(running
));
4750 /* count number of leading zero-bytes in operand A */
4751 for (mulstart
= sizeof(a
->bitsnum
)/sizeof(DWORD
) - 1; mulstart
>= 0 && !a
->bitsnum
[mulstart
]; mulstart
--);
4753 /* result is 0, because operand A is 0 */
4757 unsigned char remainder
= 0;
4760 /* perform actual multiplication */
4761 for (iA
= 0; iA
<= mulstart
; iA
++) {
4765 for (iOverflowMul
= 0, iB
= 0; iB
< sizeof(b
->bitsnum
)/sizeof(DWORD
); iB
++) {
4769 iRV
= VARIANT_Mul(b
->bitsnum
[iB
], a
->bitsnum
[iA
], &iOverflowMul
);
4772 running
[iR
] = VARIANT_Add(running
[iR
], 0, &iRV
);
4778 /* Too bad - native oleaut does not do this, so we should not either */
4780 /* While the result is divisible by 10, and the scale > 0, divide by 10.
4781 This operation should not lose significant digits, and gives an
4782 opportunity to reduce the possibility of overflows in future
4783 operations issued by the application.
4785 while (result
->scale
> 0) {
4786 memcpy(quotient
, running
, sizeof(quotient
));
4787 remainder
= VARIANT_int_divbychar(quotient
, sizeof(quotient
) / sizeof(DWORD
), 10);
4788 if (remainder
> 0) break;
4789 memcpy(running
, quotient
, sizeof(quotient
));
4793 /* While the 256-bit result overflows, and the scale > 0, divide by 10.
4794 This operation *will* lose significant digits of the result because
4795 all the factors of 10 were consumed by the previous operation.
4797 while (result
->scale
> 0 && !VARIANT_int_iszero(
4798 running
+ sizeof(result
->bitsnum
) / sizeof(DWORD
),
4799 (sizeof(running
) - sizeof(result
->bitsnum
)) / sizeof(DWORD
))) {
4801 remainder
= VARIANT_int_divbychar(running
, sizeof(running
) / sizeof(DWORD
), 10);
4802 if (remainder
> 0) WARN("losing significant digits (remainder %u)...\n", remainder
);
4806 /* round up the result - native oleaut32 does this */
4807 if (remainder
>= 5) {
4809 for (remainder
= 1, i
= 0; i
< sizeof(running
)/sizeof(DWORD
) && remainder
; i
++) {
4810 ULONGLONG digit
= running
[i
] + 1;
4811 remainder
= (digit
> 0xFFFFFFFF) ? 1 : 0;
4812 running
[i
] = digit
& 0xFFFFFFFF;
4816 /* Signal overflow if scale == 0 and 256-bit result still overflows,
4817 and copy result bits into result structure
4819 r_overflow
= !VARIANT_int_iszero(
4820 running
+ sizeof(result
->bitsnum
)/sizeof(DWORD
),
4821 (sizeof(running
) - sizeof(result
->bitsnum
))/sizeof(DWORD
));
4822 memcpy(result
->bitsnum
, running
, sizeof(result
->bitsnum
));
4827 /* cast DECIMAL into string. Any scale should be handled properly. en_US locale is
4828 hardcoded (period for decimal separator, dash as negative sign). Returns TRUE for
4829 success, FALSE if insufficient space in output buffer.
4831 static BOOL
VARIANT_DI_tostringW(const VARIANT_DI
* a
, WCHAR
* s
, unsigned int n
)
4833 BOOL overflow
= FALSE
;
4835 unsigned char remainder
;
4838 /* place negative sign */
4839 if (!VARIANT_int_iszero(a
->bitsnum
, sizeof(a
->bitsnum
) / sizeof(DWORD
)) && a
->sign
) {
4844 else overflow
= TRUE
;
4847 /* prepare initial 0 */
4852 } else overflow
= TRUE
;
4856 memcpy(quotient
, a
->bitsnum
, sizeof(a
->bitsnum
));
4857 while (!overflow
&& !VARIANT_int_iszero(quotient
, sizeof(quotient
) / sizeof(DWORD
))) {
4858 remainder
= VARIANT_int_divbychar(quotient
, sizeof(quotient
) / sizeof(DWORD
), 10);
4862 s
[i
++] = '0' + remainder
;
4867 if (!overflow
&& !VARIANT_int_iszero(a
->bitsnum
, sizeof(a
->bitsnum
) / sizeof(DWORD
))) {
4869 /* reverse order of digits */
4870 WCHAR
* x
= s
; WCHAR
* y
= s
+ i
- 1;
4877 /* check for decimal point. "i" now has string length */
4878 if (i
<= a
->scale
) {
4879 unsigned int numzeroes
= a
->scale
+ 1 - i
;
4880 if (i
+ 1 + numzeroes
>= n
) {
4883 memmove(s
+ numzeroes
, s
, (i
+ 1) * sizeof(WCHAR
));
4885 while (numzeroes
> 0) {
4886 s
[--numzeroes
] = '0';
4891 /* place decimal point */
4893 unsigned int periodpos
= i
- a
->scale
;
4897 memmove(s
+ periodpos
+ 1, s
+ periodpos
, (i
+ 1 - periodpos
) * sizeof(WCHAR
));
4898 s
[periodpos
] = '.'; i
++;
4900 /* remove extra zeros at the end, if any */
4901 while (s
[i
- 1] == '0') s
[--i
] = '\0';
4902 if (s
[i
- 1] == '.') s
[--i
] = '\0';
4910 /* shift the bits of a DWORD array to the left. p[0] is assumed LSB */
4911 static void VARIANT_int_shiftleft(DWORD
* p
, unsigned int n
, unsigned int shift
)
4916 /* shift whole DWORDs to the left */
4919 memmove(p
+ 1, p
, (n
- 1) * sizeof(DWORD
));
4920 *p
= 0; shift
-= 32;
4923 /* shift remainder (1..31 bits) */
4925 if (shift
> 0) for (i
= 0; i
< n
; i
++)
4928 b
= p
[i
] >> (32 - shift
);
4929 p
[i
] = (p
[i
] << shift
) | shifted
;
4934 /* add the (unsigned) numbers stored in two DWORD arrays with LSB at index 0.
4935 Value at v is incremented by the value at p. Any size is supported, provided
4936 that v is not shorter than p. Any unapplied carry is returned as a result.
4938 static unsigned char VARIANT_int_add(DWORD
* v
, unsigned int nv
, const DWORD
* p
,
4941 unsigned char carry
= 0;
4947 for (i
= 0; i
< np
; i
++) {
4948 sum
= (ULONGLONG
)v
[i
]
4951 v
[i
] = sum
& 0xffffffff;
4954 for (; i
< nv
&& carry
; i
++) {
4955 sum
= (ULONGLONG
)v
[i
]
4957 v
[i
] = sum
& 0xffffffff;
4964 /* perform integral division with operand p as dividend. Parameter n indicates
4965 number of available DWORDs in divisor p, but available space in p must be
4966 actually at least 2 * n DWORDs, because the remainder of the integral
4967 division is built in the next n DWORDs past the start of the quotient. This
4968 routine replaces the dividend in p with the quotient, and appends n
4969 additional DWORDs for the remainder.
4971 Thanks to Lee & Mark Atkinson for their book _Using_C_ (my very first book on
4972 C/C++ :-) where the "longhand binary division" algorithm was exposed for the
4973 source code to the VLI (Very Large Integer) division operator. This algorithm
4974 was then heavily modified by me (Alex Villacis Lasso) in order to handle
4975 variably-scaled integers such as the MS DECIMAL representation.
4977 static void VARIANT_int_div(DWORD
* p
, unsigned int n
, const DWORD
* divisor
,
4982 DWORD
* negdivisor
= tempsub
+ n
;
4984 /* build 2s-complement of divisor */
4985 for (i
= 0; i
< n
; i
++) negdivisor
[i
] = (i
< dn
) ? ~divisor
[i
] : 0xFFFFFFFF;
4987 VARIANT_int_add(negdivisor
, n
, p
+ n
, 1);
4988 memset(p
+ n
, 0, n
* sizeof(DWORD
));
4990 /* skip all leading zero DWORDs in quotient */
4991 for (i
= 0; i
< n
&& !p
[n
- 1]; i
++) VARIANT_int_shiftleft(p
, n
, 32);
4992 /* i is now number of DWORDs left to process */
4993 for (i
<<= 5; i
< (n
<< 5); i
++) {
4994 VARIANT_int_shiftleft(p
, n
<< 1, 1); /* shl quotient+remainder */
4996 /* trial subtraction */
4997 memcpy(tempsub
, p
+ n
, n
* sizeof(DWORD
));
4998 VARIANT_int_add(tempsub
, n
, negdivisor
, n
);
5000 /* check whether result of subtraction was negative */
5001 if ((tempsub
[n
- 1] & 0x80000000) == 0) {
5002 memcpy(p
+ n
, tempsub
, n
* sizeof(DWORD
));
5008 /* perform integral multiplication by a byte operand. Used for scaling by 10 */
5009 static unsigned char VARIANT_int_mulbychar(DWORD
* p
, unsigned int n
, unsigned char m
)
5014 for (iOverflowMul
= 0, i
= 0; i
< n
; i
++)
5015 p
[i
] = VARIANT_Mul(p
[i
], m
, &iOverflowMul
);
5016 return (unsigned char)iOverflowMul
;
5019 /* increment value in A by the value indicated in B, with scale adjusting.
5020 Modifies parameters by adjusting scales. Returns 0 if addition was
5021 successful, nonzero if a parameter underflowed before it could be
5022 successfully used in the addition.
5024 static int VARIANT_int_addlossy(
5025 DWORD
* a
, int * ascale
, unsigned int an
,
5026 DWORD
* b
, int * bscale
, unsigned int bn
)
5030 if (VARIANT_int_iszero(a
, an
)) {
5031 /* if A is zero, copy B into A, after removing digits */
5032 while (bn
> an
&& !VARIANT_int_iszero(b
+ an
, bn
- an
)) {
5033 VARIANT_int_divbychar(b
, bn
, 10);
5036 memcpy(a
, b
, an
* sizeof(DWORD
));
5038 } else if (!VARIANT_int_iszero(b
, bn
)) {
5039 unsigned int tn
= an
+ 1;
5042 if (bn
+ 1 > tn
) tn
= bn
+ 1;
5043 if (*ascale
!= *bscale
) {
5044 /* first (optimistic) try - try to scale down the one with the bigger
5045 scale, while this number is divisible by 10 */
5046 DWORD
* digitchosen
;
5047 unsigned int nchosen
;
5051 if (*ascale
< *bscale
) {
5052 targetscale
= *ascale
;
5053 scalechosen
= bscale
;
5057 targetscale
= *bscale
;
5058 scalechosen
= ascale
;
5062 memset(t
, 0, tn
* sizeof(DWORD
));
5063 memcpy(t
, digitchosen
, nchosen
* sizeof(DWORD
));
5065 /* divide by 10 until target scale is reached */
5066 while (*scalechosen
> targetscale
) {
5067 unsigned char remainder
= VARIANT_int_divbychar(t
, tn
, 10);
5070 memcpy(digitchosen
, t
, nchosen
* sizeof(DWORD
));
5075 if (*ascale
!= *bscale
) {
5076 DWORD
* digitchosen
;
5077 unsigned int nchosen
;
5081 /* try to scale up the one with the smaller scale */
5082 if (*ascale
> *bscale
) {
5083 targetscale
= *ascale
;
5084 scalechosen
= bscale
;
5088 targetscale
= *bscale
;
5089 scalechosen
= ascale
;
5093 memset(t
, 0, tn
* sizeof(DWORD
));
5094 memcpy(t
, digitchosen
, nchosen
* sizeof(DWORD
));
5096 /* multiply by 10 until target scale is reached, or
5097 significant bytes overflow the number
5099 while (*scalechosen
< targetscale
&& t
[nchosen
] == 0) {
5100 VARIANT_int_mulbychar(t
, tn
, 10);
5101 if (t
[nchosen
] == 0) {
5102 /* still does not overflow */
5104 memcpy(digitchosen
, t
, nchosen
* sizeof(DWORD
));
5109 if (*ascale
!= *bscale
) {
5110 /* still different? try to scale down the one with the bigger scale
5111 (this *will* lose significant digits) */
5112 DWORD
* digitchosen
;
5113 unsigned int nchosen
;
5117 if (*ascale
< *bscale
) {
5118 targetscale
= *ascale
;
5119 scalechosen
= bscale
;
5123 targetscale
= *bscale
;
5124 scalechosen
= ascale
;
5128 memset(t
, 0, tn
* sizeof(DWORD
));
5129 memcpy(t
, digitchosen
, nchosen
* sizeof(DWORD
));
5131 /* divide by 10 until target scale is reached */
5132 while (*scalechosen
> targetscale
) {
5133 VARIANT_int_divbychar(t
, tn
, 10);
5135 memcpy(digitchosen
, t
, nchosen
* sizeof(DWORD
));
5139 /* check whether any of the operands still has significant digits
5142 if (VARIANT_int_iszero(a
, an
) || VARIANT_int_iszero(b
, bn
)) {
5145 /* at this step, both numbers have the same scale and can be added
5146 as integers. However, the result might not fit in A, so further
5147 scaling down might be necessary.
5149 while (!underflow
) {
5150 memset(t
, 0, tn
* sizeof(DWORD
));
5151 memcpy(t
, a
, an
* sizeof(DWORD
));
5153 VARIANT_int_add(t
, tn
, b
, bn
);
5154 if (VARIANT_int_iszero(t
+ an
, tn
- an
)) {
5155 /* addition was successful */
5156 memcpy(a
, t
, an
* sizeof(DWORD
));
5159 /* addition overflowed - remove significant digits
5160 from both operands and try again */
5161 VARIANT_int_divbychar(a
, an
, 10); (*ascale
)--;
5162 VARIANT_int_divbychar(b
, bn
, 10); (*bscale
)--;
5163 /* check whether any operand keeps significant digits after
5164 scaledown (underflow case 2)
5166 underflow
= (VARIANT_int_iszero(a
, an
) || VARIANT_int_iszero(b
, bn
));
5174 /* perform complete DECIMAL division in the internal representation. Returns
5175 0 if the division was completed (even if quotient is set to 0), or nonzero
5176 in case of quotient overflow.
5178 static HRESULT
VARIANT_DI_div(const VARIANT_DI
* dividend
, const VARIANT_DI
* divisor
,
5179 VARIANT_DI
* quotient
, BOOL round_remainder
)
5181 HRESULT r_overflow
= S_OK
;
5183 if (VARIANT_int_iszero(divisor
->bitsnum
, sizeof(divisor
->bitsnum
)/sizeof(DWORD
))) {
5185 r_overflow
= DISP_E_DIVBYZERO
;
5186 } else if (VARIANT_int_iszero(dividend
->bitsnum
, sizeof(dividend
->bitsnum
)/sizeof(DWORD
))) {
5187 VARIANT_DI_clear(quotient
);
5189 int quotientscale
, remainderscale
, tempquotientscale
;
5190 DWORD remainderplusquotient
[8];
5193 quotientscale
= remainderscale
= (int)dividend
->scale
- (int)divisor
->scale
;
5194 tempquotientscale
= quotientscale
;
5195 VARIANT_DI_clear(quotient
);
5196 quotient
->sign
= (dividend
->sign
^ divisor
->sign
) ? 1 : 0;
5198 /* The following strategy is used for division
5199 1) if there was a nonzero remainder from previous iteration, use it as
5200 dividend for this iteration, else (for first iteration) use intended
5202 2) perform integer division in temporary buffer, develop quotient in
5203 low-order part, remainder in high-order part
5204 3) add quotient from step 2 to final result, with possible loss of
5206 4) multiply integer part of remainder by 10, while incrementing the
5207 scale of the remainder. This operation preserves the intended value
5209 5) loop to step 1 until one of the following is true:
5210 a) remainder is zero (exact division achieved)
5211 b) addition in step 3 fails to modify bits in quotient (remainder underflow)
5213 memset(remainderplusquotient
, 0, sizeof(remainderplusquotient
));
5214 memcpy(remainderplusquotient
, dividend
->bitsnum
, sizeof(dividend
->bitsnum
));
5217 remainderplusquotient
, 4,
5218 divisor
->bitsnum
, sizeof(divisor
->bitsnum
)/sizeof(DWORD
));
5219 underflow
= VARIANT_int_addlossy(
5220 quotient
->bitsnum
, "ientscale
, sizeof(quotient
->bitsnum
) / sizeof(DWORD
),
5221 remainderplusquotient
, &tempquotientscale
, 4);
5222 if (round_remainder
) {
5223 if(remainderplusquotient
[4] >= 5){
5225 unsigned char remainder
= 1;
5226 for (i
= 0; i
< sizeof(quotient
->bitsnum
) / sizeof(DWORD
) && remainder
; i
++) {
5227 ULONGLONG digit
= quotient
->bitsnum
[i
] + 1;
5228 remainder
= (digit
> 0xFFFFFFFF) ? 1 : 0;
5229 quotient
->bitsnum
[i
] = digit
& 0xFFFFFFFF;
5232 memset(remainderplusquotient
, 0, sizeof(remainderplusquotient
));
5234 VARIANT_int_mulbychar(remainderplusquotient
+ 4, 4, 10);
5235 memcpy(remainderplusquotient
, remainderplusquotient
+ 4, 4 * sizeof(DWORD
));
5237 tempquotientscale
= ++remainderscale
;
5238 } while (!underflow
&& !VARIANT_int_iszero(remainderplusquotient
+ 4, 4));
5240 /* quotient scale might now be negative (extremely big number). If, so, try
5241 to multiply quotient by 10 (without overflowing), while adjusting the scale,
5242 until scale is 0. If this cannot be done, it is a real overflow.
5244 while (r_overflow
== S_OK
&& quotientscale
< 0) {
5245 memset(remainderplusquotient
, 0, sizeof(remainderplusquotient
));
5246 memcpy(remainderplusquotient
, quotient
->bitsnum
, sizeof(quotient
->bitsnum
));
5247 VARIANT_int_mulbychar(remainderplusquotient
, sizeof(remainderplusquotient
)/sizeof(DWORD
), 10);
5248 if (VARIANT_int_iszero(remainderplusquotient
+ sizeof(quotient
->bitsnum
)/sizeof(DWORD
),
5249 (sizeof(remainderplusquotient
) - sizeof(quotient
->bitsnum
))/sizeof(DWORD
))) {
5251 memcpy(quotient
->bitsnum
, remainderplusquotient
, sizeof(quotient
->bitsnum
));
5252 } else r_overflow
= DISP_E_OVERFLOW
;
5254 if (r_overflow
== S_OK
) {
5255 if (quotientscale
<= 255) quotient
->scale
= quotientscale
;
5256 else VARIANT_DI_clear(quotient
);
5262 /* This procedure receives a VARIANT_DI with a defined mantissa and sign, but
5263 with an undefined scale, which will be assigned to (if possible). It also
5264 receives an exponent of 2. This procedure will then manipulate the mantissa
5265 and calculate a corresponding scale, so that the exponent2 value is assimilated
5266 into the VARIANT_DI and is therefore no longer necessary. Returns S_OK if
5267 successful, or DISP_E_OVERFLOW if the represented value is too big to fit into
5269 static HRESULT
VARIANT_DI_normalize(VARIANT_DI
* val
, int exponent2
, BOOL isDouble
)
5271 HRESULT hres
= S_OK
;
5272 int exponent5
, exponent10
;
5274 /* A factor of 2^exponent2 is equivalent to (10^exponent2)/(5^exponent2), and
5275 thus equal to (5^-exponent2)*(10^exponent2). After all manipulations,
5276 exponent10 might be used to set the VARIANT_DI scale directly. However,
5277 the value of 5^-exponent5 must be assimilated into the VARIANT_DI. */
5278 exponent5
= -exponent2
;
5279 exponent10
= exponent2
;
5281 /* Handle exponent5 > 0 */
5282 while (exponent5
> 0) {
5286 /* In order to multiply the value represented by the VARIANT_DI by 5, it
5287 is best to multiply by 10/2. Therefore, exponent10 is incremented, and
5288 somehow the mantissa should be divided by 2. */
5289 if ((val
->bitsnum
[0] & 1) == 0) {
5290 /* The mantissa is divisible by 2. Therefore the division can be done
5291 without losing significant digits. */
5292 exponent10
++; exponent5
--;
5295 bPrevCarryBit
= val
->bitsnum
[2] & 1;
5296 val
->bitsnum
[2] >>= 1;
5297 bCurrCarryBit
= val
->bitsnum
[1] & 1;
5298 val
->bitsnum
[1] = (val
->bitsnum
[1] >> 1) | (bPrevCarryBit
? 0x80000000 : 0);
5299 val
->bitsnum
[0] = (val
->bitsnum
[0] >> 1) | (bCurrCarryBit
? 0x80000000 : 0);
5301 /* The mantissa is NOT divisible by 2. Therefore the mantissa should
5302 be multiplied by 5, unless the multiplication overflows. */
5303 DWORD temp_bitsnum
[3];
5307 memcpy(temp_bitsnum
, val
->bitsnum
, 3 * sizeof(DWORD
));
5308 if (0 == VARIANT_int_mulbychar(temp_bitsnum
, 3, 5)) {
5309 /* Multiplication succeeded without overflow, so copy result back
5311 memcpy(val
->bitsnum
, temp_bitsnum
, 3 * sizeof(DWORD
));
5313 /* Mask out 3 extraneous bits introduced by the multiply */
5315 /* Multiplication by 5 overflows. The mantissa should be divided
5316 by 2, and therefore will lose significant digits. */
5320 bPrevCarryBit
= val
->bitsnum
[2] & 1;
5321 val
->bitsnum
[2] >>= 1;
5322 bCurrCarryBit
= val
->bitsnum
[1] & 1;
5323 val
->bitsnum
[1] = (val
->bitsnum
[1] >> 1) | (bPrevCarryBit
? 0x80000000 : 0);
5324 val
->bitsnum
[0] = (val
->bitsnum
[0] >> 1) | (bCurrCarryBit
? 0x80000000 : 0);
5329 /* Handle exponent5 < 0 */
5330 while (exponent5
< 0) {
5331 /* In order to divide the value represented by the VARIANT_DI by 5, it
5332 is best to multiply by 2/10. Therefore, exponent10 is decremented,
5333 and the mantissa should be multiplied by 2 */
5334 if ((val
->bitsnum
[2] & 0x80000000) == 0) {
5335 /* The mantissa can withstand a shift-left without overflowing */
5336 exponent10
--; exponent5
++;
5337 VARIANT_int_shiftleft(val
->bitsnum
, 3, 1);
5339 /* The mantissa would overflow if shifted. Therefore it should be
5340 directly divided by 5. This will lose significant digits, unless
5341 by chance the mantissa happens to be divisible by 5 */
5343 VARIANT_int_divbychar(val
->bitsnum
, 3, 5);
5347 /* At this point, the mantissa has assimilated the exponent5, but the
5348 exponent10 might not be suitable for assignment. The exponent10 must be
5349 in the range [-DEC_MAX_SCALE..0], so the mantissa must be scaled up or
5350 down appropriately. */
5351 while (hres
== S_OK
&& exponent10
> 0) {
5352 /* In order to bring exponent10 down to 0, the mantissa should be
5353 multiplied by 10 to compensate. If the exponent10 is too big, this
5354 will cause the mantissa to overflow. */
5355 if (0 == VARIANT_int_mulbychar(val
->bitsnum
, 3, 10)) {
5358 hres
= DISP_E_OVERFLOW
;
5361 while (exponent10
< -DEC_MAX_SCALE
) {
5363 /* In order to bring exponent up to -DEC_MAX_SCALE, the mantissa should
5364 be divided by 10 to compensate. If the exponent10 is too small, this
5365 will cause the mantissa to underflow and become 0 */
5366 rem10
= VARIANT_int_divbychar(val
->bitsnum
, 3, 10);
5368 if (VARIANT_int_iszero(val
->bitsnum
, 3)) {
5369 /* Underflow, unable to keep dividing */
5371 } else if (rem10
>= 5) {
5373 VARIANT_int_add(val
->bitsnum
, 3, &x
, 1);
5376 /* This step is required in order to remove excess bits of precision from the
5377 end of the bit representation, down to the precision guaranteed by the
5378 floating point number. */
5380 while (exponent10
< 0 && (val
->bitsnum
[2] != 0 || (val
->bitsnum
[2] == 0 && (val
->bitsnum
[1] & 0xFFE00000) != 0))) {
5383 rem10
= VARIANT_int_divbychar(val
->bitsnum
, 3, 10);
5387 VARIANT_int_add(val
->bitsnum
, 3, &x
, 1);
5391 while (exponent10
< 0 && (val
->bitsnum
[2] != 0 || val
->bitsnum
[1] != 0 ||
5392 (val
->bitsnum
[2] == 0 && val
->bitsnum
[1] == 0 && (val
->bitsnum
[0] & 0xFF000000) != 0))) {
5395 rem10
= VARIANT_int_divbychar(val
->bitsnum
, 3, 10);
5399 VARIANT_int_add(val
->bitsnum
, 3, &x
, 1);
5403 /* Remove multiples of 10 from the representation */
5404 while (exponent10
< 0) {
5405 DWORD temp_bitsnum
[3];
5407 memcpy(temp_bitsnum
, val
->bitsnum
, 3 * sizeof(DWORD
));
5408 if (0 == VARIANT_int_divbychar(temp_bitsnum
, 3, 10)) {
5410 memcpy(val
->bitsnum
, temp_bitsnum
, 3 * sizeof(DWORD
));
5414 /* Scale assignment */
5415 if (hres
== S_OK
) val
->scale
= -exponent10
;
5424 unsigned int m
: 23;
5425 unsigned int exp_bias
: 8;
5426 unsigned int sign
: 1;
5431 /* Convert a 32-bit floating point number into a DECIMAL, without using an
5432 intermediate string step. */
5433 static HRESULT
VARIANT_DI_FromR4(float source
, VARIANT_DI
* dest
)
5435 HRESULT hres
= S_OK
;
5440 /* Detect special cases */
5441 if (fx
.i
.m
== 0 && fx
.i
.exp_bias
== 0) {
5442 /* Floating-point zero */
5443 VARIANT_DI_clear(dest
);
5444 } else if (fx
.i
.m
== 0 && fx
.i
.exp_bias
== 0xFF) {
5445 /* Floating-point infinity */
5446 hres
= DISP_E_OVERFLOW
;
5447 } else if (fx
.i
.exp_bias
== 0xFF) {
5448 /* Floating-point NaN */
5449 hres
= DISP_E_BADVARTYPE
;
5452 VARIANT_DI_clear(dest
);
5454 exponent2
= fx
.i
.exp_bias
- 127; /* Get unbiased exponent */
5455 dest
->sign
= fx
.i
.sign
; /* Sign is simply copied */
5457 /* Copy significant bits to VARIANT_DI mantissa */
5458 dest
->bitsnum
[0] = fx
.i
.m
;
5459 dest
->bitsnum
[0] &= 0x007FFFFF;
5460 if (fx
.i
.exp_bias
== 0) {
5461 /* Denormalized number - correct exponent */
5464 /* Add hidden bit to mantissa */
5465 dest
->bitsnum
[0] |= 0x00800000;
5468 /* The act of copying a FP mantissa as integer bits is equivalent to
5469 shifting left the mantissa 23 bits. The exponent2 is reduced to
5473 hres
= VARIANT_DI_normalize(dest
, exponent2
, FALSE
);
5483 unsigned int m_lo
: 32; /* 52 bits of precision */
5484 unsigned int m_hi
: 20;
5485 unsigned int exp_bias
: 11; /* bias == 1023 */
5486 unsigned int sign
: 1;
5491 /* Convert a 64-bit floating point number into a DECIMAL, without using an
5492 intermediate string step. */
5493 static HRESULT
VARIANT_DI_FromR8(double source
, VARIANT_DI
* dest
)
5495 HRESULT hres
= S_OK
;
5500 /* Detect special cases */
5501 if (fx
.i
.m_lo
== 0 && fx
.i
.m_hi
== 0 && fx
.i
.exp_bias
== 0) {
5502 /* Floating-point zero */
5503 VARIANT_DI_clear(dest
);
5504 } else if (fx
.i
.m_lo
== 0 && fx
.i
.m_hi
== 0 && fx
.i
.exp_bias
== 0x7FF) {
5505 /* Floating-point infinity */
5506 hres
= DISP_E_OVERFLOW
;
5507 } else if (fx
.i
.exp_bias
== 0x7FF) {
5508 /* Floating-point NaN */
5509 hres
= DISP_E_BADVARTYPE
;
5512 VARIANT_DI_clear(dest
);
5514 exponent2
= fx
.i
.exp_bias
- 1023; /* Get unbiased exponent */
5515 dest
->sign
= fx
.i
.sign
; /* Sign is simply copied */
5517 /* Copy significant bits to VARIANT_DI mantissa */
5518 dest
->bitsnum
[0] = fx
.i
.m_lo
;
5519 dest
->bitsnum
[1] = fx
.i
.m_hi
;
5520 dest
->bitsnum
[1] &= 0x000FFFFF;
5521 if (fx
.i
.exp_bias
== 0) {
5522 /* Denormalized number - correct exponent */
5525 /* Add hidden bit to mantissa */
5526 dest
->bitsnum
[1] |= 0x00100000;
5529 /* The act of copying a FP mantissa as integer bits is equivalent to
5530 shifting left the mantissa 52 bits. The exponent2 is reduced to
5534 hres
= VARIANT_DI_normalize(dest
, exponent2
, TRUE
);
5540 static HRESULT
VARIANT_do_division(const DECIMAL
*pDecLeft
, const DECIMAL
*pDecRight
, DECIMAL
*pDecOut
,
5543 HRESULT hRet
= S_OK
;
5544 VARIANT_DI di_left
, di_right
, di_result
;
5547 VARIANT_DIFromDec(pDecLeft
, &di_left
);
5548 VARIANT_DIFromDec(pDecRight
, &di_right
);
5549 divresult
= VARIANT_DI_div(&di_left
, &di_right
, &di_result
, round
);
5550 if (divresult
!= S_OK
)
5552 /* division actually overflowed */
5559 if (di_result
.scale
> DEC_MAX_SCALE
)
5561 unsigned char remainder
= 0;
5563 /* division underflowed. In order to comply with the MSDN
5564 specifications for DECIMAL ranges, some significant digits
5567 WARN("result scale is %u, scaling (with loss of significant digits)...\n",
5569 while (di_result
.scale
> DEC_MAX_SCALE
&&
5570 !VARIANT_int_iszero(di_result
.bitsnum
, sizeof(di_result
.bitsnum
) / sizeof(DWORD
)))
5572 remainder
= VARIANT_int_divbychar(di_result
.bitsnum
, sizeof(di_result
.bitsnum
) / sizeof(DWORD
), 10);
5575 if (di_result
.scale
> DEC_MAX_SCALE
)
5577 WARN("result underflowed, setting to 0\n");
5578 di_result
.scale
= 0;
5581 else if (remainder
>= 5) /* round up result - native oleaut32 does this */
5584 for (remainder
= 1, i
= 0; i
< sizeof(di_result
.bitsnum
) / sizeof(DWORD
) && remainder
; i
++) {
5585 ULONGLONG digit
= di_result
.bitsnum
[i
] + 1;
5586 remainder
= (digit
> 0xFFFFFFFF) ? 1 : 0;
5587 di_result
.bitsnum
[i
] = digit
& 0xFFFFFFFF;
5591 VARIANT_DecFromDI(&di_result
, pDecOut
);
5596 /************************************************************************
5597 * VarDecDiv (OLEAUT32.178)
5599 * Divide one DECIMAL by another.
5602 * pDecLeft [I] Source
5603 * pDecRight [I] Value to divide by
5604 * pDecOut [O] Destination
5608 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
5610 HRESULT WINAPI
VarDecDiv(const DECIMAL
* pDecLeft
, const DECIMAL
* pDecRight
, DECIMAL
* pDecOut
)
5612 if (!pDecLeft
|| !pDecRight
|| !pDecOut
) return E_INVALIDARG
;
5614 return VARIANT_do_division(pDecLeft
, pDecRight
, pDecOut
, FALSE
);
5617 /************************************************************************
5618 * VarDecMul (OLEAUT32.179)
5620 * Multiply one DECIMAL by another.
5623 * pDecLeft [I] Source
5624 * pDecRight [I] Value to multiply by
5625 * pDecOut [O] Destination
5629 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
5631 HRESULT WINAPI
VarDecMul(const DECIMAL
* pDecLeft
, const DECIMAL
* pDecRight
, DECIMAL
* pDecOut
)
5633 HRESULT hRet
= S_OK
;
5634 VARIANT_DI di_left
, di_right
, di_result
;
5637 VARIANT_DIFromDec(pDecLeft
, &di_left
);
5638 VARIANT_DIFromDec(pDecRight
, &di_right
);
5639 mulresult
= VARIANT_DI_mul(&di_left
, &di_right
, &di_result
);
5642 /* multiplication actually overflowed */
5643 hRet
= DISP_E_OVERFLOW
;
5647 if (di_result
.scale
> DEC_MAX_SCALE
)
5649 /* multiplication underflowed. In order to comply with the MSDN
5650 specifications for DECIMAL ranges, some significant digits
5653 WARN("result scale is %u, scaling (with loss of significant digits)...\n",
5655 while (di_result
.scale
> DEC_MAX_SCALE
&&
5656 !VARIANT_int_iszero(di_result
.bitsnum
, sizeof(di_result
.bitsnum
)/sizeof(DWORD
)))
5658 VARIANT_int_divbychar(di_result
.bitsnum
, sizeof(di_result
.bitsnum
)/sizeof(DWORD
), 10);
5661 if (di_result
.scale
> DEC_MAX_SCALE
)
5663 WARN("result underflowed, setting to 0\n");
5664 di_result
.scale
= 0;
5668 VARIANT_DecFromDI(&di_result
, pDecOut
);
5673 /************************************************************************
5674 * VarDecSub (OLEAUT32.181)
5676 * Subtract one DECIMAL from another.
5679 * pDecLeft [I] Source
5680 * pDecRight [I] DECIMAL to subtract from pDecLeft
5681 * pDecOut [O] Destination
5684 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
5686 HRESULT WINAPI
VarDecSub(const DECIMAL
* pDecLeft
, const DECIMAL
* pDecRight
, DECIMAL
* pDecOut
)
5690 /* Implement as addition of the negative */
5691 VarDecNeg(pDecRight
, &decRight
);
5692 return VarDecAdd(pDecLeft
, &decRight
, pDecOut
);
5695 /************************************************************************
5696 * VarDecAbs (OLEAUT32.182)
5698 * Convert a DECIMAL into its absolute value.
5702 * pDecOut [O] Destination
5705 * S_OK. This function does not fail.
5707 HRESULT WINAPI
VarDecAbs(const DECIMAL
* pDecIn
, DECIMAL
* pDecOut
)
5710 DEC_SIGN(pDecOut
) &= ~DECIMAL_NEG
;
5714 /************************************************************************
5715 * VarDecFix (OLEAUT32.187)
5717 * Return the integer portion of a DECIMAL.
5721 * pDecOut [O] Destination
5725 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
5728 * - The difference between this function and VarDecInt() is that VarDecInt() rounds
5729 * negative numbers away from 0, while this function rounds them towards zero.
5731 HRESULT WINAPI
VarDecFix(const DECIMAL
* pDecIn
, DECIMAL
* pDecOut
)
5736 if (DEC_SIGN(pDecIn
) & ~DECIMAL_NEG
)
5737 return E_INVALIDARG
;
5739 if (!DEC_SCALE(pDecIn
))
5741 *pDecOut
= *pDecIn
; /* Already an integer */
5745 hr
= VarR8FromDec(pDecIn
, &dbl
);
5746 if (SUCCEEDED(hr
)) {
5747 LONGLONG rounded
= dbl
;
5749 hr
= VarDecFromI8(rounded
, pDecOut
);
5754 /************************************************************************
5755 * VarDecInt (OLEAUT32.188)
5757 * Return the integer portion of a DECIMAL.
5761 * pDecOut [O] Destination
5765 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
5768 * - The difference between this function and VarDecFix() is that VarDecFix() rounds
5769 * negative numbers towards 0, while this function rounds them away from zero.
5771 HRESULT WINAPI
VarDecInt(const DECIMAL
* pDecIn
, DECIMAL
* pDecOut
)
5776 if (DEC_SIGN(pDecIn
) & ~DECIMAL_NEG
)
5777 return E_INVALIDARG
;
5779 if (!(DEC_SIGN(pDecIn
) & DECIMAL_NEG
) || !DEC_SCALE(pDecIn
))
5780 return VarDecFix(pDecIn
, pDecOut
); /* The same, if +ve or no fractionals */
5782 hr
= VarR8FromDec(pDecIn
, &dbl
);
5783 if (SUCCEEDED(hr
)) {
5784 LONGLONG rounded
= dbl
>= 0.0 ? dbl
+ 0.5 : dbl
- 0.5;
5786 hr
= VarDecFromI8(rounded
, pDecOut
);
5791 /************************************************************************
5792 * VarDecNeg (OLEAUT32.189)
5794 * Change the sign of a DECIMAL.
5798 * pDecOut [O] Destination
5801 * S_OK. This function does not fail.
5803 HRESULT WINAPI
VarDecNeg(const DECIMAL
* pDecIn
, DECIMAL
* pDecOut
)
5806 DEC_SIGN(pDecOut
) ^= DECIMAL_NEG
;
5810 /************************************************************************
5811 * VarDecRound (OLEAUT32.203)
5813 * Change the precision of a DECIMAL.
5817 * cDecimals [I] New number of decimals to keep
5818 * pDecOut [O] Destination
5821 * Success: S_OK. pDecOut contains the rounded value.
5822 * Failure: E_INVALIDARG if any argument is invalid.
5824 HRESULT WINAPI
VarDecRound(const DECIMAL
* pDecIn
, int cDecimals
, DECIMAL
* pDecOut
)
5826 DECIMAL divisor
, tmp
;
5830 if (cDecimals
< 0 || (DEC_SIGN(pDecIn
) & ~DECIMAL_NEG
) || DEC_SCALE(pDecIn
) > DEC_MAX_SCALE
)
5831 return E_INVALIDARG
;
5833 if (cDecimals
>= DEC_SCALE(pDecIn
))
5835 *pDecOut
= *pDecIn
; /* More precision than we have */
5839 /* truncate significant digits and rescale */
5840 memset(&divisor
, 0, sizeof(divisor
));
5841 DEC_LO64(&divisor
) = 1;
5843 memset(&tmp
, 0, sizeof(tmp
));
5844 DEC_LO64(&tmp
) = 10;
5845 for (i
= 0; i
< DEC_SCALE(pDecIn
) - cDecimals
; ++i
)
5847 hr
= VarDecMul(&divisor
, &tmp
, &divisor
);
5852 hr
= VARIANT_do_division(pDecIn
, &divisor
, pDecOut
, TRUE
);
5856 DEC_SCALE(pDecOut
) = cDecimals
;
5861 /************************************************************************
5862 * VarDecCmp (OLEAUT32.204)
5864 * Compare two DECIMAL values.
5867 * pDecLeft [I] Source
5868 * pDecRight [I] Value to compare
5871 * Success: VARCMP_LT, VARCMP_EQ or VARCMP_GT indicating that pDecLeft
5872 * is less than, equal to or greater than pDecRight respectively.
5873 * Failure: DISP_E_OVERFLOW, if overflow occurs during the comparison
5875 HRESULT WINAPI
VarDecCmp(const DECIMAL
* pDecLeft
, const DECIMAL
* pDecRight
)
5880 if (!pDecLeft
|| !pDecRight
)
5883 if ((!(DEC_SIGN(pDecLeft
) & DECIMAL_NEG
)) && (DEC_SIGN(pDecRight
) & DECIMAL_NEG
) &&
5884 (DEC_HI32(pDecLeft
) | DEC_MID32(pDecLeft
) | DEC_LO32(pDecLeft
)))
5886 else if ((DEC_SIGN(pDecLeft
) & DECIMAL_NEG
) && (!(DEC_SIGN(pDecRight
) & DECIMAL_NEG
)) &&
5887 (DEC_HI32(pDecLeft
) | DEC_MID32(pDecLeft
) | DEC_LO32(pDecLeft
)))
5890 /* Subtract right from left, and compare the result to 0 */
5891 hRet
= VarDecSub(pDecLeft
, pDecRight
, &result
);
5893 if (SUCCEEDED(hRet
))
5895 int non_zero
= DEC_HI32(&result
) | DEC_MID32(&result
) | DEC_LO32(&result
);
5897 if ((DEC_SIGN(&result
) & DECIMAL_NEG
) && non_zero
)
5898 hRet
= (HRESULT
)VARCMP_LT
;
5900 hRet
= (HRESULT
)VARCMP_GT
;
5902 hRet
= (HRESULT
)VARCMP_EQ
;
5907 /************************************************************************
5908 * VarDecCmpR8 (OLEAUT32.298)
5910 * Compare a DECIMAL to a double
5913 * pDecLeft [I] DECIMAL Source
5914 * dblRight [I] double to compare to pDecLeft
5917 * Success: VARCMP_LT, VARCMP_EQ or VARCMP_GT indicating that dblRight
5918 * is less than, equal to or greater than pDecLeft respectively.
5919 * Failure: DISP_E_OVERFLOW, if overflow occurs during the comparison
5921 HRESULT WINAPI
VarDecCmpR8(const DECIMAL
* pDecLeft
, double dblRight
)
5926 hRet
= VarDecFromR8(dblRight
, &decRight
);
5928 if (SUCCEEDED(hRet
))
5929 hRet
= VarDecCmp(pDecLeft
, &decRight
);
5937 /************************************************************************
5938 * VarBoolFromUI1 (OLEAUT32.118)
5940 * Convert a VT_UI1 to a VT_BOOL.
5944 * pBoolOut [O] Destination
5949 HRESULT WINAPI
VarBoolFromUI1(BYTE bIn
, VARIANT_BOOL
*pBoolOut
)
5951 *pBoolOut
= bIn
? VARIANT_TRUE
: VARIANT_FALSE
;
5955 /************************************************************************
5956 * VarBoolFromI2 (OLEAUT32.119)
5958 * Convert a VT_I2 to a VT_BOOL.
5962 * pBoolOut [O] Destination
5967 HRESULT WINAPI
VarBoolFromI2(SHORT sIn
, VARIANT_BOOL
*pBoolOut
)
5969 *pBoolOut
= sIn
? VARIANT_TRUE
: VARIANT_FALSE
;
5973 /************************************************************************
5974 * VarBoolFromI4 (OLEAUT32.120)
5976 * Convert a VT_I4 to a VT_BOOL.
5980 * pBoolOut [O] Destination
5985 HRESULT WINAPI
VarBoolFromI4(LONG lIn
, VARIANT_BOOL
*pBoolOut
)
5987 *pBoolOut
= lIn
? VARIANT_TRUE
: VARIANT_FALSE
;
5991 /************************************************************************
5992 * VarBoolFromR4 (OLEAUT32.121)
5994 * Convert a VT_R4 to a VT_BOOL.
5998 * pBoolOut [O] Destination
6003 HRESULT WINAPI
VarBoolFromR4(FLOAT fltIn
, VARIANT_BOOL
*pBoolOut
)
6005 *pBoolOut
= fltIn
? VARIANT_TRUE
: VARIANT_FALSE
;
6009 /************************************************************************
6010 * VarBoolFromR8 (OLEAUT32.122)
6012 * Convert a VT_R8 to a VT_BOOL.
6016 * pBoolOut [O] Destination
6021 HRESULT WINAPI
VarBoolFromR8(double dblIn
, VARIANT_BOOL
*pBoolOut
)
6023 *pBoolOut
= dblIn
? VARIANT_TRUE
: VARIANT_FALSE
;
6027 /************************************************************************
6028 * VarBoolFromDate (OLEAUT32.123)
6030 * Convert a VT_DATE to a VT_BOOL.
6034 * pBoolOut [O] Destination
6039 HRESULT WINAPI
VarBoolFromDate(DATE dateIn
, VARIANT_BOOL
*pBoolOut
)
6041 *pBoolOut
= dateIn
? VARIANT_TRUE
: VARIANT_FALSE
;
6045 /************************************************************************
6046 * VarBoolFromCy (OLEAUT32.124)
6048 * Convert a VT_CY to a VT_BOOL.
6052 * pBoolOut [O] Destination
6057 HRESULT WINAPI
VarBoolFromCy(CY cyIn
, VARIANT_BOOL
*pBoolOut
)
6059 *pBoolOut
= cyIn
.int64
? VARIANT_TRUE
: VARIANT_FALSE
;
6063 /************************************************************************
6064 * VARIANT_GetLocalisedText [internal]
6066 * Get a localized string from the resources
6069 BOOL
VARIANT_GetLocalisedText(LANGID langId
, DWORD dwId
, WCHAR
*lpszDest
)
6073 hrsrc
= FindResourceExW( hProxyDll
, (LPWSTR
)RT_STRING
,
6074 MAKEINTRESOURCEW((dwId
>> 4) + 1), langId
);
6077 HGLOBAL hmem
= LoadResource( hProxyDll
, hrsrc
);
6084 p
= LockResource( hmem
);
6085 for (i
= 0; i
< (dwId
& 0x0f); i
++) p
+= *p
+ 1;
6087 memcpy( lpszDest
, p
+ 1, *p
* sizeof(WCHAR
) );
6088 lpszDest
[*p
] = '\0';
6089 TRACE("got %s for LANGID %08x\n", debugstr_w(lpszDest
), langId
);
6096 /************************************************************************
6097 * VarBoolFromStr (OLEAUT32.125)
6099 * Convert a VT_BSTR to a VT_BOOL.
6103 * lcid [I] LCID for the conversion
6104 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6105 * pBoolOut [O] Destination
6109 * Failure: E_INVALIDARG, if pBoolOut is invalid.
6110 * DISP_E_TYPEMISMATCH, if the type cannot be converted
6113 * - strIn will be recognised if it contains "#TRUE#" or "#FALSE#". Additionally,
6114 * it may contain (in any case mapping) the text "true" or "false".
6115 * - If dwFlags includes VAR_LOCALBOOL, then the text may also match the
6116 * localised text of "True" or "False" in the language specified by lcid.
6117 * - If none of these matches occur, the string is treated as a numeric string
6118 * and the boolean pBoolOut will be set according to whether the number is zero
6119 * or not. The dwFlags parameter is passed to VarR8FromStr() for this conversion.
6120 * - If the text is not numeric and does not match any of the above, then
6121 * DISP_E_TYPEMISMATCH is returned.
6123 HRESULT WINAPI
VarBoolFromStr(OLECHAR
* strIn
, LCID lcid
, ULONG dwFlags
, VARIANT_BOOL
*pBoolOut
)
6125 /* Any VB/VBA programmers out there should recognise these strings... */
6126 static const WCHAR szFalse
[] = { '#','F','A','L','S','E','#','\0' };
6127 static const WCHAR szTrue
[] = { '#','T','R','U','E','#','\0' };
6129 LANGID langId
= MAKELANGID(LANG_ENGLISH
, SUBLANG_DEFAULT
);
6130 HRESULT hRes
= S_OK
;
6132 if (!strIn
|| !pBoolOut
)
6133 return DISP_E_TYPEMISMATCH
;
6135 /* Check if we should be comparing against localised text */
6136 if (dwFlags
& VAR_LOCALBOOL
)
6138 /* Convert our LCID into a usable value */
6139 lcid
= ConvertDefaultLocale(lcid
);
6141 langId
= LANGIDFROMLCID(lcid
);
6143 if (PRIMARYLANGID(langId
) == LANG_NEUTRAL
)
6144 langId
= MAKELANGID(LANG_ENGLISH
, SUBLANG_DEFAULT
);
6146 /* Note: Native oleaut32 always copies strIn and maps halfwidth characters.
6147 * I don't think this is needed unless any of the localised text strings
6148 * contain characters that can be so mapped. In the event that this is
6149 * true for a given language (possibly some Asian languages), then strIn
6150 * should be mapped here _only_ if langId is an Id for which this can occur.
6154 /* Note that if we are not comparing against localised strings, langId
6155 * will have its default value of LANG_ENGLISH. This allows us to mimic
6156 * the native behaviour of always checking against English strings even
6157 * after we've checked for localised ones.
6159 VarBoolFromStr_CheckLocalised
:
6160 if (VARIANT_GetLocalisedText(langId
, IDS_TRUE
, szBuff
))
6162 /* Compare against localised strings, ignoring case */
6163 if (!strcmpiW(strIn
, szBuff
))
6165 *pBoolOut
= VARIANT_TRUE
; /* Matched localised 'true' text */
6168 VARIANT_GetLocalisedText(langId
, IDS_FALSE
, szBuff
);
6169 if (!strcmpiW(strIn
, szBuff
))
6171 *pBoolOut
= VARIANT_FALSE
; /* Matched localised 'false' text */
6176 if (langId
!= MAKELANGID(LANG_ENGLISH
, SUBLANG_DEFAULT
))
6178 /* We have checked the localised text, now check English */
6179 langId
= MAKELANGID(LANG_ENGLISH
, SUBLANG_DEFAULT
);
6180 goto VarBoolFromStr_CheckLocalised
;
6183 /* All checks against localised text have failed, try #TRUE#/#FALSE# */
6184 if (!strcmpW(strIn
, szFalse
))
6185 *pBoolOut
= VARIANT_FALSE
;
6186 else if (!strcmpW(strIn
, szTrue
))
6187 *pBoolOut
= VARIANT_TRUE
;
6192 /* If this string is a number, convert it as one */
6193 hRes
= VarR8FromStr(strIn
, lcid
, dwFlags
, &d
);
6194 if (SUCCEEDED(hRes
)) *pBoolOut
= d
? VARIANT_TRUE
: VARIANT_FALSE
;
6199 /************************************************************************
6200 * VarBoolFromDisp (OLEAUT32.126)
6202 * Convert a VT_DISPATCH to a VT_BOOL.
6205 * pdispIn [I] Source
6206 * lcid [I] LCID for conversion
6207 * pBoolOut [O] Destination
6211 * Failure: E_INVALIDARG, if the source value is invalid
6212 * DISP_E_OVERFLOW, if the value will not fit in the destination
6213 * DISP_E_TYPEMISMATCH, if the type cannot be converted
6215 HRESULT WINAPI
VarBoolFromDisp(IDispatch
* pdispIn
, LCID lcid
, VARIANT_BOOL
*pBoolOut
)
6217 return VARIANT_FromDisp(pdispIn
, lcid
, pBoolOut
, VT_BOOL
, 0);
6220 /************************************************************************
6221 * VarBoolFromI1 (OLEAUT32.233)
6223 * Convert a VT_I1 to a VT_BOOL.
6227 * pBoolOut [O] Destination
6232 HRESULT WINAPI
VarBoolFromI1(signed char cIn
, VARIANT_BOOL
*pBoolOut
)
6234 *pBoolOut
= cIn
? VARIANT_TRUE
: VARIANT_FALSE
;
6238 /************************************************************************
6239 * VarBoolFromUI2 (OLEAUT32.234)
6241 * Convert a VT_UI2 to a VT_BOOL.
6245 * pBoolOut [O] Destination
6250 HRESULT WINAPI
VarBoolFromUI2(USHORT usIn
, VARIANT_BOOL
*pBoolOut
)
6252 *pBoolOut
= usIn
? VARIANT_TRUE
: VARIANT_FALSE
;
6256 /************************************************************************
6257 * VarBoolFromUI4 (OLEAUT32.235)
6259 * Convert a VT_UI4 to a VT_BOOL.
6263 * pBoolOut [O] Destination
6268 HRESULT WINAPI
VarBoolFromUI4(ULONG ulIn
, VARIANT_BOOL
*pBoolOut
)
6270 *pBoolOut
= ulIn
? VARIANT_TRUE
: VARIANT_FALSE
;
6274 /************************************************************************
6275 * VarBoolFromDec (OLEAUT32.236)
6277 * Convert a VT_DECIMAL to a VT_BOOL.
6281 * pBoolOut [O] Destination
6285 * Failure: E_INVALIDARG, if pDecIn is invalid.
6287 HRESULT WINAPI
VarBoolFromDec(DECIMAL
* pDecIn
, VARIANT_BOOL
*pBoolOut
)
6289 if (DEC_SCALE(pDecIn
) > DEC_MAX_SCALE
|| (DEC_SIGN(pDecIn
) & ~DECIMAL_NEG
))
6290 return E_INVALIDARG
;
6292 if (DEC_HI32(pDecIn
) || DEC_MID32(pDecIn
) || DEC_LO32(pDecIn
))
6293 *pBoolOut
= VARIANT_TRUE
;
6295 *pBoolOut
= VARIANT_FALSE
;
6299 /************************************************************************
6300 * VarBoolFromI8 (OLEAUT32.370)
6302 * Convert a VT_I8 to a VT_BOOL.
6306 * pBoolOut [O] Destination
6311 HRESULT WINAPI
VarBoolFromI8(LONG64 llIn
, VARIANT_BOOL
*pBoolOut
)
6313 *pBoolOut
= llIn
? VARIANT_TRUE
: VARIANT_FALSE
;
6317 /************************************************************************
6318 * VarBoolFromUI8 (OLEAUT32.371)
6320 * Convert a VT_UI8 to a VT_BOOL.
6324 * pBoolOut [O] Destination
6329 HRESULT WINAPI
VarBoolFromUI8(ULONG64 ullIn
, VARIANT_BOOL
*pBoolOut
)
6331 *pBoolOut
= ullIn
? VARIANT_TRUE
: VARIANT_FALSE
;
6338 /* Write a number from a UI8 and sign */
6339 static WCHAR
*VARIANT_WriteNumber(ULONG64 ulVal
, WCHAR
* szOut
)
6343 WCHAR ulNextDigit
= ulVal
% 10;
6345 *szOut
-- = '0' + ulNextDigit
;
6346 ulVal
= (ulVal
- ulNextDigit
) / 10;
6353 /* Create a (possibly localised) BSTR from a UI8 and sign */
6354 static BSTR
VARIANT_MakeBstr(LCID lcid
, DWORD dwFlags
, WCHAR
*szOut
)
6356 WCHAR szConverted
[256];
6358 if (dwFlags
& VAR_NEGATIVE
)
6361 if (dwFlags
& LOCALE_USE_NLS
)
6363 /* Format the number for the locale */
6364 szConverted
[0] = '\0';
6365 GetNumberFormatW(lcid
,
6366 dwFlags
& LOCALE_NOUSEROVERRIDE
,
6367 szOut
, NULL
, szConverted
, sizeof(szConverted
)/sizeof(WCHAR
));
6368 szOut
= szConverted
;
6370 return SysAllocStringByteLen((LPCSTR
)szOut
, strlenW(szOut
) * sizeof(WCHAR
));
6373 /* Create a (possibly localised) BSTR from a UI8 and sign */
6374 static HRESULT
VARIANT_BstrFromUInt(ULONG64 ulVal
, LCID lcid
, DWORD dwFlags
, BSTR
*pbstrOut
)
6376 WCHAR szBuff
[64], *szOut
= szBuff
+ sizeof(szBuff
)/sizeof(WCHAR
) - 1;
6379 return E_INVALIDARG
;
6381 /* Create the basic number string */
6383 szOut
= VARIANT_WriteNumber(ulVal
, szOut
);
6385 *pbstrOut
= VARIANT_MakeBstr(lcid
, dwFlags
, szOut
);
6386 TRACE("returning %s\n", debugstr_w(*pbstrOut
));
6387 return *pbstrOut
? S_OK
: E_OUTOFMEMORY
;
6390 /******************************************************************************
6391 * VarBstrFromUI1 (OLEAUT32.108)
6393 * Convert a VT_UI1 to a VT_BSTR.
6397 * lcid [I] LCID for the conversion
6398 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6399 * pbstrOut [O] Destination
6403 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6404 * E_OUTOFMEMORY, if memory allocation fails.
6406 HRESULT WINAPI
VarBstrFromUI1(BYTE bIn
, LCID lcid
, ULONG dwFlags
, BSTR
* pbstrOut
)
6408 return VARIANT_BstrFromUInt(bIn
, lcid
, dwFlags
, pbstrOut
);
6411 /******************************************************************************
6412 * VarBstrFromI2 (OLEAUT32.109)
6414 * Convert a VT_I2 to a VT_BSTR.
6418 * lcid [I] LCID for the conversion
6419 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6420 * pbstrOut [O] Destination
6424 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6425 * E_OUTOFMEMORY, if memory allocation fails.
6427 HRESULT WINAPI
VarBstrFromI2(short sIn
, LCID lcid
, ULONG dwFlags
, BSTR
* pbstrOut
)
6434 dwFlags
|= VAR_NEGATIVE
;
6436 return VARIANT_BstrFromUInt(ul64
, lcid
, dwFlags
, pbstrOut
);
6439 /******************************************************************************
6440 * VarBstrFromI4 (OLEAUT32.110)
6442 * Convert a VT_I4 to a VT_BSTR.
6446 * lcid [I] LCID for the conversion
6447 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6448 * pbstrOut [O] Destination
6452 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6453 * E_OUTOFMEMORY, if memory allocation fails.
6455 HRESULT WINAPI
VarBstrFromI4(LONG lIn
, LCID lcid
, ULONG dwFlags
, BSTR
* pbstrOut
)
6462 dwFlags
|= VAR_NEGATIVE
;
6464 return VARIANT_BstrFromUInt(ul64
, lcid
, dwFlags
, pbstrOut
);
6467 static BSTR
VARIANT_BstrReplaceDecimal(const WCHAR
* buff
, LCID lcid
, ULONG dwFlags
)
6470 WCHAR lpDecimalSep
[16];
6472 /* Native oleaut32 uses the locale-specific decimal separator even in the
6473 absence of the LOCALE_USE_NLS flag. For example, the Spanish/Latin
6474 American locales will see "one thousand and one tenth" as "1000,1"
6475 instead of "1000.1" (notice the comma). The following code checks for
6476 the need to replace the decimal separator, and if so, will prepare an
6477 appropriate NUMBERFMTW structure to do the job via GetNumberFormatW().
6479 GetLocaleInfoW(lcid
, LOCALE_SDECIMAL
| (dwFlags
& LOCALE_NOUSEROVERRIDE
),
6480 lpDecimalSep
, sizeof(lpDecimalSep
) / sizeof(WCHAR
));
6481 if (lpDecimalSep
[0] == '.' && lpDecimalSep
[1] == '\0')
6483 /* locale is compatible with English - return original string */
6484 bstrOut
= SysAllocString(buff
);
6490 WCHAR empty
[] = {'\0'};
6491 NUMBERFMTW minFormat
;
6493 minFormat
.NumDigits
= 0;
6494 minFormat
.LeadingZero
= 0;
6495 minFormat
.Grouping
= 0;
6496 minFormat
.lpDecimalSep
= lpDecimalSep
;
6497 minFormat
.lpThousandSep
= empty
;
6498 minFormat
.NegativeOrder
= 1; /* NLS_NEG_LEFT */
6500 /* count number of decimal digits in string */
6501 p
= strchrW( buff
, '.' );
6502 if (p
) minFormat
.NumDigits
= strlenW(p
+ 1);
6505 if (!GetNumberFormatW(lcid
, 0, buff
, &minFormat
, numbuff
, sizeof(numbuff
) / sizeof(WCHAR
)))
6507 WARN("GetNumberFormatW() failed, returning raw number string instead\n");
6508 bstrOut
= SysAllocString(buff
);
6512 TRACE("created minimal NLS string %s\n", debugstr_w(numbuff
));
6513 bstrOut
= SysAllocString(numbuff
);
6519 static HRESULT
VARIANT_BstrFromReal(DOUBLE dblIn
, LCID lcid
, ULONG dwFlags
,
6520 BSTR
* pbstrOut
, LPCWSTR lpszFormat
)
6525 return E_INVALIDARG
;
6527 sprintfW( buff
, lpszFormat
, dblIn
);
6529 /* Negative zeroes are disallowed (some applications depend on this).
6530 If buff starts with a minus, and then nothing follows but zeroes
6531 and/or a period, it is a negative zero and is replaced with a
6532 canonical zero. This duplicates native oleaut32 behavior.
6536 const WCHAR szAccept
[] = {'0', '.', '\0'};
6537 if (strlenW(buff
+ 1) == strspnW(buff
+ 1, szAccept
))
6538 { buff
[0] = '0'; buff
[1] = '\0'; }
6541 TRACE("created string %s\n", debugstr_w(buff
));
6542 if (dwFlags
& LOCALE_USE_NLS
)
6546 /* Format the number for the locale */
6548 GetNumberFormatW(lcid
, dwFlags
& LOCALE_NOUSEROVERRIDE
,
6549 buff
, NULL
, numbuff
, sizeof(numbuff
) / sizeof(WCHAR
));
6550 TRACE("created NLS string %s\n", debugstr_w(numbuff
));
6551 *pbstrOut
= SysAllocString(numbuff
);
6555 *pbstrOut
= VARIANT_BstrReplaceDecimal(buff
, lcid
, dwFlags
);
6557 return *pbstrOut
? S_OK
: E_OUTOFMEMORY
;
6560 /******************************************************************************
6561 * VarBstrFromR4 (OLEAUT32.111)
6563 * Convert a VT_R4 to a VT_BSTR.
6567 * lcid [I] LCID for the conversion
6568 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6569 * pbstrOut [O] Destination
6573 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6574 * E_OUTOFMEMORY, if memory allocation fails.
6576 HRESULT WINAPI
VarBstrFromR4(FLOAT fltIn
, LCID lcid
, ULONG dwFlags
, BSTR
* pbstrOut
)
6578 return VARIANT_BstrFromReal(fltIn
, lcid
, dwFlags
, pbstrOut
, szFloatFormatW
);
6581 /******************************************************************************
6582 * VarBstrFromR8 (OLEAUT32.112)
6584 * Convert a VT_R8 to a VT_BSTR.
6588 * lcid [I] LCID for the conversion
6589 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6590 * pbstrOut [O] Destination
6594 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6595 * E_OUTOFMEMORY, if memory allocation fails.
6597 HRESULT WINAPI
VarBstrFromR8(double dblIn
, LCID lcid
, ULONG dwFlags
, BSTR
* pbstrOut
)
6599 return VARIANT_BstrFromReal(dblIn
, lcid
, dwFlags
, pbstrOut
, szDoubleFormatW
);
6602 /******************************************************************************
6603 * VarBstrFromCy [OLEAUT32.113]
6605 * Convert a VT_CY to a VT_BSTR.
6609 * lcid [I] LCID for the conversion
6610 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6611 * pbstrOut [O] Destination
6615 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6616 * E_OUTOFMEMORY, if memory allocation fails.
6618 HRESULT WINAPI
VarBstrFromCy(CY cyIn
, LCID lcid
, ULONG dwFlags
, BSTR
*pbstrOut
)
6624 return E_INVALIDARG
;
6628 decVal
.bitsnum
[0] = cyIn
.s
.Lo
;
6629 decVal
.bitsnum
[1] = cyIn
.s
.Hi
;
6630 if (cyIn
.s
.Hi
& 0x80000000UL
) {
6633 /* Negative number! */
6635 decVal
.bitsnum
[0] = ~decVal
.bitsnum
[0];
6636 decVal
.bitsnum
[1] = ~decVal
.bitsnum
[1];
6637 VARIANT_int_add(decVal
.bitsnum
, 3, &one
, 1);
6639 decVal
.bitsnum
[2] = 0;
6640 VARIANT_DI_tostringW(&decVal
, buff
, sizeof(buff
)/sizeof(buff
[0]));
6642 if (dwFlags
& LOCALE_USE_NLS
)
6646 /* Format the currency for the locale */
6648 GetCurrencyFormatW(lcid
, dwFlags
& LOCALE_NOUSEROVERRIDE
,
6649 buff
, NULL
, cybuff
, sizeof(cybuff
) / sizeof(WCHAR
));
6650 *pbstrOut
= SysAllocString(cybuff
);
6653 *pbstrOut
= VARIANT_BstrReplaceDecimal(buff
,lcid
,dwFlags
);
6655 return *pbstrOut
? S_OK
: E_OUTOFMEMORY
;
6658 static inline int output_int_len(int o
, int min_len
, WCHAR
*date
, int date_len
)
6662 if(min_len
>= date_len
)
6665 for(len
=0, tmp
=o
; tmp
; tmp
/=10) len
++;
6670 for(tmp
=min_len
-len
; tmp
>0; tmp
--)
6672 for(tmp
=len
; tmp
>0; tmp
--, o
/=10)
6673 date
[tmp
-1] = '0' + o
%10;
6674 return min_len
>len
? min_len
: len
;
6677 /* format date string, similar to GetDateFormatW function but works on bigger range of dates */
6678 BOOL
get_date_format(LCID lcid
, DWORD flags
, const SYSTEMTIME
*st
,
6679 const WCHAR
*fmt
, WCHAR
*date
, int date_len
)
6681 static const LCTYPE dayname
[] = {
6682 LOCALE_SDAYNAME7
, LOCALE_SDAYNAME1
, LOCALE_SDAYNAME2
, LOCALE_SDAYNAME3
,
6683 LOCALE_SDAYNAME4
, LOCALE_SDAYNAME5
, LOCALE_SDAYNAME6
6685 static const LCTYPE sdayname
[] = {
6686 LOCALE_SABBREVDAYNAME7
, LOCALE_SABBREVDAYNAME1
, LOCALE_SABBREVDAYNAME2
,
6687 LOCALE_SABBREVDAYNAME3
, LOCALE_SABBREVDAYNAME4
, LOCALE_SABBREVDAYNAME5
,
6688 LOCALE_SABBREVDAYNAME6
6690 static const LCTYPE monthname
[] = {
6691 LOCALE_SMONTHNAME1
, LOCALE_SMONTHNAME2
, LOCALE_SMONTHNAME3
, LOCALE_SMONTHNAME4
,
6692 LOCALE_SMONTHNAME5
, LOCALE_SMONTHNAME6
, LOCALE_SMONTHNAME7
, LOCALE_SMONTHNAME8
,
6693 LOCALE_SMONTHNAME9
, LOCALE_SMONTHNAME10
, LOCALE_SMONTHNAME11
, LOCALE_SMONTHNAME12
6695 static const LCTYPE smonthname
[] = {
6696 LOCALE_SABBREVMONTHNAME1
, LOCALE_SABBREVMONTHNAME2
, LOCALE_SABBREVMONTHNAME3
,
6697 LOCALE_SABBREVMONTHNAME4
, LOCALE_SABBREVMONTHNAME5
, LOCALE_SABBREVMONTHNAME6
,
6698 LOCALE_SABBREVMONTHNAME7
, LOCALE_SABBREVMONTHNAME8
, LOCALE_SABBREVMONTHNAME9
,
6699 LOCALE_SABBREVMONTHNAME10
, LOCALE_SABBREVMONTHNAME11
, LOCALE_SABBREVMONTHNAME12
6702 if(flags
& ~(LOCALE_NOUSEROVERRIDE
|VAR_DATEVALUEONLY
))
6703 FIXME("ignoring flags %x\n", flags
);
6704 flags
&= LOCALE_NOUSEROVERRIDE
;
6706 while(*fmt
&& date_len
) {
6714 while(*fmt
== *(fmt
+count
))
6722 count
= GetLocaleInfoW(lcid
, dayname
[st
->wDayOfWeek
] | flags
, date
, date_len
)-1;
6724 count
= GetLocaleInfoW(lcid
, sdayname
[st
->wDayOfWeek
] | flags
, date
, date_len
)-1;
6726 count
= output_int_len(st
->wDay
, count
, date
, date_len
);
6730 count
= GetLocaleInfoW(lcid
, monthname
[st
->wMonth
-1] | flags
, date
, date_len
)-1;
6732 count
= GetLocaleInfoW(lcid
, smonthname
[st
->wMonth
-1] | flags
, date
, date_len
)-1;
6734 count
= output_int_len(st
->wMonth
, count
, date
, date_len
);
6738 count
= output_int_len(st
->wYear
, 0, date
, date_len
);
6740 count
= output_int_len(st
->wYear
%100, count
, date
, date_len
);
6744 FIXME("Should be using GetCalendarInfo(CAL_SERASTRING), defaulting to 'AD'\n");
6772 /******************************************************************************
6773 * VarBstrFromDate [OLEAUT32.114]
6775 * Convert a VT_DATE to a VT_BSTR.
6779 * lcid [I] LCID for the conversion
6780 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6781 * pbstrOut [O] Destination
6785 * Failure: E_INVALIDARG, if pbstrOut or dateIn is invalid.
6786 * E_OUTOFMEMORY, if memory allocation fails.
6788 HRESULT WINAPI
VarBstrFromDate(DATE dateIn
, LCID lcid
, ULONG dwFlags
, BSTR
* pbstrOut
)
6791 DWORD dwFormatFlags
= dwFlags
& LOCALE_NOUSEROVERRIDE
;
6792 WCHAR date
[128], fmt_buff
[80], *time
;
6794 TRACE("(%g,0x%08x,0x%08x,%p)\n", dateIn
, lcid
, dwFlags
, pbstrOut
);
6796 if (!pbstrOut
|| !VariantTimeToSystemTime(dateIn
, &st
))
6797 return E_INVALIDARG
;
6801 if (dwFlags
& VAR_CALENDAR_THAI
)
6802 st
.wYear
+= 553; /* Use the Thai buddhist calendar year */
6803 else if (dwFlags
& (VAR_CALENDAR_HIJRI
|VAR_CALENDAR_GREGORIAN
))
6804 FIXME("VAR_CALENDAR_HIJRI/VAR_CALENDAR_GREGORIAN not handled\n");
6806 if (dwFlags
& LOCALE_USE_NLS
)
6807 dwFlags
&= ~(VAR_TIMEVALUEONLY
|VAR_DATEVALUEONLY
);
6810 double whole
= dateIn
< 0 ? ceil(dateIn
) : floor(dateIn
);
6811 double partial
= dateIn
- whole
;
6814 dwFlags
|= VAR_TIMEVALUEONLY
;
6815 else if (partial
> -1e-12 && partial
< 1e-12)
6816 dwFlags
|= VAR_DATEVALUEONLY
;
6819 if (dwFlags
& VAR_TIMEVALUEONLY
)
6822 if (!GetLocaleInfoW(lcid
, LOCALE_SSHORTDATE
, fmt_buff
, sizeof(fmt_buff
)/sizeof(WCHAR
)) ||
6823 !get_date_format(lcid
, dwFlags
, &st
, fmt_buff
, date
, sizeof(date
)/sizeof(WCHAR
)))
6824 return E_INVALIDARG
;
6826 if (!(dwFlags
& VAR_DATEVALUEONLY
))
6828 time
= date
+ strlenW(date
);
6831 if (!GetTimeFormatW(lcid
, dwFormatFlags
, &st
, NULL
, time
,
6832 sizeof(date
)/sizeof(WCHAR
)-(time
-date
)))
6833 return E_INVALIDARG
;
6836 *pbstrOut
= SysAllocString(date
);
6838 TRACE("returning %s\n", debugstr_w(*pbstrOut
));
6839 return *pbstrOut
? S_OK
: E_OUTOFMEMORY
;
6842 /******************************************************************************
6843 * VarBstrFromBool (OLEAUT32.116)
6845 * Convert a VT_BOOL to a VT_BSTR.
6849 * lcid [I] LCID for the conversion
6850 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6851 * pbstrOut [O] Destination
6855 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6856 * E_OUTOFMEMORY, if memory allocation fails.
6859 * If dwFlags includes VARIANT_LOCALBOOL, this function converts to the
6860 * localised text of "True" or "False". To convert a bool into a
6861 * numeric string of "0" or "-1", use VariantChangeTypeTypeEx().
6863 HRESULT WINAPI
VarBstrFromBool(VARIANT_BOOL boolIn
, LCID lcid
, ULONG dwFlags
, BSTR
* pbstrOut
)
6866 DWORD dwResId
= IDS_TRUE
;
6869 TRACE("%d,0x%08x,0x%08x,%p\n", boolIn
, lcid
, dwFlags
, pbstrOut
);
6872 return E_INVALIDARG
;
6874 /* VAR_BOOLONOFF and VAR_BOOLYESNO are internal flags used
6875 * for variant formatting */
6876 switch (dwFlags
& (VAR_LOCALBOOL
|VAR_BOOLONOFF
|VAR_BOOLYESNO
))
6887 lcid
= MAKELCID(MAKELANGID(LANG_ENGLISH
, SUBLANG_DEFAULT
),SORT_DEFAULT
);
6890 lcid
= ConvertDefaultLocale(lcid
);
6891 langId
= LANGIDFROMLCID(lcid
);
6892 if (PRIMARYLANGID(langId
) == LANG_NEUTRAL
)
6893 langId
= MAKELANGID(LANG_ENGLISH
, SUBLANG_DEFAULT
);
6895 if (boolIn
== VARIANT_FALSE
)
6896 dwResId
++; /* Use negative form */
6898 VarBstrFromBool_GetLocalised
:
6899 if (VARIANT_GetLocalisedText(langId
, dwResId
, szBuff
))
6901 *pbstrOut
= SysAllocString(szBuff
);
6902 return *pbstrOut
? S_OK
: E_OUTOFMEMORY
;
6905 if (langId
!= MAKELANGID(LANG_ENGLISH
, SUBLANG_DEFAULT
))
6907 langId
= MAKELANGID(LANG_ENGLISH
, SUBLANG_DEFAULT
);
6908 goto VarBstrFromBool_GetLocalised
;
6911 /* Should never get here */
6912 WARN("Failed to load bool text!\n");
6913 return E_OUTOFMEMORY
;
6916 /******************************************************************************
6917 * VarBstrFromI1 (OLEAUT32.229)
6919 * Convert a VT_I1 to a VT_BSTR.
6923 * lcid [I] LCID for the conversion
6924 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6925 * pbstrOut [O] Destination
6929 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6930 * E_OUTOFMEMORY, if memory allocation fails.
6932 HRESULT WINAPI
VarBstrFromI1(signed char cIn
, LCID lcid
, ULONG dwFlags
, BSTR
* pbstrOut
)
6939 dwFlags
|= VAR_NEGATIVE
;
6941 return VARIANT_BstrFromUInt(ul64
, lcid
, dwFlags
, pbstrOut
);
6944 /******************************************************************************
6945 * VarBstrFromUI2 (OLEAUT32.230)
6947 * Convert a VT_UI2 to a VT_BSTR.
6951 * lcid [I] LCID for the conversion
6952 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6953 * pbstrOut [O] Destination
6957 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6958 * E_OUTOFMEMORY, if memory allocation fails.
6960 HRESULT WINAPI
VarBstrFromUI2(USHORT usIn
, LCID lcid
, ULONG dwFlags
, BSTR
* pbstrOut
)
6962 return VARIANT_BstrFromUInt(usIn
, lcid
, dwFlags
, pbstrOut
);
6965 /******************************************************************************
6966 * VarBstrFromUI4 (OLEAUT32.231)
6968 * Convert a VT_UI4 to a VT_BSTR.
6972 * lcid [I] LCID for the conversion
6973 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6974 * pbstrOut [O] Destination
6978 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6979 * E_OUTOFMEMORY, if memory allocation fails.
6981 HRESULT WINAPI
VarBstrFromUI4(ULONG ulIn
, LCID lcid
, ULONG dwFlags
, BSTR
* pbstrOut
)
6983 return VARIANT_BstrFromUInt(ulIn
, lcid
, dwFlags
, pbstrOut
);
6986 /******************************************************************************
6987 * VarBstrFromDec (OLEAUT32.232)
6989 * Convert a VT_DECIMAL to a VT_BSTR.
6993 * lcid [I] LCID for the conversion
6994 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6995 * pbstrOut [O] Destination
6999 * Failure: E_INVALIDARG, if pbstrOut is invalid.
7000 * E_OUTOFMEMORY, if memory allocation fails.
7002 HRESULT WINAPI
VarBstrFromDec(DECIMAL
* pDecIn
, LCID lcid
, ULONG dwFlags
, BSTR
* pbstrOut
)
7008 return E_INVALIDARG
;
7010 VARIANT_DIFromDec(pDecIn
, &temp
);
7011 VARIANT_DI_tostringW(&temp
, buff
, 256);
7013 if (dwFlags
& LOCALE_USE_NLS
)
7017 /* Format the number for the locale */
7019 GetNumberFormatW(lcid
, dwFlags
& LOCALE_NOUSEROVERRIDE
,
7020 buff
, NULL
, numbuff
, sizeof(numbuff
) / sizeof(WCHAR
));
7021 TRACE("created NLS string %s\n", debugstr_w(numbuff
));
7022 *pbstrOut
= SysAllocString(numbuff
);
7026 *pbstrOut
= VARIANT_BstrReplaceDecimal(buff
, lcid
, dwFlags
);
7029 TRACE("returning %s\n", debugstr_w(*pbstrOut
));
7030 return *pbstrOut
? S_OK
: E_OUTOFMEMORY
;
7033 /************************************************************************
7034 * VarBstrFromI8 (OLEAUT32.370)
7036 * Convert a VT_I8 to a VT_BSTR.
7040 * lcid [I] LCID for the conversion
7041 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
7042 * pbstrOut [O] Destination
7046 * Failure: E_INVALIDARG, if pbstrOut is invalid.
7047 * E_OUTOFMEMORY, if memory allocation fails.
7049 HRESULT WINAPI
VarBstrFromI8(LONG64 llIn
, LCID lcid
, ULONG dwFlags
, BSTR
* pbstrOut
)
7051 ULONG64 ul64
= llIn
;
7056 dwFlags
|= VAR_NEGATIVE
;
7058 return VARIANT_BstrFromUInt(ul64
, lcid
, dwFlags
, pbstrOut
);
7061 /************************************************************************
7062 * VarBstrFromUI8 (OLEAUT32.371)
7064 * Convert a VT_UI8 to a VT_BSTR.
7068 * lcid [I] LCID for the conversion
7069 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
7070 * pbstrOut [O] Destination
7074 * Failure: E_INVALIDARG, if pbstrOut is invalid.
7075 * E_OUTOFMEMORY, if memory allocation fails.
7077 HRESULT WINAPI
VarBstrFromUI8(ULONG64 ullIn
, LCID lcid
, ULONG dwFlags
, BSTR
* pbstrOut
)
7079 return VARIANT_BstrFromUInt(ullIn
, lcid
, dwFlags
, pbstrOut
);
7082 /************************************************************************
7083 * VarBstrFromDisp (OLEAUT32.115)
7085 * Convert a VT_DISPATCH to a BSTR.
7088 * pdispIn [I] Source
7089 * lcid [I] LCID for conversion
7090 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
7091 * pbstrOut [O] Destination
7095 * Failure: E_INVALIDARG, if the source value is invalid
7096 * DISP_E_TYPEMISMATCH, if the type cannot be converted
7098 HRESULT WINAPI
VarBstrFromDisp(IDispatch
* pdispIn
, LCID lcid
, ULONG dwFlags
, BSTR
* pbstrOut
)
7100 return VARIANT_FromDisp(pdispIn
, lcid
, pbstrOut
, VT_BSTR
, dwFlags
);
7103 /**********************************************************************
7104 * VarBstrCat (OLEAUT32.313)
7106 * Concatenate two BSTR values.
7109 * pbstrLeft [I] Source
7110 * pbstrRight [I] Value to concatenate
7111 * pbstrOut [O] Destination
7115 * Failure: E_INVALIDARG, if pbstrOut is invalid.
7116 * E_OUTOFMEMORY, if memory allocation fails.
7118 HRESULT WINAPI
VarBstrCat(BSTR pbstrLeft
, BSTR pbstrRight
, BSTR
*pbstrOut
)
7120 unsigned int lenLeft
, lenRight
;
7123 debugstr_wn(pbstrLeft
, SysStringLen(pbstrLeft
)),
7124 debugstr_wn(pbstrRight
, SysStringLen(pbstrRight
)), pbstrOut
);
7127 return E_INVALIDARG
;
7129 /* use byte length here to properly handle ansi-allocated BSTRs */
7130 lenLeft
= pbstrLeft
? SysStringByteLen(pbstrLeft
) : 0;
7131 lenRight
= pbstrRight
? SysStringByteLen(pbstrRight
) : 0;
7133 *pbstrOut
= SysAllocStringByteLen(NULL
, lenLeft
+ lenRight
);
7135 return E_OUTOFMEMORY
;
7137 (*pbstrOut
)[0] = '\0';
7140 memcpy(*pbstrOut
, pbstrLeft
, lenLeft
);
7143 memcpy((CHAR
*)*pbstrOut
+ lenLeft
, pbstrRight
, lenRight
);
7145 TRACE("%s\n", debugstr_wn(*pbstrOut
, SysStringLen(*pbstrOut
)));
7149 /**********************************************************************
7150 * VarBstrCmp (OLEAUT32.314)
7152 * Compare two BSTR values.
7155 * pbstrLeft [I] Source
7156 * pbstrRight [I] Value to compare
7157 * lcid [I] LCID for the comparison
7158 * dwFlags [I] Flags to pass directly to CompareStringW().
7161 * VARCMP_LT, VARCMP_EQ or VARCMP_GT indicating that pbstrLeft is less
7162 * than, equal to or greater than pbstrRight respectively.
7165 * VARCMP_NULL is NOT returned if either string is NULL unlike MSDN
7166 * states. A NULL BSTR pointer is equivalent to an empty string.
7167 * If LCID is equal to 0, a byte by byte comparison is performed.
7169 HRESULT WINAPI
VarBstrCmp(BSTR pbstrLeft
, BSTR pbstrRight
, LCID lcid
, DWORD dwFlags
)
7174 TRACE("%s,%s,%d,%08x\n",
7175 debugstr_wn(pbstrLeft
, SysStringLen(pbstrLeft
)),
7176 debugstr_wn(pbstrRight
, SysStringLen(pbstrRight
)), lcid
, dwFlags
);
7178 if (!pbstrLeft
|| !*pbstrLeft
)
7180 if (pbstrRight
&& *pbstrRight
)
7183 else if (!pbstrRight
|| !*pbstrRight
)
7188 unsigned int lenLeft
= SysStringByteLen(pbstrLeft
);
7189 unsigned int lenRight
= SysStringByteLen(pbstrRight
);
7190 ret
= memcmp(pbstrLeft
, pbstrRight
, min(lenLeft
, lenRight
));
7195 if (lenLeft
< lenRight
)
7197 if (lenLeft
> lenRight
)
7203 unsigned int lenLeft
= SysStringLen(pbstrLeft
);
7204 unsigned int lenRight
= SysStringLen(pbstrRight
);
7206 if (lenLeft
== 0 || lenRight
== 0)
7208 if (lenLeft
== 0 && lenRight
== 0) return VARCMP_EQ
;
7209 return lenLeft
< lenRight
? VARCMP_LT
: VARCMP_GT
;
7212 hres
= CompareStringW(lcid
, dwFlags
, pbstrLeft
, lenLeft
,
7213 pbstrRight
, lenRight
) - CSTR_LESS_THAN
;
7214 TRACE("%d\n", hres
);
7223 /******************************************************************************
7224 * VarDateFromUI1 (OLEAUT32.88)
7226 * Convert a VT_UI1 to a VT_DATE.
7230 * pdateOut [O] Destination
7235 HRESULT WINAPI
VarDateFromUI1(BYTE bIn
, DATE
* pdateOut
)
7237 return VarR8FromUI1(bIn
, pdateOut
);
7240 /******************************************************************************
7241 * VarDateFromI2 (OLEAUT32.89)
7243 * Convert a VT_I2 to a VT_DATE.
7247 * pdateOut [O] Destination
7252 HRESULT WINAPI
VarDateFromI2(short sIn
, DATE
* pdateOut
)
7254 return VarR8FromI2(sIn
, pdateOut
);
7257 /******************************************************************************
7258 * VarDateFromI4 (OLEAUT32.90)
7260 * Convert a VT_I4 to a VT_DATE.
7264 * pdateOut [O] Destination
7269 HRESULT WINAPI
VarDateFromI4(LONG lIn
, DATE
* pdateOut
)
7271 return VarDateFromR8(lIn
, pdateOut
);
7274 /******************************************************************************
7275 * VarDateFromR4 (OLEAUT32.91)
7277 * Convert a VT_R4 to a VT_DATE.
7281 * pdateOut [O] Destination
7286 HRESULT WINAPI
VarDateFromR4(FLOAT fltIn
, DATE
* pdateOut
)
7288 return VarR8FromR4(fltIn
, pdateOut
);
7291 /******************************************************************************
7292 * VarDateFromR8 (OLEAUT32.92)
7294 * Convert a VT_R8 to a VT_DATE.
7298 * pdateOut [O] Destination
7303 HRESULT WINAPI
VarDateFromR8(double dblIn
, DATE
* pdateOut
)
7305 if (dblIn
<= (DATE_MIN
- 1.0) || dblIn
>= (DATE_MAX
+ 1.0)) return DISP_E_OVERFLOW
;
7306 *pdateOut
= (DATE
)dblIn
;
7310 /**********************************************************************
7311 * VarDateFromDisp (OLEAUT32.95)
7313 * Convert a VT_DISPATCH to a VT_DATE.
7316 * pdispIn [I] Source
7317 * lcid [I] LCID for conversion
7318 * pdateOut [O] Destination
7322 * Failure: E_INVALIDARG, if the source value is invalid
7323 * DISP_E_OVERFLOW, if the value will not fit in the destination
7324 * DISP_E_TYPEMISMATCH, if the type cannot be converted
7326 HRESULT WINAPI
VarDateFromDisp(IDispatch
* pdispIn
, LCID lcid
, DATE
* pdateOut
)
7328 return VARIANT_FromDisp(pdispIn
, lcid
, pdateOut
, VT_DATE
, 0);
7331 /******************************************************************************
7332 * VarDateFromBool (OLEAUT32.96)
7334 * Convert a VT_BOOL to a VT_DATE.
7338 * pdateOut [O] Destination
7343 HRESULT WINAPI
VarDateFromBool(VARIANT_BOOL boolIn
, DATE
* pdateOut
)
7345 return VarR8FromBool(boolIn
, pdateOut
);
7348 /**********************************************************************
7349 * VarDateFromCy (OLEAUT32.93)
7351 * Convert a VT_CY to a VT_DATE.
7355 * pdateOut [O] Destination
7360 HRESULT WINAPI
VarDateFromCy(CY cyIn
, DATE
* pdateOut
)
7362 return VarR8FromCy(cyIn
, pdateOut
);
7365 /* Date string parsing */
7366 #define DP_TIMESEP 0x01 /* Time separator ( _must_ remain 0x1, used as a bitmask) */
7367 #define DP_DATESEP 0x02 /* Date separator */
7368 #define DP_MONTH 0x04 /* Month name */
7369 #define DP_AM 0x08 /* AM */
7370 #define DP_PM 0x10 /* PM */
7372 typedef struct tagDATEPARSE
7374 DWORD dwCount
; /* Number of fields found so far (maximum 6) */
7375 DWORD dwParseFlags
; /* Global parse flags (DP_ Flags above) */
7376 DWORD dwFlags
[6]; /* Flags for each field */
7377 DWORD dwValues
[6]; /* Value of each field */
7380 #define TIMEFLAG(i) ((dp.dwFlags[i] & DP_TIMESEP) << i)
7382 #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
7384 /* Determine if a day is valid in a given month of a given year */
7385 static BOOL
VARIANT_IsValidMonthDay(DWORD day
, DWORD month
, DWORD year
)
7387 static const BYTE days
[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
7389 if (day
&& month
&& month
< 13)
7391 if (day
<= days
[month
] || (month
== 2 && day
== 29 && IsLeapYear(year
)))
7397 /* Possible orders for 3 numbers making up a date */
7398 #define ORDER_MDY 0x01
7399 #define ORDER_YMD 0x02
7400 #define ORDER_YDM 0x04
7401 #define ORDER_DMY 0x08
7402 #define ORDER_MYD 0x10 /* Synthetic order, used only for funky 2 digit dates */
7404 /* Determine a date for a particular locale, from 3 numbers */
7405 static inline HRESULT
VARIANT_MakeDate(DATEPARSE
*dp
, DWORD iDate
,
7406 DWORD offset
, SYSTEMTIME
*st
)
7408 DWORD dwAllOrders
, dwTry
, dwCount
= 0, v1
, v2
, v3
;
7412 v1
= 30; /* Default to (Variant) 0 date part */
7415 goto VARIANT_MakeDate_OK
;
7418 v1
= dp
->dwValues
[offset
+ 0];
7419 v2
= dp
->dwValues
[offset
+ 1];
7420 if (dp
->dwCount
== 2)
7423 GetSystemTime(¤t
);
7427 v3
= dp
->dwValues
[offset
+ 2];
7429 TRACE("(%d,%d,%d,%d,%d)\n", v1
, v2
, v3
, iDate
, offset
);
7431 /* If one number must be a month (Because a month name was given), then only
7432 * consider orders with the month in that position.
7433 * If we took the current year as 'v3', then only allow a year in that position.
7435 if (dp
->dwFlags
[offset
+ 0] & DP_MONTH
)
7437 dwAllOrders
= ORDER_MDY
;
7439 else if (dp
->dwFlags
[offset
+ 1] & DP_MONTH
)
7441 dwAllOrders
= ORDER_DMY
;
7442 if (dp
->dwCount
> 2)
7443 dwAllOrders
|= ORDER_YMD
;
7445 else if (dp
->dwCount
> 2 && dp
->dwFlags
[offset
+ 2] & DP_MONTH
)
7447 dwAllOrders
= ORDER_YDM
;
7451 dwAllOrders
= ORDER_MDY
|ORDER_DMY
;
7452 if (dp
->dwCount
> 2)
7453 dwAllOrders
|= (ORDER_YMD
|ORDER_YDM
);
7456 VARIANT_MakeDate_Start
:
7457 TRACE("dwAllOrders is 0x%08x\n", dwAllOrders
);
7465 /* First: Try the order given by iDate */
7468 case 0: dwTry
= dwAllOrders
& ORDER_MDY
; break;
7469 case 1: dwTry
= dwAllOrders
& ORDER_DMY
; break;
7470 default: dwTry
= dwAllOrders
& ORDER_YMD
; break;
7473 else if (dwCount
== 1)
7475 /* Second: Try all the orders compatible with iDate */
7478 case 0: dwTry
= dwAllOrders
& ~(ORDER_DMY
|ORDER_YDM
); break;
7479 case 1: dwTry
= dwAllOrders
& ~(ORDER_MDY
|ORDER_YDM
|ORDER_MYD
); break;
7480 default: dwTry
= dwAllOrders
& ~(ORDER_DMY
|ORDER_YDM
); break;
7485 /* Finally: Try any remaining orders */
7486 dwTry
= dwAllOrders
;
7489 TRACE("Attempt %d, dwTry is 0x%08x\n", dwCount
, dwTry
);
7495 #define DATE_SWAP(x,y) do { dwTemp = x; x = y; y = dwTemp; } while (0)
7497 if (dwTry
& ORDER_MDY
)
7499 if (VARIANT_IsValidMonthDay(v2
,v1
,v3
))
7502 goto VARIANT_MakeDate_OK
;
7504 dwAllOrders
&= ~ORDER_MDY
;
7506 if (dwTry
& ORDER_YMD
)
7508 if (VARIANT_IsValidMonthDay(v3
,v2
,v1
))
7511 goto VARIANT_MakeDate_OK
;
7513 dwAllOrders
&= ~ORDER_YMD
;
7515 if (dwTry
& ORDER_YDM
)
7517 if (VARIANT_IsValidMonthDay(v2
,v3
,v1
))
7521 goto VARIANT_MakeDate_OK
;
7523 dwAllOrders
&= ~ORDER_YDM
;
7525 if (dwTry
& ORDER_DMY
)
7527 if (VARIANT_IsValidMonthDay(v1
,v2
,v3
))
7528 goto VARIANT_MakeDate_OK
;
7529 dwAllOrders
&= ~ORDER_DMY
;
7531 if (dwTry
& ORDER_MYD
)
7533 /* Only occurs if we are trying a 2 year date as M/Y not D/M */
7534 if (VARIANT_IsValidMonthDay(v3
,v1
,v2
))
7538 goto VARIANT_MakeDate_OK
;
7540 dwAllOrders
&= ~ORDER_MYD
;
7544 if (dp
->dwCount
== 2)
7546 /* We couldn't make a date as D/M or M/D, so try M/Y or Y/M */
7547 v3
= 1; /* 1st of the month */
7548 dwAllOrders
= ORDER_YMD
|ORDER_MYD
;
7549 dp
->dwCount
= 0; /* Don't return to this code path again */
7551 goto VARIANT_MakeDate_Start
;
7554 /* No valid dates were able to be constructed */
7555 return DISP_E_TYPEMISMATCH
;
7557 VARIANT_MakeDate_OK
:
7559 /* Check that the time part is ok */
7560 if (st
->wHour
> 23 || st
->wMinute
> 59 || st
->wSecond
> 59)
7561 return DISP_E_TYPEMISMATCH
;
7563 TRACE("Time %d %d %d\n", st
->wHour
, st
->wMinute
, st
->wSecond
);
7564 if (st
->wHour
< 12 && (dp
->dwParseFlags
& DP_PM
))
7566 else if (st
->wHour
== 12 && (dp
->dwParseFlags
& DP_AM
))
7568 TRACE("Time %d %d %d\n", st
->wHour
, st
->wMinute
, st
->wSecond
);
7572 /* FIXME: For 2 digit dates, I'm not sure if 30 is hard coded or not. It may
7573 * be retrieved from:
7574 * HKCU\Control Panel\International\Calendars\TwoDigitYearMax
7575 * But Wine doesn't have/use that key as at the time of writing.
7577 st
->wYear
= v3
< 30 ? 2000 + v3
: v3
< 100 ? 1900 + v3
: v3
;
7578 TRACE("Returning date %d/%d/%d\n", v1
, v2
, st
->wYear
);
7582 /******************************************************************************
7583 * VarDateFromStr [OLEAUT32.94]
7585 * Convert a VT_BSTR to at VT_DATE.
7588 * strIn [I] String to convert
7589 * lcid [I] Locale identifier for the conversion
7590 * dwFlags [I] Flags affecting the conversion (VAR_ flags from "oleauto.h")
7591 * pdateOut [O] Destination for the converted value
7594 * Success: S_OK. pdateOut contains the converted value.
7595 * FAILURE: An HRESULT error code indicating the problem.
7598 * Any date format that can be created using the date formats from lcid
7599 * (Either from kernel Nls functions, variant conversion or formatting) is a
7600 * valid input to this function. In addition, a few more esoteric formats are
7601 * also supported for compatibility with the native version. The date is
7602 * interpreted according to the date settings in the control panel, unless
7603 * the date is invalid in that format, in which the most compatible format
7604 * that produces a valid date will be used.
7606 HRESULT WINAPI
VarDateFromStr(OLECHAR
* strIn
, LCID lcid
, ULONG dwFlags
, DATE
* pdateOut
)
7608 static const USHORT ParseDateTokens
[] =
7610 LOCALE_SMONTHNAME1
, LOCALE_SMONTHNAME2
, LOCALE_SMONTHNAME3
, LOCALE_SMONTHNAME4
,
7611 LOCALE_SMONTHNAME5
, LOCALE_SMONTHNAME6
, LOCALE_SMONTHNAME7
, LOCALE_SMONTHNAME8
,
7612 LOCALE_SMONTHNAME9
, LOCALE_SMONTHNAME10
, LOCALE_SMONTHNAME11
, LOCALE_SMONTHNAME12
,
7613 LOCALE_SMONTHNAME13
,
7614 LOCALE_SABBREVMONTHNAME1
, LOCALE_SABBREVMONTHNAME2
, LOCALE_SABBREVMONTHNAME3
,
7615 LOCALE_SABBREVMONTHNAME4
, LOCALE_SABBREVMONTHNAME5
, LOCALE_SABBREVMONTHNAME6
,
7616 LOCALE_SABBREVMONTHNAME7
, LOCALE_SABBREVMONTHNAME8
, LOCALE_SABBREVMONTHNAME9
,
7617 LOCALE_SABBREVMONTHNAME10
, LOCALE_SABBREVMONTHNAME11
, LOCALE_SABBREVMONTHNAME12
,
7618 LOCALE_SABBREVMONTHNAME13
,
7619 LOCALE_SDAYNAME1
, LOCALE_SDAYNAME2
, LOCALE_SDAYNAME3
, LOCALE_SDAYNAME4
,
7620 LOCALE_SDAYNAME5
, LOCALE_SDAYNAME6
, LOCALE_SDAYNAME7
,
7621 LOCALE_SABBREVDAYNAME1
, LOCALE_SABBREVDAYNAME2
, LOCALE_SABBREVDAYNAME3
,
7622 LOCALE_SABBREVDAYNAME4
, LOCALE_SABBREVDAYNAME5
, LOCALE_SABBREVDAYNAME6
,
7623 LOCALE_SABBREVDAYNAME7
,
7624 LOCALE_S1159
, LOCALE_S2359
,
7627 static const BYTE ParseDateMonths
[] =
7629 1,2,3,4,5,6,7,8,9,10,11,12,13,
7630 1,2,3,4,5,6,7,8,9,10,11,12,13
7633 BSTR tokens
[sizeof(ParseDateTokens
)/sizeof(ParseDateTokens
[0])];
7635 DWORD dwDateSeps
= 0, iDate
= 0;
7636 HRESULT hRet
= S_OK
;
7638 if ((dwFlags
& (VAR_TIMEVALUEONLY
|VAR_DATEVALUEONLY
)) ==
7639 (VAR_TIMEVALUEONLY
|VAR_DATEVALUEONLY
))
7640 return E_INVALIDARG
;
7643 return DISP_E_TYPEMISMATCH
;
7647 TRACE("(%s,0x%08x,0x%08x,%p)\n", debugstr_w(strIn
), lcid
, dwFlags
, pdateOut
);
7649 memset(&dp
, 0, sizeof(dp
));
7651 GetLocaleInfoW(lcid
, LOCALE_IDATE
|LOCALE_RETURN_NUMBER
|(dwFlags
& LOCALE_NOUSEROVERRIDE
),
7652 (LPWSTR
)&iDate
, sizeof(iDate
)/sizeof(WCHAR
));
7653 TRACE("iDate is %d\n", iDate
);
7655 /* Get the month/day/am/pm tokens for this locale */
7656 for (i
= 0; i
< sizeof(tokens
)/sizeof(tokens
[0]); i
++)
7659 LCTYPE lctype
= ParseDateTokens
[i
] | (dwFlags
& LOCALE_NOUSEROVERRIDE
);
7661 /* FIXME: Alternate calendars - should use GetCalendarInfo() and/or
7662 * GetAltMonthNames(). We should really cache these strings too.
7665 GetLocaleInfoW(lcid
, lctype
, buff
, sizeof(buff
)/sizeof(WCHAR
));
7666 tokens
[i
] = SysAllocString(buff
);
7667 TRACE("token %d is %s\n", i
, debugstr_w(tokens
[i
]));
7670 /* Parse the string into our structure */
7673 if (dp
.dwCount
>= 6)
7676 if (isdigitW(*strIn
))
7678 dp
.dwValues
[dp
.dwCount
] = strtoulW(strIn
, &strIn
, 10);
7682 else if (isalpha(*strIn
))
7684 BOOL bFound
= FALSE
;
7686 for (i
= 0; i
< sizeof(tokens
)/sizeof(tokens
[0]); i
++)
7688 DWORD dwLen
= strlenW(tokens
[i
]);
7689 if (dwLen
&& !strncmpiW(strIn
, tokens
[i
], dwLen
))
7693 dp
.dwValues
[dp
.dwCount
] = ParseDateMonths
[i
];
7694 dp
.dwFlags
[dp
.dwCount
] |= (DP_MONTH
|DP_DATESEP
);
7697 else if (i
> 39 && i
< 42)
7699 if (!dp
.dwCount
|| dp
.dwParseFlags
& (DP_AM
|DP_PM
))
7700 hRet
= DISP_E_TYPEMISMATCH
;
7703 dp
.dwFlags
[dp
.dwCount
- 1] |= (i
== 40 ? DP_AM
: DP_PM
);
7704 dp
.dwParseFlags
|= (i
== 40 ? DP_AM
: DP_PM
);
7707 strIn
+= (dwLen
- 1);
7715 if ((*strIn
== 'a' || *strIn
== 'A' || *strIn
== 'p' || *strIn
== 'P') &&
7716 (dp
.dwCount
&& !(dp
.dwParseFlags
& (DP_AM
|DP_PM
))))
7718 /* Special case - 'a' and 'p' are recognised as short for am/pm */
7719 if (*strIn
== 'a' || *strIn
== 'A')
7721 dp
.dwFlags
[dp
.dwCount
- 1] |= DP_AM
;
7722 dp
.dwParseFlags
|= DP_AM
;
7726 dp
.dwFlags
[dp
.dwCount
- 1] |= DP_PM
;
7727 dp
.dwParseFlags
|= DP_PM
;
7733 TRACE("No matching token for %s\n", debugstr_w(strIn
));
7734 hRet
= DISP_E_TYPEMISMATCH
;
7739 else if (*strIn
== ':' || *strIn
== '.')
7741 if (!dp
.dwCount
|| !strIn
[1])
7742 hRet
= DISP_E_TYPEMISMATCH
;
7744 if (tokens
[42][0] == *strIn
)
7748 hRet
= DISP_E_TYPEMISMATCH
;
7750 dp
.dwFlags
[dp
.dwCount
- 1] |= DP_DATESEP
;
7753 dp
.dwFlags
[dp
.dwCount
- 1] |= DP_TIMESEP
;
7755 else if (*strIn
== '-' || *strIn
== '/')
7758 if (dwDateSeps
> 2 || !dp
.dwCount
|| !strIn
[1])
7759 hRet
= DISP_E_TYPEMISMATCH
;
7761 dp
.dwFlags
[dp
.dwCount
- 1] |= DP_DATESEP
;
7763 else if (*strIn
== ',' || isspaceW(*strIn
))
7765 if (*strIn
== ',' && !strIn
[1])
7766 hRet
= DISP_E_TYPEMISMATCH
;
7770 hRet
= DISP_E_TYPEMISMATCH
;
7775 if (!dp
.dwCount
|| dp
.dwCount
> 6 ||
7776 (dp
.dwCount
== 1 && !(dp
.dwParseFlags
& (DP_AM
|DP_PM
))))
7777 hRet
= DISP_E_TYPEMISMATCH
;
7779 if (SUCCEEDED(hRet
))
7782 DWORD dwOffset
= 0; /* Start of date fields in dp.dwValues */
7784 st
.wDayOfWeek
= st
.wHour
= st
.wMinute
= st
.wSecond
= st
.wMilliseconds
= 0;
7786 /* Figure out which numbers correspond to which fields.
7788 * This switch statement works based on the fact that native interprets any
7789 * fields that are not joined with a time separator ('.' or ':') as date
7790 * fields. Thus we construct a value from 0-32 where each set bit indicates
7791 * a time field. This encapsulates the hundreds of permutations of 2-6 fields.
7792 * For valid permutations, we set dwOffset to point to the first date field
7793 * and shorten dp.dwCount by the number of time fields found. The real
7794 * magic here occurs in VARIANT_MakeDate() above, where we determine what
7795 * each date number must represent in the context of iDate.
7797 TRACE("0x%08x\n", TIMEFLAG(0)|TIMEFLAG(1)|TIMEFLAG(2)|TIMEFLAG(3)|TIMEFLAG(4));
7799 switch (TIMEFLAG(0)|TIMEFLAG(1)|TIMEFLAG(2)|TIMEFLAG(3)|TIMEFLAG(4))
7801 case 0x1: /* TT TTDD TTDDD */
7802 if (dp
.dwCount
> 3 &&
7803 ((dp
.dwFlags
[2] & (DP_AM
|DP_PM
)) || (dp
.dwFlags
[3] & (DP_AM
|DP_PM
)) ||
7804 (dp
.dwFlags
[4] & (DP_AM
|DP_PM
))))
7805 hRet
= DISP_E_TYPEMISMATCH
;
7806 else if (dp
.dwCount
!= 2 && dp
.dwCount
!= 4 && dp
.dwCount
!= 5)
7807 hRet
= DISP_E_TYPEMISMATCH
;
7808 st
.wHour
= dp
.dwValues
[0];
7809 st
.wMinute
= dp
.dwValues
[1];
7814 case 0x3: /* TTT TTTDD TTTDDD */
7815 if (dp
.dwCount
> 4 &&
7816 ((dp
.dwFlags
[3] & (DP_AM
|DP_PM
)) || (dp
.dwFlags
[4] & (DP_AM
|DP_PM
)) ||
7817 (dp
.dwFlags
[5] & (DP_AM
|DP_PM
))))
7818 hRet
= DISP_E_TYPEMISMATCH
;
7819 else if (dp
.dwCount
!= 3 && dp
.dwCount
!= 5 && dp
.dwCount
!= 6)
7820 hRet
= DISP_E_TYPEMISMATCH
;
7821 st
.wHour
= dp
.dwValues
[0];
7822 st
.wMinute
= dp
.dwValues
[1];
7823 st
.wSecond
= dp
.dwValues
[2];
7828 case 0x4: /* DDTT */
7829 if (dp
.dwCount
!= 4 ||
7830 (dp
.dwFlags
[0] & (DP_AM
|DP_PM
)) || (dp
.dwFlags
[1] & (DP_AM
|DP_PM
)))
7831 hRet
= DISP_E_TYPEMISMATCH
;
7833 st
.wHour
= dp
.dwValues
[2];
7834 st
.wMinute
= dp
.dwValues
[3];
7838 case 0x0: /* T DD DDD TDDD TDDD */
7839 if (dp
.dwCount
== 1 && (dp
.dwParseFlags
& (DP_AM
|DP_PM
)))
7841 st
.wHour
= dp
.dwValues
[0]; /* T */
7845 else if (dp
.dwCount
> 4 || (dp
.dwCount
< 3 && dp
.dwParseFlags
& (DP_AM
|DP_PM
)))
7847 hRet
= DISP_E_TYPEMISMATCH
;
7849 else if (dp
.dwCount
== 3)
7851 if (dp
.dwFlags
[0] & (DP_AM
|DP_PM
)) /* TDD */
7854 st
.wHour
= dp
.dwValues
[0];
7858 if (dp
.dwFlags
[2] & (DP_AM
|DP_PM
)) /* DDT */
7861 st
.wHour
= dp
.dwValues
[2];
7864 else if (dp
.dwParseFlags
& (DP_AM
|DP_PM
))
7865 hRet
= DISP_E_TYPEMISMATCH
;
7867 else if (dp
.dwCount
== 4)
7870 if (dp
.dwFlags
[0] & (DP_AM
|DP_PM
)) /* TDDD */
7872 st
.wHour
= dp
.dwValues
[0];
7875 else if (dp
.dwFlags
[3] & (DP_AM
|DP_PM
)) /* DDDT */
7877 st
.wHour
= dp
.dwValues
[3];
7880 hRet
= DISP_E_TYPEMISMATCH
;
7883 /* .. fall through .. */
7885 case 0x8: /* DDDTT */
7886 if ((dp
.dwCount
== 2 && (dp
.dwParseFlags
& (DP_AM
|DP_PM
))) ||
7887 (dp
.dwCount
== 5 && ((dp
.dwFlags
[0] & (DP_AM
|DP_PM
)) ||
7888 (dp
.dwFlags
[1] & (DP_AM
|DP_PM
)) || (dp
.dwFlags
[2] & (DP_AM
|DP_PM
)))) ||
7889 dp
.dwCount
== 4 || dp
.dwCount
== 6)
7890 hRet
= DISP_E_TYPEMISMATCH
;
7891 st
.wHour
= dp
.dwValues
[3];
7892 st
.wMinute
= dp
.dwValues
[4];
7893 if (dp
.dwCount
== 5)
7897 case 0xC: /* DDTTT */
7898 if (dp
.dwCount
!= 5 ||
7899 (dp
.dwFlags
[0] & (DP_AM
|DP_PM
)) || (dp
.dwFlags
[1] & (DP_AM
|DP_PM
)))
7900 hRet
= DISP_E_TYPEMISMATCH
;
7901 st
.wHour
= dp
.dwValues
[2];
7902 st
.wMinute
= dp
.dwValues
[3];
7903 st
.wSecond
= dp
.dwValues
[4];
7907 case 0x18: /* DDDTTT */
7908 if ((dp
.dwFlags
[0] & (DP_AM
|DP_PM
)) || (dp
.dwFlags
[1] & (DP_AM
|DP_PM
)) ||
7909 (dp
.dwFlags
[2] & (DP_AM
|DP_PM
)))
7910 hRet
= DISP_E_TYPEMISMATCH
;
7911 st
.wHour
= dp
.dwValues
[3];
7912 st
.wMinute
= dp
.dwValues
[4];
7913 st
.wSecond
= dp
.dwValues
[5];
7918 hRet
= DISP_E_TYPEMISMATCH
;
7922 if (SUCCEEDED(hRet
))
7924 hRet
= VARIANT_MakeDate(&dp
, iDate
, dwOffset
, &st
);
7926 if (dwFlags
& VAR_TIMEVALUEONLY
)
7932 else if (dwFlags
& VAR_DATEVALUEONLY
)
7933 st
.wHour
= st
.wMinute
= st
.wSecond
= 0;
7935 /* Finally, convert the value to a VT_DATE */
7936 if (SUCCEEDED(hRet
))
7937 hRet
= SystemTimeToVariantTime(&st
, pdateOut
) ? S_OK
: DISP_E_TYPEMISMATCH
;
7941 for (i
= 0; i
< sizeof(tokens
)/sizeof(tokens
[0]); i
++)
7942 SysFreeString(tokens
[i
]);
7946 /******************************************************************************
7947 * VarDateFromI1 (OLEAUT32.221)
7949 * Convert a VT_I1 to a VT_DATE.
7953 * pdateOut [O] Destination
7958 HRESULT WINAPI
VarDateFromI1(signed char cIn
, DATE
* pdateOut
)
7960 return VarR8FromI1(cIn
, pdateOut
);
7963 /******************************************************************************
7964 * VarDateFromUI2 (OLEAUT32.222)
7966 * Convert a VT_UI2 to a VT_DATE.
7970 * pdateOut [O] Destination
7975 HRESULT WINAPI
VarDateFromUI2(USHORT uiIn
, DATE
* pdateOut
)
7977 return VarR8FromUI2(uiIn
, pdateOut
);
7980 /******************************************************************************
7981 * VarDateFromUI4 (OLEAUT32.223)
7983 * Convert a VT_UI4 to a VT_DATE.
7987 * pdateOut [O] Destination
7992 HRESULT WINAPI
VarDateFromUI4(ULONG ulIn
, DATE
* pdateOut
)
7994 return VarDateFromR8(ulIn
, pdateOut
);
7997 /**********************************************************************
7998 * VarDateFromDec (OLEAUT32.224)
8000 * Convert a VT_DECIMAL to a VT_DATE.
8004 * pdateOut [O] Destination
8009 HRESULT WINAPI
VarDateFromDec(DECIMAL
*pdecIn
, DATE
* pdateOut
)
8011 return VarR8FromDec(pdecIn
, pdateOut
);
8014 /******************************************************************************
8015 * VarDateFromI8 (OLEAUT32.364)
8017 * Convert a VT_I8 to a VT_DATE.
8021 * pdateOut [O] Destination
8025 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
8027 HRESULT WINAPI
VarDateFromI8(LONG64 llIn
, DATE
* pdateOut
)
8029 if (llIn
< DATE_MIN
|| llIn
> DATE_MAX
) return DISP_E_OVERFLOW
;
8030 *pdateOut
= (DATE
)llIn
;
8034 /******************************************************************************
8035 * VarDateFromUI8 (OLEAUT32.365)
8037 * Convert a VT_UI8 to a VT_DATE.
8041 * pdateOut [O] Destination
8045 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
8047 HRESULT WINAPI
VarDateFromUI8(ULONG64 ullIn
, DATE
* pdateOut
)
8049 if (ullIn
> DATE_MAX
) return DISP_E_OVERFLOW
;
8050 *pdateOut
= (DATE
)ullIn
;