Assorted spelling fixes.
[wine.git] / dlls / oleaut32 / variant.c
blobe391a9042b1993988689cf11c223dedb149faaaf
1 /*
2 * VARIANT
4 * Copyright 1998 Jean-Claude Cote
5 * Copyright 2003 Jon Griffiths
6 * Copyright 2005 Daniel Remenak
7 * Copyright 2006 Google (Benjamin Arai)
9 * The algorithm for conversion from Julian days to day/month/year is based on
10 * that devised by Henry Fliegel, as implemented in PostgreSQL, which is
11 * Copyright 1994-7 Regents of the University of California
13 * This library is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU Lesser General Public
15 * License as published by the Free Software Foundation; either
16 * version 2.1 of the License, or (at your option) any later version.
18 * This library is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * Lesser General Public License for more details.
23 * You should have received a copy of the GNU Lesser General Public
24 * License along with this library; if not, write to the Free Software
25 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
28 #include "config.h"
30 #include <string.h>
31 #include <stdlib.h>
32 #include <stdarg.h>
34 #define COBJMACROS
35 #define NONAMELESSUNION
36 #define NONAMELESSSTRUCT
38 #include "windef.h"
39 #include "winbase.h"
40 #include "wine/unicode.h"
41 #include "winerror.h"
42 #include "variant.h"
43 #include "resource.h"
44 #include "wine/debug.h"
46 WINE_DEFAULT_DEBUG_CHANNEL(variant);
47 static const char * const variant_types[] =
49 "VT_EMPTY","VT_NULL","VT_I2","VT_I4","VT_R4","VT_R8","VT_CY","VT_DATE",
50 "VT_BSTR","VT_DISPATCH","VT_ERROR","VT_BOOL","VT_VARIANT","VT_UNKNOWN",
51 "VT_DECIMAL","15","VT_I1","VT_UI1","VT_UI2","VT_UI4","VT_I8","VT_UI8",
52 "VT_INT","VT_UINT","VT_VOID","VT_HRESULT","VT_PTR","VT_SAFEARRAY",
53 "VT_CARRAY","VT_USERDEFINED","VT_LPSTR","VT_LPWSTR","32","33","34","35",
54 "VT_RECORD","VT_INT_PTR","VT_UINT_PTR","39","40","41","42","43","44","45",
55 "46","47","48","49","50","51","52","53","54","55","56","57","58","59","60",
56 "61","62","63","VT_FILETIME","VT_BLOB","VT_STREAM","VT_STORAGE",
57 "VT_STREAMED_OBJECT","VT_STORED_OBJECT","VT_BLOB_OBJECT","VT_CF","VT_CLSID",
58 "VT_VERSIONED_STREAM"
61 static const char * const variant_flags[16] =
63 "",
64 "|VT_VECTOR",
65 "|VT_ARRAY",
66 "|VT_VECTOR|VT_ARRAY",
67 "|VT_BYREF",
68 "|VT_VECTOR|VT_ARRAY",
69 "|VT_ARRAY|VT_BYREF",
70 "|VT_VECTOR|VT_ARRAY|VT_BYREF",
71 "|VT_RESERVED",
72 "|VT_VECTOR|VT_RESERVED",
73 "|VT_ARRAY|VT_RESERVED",
74 "|VT_VECTOR|VT_ARRAY|VT_RESERVED",
75 "|VT_BYREF|VT_RESERVED",
76 "|VT_VECTOR|VT_ARRAY|VT_RESERVED",
77 "|VT_ARRAY|VT_BYREF|VT_RESERVED",
78 "|VT_VECTOR|VT_ARRAY|VT_BYREF|VT_RESERVED",
81 /* Convert a variant from one type to another */
82 static inline HRESULT VARIANT_Coerce(VARIANTARG* pd, LCID lcid, USHORT wFlags,
83 VARIANTARG* ps, VARTYPE vt)
85 HRESULT res = DISP_E_TYPEMISMATCH;
86 VARTYPE vtFrom = V_TYPE(ps);
87 DWORD dwFlags = 0;
89 TRACE("(%s,0x%08x,0x%04x,%s,%s)\n", debugstr_variant(pd), lcid, wFlags,
90 debugstr_variant(ps), debugstr_vt(vt));
92 if (vt == VT_BSTR || vtFrom == VT_BSTR)
94 /* All flags passed to low level function are only used for
95 * changing to or from strings. Map these here.
97 if (wFlags & VARIANT_LOCALBOOL)
98 dwFlags |= VAR_LOCALBOOL;
99 if (wFlags & VARIANT_CALENDAR_HIJRI)
100 dwFlags |= VAR_CALENDAR_HIJRI;
101 if (wFlags & VARIANT_CALENDAR_THAI)
102 dwFlags |= VAR_CALENDAR_THAI;
103 if (wFlags & VARIANT_CALENDAR_GREGORIAN)
104 dwFlags |= VAR_CALENDAR_GREGORIAN;
105 if (wFlags & VARIANT_NOUSEROVERRIDE)
106 dwFlags |= LOCALE_NOUSEROVERRIDE;
107 if (wFlags & VARIANT_USE_NLS)
108 dwFlags |= LOCALE_USE_NLS;
111 /* Map int/uint to i4/ui4 */
112 if (vt == VT_INT)
113 vt = VT_I4;
114 else if (vt == VT_UINT)
115 vt = VT_UI4;
117 if (vtFrom == VT_INT)
118 vtFrom = VT_I4;
119 else if (vtFrom == VT_UINT)
120 vtFrom = VT_UI4;
122 if (vt == vtFrom)
123 return VariantCopy(pd, ps);
125 if (wFlags & VARIANT_NOVALUEPROP && vtFrom == VT_DISPATCH && vt != VT_UNKNOWN)
127 /* VARIANT_NOVALUEPROP prevents IDispatch objects from being coerced by
128 * accessing the default object property.
130 return DISP_E_TYPEMISMATCH;
133 switch (vt)
135 case VT_EMPTY:
136 if (vtFrom == VT_NULL)
137 return DISP_E_TYPEMISMATCH;
138 /* ... Fall through */
139 case VT_NULL:
140 if (vtFrom <= VT_UINT && vtFrom != (VARTYPE)15 && vtFrom != VT_ERROR)
142 res = VariantClear( pd );
143 if (vt == VT_NULL && SUCCEEDED(res))
144 V_VT(pd) = VT_NULL;
146 return res;
148 case VT_I1:
149 switch (vtFrom)
151 case VT_EMPTY: V_I1(pd) = 0; return S_OK;
152 case VT_I2: return VarI1FromI2(V_I2(ps), &V_I1(pd));
153 case VT_I4: return VarI1FromI4(V_I4(ps), &V_I1(pd));
154 case VT_UI1: V_I1(pd) = V_UI1(ps); return S_OK;
155 case VT_UI2: return VarI1FromUI2(V_UI2(ps), &V_I1(pd));
156 case VT_UI4: return VarI1FromUI4(V_UI4(ps), &V_I1(pd));
157 case VT_I8: return VarI1FromI8(V_I8(ps), &V_I1(pd));
158 case VT_UI8: return VarI1FromUI8(V_UI8(ps), &V_I1(pd));
159 case VT_R4: return VarI1FromR4(V_R4(ps), &V_I1(pd));
160 case VT_R8: return VarI1FromR8(V_R8(ps), &V_I1(pd));
161 case VT_DATE: return VarI1FromDate(V_DATE(ps), &V_I1(pd));
162 case VT_BOOL: return VarI1FromBool(V_BOOL(ps), &V_I1(pd));
163 case VT_CY: return VarI1FromCy(V_CY(ps), &V_I1(pd));
164 case VT_DECIMAL: return VarI1FromDec(&V_DECIMAL(ps), &V_I1(pd) );
165 case VT_DISPATCH: return VarI1FromDisp(V_DISPATCH(ps), lcid, &V_I1(pd) );
166 case VT_BSTR: return VarI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_I1(pd) );
168 break;
170 case VT_I2:
171 switch (vtFrom)
173 case VT_EMPTY: V_I2(pd) = 0; return S_OK;
174 case VT_I1: return VarI2FromI1(V_I1(ps), &V_I2(pd));
175 case VT_I4: return VarI2FromI4(V_I4(ps), &V_I2(pd));
176 case VT_UI1: return VarI2FromUI1(V_UI1(ps), &V_I2(pd));
177 case VT_UI2: V_I2(pd) = V_UI2(ps); return S_OK;
178 case VT_UI4: return VarI2FromUI4(V_UI4(ps), &V_I2(pd));
179 case VT_I8: return VarI2FromI8(V_I8(ps), &V_I2(pd));
180 case VT_UI8: return VarI2FromUI8(V_UI8(ps), &V_I2(pd));
181 case VT_R4: return VarI2FromR4(V_R4(ps), &V_I2(pd));
182 case VT_R8: return VarI2FromR8(V_R8(ps), &V_I2(pd));
183 case VT_DATE: return VarI2FromDate(V_DATE(ps), &V_I2(pd));
184 case VT_BOOL: return VarI2FromBool(V_BOOL(ps), &V_I2(pd));
185 case VT_CY: return VarI2FromCy(V_CY(ps), &V_I2(pd));
186 case VT_DECIMAL: return VarI2FromDec(&V_DECIMAL(ps), &V_I2(pd));
187 case VT_DISPATCH: return VarI2FromDisp(V_DISPATCH(ps), lcid, &V_I2(pd));
188 case VT_BSTR: return VarI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_I2(pd));
190 break;
192 case VT_I4:
193 switch (vtFrom)
195 case VT_EMPTY: V_I4(pd) = 0; return S_OK;
196 case VT_I1: return VarI4FromI1(V_I1(ps), &V_I4(pd));
197 case VT_I2: return VarI4FromI2(V_I2(ps), &V_I4(pd));
198 case VT_UI1: return VarI4FromUI1(V_UI1(ps), &V_I4(pd));
199 case VT_UI2: return VarI4FromUI2(V_UI2(ps), &V_I4(pd));
200 case VT_UI4: V_I4(pd) = V_UI4(ps); return S_OK;
201 case VT_I8: return VarI4FromI8(V_I8(ps), &V_I4(pd));
202 case VT_UI8: return VarI4FromUI8(V_UI8(ps), &V_I4(pd));
203 case VT_R4: return VarI4FromR4(V_R4(ps), &V_I4(pd));
204 case VT_R8: return VarI4FromR8(V_R8(ps), &V_I4(pd));
205 case VT_DATE: return VarI4FromDate(V_DATE(ps), &V_I4(pd));
206 case VT_BOOL: return VarI4FromBool(V_BOOL(ps), &V_I4(pd));
207 case VT_CY: return VarI4FromCy(V_CY(ps), &V_I4(pd));
208 case VT_DECIMAL: return VarI4FromDec(&V_DECIMAL(ps), &V_I4(pd));
209 case VT_DISPATCH: return VarI4FromDisp(V_DISPATCH(ps), lcid, &V_I4(pd));
210 case VT_BSTR: return VarI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_I4(pd));
212 break;
214 case VT_UI1:
215 switch (vtFrom)
217 case VT_EMPTY: V_UI1(pd) = 0; return S_OK;
218 case VT_I1: V_UI1(pd) = V_I1(ps); return S_OK;
219 case VT_I2: return VarUI1FromI2(V_I2(ps), &V_UI1(pd));
220 case VT_I4: return VarUI1FromI4(V_I4(ps), &V_UI1(pd));
221 case VT_UI2: return VarUI1FromUI2(V_UI2(ps), &V_UI1(pd));
222 case VT_UI4: return VarUI1FromUI4(V_UI4(ps), &V_UI1(pd));
223 case VT_I8: return VarUI1FromI8(V_I8(ps), &V_UI1(pd));
224 case VT_UI8: return VarUI1FromUI8(V_UI8(ps), &V_UI1(pd));
225 case VT_R4: return VarUI1FromR4(V_R4(ps), &V_UI1(pd));
226 case VT_R8: return VarUI1FromR8(V_R8(ps), &V_UI1(pd));
227 case VT_DATE: return VarUI1FromDate(V_DATE(ps), &V_UI1(pd));
228 case VT_BOOL: return VarUI1FromBool(V_BOOL(ps), &V_UI1(pd));
229 case VT_CY: return VarUI1FromCy(V_CY(ps), &V_UI1(pd));
230 case VT_DECIMAL: return VarUI1FromDec(&V_DECIMAL(ps), &V_UI1(pd));
231 case VT_DISPATCH: return VarUI1FromDisp(V_DISPATCH(ps), lcid, &V_UI1(pd));
232 case VT_BSTR: return VarUI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI1(pd));
234 break;
236 case VT_UI2:
237 switch (vtFrom)
239 case VT_EMPTY: V_UI2(pd) = 0; return S_OK;
240 case VT_I1: return VarUI2FromI1(V_I1(ps), &V_UI2(pd));
241 case VT_I2: V_UI2(pd) = V_I2(ps); return S_OK;
242 case VT_I4: return VarUI2FromI4(V_I4(ps), &V_UI2(pd));
243 case VT_UI1: return VarUI2FromUI1(V_UI1(ps), &V_UI2(pd));
244 case VT_UI4: return VarUI2FromUI4(V_UI4(ps), &V_UI2(pd));
245 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
246 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
247 case VT_R4: return VarUI2FromR4(V_R4(ps), &V_UI2(pd));
248 case VT_R8: return VarUI2FromR8(V_R8(ps), &V_UI2(pd));
249 case VT_DATE: return VarUI2FromDate(V_DATE(ps), &V_UI2(pd));
250 case VT_BOOL: return VarUI2FromBool(V_BOOL(ps), &V_UI2(pd));
251 case VT_CY: return VarUI2FromCy(V_CY(ps), &V_UI2(pd));
252 case VT_DECIMAL: return VarUI2FromDec(&V_DECIMAL(ps), &V_UI2(pd));
253 case VT_DISPATCH: return VarUI2FromDisp(V_DISPATCH(ps), lcid, &V_UI2(pd));
254 case VT_BSTR: return VarUI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI2(pd));
256 break;
258 case VT_UI4:
259 switch (vtFrom)
261 case VT_EMPTY: V_UI4(pd) = 0; return S_OK;
262 case VT_I1: return VarUI4FromI1(V_I1(ps), &V_UI4(pd));
263 case VT_I2: return VarUI4FromI2(V_I2(ps), &V_UI4(pd));
264 case VT_I4: V_UI4(pd) = V_I4(ps); return S_OK;
265 case VT_UI1: return VarUI4FromUI1(V_UI1(ps), &V_UI4(pd));
266 case VT_UI2: return VarUI4FromUI2(V_UI2(ps), &V_UI4(pd));
267 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
268 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
269 case VT_R4: return VarUI4FromR4(V_R4(ps), &V_UI4(pd));
270 case VT_R8: return VarUI4FromR8(V_R8(ps), &V_UI4(pd));
271 case VT_DATE: return VarUI4FromDate(V_DATE(ps), &V_UI4(pd));
272 case VT_BOOL: return VarUI4FromBool(V_BOOL(ps), &V_UI4(pd));
273 case VT_CY: return VarUI4FromCy(V_CY(ps), &V_UI4(pd));
274 case VT_DECIMAL: return VarUI4FromDec(&V_DECIMAL(ps), &V_UI4(pd));
275 case VT_DISPATCH: return VarUI4FromDisp(V_DISPATCH(ps), lcid, &V_UI4(pd));
276 case VT_BSTR: return VarUI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI4(pd));
278 break;
280 case VT_UI8:
281 switch (vtFrom)
283 case VT_EMPTY: V_UI8(pd) = 0; return S_OK;
284 case VT_I4: if (V_I4(ps) < 0) return DISP_E_OVERFLOW; V_UI8(pd) = V_I4(ps); return S_OK;
285 case VT_I1: return VarUI8FromI1(V_I1(ps), &V_UI8(pd));
286 case VT_I2: return VarUI8FromI2(V_I2(ps), &V_UI8(pd));
287 case VT_UI1: return VarUI8FromUI1(V_UI1(ps), &V_UI8(pd));
288 case VT_UI2: return VarUI8FromUI2(V_UI2(ps), &V_UI8(pd));
289 case VT_UI4: return VarUI8FromUI4(V_UI4(ps), &V_UI8(pd));
290 case VT_I8: V_UI8(pd) = V_I8(ps); return S_OK;
291 case VT_R4: return VarUI8FromR4(V_R4(ps), &V_UI8(pd));
292 case VT_R8: return VarUI8FromR8(V_R8(ps), &V_UI8(pd));
293 case VT_DATE: return VarUI8FromDate(V_DATE(ps), &V_UI8(pd));
294 case VT_BOOL: return VarUI8FromBool(V_BOOL(ps), &V_UI8(pd));
295 case VT_CY: return VarUI8FromCy(V_CY(ps), &V_UI8(pd));
296 case VT_DECIMAL: return VarUI8FromDec(&V_DECIMAL(ps), &V_UI8(pd));
297 case VT_DISPATCH: return VarUI8FromDisp(V_DISPATCH(ps), lcid, &V_UI8(pd));
298 case VT_BSTR: return VarUI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI8(pd));
300 break;
302 case VT_I8:
303 switch (vtFrom)
305 case VT_EMPTY: V_I8(pd) = 0; return S_OK;
306 case VT_I4: V_I8(pd) = V_I4(ps); return S_OK;
307 case VT_I1: return VarI8FromI1(V_I1(ps), &V_I8(pd));
308 case VT_I2: return VarI8FromI2(V_I2(ps), &V_I8(pd));
309 case VT_UI1: return VarI8FromUI1(V_UI1(ps), &V_I8(pd));
310 case VT_UI2: return VarI8FromUI2(V_UI2(ps), &V_I8(pd));
311 case VT_UI4: return VarI8FromUI4(V_UI4(ps), &V_I8(pd));
312 case VT_UI8: V_I8(pd) = V_UI8(ps); return S_OK;
313 case VT_R4: return VarI8FromR4(V_R4(ps), &V_I8(pd));
314 case VT_R8: return VarI8FromR8(V_R8(ps), &V_I8(pd));
315 case VT_DATE: return VarI8FromDate(V_DATE(ps), &V_I8(pd));
316 case VT_BOOL: return VarI8FromBool(V_BOOL(ps), &V_I8(pd));
317 case VT_CY: return VarI8FromCy(V_CY(ps), &V_I8(pd));
318 case VT_DECIMAL: return VarI8FromDec(&V_DECIMAL(ps), &V_I8(pd));
319 case VT_DISPATCH: return VarI8FromDisp(V_DISPATCH(ps), lcid, &V_I8(pd));
320 case VT_BSTR: return VarI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_I8(pd));
322 break;
324 case VT_R4:
325 switch (vtFrom)
327 case VT_EMPTY: V_R4(pd) = 0.0f; return S_OK;
328 case VT_I1: return VarR4FromI1(V_I1(ps), &V_R4(pd));
329 case VT_I2: return VarR4FromI2(V_I2(ps), &V_R4(pd));
330 case VT_I4: return VarR4FromI4(V_I4(ps), &V_R4(pd));
331 case VT_UI1: return VarR4FromUI1(V_UI1(ps), &V_R4(pd));
332 case VT_UI2: return VarR4FromUI2(V_UI2(ps), &V_R4(pd));
333 case VT_UI4: return VarR4FromUI4(V_UI4(ps), &V_R4(pd));
334 case VT_I8: return VarR4FromI8(V_I8(ps), &V_R4(pd));
335 case VT_UI8: return VarR4FromUI8(V_UI8(ps), &V_R4(pd));
336 case VT_R8: return VarR4FromR8(V_R8(ps), &V_R4(pd));
337 case VT_DATE: return VarR4FromDate(V_DATE(ps), &V_R4(pd));
338 case VT_BOOL: return VarR4FromBool(V_BOOL(ps), &V_R4(pd));
339 case VT_CY: return VarR4FromCy(V_CY(ps), &V_R4(pd));
340 case VT_DECIMAL: return VarR4FromDec(&V_DECIMAL(ps), &V_R4(pd));
341 case VT_DISPATCH: return VarR4FromDisp(V_DISPATCH(ps), lcid, &V_R4(pd));
342 case VT_BSTR: return VarR4FromStr(V_BSTR(ps), lcid, dwFlags, &V_R4(pd));
344 break;
346 case VT_R8:
347 switch (vtFrom)
349 case VT_EMPTY: V_R8(pd) = 0.0; return S_OK;
350 case VT_I1: return VarR8FromI1(V_I1(ps), &V_R8(pd));
351 case VT_I2: return VarR8FromI2(V_I2(ps), &V_R8(pd));
352 case VT_I4: return VarR8FromI4(V_I4(ps), &V_R8(pd));
353 case VT_UI1: return VarR8FromUI1(V_UI1(ps), &V_R8(pd));
354 case VT_UI2: return VarR8FromUI2(V_UI2(ps), &V_R8(pd));
355 case VT_UI4: return VarR8FromUI4(V_UI4(ps), &V_R8(pd));
356 case VT_I8: return VarR8FromI8(V_I8(ps), &V_R8(pd));
357 case VT_UI8: return VarR8FromUI8(V_UI8(ps), &V_R8(pd));
358 case VT_R4: return VarR8FromR4(V_R4(ps), &V_R8(pd));
359 case VT_DATE: return VarR8FromDate(V_DATE(ps), &V_R8(pd));
360 case VT_BOOL: return VarR8FromBool(V_BOOL(ps), &V_R8(pd));
361 case VT_CY: return VarR8FromCy(V_CY(ps), &V_R8(pd));
362 case VT_DECIMAL: return VarR8FromDec(&V_DECIMAL(ps), &V_R8(pd));
363 case VT_DISPATCH: return VarR8FromDisp(V_DISPATCH(ps), lcid, &V_R8(pd));
364 case VT_BSTR: return VarR8FromStr(V_BSTR(ps), lcid, dwFlags, &V_R8(pd));
366 break;
368 case VT_DATE:
369 switch (vtFrom)
371 case VT_EMPTY: V_DATE(pd) = 0.0; return S_OK;
372 case VT_I1: return VarDateFromI1(V_I1(ps), &V_DATE(pd));
373 case VT_I2: return VarDateFromI2(V_I2(ps), &V_DATE(pd));
374 case VT_I4: return VarDateFromI4(V_I4(ps), &V_DATE(pd));
375 case VT_UI1: return VarDateFromUI1(V_UI1(ps), &V_DATE(pd));
376 case VT_UI2: return VarDateFromUI2(V_UI2(ps), &V_DATE(pd));
377 case VT_UI4: return VarDateFromUI4(V_UI4(ps), &V_DATE(pd));
378 case VT_I8: return VarDateFromI8(V_I8(ps), &V_DATE(pd));
379 case VT_UI8: return VarDateFromUI8(V_UI8(ps), &V_DATE(pd));
380 case VT_R4: return VarDateFromR4(V_R4(ps), &V_DATE(pd));
381 case VT_R8: return VarDateFromR8(V_R8(ps), &V_DATE(pd));
382 case VT_BOOL: return VarDateFromBool(V_BOOL(ps), &V_DATE(pd));
383 case VT_CY: return VarDateFromCy(V_CY(ps), &V_DATE(pd));
384 case VT_DECIMAL: return VarDateFromDec(&V_DECIMAL(ps), &V_DATE(pd));
385 case VT_DISPATCH: return VarDateFromDisp(V_DISPATCH(ps), lcid, &V_DATE(pd));
386 case VT_BSTR: return VarDateFromStr(V_BSTR(ps), lcid, dwFlags, &V_DATE(pd));
388 break;
390 case VT_BOOL:
391 switch (vtFrom)
393 case VT_EMPTY: V_BOOL(pd) = 0; return S_OK;
394 case VT_I1: return VarBoolFromI1(V_I1(ps), &V_BOOL(pd));
395 case VT_I2: return VarBoolFromI2(V_I2(ps), &V_BOOL(pd));
396 case VT_I4: return VarBoolFromI4(V_I4(ps), &V_BOOL(pd));
397 case VT_UI1: return VarBoolFromUI1(V_UI1(ps), &V_BOOL(pd));
398 case VT_UI2: return VarBoolFromUI2(V_UI2(ps), &V_BOOL(pd));
399 case VT_UI4: return VarBoolFromUI4(V_UI4(ps), &V_BOOL(pd));
400 case VT_I8: return VarBoolFromI8(V_I8(ps), &V_BOOL(pd));
401 case VT_UI8: return VarBoolFromUI8(V_UI8(ps), &V_BOOL(pd));
402 case VT_R4: return VarBoolFromR4(V_R4(ps), &V_BOOL(pd));
403 case VT_R8: return VarBoolFromR8(V_R8(ps), &V_BOOL(pd));
404 case VT_DATE: return VarBoolFromDate(V_DATE(ps), &V_BOOL(pd));
405 case VT_CY: return VarBoolFromCy(V_CY(ps), &V_BOOL(pd));
406 case VT_DECIMAL: return VarBoolFromDec(&V_DECIMAL(ps), &V_BOOL(pd));
407 case VT_DISPATCH: return VarBoolFromDisp(V_DISPATCH(ps), lcid, &V_BOOL(pd));
408 case VT_BSTR: return VarBoolFromStr(V_BSTR(ps), lcid, dwFlags, &V_BOOL(pd));
410 break;
412 case VT_BSTR:
413 switch (vtFrom)
415 case VT_EMPTY:
416 V_BSTR(pd) = SysAllocStringLen(NULL, 0);
417 return V_BSTR(pd) ? S_OK : E_OUTOFMEMORY;
418 case VT_BOOL:
419 if (wFlags & (VARIANT_ALPHABOOL|VARIANT_LOCALBOOL))
420 return VarBstrFromBool(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
421 return VarBstrFromI2(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
422 case VT_I1: return VarBstrFromI1(V_I1(ps), lcid, dwFlags, &V_BSTR(pd));
423 case VT_I2: return VarBstrFromI2(V_I2(ps), lcid, dwFlags, &V_BSTR(pd));
424 case VT_I4: return VarBstrFromI4(V_I4(ps), lcid, dwFlags, &V_BSTR(pd));
425 case VT_UI1: return VarBstrFromUI1(V_UI1(ps), lcid, dwFlags, &V_BSTR(pd));
426 case VT_UI2: return VarBstrFromUI2(V_UI2(ps), lcid, dwFlags, &V_BSTR(pd));
427 case VT_UI4: return VarBstrFromUI4(V_UI4(ps), lcid, dwFlags, &V_BSTR(pd));
428 case VT_I8: return VarBstrFromI8(V_I8(ps), lcid, dwFlags, &V_BSTR(pd));
429 case VT_UI8: return VarBstrFromUI8(V_UI8(ps), lcid, dwFlags, &V_BSTR(pd));
430 case VT_R4: return VarBstrFromR4(V_R4(ps), lcid, dwFlags, &V_BSTR(pd));
431 case VT_R8: return VarBstrFromR8(V_R8(ps), lcid, dwFlags, &V_BSTR(pd));
432 case VT_DATE: return VarBstrFromDate(V_DATE(ps), lcid, dwFlags, &V_BSTR(pd));
433 case VT_CY: return VarBstrFromCy(V_CY(ps), lcid, dwFlags, &V_BSTR(pd));
434 case VT_DECIMAL: return VarBstrFromDec(&V_DECIMAL(ps), lcid, dwFlags, &V_BSTR(pd));
435 case VT_DISPATCH: return VarBstrFromDisp(V_DISPATCH(ps), lcid, dwFlags, &V_BSTR(pd));
437 break;
439 case VT_CY:
440 switch (vtFrom)
442 case VT_EMPTY: V_CY(pd).int64 = 0; return S_OK;
443 case VT_I1: return VarCyFromI1(V_I1(ps), &V_CY(pd));
444 case VT_I2: return VarCyFromI2(V_I2(ps), &V_CY(pd));
445 case VT_I4: return VarCyFromI4(V_I4(ps), &V_CY(pd));
446 case VT_UI1: return VarCyFromUI1(V_UI1(ps), &V_CY(pd));
447 case VT_UI2: return VarCyFromUI2(V_UI2(ps), &V_CY(pd));
448 case VT_UI4: return VarCyFromUI4(V_UI4(ps), &V_CY(pd));
449 case VT_I8: return VarCyFromI8(V_I8(ps), &V_CY(pd));
450 case VT_UI8: return VarCyFromUI8(V_UI8(ps), &V_CY(pd));
451 case VT_R4: return VarCyFromR4(V_R4(ps), &V_CY(pd));
452 case VT_R8: return VarCyFromR8(V_R8(ps), &V_CY(pd));
453 case VT_DATE: return VarCyFromDate(V_DATE(ps), &V_CY(pd));
454 case VT_BOOL: return VarCyFromBool(V_BOOL(ps), &V_CY(pd));
455 case VT_DECIMAL: return VarCyFromDec(&V_DECIMAL(ps), &V_CY(pd));
456 case VT_DISPATCH: return VarCyFromDisp(V_DISPATCH(ps), lcid, &V_CY(pd));
457 case VT_BSTR: return VarCyFromStr(V_BSTR(ps), lcid, dwFlags, &V_CY(pd));
459 break;
461 case VT_DECIMAL:
462 switch (vtFrom)
464 case VT_EMPTY:
465 case VT_BOOL:
466 DEC_SIGNSCALE(&V_DECIMAL(pd)) = SIGNSCALE(DECIMAL_POS,0);
467 DEC_HI32(&V_DECIMAL(pd)) = 0;
468 DEC_MID32(&V_DECIMAL(pd)) = 0;
469 /* VarDecFromBool() coerces to -1/0, ChangeTypeEx() coerces to 1/0.
470 * VT_NULL and VT_EMPTY always give a 0 value.
472 DEC_LO32(&V_DECIMAL(pd)) = vtFrom == VT_BOOL && V_BOOL(ps) ? 1 : 0;
473 return S_OK;
474 case VT_I1: return VarDecFromI1(V_I1(ps), &V_DECIMAL(pd));
475 case VT_I2: return VarDecFromI2(V_I2(ps), &V_DECIMAL(pd));
476 case VT_I4: return VarDecFromI4(V_I4(ps), &V_DECIMAL(pd));
477 case VT_UI1: return VarDecFromUI1(V_UI1(ps), &V_DECIMAL(pd));
478 case VT_UI2: return VarDecFromUI2(V_UI2(ps), &V_DECIMAL(pd));
479 case VT_UI4: return VarDecFromUI4(V_UI4(ps), &V_DECIMAL(pd));
480 case VT_I8: return VarDecFromI8(V_I8(ps), &V_DECIMAL(pd));
481 case VT_UI8: return VarDecFromUI8(V_UI8(ps), &V_DECIMAL(pd));
482 case VT_R4: return VarDecFromR4(V_R4(ps), &V_DECIMAL(pd));
483 case VT_R8: return VarDecFromR8(V_R8(ps), &V_DECIMAL(pd));
484 case VT_DATE: return VarDecFromDate(V_DATE(ps), &V_DECIMAL(pd));
485 case VT_CY: return VarDecFromCy(V_CY(ps), &V_DECIMAL(pd));
486 case VT_DISPATCH: return VarDecFromDisp(V_DISPATCH(ps), lcid, &V_DECIMAL(pd));
487 case VT_BSTR: return VarDecFromStr(V_BSTR(ps), lcid, dwFlags, &V_DECIMAL(pd));
489 break;
491 case VT_UNKNOWN:
492 switch (vtFrom)
494 case VT_DISPATCH:
495 if (V_DISPATCH(ps) == NULL)
496 V_UNKNOWN(pd) = NULL;
497 else
498 res = IDispatch_QueryInterface(V_DISPATCH(ps), &IID_IUnknown, (LPVOID*)&V_UNKNOWN(pd));
499 break;
501 break;
503 case VT_DISPATCH:
504 switch (vtFrom)
506 case VT_UNKNOWN:
507 if (V_UNKNOWN(ps) == NULL)
508 V_DISPATCH(pd) = NULL;
509 else
510 res = IUnknown_QueryInterface(V_UNKNOWN(ps), &IID_IDispatch, (LPVOID*)&V_DISPATCH(pd));
511 break;
513 break;
515 case VT_RECORD:
516 break;
518 return res;
521 /* Coerce to/from an array */
522 static inline HRESULT VARIANT_CoerceArray(VARIANTARG* pd, VARIANTARG* ps, VARTYPE vt)
524 if (vt == VT_BSTR && V_VT(ps) == (VT_ARRAY|VT_UI1))
525 return BstrFromVector(V_ARRAY(ps), &V_BSTR(pd));
527 if (V_VT(ps) == VT_BSTR && vt == (VT_ARRAY|VT_UI1))
528 return VectorFromBstr(V_BSTR(ps), &V_ARRAY(pd));
530 if (V_VT(ps) == vt)
531 return SafeArrayCopy(V_ARRAY(ps), &V_ARRAY(pd));
533 return DISP_E_TYPEMISMATCH;
536 /******************************************************************************
537 * Check if a variants type is valid.
539 static inline HRESULT VARIANT_ValidateType(VARTYPE vt)
541 VARTYPE vtExtra = vt & VT_EXTRA_TYPE;
543 vt &= VT_TYPEMASK;
545 if (!(vtExtra & (VT_VECTOR|VT_RESERVED)))
547 if (vt < VT_VOID || vt == VT_RECORD || vt == VT_CLSID)
549 if ((vtExtra & (VT_BYREF|VT_ARRAY)) && vt <= VT_NULL)
550 return DISP_E_BADVARTYPE;
551 if (vt != (VARTYPE)15)
552 return S_OK;
555 return DISP_E_BADVARTYPE;
558 /******************************************************************************
559 * VariantInit [OLEAUT32.8]
561 * Initialise a variant.
563 * PARAMS
564 * pVarg [O] Variant to initialise
566 * RETURNS
567 * Nothing.
569 * NOTES
570 * This function simply sets the type of the variant to VT_EMPTY. It does not
571 * free any existing value, use VariantClear() for that.
573 void WINAPI VariantInit(VARIANTARG* pVarg)
575 TRACE("(%p)\n", pVarg);
577 /* Win8.1 zeroes whole struct. Previous implementations don't set any other fields. */
578 V_VT(pVarg) = VT_EMPTY;
581 HRESULT VARIANT_ClearInd(VARIANTARG *pVarg)
583 HRESULT hres;
585 TRACE("(%s)\n", debugstr_variant(pVarg));
587 hres = VARIANT_ValidateType(V_VT(pVarg));
588 if (FAILED(hres))
589 return hres;
591 switch (V_VT(pVarg))
593 case VT_DISPATCH:
594 case VT_UNKNOWN:
595 if (V_UNKNOWN(pVarg))
596 IUnknown_Release(V_UNKNOWN(pVarg));
597 break;
598 case VT_UNKNOWN | VT_BYREF:
599 case VT_DISPATCH | VT_BYREF:
600 if(*V_UNKNOWNREF(pVarg))
601 IUnknown_Release(*V_UNKNOWNREF(pVarg));
602 break;
603 case VT_BSTR:
604 SysFreeString(V_BSTR(pVarg));
605 break;
606 case VT_BSTR | VT_BYREF:
607 SysFreeString(*V_BSTRREF(pVarg));
608 break;
609 case VT_VARIANT | VT_BYREF:
610 VariantClear(V_VARIANTREF(pVarg));
611 break;
612 case VT_RECORD:
613 case VT_RECORD | VT_BYREF:
615 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
616 if (pBr->pRecInfo)
618 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
619 IRecordInfo_Release(pBr->pRecInfo);
621 break;
623 default:
624 if (V_ISARRAY(pVarg) || (V_VT(pVarg) & ~VT_BYREF) == VT_SAFEARRAY)
626 if (V_ISBYREF(pVarg))
628 if (*V_ARRAYREF(pVarg))
629 hres = SafeArrayDestroy(*V_ARRAYREF(pVarg));
631 else if (V_ARRAY(pVarg))
632 hres = SafeArrayDestroy(V_ARRAY(pVarg));
634 break;
637 V_VT(pVarg) = VT_EMPTY;
638 return hres;
641 /******************************************************************************
642 * VariantClear [OLEAUT32.9]
644 * Clear a variant.
646 * PARAMS
647 * pVarg [I/O] Variant to clear
649 * RETURNS
650 * Success: S_OK. Any previous value in pVarg is freed and its type is set to VT_EMPTY.
651 * Failure: DISP_E_BADVARTYPE, if the variant is not a valid variant type.
653 HRESULT WINAPI VariantClear(VARIANTARG* pVarg)
655 HRESULT hres;
657 TRACE("(%s)\n", debugstr_variant(pVarg));
659 hres = VARIANT_ValidateType(V_VT(pVarg));
661 if (SUCCEEDED(hres))
663 if (!V_ISBYREF(pVarg))
665 if (V_ISARRAY(pVarg) || V_VT(pVarg) == VT_SAFEARRAY)
667 hres = SafeArrayDestroy(V_ARRAY(pVarg));
669 else if (V_VT(pVarg) == VT_BSTR)
671 SysFreeString(V_BSTR(pVarg));
673 else if (V_VT(pVarg) == VT_RECORD)
675 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
676 if (pBr->pRecInfo)
678 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
679 IRecordInfo_Release(pBr->pRecInfo);
682 else if (V_VT(pVarg) == VT_DISPATCH ||
683 V_VT(pVarg) == VT_UNKNOWN)
685 if (V_UNKNOWN(pVarg))
686 IUnknown_Release(V_UNKNOWN(pVarg));
689 V_VT(pVarg) = VT_EMPTY;
691 return hres;
694 /******************************************************************************
695 * Copy an IRecordInfo object contained in a variant.
697 static HRESULT VARIANT_CopyIRecordInfo(VARIANT *dest, VARIANT *src)
699 struct __tagBRECORD *dest_rec = &V_UNION(dest, brecVal);
700 struct __tagBRECORD *src_rec = &V_UNION(src, brecVal);
701 HRESULT hr = S_OK;
702 ULONG size;
704 if (!src_rec->pRecInfo)
706 if (src_rec->pvRecord) return E_INVALIDARG;
707 return S_OK;
710 hr = IRecordInfo_GetSize(src_rec->pRecInfo, &size);
711 if (FAILED(hr)) return hr;
713 /* This could look cleaner if only RecordCreate() was used, but native doesn't use it.
714 Memory should be allocated in a same way as RecordCreate() does, so RecordDestroy()
715 could free it later. */
716 dest_rec->pvRecord = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, size);
717 if (!dest_rec->pvRecord) return E_OUTOFMEMORY;
719 dest_rec->pRecInfo = src_rec->pRecInfo;
720 IRecordInfo_AddRef(src_rec->pRecInfo);
722 return IRecordInfo_RecordCopy(src_rec->pRecInfo, src_rec->pvRecord, dest_rec->pvRecord);
725 /******************************************************************************
726 * VariantCopy [OLEAUT32.10]
728 * Copy a variant.
730 * PARAMS
731 * pvargDest [O] Destination for copy
732 * pvargSrc [I] Source variant to copy
734 * RETURNS
735 * Success: S_OK. pvargDest contains a copy of pvargSrc.
736 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid type.
737 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
738 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
739 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
741 * NOTES
742 * - If pvargSrc == pvargDest, this function does nothing, and succeeds if
743 * pvargSrc is valid. Otherwise, pvargDest is always cleared using
744 * VariantClear() before pvargSrc is copied to it. If clearing pvargDest
745 * fails, so does this function.
746 * - VT_CLSID is a valid type type for pvargSrc, but not for pvargDest.
747 * - For by-value non-intrinsic types, a deep copy is made, i.e. The whole value
748 * is copied rather than just any pointers to it.
749 * - For by-value object types the object pointer is copied and the objects
750 * reference count increased using IUnknown_AddRef().
751 * - For all by-reference types, only the referencing pointer is copied.
753 HRESULT WINAPI VariantCopy(VARIANTARG* pvargDest, VARIANTARG* pvargSrc)
755 HRESULT hres = S_OK;
757 TRACE("(%s,%s)\n", debugstr_variant(pvargDest), debugstr_variant(pvargSrc));
759 if (V_TYPE(pvargSrc) == VT_CLSID || /* VT_CLSID is a special case */
760 FAILED(VARIANT_ValidateType(V_VT(pvargSrc))))
761 return DISP_E_BADVARTYPE;
763 if (pvargSrc != pvargDest &&
764 SUCCEEDED(hres = VariantClear(pvargDest)))
766 *pvargDest = *pvargSrc; /* Shallow copy the value */
768 if (!V_ISBYREF(pvargSrc))
770 switch (V_VT(pvargSrc))
772 case VT_BSTR:
773 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)V_BSTR(pvargSrc), SysStringByteLen(V_BSTR(pvargSrc)));
774 if (!V_BSTR(pvargDest))
775 hres = E_OUTOFMEMORY;
776 break;
777 case VT_RECORD:
778 hres = VARIANT_CopyIRecordInfo(pvargDest, pvargSrc);
779 break;
780 case VT_DISPATCH:
781 case VT_UNKNOWN:
782 V_UNKNOWN(pvargDest) = V_UNKNOWN(pvargSrc);
783 if (V_UNKNOWN(pvargSrc))
784 IUnknown_AddRef(V_UNKNOWN(pvargSrc));
785 break;
786 default:
787 if (V_ISARRAY(pvargSrc))
788 hres = SafeArrayCopy(V_ARRAY(pvargSrc), &V_ARRAY(pvargDest));
792 return hres;
795 /* Return the byte size of a variants data */
796 static inline size_t VARIANT_DataSize(const VARIANT* pv)
798 switch (V_TYPE(pv))
800 case VT_I1:
801 case VT_UI1: return sizeof(BYTE);
802 case VT_I2:
803 case VT_UI2: return sizeof(SHORT);
804 case VT_INT:
805 case VT_UINT:
806 case VT_I4:
807 case VT_UI4: return sizeof(LONG);
808 case VT_I8:
809 case VT_UI8: return sizeof(LONGLONG);
810 case VT_R4: return sizeof(float);
811 case VT_R8: return sizeof(double);
812 case VT_DATE: return sizeof(DATE);
813 case VT_BOOL: return sizeof(VARIANT_BOOL);
814 case VT_DISPATCH:
815 case VT_UNKNOWN:
816 case VT_BSTR: return sizeof(void*);
817 case VT_CY: return sizeof(CY);
818 case VT_ERROR: return sizeof(SCODE);
820 TRACE("Shouldn't be called for variant %s!\n", debugstr_variant(pv));
821 return 0;
824 /******************************************************************************
825 * VariantCopyInd [OLEAUT32.11]
827 * Copy a variant, dereferencing it if it is by-reference.
829 * PARAMS
830 * pvargDest [O] Destination for copy
831 * pvargSrc [I] Source variant to copy
833 * RETURNS
834 * Success: S_OK. pvargDest contains a copy of pvargSrc.
835 * Failure: An HRESULT error code indicating the error.
837 * NOTES
838 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid by-value type.
839 * E_INVALIDARG, if pvargSrc is an invalid by-reference type.
840 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
841 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
842 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
844 * NOTES
845 * - If pvargSrc is by-value, this function behaves exactly as VariantCopy().
846 * - If pvargSrc is by-reference, the value copied to pvargDest is the pointed-to
847 * value.
848 * - if pvargSrc == pvargDest, this function dereferences in place. Otherwise,
849 * pvargDest is always cleared using VariantClear() before pvargSrc is copied
850 * to it. If clearing pvargDest fails, so does this function.
852 HRESULT WINAPI VariantCopyInd(VARIANT* pvargDest, VARIANTARG* pvargSrc)
854 VARIANTARG vTmp, *pSrc = pvargSrc;
855 VARTYPE vt;
856 HRESULT hres = S_OK;
858 TRACE("(%s,%s)\n", debugstr_variant(pvargDest), debugstr_variant(pvargSrc));
860 if (!V_ISBYREF(pvargSrc))
861 return VariantCopy(pvargDest, pvargSrc);
863 /* Argument checking is more lax than VariantCopy()... */
864 vt = V_TYPE(pvargSrc);
865 if (V_ISARRAY(pvargSrc) || (V_VT(pvargSrc) == (VT_RECORD|VT_BYREF)) ||
866 (vt > VT_NULL && vt != (VARTYPE)15 && vt < VT_VOID &&
867 !(V_VT(pvargSrc) & (VT_VECTOR|VT_RESERVED))))
869 /* OK */
871 else
872 return E_INVALIDARG; /* ...And the return value for invalid types differs too */
874 if (pvargSrc == pvargDest)
876 /* In place copy. Use a shallow copy of pvargSrc & init pvargDest.
877 * This avoids an expensive VariantCopy() call - e.g. SafeArrayCopy().
879 vTmp = *pvargSrc;
880 pSrc = &vTmp;
881 V_VT(pvargDest) = VT_EMPTY;
883 else
885 /* Copy into another variant. Free the variant in pvargDest */
886 if (FAILED(hres = VariantClear(pvargDest)))
888 TRACE("VariantClear() of destination failed\n");
889 return hres;
893 if (V_ISARRAY(pSrc))
895 /* Native doesn't check that *V_ARRAYREF(pSrc) is valid */
896 hres = SafeArrayCopy(*V_ARRAYREF(pSrc), &V_ARRAY(pvargDest));
898 else if (V_VT(pSrc) == (VT_BSTR|VT_BYREF))
900 /* Native doesn't check that *V_BSTRREF(pSrc) is valid */
901 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)*V_BSTRREF(pSrc), SysStringByteLen(*V_BSTRREF(pSrc)));
903 else if (V_VT(pSrc) == (VT_RECORD|VT_BYREF))
905 hres = VARIANT_CopyIRecordInfo(pvargDest, pvargSrc);
907 else if (V_VT(pSrc) == (VT_DISPATCH|VT_BYREF) ||
908 V_VT(pSrc) == (VT_UNKNOWN|VT_BYREF))
910 /* Native doesn't check that *V_UNKNOWNREF(pSrc) is valid */
911 V_UNKNOWN(pvargDest) = *V_UNKNOWNREF(pSrc);
912 if (*V_UNKNOWNREF(pSrc))
913 IUnknown_AddRef(*V_UNKNOWNREF(pSrc));
915 else if (V_VT(pSrc) == (VT_VARIANT|VT_BYREF))
917 /* Native doesn't check that *V_VARIANTREF(pSrc) is valid */
918 if (V_VT(V_VARIANTREF(pSrc)) == (VT_VARIANT|VT_BYREF))
919 hres = E_INVALIDARG; /* Don't dereference more than one level */
920 else
921 hres = VariantCopyInd(pvargDest, V_VARIANTREF(pSrc));
923 /* Use the dereferenced variants type value, not VT_VARIANT */
924 goto VariantCopyInd_Return;
926 else if (V_VT(pSrc) == (VT_DECIMAL|VT_BYREF))
928 memcpy(&DEC_SCALE(&V_DECIMAL(pvargDest)), &DEC_SCALE(V_DECIMALREF(pSrc)),
929 sizeof(DECIMAL) - sizeof(USHORT));
931 else
933 /* Copy the pointed to data into this variant */
934 memcpy(&V_BYREF(pvargDest), V_BYREF(pSrc), VARIANT_DataSize(pSrc));
937 V_VT(pvargDest) = V_VT(pSrc) & ~VT_BYREF;
939 VariantCopyInd_Return:
941 if (pSrc != pvargSrc)
942 VariantClear(pSrc);
944 TRACE("returning 0x%08x, %s\n", hres, debugstr_variant(pvargDest));
945 return hres;
948 /******************************************************************************
949 * VariantChangeType [OLEAUT32.12]
951 * Change the type of a variant.
953 * PARAMS
954 * pvargDest [O] Destination for the converted variant
955 * pvargSrc [O] Source variant to change the type of
956 * wFlags [I] VARIANT_ flags from "oleauto.h"
957 * vt [I] Variant type to change pvargSrc into
959 * RETURNS
960 * Success: S_OK. pvargDest contains the converted value.
961 * Failure: An HRESULT error code describing the failure.
963 * NOTES
964 * The LCID used for the conversion is LOCALE_USER_DEFAULT.
965 * See VariantChangeTypeEx.
967 HRESULT WINAPI VariantChangeType(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
968 USHORT wFlags, VARTYPE vt)
970 return VariantChangeTypeEx( pvargDest, pvargSrc, LOCALE_USER_DEFAULT, wFlags, vt );
973 /******************************************************************************
974 * VariantChangeTypeEx [OLEAUT32.147]
976 * Change the type of a variant.
978 * PARAMS
979 * pvargDest [O] Destination for the converted variant
980 * pvargSrc [O] Source variant to change the type of
981 * lcid [I] LCID for the conversion
982 * wFlags [I] VARIANT_ flags from "oleauto.h"
983 * vt [I] Variant type to change pvargSrc into
985 * RETURNS
986 * Success: S_OK. pvargDest contains the converted value.
987 * Failure: An HRESULT error code describing the failure.
989 * NOTES
990 * pvargDest and pvargSrc can point to the same variant to perform an in-place
991 * conversion. If the conversion is successful, pvargSrc will be freed.
993 HRESULT WINAPI VariantChangeTypeEx(VARIANTARG* pvargDest, VARIANTARG* pvargSrc,
994 LCID lcid, USHORT wFlags, VARTYPE vt)
996 HRESULT res = S_OK;
998 TRACE("(%s,%s,0x%08x,0x%04x,%s)\n", debugstr_variant(pvargDest),
999 debugstr_variant(pvargSrc), lcid, wFlags, debugstr_vt(vt));
1001 if (vt == VT_CLSID)
1002 res = DISP_E_BADVARTYPE;
1003 else
1005 res = VARIANT_ValidateType(V_VT(pvargSrc));
1007 if (SUCCEEDED(res))
1009 res = VARIANT_ValidateType(vt);
1011 if (SUCCEEDED(res))
1013 VARIANTARG vTmp, vSrcDeref;
1015 if(V_ISBYREF(pvargSrc) && !V_BYREF(pvargSrc))
1016 res = DISP_E_TYPEMISMATCH;
1017 else
1019 V_VT(&vTmp) = VT_EMPTY;
1020 V_VT(&vSrcDeref) = VT_EMPTY;
1021 VariantClear(&vTmp);
1022 VariantClear(&vSrcDeref);
1025 if (SUCCEEDED(res))
1027 res = VariantCopyInd(&vSrcDeref, pvargSrc);
1028 if (SUCCEEDED(res))
1030 if (V_ISARRAY(&vSrcDeref) || (vt & VT_ARRAY))
1031 res = VARIANT_CoerceArray(&vTmp, &vSrcDeref, vt);
1032 else
1033 res = VARIANT_Coerce(&vTmp, lcid, wFlags, &vSrcDeref, vt);
1035 if (SUCCEEDED(res)) {
1036 V_VT(&vTmp) = vt;
1037 res = VariantCopy(pvargDest, &vTmp);
1039 VariantClear(&vTmp);
1040 VariantClear(&vSrcDeref);
1047 TRACE("returning 0x%08x, %s\n", res, debugstr_variant(pvargDest));
1048 return res;
1051 /* Date Conversions */
1053 #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
1055 /* Convert a VT_DATE value to a Julian Date */
1056 static inline int VARIANT_JulianFromDate(int dateIn)
1058 int julianDays = dateIn;
1060 julianDays -= DATE_MIN; /* Convert to + days from 1 Jan 100 AD */
1061 julianDays += 1757585; /* Convert to + days from 23 Nov 4713 BC (Julian) */
1062 return julianDays;
1065 /* Convert a Julian Date to a VT_DATE value */
1066 static inline int VARIANT_DateFromJulian(int dateIn)
1068 int julianDays = dateIn;
1070 julianDays -= 1757585; /* Convert to + days from 1 Jan 100 AD */
1071 julianDays += DATE_MIN; /* Convert to +/- days from 1 Jan 1899 AD */
1072 return julianDays;
1075 /* Convert a Julian date to Day/Month/Year - from PostgreSQL */
1076 static inline void VARIANT_DMYFromJulian(int jd, USHORT *year, USHORT *month, USHORT *day)
1078 int j, i, l, n;
1080 l = jd + 68569;
1081 n = l * 4 / 146097;
1082 l -= (n * 146097 + 3) / 4;
1083 i = (4000 * (l + 1)) / 1461001;
1084 l += 31 - (i * 1461) / 4;
1085 j = (l * 80) / 2447;
1086 *day = l - (j * 2447) / 80;
1087 l = j / 11;
1088 *month = (j + 2) - (12 * l);
1089 *year = 100 * (n - 49) + i + l;
1092 /* Convert Day/Month/Year to a Julian date - from PostgreSQL */
1093 static inline double VARIANT_JulianFromDMY(USHORT year, USHORT month, USHORT day)
1095 int m12 = (month - 14) / 12;
1097 return ((1461 * (year + 4800 + m12)) / 4 + (367 * (month - 2 - 12 * m12)) / 12 -
1098 (3 * ((year + 4900 + m12) / 100)) / 4 + day - 32075);
1101 /* Macros for accessing DOS format date/time fields */
1102 #define DOS_YEAR(x) (1980 + (x >> 9))
1103 #define DOS_MONTH(x) ((x >> 5) & 0xf)
1104 #define DOS_DAY(x) (x & 0x1f)
1105 #define DOS_HOUR(x) (x >> 11)
1106 #define DOS_MINUTE(x) ((x >> 5) & 0x3f)
1107 #define DOS_SECOND(x) ((x & 0x1f) << 1)
1108 /* Create a DOS format date/time */
1109 #define DOS_DATE(d,m,y) (d | (m << 5) | ((y-1980) << 9))
1110 #define DOS_TIME(h,m,s) ((s >> 1) | (m << 5) | (h << 11))
1112 /* Roll a date forwards or backwards to correct it */
1113 static HRESULT VARIANT_RollUdate(UDATE *lpUd)
1115 static const BYTE days[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
1116 short iYear, iMonth, iDay, iHour, iMinute, iSecond;
1118 /* interpret values signed */
1119 iYear = lpUd->st.wYear;
1120 iMonth = lpUd->st.wMonth;
1121 iDay = lpUd->st.wDay;
1122 iHour = lpUd->st.wHour;
1123 iMinute = lpUd->st.wMinute;
1124 iSecond = lpUd->st.wSecond;
1126 TRACE("Raw date: %d/%d/%d %d:%d:%d\n", iDay, iMonth,
1127 iYear, iHour, iMinute, iSecond);
1129 if (iYear > 9999 || iYear < -9999)
1130 return E_INVALIDARG; /* Invalid value */
1131 /* Year 0 to 29 are treated as 2000 + year */
1132 if (iYear >= 0 && iYear < 30)
1133 iYear += 2000;
1134 /* Remaining years < 100 are treated as 1900 + year */
1135 else if (iYear >= 30 && iYear < 100)
1136 iYear += 1900;
1138 iMinute += iSecond / 60;
1139 iSecond = iSecond % 60;
1140 iHour += iMinute / 60;
1141 iMinute = iMinute % 60;
1142 iDay += iHour / 24;
1143 iHour = iHour % 24;
1144 iYear += iMonth / 12;
1145 iMonth = iMonth % 12;
1146 if (iMonth<=0) {iMonth+=12; iYear--;}
1147 while (iDay > days[iMonth])
1149 if (iMonth == 2 && IsLeapYear(iYear))
1150 iDay -= 29;
1151 else
1152 iDay -= days[iMonth];
1153 iMonth++;
1154 iYear += iMonth / 12;
1155 iMonth = iMonth % 12;
1157 while (iDay <= 0)
1159 iMonth--;
1160 if (iMonth<=0) {iMonth+=12; iYear--;}
1161 if (iMonth == 2 && IsLeapYear(iYear))
1162 iDay += 29;
1163 else
1164 iDay += days[iMonth];
1167 if (iSecond<0){iSecond+=60; iMinute--;}
1168 if (iMinute<0){iMinute+=60; iHour--;}
1169 if (iHour<0) {iHour+=24; iDay--;}
1170 if (iYear<=0) iYear+=2000;
1172 lpUd->st.wYear = iYear;
1173 lpUd->st.wMonth = iMonth;
1174 lpUd->st.wDay = iDay;
1175 lpUd->st.wHour = iHour;
1176 lpUd->st.wMinute = iMinute;
1177 lpUd->st.wSecond = iSecond;
1179 TRACE("Rolled date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth,
1180 lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond);
1181 return S_OK;
1184 /**********************************************************************
1185 * DosDateTimeToVariantTime [OLEAUT32.14]
1187 * Convert a Dos format date and time into variant VT_DATE format.
1189 * PARAMS
1190 * wDosDate [I] Dos format date
1191 * wDosTime [I] Dos format time
1192 * pDateOut [O] Destination for VT_DATE format
1194 * RETURNS
1195 * Success: TRUE. pDateOut contains the converted time.
1196 * Failure: FALSE, if wDosDate or wDosTime are invalid (see notes).
1198 * NOTES
1199 * - Dos format dates can only hold dates from 1-Jan-1980 to 31-Dec-2099.
1200 * - Dos format times are accurate to only 2 second precision.
1201 * - The format of a Dos Date is:
1202 *| Bits Values Meaning
1203 *| ---- ------ -------
1204 *| 0-4 1-31 Day of the week. 0 rolls back one day. A value greater than
1205 *| the days in the month rolls forward the extra days.
1206 *| 5-8 1-12 Month of the year. 0 rolls back to December of the previous
1207 *| year. 13-15 are invalid.
1208 *| 9-15 0-119 Year based from 1980 (Max 2099). 120-127 are invalid.
1209 * - The format of a Dos Time is:
1210 *| Bits Values Meaning
1211 *| ---- ------ -------
1212 *| 0-4 0-29 Seconds/2. 30 and 31 are invalid.
1213 *| 5-10 0-59 Minutes. 60-63 are invalid.
1214 *| 11-15 0-23 Hours (24 hour clock). 24-32 are invalid.
1216 INT WINAPI DosDateTimeToVariantTime(USHORT wDosDate, USHORT wDosTime,
1217 double *pDateOut)
1219 UDATE ud;
1221 TRACE("(0x%x(%d/%d/%d),0x%x(%d:%d:%d),%p)\n",
1222 wDosDate, DOS_YEAR(wDosDate), DOS_MONTH(wDosDate), DOS_DAY(wDosDate),
1223 wDosTime, DOS_HOUR(wDosTime), DOS_MINUTE(wDosTime), DOS_SECOND(wDosTime),
1224 pDateOut);
1226 ud.st.wYear = DOS_YEAR(wDosDate);
1227 ud.st.wMonth = DOS_MONTH(wDosDate);
1228 if (ud.st.wYear > 2099 || ud.st.wMonth > 12)
1229 return FALSE;
1230 ud.st.wDay = DOS_DAY(wDosDate);
1231 ud.st.wHour = DOS_HOUR(wDosTime);
1232 ud.st.wMinute = DOS_MINUTE(wDosTime);
1233 ud.st.wSecond = DOS_SECOND(wDosTime);
1234 ud.st.wDayOfWeek = ud.st.wMilliseconds = 0;
1235 if (ud.st.wHour > 23 || ud.st.wMinute > 59 || ud.st.wSecond > 59)
1236 return FALSE; /* Invalid values in Dos*/
1238 return VarDateFromUdate(&ud, 0, pDateOut) == S_OK;
1241 /**********************************************************************
1242 * VariantTimeToDosDateTime [OLEAUT32.13]
1244 * Convert a variant format date into a Dos format date and time.
1246 * dateIn [I] VT_DATE time format
1247 * pwDosDate [O] Destination for Dos format date
1248 * pwDosTime [O] Destination for Dos format time
1250 * RETURNS
1251 * Success: TRUE. pwDosDate and pwDosTime contains the converted values.
1252 * Failure: FALSE, if dateIn cannot be represented in Dos format.
1254 * NOTES
1255 * See DosDateTimeToVariantTime() for Dos format details and bugs.
1257 INT WINAPI VariantTimeToDosDateTime(double dateIn, USHORT *pwDosDate, USHORT *pwDosTime)
1259 UDATE ud;
1261 TRACE("(%g,%p,%p)\n", dateIn, pwDosDate, pwDosTime);
1263 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1264 return FALSE;
1266 if (ud.st.wYear < 1980 || ud.st.wYear > 2099)
1267 return FALSE;
1269 *pwDosDate = DOS_DATE(ud.st.wDay, ud.st.wMonth, ud.st.wYear);
1270 *pwDosTime = DOS_TIME(ud.st.wHour, ud.st.wMinute, ud.st.wSecond);
1272 TRACE("Returning 0x%x(%d/%d/%d), 0x%x(%d:%d:%d)\n",
1273 *pwDosDate, DOS_YEAR(*pwDosDate), DOS_MONTH(*pwDosDate), DOS_DAY(*pwDosDate),
1274 *pwDosTime, DOS_HOUR(*pwDosTime), DOS_MINUTE(*pwDosTime), DOS_SECOND(*pwDosTime));
1275 return TRUE;
1278 /***********************************************************************
1279 * SystemTimeToVariantTime [OLEAUT32.184]
1281 * Convert a System format date and time into variant VT_DATE format.
1283 * PARAMS
1284 * lpSt [I] System format date and time
1285 * pDateOut [O] Destination for VT_DATE format date
1287 * RETURNS
1288 * Success: TRUE. *pDateOut contains the converted value.
1289 * Failure: FALSE, if lpSt cannot be represented in VT_DATE format.
1291 INT WINAPI SystemTimeToVariantTime(LPSYSTEMTIME lpSt, double *pDateOut)
1293 UDATE ud;
1295 TRACE("(%p->%d/%d/%d %d:%d:%d,%p)\n", lpSt, lpSt->wDay, lpSt->wMonth,
1296 lpSt->wYear, lpSt->wHour, lpSt->wMinute, lpSt->wSecond, pDateOut);
1298 if (lpSt->wMonth > 12)
1299 return FALSE;
1300 if (lpSt->wDay > 31)
1301 return FALSE;
1302 if ((short)lpSt->wYear < 0)
1303 return FALSE;
1305 ud.st = *lpSt;
1306 return VarDateFromUdate(&ud, 0, pDateOut) == S_OK;
1309 /***********************************************************************
1310 * VariantTimeToSystemTime [OLEAUT32.185]
1312 * Convert a variant VT_DATE into a System format date and time.
1314 * PARAMS
1315 * datein [I] Variant VT_DATE format date
1316 * lpSt [O] Destination for System format date and time
1318 * RETURNS
1319 * Success: TRUE. *lpSt contains the converted value.
1320 * Failure: FALSE, if dateIn is too large or small.
1322 INT WINAPI VariantTimeToSystemTime(double dateIn, LPSYSTEMTIME lpSt)
1324 UDATE ud;
1326 TRACE("(%g,%p)\n", dateIn, lpSt);
1328 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1329 return FALSE;
1331 *lpSt = ud.st;
1332 return TRUE;
1335 /***********************************************************************
1336 * VarDateFromUdateEx [OLEAUT32.319]
1338 * Convert an unpacked format date and time to a variant VT_DATE.
1340 * PARAMS
1341 * pUdateIn [I] Unpacked format date and time to convert
1342 * lcid [I] Locale identifier for the conversion
1343 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1344 * pDateOut [O] Destination for variant VT_DATE.
1346 * RETURNS
1347 * Success: S_OK. *pDateOut contains the converted value.
1348 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1350 HRESULT WINAPI VarDateFromUdateEx(UDATE *pUdateIn, LCID lcid, ULONG dwFlags, DATE *pDateOut)
1352 UDATE ud;
1353 double dateVal = 0;
1355 TRACE("(%p->%d/%d/%d %d:%d:%d:%d %d %d,0x%08x,0x%08x,%p)\n", pUdateIn,
1356 pUdateIn->st.wMonth, pUdateIn->st.wDay, pUdateIn->st.wYear,
1357 pUdateIn->st.wHour, pUdateIn->st.wMinute, pUdateIn->st.wSecond,
1358 pUdateIn->st.wMilliseconds, pUdateIn->st.wDayOfWeek,
1359 pUdateIn->wDayOfYear, lcid, dwFlags, pDateOut);
1361 if (lcid != MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT))
1362 FIXME("lcid possibly not handled, treating as en-us\n");
1363 if (dwFlags & ~(VAR_TIMEVALUEONLY|VAR_DATEVALUEONLY))
1364 FIXME("unsupported flags: %x\n", dwFlags);
1366 ud = *pUdateIn;
1368 if (dwFlags & VAR_VALIDDATE)
1369 WARN("Ignoring VAR_VALIDDATE\n");
1371 if (FAILED(VARIANT_RollUdate(&ud)))
1372 return E_INVALIDARG;
1374 /* Date */
1375 if (!(dwFlags & VAR_TIMEVALUEONLY))
1376 dateVal = VARIANT_DateFromJulian(VARIANT_JulianFromDMY(ud.st.wYear, ud.st.wMonth, ud.st.wDay));
1378 if ((dwFlags & VAR_TIMEVALUEONLY) || !(dwFlags & VAR_DATEVALUEONLY))
1380 double dateSign = (dateVal < 0.0) ? -1.0 : 1.0;
1382 /* Time */
1383 dateVal += ud.st.wHour / 24.0 * dateSign;
1384 dateVal += ud.st.wMinute / 1440.0 * dateSign;
1385 dateVal += ud.st.wSecond / 86400.0 * dateSign;
1388 TRACE("Returning %g\n", dateVal);
1389 *pDateOut = dateVal;
1390 return S_OK;
1393 /***********************************************************************
1394 * VarDateFromUdate [OLEAUT32.330]
1396 * Convert an unpacked format date and time to a variant VT_DATE.
1398 * PARAMS
1399 * pUdateIn [I] Unpacked format date and time to convert
1400 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1401 * pDateOut [O] Destination for variant VT_DATE.
1403 * RETURNS
1404 * Success: S_OK. *pDateOut contains the converted value.
1405 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1407 * NOTES
1408 * This function uses the United States English locale for the conversion. Use
1409 * VarDateFromUdateEx() for alternate locales.
1411 HRESULT WINAPI VarDateFromUdate(UDATE *pUdateIn, ULONG dwFlags, DATE *pDateOut)
1413 LCID lcid = MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT);
1415 return VarDateFromUdateEx(pUdateIn, lcid, dwFlags, pDateOut);
1418 /***********************************************************************
1419 * VarUdateFromDate [OLEAUT32.331]
1421 * Convert a variant VT_DATE into an unpacked format date and time.
1423 * PARAMS
1424 * datein [I] Variant VT_DATE format date
1425 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1426 * lpUdate [O] Destination for unpacked format date and time
1428 * RETURNS
1429 * Success: S_OK. *lpUdate contains the converted value.
1430 * Failure: E_INVALIDARG, if dateIn is too large or small.
1432 HRESULT WINAPI VarUdateFromDate(DATE dateIn, ULONG dwFlags, UDATE *lpUdate)
1434 /* Cumulative totals of days per month */
1435 static const USHORT cumulativeDays[] =
1437 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
1439 double datePart, timePart;
1440 int julianDays;
1442 TRACE("(%g,0x%08x,%p)\n", dateIn, dwFlags, lpUdate);
1444 if (dateIn <= (DATE_MIN - 1.0) || dateIn >= (DATE_MAX + 1.0))
1445 return E_INVALIDARG;
1447 datePart = dateIn < 0.0 ? ceil(dateIn) : floor(dateIn);
1448 /* Compensate for int truncation (always downwards) */
1449 timePart = fabs(dateIn - datePart) + 0.00000000001;
1450 if (timePart >= 1.0)
1451 timePart -= 0.00000000001;
1453 /* Date */
1454 julianDays = VARIANT_JulianFromDate(dateIn);
1455 VARIANT_DMYFromJulian(julianDays, &lpUdate->st.wYear, &lpUdate->st.wMonth,
1456 &lpUdate->st.wDay);
1458 datePart = (datePart + 1.5) / 7.0;
1459 lpUdate->st.wDayOfWeek = (datePart - floor(datePart)) * 7;
1460 if (lpUdate->st.wDayOfWeek == 0)
1461 lpUdate->st.wDayOfWeek = 5;
1462 else if (lpUdate->st.wDayOfWeek == 1)
1463 lpUdate->st.wDayOfWeek = 6;
1464 else
1465 lpUdate->st.wDayOfWeek -= 2;
1467 if (lpUdate->st.wMonth > 2 && IsLeapYear(lpUdate->st.wYear))
1468 lpUdate->wDayOfYear = 1; /* After February, in a leap year */
1469 else
1470 lpUdate->wDayOfYear = 0;
1472 lpUdate->wDayOfYear += cumulativeDays[lpUdate->st.wMonth];
1473 lpUdate->wDayOfYear += lpUdate->st.wDay;
1475 /* Time */
1476 timePart *= 24.0;
1477 lpUdate->st.wHour = timePart;
1478 timePart -= lpUdate->st.wHour;
1479 timePart *= 60.0;
1480 lpUdate->st.wMinute = timePart;
1481 timePart -= lpUdate->st.wMinute;
1482 timePart *= 60.0;
1483 lpUdate->st.wSecond = timePart;
1484 timePart -= lpUdate->st.wSecond;
1485 lpUdate->st.wMilliseconds = 0;
1486 if (timePart > 0.5)
1488 /* Round the milliseconds, adjusting the time/date forward if needed */
1489 if (lpUdate->st.wSecond < 59)
1490 lpUdate->st.wSecond++;
1491 else
1493 lpUdate->st.wSecond = 0;
1494 if (lpUdate->st.wMinute < 59)
1495 lpUdate->st.wMinute++;
1496 else
1498 lpUdate->st.wMinute = 0;
1499 if (lpUdate->st.wHour < 23)
1500 lpUdate->st.wHour++;
1501 else
1503 lpUdate->st.wHour = 0;
1504 /* Roll over a whole day */
1505 if (++lpUdate->st.wDay > 28)
1506 VARIANT_RollUdate(lpUdate);
1511 return S_OK;
1514 #define GET_NUMBER_TEXT(fld,name) \
1515 buff[0] = 0; \
1516 if (!GetLocaleInfoW(lcid, lctype|fld, buff, 2)) \
1517 WARN("buffer too small for " #fld "\n"); \
1518 else \
1519 if (buff[0]) lpChars->name = buff[0]; \
1520 TRACE("lcid 0x%x, " #name "=%d '%c'\n", lcid, lpChars->name, lpChars->name)
1522 /* Get the valid number characters for an lcid */
1523 static void VARIANT_GetLocalisedNumberChars(VARIANT_NUMBER_CHARS *lpChars, LCID lcid, DWORD dwFlags)
1525 static const VARIANT_NUMBER_CHARS defaultChars = { '-','+','.',',','$',0,'.',',' };
1526 static CRITICAL_SECTION csLastChars = { NULL, -1, 0, 0, 0, 0 };
1527 static VARIANT_NUMBER_CHARS lastChars;
1528 static LCID lastLcid = -1;
1529 static DWORD lastFlags = 0;
1530 LCTYPE lctype = dwFlags & LOCALE_NOUSEROVERRIDE;
1531 WCHAR buff[4];
1533 /* To make caching thread-safe, a critical section is needed */
1534 EnterCriticalSection(&csLastChars);
1536 /* Asking for default locale entries is very expensive: It is a registry
1537 server call. So cache one locally, as Microsoft does it too */
1538 if(lcid == lastLcid && dwFlags == lastFlags)
1540 memcpy(lpChars, &lastChars, sizeof(defaultChars));
1541 LeaveCriticalSection(&csLastChars);
1542 return;
1545 memcpy(lpChars, &defaultChars, sizeof(defaultChars));
1546 GET_NUMBER_TEXT(LOCALE_SNEGATIVESIGN, cNegativeSymbol);
1547 GET_NUMBER_TEXT(LOCALE_SPOSITIVESIGN, cPositiveSymbol);
1548 GET_NUMBER_TEXT(LOCALE_SDECIMAL, cDecimalPoint);
1549 GET_NUMBER_TEXT(LOCALE_STHOUSAND, cDigitSeparator);
1550 GET_NUMBER_TEXT(LOCALE_SMONDECIMALSEP, cCurrencyDecimalPoint);
1551 GET_NUMBER_TEXT(LOCALE_SMONTHOUSANDSEP, cCurrencyDigitSeparator);
1553 /* Local currency symbols are often 2 characters */
1554 lpChars->cCurrencyLocal2 = '\0';
1555 switch(GetLocaleInfoW(lcid, lctype|LOCALE_SCURRENCY, buff, sizeof(buff)/sizeof(WCHAR)))
1557 case 3: lpChars->cCurrencyLocal2 = buff[1]; /* Fall through */
1558 case 2: lpChars->cCurrencyLocal = buff[0];
1559 break;
1560 default: WARN("buffer too small for LOCALE_SCURRENCY\n");
1562 TRACE("lcid 0x%x, cCurrencyLocal =%d,%d '%c','%c'\n", lcid, lpChars->cCurrencyLocal,
1563 lpChars->cCurrencyLocal2, lpChars->cCurrencyLocal, lpChars->cCurrencyLocal2);
1565 memcpy(&lastChars, lpChars, sizeof(defaultChars));
1566 lastLcid = lcid;
1567 lastFlags = dwFlags;
1568 LeaveCriticalSection(&csLastChars);
1571 /* Number Parsing States */
1572 #define B_PROCESSING_EXPONENT 0x1
1573 #define B_NEGATIVE_EXPONENT 0x2
1574 #define B_EXPONENT_START 0x4
1575 #define B_INEXACT_ZEROS 0x8
1576 #define B_LEADING_ZERO 0x10
1577 #define B_PROCESSING_HEX 0x20
1578 #define B_PROCESSING_OCT 0x40
1580 /**********************************************************************
1581 * VarParseNumFromStr [OLEAUT32.46]
1583 * Parse a string containing a number into a NUMPARSE structure.
1585 * PARAMS
1586 * lpszStr [I] String to parse number from
1587 * lcid [I] Locale Id for the conversion
1588 * dwFlags [I] 0, or LOCALE_NOUSEROVERRIDE to use system default number chars
1589 * pNumprs [I/O] Destination for parsed number
1590 * rgbDig [O] Destination for digits read in
1592 * RETURNS
1593 * Success: S_OK. pNumprs and rgbDig contain the parsed representation of
1594 * the number.
1595 * Failure: E_INVALIDARG, if any parameter is invalid.
1596 * DISP_E_TYPEMISMATCH, if the string is not a number or is formatted
1597 * incorrectly.
1598 * DISP_E_OVERFLOW, if rgbDig is too small to hold the number.
1600 * NOTES
1601 * pNumprs must have the following fields set:
1602 * cDig: Set to the size of rgbDig.
1603 * dwInFlags: Set to the allowable syntax of the number using NUMPRS_ flags
1604 * from "oleauto.h".
1606 * FIXME
1607 * - I am unsure if this function should parse non-Arabic (e.g. Thai)
1608 * numerals, so this has not been implemented.
1610 HRESULT WINAPI VarParseNumFromStr(OLECHAR *lpszStr, LCID lcid, ULONG dwFlags,
1611 NUMPARSE *pNumprs, BYTE *rgbDig)
1613 VARIANT_NUMBER_CHARS chars;
1614 BYTE rgbTmp[1024];
1615 DWORD dwState = B_EXPONENT_START|B_INEXACT_ZEROS;
1616 int iMaxDigits = sizeof(rgbTmp) / sizeof(BYTE);
1617 int cchUsed = 0;
1619 TRACE("(%s,%d,0x%08x,%p,%p)\n", debugstr_w(lpszStr), lcid, dwFlags, pNumprs, rgbDig);
1621 if (!pNumprs || !rgbDig)
1622 return E_INVALIDARG;
1624 if (pNumprs->cDig < iMaxDigits)
1625 iMaxDigits = pNumprs->cDig;
1627 pNumprs->cDig = 0;
1628 pNumprs->dwOutFlags = 0;
1629 pNumprs->cchUsed = 0;
1630 pNumprs->nBaseShift = 0;
1631 pNumprs->nPwr10 = 0;
1633 if (!lpszStr)
1634 return DISP_E_TYPEMISMATCH;
1636 VARIANT_GetLocalisedNumberChars(&chars, lcid, dwFlags);
1638 /* First consume all the leading symbols and space from the string */
1639 while (1)
1641 if (pNumprs->dwInFlags & NUMPRS_LEADING_WHITE && isspaceW(*lpszStr))
1643 pNumprs->dwOutFlags |= NUMPRS_LEADING_WHITE;
1646 cchUsed++;
1647 lpszStr++;
1648 } while (isspaceW(*lpszStr));
1650 else if (pNumprs->dwInFlags & NUMPRS_LEADING_PLUS &&
1651 *lpszStr == chars.cPositiveSymbol &&
1652 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS))
1654 pNumprs->dwOutFlags |= NUMPRS_LEADING_PLUS;
1655 cchUsed++;
1656 lpszStr++;
1658 else if (pNumprs->dwInFlags & NUMPRS_LEADING_MINUS &&
1659 *lpszStr == chars.cNegativeSymbol &&
1660 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS))
1662 pNumprs->dwOutFlags |= (NUMPRS_LEADING_MINUS|NUMPRS_NEG);
1663 cchUsed++;
1664 lpszStr++;
1666 else if (pNumprs->dwInFlags & NUMPRS_CURRENCY &&
1667 !(pNumprs->dwOutFlags & NUMPRS_CURRENCY) &&
1668 *lpszStr == chars.cCurrencyLocal &&
1669 (!chars.cCurrencyLocal2 || lpszStr[1] == chars.cCurrencyLocal2))
1671 pNumprs->dwOutFlags |= NUMPRS_CURRENCY;
1672 cchUsed++;
1673 lpszStr++;
1674 /* Only accept currency characters */
1675 chars.cDecimalPoint = chars.cCurrencyDecimalPoint;
1676 chars.cDigitSeparator = chars.cCurrencyDigitSeparator;
1678 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == '(' &&
1679 !(pNumprs->dwOutFlags & NUMPRS_PARENS))
1681 pNumprs->dwOutFlags |= NUMPRS_PARENS;
1682 cchUsed++;
1683 lpszStr++;
1685 else
1686 break;
1689 if (!(pNumprs->dwOutFlags & NUMPRS_CURRENCY))
1691 /* Only accept non-currency characters */
1692 chars.cCurrencyDecimalPoint = chars.cDecimalPoint;
1693 chars.cCurrencyDigitSeparator = chars.cDigitSeparator;
1696 if ((*lpszStr == '&' && (*(lpszStr+1) == 'H' || *(lpszStr+1) == 'h')) &&
1697 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1699 dwState |= B_PROCESSING_HEX;
1700 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1701 cchUsed=cchUsed+2;
1702 lpszStr=lpszStr+2;
1704 else if ((*lpszStr == '&' && (*(lpszStr+1) == 'O' || *(lpszStr+1) == 'o')) &&
1705 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1707 dwState |= B_PROCESSING_OCT;
1708 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1709 cchUsed=cchUsed+2;
1710 lpszStr=lpszStr+2;
1713 /* Strip Leading zeros */
1714 while (*lpszStr == '0')
1716 dwState |= B_LEADING_ZERO;
1717 cchUsed++;
1718 lpszStr++;
1721 while (*lpszStr)
1723 if (isdigitW(*lpszStr))
1725 if (dwState & B_PROCESSING_EXPONENT)
1727 int exponentSize = 0;
1728 if (dwState & B_EXPONENT_START)
1730 if (!isdigitW(*lpszStr))
1731 break; /* No exponent digits - invalid */
1732 while (*lpszStr == '0')
1734 /* Skip leading zero's in the exponent */
1735 cchUsed++;
1736 lpszStr++;
1740 while (isdigitW(*lpszStr))
1742 exponentSize *= 10;
1743 exponentSize += *lpszStr - '0';
1744 cchUsed++;
1745 lpszStr++;
1747 if (dwState & B_NEGATIVE_EXPONENT)
1748 exponentSize = -exponentSize;
1749 /* Add the exponent into the powers of 10 */
1750 pNumprs->nPwr10 += exponentSize;
1751 dwState &= ~(B_PROCESSING_EXPONENT|B_EXPONENT_START);
1752 lpszStr--; /* back up to allow processing of next char */
1754 else
1756 if ((pNumprs->cDig >= iMaxDigits) && !(dwState & B_PROCESSING_HEX)
1757 && !(dwState & B_PROCESSING_OCT))
1759 pNumprs->dwOutFlags |= NUMPRS_INEXACT;
1761 if (*lpszStr != '0')
1762 dwState &= ~B_INEXACT_ZEROS; /* Inexact number with non-trailing zeros */
1764 /* This digit can't be represented, but count it in nPwr10 */
1765 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1766 pNumprs->nPwr10--;
1767 else
1768 pNumprs->nPwr10++;
1770 else
1772 if ((dwState & B_PROCESSING_OCT) && ((*lpszStr == '8') || (*lpszStr == '9'))) {
1773 return DISP_E_TYPEMISMATCH;
1776 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1777 pNumprs->nPwr10--; /* Count decimal points in nPwr10 */
1779 rgbTmp[pNumprs->cDig] = *lpszStr - '0';
1781 pNumprs->cDig++;
1782 cchUsed++;
1785 else if (*lpszStr == chars.cDigitSeparator && pNumprs->dwInFlags & NUMPRS_THOUSANDS)
1787 pNumprs->dwOutFlags |= NUMPRS_THOUSANDS;
1788 cchUsed++;
1790 else if (*lpszStr == chars.cDecimalPoint &&
1791 pNumprs->dwInFlags & NUMPRS_DECIMAL &&
1792 !(pNumprs->dwOutFlags & (NUMPRS_DECIMAL|NUMPRS_EXPONENT)))
1794 pNumprs->dwOutFlags |= NUMPRS_DECIMAL;
1795 cchUsed++;
1797 /* If we have no digits so far, skip leading zeros */
1798 if (!pNumprs->cDig)
1800 while (lpszStr[1] == '0')
1802 dwState |= B_LEADING_ZERO;
1803 cchUsed++;
1804 lpszStr++;
1805 pNumprs->nPwr10--;
1809 else if (((*lpszStr >= 'a' && *lpszStr <= 'f') ||
1810 (*lpszStr >= 'A' && *lpszStr <= 'F')) &&
1811 dwState & B_PROCESSING_HEX)
1813 if (pNumprs->cDig >= iMaxDigits)
1815 return DISP_E_OVERFLOW;
1817 else
1819 if (*lpszStr >= 'a')
1820 rgbTmp[pNumprs->cDig] = *lpszStr - 'a' + 10;
1821 else
1822 rgbTmp[pNumprs->cDig] = *lpszStr - 'A' + 10;
1824 pNumprs->cDig++;
1825 cchUsed++;
1827 else if ((*lpszStr == 'e' || *lpszStr == 'E') &&
1828 pNumprs->dwInFlags & NUMPRS_EXPONENT &&
1829 !(pNumprs->dwOutFlags & NUMPRS_EXPONENT))
1831 dwState |= B_PROCESSING_EXPONENT;
1832 pNumprs->dwOutFlags |= NUMPRS_EXPONENT;
1833 cchUsed++;
1835 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cPositiveSymbol)
1837 cchUsed++; /* Ignore positive exponent */
1839 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cNegativeSymbol)
1841 dwState |= B_NEGATIVE_EXPONENT;
1842 cchUsed++;
1844 else
1845 break; /* Stop at an unrecognised character */
1847 lpszStr++;
1850 if (!pNumprs->cDig && dwState & B_LEADING_ZERO)
1852 /* Ensure a 0 on its own gets stored */
1853 pNumprs->cDig = 1;
1854 rgbTmp[0] = 0;
1857 if (pNumprs->dwOutFlags & NUMPRS_EXPONENT && dwState & B_PROCESSING_EXPONENT)
1859 pNumprs->cchUsed = cchUsed;
1860 WARN("didn't completely parse exponent\n");
1861 return DISP_E_TYPEMISMATCH; /* Failed to completely parse the exponent */
1864 if (pNumprs->dwOutFlags & NUMPRS_INEXACT)
1866 if (dwState & B_INEXACT_ZEROS)
1867 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* All zeros doesn't set NUMPRS_INEXACT */
1868 } else if(pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1870 /* copy all of the digits into the output digit buffer */
1871 /* this is exactly what windows does although it also returns */
1872 /* cDig of X and writes X+Y where Y>=0 number of digits to rgbDig */
1873 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1875 if (dwState & B_PROCESSING_HEX) {
1876 /* hex numbers have always the same format */
1877 pNumprs->nPwr10=0;
1878 pNumprs->nBaseShift=4;
1879 } else {
1880 if (dwState & B_PROCESSING_OCT) {
1881 /* oct numbers have always the same format */
1882 pNumprs->nPwr10=0;
1883 pNumprs->nBaseShift=3;
1884 } else {
1885 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1887 pNumprs->nPwr10++;
1888 pNumprs->cDig--;
1892 } else
1894 /* Remove trailing zeros from the last (whole number or decimal) part */
1895 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1897 pNumprs->nPwr10++;
1898 pNumprs->cDig--;
1902 if (pNumprs->cDig <= iMaxDigits)
1903 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* Ignore stripped zeros for NUMPRS_INEXACT */
1904 else
1905 pNumprs->cDig = iMaxDigits; /* Only return iMaxDigits worth of digits */
1907 /* Copy the digits we processed into rgbDig */
1908 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1910 /* Consume any trailing symbols and space */
1911 while (1)
1913 if ((pNumprs->dwInFlags & NUMPRS_TRAILING_WHITE) && isspaceW(*lpszStr))
1915 pNumprs->dwOutFlags |= NUMPRS_TRAILING_WHITE;
1918 cchUsed++;
1919 lpszStr++;
1920 } while (isspaceW(*lpszStr));
1922 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_PLUS &&
1923 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS) &&
1924 *lpszStr == chars.cPositiveSymbol)
1926 pNumprs->dwOutFlags |= NUMPRS_TRAILING_PLUS;
1927 cchUsed++;
1928 lpszStr++;
1930 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_MINUS &&
1931 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS) &&
1932 *lpszStr == chars.cNegativeSymbol)
1934 pNumprs->dwOutFlags |= (NUMPRS_TRAILING_MINUS|NUMPRS_NEG);
1935 cchUsed++;
1936 lpszStr++;
1938 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == ')' &&
1939 pNumprs->dwOutFlags & NUMPRS_PARENS)
1941 cchUsed++;
1942 lpszStr++;
1943 pNumprs->dwOutFlags |= NUMPRS_NEG;
1945 else
1946 break;
1949 if (pNumprs->dwOutFlags & NUMPRS_PARENS && !(pNumprs->dwOutFlags & NUMPRS_NEG))
1951 pNumprs->cchUsed = cchUsed;
1952 return DISP_E_TYPEMISMATCH; /* Opening parenthesis not matched */
1955 if (pNumprs->dwInFlags & NUMPRS_USE_ALL && *lpszStr != '\0')
1956 return DISP_E_TYPEMISMATCH; /* Not all chars were consumed */
1958 if (!pNumprs->cDig)
1959 return DISP_E_TYPEMISMATCH; /* No Number found */
1961 pNumprs->cchUsed = cchUsed;
1962 return S_OK;
1965 /* VTBIT flags indicating an integer value */
1966 #define INTEGER_VTBITS (VTBIT_I1|VTBIT_UI1|VTBIT_I2|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_I8|VTBIT_UI8)
1967 /* VTBIT flags indicating a real number value */
1968 #define REAL_VTBITS (VTBIT_R4|VTBIT_R8|VTBIT_CY)
1970 /* Helper macros to check whether bit pattern fits in VARIANT (x is a ULONG64 ) */
1971 #define FITS_AS_I1(x) ((x) >> 8 == 0)
1972 #define FITS_AS_I2(x) ((x) >> 16 == 0)
1973 #define FITS_AS_I4(x) ((x) >> 32 == 0)
1975 /**********************************************************************
1976 * VarNumFromParseNum [OLEAUT32.47]
1978 * Convert a NUMPARSE structure into a numeric Variant type.
1980 * PARAMS
1981 * pNumprs [I] Source for parsed number. cDig must be set to the size of rgbDig
1982 * rgbDig [I] Source for the numbers digits
1983 * dwVtBits [I] VTBIT_ flags from "oleauto.h" indicating the acceptable dest types
1984 * pVarDst [O] Destination for the converted Variant value.
1986 * RETURNS
1987 * Success: S_OK. pVarDst contains the converted value.
1988 * Failure: E_INVALIDARG, if any parameter is invalid.
1989 * DISP_E_OVERFLOW, if the number is too big for the types set in dwVtBits.
1991 * NOTES
1992 * - The smallest favoured type present in dwVtBits that can represent the
1993 * number in pNumprs without losing precision is used.
1994 * - Signed types are preferred over unsigned types of the same size.
1995 * - Preferred types in order are: integer, float, double, currency then decimal.
1996 * - Rounding (dropping of decimal points) occurs without error. See VarI8FromR8()
1997 * for details of the rounding method.
1998 * - pVarDst is not cleared before the result is stored in it.
1999 * - WinXP and Win2003 support VTBIT_I8, VTBIT_UI8 but that's buggy (by
2000 * design?): If some other VTBIT's for integers are specified together
2001 * with VTBIT_I8 and the number will fit only in a VT_I8 Windows will "cast"
2002 * the number to the smallest requested integer truncating this way the
2003 * number. Wine doesn't implement this "feature" (yet?).
2005 HRESULT WINAPI VarNumFromParseNum(NUMPARSE *pNumprs, BYTE *rgbDig,
2006 ULONG dwVtBits, VARIANT *pVarDst)
2008 /* Scale factors and limits for double arithmetic */
2009 static const double dblMultipliers[11] = {
2010 1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0,
2011 1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0
2013 static const double dblMinimums[11] = {
2014 R8_MIN, R8_MIN*10.0, R8_MIN*100.0, R8_MIN*1000.0, R8_MIN*10000.0,
2015 R8_MIN*100000.0, R8_MIN*1000000.0, R8_MIN*10000000.0,
2016 R8_MIN*100000000.0, R8_MIN*1000000000.0, R8_MIN*10000000000.0
2018 static const double dblMaximums[11] = {
2019 R8_MAX, R8_MAX/10.0, R8_MAX/100.0, R8_MAX/1000.0, R8_MAX/10000.0,
2020 R8_MAX/100000.0, R8_MAX/1000000.0, R8_MAX/10000000.0,
2021 R8_MAX/100000000.0, R8_MAX/1000000000.0, R8_MAX/10000000000.0
2024 int wholeNumberDigits, fractionalDigits, divisor10 = 0, multiplier10 = 0;
2026 TRACE("(%p,%p,0x%x,%p)\n", pNumprs, rgbDig, dwVtBits, pVarDst);
2028 if (pNumprs->nBaseShift)
2030 /* nBaseShift indicates a hex or octal number */
2031 ULONG64 ul64 = 0;
2032 LONG64 l64;
2033 int i;
2035 /* Convert the hex or octal number string into a UI64 */
2036 for (i = 0; i < pNumprs->cDig; i++)
2038 if (ul64 > ((UI8_MAX>>pNumprs->nBaseShift) - rgbDig[i]))
2040 TRACE("Overflow multiplying digits\n");
2041 return DISP_E_OVERFLOW;
2043 ul64 = (ul64<<pNumprs->nBaseShift) + rgbDig[i];
2046 /* also make a negative representation */
2047 l64=-ul64;
2049 /* Try signed and unsigned types in size order */
2050 if (dwVtBits & VTBIT_I1 && FITS_AS_I1(ul64))
2052 V_VT(pVarDst) = VT_I1;
2053 V_I1(pVarDst) = ul64;
2054 return S_OK;
2056 else if (dwVtBits & VTBIT_UI1 && FITS_AS_I1(ul64))
2058 V_VT(pVarDst) = VT_UI1;
2059 V_UI1(pVarDst) = ul64;
2060 return S_OK;
2062 else if (dwVtBits & VTBIT_I2 && FITS_AS_I2(ul64))
2064 V_VT(pVarDst) = VT_I2;
2065 V_I2(pVarDst) = ul64;
2066 return S_OK;
2068 else if (dwVtBits & VTBIT_UI2 && FITS_AS_I2(ul64))
2070 V_VT(pVarDst) = VT_UI2;
2071 V_UI2(pVarDst) = ul64;
2072 return S_OK;
2074 else if (dwVtBits & VTBIT_I4 && FITS_AS_I4(ul64))
2076 V_VT(pVarDst) = VT_I4;
2077 V_I4(pVarDst) = ul64;
2078 return S_OK;
2080 else if (dwVtBits & VTBIT_UI4 && FITS_AS_I4(ul64))
2082 V_VT(pVarDst) = VT_UI4;
2083 V_UI4(pVarDst) = ul64;
2084 return S_OK;
2086 else if (dwVtBits & VTBIT_I8 && ((ul64 <= I8_MAX)||(l64>=I8_MIN)))
2088 V_VT(pVarDst) = VT_I8;
2089 V_I8(pVarDst) = ul64;
2090 return S_OK;
2092 else if (dwVtBits & VTBIT_UI8)
2094 V_VT(pVarDst) = VT_UI8;
2095 V_UI8(pVarDst) = ul64;
2096 return S_OK;
2098 else if ((dwVtBits & VTBIT_DECIMAL) == VTBIT_DECIMAL)
2100 V_VT(pVarDst) = VT_DECIMAL;
2101 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2102 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2103 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2104 return S_OK;
2106 else if (dwVtBits & VTBIT_R4 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2108 V_VT(pVarDst) = VT_R4;
2109 if (ul64 <= I4_MAX)
2110 V_R4(pVarDst) = ul64;
2111 else
2112 V_R4(pVarDst) = l64;
2113 return S_OK;
2115 else if (dwVtBits & VTBIT_R8 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2117 V_VT(pVarDst) = VT_R8;
2118 if (ul64 <= I4_MAX)
2119 V_R8(pVarDst) = ul64;
2120 else
2121 V_R8(pVarDst) = l64;
2122 return S_OK;
2125 TRACE("Overflow: possible return types: 0x%x, value: %s\n", dwVtBits, wine_dbgstr_longlong(ul64));
2126 return DISP_E_OVERFLOW;
2129 /* Count the number of relevant fractional and whole digits stored,
2130 * And compute the divisor/multiplier to scale the number by.
2132 if (pNumprs->nPwr10 < 0)
2134 if (-pNumprs->nPwr10 >= pNumprs->cDig)
2136 /* A real number < +/- 1.0 e.g. 0.1024 or 0.01024 */
2137 wholeNumberDigits = 0;
2138 fractionalDigits = pNumprs->cDig;
2139 divisor10 = -pNumprs->nPwr10;
2141 else
2143 /* An exactly represented real number e.g. 1.024 */
2144 wholeNumberDigits = pNumprs->cDig + pNumprs->nPwr10;
2145 fractionalDigits = pNumprs->cDig - wholeNumberDigits;
2146 divisor10 = pNumprs->cDig - wholeNumberDigits;
2149 else if (pNumprs->nPwr10 == 0)
2151 /* An exactly represented whole number e.g. 1024 */
2152 wholeNumberDigits = pNumprs->cDig;
2153 fractionalDigits = 0;
2155 else /* pNumprs->nPwr10 > 0 */
2157 /* A whole number followed by nPwr10 0's e.g. 102400 */
2158 wholeNumberDigits = pNumprs->cDig;
2159 fractionalDigits = 0;
2160 multiplier10 = pNumprs->nPwr10;
2163 TRACE("cDig %d; nPwr10 %d, whole %d, frac %d mult %d; div %d\n",
2164 pNumprs->cDig, pNumprs->nPwr10, wholeNumberDigits, fractionalDigits,
2165 multiplier10, divisor10);
2167 if (dwVtBits & (INTEGER_VTBITS|VTBIT_DECIMAL) &&
2168 (!fractionalDigits || !(dwVtBits & (REAL_VTBITS|VTBIT_CY|VTBIT_DECIMAL))))
2170 /* We have one or more integer output choices, and either:
2171 * 1) An integer input value, or
2172 * 2) A real number input value but no floating output choices.
2173 * Alternately, we have a DECIMAL output available and an integer input.
2175 * So, place the integer value into pVarDst, using the smallest type
2176 * possible and preferring signed over unsigned types.
2178 BOOL bOverflow = FALSE, bNegative;
2179 ULONG64 ul64 = 0;
2180 int i;
2182 /* Convert the integer part of the number into a UI8 */
2183 for (i = 0; i < wholeNumberDigits; i++)
2185 if (ul64 > UI8_MAX / 10 || (ul64 == UI8_MAX / 10 && rgbDig[i] > UI8_MAX % 10))
2187 TRACE("Overflow multiplying digits\n");
2188 bOverflow = TRUE;
2189 break;
2191 ul64 = ul64 * 10 + rgbDig[i];
2194 /* Account for the scale of the number */
2195 if (!bOverflow && multiplier10)
2197 for (i = 0; i < multiplier10; i++)
2199 if (ul64 > (UI8_MAX / 10))
2201 TRACE("Overflow scaling number\n");
2202 bOverflow = TRUE;
2203 break;
2205 ul64 = ul64 * 10;
2209 /* If we have any fractional digits, round the value.
2210 * Note we don't have to do this if divisor10 is < 1,
2211 * because this means the fractional part must be < 0.5
2213 if (!bOverflow && fractionalDigits && divisor10 > 0)
2215 const BYTE* fracDig = rgbDig + wholeNumberDigits;
2216 BOOL bAdjust = FALSE;
2218 TRACE("first decimal value is %d\n", *fracDig);
2220 if (*fracDig > 5)
2221 bAdjust = TRUE; /* > 0.5 */
2222 else if (*fracDig == 5)
2224 for (i = 1; i < fractionalDigits; i++)
2226 if (fracDig[i])
2228 bAdjust = TRUE; /* > 0.5 */
2229 break;
2232 /* If exactly 0.5, round only odd values */
2233 if (i == fractionalDigits && (ul64 & 1))
2234 bAdjust = TRUE;
2237 if (bAdjust)
2239 if (ul64 == UI8_MAX)
2241 TRACE("Overflow after rounding\n");
2242 bOverflow = TRUE;
2244 ul64++;
2248 /* Zero is not a negative number */
2249 bNegative = pNumprs->dwOutFlags & NUMPRS_NEG && ul64;
2251 TRACE("Integer value is 0x%s, bNeg %d\n", wine_dbgstr_longlong(ul64), bNegative);
2253 /* For negative integers, try the signed types in size order */
2254 if (!bOverflow && bNegative)
2256 if (dwVtBits & (VTBIT_I1|VTBIT_I2|VTBIT_I4|VTBIT_I8))
2258 if (dwVtBits & VTBIT_I1 && ul64 <= -I1_MIN)
2260 V_VT(pVarDst) = VT_I1;
2261 V_I1(pVarDst) = -ul64;
2262 return S_OK;
2264 else if (dwVtBits & VTBIT_I2 && ul64 <= -I2_MIN)
2266 V_VT(pVarDst) = VT_I2;
2267 V_I2(pVarDst) = -ul64;
2268 return S_OK;
2270 else if (dwVtBits & VTBIT_I4 && ul64 <= -((LONGLONG)I4_MIN))
2272 V_VT(pVarDst) = VT_I4;
2273 V_I4(pVarDst) = -ul64;
2274 return S_OK;
2276 else if (dwVtBits & VTBIT_I8 && ul64 <= (ULONGLONG)I8_MAX + 1)
2278 V_VT(pVarDst) = VT_I8;
2279 V_I8(pVarDst) = -ul64;
2280 return S_OK;
2282 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2284 /* Decimal is only output choice left - fast path */
2285 V_VT(pVarDst) = VT_DECIMAL;
2286 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_NEG,0);
2287 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2288 DEC_LO64(&V_DECIMAL(pVarDst)) = -ul64;
2289 return S_OK;
2293 else if (!bOverflow)
2295 /* For positive integers, try signed then unsigned types in size order */
2296 if (dwVtBits & VTBIT_I1 && ul64 <= I1_MAX)
2298 V_VT(pVarDst) = VT_I1;
2299 V_I1(pVarDst) = ul64;
2300 return S_OK;
2302 else if (dwVtBits & VTBIT_UI1 && ul64 <= UI1_MAX)
2304 V_VT(pVarDst) = VT_UI1;
2305 V_UI1(pVarDst) = ul64;
2306 return S_OK;
2308 else if (dwVtBits & VTBIT_I2 && ul64 <= I2_MAX)
2310 V_VT(pVarDst) = VT_I2;
2311 V_I2(pVarDst) = ul64;
2312 return S_OK;
2314 else if (dwVtBits & VTBIT_UI2 && ul64 <= UI2_MAX)
2316 V_VT(pVarDst) = VT_UI2;
2317 V_UI2(pVarDst) = ul64;
2318 return S_OK;
2320 else if (dwVtBits & VTBIT_I4 && ul64 <= I4_MAX)
2322 V_VT(pVarDst) = VT_I4;
2323 V_I4(pVarDst) = ul64;
2324 return S_OK;
2326 else if (dwVtBits & VTBIT_UI4 && ul64 <= UI4_MAX)
2328 V_VT(pVarDst) = VT_UI4;
2329 V_UI4(pVarDst) = ul64;
2330 return S_OK;
2332 else if (dwVtBits & VTBIT_I8 && ul64 <= I8_MAX)
2334 V_VT(pVarDst) = VT_I8;
2335 V_I8(pVarDst) = ul64;
2336 return S_OK;
2338 else if (dwVtBits & VTBIT_UI8)
2340 V_VT(pVarDst) = VT_UI8;
2341 V_UI8(pVarDst) = ul64;
2342 return S_OK;
2344 else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL)
2346 /* Decimal is only output choice left - fast path */
2347 V_VT(pVarDst) = VT_DECIMAL;
2348 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2349 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2350 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2351 return S_OK;
2356 if (dwVtBits & REAL_VTBITS)
2358 /* Try to put the number into a float or real */
2359 BOOL bOverflow = FALSE, bNegative = pNumprs->dwOutFlags & NUMPRS_NEG;
2360 double whole = 0.0;
2361 int i;
2363 /* Convert the number into a double */
2364 for (i = 0; i < pNumprs->cDig; i++)
2365 whole = whole * 10.0 + rgbDig[i];
2367 TRACE("Whole double value is %16.16g\n", whole);
2369 /* Account for the scale */
2370 while (multiplier10 > 10)
2372 if (whole > dblMaximums[10])
2374 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2375 bOverflow = TRUE;
2376 break;
2378 whole = whole * dblMultipliers[10];
2379 multiplier10 -= 10;
2381 if (multiplier10 && !bOverflow)
2383 if (whole > dblMaximums[multiplier10])
2385 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2386 bOverflow = TRUE;
2388 else
2389 whole = whole * dblMultipliers[multiplier10];
2392 if (!bOverflow)
2393 TRACE("Scaled double value is %16.16g\n", whole);
2395 while (divisor10 > 10 && !bOverflow)
2397 if (whole < dblMinimums[10] && whole != 0)
2399 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2400 bOverflow = TRUE;
2401 break;
2403 whole = whole / dblMultipliers[10];
2404 divisor10 -= 10;
2406 if (divisor10 && !bOverflow)
2408 if (whole < dblMinimums[divisor10] && whole != 0)
2410 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */
2411 bOverflow = TRUE;
2413 else
2414 whole = whole / dblMultipliers[divisor10];
2416 if (!bOverflow)
2417 TRACE("Final double value is %16.16g\n", whole);
2419 if (dwVtBits & VTBIT_R4 &&
2420 ((whole <= R4_MAX && whole >= R4_MIN) || whole == 0.0))
2422 TRACE("Set R4 to final value\n");
2423 V_VT(pVarDst) = VT_R4; /* Fits into a float */
2424 V_R4(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2425 return S_OK;
2428 if (dwVtBits & VTBIT_R8)
2430 TRACE("Set R8 to final value\n");
2431 V_VT(pVarDst) = VT_R8; /* Fits into a double */
2432 V_R8(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2433 return S_OK;
2436 if (dwVtBits & VTBIT_CY)
2438 if (SUCCEEDED(VarCyFromR8(bNegative ? -whole : whole, &V_CY(pVarDst))))
2440 V_VT(pVarDst) = VT_CY; /* Fits into a currency */
2441 TRACE("Set CY to final value\n");
2442 return S_OK;
2444 TRACE("Value Overflows CY\n");
2448 if (dwVtBits & VTBIT_DECIMAL)
2450 int i;
2451 ULONG carry;
2452 ULONG64 tmp;
2453 DECIMAL* pDec = &V_DECIMAL(pVarDst);
2455 DECIMAL_SETZERO(*pDec);
2456 DEC_LO32(pDec) = 0;
2458 if (pNumprs->dwOutFlags & NUMPRS_NEG)
2459 DEC_SIGN(pDec) = DECIMAL_NEG;
2460 else
2461 DEC_SIGN(pDec) = DECIMAL_POS;
2463 /* Factor the significant digits */
2464 for (i = 0; i < pNumprs->cDig; i++)
2466 tmp = (ULONG64)DEC_LO32(pDec) * 10 + rgbDig[i];
2467 carry = (ULONG)(tmp >> 32);
2468 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2469 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2470 carry = (ULONG)(tmp >> 32);
2471 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2472 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2473 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2475 if (tmp >> 32 & UI4_MAX)
2477 VarNumFromParseNum_DecOverflow:
2478 TRACE("Overflow\n");
2479 DEC_LO32(pDec) = DEC_MID32(pDec) = DEC_HI32(pDec) = UI4_MAX;
2480 return DISP_E_OVERFLOW;
2484 /* Account for the scale of the number */
2485 while (multiplier10 > 0)
2487 tmp = (ULONG64)DEC_LO32(pDec) * 10;
2488 carry = (ULONG)(tmp >> 32);
2489 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2490 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2491 carry = (ULONG)(tmp >> 32);
2492 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2493 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2494 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2496 if (tmp >> 32 & UI4_MAX)
2497 goto VarNumFromParseNum_DecOverflow;
2498 multiplier10--;
2500 DEC_SCALE(pDec) = divisor10;
2502 V_VT(pVarDst) = VT_DECIMAL;
2503 return S_OK;
2505 return DISP_E_OVERFLOW; /* No more output choices */
2508 /**********************************************************************
2509 * VarCat [OLEAUT32.318]
2511 * Concatenates one variant onto another.
2513 * PARAMS
2514 * left [I] First variant
2515 * right [I] Second variant
2516 * result [O] Result variant
2518 * RETURNS
2519 * Success: S_OK.
2520 * Failure: An HRESULT error code indicating the error.
2522 HRESULT WINAPI VarCat(LPVARIANT left, LPVARIANT right, LPVARIANT out)
2524 VARTYPE leftvt,rightvt,resultvt;
2525 HRESULT hres;
2526 static WCHAR str_true[32];
2527 static WCHAR str_false[32];
2528 static const WCHAR sz_empty[] = {'\0'};
2529 leftvt = V_VT(left);
2530 rightvt = V_VT(right);
2532 TRACE("%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), out);
2534 if (!str_true[0]) {
2535 VARIANT_GetLocalisedText(LOCALE_USER_DEFAULT, IDS_FALSE, str_false);
2536 VARIANT_GetLocalisedText(LOCALE_USER_DEFAULT, IDS_TRUE, str_true);
2539 /* when both left and right are NULL the result is NULL */
2540 if (leftvt == VT_NULL && rightvt == VT_NULL)
2542 V_VT(out) = VT_NULL;
2543 return S_OK;
2546 hres = S_OK;
2547 resultvt = VT_EMPTY;
2549 /* There are many special case for errors and return types */
2550 if (leftvt == VT_VARIANT && (rightvt == VT_ERROR ||
2551 rightvt == VT_DATE || rightvt == VT_DECIMAL))
2552 hres = DISP_E_TYPEMISMATCH;
2553 else if ((leftvt == VT_I2 || leftvt == VT_I4 ||
2554 leftvt == VT_R4 || leftvt == VT_R8 ||
2555 leftvt == VT_CY || leftvt == VT_BOOL ||
2556 leftvt == VT_BSTR || leftvt == VT_I1 ||
2557 leftvt == VT_UI1 || leftvt == VT_UI2 ||
2558 leftvt == VT_UI4 || leftvt == VT_I8 ||
2559 leftvt == VT_UI8 || leftvt == VT_INT ||
2560 leftvt == VT_UINT || leftvt == VT_EMPTY ||
2561 leftvt == VT_NULL || leftvt == VT_DATE ||
2562 leftvt == VT_DECIMAL || leftvt == VT_DISPATCH)
2564 (rightvt == VT_I2 || rightvt == VT_I4 ||
2565 rightvt == VT_R4 || rightvt == VT_R8 ||
2566 rightvt == VT_CY || rightvt == VT_BOOL ||
2567 rightvt == VT_BSTR || rightvt == VT_I1 ||
2568 rightvt == VT_UI1 || rightvt == VT_UI2 ||
2569 rightvt == VT_UI4 || rightvt == VT_I8 ||
2570 rightvt == VT_UI8 || rightvt == VT_INT ||
2571 rightvt == VT_UINT || rightvt == VT_EMPTY ||
2572 rightvt == VT_NULL || rightvt == VT_DATE ||
2573 rightvt == VT_DECIMAL || rightvt == VT_DISPATCH))
2574 resultvt = VT_BSTR;
2575 else if (rightvt == VT_ERROR && leftvt < VT_VOID)
2576 hres = DISP_E_TYPEMISMATCH;
2577 else if (leftvt == VT_ERROR && (rightvt == VT_DATE ||
2578 rightvt == VT_ERROR || rightvt == VT_DECIMAL))
2579 hres = DISP_E_TYPEMISMATCH;
2580 else if (rightvt == VT_DATE || rightvt == VT_ERROR ||
2581 rightvt == VT_DECIMAL)
2582 hres = DISP_E_BADVARTYPE;
2583 else if (leftvt == VT_ERROR || rightvt == VT_ERROR)
2584 hres = DISP_E_TYPEMISMATCH;
2585 else if (leftvt == VT_VARIANT)
2586 hres = DISP_E_TYPEMISMATCH;
2587 else if (rightvt == VT_VARIANT && (leftvt == VT_EMPTY ||
2588 leftvt == VT_NULL || leftvt == VT_I2 ||
2589 leftvt == VT_I4 || leftvt == VT_R4 ||
2590 leftvt == VT_R8 || leftvt == VT_CY ||
2591 leftvt == VT_DATE || leftvt == VT_BSTR ||
2592 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
2593 leftvt == VT_I1 || leftvt == VT_UI1 ||
2594 leftvt == VT_UI2 || leftvt == VT_UI4 ||
2595 leftvt == VT_I8 || leftvt == VT_UI8 ||
2596 leftvt == VT_INT || leftvt == VT_UINT))
2597 hres = DISP_E_TYPEMISMATCH;
2598 else
2599 hres = DISP_E_BADVARTYPE;
2601 /* if result type is not S_OK, then no need to go further */
2602 if (hres != S_OK)
2604 V_VT(out) = resultvt;
2605 return hres;
2607 /* Else proceed with formatting inputs to strings */
2608 else
2610 VARIANT bstrvar_left, bstrvar_right;
2611 V_VT(out) = VT_BSTR;
2613 VariantInit(&bstrvar_left);
2614 VariantInit(&bstrvar_right);
2616 /* Convert left side variant to string */
2617 if (leftvt != VT_BSTR)
2619 if (leftvt == VT_BOOL)
2621 /* Bools are handled as localized True/False strings instead of 0/-1 as in MSDN */
2622 V_VT(&bstrvar_left) = VT_BSTR;
2623 if (V_BOOL(left))
2624 V_BSTR(&bstrvar_left) = SysAllocString(str_true);
2625 else
2626 V_BSTR(&bstrvar_left) = SysAllocString(str_false);
2628 /* Fill with empty string for later concat with right side */
2629 else if (leftvt == VT_NULL)
2631 V_VT(&bstrvar_left) = VT_BSTR;
2632 V_BSTR(&bstrvar_left) = SysAllocString(sz_empty);
2634 else
2636 hres = VariantChangeTypeEx(&bstrvar_left,left,0,0,VT_BSTR);
2637 if (hres != S_OK) {
2638 VariantClear(&bstrvar_left);
2639 VariantClear(&bstrvar_right);
2640 if (leftvt == VT_NULL && (rightvt == VT_EMPTY ||
2641 rightvt == VT_NULL || rightvt == VT_I2 ||
2642 rightvt == VT_I4 || rightvt == VT_R4 ||
2643 rightvt == VT_R8 || rightvt == VT_CY ||
2644 rightvt == VT_DATE || rightvt == VT_BSTR ||
2645 rightvt == VT_BOOL || rightvt == VT_DECIMAL ||
2646 rightvt == VT_I1 || rightvt == VT_UI1 ||
2647 rightvt == VT_UI2 || rightvt == VT_UI4 ||
2648 rightvt == VT_I8 || rightvt == VT_UI8 ||
2649 rightvt == VT_INT || rightvt == VT_UINT))
2650 return DISP_E_BADVARTYPE;
2651 return hres;
2656 /* convert right side variant to string */
2657 if (rightvt != VT_BSTR)
2659 if (rightvt == VT_BOOL)
2661 /* Bools are handled as localized True/False strings instead of 0/-1 as in MSDN */
2662 V_VT(&bstrvar_right) = VT_BSTR;
2663 if (V_BOOL(right))
2664 V_BSTR(&bstrvar_right) = SysAllocString(str_true);
2665 else
2666 V_BSTR(&bstrvar_right) = SysAllocString(str_false);
2668 /* Fill with empty string for later concat with right side */
2669 else if (rightvt == VT_NULL)
2671 V_VT(&bstrvar_right) = VT_BSTR;
2672 V_BSTR(&bstrvar_right) = SysAllocString(sz_empty);
2674 else
2676 hres = VariantChangeTypeEx(&bstrvar_right,right,0,0,VT_BSTR);
2677 if (hres != S_OK) {
2678 VariantClear(&bstrvar_left);
2679 VariantClear(&bstrvar_right);
2680 if (rightvt == VT_NULL && (leftvt == VT_EMPTY ||
2681 leftvt == VT_NULL || leftvt == VT_I2 ||
2682 leftvt == VT_I4 || leftvt == VT_R4 ||
2683 leftvt == VT_R8 || leftvt == VT_CY ||
2684 leftvt == VT_DATE || leftvt == VT_BSTR ||
2685 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
2686 leftvt == VT_I1 || leftvt == VT_UI1 ||
2687 leftvt == VT_UI2 || leftvt == VT_UI4 ||
2688 leftvt == VT_I8 || leftvt == VT_UI8 ||
2689 leftvt == VT_INT || leftvt == VT_UINT))
2690 return DISP_E_BADVARTYPE;
2691 return hres;
2696 /* Concat the resulting strings together */
2697 if (leftvt == VT_BSTR && rightvt == VT_BSTR)
2698 VarBstrCat (V_BSTR(left), V_BSTR(right), &V_BSTR(out));
2699 else if (leftvt != VT_BSTR && rightvt != VT_BSTR)
2700 VarBstrCat (V_BSTR(&bstrvar_left), V_BSTR(&bstrvar_right), &V_BSTR(out));
2701 else if (leftvt != VT_BSTR && rightvt == VT_BSTR)
2702 VarBstrCat (V_BSTR(&bstrvar_left), V_BSTR(right), &V_BSTR(out));
2703 else if (leftvt == VT_BSTR && rightvt != VT_BSTR)
2704 VarBstrCat (V_BSTR(left), V_BSTR(&bstrvar_right), &V_BSTR(out));
2706 VariantClear(&bstrvar_left);
2707 VariantClear(&bstrvar_right);
2708 return S_OK;
2713 /* Wrapper around VariantChangeTypeEx() which permits changing a
2714 variant with VT_RESERVED flag set. Needed by VarCmp. */
2715 static HRESULT _VarChangeTypeExWrap (VARIANTARG* pvargDest,
2716 VARIANTARG* pvargSrc, LCID lcid, USHORT wFlags, VARTYPE vt)
2718 VARIANTARG vtmpsrc = *pvargSrc;
2720 V_VT(&vtmpsrc) &= ~VT_RESERVED;
2721 return VariantChangeTypeEx(pvargDest,&vtmpsrc,lcid,wFlags,vt);
2724 /**********************************************************************
2725 * VarCmp [OLEAUT32.176]
2727 * Compare two variants.
2729 * PARAMS
2730 * left [I] First variant
2731 * right [I] Second variant
2732 * lcid [I] LCID (locale identifier) for the comparison
2733 * flags [I] Flags to be used in the comparison:
2734 * NORM_IGNORECASE, NORM_IGNORENONSPACE, NORM_IGNORESYMBOLS,
2735 * NORM_IGNOREWIDTH, NORM_IGNOREKANATYPE, NORM_IGNOREKASHIDA
2737 * RETURNS
2738 * VARCMP_LT: left variant is less than right variant.
2739 * VARCMP_EQ: input variants are equal.
2740 * VARCMP_GT: left variant is greater than right variant.
2741 * VARCMP_NULL: either one of the input variants is NULL.
2742 * Failure: An HRESULT error code indicating the error.
2744 * NOTES
2745 * Native VarCmp up to and including WinXP doesn't like I1, UI2, VT_UI4,
2746 * UI8 and UINT as input variants. INT is accepted only as left variant.
2748 * If both input variants are ERROR then VARCMP_EQ will be returned, else
2749 * an ERROR variant will trigger an error.
2751 * Both input variants can have VT_RESERVED flag set which is ignored
2752 * unless one and only one of the variants is a BSTR and the other one
2753 * is not an EMPTY variant. All four VT_RESERVED combinations have a
2754 * different meaning:
2755 * - BSTR and other: BSTR is always greater than the other variant.
2756 * - BSTR|VT_RESERVED and other: a string comparison is performed.
2757 * - BSTR and other|VT_RESERVED: If the BSTR is a number a numeric
2758 * comparison will take place else the BSTR is always greater.
2759 * - BSTR|VT_RESERVED and other|VT_RESERVED: It seems that the other
2760 * variant is ignored and the return value depends only on the sign
2761 * of the BSTR if it is a number else the BSTR is always greater. A
2762 * positive BSTR is greater, a negative one is smaller than the other
2763 * variant.
2765 * SEE
2766 * VarBstrCmp for the lcid and flags usage.
2768 HRESULT WINAPI VarCmp(LPVARIANT left, LPVARIANT right, LCID lcid, DWORD flags)
2770 VARTYPE lvt, rvt, vt;
2771 VARIANT rv,lv;
2772 DWORD xmask;
2773 HRESULT rc;
2775 TRACE("(%s,%s,0x%08x,0x%08x)\n", debugstr_variant(left), debugstr_variant(right), lcid, flags);
2777 lvt = V_VT(left) & VT_TYPEMASK;
2778 rvt = V_VT(right) & VT_TYPEMASK;
2779 xmask = (1 << lvt) | (1 << rvt);
2781 /* If we have any flag set except VT_RESERVED bail out.
2782 Same for the left input variant type > VT_INT and for the
2783 right input variant type > VT_I8. Yes, VT_INT is only supported
2784 as left variant. Go figure */
2785 if (((V_VT(left) | V_VT(right)) & ~VT_TYPEMASK & ~VT_RESERVED) ||
2786 lvt > VT_INT || rvt > VT_I8) {
2787 return DISP_E_BADVARTYPE;
2790 /* Don't ask me why but native VarCmp cannot handle: VT_I1, VT_UI2, VT_UI4,
2791 VT_UINT and VT_UI8. Tested with DCOM98, Win2k, WinXP */
2792 if (rvt == VT_INT || xmask & (VTBIT_I1 | VTBIT_UI2 | VTBIT_UI4 | VTBIT_UI8 |
2793 VTBIT_DISPATCH | VTBIT_VARIANT | VTBIT_UNKNOWN | VTBIT_15))
2794 return DISP_E_TYPEMISMATCH;
2796 /* If both variants are VT_ERROR return VARCMP_EQ */
2797 if (xmask == VTBIT_ERROR)
2798 return VARCMP_EQ;
2799 else if (xmask & VTBIT_ERROR)
2800 return DISP_E_TYPEMISMATCH;
2802 if (xmask & VTBIT_NULL)
2803 return VARCMP_NULL;
2805 VariantInit(&lv);
2806 VariantInit(&rv);
2808 /* Two BSTRs, ignore VT_RESERVED */
2809 if (xmask == VTBIT_BSTR)
2810 return VarBstrCmp(V_BSTR(left), V_BSTR(right), lcid, flags);
2812 /* A BSTR and another variant; we have to take care of VT_RESERVED */
2813 if (xmask & VTBIT_BSTR) {
2814 VARIANT *bstrv, *nonbv;
2815 VARTYPE nonbvt;
2816 int swap = 0;
2818 /* Swap the variants so the BSTR is always on the left */
2819 if (lvt == VT_BSTR) {
2820 bstrv = left;
2821 nonbv = right;
2822 nonbvt = rvt;
2823 } else {
2824 swap = 1;
2825 bstrv = right;
2826 nonbv = left;
2827 nonbvt = lvt;
2830 /* BSTR and EMPTY: ignore VT_RESERVED */
2831 if (nonbvt == VT_EMPTY)
2832 rc = (!V_BSTR(bstrv) || !*V_BSTR(bstrv)) ? VARCMP_EQ : VARCMP_GT;
2833 else {
2834 VARTYPE breserv = V_VT(bstrv) & ~VT_TYPEMASK;
2835 VARTYPE nreserv = V_VT(nonbv) & ~VT_TYPEMASK;
2837 if (!breserv && !nreserv)
2838 /* No VT_RESERVED set ==> BSTR always greater */
2839 rc = VARCMP_GT;
2840 else if (breserv && !nreserv) {
2841 /* BSTR has VT_RESERVED set. Do a string comparison */
2842 rc = VariantChangeTypeEx(&rv,nonbv,lcid,0,VT_BSTR);
2843 if (FAILED(rc))
2844 return rc;
2845 rc = VarBstrCmp(V_BSTR(bstrv), V_BSTR(&rv), lcid, flags);
2846 VariantClear(&rv);
2847 } else if (V_BSTR(bstrv) && *V_BSTR(bstrv)) {
2848 /* Non NULL nor empty BSTR */
2849 /* If the BSTR is not a number the BSTR is greater */
2850 rc = _VarChangeTypeExWrap(&lv,bstrv,lcid,0,VT_R8);
2851 if (FAILED(rc))
2852 rc = VARCMP_GT;
2853 else if (breserv && nreserv)
2854 /* FIXME: This is strange: with both VT_RESERVED set it
2855 looks like the result depends only on the sign of
2856 the BSTR number */
2857 rc = (V_R8(&lv) >= 0) ? VARCMP_GT : VARCMP_LT;
2858 else
2859 /* Numeric comparison, will be handled below.
2860 VARCMP_NULL used only to break out. */
2861 rc = VARCMP_NULL;
2862 VariantClear(&lv);
2863 VariantClear(&rv);
2864 } else
2865 /* Empty or NULL BSTR */
2866 rc = VARCMP_GT;
2868 /* Fixup the return code if we swapped left and right */
2869 if (swap) {
2870 if (rc == VARCMP_GT)
2871 rc = VARCMP_LT;
2872 else if (rc == VARCMP_LT)
2873 rc = VARCMP_GT;
2875 if (rc != VARCMP_NULL)
2876 return rc;
2879 if (xmask & VTBIT_DECIMAL)
2880 vt = VT_DECIMAL;
2881 else if (xmask & VTBIT_BSTR)
2882 vt = VT_R8;
2883 else if (xmask & VTBIT_R4)
2884 vt = VT_R4;
2885 else if (xmask & (VTBIT_R8 | VTBIT_DATE))
2886 vt = VT_R8;
2887 else if (xmask & VTBIT_CY)
2888 vt = VT_CY;
2889 else
2890 /* default to I8 */
2891 vt = VT_I8;
2893 /* Coerce the variants */
2894 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2895 if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2896 /* Overflow, change to R8 */
2897 vt = VT_R8;
2898 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2900 if (FAILED(rc))
2901 return rc;
2902 rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2903 if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2904 /* Overflow, change to R8 */
2905 vt = VT_R8;
2906 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2907 if (FAILED(rc))
2908 return rc;
2909 rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2911 if (FAILED(rc))
2912 return rc;
2914 #define _VARCMP(a,b) \
2915 (((a) == (b)) ? VARCMP_EQ : (((a) < (b)) ? VARCMP_LT : VARCMP_GT))
2917 switch (vt) {
2918 case VT_CY:
2919 return VarCyCmp(V_CY(&lv), V_CY(&rv));
2920 case VT_DECIMAL:
2921 return VarDecCmp(&V_DECIMAL(&lv), &V_DECIMAL(&rv));
2922 case VT_I8:
2923 return _VARCMP(V_I8(&lv), V_I8(&rv));
2924 case VT_R4:
2925 return _VARCMP(V_R4(&lv), V_R4(&rv));
2926 case VT_R8:
2927 return _VARCMP(V_R8(&lv), V_R8(&rv));
2928 default:
2929 /* We should never get here */
2930 return E_FAIL;
2932 #undef _VARCMP
2935 static HRESULT VARIANT_FetchDispatchValue(LPVARIANT pvDispatch, LPVARIANT pValue)
2937 HRESULT hres;
2938 static DISPPARAMS emptyParams = { NULL, NULL, 0, 0 };
2940 if ((V_VT(pvDispatch) & VT_TYPEMASK) == VT_DISPATCH) {
2941 if (NULL == V_DISPATCH(pvDispatch)) return DISP_E_TYPEMISMATCH;
2942 hres = IDispatch_Invoke(V_DISPATCH(pvDispatch), DISPID_VALUE, &IID_NULL,
2943 LOCALE_USER_DEFAULT, DISPATCH_PROPERTYGET, &emptyParams, pValue,
2944 NULL, NULL);
2945 } else {
2946 hres = DISP_E_TYPEMISMATCH;
2948 return hres;
2951 /**********************************************************************
2952 * VarAnd [OLEAUT32.142]
2954 * Computes the logical AND of two variants.
2956 * PARAMS
2957 * left [I] First variant
2958 * right [I] Second variant
2959 * result [O] Result variant
2961 * RETURNS
2962 * Success: S_OK.
2963 * Failure: An HRESULT error code indicating the error.
2965 HRESULT WINAPI VarAnd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
2967 HRESULT hres = S_OK;
2968 VARTYPE resvt = VT_EMPTY;
2969 VARTYPE leftvt,rightvt;
2970 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
2971 VARIANT varLeft, varRight;
2972 VARIANT tempLeft, tempRight;
2974 VariantInit(&varLeft);
2975 VariantInit(&varRight);
2976 VariantInit(&tempLeft);
2977 VariantInit(&tempRight);
2979 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
2981 /* Handle VT_DISPATCH by storing and taking address of returned value */
2982 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
2984 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
2985 if (FAILED(hres)) goto VarAnd_Exit;
2986 left = &tempLeft;
2988 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
2990 hres = VARIANT_FetchDispatchValue(right, &tempRight);
2991 if (FAILED(hres)) goto VarAnd_Exit;
2992 right = &tempRight;
2995 leftvt = V_VT(left)&VT_TYPEMASK;
2996 rightvt = V_VT(right)&VT_TYPEMASK;
2997 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
2998 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3000 if (leftExtraFlags != rightExtraFlags)
3002 hres = DISP_E_BADVARTYPE;
3003 goto VarAnd_Exit;
3005 ExtraFlags = leftExtraFlags;
3007 /* Native VarAnd always returns an error when using extra
3008 * flags or if the variant combination is I8 and INT.
3010 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
3011 (leftvt == VT_INT && rightvt == VT_I8) ||
3012 ExtraFlags != 0)
3014 hres = DISP_E_BADVARTYPE;
3015 goto VarAnd_Exit;
3018 /* Determine return type */
3019 else if (leftvt == VT_I8 || rightvt == VT_I8)
3020 resvt = VT_I8;
3021 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
3022 leftvt == VT_UINT || rightvt == VT_UINT ||
3023 leftvt == VT_INT || rightvt == VT_INT ||
3024 leftvt == VT_R4 || rightvt == VT_R4 ||
3025 leftvt == VT_R8 || rightvt == VT_R8 ||
3026 leftvt == VT_CY || rightvt == VT_CY ||
3027 leftvt == VT_DATE || rightvt == VT_DATE ||
3028 leftvt == VT_I1 || rightvt == VT_I1 ||
3029 leftvt == VT_UI2 || rightvt == VT_UI2 ||
3030 leftvt == VT_UI4 || rightvt == VT_UI4 ||
3031 leftvt == VT_UI8 || rightvt == VT_UI8 ||
3032 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3033 resvt = VT_I4;
3034 else if (leftvt == VT_UI1 || rightvt == VT_UI1 ||
3035 leftvt == VT_I2 || rightvt == VT_I2 ||
3036 leftvt == VT_EMPTY || rightvt == VT_EMPTY)
3037 if ((leftvt == VT_NULL && rightvt == VT_UI1) ||
3038 (leftvt == VT_UI1 && rightvt == VT_NULL) ||
3039 (leftvt == VT_UI1 && rightvt == VT_UI1))
3040 resvt = VT_UI1;
3041 else
3042 resvt = VT_I2;
3043 else if (leftvt == VT_BOOL || rightvt == VT_BOOL ||
3044 (leftvt == VT_BSTR && rightvt == VT_BSTR))
3045 resvt = VT_BOOL;
3046 else if (leftvt == VT_NULL || rightvt == VT_NULL ||
3047 leftvt == VT_BSTR || rightvt == VT_BSTR)
3048 resvt = VT_NULL;
3049 else
3051 hres = DISP_E_BADVARTYPE;
3052 goto VarAnd_Exit;
3055 if (leftvt == VT_NULL || rightvt == VT_NULL)
3058 * Special cases for when left variant is VT_NULL
3059 * (VT_NULL & 0 = VT_NULL, VT_NULL & value = value)
3061 if (leftvt == VT_NULL)
3063 VARIANT_BOOL b;
3064 switch(rightvt)
3066 case VT_I1: if (V_I1(right)) resvt = VT_NULL; break;
3067 case VT_UI1: if (V_UI1(right)) resvt = VT_NULL; break;
3068 case VT_I2: if (V_I2(right)) resvt = VT_NULL; break;
3069 case VT_UI2: if (V_UI2(right)) resvt = VT_NULL; break;
3070 case VT_I4: if (V_I4(right)) resvt = VT_NULL; break;
3071 case VT_UI4: if (V_UI4(right)) resvt = VT_NULL; break;
3072 case VT_I8: if (V_I8(right)) resvt = VT_NULL; break;
3073 case VT_UI8: if (V_UI8(right)) resvt = VT_NULL; break;
3074 case VT_INT: if (V_INT(right)) resvt = VT_NULL; break;
3075 case VT_UINT: if (V_UINT(right)) resvt = VT_NULL; break;
3076 case VT_BOOL: if (V_BOOL(right)) resvt = VT_NULL; break;
3077 case VT_R4: if (V_R4(right)) resvt = VT_NULL; break;
3078 case VT_R8: if (V_R8(right)) resvt = VT_NULL; break;
3079 case VT_CY:
3080 if(V_CY(right).int64)
3081 resvt = VT_NULL;
3082 break;
3083 case VT_DECIMAL:
3084 if (DEC_HI32(&V_DECIMAL(right)) ||
3085 DEC_LO64(&V_DECIMAL(right)))
3086 resvt = VT_NULL;
3087 break;
3088 case VT_BSTR:
3089 hres = VarBoolFromStr(V_BSTR(right),
3090 LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
3091 if (FAILED(hres))
3092 return hres;
3093 else if (b)
3094 V_VT(result) = VT_NULL;
3095 else
3097 V_VT(result) = VT_BOOL;
3098 V_BOOL(result) = b;
3100 goto VarAnd_Exit;
3103 V_VT(result) = resvt;
3104 goto VarAnd_Exit;
3107 hres = VariantCopy(&varLeft, left);
3108 if (FAILED(hres)) goto VarAnd_Exit;
3110 hres = VariantCopy(&varRight, right);
3111 if (FAILED(hres)) goto VarAnd_Exit;
3113 if (resvt == VT_I4 && V_VT(&varLeft) == VT_UI4)
3114 V_VT(&varLeft) = VT_I4; /* Don't overflow */
3115 else
3117 double d;
3119 if (V_VT(&varLeft) == VT_BSTR &&
3120 FAILED(VarR8FromStr(V_BSTR(&varLeft),
3121 LOCALE_USER_DEFAULT, 0, &d)))
3122 hres = VariantChangeType(&varLeft,&varLeft,
3123 VARIANT_LOCALBOOL, VT_BOOL);
3124 if (SUCCEEDED(hres) && V_VT(&varLeft) != resvt)
3125 hres = VariantChangeType(&varLeft,&varLeft,0,resvt);
3126 if (FAILED(hres)) goto VarAnd_Exit;
3129 if (resvt == VT_I4 && V_VT(&varRight) == VT_UI4)
3130 V_VT(&varRight) = VT_I4; /* Don't overflow */
3131 else
3133 double d;
3135 if (V_VT(&varRight) == VT_BSTR &&
3136 FAILED(VarR8FromStr(V_BSTR(&varRight),
3137 LOCALE_USER_DEFAULT, 0, &d)))
3138 hres = VariantChangeType(&varRight, &varRight,
3139 VARIANT_LOCALBOOL, VT_BOOL);
3140 if (SUCCEEDED(hres) && V_VT(&varRight) != resvt)
3141 hres = VariantChangeType(&varRight, &varRight, 0, resvt);
3142 if (FAILED(hres)) goto VarAnd_Exit;
3145 V_VT(result) = resvt;
3146 switch(resvt)
3148 case VT_I8:
3149 V_I8(result) = V_I8(&varLeft) & V_I8(&varRight);
3150 break;
3151 case VT_I4:
3152 V_I4(result) = V_I4(&varLeft) & V_I4(&varRight);
3153 break;
3154 case VT_I2:
3155 V_I2(result) = V_I2(&varLeft) & V_I2(&varRight);
3156 break;
3157 case VT_UI1:
3158 V_UI1(result) = V_UI1(&varLeft) & V_UI1(&varRight);
3159 break;
3160 case VT_BOOL:
3161 V_BOOL(result) = V_BOOL(&varLeft) & V_BOOL(&varRight);
3162 break;
3163 default:
3164 FIXME("Couldn't bitwise AND variant types %d,%d\n",
3165 leftvt,rightvt);
3168 VarAnd_Exit:
3169 VariantClear(&varLeft);
3170 VariantClear(&varRight);
3171 VariantClear(&tempLeft);
3172 VariantClear(&tempRight);
3174 return hres;
3177 /**********************************************************************
3178 * VarAdd [OLEAUT32.141]
3180 * Add two variants.
3182 * PARAMS
3183 * left [I] First variant
3184 * right [I] Second variant
3185 * result [O] Result variant
3187 * RETURNS
3188 * Success: S_OK.
3189 * Failure: An HRESULT error code indicating the error.
3191 * NOTES
3192 * Native VarAdd up to and including WinXP doesn't like I1, UI2, UI4,
3193 * UI8, INT and UINT as input variants.
3195 * Native VarAdd doesn't check for NULL in/out pointers and crashes. We do the
3196 * same here.
3198 * FIXME
3199 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3200 * case.
3202 HRESULT WINAPI VarAdd(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3204 HRESULT hres;
3205 VARTYPE lvt, rvt, resvt, tvt;
3206 VARIANT lv, rv, tv;
3207 VARIANT tempLeft, tempRight;
3208 double r8res;
3210 /* Variant priority for coercion. Sorted from lowest to highest.
3211 VT_ERROR shows an invalid input variant type. */
3212 enum coerceprio { vt_EMPTY, vt_UI1, vt_I2, vt_I4, vt_I8, vt_BSTR,vt_R4,
3213 vt_R8, vt_CY, vt_DATE, vt_DECIMAL, vt_DISPATCH, vt_NULL,
3214 vt_ERROR };
3215 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3216 static const VARTYPE prio2vt[] = { VT_EMPTY, VT_UI1, VT_I2, VT_I4, VT_I8, VT_BSTR, VT_R4,
3217 VT_R8, VT_CY, VT_DATE, VT_DECIMAL, VT_DISPATCH,
3218 VT_NULL, VT_ERROR };
3220 /* Mapping for coercion from input variant to priority of result variant. */
3221 static const VARTYPE coerce[] = {
3222 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3223 vt_EMPTY, vt_NULL, vt_I2, vt_I4, vt_R4,
3224 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3225 vt_R8, vt_CY, vt_DATE, vt_BSTR, vt_DISPATCH,
3226 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3227 vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3228 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3229 vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3232 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3234 VariantInit(&lv);
3235 VariantInit(&rv);
3236 VariantInit(&tv);
3237 VariantInit(&tempLeft);
3238 VariantInit(&tempRight);
3240 /* Handle VT_DISPATCH by storing and taking address of returned value */
3241 if ((V_VT(left) & VT_TYPEMASK) != VT_NULL && (V_VT(right) & VT_TYPEMASK) != VT_NULL)
3243 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3245 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3246 if (FAILED(hres)) goto end;
3247 left = &tempLeft;
3249 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3251 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3252 if (FAILED(hres)) goto end;
3253 right = &tempRight;
3257 lvt = V_VT(left)&VT_TYPEMASK;
3258 rvt = V_VT(right)&VT_TYPEMASK;
3260 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3261 Same for any input variant type > VT_I8 */
3262 if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3263 lvt > VT_I8 || rvt > VT_I8) {
3264 hres = DISP_E_BADVARTYPE;
3265 goto end;
3268 /* Determine the variant type to coerce to. */
3269 if (coerce[lvt] > coerce[rvt]) {
3270 resvt = prio2vt[coerce[lvt]];
3271 tvt = prio2vt[coerce[rvt]];
3272 } else {
3273 resvt = prio2vt[coerce[rvt]];
3274 tvt = prio2vt[coerce[lvt]];
3277 /* Special cases where the result variant type is defined by both
3278 input variants and not only that with the highest priority */
3279 if (resvt == VT_BSTR) {
3280 if (tvt == VT_EMPTY || tvt == VT_BSTR)
3281 resvt = VT_BSTR;
3282 else
3283 resvt = VT_R8;
3285 if (resvt == VT_R4 && (tvt == VT_BSTR || tvt == VT_I8 || tvt == VT_I4))
3286 resvt = VT_R8;
3288 /* For overflow detection use the biggest compatible type for the
3289 addition */
3290 switch (resvt) {
3291 case VT_ERROR:
3292 hres = DISP_E_BADVARTYPE;
3293 goto end;
3294 case VT_NULL:
3295 hres = S_OK;
3296 V_VT(result) = VT_NULL;
3297 goto end;
3298 case VT_DISPATCH:
3299 FIXME("cannot handle variant type VT_DISPATCH\n");
3300 hres = DISP_E_TYPEMISMATCH;
3301 goto end;
3302 case VT_EMPTY:
3303 resvt = VT_I2;
3304 /* Fall through */
3305 case VT_UI1:
3306 case VT_I2:
3307 case VT_I4:
3308 case VT_I8:
3309 tvt = VT_I8;
3310 break;
3311 case VT_DATE:
3312 case VT_R4:
3313 tvt = VT_R8;
3314 break;
3315 default:
3316 tvt = resvt;
3319 /* Now coerce the variants */
3320 hres = VariantChangeType(&lv, left, 0, tvt);
3321 if (FAILED(hres))
3322 goto end;
3323 hres = VariantChangeType(&rv, right, 0, tvt);
3324 if (FAILED(hres))
3325 goto end;
3327 /* Do the math */
3328 hres = S_OK;
3329 V_VT(result) = resvt;
3330 switch (tvt) {
3331 case VT_DECIMAL:
3332 hres = VarDecAdd(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3333 &V_DECIMAL(result));
3334 goto end;
3335 case VT_CY:
3336 hres = VarCyAdd(V_CY(&lv), V_CY(&rv), &V_CY(result));
3337 goto end;
3338 case VT_BSTR:
3339 /* We do not add those, we concatenate them. */
3340 hres = VarBstrCat(V_BSTR(&lv), V_BSTR(&rv), &V_BSTR(result));
3341 goto end;
3342 case VT_I8:
3343 /* Overflow detection */
3344 r8res = (double)V_I8(&lv) + (double)V_I8(&rv);
3345 if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3346 V_VT(result) = VT_R8;
3347 V_R8(result) = r8res;
3348 goto end;
3349 } else {
3350 V_VT(&tv) = tvt;
3351 V_I8(&tv) = V_I8(&lv) + V_I8(&rv);
3353 break;
3354 case VT_R8:
3355 V_VT(&tv) = tvt;
3356 /* FIXME: overflow detection */
3357 V_R8(&tv) = V_R8(&lv) + V_R8(&rv);
3358 break;
3359 default:
3360 ERR("We shouldn't get here! tvt = %d!\n", tvt);
3361 break;
3363 if (resvt != tvt) {
3364 if ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3365 /* Overflow! Change to the vartype with the next higher priority.
3366 With one exception: I4 ==> R8 even if it would fit in I8 */
3367 if (resvt == VT_I4)
3368 resvt = VT_R8;
3369 else
3370 resvt = prio2vt[coerce[resvt] + 1];
3371 hres = VariantChangeType(result, &tv, 0, resvt);
3373 } else
3374 hres = VariantCopy(result, &tv);
3376 end:
3377 if (hres != S_OK) {
3378 V_VT(result) = VT_EMPTY;
3379 V_I4(result) = 0; /* No V_EMPTY */
3381 VariantClear(&lv);
3382 VariantClear(&rv);
3383 VariantClear(&tv);
3384 VariantClear(&tempLeft);
3385 VariantClear(&tempRight);
3386 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3387 return hres;
3390 /**********************************************************************
3391 * VarMul [OLEAUT32.156]
3393 * Multiply two variants.
3395 * PARAMS
3396 * left [I] First variant
3397 * right [I] Second variant
3398 * result [O] Result variant
3400 * RETURNS
3401 * Success: S_OK.
3402 * Failure: An HRESULT error code indicating the error.
3404 * NOTES
3405 * Native VarMul up to and including WinXP doesn't like I1, UI2, UI4,
3406 * UI8, INT and UINT as input variants. But it can multiply apples with oranges.
3408 * Native VarMul doesn't check for NULL in/out pointers and crashes. We do the
3409 * same here.
3411 * FIXME
3412 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3413 * case.
3415 HRESULT WINAPI VarMul(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3417 HRESULT hres;
3418 VARTYPE lvt, rvt, resvt, tvt;
3419 VARIANT lv, rv, tv;
3420 VARIANT tempLeft, tempRight;
3421 double r8res;
3423 /* Variant priority for coercion. Sorted from lowest to highest.
3424 VT_ERROR shows an invalid input variant type. */
3425 enum coerceprio { vt_UI1 = 0, vt_I2, vt_I4, vt_I8, vt_CY, vt_R4, vt_R8,
3426 vt_DECIMAL, vt_NULL, vt_ERROR };
3427 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3428 static const VARTYPE prio2vt[] = { VT_UI1, VT_I2, VT_I4, VT_I8, VT_CY, VT_R4, VT_R8,
3429 VT_DECIMAL, VT_NULL, VT_ERROR };
3431 /* Mapping for coercion from input variant to priority of result variant. */
3432 static const VARTYPE coerce[] = {
3433 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3434 vt_UI1, vt_NULL, vt_I2, vt_I4, vt_R4,
3435 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3436 vt_R8, vt_CY, vt_R8, vt_R8, vt_ERROR,
3437 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3438 vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3439 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3440 vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3443 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3445 VariantInit(&lv);
3446 VariantInit(&rv);
3447 VariantInit(&tv);
3448 VariantInit(&tempLeft);
3449 VariantInit(&tempRight);
3451 /* Handle VT_DISPATCH by storing and taking address of returned value */
3452 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3454 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3455 if (FAILED(hres)) goto end;
3456 left = &tempLeft;
3458 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3460 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3461 if (FAILED(hres)) goto end;
3462 right = &tempRight;
3465 lvt = V_VT(left)&VT_TYPEMASK;
3466 rvt = V_VT(right)&VT_TYPEMASK;
3468 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3469 Same for any input variant type > VT_I8 */
3470 if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3471 lvt > VT_I8 || rvt > VT_I8) {
3472 hres = DISP_E_BADVARTYPE;
3473 goto end;
3476 /* Determine the variant type to coerce to. */
3477 if (coerce[lvt] > coerce[rvt]) {
3478 resvt = prio2vt[coerce[lvt]];
3479 tvt = prio2vt[coerce[rvt]];
3480 } else {
3481 resvt = prio2vt[coerce[rvt]];
3482 tvt = prio2vt[coerce[lvt]];
3485 /* Special cases where the result variant type is defined by both
3486 input variants and not only that with the highest priority */
3487 if (resvt == VT_R4 && (tvt == VT_CY || tvt == VT_I8 || tvt == VT_I4))
3488 resvt = VT_R8;
3489 if (lvt == VT_EMPTY && rvt == VT_EMPTY)
3490 resvt = VT_I2;
3492 /* For overflow detection use the biggest compatible type for the
3493 multiplication */
3494 switch (resvt) {
3495 case VT_ERROR:
3496 hres = DISP_E_BADVARTYPE;
3497 goto end;
3498 case VT_NULL:
3499 hres = S_OK;
3500 V_VT(result) = VT_NULL;
3501 goto end;
3502 case VT_UI1:
3503 case VT_I2:
3504 case VT_I4:
3505 case VT_I8:
3506 tvt = VT_I8;
3507 break;
3508 case VT_R4:
3509 tvt = VT_R8;
3510 break;
3511 default:
3512 tvt = resvt;
3515 /* Now coerce the variants */
3516 hres = VariantChangeType(&lv, left, 0, tvt);
3517 if (FAILED(hres))
3518 goto end;
3519 hres = VariantChangeType(&rv, right, 0, tvt);
3520 if (FAILED(hres))
3521 goto end;
3523 /* Do the math */
3524 hres = S_OK;
3525 V_VT(&tv) = tvt;
3526 V_VT(result) = resvt;
3527 switch (tvt) {
3528 case VT_DECIMAL:
3529 hres = VarDecMul(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3530 &V_DECIMAL(result));
3531 goto end;
3532 case VT_CY:
3533 hres = VarCyMul(V_CY(&lv), V_CY(&rv), &V_CY(result));
3534 goto end;
3535 case VT_I8:
3536 /* Overflow detection */
3537 r8res = (double)V_I8(&lv) * (double)V_I8(&rv);
3538 if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3539 V_VT(result) = VT_R8;
3540 V_R8(result) = r8res;
3541 goto end;
3542 } else
3543 V_I8(&tv) = V_I8(&lv) * V_I8(&rv);
3544 break;
3545 case VT_R8:
3546 /* FIXME: overflow detection */
3547 V_R8(&tv) = V_R8(&lv) * V_R8(&rv);
3548 break;
3549 default:
3550 ERR("We shouldn't get here! tvt = %d!\n", tvt);
3551 break;
3553 if (resvt != tvt) {
3554 while ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3555 /* Overflow! Change to the vartype with the next higher priority.
3556 With one exception: I4 ==> R8 even if it would fit in I8 */
3557 if (resvt == VT_I4)
3558 resvt = VT_R8;
3559 else
3560 resvt = prio2vt[coerce[resvt] + 1];
3562 } else
3563 hres = VariantCopy(result, &tv);
3565 end:
3566 if (hres != S_OK) {
3567 V_VT(result) = VT_EMPTY;
3568 V_I4(result) = 0; /* No V_EMPTY */
3570 VariantClear(&lv);
3571 VariantClear(&rv);
3572 VariantClear(&tv);
3573 VariantClear(&tempLeft);
3574 VariantClear(&tempRight);
3575 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3576 return hres;
3579 /**********************************************************************
3580 * VarDiv [OLEAUT32.143]
3582 * Divides one variant with another.
3584 * PARAMS
3585 * left [I] First variant
3586 * right [I] Second variant
3587 * result [O] Result variant
3589 * RETURNS
3590 * Success: S_OK.
3591 * Failure: An HRESULT error code indicating the error.
3593 HRESULT WINAPI VarDiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3595 HRESULT hres = S_OK;
3596 VARTYPE resvt = VT_EMPTY;
3597 VARTYPE leftvt,rightvt;
3598 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3599 VARIANT lv,rv;
3600 VARIANT tempLeft, tempRight;
3602 VariantInit(&tempLeft);
3603 VariantInit(&tempRight);
3604 VariantInit(&lv);
3605 VariantInit(&rv);
3607 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3609 /* Handle VT_DISPATCH by storing and taking address of returned value */
3610 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3612 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3613 if (FAILED(hres)) goto end;
3614 left = &tempLeft;
3616 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3618 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3619 if (FAILED(hres)) goto end;
3620 right = &tempRight;
3623 leftvt = V_VT(left)&VT_TYPEMASK;
3624 rightvt = V_VT(right)&VT_TYPEMASK;
3625 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3626 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3628 if (leftExtraFlags != rightExtraFlags)
3630 hres = DISP_E_BADVARTYPE;
3631 goto end;
3633 ExtraFlags = leftExtraFlags;
3635 /* Native VarDiv always returns an error when using extra flags */
3636 if (ExtraFlags != 0)
3638 hres = DISP_E_BADVARTYPE;
3639 goto end;
3642 /* Determine return type */
3643 if (!(rightvt == VT_EMPTY))
3645 if (leftvt == VT_NULL || rightvt == VT_NULL)
3647 V_VT(result) = VT_NULL;
3648 hres = S_OK;
3649 goto end;
3651 else if (leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3652 resvt = VT_DECIMAL;
3653 else if (leftvt == VT_I8 || rightvt == VT_I8 ||
3654 leftvt == VT_CY || rightvt == VT_CY ||
3655 leftvt == VT_DATE || rightvt == VT_DATE ||
3656 leftvt == VT_I4 || rightvt == VT_I4 ||
3657 leftvt == VT_BSTR || rightvt == VT_BSTR ||
3658 leftvt == VT_I2 || rightvt == VT_I2 ||
3659 leftvt == VT_BOOL || rightvt == VT_BOOL ||
3660 leftvt == VT_R8 || rightvt == VT_R8 ||
3661 leftvt == VT_UI1 || rightvt == VT_UI1)
3663 if ((leftvt == VT_UI1 && rightvt == VT_R4) ||
3664 (leftvt == VT_R4 && rightvt == VT_UI1))
3665 resvt = VT_R4;
3666 else if ((leftvt == VT_R4 && (rightvt == VT_BOOL ||
3667 rightvt == VT_I2)) || (rightvt == VT_R4 &&
3668 (leftvt == VT_BOOL || leftvt == VT_I2)))
3669 resvt = VT_R4;
3670 else
3671 resvt = VT_R8;
3673 else if (leftvt == VT_R4 || rightvt == VT_R4)
3674 resvt = VT_R4;
3676 else if (leftvt == VT_NULL && rightvt == VT_EMPTY)
3678 V_VT(result) = VT_NULL;
3679 hres = S_OK;
3680 goto end;
3682 else
3684 hres = DISP_E_BADVARTYPE;
3685 goto end;
3688 /* coerce to the result type */
3689 hres = VariantChangeType(&lv, left, 0, resvt);
3690 if (hres != S_OK) goto end;
3692 hres = VariantChangeType(&rv, right, 0, resvt);
3693 if (hres != S_OK) goto end;
3695 /* do the math */
3696 V_VT(result) = resvt;
3697 switch (resvt)
3699 case VT_R4:
3700 if (V_R4(&lv) == 0.0 && V_R4(&rv) == 0.0)
3702 hres = DISP_E_OVERFLOW;
3703 V_VT(result) = VT_EMPTY;
3705 else if (V_R4(&rv) == 0.0)
3707 hres = DISP_E_DIVBYZERO;
3708 V_VT(result) = VT_EMPTY;
3710 else
3711 V_R4(result) = V_R4(&lv) / V_R4(&rv);
3712 break;
3713 case VT_R8:
3714 if (V_R8(&lv) == 0.0 && V_R8(&rv) == 0.0)
3716 hres = DISP_E_OVERFLOW;
3717 V_VT(result) = VT_EMPTY;
3719 else if (V_R8(&rv) == 0.0)
3721 hres = DISP_E_DIVBYZERO;
3722 V_VT(result) = VT_EMPTY;
3724 else
3725 V_R8(result) = V_R8(&lv) / V_R8(&rv);
3726 break;
3727 case VT_DECIMAL:
3728 hres = VarDecDiv(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
3729 break;
3732 end:
3733 VariantClear(&lv);
3734 VariantClear(&rv);
3735 VariantClear(&tempLeft);
3736 VariantClear(&tempRight);
3737 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3738 return hres;
3741 /**********************************************************************
3742 * VarSub [OLEAUT32.159]
3744 * Subtract two variants.
3746 * PARAMS
3747 * left [I] First variant
3748 * right [I] Second variant
3749 * result [O] Result variant
3751 * RETURNS
3752 * Success: S_OK.
3753 * Failure: An HRESULT error code indicating the error.
3755 HRESULT WINAPI VarSub(LPVARIANT left, LPVARIANT right, LPVARIANT result)
3757 HRESULT hres = S_OK;
3758 VARTYPE resvt = VT_EMPTY;
3759 VARTYPE leftvt,rightvt;
3760 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3761 VARIANT lv,rv;
3762 VARIANT tempLeft, tempRight;
3764 VariantInit(&lv);
3765 VariantInit(&rv);
3766 VariantInit(&tempLeft);
3767 VariantInit(&tempRight);
3769 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3771 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH &&
3772 (V_VT(left)&(~VT_TYPEMASK)) == 0 &&
3773 (V_VT(right) & VT_TYPEMASK) != VT_NULL)
3775 if (NULL == V_DISPATCH(left)) {
3776 if ((V_VT(right) & VT_TYPEMASK) >= VT_INT_PTR)
3777 hres = DISP_E_BADVARTYPE;
3778 else if ((V_VT(right) & VT_TYPEMASK) >= VT_UI8 &&
3779 (V_VT(right) & VT_TYPEMASK) < VT_RECORD)
3780 hres = DISP_E_BADVARTYPE;
3781 else switch (V_VT(right) & VT_TYPEMASK)
3783 case VT_VARIANT:
3784 case VT_UNKNOWN:
3785 case 15:
3786 case VT_I1:
3787 case VT_UI2:
3788 case VT_UI4:
3789 hres = DISP_E_BADVARTYPE;
3791 if (FAILED(hres)) goto end;
3793 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3794 if (FAILED(hres)) goto end;
3795 left = &tempLeft;
3797 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH &&
3798 (V_VT(right)&(~VT_TYPEMASK)) == 0 &&
3799 (V_VT(left) & VT_TYPEMASK) != VT_NULL)
3801 if (NULL == V_DISPATCH(right))
3803 if ((V_VT(left) & VT_TYPEMASK) >= VT_INT_PTR)
3804 hres = DISP_E_BADVARTYPE;
3805 else if ((V_VT(left) & VT_TYPEMASK) >= VT_UI8 &&
3806 (V_VT(left) & VT_TYPEMASK) < VT_RECORD)
3807 hres = DISP_E_BADVARTYPE;
3808 else switch (V_VT(left) & VT_TYPEMASK)
3810 case VT_VARIANT:
3811 case VT_UNKNOWN:
3812 case 15:
3813 case VT_I1:
3814 case VT_UI2:
3815 case VT_UI4:
3816 hres = DISP_E_BADVARTYPE;
3818 if (FAILED(hres)) goto end;
3820 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3821 if (FAILED(hres)) goto end;
3822 right = &tempRight;
3825 leftvt = V_VT(left)&VT_TYPEMASK;
3826 rightvt = V_VT(right)&VT_TYPEMASK;
3827 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3828 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3830 if (leftExtraFlags != rightExtraFlags)
3832 hres = DISP_E_BADVARTYPE;
3833 goto end;
3835 ExtraFlags = leftExtraFlags;
3837 /* determine return type and return code */
3838 /* All extra flags produce errors */
3839 if (ExtraFlags == (VT_VECTOR|VT_BYREF|VT_RESERVED) ||
3840 ExtraFlags == (VT_VECTOR|VT_RESERVED) ||
3841 ExtraFlags == (VT_VECTOR|VT_BYREF) ||
3842 ExtraFlags == (VT_BYREF|VT_RESERVED) ||
3843 ExtraFlags == VT_VECTOR ||
3844 ExtraFlags == VT_BYREF ||
3845 ExtraFlags == VT_RESERVED)
3847 hres = DISP_E_BADVARTYPE;
3848 goto end;
3850 else if (ExtraFlags >= VT_ARRAY)
3852 hres = DISP_E_TYPEMISMATCH;
3853 goto end;
3855 /* Native VarSub cannot handle: VT_I1, VT_UI2, VT_UI4,
3856 VT_INT, VT_UINT and VT_UI8. Tested with WinXP */
3857 else if (leftvt == VT_CLSID || rightvt == VT_CLSID ||
3858 leftvt == VT_VARIANT || rightvt == VT_VARIANT ||
3859 leftvt == VT_I1 || rightvt == VT_I1 ||
3860 leftvt == VT_UI2 || rightvt == VT_UI2 ||
3861 leftvt == VT_UI4 || rightvt == VT_UI4 ||
3862 leftvt == VT_UI8 || rightvt == VT_UI8 ||
3863 leftvt == VT_INT || rightvt == VT_INT ||
3864 leftvt == VT_UINT || rightvt == VT_UINT ||
3865 leftvt == VT_UNKNOWN || rightvt == VT_UNKNOWN ||
3866 leftvt == VT_RECORD || rightvt == VT_RECORD)
3868 if (leftvt == VT_RECORD && rightvt == VT_I8)
3869 hres = DISP_E_TYPEMISMATCH;
3870 else if (leftvt < VT_UI1 && rightvt == VT_RECORD)
3871 hres = DISP_E_TYPEMISMATCH;
3872 else if (leftvt >= VT_UI1 && rightvt == VT_RECORD)
3873 hres = DISP_E_TYPEMISMATCH;
3874 else if (leftvt == VT_RECORD && rightvt <= VT_UI1)
3875 hres = DISP_E_TYPEMISMATCH;
3876 else if (leftvt == VT_RECORD && rightvt > VT_UI1)
3877 hres = DISP_E_BADVARTYPE;
3878 else
3879 hres = DISP_E_BADVARTYPE;
3880 goto end;
3882 /* The following flags/types are invalid for left variant */
3883 else if (!((leftvt <= VT_LPWSTR || leftvt == VT_RECORD ||
3884 leftvt == VT_CLSID) && leftvt != (VARTYPE)15 /* undefined vt */ &&
3885 (leftvt < VT_VOID || leftvt > VT_LPWSTR)))
3887 hres = DISP_E_BADVARTYPE;
3888 goto end;
3890 /* The following flags/types are invalid for right variant */
3891 else if (!((rightvt <= VT_LPWSTR || rightvt == VT_RECORD ||
3892 rightvt == VT_CLSID) && rightvt != (VARTYPE)15 /* undefined vt */ &&
3893 (rightvt < VT_VOID || rightvt > VT_LPWSTR)))
3895 hres = DISP_E_BADVARTYPE;
3896 goto end;
3898 else if ((leftvt == VT_NULL && rightvt == VT_DISPATCH) ||
3899 (leftvt == VT_DISPATCH && rightvt == VT_NULL))
3900 resvt = VT_NULL;
3901 else if (leftvt == VT_DISPATCH || rightvt == VT_DISPATCH ||
3902 leftvt == VT_ERROR || rightvt == VT_ERROR)
3904 hres = DISP_E_TYPEMISMATCH;
3905 goto end;
3907 else if (leftvt == VT_NULL || rightvt == VT_NULL)
3908 resvt = VT_NULL;
3909 else if ((leftvt == VT_EMPTY && rightvt == VT_BSTR) ||
3910 (leftvt == VT_DATE && rightvt == VT_DATE) ||
3911 (leftvt == VT_BSTR && rightvt == VT_EMPTY) ||
3912 (leftvt == VT_BSTR && rightvt == VT_BSTR))
3913 resvt = VT_R8;
3914 else if (leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3915 resvt = VT_DECIMAL;
3916 else if (leftvt == VT_DATE || rightvt == VT_DATE)
3917 resvt = VT_DATE;
3918 else if (leftvt == VT_CY || rightvt == VT_CY)
3919 resvt = VT_CY;
3920 else if (leftvt == VT_R8 || rightvt == VT_R8)
3921 resvt = VT_R8;
3922 else if (leftvt == VT_BSTR || rightvt == VT_BSTR)
3923 resvt = VT_R8;
3924 else if (leftvt == VT_R4 || rightvt == VT_R4)
3926 if (leftvt == VT_I4 || rightvt == VT_I4 ||
3927 leftvt == VT_I8 || rightvt == VT_I8)
3928 resvt = VT_R8;
3929 else
3930 resvt = VT_R4;
3932 else if (leftvt == VT_I8 || rightvt == VT_I8)
3933 resvt = VT_I8;
3934 else if (leftvt == VT_I4 || rightvt == VT_I4)
3935 resvt = VT_I4;
3936 else if (leftvt == VT_I2 || rightvt == VT_I2 ||
3937 leftvt == VT_BOOL || rightvt == VT_BOOL ||
3938 (leftvt == VT_EMPTY && rightvt == VT_EMPTY))
3939 resvt = VT_I2;
3940 else if (leftvt == VT_UI1 || rightvt == VT_UI1)
3941 resvt = VT_UI1;
3942 else
3944 hres = DISP_E_TYPEMISMATCH;
3945 goto end;
3948 /* coerce to the result type */
3949 if (leftvt == VT_BSTR && rightvt == VT_DATE)
3950 hres = VariantChangeType(&lv, left, 0, VT_R8);
3951 else
3952 hres = VariantChangeType(&lv, left, 0, resvt);
3953 if (hres != S_OK) goto end;
3954 if (leftvt == VT_DATE && rightvt == VT_BSTR)
3955 hres = VariantChangeType(&rv, right, 0, VT_R8);
3956 else
3957 hres = VariantChangeType(&rv, right, 0, resvt);
3958 if (hres != S_OK) goto end;
3960 /* do the math */
3961 V_VT(result) = resvt;
3962 switch (resvt)
3964 case VT_NULL:
3965 break;
3966 case VT_DATE:
3967 V_DATE(result) = V_DATE(&lv) - V_DATE(&rv);
3968 break;
3969 case VT_CY:
3970 hres = VarCySub(V_CY(&lv), V_CY(&rv), &(V_CY(result)));
3971 break;
3972 case VT_R4:
3973 V_R4(result) = V_R4(&lv) - V_R4(&rv);
3974 break;
3975 case VT_I8:
3976 V_I8(result) = V_I8(&lv) - V_I8(&rv);
3977 break;
3978 case VT_I4:
3979 V_I4(result) = V_I4(&lv) - V_I4(&rv);
3980 break;
3981 case VT_I2:
3982 V_I2(result) = V_I2(&lv) - V_I2(&rv);
3983 break;
3984 case VT_I1:
3985 V_I1(result) = V_I1(&lv) - V_I1(&rv);
3986 break;
3987 case VT_UI1:
3988 V_UI1(result) = V_UI2(&lv) - V_UI1(&rv);
3989 break;
3990 case VT_R8:
3991 V_R8(result) = V_R8(&lv) - V_R8(&rv);
3992 break;
3993 case VT_DECIMAL:
3994 hres = VarDecSub(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
3995 break;
3998 end:
3999 VariantClear(&lv);
4000 VariantClear(&rv);
4001 VariantClear(&tempLeft);
4002 VariantClear(&tempRight);
4003 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
4004 return hres;
4008 /**********************************************************************
4009 * VarOr [OLEAUT32.157]
4011 * Perform a logical or (OR) operation on two variants.
4013 * PARAMS
4014 * pVarLeft [I] First variant
4015 * pVarRight [I] Variant to OR with pVarLeft
4016 * pVarOut [O] Destination for OR result
4018 * RETURNS
4019 * Success: S_OK. pVarOut contains the result of the operation with its type
4020 * taken from the table listed under VarXor().
4021 * Failure: An HRESULT error code indicating the error.
4023 * NOTES
4024 * See the Notes section of VarXor() for further information.
4026 HRESULT WINAPI VarOr(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4028 VARTYPE vt = VT_I4;
4029 VARIANT varLeft, varRight, varStr;
4030 HRESULT hRet;
4031 VARIANT tempLeft, tempRight;
4033 VariantInit(&tempLeft);
4034 VariantInit(&tempRight);
4035 VariantInit(&varLeft);
4036 VariantInit(&varRight);
4037 VariantInit(&varStr);
4039 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
4041 /* Handle VT_DISPATCH by storing and taking address of returned value */
4042 if ((V_VT(pVarLeft) & VT_TYPEMASK) == VT_DISPATCH)
4044 hRet = VARIANT_FetchDispatchValue(pVarLeft, &tempLeft);
4045 if (FAILED(hRet)) goto VarOr_Exit;
4046 pVarLeft = &tempLeft;
4048 if ((V_VT(pVarRight) & VT_TYPEMASK) == VT_DISPATCH)
4050 hRet = VARIANT_FetchDispatchValue(pVarRight, &tempRight);
4051 if (FAILED(hRet)) goto VarOr_Exit;
4052 pVarRight = &tempRight;
4055 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
4056 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
4057 V_VT(pVarLeft) == VT_DISPATCH || V_VT(pVarRight) == VT_DISPATCH ||
4058 V_VT(pVarLeft) == VT_RECORD || V_VT(pVarRight) == VT_RECORD)
4060 hRet = DISP_E_BADVARTYPE;
4061 goto VarOr_Exit;
4064 V_VT(&varLeft) = V_VT(&varRight) = V_VT(&varStr) = VT_EMPTY;
4066 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
4068 /* NULL OR Zero is NULL, NULL OR value is value */
4069 if (V_VT(pVarLeft) == VT_NULL)
4070 pVarLeft = pVarRight; /* point to the non-NULL var */
4072 V_VT(pVarOut) = VT_NULL;
4073 V_I4(pVarOut) = 0;
4075 switch (V_VT(pVarLeft))
4077 case VT_DATE: case VT_R8:
4078 if (V_R8(pVarLeft))
4079 goto VarOr_AsEmpty;
4080 hRet = S_OK;
4081 goto VarOr_Exit;
4082 case VT_BOOL:
4083 if (V_BOOL(pVarLeft))
4084 *pVarOut = *pVarLeft;
4085 hRet = S_OK;
4086 goto VarOr_Exit;
4087 case VT_I2: case VT_UI2:
4088 if (V_I2(pVarLeft))
4089 goto VarOr_AsEmpty;
4090 hRet = S_OK;
4091 goto VarOr_Exit;
4092 case VT_I1:
4093 if (V_I1(pVarLeft))
4094 goto VarOr_AsEmpty;
4095 hRet = S_OK;
4096 goto VarOr_Exit;
4097 case VT_UI1:
4098 if (V_UI1(pVarLeft))
4099 *pVarOut = *pVarLeft;
4100 hRet = S_OK;
4101 goto VarOr_Exit;
4102 case VT_R4:
4103 if (V_R4(pVarLeft))
4104 goto VarOr_AsEmpty;
4105 hRet = S_OK;
4106 goto VarOr_Exit;
4107 case VT_I4: case VT_UI4: case VT_INT: case VT_UINT:
4108 if (V_I4(pVarLeft))
4109 goto VarOr_AsEmpty;
4110 hRet = S_OK;
4111 goto VarOr_Exit;
4112 case VT_CY:
4113 if (V_CY(pVarLeft).int64)
4114 goto VarOr_AsEmpty;
4115 hRet = S_OK;
4116 goto VarOr_Exit;
4117 case VT_I8: case VT_UI8:
4118 if (V_I8(pVarLeft))
4119 goto VarOr_AsEmpty;
4120 hRet = S_OK;
4121 goto VarOr_Exit;
4122 case VT_DECIMAL:
4123 if (DEC_HI32(&V_DECIMAL(pVarLeft)) || DEC_LO64(&V_DECIMAL(pVarLeft)))
4124 goto VarOr_AsEmpty;
4125 hRet = S_OK;
4126 goto VarOr_Exit;
4127 case VT_BSTR:
4129 VARIANT_BOOL b;
4131 if (!V_BSTR(pVarLeft))
4133 hRet = DISP_E_BADVARTYPE;
4134 goto VarOr_Exit;
4137 hRet = VarBoolFromStr(V_BSTR(pVarLeft), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
4138 if (SUCCEEDED(hRet) && b)
4140 V_VT(pVarOut) = VT_BOOL;
4141 V_BOOL(pVarOut) = b;
4143 goto VarOr_Exit;
4145 case VT_NULL: case VT_EMPTY:
4146 V_VT(pVarOut) = VT_NULL;
4147 hRet = S_OK;
4148 goto VarOr_Exit;
4149 default:
4150 hRet = DISP_E_BADVARTYPE;
4151 goto VarOr_Exit;
4155 if (V_VT(pVarLeft) == VT_EMPTY || V_VT(pVarRight) == VT_EMPTY)
4157 if (V_VT(pVarLeft) == VT_EMPTY)
4158 pVarLeft = pVarRight; /* point to the non-EMPTY var */
4160 VarOr_AsEmpty:
4161 /* Since one argument is empty (0), OR'ing it with the other simply
4162 * gives the others value (as 0|x => x). So just convert the other
4163 * argument to the required result type.
4165 switch (V_VT(pVarLeft))
4167 case VT_BSTR:
4168 if (!V_BSTR(pVarLeft))
4170 hRet = DISP_E_BADVARTYPE;
4171 goto VarOr_Exit;
4174 hRet = VariantCopy(&varStr, pVarLeft);
4175 if (FAILED(hRet))
4176 goto VarOr_Exit;
4177 pVarLeft = &varStr;
4178 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
4179 if (FAILED(hRet))
4180 goto VarOr_Exit;
4181 /* Fall Through ... */
4182 case VT_EMPTY: case VT_UI1: case VT_BOOL: case VT_I2:
4183 V_VT(pVarOut) = VT_I2;
4184 break;
4185 case VT_DATE: case VT_CY: case VT_DECIMAL: case VT_R4: case VT_R8:
4186 case VT_I1: case VT_UI2: case VT_I4: case VT_UI4:
4187 case VT_INT: case VT_UINT: case VT_UI8:
4188 V_VT(pVarOut) = VT_I4;
4189 break;
4190 case VT_I8:
4191 V_VT(pVarOut) = VT_I8;
4192 break;
4193 default:
4194 hRet = DISP_E_BADVARTYPE;
4195 goto VarOr_Exit;
4197 hRet = VariantCopy(&varLeft, pVarLeft);
4198 if (FAILED(hRet))
4199 goto VarOr_Exit;
4200 pVarLeft = &varLeft;
4201 hRet = VariantChangeType(pVarOut, pVarLeft, 0, V_VT(pVarOut));
4202 goto VarOr_Exit;
4205 if (V_VT(pVarLeft) == VT_BOOL && V_VT(pVarRight) == VT_BOOL)
4207 V_VT(pVarOut) = VT_BOOL;
4208 V_BOOL(pVarOut) = V_BOOL(pVarLeft) | V_BOOL(pVarRight);
4209 hRet = S_OK;
4210 goto VarOr_Exit;
4213 if (V_VT(pVarLeft) == VT_UI1 && V_VT(pVarRight) == VT_UI1)
4215 V_VT(pVarOut) = VT_UI1;
4216 V_UI1(pVarOut) = V_UI1(pVarLeft) | V_UI1(pVarRight);
4217 hRet = S_OK;
4218 goto VarOr_Exit;
4221 if (V_VT(pVarLeft) == VT_BSTR)
4223 hRet = VariantCopy(&varStr, pVarLeft);
4224 if (FAILED(hRet))
4225 goto VarOr_Exit;
4226 pVarLeft = &varStr;
4227 hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL);
4228 if (FAILED(hRet))
4229 goto VarOr_Exit;
4232 if (V_VT(pVarLeft) == VT_BOOL &&
4233 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_BSTR))
4235 vt = VT_BOOL;
4237 else if ((V_VT(pVarLeft) == VT_BOOL || V_VT(pVarLeft) == VT_UI1 ||
4238 V_VT(pVarLeft) == VT_I2 || V_VT(pVarLeft) == VT_BSTR) &&
4239 (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_UI1 ||
4240 V_VT(pVarRight) == VT_I2 || V_VT(pVarRight) == VT_BSTR))
4242 vt = VT_I2;
4244 else if (V_VT(pVarLeft) == VT_I8 || V_VT(pVarRight) == VT_I8)
4246 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
4248 hRet = DISP_E_TYPEMISMATCH;
4249 goto VarOr_Exit;
4251 vt = VT_I8;
4254 hRet = VariantCopy(&varLeft, pVarLeft);
4255 if (FAILED(hRet))
4256 goto VarOr_Exit;
4258 hRet = VariantCopy(&varRight, pVarRight);
4259 if (FAILED(hRet))
4260 goto VarOr_Exit;
4262 if (vt == VT_I4 && V_VT(&varLeft) == VT_UI4)
4263 V_VT(&varLeft) = VT_I4; /* Don't overflow */
4264 else
4266 double d;
4268 if (V_VT(&varLeft) == VT_BSTR &&
4269 FAILED(VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d)))
4270 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL, VT_BOOL);
4271 if (SUCCEEDED(hRet) && V_VT(&varLeft) != vt)
4272 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
4273 if (FAILED(hRet))
4274 goto VarOr_Exit;
4277 if (vt == VT_I4 && V_VT(&varRight) == VT_UI4)
4278 V_VT(&varRight) = VT_I4; /* Don't overflow */
4279 else
4281 double d;
4283 if (V_VT(&varRight) == VT_BSTR &&
4284 FAILED(VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d)))
4285 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL, VT_BOOL);
4286 if (SUCCEEDED(hRet) && V_VT(&varRight) != vt)
4287 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
4288 if (FAILED(hRet))
4289 goto VarOr_Exit;
4292 V_VT(pVarOut) = vt;
4293 if (vt == VT_I8)
4295 V_I8(pVarOut) = V_I8(&varLeft) | V_I8(&varRight);
4297 else if (vt == VT_I4)
4299 V_I4(pVarOut) = V_I4(&varLeft) | V_I4(&varRight);
4301 else
4303 V_I2(pVarOut) = V_I2(&varLeft) | V_I2(&varRight);
4306 VarOr_Exit:
4307 VariantClear(&varStr);
4308 VariantClear(&varLeft);
4309 VariantClear(&varRight);
4310 VariantClear(&tempLeft);
4311 VariantClear(&tempRight);
4312 return hRet;
4315 /**********************************************************************
4316 * VarAbs [OLEAUT32.168]
4318 * Convert a variant to its absolute value.
4320 * PARAMS
4321 * pVarIn [I] Source variant
4322 * pVarOut [O] Destination for converted value
4324 * RETURNS
4325 * Success: S_OK. pVarOut contains the absolute value of pVarIn.
4326 * Failure: An HRESULT error code indicating the error.
4328 * NOTES
4329 * - This function does not process by-reference variants.
4330 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4331 * according to the following table:
4332 *| Input Type Output Type
4333 *| ---------- -----------
4334 *| VT_BOOL VT_I2
4335 *| VT_BSTR VT_R8
4336 *| (All others) Unchanged
4338 HRESULT WINAPI VarAbs(LPVARIANT pVarIn, LPVARIANT pVarOut)
4340 VARIANT varIn;
4341 HRESULT hRet = S_OK;
4342 VARIANT temp;
4344 VariantInit(&temp);
4346 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4348 /* Handle VT_DISPATCH by storing and taking address of returned value */
4349 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4351 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4352 if (FAILED(hRet)) goto VarAbs_Exit;
4353 pVarIn = &temp;
4356 if (V_ISARRAY(pVarIn) || V_VT(pVarIn) == VT_UNKNOWN ||
4357 V_VT(pVarIn) == VT_DISPATCH || V_VT(pVarIn) == VT_RECORD ||
4358 V_VT(pVarIn) == VT_ERROR)
4360 hRet = DISP_E_TYPEMISMATCH;
4361 goto VarAbs_Exit;
4363 *pVarOut = *pVarIn; /* Shallow copy the value, and invert it if needed */
4365 #define ABS_CASE(typ,min) \
4366 case VT_##typ: if (V_##typ(pVarIn) == min) hRet = DISP_E_OVERFLOW; \
4367 else if (V_##typ(pVarIn) < 0) V_##typ(pVarOut) = -V_##typ(pVarIn); \
4368 break
4370 switch (V_VT(pVarIn))
4372 ABS_CASE(I1,I1_MIN);
4373 case VT_BOOL:
4374 V_VT(pVarOut) = VT_I2;
4375 /* BOOL->I2, Fall through ... */
4376 ABS_CASE(I2,I2_MIN);
4377 case VT_INT:
4378 ABS_CASE(I4,I4_MIN);
4379 ABS_CASE(I8,I8_MIN);
4380 ABS_CASE(R4,R4_MIN);
4381 case VT_BSTR:
4382 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
4383 if (FAILED(hRet))
4384 break;
4385 V_VT(pVarOut) = VT_R8;
4386 pVarIn = &varIn;
4387 /* Fall through ... */
4388 case VT_DATE:
4389 ABS_CASE(R8,R8_MIN);
4390 case VT_CY:
4391 hRet = VarCyAbs(V_CY(pVarIn), & V_CY(pVarOut));
4392 break;
4393 case VT_DECIMAL:
4394 DEC_SIGN(&V_DECIMAL(pVarOut)) &= ~DECIMAL_NEG;
4395 break;
4396 case VT_UI1:
4397 case VT_UI2:
4398 case VT_UINT:
4399 case VT_UI4:
4400 case VT_UI8:
4401 /* No-Op */
4402 break;
4403 case VT_EMPTY:
4404 V_VT(pVarOut) = VT_I2;
4405 case VT_NULL:
4406 V_I2(pVarOut) = 0;
4407 break;
4408 default:
4409 hRet = DISP_E_BADVARTYPE;
4412 VarAbs_Exit:
4413 VariantClear(&temp);
4414 return hRet;
4417 /**********************************************************************
4418 * VarFix [OLEAUT32.169]
4420 * Truncate a variants value to a whole number.
4422 * PARAMS
4423 * pVarIn [I] Source variant
4424 * pVarOut [O] Destination for converted value
4426 * RETURNS
4427 * Success: S_OK. pVarOut contains the converted value.
4428 * Failure: An HRESULT error code indicating the error.
4430 * NOTES
4431 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4432 * according to the following table:
4433 *| Input Type Output Type
4434 *| ---------- -----------
4435 *| VT_BOOL VT_I2
4436 *| VT_EMPTY VT_I2
4437 *| VT_BSTR VT_R8
4438 *| All Others Unchanged
4439 * - The difference between this function and VarInt() is that VarInt() rounds
4440 * negative numbers away from 0, while this function rounds them towards zero.
4442 HRESULT WINAPI VarFix(LPVARIANT pVarIn, LPVARIANT pVarOut)
4444 HRESULT hRet = S_OK;
4445 VARIANT temp;
4447 VariantInit(&temp);
4449 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4451 /* Handle VT_DISPATCH by storing and taking address of returned value */
4452 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4454 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4455 if (FAILED(hRet)) goto VarFix_Exit;
4456 pVarIn = &temp;
4458 V_VT(pVarOut) = V_VT(pVarIn);
4460 switch (V_VT(pVarIn))
4462 case VT_UI1:
4463 V_UI1(pVarOut) = V_UI1(pVarIn);
4464 break;
4465 case VT_BOOL:
4466 V_VT(pVarOut) = VT_I2;
4467 /* Fall through */
4468 case VT_I2:
4469 V_I2(pVarOut) = V_I2(pVarIn);
4470 break;
4471 case VT_I4:
4472 V_I4(pVarOut) = V_I4(pVarIn);
4473 break;
4474 case VT_I8:
4475 V_I8(pVarOut) = V_I8(pVarIn);
4476 break;
4477 case VT_R4:
4478 if (V_R4(pVarIn) < 0.0f)
4479 V_R4(pVarOut) = (float)ceil(V_R4(pVarIn));
4480 else
4481 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
4482 break;
4483 case VT_BSTR:
4484 V_VT(pVarOut) = VT_R8;
4485 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4486 pVarIn = pVarOut;
4487 /* Fall through */
4488 case VT_DATE:
4489 case VT_R8:
4490 if (V_R8(pVarIn) < 0.0)
4491 V_R8(pVarOut) = ceil(V_R8(pVarIn));
4492 else
4493 V_R8(pVarOut) = floor(V_R8(pVarIn));
4494 break;
4495 case VT_CY:
4496 hRet = VarCyFix(V_CY(pVarIn), &V_CY(pVarOut));
4497 break;
4498 case VT_DECIMAL:
4499 hRet = VarDecFix(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4500 break;
4501 case VT_EMPTY:
4502 V_VT(pVarOut) = VT_I2;
4503 V_I2(pVarOut) = 0;
4504 break;
4505 case VT_NULL:
4506 /* No-Op */
4507 break;
4508 default:
4509 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4510 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4511 hRet = DISP_E_BADVARTYPE;
4512 else
4513 hRet = DISP_E_TYPEMISMATCH;
4515 VarFix_Exit:
4516 if (FAILED(hRet))
4517 V_VT(pVarOut) = VT_EMPTY;
4518 VariantClear(&temp);
4520 return hRet;
4523 /**********************************************************************
4524 * VarInt [OLEAUT32.172]
4526 * Truncate a variants value to a whole number.
4528 * PARAMS
4529 * pVarIn [I] Source variant
4530 * pVarOut [O] Destination for converted value
4532 * RETURNS
4533 * Success: S_OK. pVarOut contains the converted value.
4534 * Failure: An HRESULT error code indicating the error.
4536 * NOTES
4537 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4538 * according to the following table:
4539 *| Input Type Output Type
4540 *| ---------- -----------
4541 *| VT_BOOL VT_I2
4542 *| VT_EMPTY VT_I2
4543 *| VT_BSTR VT_R8
4544 *| All Others Unchanged
4545 * - The difference between this function and VarFix() is that VarFix() rounds
4546 * negative numbers towards 0, while this function rounds them away from zero.
4548 HRESULT WINAPI VarInt(LPVARIANT pVarIn, LPVARIANT pVarOut)
4550 HRESULT hRet = S_OK;
4551 VARIANT temp;
4553 VariantInit(&temp);
4555 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4557 /* Handle VT_DISPATCH by storing and taking address of returned value */
4558 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4560 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4561 if (FAILED(hRet)) goto VarInt_Exit;
4562 pVarIn = &temp;
4564 V_VT(pVarOut) = V_VT(pVarIn);
4566 switch (V_VT(pVarIn))
4568 case VT_R4:
4569 V_R4(pVarOut) = (float)floor(V_R4(pVarIn));
4570 break;
4571 case VT_BSTR:
4572 V_VT(pVarOut) = VT_R8;
4573 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4574 pVarIn = pVarOut;
4575 /* Fall through */
4576 case VT_DATE:
4577 case VT_R8:
4578 V_R8(pVarOut) = floor(V_R8(pVarIn));
4579 break;
4580 case VT_CY:
4581 hRet = VarCyInt(V_CY(pVarIn), &V_CY(pVarOut));
4582 break;
4583 case VT_DECIMAL:
4584 hRet = VarDecInt(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4585 break;
4586 default:
4587 hRet = VarFix(pVarIn, pVarOut);
4589 VarInt_Exit:
4590 VariantClear(&temp);
4592 return hRet;
4595 /**********************************************************************
4596 * VarXor [OLEAUT32.167]
4598 * Perform a logical exclusive-or (XOR) operation on two variants.
4600 * PARAMS
4601 * pVarLeft [I] First variant
4602 * pVarRight [I] Variant to XOR with pVarLeft
4603 * pVarOut [O] Destination for XOR result
4605 * RETURNS
4606 * Success: S_OK. pVarOut contains the result of the operation with its type
4607 * taken from the table below).
4608 * Failure: An HRESULT error code indicating the error.
4610 * NOTES
4611 * - Neither pVarLeft or pVarRight are modified by this function.
4612 * - This function does not process by-reference variants.
4613 * - Input types of VT_BSTR may be numeric strings or boolean text.
4614 * - The type of result stored in pVarOut depends on the types of pVarLeft
4615 * and pVarRight, and will be one of VT_UI1, VT_I2, VT_I4, VT_I8, VT_BOOL,
4616 * or VT_NULL if the function succeeds.
4617 * - Type promotion is inconsistent and as a result certain combinations of
4618 * values will return DISP_E_OVERFLOW even when they could be represented.
4619 * This matches the behaviour of native oleaut32.
4621 HRESULT WINAPI VarXor(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4623 VARTYPE vt;
4624 VARIANT varLeft, varRight;
4625 VARIANT tempLeft, tempRight;
4626 double d;
4627 HRESULT hRet;
4629 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
4631 if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
4632 V_VT(pVarLeft) > VT_UINT || V_VT(pVarRight) > VT_UINT ||
4633 V_VT(pVarLeft) == VT_VARIANT || V_VT(pVarRight) == VT_VARIANT ||
4634 V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
4635 V_VT(pVarLeft) == (VARTYPE)15 || V_VT(pVarRight) == (VARTYPE)15 ||
4636 V_VT(pVarLeft) == VT_ERROR || V_VT(pVarRight) == VT_ERROR)
4637 return DISP_E_BADVARTYPE;
4639 if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
4641 /* NULL XOR anything valid is NULL */
4642 V_VT(pVarOut) = VT_NULL;
4643 return S_OK;
4646 VariantInit(&tempLeft);
4647 VariantInit(&tempRight);
4649 /* Handle VT_DISPATCH by storing and taking address of returned value */
4650 if ((V_VT(pVarLeft) & VT_TYPEMASK) == VT_DISPATCH)
4652 hRet = VARIANT_FetchDispatchValue(pVarLeft, &tempLeft);
4653 if (FAILED(hRet)) goto VarXor_Exit;
4654 pVarLeft = &tempLeft;
4656 if ((V_VT(pVarRight) & VT_TYPEMASK) == VT_DISPATCH)
4658 hRet = VARIANT_FetchDispatchValue(pVarRight, &tempRight);
4659 if (FAILED(hRet)) goto VarXor_Exit;
4660 pVarRight = &tempRight;
4663 /* Copy our inputs so we don't disturb anything */
4664 V_VT(&varLeft) = V_VT(&varRight) = VT_EMPTY;
4666 hRet = VariantCopy(&varLeft, pVarLeft);
4667 if (FAILED(hRet))
4668 goto VarXor_Exit;
4670 hRet = VariantCopy(&varRight, pVarRight);
4671 if (FAILED(hRet))
4672 goto VarXor_Exit;
4674 /* Try any strings first as numbers, then as VT_BOOL */
4675 if (V_VT(&varLeft) == VT_BSTR)
4677 hRet = VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d);
4678 hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL,
4679 FAILED(hRet) ? VT_BOOL : VT_I4);
4680 if (FAILED(hRet))
4681 goto VarXor_Exit;
4684 if (V_VT(&varRight) == VT_BSTR)
4686 hRet = VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d);
4687 hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL,
4688 FAILED(hRet) ? VT_BOOL : VT_I4);
4689 if (FAILED(hRet))
4690 goto VarXor_Exit;
4693 /* Determine the result type */
4694 if (V_VT(&varLeft) == VT_I8 || V_VT(&varRight) == VT_I8)
4696 if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT)
4698 hRet = DISP_E_TYPEMISMATCH;
4699 goto VarXor_Exit;
4701 vt = VT_I8;
4703 else
4705 switch ((V_VT(&varLeft) << 16) | V_VT(&varRight))
4707 case (VT_BOOL << 16) | VT_BOOL:
4708 vt = VT_BOOL;
4709 break;
4710 case (VT_UI1 << 16) | VT_UI1:
4711 vt = VT_UI1;
4712 break;
4713 case (VT_EMPTY << 16) | VT_EMPTY:
4714 case (VT_EMPTY << 16) | VT_UI1:
4715 case (VT_EMPTY << 16) | VT_I2:
4716 case (VT_EMPTY << 16) | VT_BOOL:
4717 case (VT_UI1 << 16) | VT_EMPTY:
4718 case (VT_UI1 << 16) | VT_I2:
4719 case (VT_UI1 << 16) | VT_BOOL:
4720 case (VT_I2 << 16) | VT_EMPTY:
4721 case (VT_I2 << 16) | VT_UI1:
4722 case (VT_I2 << 16) | VT_I2:
4723 case (VT_I2 << 16) | VT_BOOL:
4724 case (VT_BOOL << 16) | VT_EMPTY:
4725 case (VT_BOOL << 16) | VT_UI1:
4726 case (VT_BOOL << 16) | VT_I2:
4727 vt = VT_I2;
4728 break;
4729 default:
4730 vt = VT_I4;
4731 break;
4735 /* VT_UI4 does not overflow */
4736 if (vt != VT_I8)
4738 if (V_VT(&varLeft) == VT_UI4)
4739 V_VT(&varLeft) = VT_I4;
4740 if (V_VT(&varRight) == VT_UI4)
4741 V_VT(&varRight) = VT_I4;
4744 /* Convert our input copies to the result type */
4745 if (V_VT(&varLeft) != vt)
4746 hRet = VariantChangeType(&varLeft, &varLeft, 0, vt);
4747 if (FAILED(hRet))
4748 goto VarXor_Exit;
4750 if (V_VT(&varRight) != vt)
4751 hRet = VariantChangeType(&varRight, &varRight, 0, vt);
4752 if (FAILED(hRet))
4753 goto VarXor_Exit;
4755 V_VT(pVarOut) = vt;
4757 /* Calculate the result */
4758 switch (vt)
4760 case VT_I8:
4761 V_I8(pVarOut) = V_I8(&varLeft) ^ V_I8(&varRight);
4762 break;
4763 case VT_I4:
4764 V_I4(pVarOut) = V_I4(&varLeft) ^ V_I4(&varRight);
4765 break;
4766 case VT_BOOL:
4767 case VT_I2:
4768 V_I2(pVarOut) = V_I2(&varLeft) ^ V_I2(&varRight);
4769 break;
4770 case VT_UI1:
4771 V_UI1(pVarOut) = V_UI1(&varLeft) ^ V_UI1(&varRight);
4772 break;
4775 VarXor_Exit:
4776 VariantClear(&varLeft);
4777 VariantClear(&varRight);
4778 VariantClear(&tempLeft);
4779 VariantClear(&tempRight);
4780 return hRet;
4783 /**********************************************************************
4784 * VarEqv [OLEAUT32.172]
4786 * Determine if two variants contain the same value.
4788 * PARAMS
4789 * pVarLeft [I] First variant to compare
4790 * pVarRight [I] Variant to compare to pVarLeft
4791 * pVarOut [O] Destination for comparison result
4793 * RETURNS
4794 * Success: S_OK. pVarOut contains the result of the comparison (VARIANT_TRUE
4795 * if equivalent or non-zero otherwise.
4796 * Failure: An HRESULT error code indicating the error.
4798 * NOTES
4799 * - This function simply calls VarXor() on pVarLeft and pVarRight and inverts
4800 * the result.
4802 HRESULT WINAPI VarEqv(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
4804 HRESULT hRet;
4806 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
4808 hRet = VarXor(pVarLeft, pVarRight, pVarOut);
4809 if (SUCCEEDED(hRet))
4811 if (V_VT(pVarOut) == VT_I8)
4812 V_I8(pVarOut) = ~V_I8(pVarOut);
4813 else
4814 V_UI4(pVarOut) = ~V_UI4(pVarOut);
4816 return hRet;
4819 /**********************************************************************
4820 * VarNeg [OLEAUT32.173]
4822 * Negate the value of a variant.
4824 * PARAMS
4825 * pVarIn [I] Source variant
4826 * pVarOut [O] Destination for converted value
4828 * RETURNS
4829 * Success: S_OK. pVarOut contains the converted value.
4830 * Failure: An HRESULT error code indicating the error.
4832 * NOTES
4833 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4834 * according to the following table:
4835 *| Input Type Output Type
4836 *| ---------- -----------
4837 *| VT_EMPTY VT_I2
4838 *| VT_UI1 VT_I2
4839 *| VT_BOOL VT_I2
4840 *| VT_BSTR VT_R8
4841 *| All Others Unchanged (unless promoted)
4842 * - Where the negated value of a variant does not fit in its base type, the type
4843 * is promoted according to the following table:
4844 *| Input Type Promoted To
4845 *| ---------- -----------
4846 *| VT_I2 VT_I4
4847 *| VT_I4 VT_R8
4848 *| VT_I8 VT_R8
4849 * - The native version of this function returns DISP_E_BADVARTYPE for valid
4850 * variant types that cannot be negated, and returns DISP_E_TYPEMISMATCH
4851 * for types which are not valid. Since this is in contravention of the
4852 * meaning of those error codes and unlikely to be relied on by applications,
4853 * this implementation returns errors consistent with the other high level
4854 * variant math functions.
4856 HRESULT WINAPI VarNeg(LPVARIANT pVarIn, LPVARIANT pVarOut)
4858 HRESULT hRet = S_OK;
4859 VARIANT temp;
4861 VariantInit(&temp);
4863 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4865 /* Handle VT_DISPATCH by storing and taking address of returned value */
4866 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4868 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4869 if (FAILED(hRet)) goto VarNeg_Exit;
4870 pVarIn = &temp;
4872 V_VT(pVarOut) = V_VT(pVarIn);
4874 switch (V_VT(pVarIn))
4876 case VT_UI1:
4877 V_VT(pVarOut) = VT_I2;
4878 V_I2(pVarOut) = -V_UI1(pVarIn);
4879 break;
4880 case VT_BOOL:
4881 V_VT(pVarOut) = VT_I2;
4882 /* Fall through */
4883 case VT_I2:
4884 if (V_I2(pVarIn) == I2_MIN)
4886 V_VT(pVarOut) = VT_I4;
4887 V_I4(pVarOut) = -(int)V_I2(pVarIn);
4889 else
4890 V_I2(pVarOut) = -V_I2(pVarIn);
4891 break;
4892 case VT_I4:
4893 if (V_I4(pVarIn) == I4_MIN)
4895 V_VT(pVarOut) = VT_R8;
4896 V_R8(pVarOut) = -(double)V_I4(pVarIn);
4898 else
4899 V_I4(pVarOut) = -V_I4(pVarIn);
4900 break;
4901 case VT_I8:
4902 if (V_I8(pVarIn) == I8_MIN)
4904 V_VT(pVarOut) = VT_R8;
4905 hRet = VarR8FromI8(V_I8(pVarIn), &V_R8(pVarOut));
4906 V_R8(pVarOut) *= -1.0;
4908 else
4909 V_I8(pVarOut) = -V_I8(pVarIn);
4910 break;
4911 case VT_R4:
4912 V_R4(pVarOut) = -V_R4(pVarIn);
4913 break;
4914 case VT_DATE:
4915 case VT_R8:
4916 V_R8(pVarOut) = -V_R8(pVarIn);
4917 break;
4918 case VT_CY:
4919 hRet = VarCyNeg(V_CY(pVarIn), &V_CY(pVarOut));
4920 break;
4921 case VT_DECIMAL:
4922 hRet = VarDecNeg(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut));
4923 break;
4924 case VT_BSTR:
4925 V_VT(pVarOut) = VT_R8;
4926 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut));
4927 V_R8(pVarOut) = -V_R8(pVarOut);
4928 break;
4929 case VT_EMPTY:
4930 V_VT(pVarOut) = VT_I2;
4931 V_I2(pVarOut) = 0;
4932 break;
4933 case VT_NULL:
4934 /* No-Op */
4935 break;
4936 default:
4937 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
4938 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
4939 hRet = DISP_E_BADVARTYPE;
4940 else
4941 hRet = DISP_E_TYPEMISMATCH;
4943 VarNeg_Exit:
4944 if (FAILED(hRet))
4945 V_VT(pVarOut) = VT_EMPTY;
4946 VariantClear(&temp);
4948 return hRet;
4951 /**********************************************************************
4952 * VarNot [OLEAUT32.174]
4954 * Perform a not operation on a variant.
4956 * PARAMS
4957 * pVarIn [I] Source variant
4958 * pVarOut [O] Destination for converted value
4960 * RETURNS
4961 * Success: S_OK. pVarOut contains the converted value.
4962 * Failure: An HRESULT error code indicating the error.
4964 * NOTES
4965 * - Strictly speaking, this function performs a bitwise ones complement
4966 * on the variants value (after possibly converting to VT_I4, see below).
4967 * This only behaves like a boolean not operation if the value in
4968 * pVarIn is either VARIANT_TRUE or VARIANT_FALSE and the type is signed.
4969 * - To perform a genuine not operation, convert the variant to a VT_BOOL
4970 * before calling this function.
4971 * - This function does not process by-reference variants.
4972 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4973 * according to the following table:
4974 *| Input Type Output Type
4975 *| ---------- -----------
4976 *| VT_EMPTY VT_I2
4977 *| VT_R4 VT_I4
4978 *| VT_R8 VT_I4
4979 *| VT_BSTR VT_I4
4980 *| VT_DECIMAL VT_I4
4981 *| VT_CY VT_I4
4982 *| (All others) Unchanged
4984 HRESULT WINAPI VarNot(LPVARIANT pVarIn, LPVARIANT pVarOut)
4986 VARIANT varIn;
4987 HRESULT hRet = S_OK;
4988 VARIANT temp;
4990 VariantInit(&temp);
4992 TRACE("(%s,%p)\n", debugstr_variant(pVarIn), pVarOut);
4994 /* Handle VT_DISPATCH by storing and taking address of returned value */
4995 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
4997 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
4998 if (FAILED(hRet)) goto VarNot_Exit;
4999 pVarIn = &temp;
5002 if (V_VT(pVarIn) == VT_BSTR)
5004 V_VT(&varIn) = VT_R8;
5005 hRet = VarR8FromStr( V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn) );
5006 if (FAILED(hRet))
5008 V_VT(&varIn) = VT_BOOL;
5009 hRet = VarBoolFromStr( V_BSTR(pVarIn), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &V_BOOL(&varIn) );
5011 if (FAILED(hRet)) goto VarNot_Exit;
5012 pVarIn = &varIn;
5015 V_VT(pVarOut) = V_VT(pVarIn);
5017 switch (V_VT(pVarIn))
5019 case VT_I1:
5020 V_I4(pVarOut) = ~V_I1(pVarIn);
5021 V_VT(pVarOut) = VT_I4;
5022 break;
5023 case VT_UI1: V_UI1(pVarOut) = ~V_UI1(pVarIn); break;
5024 case VT_BOOL:
5025 case VT_I2: V_I2(pVarOut) = ~V_I2(pVarIn); break;
5026 case VT_UI2:
5027 V_I4(pVarOut) = ~V_UI2(pVarIn);
5028 V_VT(pVarOut) = VT_I4;
5029 break;
5030 case VT_DECIMAL:
5031 hRet = VarI4FromDec(&V_DECIMAL(pVarIn), &V_I4(&varIn));
5032 if (FAILED(hRet))
5033 break;
5034 pVarIn = &varIn;
5035 /* Fall through ... */
5036 case VT_INT:
5037 V_VT(pVarOut) = VT_I4;
5038 /* Fall through ... */
5039 case VT_I4: V_I4(pVarOut) = ~V_I4(pVarIn); break;
5040 case VT_UINT:
5041 case VT_UI4:
5042 V_I4(pVarOut) = ~V_UI4(pVarIn);
5043 V_VT(pVarOut) = VT_I4;
5044 break;
5045 case VT_I8: V_I8(pVarOut) = ~V_I8(pVarIn); break;
5046 case VT_UI8:
5047 V_I4(pVarOut) = ~V_UI8(pVarIn);
5048 V_VT(pVarOut) = VT_I4;
5049 break;
5050 case VT_R4:
5051 hRet = VarI4FromR4(V_R4(pVarIn), &V_I4(pVarOut));
5052 V_I4(pVarOut) = ~V_I4(pVarOut);
5053 V_VT(pVarOut) = VT_I4;
5054 break;
5055 case VT_DATE:
5056 case VT_R8:
5057 hRet = VarI4FromR8(V_R8(pVarIn), &V_I4(pVarOut));
5058 V_I4(pVarOut) = ~V_I4(pVarOut);
5059 V_VT(pVarOut) = VT_I4;
5060 break;
5061 case VT_CY:
5062 hRet = VarI4FromCy(V_CY(pVarIn), &V_I4(pVarOut));
5063 V_I4(pVarOut) = ~V_I4(pVarOut);
5064 V_VT(pVarOut) = VT_I4;
5065 break;
5066 case VT_EMPTY:
5067 V_I2(pVarOut) = ~0;
5068 V_VT(pVarOut) = VT_I2;
5069 break;
5070 case VT_NULL:
5071 /* No-Op */
5072 break;
5073 default:
5074 if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */
5075 FAILED(VARIANT_ValidateType(V_VT(pVarIn))))
5076 hRet = DISP_E_BADVARTYPE;
5077 else
5078 hRet = DISP_E_TYPEMISMATCH;
5080 VarNot_Exit:
5081 if (FAILED(hRet))
5082 V_VT(pVarOut) = VT_EMPTY;
5083 VariantClear(&temp);
5085 return hRet;
5088 /**********************************************************************
5089 * VarRound [OLEAUT32.175]
5091 * Perform a round operation on a variant.
5093 * PARAMS
5094 * pVarIn [I] Source variant
5095 * deci [I] Number of decimals to round to
5096 * pVarOut [O] Destination for converted value
5098 * RETURNS
5099 * Success: S_OK. pVarOut contains the converted value.
5100 * Failure: An HRESULT error code indicating the error.
5102 * NOTES
5103 * - Floating point values are rounded to the desired number of decimals.
5104 * - Some integer types are just copied to the return variable.
5105 * - Some other integer types are not handled and fail.
5107 HRESULT WINAPI VarRound(LPVARIANT pVarIn, int deci, LPVARIANT pVarOut)
5109 VARIANT varIn;
5110 HRESULT hRet = S_OK;
5111 float factor;
5112 VARIANT temp;
5114 VariantInit(&temp);
5116 TRACE("(%s,%d)\n", debugstr_variant(pVarIn), deci);
5118 /* Handle VT_DISPATCH by storing and taking address of returned value */
5119 if ((V_VT(pVarIn) & VT_TYPEMASK) == VT_DISPATCH && ((V_VT(pVarIn) & ~VT_TYPEMASK) == 0))
5121 hRet = VARIANT_FetchDispatchValue(pVarIn, &temp);
5122 if (FAILED(hRet)) goto VarRound_Exit;
5123 pVarIn = &temp;
5126 switch (V_VT(pVarIn))
5128 /* cases that fail on windows */
5129 case VT_I1:
5130 case VT_I8:
5131 case VT_UI2:
5132 case VT_UI4:
5133 hRet = DISP_E_BADVARTYPE;
5134 break;
5136 /* cases just copying in to out */
5137 case VT_UI1:
5138 V_VT(pVarOut) = V_VT(pVarIn);
5139 V_UI1(pVarOut) = V_UI1(pVarIn);
5140 break;
5141 case VT_I2:
5142 V_VT(pVarOut) = V_VT(pVarIn);
5143 V_I2(pVarOut) = V_I2(pVarIn);
5144 break;
5145 case VT_I4:
5146 V_VT(pVarOut) = V_VT(pVarIn);
5147 V_I4(pVarOut) = V_I4(pVarIn);
5148 break;
5149 case VT_NULL:
5150 V_VT(pVarOut) = V_VT(pVarIn);
5151 /* value unchanged */
5152 break;
5154 /* cases that change type */
5155 case VT_EMPTY:
5156 V_VT(pVarOut) = VT_I2;
5157 V_I2(pVarOut) = 0;
5158 break;
5159 case VT_BOOL:
5160 V_VT(pVarOut) = VT_I2;
5161 V_I2(pVarOut) = V_BOOL(pVarIn);
5162 break;
5163 case VT_BSTR:
5164 hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn));
5165 if (FAILED(hRet))
5166 break;
5167 V_VT(&varIn)=VT_R8;
5168 pVarIn = &varIn;
5169 /* Fall through ... */
5171 /* cases we need to do math */
5172 case VT_R8:
5173 if (V_R8(pVarIn)>0) {
5174 V_R8(pVarOut)=floor(V_R8(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5175 } else {
5176 V_R8(pVarOut)=ceil(V_R8(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5178 V_VT(pVarOut) = V_VT(pVarIn);
5179 break;
5180 case VT_R4:
5181 if (V_R4(pVarIn)>0) {
5182 V_R4(pVarOut)=floor(V_R4(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5183 } else {
5184 V_R4(pVarOut)=ceil(V_R4(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5186 V_VT(pVarOut) = V_VT(pVarIn);
5187 break;
5188 case VT_DATE:
5189 if (V_DATE(pVarIn)>0) {
5190 V_DATE(pVarOut)=floor(V_DATE(pVarIn)*pow(10, deci)+0.5)/pow(10, deci);
5191 } else {
5192 V_DATE(pVarOut)=ceil(V_DATE(pVarIn)*pow(10, deci)-0.5)/pow(10, deci);
5194 V_VT(pVarOut) = V_VT(pVarIn);
5195 break;
5196 case VT_CY:
5197 if (deci>3)
5198 factor=1;
5199 else
5200 factor=pow(10, 4-deci);
5202 if (V_CY(pVarIn).int64>0) {
5203 V_CY(pVarOut).int64=floor(V_CY(pVarIn).int64/factor)*factor;
5204 } else {
5205 V_CY(pVarOut).int64=ceil(V_CY(pVarIn).int64/factor)*factor;
5207 V_VT(pVarOut) = V_VT(pVarIn);
5208 break;
5210 /* cases we don't know yet */
5211 default:
5212 FIXME("unimplemented part, V_VT(pVarIn) == 0x%X, deci == %d\n",
5213 V_VT(pVarIn) & VT_TYPEMASK, deci);
5214 hRet = DISP_E_BADVARTYPE;
5216 VarRound_Exit:
5217 if (FAILED(hRet))
5218 V_VT(pVarOut) = VT_EMPTY;
5219 VariantClear(&temp);
5221 TRACE("returning 0x%08x %s\n", hRet, debugstr_variant(pVarOut));
5222 return hRet;
5225 /**********************************************************************
5226 * VarIdiv [OLEAUT32.153]
5228 * Converts input variants to integers and divides them.
5230 * PARAMS
5231 * left [I] Left hand variant
5232 * right [I] Right hand variant
5233 * result [O] Destination for quotient
5235 * RETURNS
5236 * Success: S_OK. result contains the quotient.
5237 * Failure: An HRESULT error code indicating the error.
5239 * NOTES
5240 * If either expression is null, null is returned, as per MSDN
5242 HRESULT WINAPI VarIdiv(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5244 HRESULT hres = S_OK;
5245 VARTYPE resvt = VT_EMPTY;
5246 VARTYPE leftvt,rightvt;
5247 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5248 VARIANT lv,rv;
5249 VARIANT tempLeft, tempRight;
5251 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5253 VariantInit(&lv);
5254 VariantInit(&rv);
5255 VariantInit(&tempLeft);
5256 VariantInit(&tempRight);
5258 leftvt = V_VT(left)&VT_TYPEMASK;
5259 rightvt = V_VT(right)&VT_TYPEMASK;
5260 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5261 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5263 if (leftExtraFlags != rightExtraFlags)
5265 hres = DISP_E_BADVARTYPE;
5266 goto end;
5268 ExtraFlags = leftExtraFlags;
5270 /* Native VarIdiv always returns an error when using extra
5271 * flags or if the variant combination is I8 and INT.
5273 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
5274 (leftvt == VT_INT && rightvt == VT_I8) ||
5275 (rightvt == VT_EMPTY && leftvt != VT_NULL) ||
5276 ExtraFlags != 0)
5278 hres = DISP_E_BADVARTYPE;
5279 goto end;
5282 /* Determine variant type */
5283 else if (leftvt == VT_NULL || rightvt == VT_NULL)
5285 V_VT(result) = VT_NULL;
5286 hres = S_OK;
5287 goto end;
5289 else if (leftvt == VT_I8 || rightvt == VT_I8)
5290 resvt = VT_I8;
5291 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
5292 leftvt == VT_INT || rightvt == VT_INT ||
5293 leftvt == VT_UINT || rightvt == VT_UINT ||
5294 leftvt == VT_UI8 || rightvt == VT_UI8 ||
5295 leftvt == VT_UI4 || rightvt == VT_UI4 ||
5296 leftvt == VT_UI2 || rightvt == VT_UI2 ||
5297 leftvt == VT_I1 || rightvt == VT_I1 ||
5298 leftvt == VT_BSTR || rightvt == VT_BSTR ||
5299 leftvt == VT_DATE || rightvt == VT_DATE ||
5300 leftvt == VT_CY || rightvt == VT_CY ||
5301 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL ||
5302 leftvt == VT_R8 || rightvt == VT_R8 ||
5303 leftvt == VT_R4 || rightvt == VT_R4)
5304 resvt = VT_I4;
5305 else if (leftvt == VT_I2 || rightvt == VT_I2 ||
5306 leftvt == VT_BOOL || rightvt == VT_BOOL ||
5307 leftvt == VT_EMPTY)
5308 resvt = VT_I2;
5309 else if (leftvt == VT_UI1 || rightvt == VT_UI1)
5310 resvt = VT_UI1;
5311 else
5313 hres = DISP_E_BADVARTYPE;
5314 goto end;
5317 /* coerce to the result type */
5318 hres = VariantChangeType(&lv, left, 0, resvt);
5319 if (hres != S_OK) goto end;
5320 hres = VariantChangeType(&rv, right, 0, resvt);
5321 if (hres != S_OK) goto end;
5323 /* do the math */
5324 V_VT(result) = resvt;
5325 switch (resvt)
5327 case VT_UI1:
5328 if (V_UI1(&rv) == 0)
5330 hres = DISP_E_DIVBYZERO;
5331 V_VT(result) = VT_EMPTY;
5333 else
5334 V_UI1(result) = V_UI1(&lv) / V_UI1(&rv);
5335 break;
5336 case VT_I2:
5337 if (V_I2(&rv) == 0)
5339 hres = DISP_E_DIVBYZERO;
5340 V_VT(result) = VT_EMPTY;
5342 else
5343 V_I2(result) = V_I2(&lv) / V_I2(&rv);
5344 break;
5345 case VT_I4:
5346 if (V_I4(&rv) == 0)
5348 hres = DISP_E_DIVBYZERO;
5349 V_VT(result) = VT_EMPTY;
5351 else
5352 V_I4(result) = V_I4(&lv) / V_I4(&rv);
5353 break;
5354 case VT_I8:
5355 if (V_I8(&rv) == 0)
5357 hres = DISP_E_DIVBYZERO;
5358 V_VT(result) = VT_EMPTY;
5360 else
5361 V_I8(result) = V_I8(&lv) / V_I8(&rv);
5362 break;
5363 default:
5364 FIXME("Couldn't integer divide variant types %d,%d\n",
5365 leftvt,rightvt);
5368 end:
5369 VariantClear(&lv);
5370 VariantClear(&rv);
5371 VariantClear(&tempLeft);
5372 VariantClear(&tempRight);
5374 return hres;
5378 /**********************************************************************
5379 * VarMod [OLEAUT32.155]
5381 * Perform the modulus operation of the right hand variant on the left
5383 * PARAMS
5384 * left [I] Left hand variant
5385 * right [I] Right hand variant
5386 * result [O] Destination for converted value
5388 * RETURNS
5389 * Success: S_OK. result contains the remainder.
5390 * Failure: An HRESULT error code indicating the error.
5392 * NOTE:
5393 * If an error occurs the type of result will be modified but the value will not be.
5394 * Doesn't support arrays or any special flags yet.
5396 HRESULT WINAPI VarMod(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5398 BOOL lOk = TRUE;
5399 HRESULT rc = E_FAIL;
5400 int resT = 0;
5401 VARIANT lv,rv;
5402 VARIANT tempLeft, tempRight;
5404 VariantInit(&tempLeft);
5405 VariantInit(&tempRight);
5406 VariantInit(&lv);
5407 VariantInit(&rv);
5409 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5411 /* Handle VT_DISPATCH by storing and taking address of returned value */
5412 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5414 rc = VARIANT_FetchDispatchValue(left, &tempLeft);
5415 if (FAILED(rc)) goto end;
5416 left = &tempLeft;
5418 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5420 rc = VARIANT_FetchDispatchValue(right, &tempRight);
5421 if (FAILED(rc)) goto end;
5422 right = &tempRight;
5425 /* check for invalid inputs */
5426 lOk = TRUE;
5427 switch (V_VT(left) & VT_TYPEMASK) {
5428 case VT_BOOL :
5429 case VT_I1 :
5430 case VT_I2 :
5431 case VT_I4 :
5432 case VT_I8 :
5433 case VT_INT :
5434 case VT_UI1 :
5435 case VT_UI2 :
5436 case VT_UI4 :
5437 case VT_UI8 :
5438 case VT_UINT :
5439 case VT_R4 :
5440 case VT_R8 :
5441 case VT_CY :
5442 case VT_EMPTY:
5443 case VT_DATE :
5444 case VT_BSTR :
5445 case VT_DECIMAL:
5446 break;
5447 case VT_VARIANT:
5448 case VT_UNKNOWN:
5449 V_VT(result) = VT_EMPTY;
5450 rc = DISP_E_TYPEMISMATCH;
5451 goto end;
5452 case VT_ERROR:
5453 rc = DISP_E_TYPEMISMATCH;
5454 goto end;
5455 case VT_RECORD:
5456 V_VT(result) = VT_EMPTY;
5457 rc = DISP_E_TYPEMISMATCH;
5458 goto end;
5459 case VT_NULL:
5460 break;
5461 default:
5462 V_VT(result) = VT_EMPTY;
5463 rc = DISP_E_BADVARTYPE;
5464 goto end;
5468 switch (V_VT(right) & VT_TYPEMASK) {
5469 case VT_BOOL :
5470 case VT_I1 :
5471 case VT_I2 :
5472 case VT_I4 :
5473 case VT_I8 :
5474 if((V_VT(left) == VT_INT) && (V_VT(right) == VT_I8))
5476 V_VT(result) = VT_EMPTY;
5477 rc = DISP_E_TYPEMISMATCH;
5478 goto end;
5480 case VT_INT :
5481 if((V_VT(right) == VT_INT) && (V_VT(left) == VT_I8))
5483 V_VT(result) = VT_EMPTY;
5484 rc = DISP_E_TYPEMISMATCH;
5485 goto end;
5487 case VT_UI1 :
5488 case VT_UI2 :
5489 case VT_UI4 :
5490 case VT_UI8 :
5491 case VT_UINT :
5492 case VT_R4 :
5493 case VT_R8 :
5494 case VT_CY :
5495 if(V_VT(left) == VT_EMPTY)
5497 V_VT(result) = VT_I4;
5498 rc = S_OK;
5499 goto end;
5501 case VT_EMPTY:
5502 case VT_DATE :
5503 case VT_DECIMAL:
5504 if(V_VT(left) == VT_ERROR)
5506 V_VT(result) = VT_EMPTY;
5507 rc = DISP_E_TYPEMISMATCH;
5508 goto end;
5510 case VT_BSTR:
5511 if(V_VT(left) == VT_NULL)
5513 V_VT(result) = VT_NULL;
5514 rc = S_OK;
5515 goto end;
5517 break;
5519 case VT_VOID:
5520 V_VT(result) = VT_EMPTY;
5521 rc = DISP_E_BADVARTYPE;
5522 goto end;
5523 case VT_NULL:
5524 if(V_VT(left) == VT_VOID)
5526 V_VT(result) = VT_EMPTY;
5527 rc = DISP_E_BADVARTYPE;
5528 } else if((V_VT(left) == VT_NULL) || (V_VT(left) == VT_EMPTY) || (V_VT(left) == VT_ERROR) ||
5529 lOk)
5531 V_VT(result) = VT_NULL;
5532 rc = S_OK;
5533 } else
5535 V_VT(result) = VT_NULL;
5536 rc = DISP_E_BADVARTYPE;
5538 goto end;
5539 case VT_VARIANT:
5540 case VT_UNKNOWN:
5541 V_VT(result) = VT_EMPTY;
5542 rc = DISP_E_TYPEMISMATCH;
5543 goto end;
5544 case VT_ERROR:
5545 rc = DISP_E_TYPEMISMATCH;
5546 goto end;
5547 case VT_RECORD:
5548 if((V_VT(left) == 15) || ((V_VT(left) >= 24) && (V_VT(left) <= 35)) || !lOk)
5550 V_VT(result) = VT_EMPTY;
5551 rc = DISP_E_BADVARTYPE;
5552 } else
5554 V_VT(result) = VT_EMPTY;
5555 rc = DISP_E_TYPEMISMATCH;
5557 goto end;
5558 default:
5559 V_VT(result) = VT_EMPTY;
5560 rc = DISP_E_BADVARTYPE;
5561 goto end;
5564 /* determine the result type */
5565 if((V_VT(left) == VT_I8) || (V_VT(right) == VT_I8)) resT = VT_I8;
5566 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5567 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_UI1)) resT = VT_UI1;
5568 else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_I2)) resT = VT_I2;
5569 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5570 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_UI1)) resT = VT_I2;
5571 else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_I2)) resT = VT_I2;
5572 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_BOOL)) resT = VT_I2;
5573 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_UI1)) resT = VT_I2;
5574 else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_I2)) resT = VT_I2;
5575 else resT = VT_I4; /* most outputs are I4 */
5577 /* convert to I8 for the modulo */
5578 rc = VariantChangeType(&lv, left, 0, VT_I8);
5579 if(FAILED(rc))
5581 FIXME("Could not convert left type %d to %d? rc == 0x%X\n", V_VT(left), VT_I8, rc);
5582 goto end;
5585 rc = VariantChangeType(&rv, right, 0, VT_I8);
5586 if(FAILED(rc))
5588 FIXME("Could not convert right type %d to %d? rc == 0x%X\n", V_VT(right), VT_I8, rc);
5589 goto end;
5592 /* if right is zero set VT_EMPTY and return divide by zero */
5593 if(V_I8(&rv) == 0)
5595 V_VT(result) = VT_EMPTY;
5596 rc = DISP_E_DIVBYZERO;
5597 goto end;
5600 /* perform the modulo operation */
5601 V_VT(result) = VT_I8;
5602 V_I8(result) = V_I8(&lv) % V_I8(&rv);
5604 TRACE("V_I8(left) == %s, V_I8(right) == %s, V_I8(result) == %s\n",
5605 wine_dbgstr_longlong(V_I8(&lv)), wine_dbgstr_longlong(V_I8(&rv)),
5606 wine_dbgstr_longlong(V_I8(result)));
5608 /* convert left and right to the destination type */
5609 rc = VariantChangeType(result, result, 0, resT);
5610 if(FAILED(rc))
5612 FIXME("Could not convert 0x%x to %d?\n", V_VT(result), resT);
5613 /* fall to end of function */
5616 end:
5617 VariantClear(&lv);
5618 VariantClear(&rv);
5619 VariantClear(&tempLeft);
5620 VariantClear(&tempRight);
5621 return rc;
5624 /**********************************************************************
5625 * VarPow [OLEAUT32.158]
5627 * Computes the power of one variant to another variant.
5629 * PARAMS
5630 * left [I] First variant
5631 * right [I] Second variant
5632 * result [O] Result variant
5634 * RETURNS
5635 * Success: S_OK.
5636 * Failure: An HRESULT error code indicating the error.
5638 HRESULT WINAPI VarPow(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5640 HRESULT hr = S_OK;
5641 VARIANT dl,dr;
5642 VARTYPE resvt = VT_EMPTY;
5643 VARTYPE leftvt,rightvt;
5644 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5645 VARIANT tempLeft, tempRight;
5647 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5649 VariantInit(&dl);
5650 VariantInit(&dr);
5651 VariantInit(&tempLeft);
5652 VariantInit(&tempRight);
5654 /* Handle VT_DISPATCH by storing and taking address of returned value */
5655 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5657 hr = VARIANT_FetchDispatchValue(left, &tempLeft);
5658 if (FAILED(hr)) goto end;
5659 left = &tempLeft;
5661 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5663 hr = VARIANT_FetchDispatchValue(right, &tempRight);
5664 if (FAILED(hr)) goto end;
5665 right = &tempRight;
5668 leftvt = V_VT(left)&VT_TYPEMASK;
5669 rightvt = V_VT(right)&VT_TYPEMASK;
5670 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5671 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5673 if (leftExtraFlags != rightExtraFlags)
5675 hr = DISP_E_BADVARTYPE;
5676 goto end;
5678 ExtraFlags = leftExtraFlags;
5680 /* Native VarPow always returns an error when using extra flags */
5681 if (ExtraFlags != 0)
5683 hr = DISP_E_BADVARTYPE;
5684 goto end;
5687 /* Determine return type */
5688 else if (leftvt == VT_NULL || rightvt == VT_NULL) {
5689 V_VT(result) = VT_NULL;
5690 hr = S_OK;
5691 goto end;
5693 else if ((leftvt == VT_EMPTY || leftvt == VT_I2 ||
5694 leftvt == VT_I4 || leftvt == VT_R4 ||
5695 leftvt == VT_R8 || leftvt == VT_CY ||
5696 leftvt == VT_DATE || leftvt == VT_BSTR ||
5697 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
5698 (leftvt >= VT_I1 && leftvt <= VT_UINT)) &&
5699 (rightvt == VT_EMPTY || rightvt == VT_I2 ||
5700 rightvt == VT_I4 || rightvt == VT_R4 ||
5701 rightvt == VT_R8 || rightvt == VT_CY ||
5702 rightvt == VT_DATE || rightvt == VT_BSTR ||
5703 rightvt == VT_BOOL || rightvt == VT_DECIMAL ||
5704 (rightvt >= VT_I1 && rightvt <= VT_UINT)))
5705 resvt = VT_R8;
5706 else
5708 hr = DISP_E_BADVARTYPE;
5709 goto end;
5712 hr = VariantChangeType(&dl,left,0,resvt);
5713 if (FAILED(hr)) {
5714 ERR("Could not change passed left argument to VT_R8, handle it differently.\n");
5715 hr = E_FAIL;
5716 goto end;
5719 hr = VariantChangeType(&dr,right,0,resvt);
5720 if (FAILED(hr)) {
5721 ERR("Could not change passed right argument to VT_R8, handle it differently.\n");
5722 hr = E_FAIL;
5723 goto end;
5726 V_VT(result) = VT_R8;
5727 V_R8(result) = pow(V_R8(&dl),V_R8(&dr));
5729 end:
5730 VariantClear(&dl);
5731 VariantClear(&dr);
5732 VariantClear(&tempLeft);
5733 VariantClear(&tempRight);
5735 return hr;
5738 /**********************************************************************
5739 * VarImp [OLEAUT32.154]
5741 * Bitwise implication of two variants.
5743 * PARAMS
5744 * left [I] First variant
5745 * right [I] Second variant
5746 * result [O] Result variant
5748 * RETURNS
5749 * Success: S_OK.
5750 * Failure: An HRESULT error code indicating the error.
5752 HRESULT WINAPI VarImp(LPVARIANT left, LPVARIANT right, LPVARIANT result)
5754 HRESULT hres = S_OK;
5755 VARTYPE resvt = VT_EMPTY;
5756 VARTYPE leftvt,rightvt;
5757 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
5758 VARIANT lv,rv;
5759 double d;
5760 VARIANT tempLeft, tempRight;
5762 VariantInit(&lv);
5763 VariantInit(&rv);
5764 VariantInit(&tempLeft);
5765 VariantInit(&tempRight);
5767 TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
5769 /* Handle VT_DISPATCH by storing and taking address of returned value */
5770 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
5772 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
5773 if (FAILED(hres)) goto VarImp_Exit;
5774 left = &tempLeft;
5776 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
5778 hres = VARIANT_FetchDispatchValue(right, &tempRight);
5779 if (FAILED(hres)) goto VarImp_Exit;
5780 right = &tempRight;
5783 leftvt = V_VT(left)&VT_TYPEMASK;
5784 rightvt = V_VT(right)&VT_TYPEMASK;
5785 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
5786 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
5788 if (leftExtraFlags != rightExtraFlags)
5790 hres = DISP_E_BADVARTYPE;
5791 goto VarImp_Exit;
5793 ExtraFlags = leftExtraFlags;
5795 /* Native VarImp always returns an error when using extra
5796 * flags or if the variants are I8 and INT.
5798 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
5799 ExtraFlags != 0)
5801 hres = DISP_E_BADVARTYPE;
5802 goto VarImp_Exit;
5805 /* Determine result type */
5806 else if ((leftvt == VT_NULL && rightvt == VT_NULL) ||
5807 (leftvt == VT_NULL && rightvt == VT_EMPTY))
5809 V_VT(result) = VT_NULL;
5810 hres = S_OK;
5811 goto VarImp_Exit;
5813 else if (leftvt == VT_I8 || rightvt == VT_I8)
5814 resvt = VT_I8;
5815 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
5816 leftvt == VT_INT || rightvt == VT_INT ||
5817 leftvt == VT_UINT || rightvt == VT_UINT ||
5818 leftvt == VT_UI4 || rightvt == VT_UI4 ||
5819 leftvt == VT_UI8 || rightvt == VT_UI8 ||
5820 leftvt == VT_UI2 || rightvt == VT_UI2 ||
5821 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL ||
5822 leftvt == VT_DATE || rightvt == VT_DATE ||
5823 leftvt == VT_CY || rightvt == VT_CY ||
5824 leftvt == VT_R8 || rightvt == VT_R8 ||
5825 leftvt == VT_R4 || rightvt == VT_R4 ||
5826 leftvt == VT_I1 || rightvt == VT_I1)
5827 resvt = VT_I4;
5828 else if ((leftvt == VT_UI1 && rightvt == VT_UI1) ||
5829 (leftvt == VT_UI1 && rightvt == VT_NULL) ||
5830 (leftvt == VT_NULL && rightvt == VT_UI1))
5831 resvt = VT_UI1;
5832 else if (leftvt == VT_EMPTY || rightvt == VT_EMPTY ||
5833 leftvt == VT_I2 || rightvt == VT_I2 ||
5834 leftvt == VT_UI1 || rightvt == VT_UI1)
5835 resvt = VT_I2;
5836 else if (leftvt == VT_BOOL || rightvt == VT_BOOL ||
5837 leftvt == VT_BSTR || rightvt == VT_BSTR)
5838 resvt = VT_BOOL;
5840 /* VT_NULL requires special handling for when the opposite
5841 * variant is equal to something other than -1.
5842 * (NULL Imp 0 = NULL, NULL Imp n = n)
5844 if (leftvt == VT_NULL)
5846 VARIANT_BOOL b;
5847 switch(rightvt)
5849 case VT_I1: if (!V_I1(right)) resvt = VT_NULL; break;
5850 case VT_UI1: if (!V_UI1(right)) resvt = VT_NULL; break;
5851 case VT_I2: if (!V_I2(right)) resvt = VT_NULL; break;
5852 case VT_UI2: if (!V_UI2(right)) resvt = VT_NULL; break;
5853 case VT_I4: if (!V_I4(right)) resvt = VT_NULL; break;
5854 case VT_UI4: if (!V_UI4(right)) resvt = VT_NULL; break;
5855 case VT_I8: if (!V_I8(right)) resvt = VT_NULL; break;
5856 case VT_UI8: if (!V_UI8(right)) resvt = VT_NULL; break;
5857 case VT_INT: if (!V_INT(right)) resvt = VT_NULL; break;
5858 case VT_UINT: if (!V_UINT(right)) resvt = VT_NULL; break;
5859 case VT_BOOL: if (!V_BOOL(right)) resvt = VT_NULL; break;
5860 case VT_R4: if (!V_R4(right)) resvt = VT_NULL; break;
5861 case VT_R8: if (!V_R8(right)) resvt = VT_NULL; break;
5862 case VT_DATE: if (!V_DATE(right)) resvt = VT_NULL; break;
5863 case VT_CY: if (!V_CY(right).int64) resvt = VT_NULL; break;
5864 case VT_DECIMAL:
5865 if (!(DEC_HI32(&V_DECIMAL(right)) || DEC_LO64(&V_DECIMAL(right))))
5866 resvt = VT_NULL;
5867 break;
5868 case VT_BSTR:
5869 hres = VarBoolFromStr(V_BSTR(right),LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
5870 if (FAILED(hres)) goto VarImp_Exit;
5871 else if (!b)
5872 V_VT(result) = VT_NULL;
5873 else
5875 V_VT(result) = VT_BOOL;
5876 V_BOOL(result) = b;
5878 goto VarImp_Exit;
5880 if (resvt == VT_NULL)
5882 V_VT(result) = resvt;
5883 goto VarImp_Exit;
5885 else
5887 hres = VariantChangeType(result,right,0,resvt);
5888 goto VarImp_Exit;
5892 /* Special handling is required when NULL is the right variant.
5893 * (-1 Imp NULL = NULL, n Imp NULL = n Imp 0)
5895 else if (rightvt == VT_NULL)
5897 VARIANT_BOOL b;
5898 switch(leftvt)
5900 case VT_I1: if (V_I1(left) == -1) resvt = VT_NULL; break;
5901 case VT_UI1: if (V_UI1(left) == 0xff) resvt = VT_NULL; break;
5902 case VT_I2: if (V_I2(left) == -1) resvt = VT_NULL; break;
5903 case VT_UI2: if (V_UI2(left) == 0xffff) resvt = VT_NULL; break;
5904 case VT_INT: if (V_INT(left) == -1) resvt = VT_NULL; break;
5905 case VT_UINT: if (V_UINT(left) == ~0u) resvt = VT_NULL; break;
5906 case VT_I4: if (V_I4(left) == -1) resvt = VT_NULL; break;
5907 case VT_UI4: if (V_UI4(left) == ~0u) resvt = VT_NULL; break;
5908 case VT_I8: if (V_I8(left) == -1) resvt = VT_NULL; break;
5909 case VT_UI8: if (V_UI8(left) == ~(ULONGLONG)0) resvt = VT_NULL; break;
5910 case VT_BOOL: if (V_BOOL(left) == VARIANT_TRUE) resvt = VT_NULL; break;
5911 case VT_R4: if (V_R4(left) == -1.0) resvt = VT_NULL; break;
5912 case VT_R8: if (V_R8(left) == -1.0) resvt = VT_NULL; break;
5913 case VT_CY: if (V_CY(left).int64 == -1) resvt = VT_NULL; break;
5914 case VT_DECIMAL:
5915 if (DEC_HI32(&V_DECIMAL(left)) == 0xffffffff)
5916 resvt = VT_NULL;
5917 break;
5918 case VT_BSTR:
5919 hres = VarBoolFromStr(V_BSTR(left),LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b);
5920 if (FAILED(hres)) goto VarImp_Exit;
5921 else if (b == VARIANT_TRUE)
5922 resvt = VT_NULL;
5924 if (resvt == VT_NULL)
5926 V_VT(result) = resvt;
5927 goto VarImp_Exit;
5931 hres = VariantCopy(&lv, left);
5932 if (FAILED(hres)) goto VarImp_Exit;
5934 if (rightvt == VT_NULL)
5936 memset( &rv, 0, sizeof(rv) );
5937 V_VT(&rv) = resvt;
5939 else
5941 hres = VariantCopy(&rv, right);
5942 if (FAILED(hres)) goto VarImp_Exit;
5945 if (V_VT(&lv) == VT_BSTR &&
5946 FAILED(VarR8FromStr(V_BSTR(&lv),LOCALE_USER_DEFAULT, 0, &d)))
5947 hres = VariantChangeType(&lv,&lv,VARIANT_LOCALBOOL, VT_BOOL);
5948 if (SUCCEEDED(hres) && V_VT(&lv) != resvt)
5949 hres = VariantChangeType(&lv,&lv,0,resvt);
5950 if (FAILED(hres)) goto VarImp_Exit;
5952 if (V_VT(&rv) == VT_BSTR &&
5953 FAILED(VarR8FromStr(V_BSTR(&rv),LOCALE_USER_DEFAULT, 0, &d)))
5954 hres = VariantChangeType(&rv, &rv,VARIANT_LOCALBOOL, VT_BOOL);
5955 if (SUCCEEDED(hres) && V_VT(&rv) != resvt)
5956 hres = VariantChangeType(&rv, &rv, 0, resvt);
5957 if (FAILED(hres)) goto VarImp_Exit;
5959 /* do the math */
5960 V_VT(result) = resvt;
5961 switch (resvt)
5963 case VT_I8:
5964 V_I8(result) = (~V_I8(&lv)) | V_I8(&rv);
5965 break;
5966 case VT_I4:
5967 V_I4(result) = (~V_I4(&lv)) | V_I4(&rv);
5968 break;
5969 case VT_I2:
5970 V_I2(result) = (~V_I2(&lv)) | V_I2(&rv);
5971 break;
5972 case VT_UI1:
5973 V_UI1(result) = (~V_UI1(&lv)) | V_UI1(&rv);
5974 break;
5975 case VT_BOOL:
5976 V_BOOL(result) = (~V_BOOL(&lv)) | V_BOOL(&rv);
5977 break;
5978 default:
5979 FIXME("Couldn't perform bitwise implication on variant types %d,%d\n",
5980 leftvt,rightvt);
5983 VarImp_Exit:
5985 VariantClear(&lv);
5986 VariantClear(&rv);
5987 VariantClear(&tempLeft);
5988 VariantClear(&tempRight);
5990 return hres;