incrementaltp: respect physics overrides
[waspsaliva.git] / src / util / numeric.cpp
blob1af3f66be8df9f096737e8a4809cf497688e905c
1 /*
2 Minetest
3 Copyright (C) 2010-2013 celeron55, Perttu Ahola <celeron55@gmail.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU Lesser General Public License as published by
7 the Free Software Foundation; either version 2.1 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU Lesser General Public License for more details.
15 You should have received a copy of the GNU Lesser General Public License along
16 with this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20 #include "numeric.h"
22 #include "log.h"
23 #include "constants.h" // BS, MAP_BLOCKSIZE
24 #include "noise.h" // PseudoRandom, PcgRandom
25 #include "threading/mutex_auto_lock.h"
26 #include <cstring>
27 #include <cmath>
30 // myrand
32 PcgRandom g_pcgrand;
34 u32 myrand()
36 return g_pcgrand.next();
39 void mysrand(unsigned int seed)
41 g_pcgrand.seed(seed);
44 void myrand_bytes(void *out, size_t len)
46 g_pcgrand.bytes(out, len);
49 int myrand_range(int min, int max)
51 return g_pcgrand.range(min, max);
56 64-bit unaligned version of MurmurHash
58 u64 murmur_hash_64_ua(const void *key, int len, unsigned int seed)
60 const u64 m = 0xc6a4a7935bd1e995ULL;
61 const int r = 47;
62 u64 h = seed ^ (len * m);
64 const u8 *data = (const u8 *)key;
65 const u8 *end = data + (len / 8) * 8;
67 while (data != end) {
68 u64 k;
69 memcpy(&k, data, sizeof(u64));
70 data += sizeof(u64);
72 k *= m;
73 k ^= k >> r;
74 k *= m;
76 h ^= k;
77 h *= m;
80 const unsigned char *data2 = (const unsigned char *)data;
81 switch (len & 7) {
82 case 7: h ^= (u64)data2[6] << 48;
83 case 6: h ^= (u64)data2[5] << 40;
84 case 5: h ^= (u64)data2[4] << 32;
85 case 4: h ^= (u64)data2[3] << 24;
86 case 3: h ^= (u64)data2[2] << 16;
87 case 2: h ^= (u64)data2[1] << 8;
88 case 1: h ^= (u64)data2[0];
89 h *= m;
92 h ^= h >> r;
93 h *= m;
94 h ^= h >> r;
96 return h;
100 blockpos_b: position of block in block coordinates
101 camera_pos: position of camera in nodes
102 camera_dir: an unit vector pointing to camera direction
103 range: viewing range
104 distance_ptr: return location for distance from the camera
106 bool isBlockInSight(v3s16 blockpos_b, v3f camera_pos, v3f camera_dir,
107 f32 camera_fov, f32 range, f32 *distance_ptr)
109 // Maximum radius of a block. The magic number is
110 // sqrt(3.0) / 2.0 in literal form.
111 static constexpr const f32 block_max_radius = 0.866025403784f * MAP_BLOCKSIZE * BS;
113 v3s16 blockpos_nodes = blockpos_b * MAP_BLOCKSIZE;
115 // Block center position
116 v3f blockpos(
117 ((float)blockpos_nodes.X + MAP_BLOCKSIZE/2) * BS,
118 ((float)blockpos_nodes.Y + MAP_BLOCKSIZE/2) * BS,
119 ((float)blockpos_nodes.Z + MAP_BLOCKSIZE/2) * BS
122 // Block position relative to camera
123 v3f blockpos_relative = blockpos - camera_pos;
125 // Total distance
126 f32 d = MYMAX(0, blockpos_relative.getLength() - block_max_radius);
128 if (distance_ptr)
129 *distance_ptr = d;
131 // If block is far away, it's not in sight
132 if (d > range)
133 return false;
135 // If block is (nearly) touching the camera, don't
136 // bother validating further (that is, render it anyway)
137 if (d == 0)
138 return true;
140 // Adjust camera position, for purposes of computing the angle,
141 // such that a block that has any portion visible with the
142 // current camera position will have the center visible at the
143 // adjusted postion
144 f32 adjdist = block_max_radius / cos((M_PI - camera_fov) / 2);
146 // Block position relative to adjusted camera
147 v3f blockpos_adj = blockpos - (camera_pos - camera_dir * adjdist);
149 // Distance in camera direction (+=front, -=back)
150 f32 dforward = blockpos_adj.dotProduct(camera_dir);
152 // Cosine of the angle between the camera direction
153 // and the block direction (camera_dir is an unit vector)
154 f32 cosangle = dforward / blockpos_adj.getLength();
156 // If block is not in the field of view, skip it
157 // HOTFIX: use sligthly increased angle (+10%) to fix too agressive
158 // culling. Somebody have to find out whats wrong with the math here.
159 // Previous value: camera_fov / 2
160 if (cosangle < std::cos(camera_fov * 0.55f))
161 return false;
163 return true;
166 s16 adjustDist(s16 dist, float zoom_fov)
168 // 1.775 ~= 72 * PI / 180 * 1.4, the default FOV on the client.
169 // The heuristic threshold for zooming is half of that.
170 static constexpr const float threshold_fov = 1.775f / 2.0f;
171 if (zoom_fov < 0.001f || zoom_fov > threshold_fov)
172 return dist;
174 return std::round(dist * std::cbrt((1.0f - std::cos(threshold_fov)) /
175 (1.0f - std::cos(zoom_fov / 2.0f))));
178 void setPitchYawRollRad(core::matrix4 &m, const v3f &rot)
180 f64 a1 = rot.Z, a2 = rot.X, a3 = rot.Y;
181 f64 c1 = cos(a1), s1 = sin(a1);
182 f64 c2 = cos(a2), s2 = sin(a2);
183 f64 c3 = cos(a3), s3 = sin(a3);
184 f32 *M = m.pointer();
186 M[0] = s1 * s2 * s3 + c1 * c3;
187 M[1] = s1 * c2;
188 M[2] = s1 * s2 * c3 - c1 * s3;
190 M[4] = c1 * s2 * s3 - s1 * c3;
191 M[5] = c1 * c2;
192 M[6] = c1 * s2 * c3 + s1 * s3;
194 M[8] = c2 * s3;
195 M[9] = -s2;
196 M[10] = c2 * c3;
199 v3f getPitchYawRollRad(const core::matrix4 &m)
201 const f32 *M = m.pointer();
203 f64 a1 = atan2(M[1], M[5]);
204 f32 c2 = std::sqrt((f64)M[10]*M[10] + (f64)M[8]*M[8]);
205 f32 a2 = atan2f(-M[9], c2);
206 f64 c1 = cos(a1);
207 f64 s1 = sin(a1);
208 f32 a3 = atan2f(s1*M[6] - c1*M[2], c1*M[0] - s1*M[4]);
210 return v3f(a2, a3, a1);