gdi32: Reimplement Ellipse in paths to avoid calling imprecise arc helper functions.
[wine.git] / dlls / cabinet / cabinet.h
blobb84c3a7c5d7f74455c88e18f798c42f8aaca769e
1 /*
2 * cabinet.h
4 * Copyright 2002 Greg Turner
5 * Copyright 2005 Gerold Jens Wucherpfennig
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
21 #ifndef __WINE_CABINET_H
22 #define __WINE_CABINET_H
24 #include <stdarg.h>
26 #include "windef.h"
27 #include "winbase.h"
28 #include "winnt.h"
29 #include "fdi.h"
30 #include "fci.h"
32 /* from msvcrt/sys/stat.h */
33 #define _S_IWRITE 0x0080
34 #define _S_IREAD 0x0100
36 /* from msvcrt/fcntl.h */
37 #define _O_RDONLY 0
38 #define _O_WRONLY 1
39 #define _O_RDWR 2
40 #define _O_ACCMODE (_O_RDONLY|_O_WRONLY|_O_RDWR)
41 #define _O_APPEND 0x0008
42 #define _O_RANDOM 0x0010
43 #define _O_SEQUENTIAL 0x0020
44 #define _O_TEMPORARY 0x0040
45 #define _O_NOINHERIT 0x0080
46 #define _O_CREAT 0x0100
47 #define _O_TRUNC 0x0200
48 #define _O_EXCL 0x0400
49 #define _O_SHORT_LIVED 0x1000
50 #define _O_TEXT 0x4000
51 #define _O_BINARY 0x8000
53 #define CAB_SPLITMAX (10)
55 #define CAB_SEARCH_SIZE (32*1024)
57 typedef unsigned char cab_UBYTE; /* 8 bits */
58 typedef UINT16 cab_UWORD; /* 16 bits */
59 typedef UINT32 cab_ULONG; /* 32 bits */
60 typedef INT32 cab_LONG; /* 32 bits */
62 typedef UINT32 cab_off_t;
64 /* number of bits in a ULONG */
65 #ifndef CHAR_BIT
66 # define CHAR_BIT (8)
67 #endif
68 #define CAB_ULONG_BITS (sizeof(cab_ULONG) * CHAR_BIT)
70 /* structure offsets */
71 #define cfhead_Signature (0x00)
72 #define cfhead_CabinetSize (0x08)
73 #define cfhead_FileOffset (0x10)
74 #define cfhead_MinorVersion (0x18)
75 #define cfhead_MajorVersion (0x19)
76 #define cfhead_NumFolders (0x1A)
77 #define cfhead_NumFiles (0x1C)
78 #define cfhead_Flags (0x1E)
79 #define cfhead_SetID (0x20)
80 #define cfhead_CabinetIndex (0x22)
81 #define cfhead_SIZEOF (0x24)
82 #define cfheadext_HeaderReserved (0x00)
83 #define cfheadext_FolderReserved (0x02)
84 #define cfheadext_DataReserved (0x03)
85 #define cfheadext_SIZEOF (0x04)
86 #define cffold_DataOffset (0x00)
87 #define cffold_NumBlocks (0x04)
88 #define cffold_CompType (0x06)
89 #define cffold_SIZEOF (0x08)
90 #define cffile_UncompressedSize (0x00)
91 #define cffile_FolderOffset (0x04)
92 #define cffile_FolderIndex (0x08)
93 #define cffile_Date (0x0A)
94 #define cffile_Time (0x0C)
95 #define cffile_Attribs (0x0E)
96 #define cffile_SIZEOF (0x10)
97 #define cfdata_CheckSum (0x00)
98 #define cfdata_CompressedSize (0x04)
99 #define cfdata_UncompressedSize (0x06)
100 #define cfdata_SIZEOF (0x08)
102 /* flags */
103 #define cffoldCOMPTYPE_MASK (0x000f)
104 #define cffoldCOMPTYPE_NONE (0x0000)
105 #define cffoldCOMPTYPE_MSZIP (0x0001)
106 #define cffoldCOMPTYPE_QUANTUM (0x0002)
107 #define cffoldCOMPTYPE_LZX (0x0003)
108 #define cfheadPREV_CABINET (0x0001)
109 #define cfheadNEXT_CABINET (0x0002)
110 #define cfheadRESERVE_PRESENT (0x0004)
111 #define cffileCONTINUED_FROM_PREV (0xFFFD)
112 #define cffileCONTINUED_TO_NEXT (0xFFFE)
113 #define cffileCONTINUED_PREV_AND_NEXT (0xFFFF)
114 #define cffile_A_RDONLY (0x01)
115 #define cffile_A_HIDDEN (0x02)
116 #define cffile_A_SYSTEM (0x04)
117 #define cffile_A_ARCH (0x20)
118 #define cffile_A_EXEC (0x40)
119 #define cffile_A_NAME_IS_UTF (0x80)
121 /****************************************************************************/
122 /* our archiver information / state */
124 /* MSZIP stuff */
125 #define ZIPWSIZE 0x8000 /* window size */
126 #define ZIPLBITS 9 /* bits in base literal/length lookup table */
127 #define ZIPDBITS 6 /* bits in base distance lookup table */
128 #define ZIPBMAX 16 /* maximum bit length of any code */
129 #define ZIPN_MAX 288 /* maximum number of codes in any set */
131 struct Ziphuft {
132 cab_UBYTE e; /* number of extra bits or operation */
133 cab_UBYTE b; /* number of bits in this code or subcode */
134 union {
135 cab_UWORD n; /* literal, length base, or distance base */
136 struct Ziphuft *t; /* pointer to next level of table */
137 } v;
140 struct ZIPstate {
141 cab_ULONG window_posn; /* current offset within the window */
142 cab_ULONG bb; /* bit buffer */
143 cab_ULONG bk; /* bits in bit buffer */
144 cab_ULONG ll[288+32]; /* literal/length and distance code lengths */
145 cab_ULONG c[ZIPBMAX+1]; /* bit length count table */
146 cab_LONG lx[ZIPBMAX+1]; /* memory for l[-1..ZIPBMAX-1] */
147 struct Ziphuft *u[ZIPBMAX]; /* table stack */
148 cab_ULONG v[ZIPN_MAX]; /* values in order of bit length */
149 cab_ULONG x[ZIPBMAX+1]; /* bit offsets, then code stack */
150 cab_UBYTE *inpos;
153 /* Quantum stuff */
155 struct QTMmodelsym {
156 cab_UWORD sym, cumfreq;
159 struct QTMmodel {
160 int shiftsleft, entries;
161 struct QTMmodelsym *syms;
162 cab_UWORD tabloc[256];
165 struct QTMstate {
166 cab_UBYTE *window; /* the actual decoding window */
167 cab_ULONG window_size; /* window size (1Kb through 2Mb) */
168 cab_ULONG actual_size; /* window size when it was first allocated */
169 cab_ULONG window_posn; /* current offset within the window */
171 struct QTMmodel model7;
172 struct QTMmodelsym m7sym[7+1];
174 struct QTMmodel model4, model5, model6pos, model6len;
175 struct QTMmodelsym m4sym[0x18 + 1];
176 struct QTMmodelsym m5sym[0x24 + 1];
177 struct QTMmodelsym m6psym[0x2a + 1], m6lsym[0x1b + 1];
179 struct QTMmodel model00, model40, model80, modelC0;
180 struct QTMmodelsym m00sym[0x40 + 1], m40sym[0x40 + 1];
181 struct QTMmodelsym m80sym[0x40 + 1], mC0sym[0x40 + 1];
184 /* LZX stuff */
186 /* some constants defined by the LZX specification */
187 #define LZX_MIN_MATCH (2)
188 #define LZX_MAX_MATCH (257)
189 #define LZX_NUM_CHARS (256)
190 #define LZX_BLOCKTYPE_INVALID (0) /* also blocktypes 4-7 invalid */
191 #define LZX_BLOCKTYPE_VERBATIM (1)
192 #define LZX_BLOCKTYPE_ALIGNED (2)
193 #define LZX_BLOCKTYPE_UNCOMPRESSED (3)
194 #define LZX_PRETREE_NUM_ELEMENTS (20)
195 #define LZX_ALIGNED_NUM_ELEMENTS (8) /* aligned offset tree #elements */
196 #define LZX_NUM_PRIMARY_LENGTHS (7) /* this one missing from spec! */
197 #define LZX_NUM_SECONDARY_LENGTHS (249) /* length tree #elements */
199 /* LZX huffman defines: tweak tablebits as desired */
200 #define LZX_PRETREE_MAXSYMBOLS (LZX_PRETREE_NUM_ELEMENTS)
201 #define LZX_PRETREE_TABLEBITS (6)
202 #define LZX_MAINTREE_MAXSYMBOLS (LZX_NUM_CHARS + 50*8)
203 #define LZX_MAINTREE_TABLEBITS (12)
204 #define LZX_LENGTH_MAXSYMBOLS (LZX_NUM_SECONDARY_LENGTHS+1)
205 #define LZX_LENGTH_TABLEBITS (12)
206 #define LZX_ALIGNED_MAXSYMBOLS (LZX_ALIGNED_NUM_ELEMENTS)
207 #define LZX_ALIGNED_TABLEBITS (7)
209 #define LZX_LENTABLE_SAFETY (64) /* we allow length table decoding overruns */
211 #define LZX_DECLARE_TABLE(tbl) \
212 cab_UWORD tbl##_table[(1<<LZX_##tbl##_TABLEBITS) + (LZX_##tbl##_MAXSYMBOLS<<1)];\
213 cab_UBYTE tbl##_len [LZX_##tbl##_MAXSYMBOLS + LZX_LENTABLE_SAFETY]
215 struct LZXstate {
216 cab_UBYTE *window; /* the actual decoding window */
217 cab_ULONG window_size; /* window size (32Kb through 2Mb) */
218 cab_ULONG actual_size; /* window size when it was first allocated */
219 cab_ULONG window_posn; /* current offset within the window */
220 cab_ULONG R0, R1, R2; /* for the LRU offset system */
221 cab_UWORD main_elements; /* number of main tree elements */
222 int header_read; /* have we started decoding at all yet? */
223 cab_UWORD block_type; /* type of this block */
224 cab_ULONG block_length; /* uncompressed length of this block */
225 cab_ULONG block_remaining; /* uncompressed bytes still left to decode */
226 cab_ULONG frames_read; /* the number of CFDATA blocks processed */
227 cab_LONG intel_filesize; /* magic header value used for transform */
228 cab_LONG intel_curpos; /* current offset in transform space */
229 int intel_started; /* have we seen any translatable data yet? */
231 LZX_DECLARE_TABLE(PRETREE);
232 LZX_DECLARE_TABLE(MAINTREE);
233 LZX_DECLARE_TABLE(LENGTH);
234 LZX_DECLARE_TABLE(ALIGNED);
237 struct lzx_bits {
238 cab_ULONG bb;
239 int bl;
240 cab_UBYTE *ip;
243 /* CAB data blocks are <= 32768 bytes in uncompressed form. Uncompressed
244 * blocks have zero growth. MSZIP guarantees that it won't grow above
245 * uncompressed size by more than 12 bytes. LZX guarantees it won't grow
246 * more than 6144 bytes.
248 #define CAB_BLOCKMAX (32768)
249 #define CAB_INPUTMAX (CAB_BLOCKMAX+6144)
251 struct cab_file {
252 struct cab_file *next; /* next file in sequence */
253 struct cab_folder *folder; /* folder that contains this file */
254 LPCSTR filename; /* output name of file */
255 HANDLE fh; /* open file handle or NULL */
256 cab_ULONG length; /* uncompressed length of file */
257 cab_ULONG offset; /* uncompressed offset in folder */
258 cab_UWORD index; /* magic index number of folder */
259 cab_UWORD time, date, attribs; /* MS-DOS time/date/attributes */
263 struct cab_folder {
264 struct cab_folder *next;
265 struct cabinet *cab[CAB_SPLITMAX]; /* cabinet(s) this folder spans */
266 cab_off_t offset[CAB_SPLITMAX]; /* offset to data blocks */
267 cab_UWORD comp_type; /* compression format/window size */
268 cab_ULONG comp_size; /* compressed size of folder */
269 cab_UBYTE num_splits; /* number of split blocks + 1 */
270 cab_UWORD num_blocks; /* total number of blocks */
271 struct cab_file *contfile; /* the first split file */
274 struct cabinet {
275 struct cabinet *next; /* for making a list of cabinets */
276 LPCSTR filename; /* input name of cabinet */
277 HANDLE *fh; /* open file handle or NULL */
278 cab_off_t filelen; /* length of cabinet file */
279 cab_off_t blocks_off; /* offset to data blocks in file */
280 struct cabinet *prevcab, *nextcab; /* multipart cabinet chains */
281 char *prevname, *nextname; /* and their filenames */
282 char *previnfo, *nextinfo; /* and their visible names */
283 struct cab_folder *folders; /* first folder in this cabinet */
284 struct cab_file *files; /* first file in this cabinet */
285 cab_UBYTE block_resv; /* reserved space in datablocks */
286 cab_UBYTE flags; /* header flags */
289 typedef struct cds_forward {
290 struct cab_folder *current; /* current folder we're extracting from */
291 cab_ULONG offset; /* uncompressed offset within folder */
292 cab_UBYTE *outpos; /* (high level) start of data to use up */
293 cab_UWORD outlen; /* (high level) amount of data to use up */
294 cab_UWORD split; /* at which split in current folder? */
295 int (*decompress)(int, int, struct cds_forward *); /* chosen compress fn */
296 cab_UBYTE inbuf[CAB_INPUTMAX+2]; /* +2 for lzx bitbuffer overflows! */
297 cab_UBYTE outbuf[CAB_BLOCKMAX];
298 cab_UBYTE q_length_base[27], q_length_extra[27], q_extra_bits[42];
299 cab_ULONG q_position_base[42];
300 cab_ULONG lzx_position_base[51];
301 cab_UBYTE extra_bits[51];
302 union {
303 struct ZIPstate zip;
304 struct QTMstate qtm;
305 struct LZXstate lzx;
306 } methods;
307 } cab_decomp_state;
310 * the rest of these are somewhat kludgy macros which are shared between fdi.c
311 * and cabextract.c.
314 /* Bitstream reading macros (Quantum / normal byte order)
316 * Q_INIT_BITSTREAM should be used first to set up the system
317 * Q_READ_BITS(var,n) takes N bits from the buffer and puts them in var.
318 * unlike LZX, this can loop several times to get the
319 * requisite number of bits.
320 * Q_FILL_BUFFER adds more data to the bit buffer, if there is room
321 * for another 16 bits.
322 * Q_PEEK_BITS(n) extracts (without removing) N bits from the bit
323 * buffer
324 * Q_REMOVE_BITS(n) removes N bits from the bit buffer
326 * These bit access routines work by using the area beyond the MSB and the
327 * LSB as a free source of zeroes. This avoids having to mask any bits.
328 * So we have to know the bit width of the bitbuffer variable. This is
329 * defined as ULONG_BITS.
331 * ULONG_BITS should be at least 16 bits. Unlike LZX's Huffman decoding,
332 * Quantum's arithmetic decoding only needs 1 bit at a time, it doesn't
333 * need an assured number. Retrieving larger bitstrings can be done with
334 * multiple reads and fills of the bitbuffer. The code should work fine
335 * for machines where ULONG >= 32 bits.
337 * Also note that Quantum reads bytes in normal order; LZX is in
338 * little-endian order.
341 #define Q_INIT_BITSTREAM do { bitsleft = 0; bitbuf = 0; } while (0)
343 #define Q_FILL_BUFFER do { \
344 if (bitsleft <= (CAB_ULONG_BITS - 16)) { \
345 bitbuf |= ((inpos[0]<<8)|inpos[1]) << (CAB_ULONG_BITS-16 - bitsleft); \
346 bitsleft += 16; inpos += 2; \
348 } while (0)
350 #define Q_PEEK_BITS(n) (bitbuf >> (CAB_ULONG_BITS - (n)))
351 #define Q_REMOVE_BITS(n) ((bitbuf <<= (n)), (bitsleft -= (n)))
353 #define Q_READ_BITS(v,n) do { \
354 (v) = 0; \
355 for (bitsneed = (n); bitsneed; bitsneed -= bitrun) { \
356 Q_FILL_BUFFER; \
357 bitrun = (bitsneed > bitsleft) ? bitsleft : bitsneed; \
358 (v) = ((v) << bitrun) | Q_PEEK_BITS(bitrun); \
359 Q_REMOVE_BITS(bitrun); \
361 } while (0)
363 #define Q_MENTRIES(model) (QTM(model).entries)
364 #define Q_MSYM(model,symidx) (QTM(model).syms[(symidx)].sym)
365 #define Q_MSYMFREQ(model,symidx) (QTM(model).syms[(symidx)].cumfreq)
367 /* GET_SYMBOL(model, var) fetches the next symbol from the stated model
368 * and puts it in var. it may need to read the bitstream to do this.
370 #define GET_SYMBOL(m, var) do { \
371 range = ((H - L) & 0xFFFF) + 1; \
372 symf = ((((C - L + 1) * Q_MSYMFREQ(m,0)) - 1) / range) & 0xFFFF; \
374 for (i=1; i < Q_MENTRIES(m); i++) { \
375 if (Q_MSYMFREQ(m,i) <= symf) break; \
377 (var) = Q_MSYM(m,i-1); \
379 range = (H - L) + 1; \
380 H = L + ((Q_MSYMFREQ(m,i-1) * range) / Q_MSYMFREQ(m,0)) - 1; \
381 L = L + ((Q_MSYMFREQ(m,i) * range) / Q_MSYMFREQ(m,0)); \
382 while (1) { \
383 if ((L & 0x8000) != (H & 0x8000)) { \
384 if ((L & 0x4000) && !(H & 0x4000)) { \
385 /* underflow case */ \
386 C ^= 0x4000; L &= 0x3FFF; H |= 0x4000; \
388 else break; \
390 L <<= 1; H = (H << 1) | 1; \
391 Q_FILL_BUFFER; \
392 C = (C << 1) | Q_PEEK_BITS(1); \
393 Q_REMOVE_BITS(1); \
396 QTMupdatemodel(&(QTM(m)), i); \
397 } while (0)
399 /* Bitstream reading macros (LZX / intel little-endian byte order)
401 * INIT_BITSTREAM should be used first to set up the system
402 * READ_BITS(var,n) takes N bits from the buffer and puts them in var
404 * ENSURE_BITS(n) ensures there are at least N bits in the bit buffer.
405 * it can guarantee up to 17 bits (i.e. it can read in
406 * 16 new bits when there is down to 1 bit in the buffer,
407 * and it can read 32 bits when there are 0 bits in the
408 * buffer).
409 * PEEK_BITS(n) extracts (without removing) N bits from the bit buffer
410 * REMOVE_BITS(n) removes N bits from the bit buffer
412 * These bit access routines work by using the area beyond the MSB and the
413 * LSB as a free source of zeroes. This avoids having to mask any bits.
414 * So we have to know the bit width of the bitbuffer variable.
417 #define INIT_BITSTREAM do { bitsleft = 0; bitbuf = 0; } while (0)
419 /* Quantum reads bytes in normal order; LZX is little-endian order */
420 #define ENSURE_BITS(n) \
421 while (bitsleft < (n)) { \
422 bitbuf |= ((inpos[1]<<8)|inpos[0]) << (CAB_ULONG_BITS-16 - bitsleft); \
423 bitsleft += 16; inpos+=2; \
426 #define PEEK_BITS(n) (bitbuf >> (CAB_ULONG_BITS - (n)))
427 #define REMOVE_BITS(n) ((bitbuf <<= (n)), (bitsleft -= (n)))
429 #define READ_BITS(v,n) do { \
430 if (n) { \
431 ENSURE_BITS(n); \
432 (v) = PEEK_BITS(n); \
433 REMOVE_BITS(n); \
435 else { \
436 (v) = 0; \
438 } while (0)
440 /* Huffman macros */
442 #define TABLEBITS(tbl) (LZX_##tbl##_TABLEBITS)
443 #define MAXSYMBOLS(tbl) (LZX_##tbl##_MAXSYMBOLS)
444 #define SYMTABLE(tbl) (LZX(tbl##_table))
445 #define LENTABLE(tbl) (LZX(tbl##_len))
447 /* BUILD_TABLE(tablename) builds a huffman lookup table from code lengths.
448 * In reality, it just calls make_decode_table() with the appropriate
449 * values - they're all fixed by some #defines anyway, so there's no point
450 * writing each call out in full by hand.
452 #define BUILD_TABLE(tbl) \
453 if (make_decode_table( \
454 MAXSYMBOLS(tbl), TABLEBITS(tbl), LENTABLE(tbl), SYMTABLE(tbl) \
455 )) { return DECR_ILLEGALDATA; }
457 /* READ_HUFFSYM(tablename, var) decodes one huffman symbol from the
458 * bitstream using the stated table and puts it in var.
460 #define READ_HUFFSYM(tbl,var) do { \
461 ENSURE_BITS(16); \
462 hufftbl = SYMTABLE(tbl); \
463 if ((i = hufftbl[PEEK_BITS(TABLEBITS(tbl))]) >= MAXSYMBOLS(tbl)) { \
464 j = 1 << (CAB_ULONG_BITS - TABLEBITS(tbl)); \
465 do { \
466 j >>= 1; i <<= 1; i |= (bitbuf & j) ? 1 : 0; \
467 if (!j) { return DECR_ILLEGALDATA; } \
468 } while ((i = hufftbl[i]) >= MAXSYMBOLS(tbl)); \
470 j = LENTABLE(tbl)[(var) = i]; \
471 REMOVE_BITS(j); \
472 } while (0)
474 /* READ_LENGTHS(tablename, first, last) reads in code lengths for symbols
475 * first to last in the given table. The code lengths are stored in their
476 * own special LZX way.
478 #define READ_LENGTHS(tbl,first,last,fn) do { \
479 lb.bb = bitbuf; lb.bl = bitsleft; lb.ip = inpos; \
480 if (fn(LENTABLE(tbl),(first),(last),&lb,decomp_state)) { \
481 return DECR_ILLEGALDATA; \
483 bitbuf = lb.bb; bitsleft = lb.bl; inpos = lb.ip; \
484 } while (0)
486 /* Tables for deflate from PKZIP's appnote.txt. */
488 #define THOSE_ZIP_CONSTS \
489 static const cab_UBYTE Zipborder[] = /* Order of the bit length code lengths */ \
490 { 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; \
491 static const cab_UWORD Zipcplens[] = /* Copy lengths for literal codes 257..285 */ \
492 { 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, \
493 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; \
494 static const cab_UWORD Zipcplext[] = /* Extra bits for literal codes 257..285 */ \
495 { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, \
496 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */ \
497 static const cab_UWORD Zipcpdist[] = /* Copy offsets for distance codes 0..29 */ \
498 { 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, \
499 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577}; \
500 static const cab_UWORD Zipcpdext[] = /* Extra bits for distance codes */ \
501 { 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, \
502 10, 11, 11, 12, 12, 13, 13}; \
503 /* And'ing with Zipmask[n] masks the lower n bits */ \
504 static const cab_UWORD Zipmask[17] = { \
505 0x0000, 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, \
506 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff \
509 /* SESSION Operation */
510 #define EXTRACT_FILLFILELIST 0x00000001
511 #define EXTRACT_EXTRACTFILES 0x00000002
513 struct FILELIST{
514 LPSTR FileName;
515 struct FILELIST *next;
516 BOOL DoExtract;
519 typedef struct {
520 INT FileSize;
521 ERF Error;
522 struct FILELIST *FileList;
523 INT FileCount;
524 INT Operation;
525 CHAR Destination[MAX_PATH];
526 CHAR CurrentFile[MAX_PATH];
527 CHAR Reserved[MAX_PATH];
528 struct FILELIST *FilterList;
529 } SESSION;
531 #endif /* __WINE_CABINET_H */