ath9k: clean up hardware code for beacon handling
[wandboard.git] / drivers / net / wireless / ath / ath9k / hw.c
blob1beb89673b0c475869964b1017ac5f99ecba6c94
1 /*
2 * Copyright (c) 2008-2010 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <asm/unaligned.h>
21 #include "hw.h"
22 #include "hw-ops.h"
23 #include "rc.h"
24 #include "ar9003_mac.h"
26 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
28 MODULE_AUTHOR("Atheros Communications");
29 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
30 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
31 MODULE_LICENSE("Dual BSD/GPL");
33 static int __init ath9k_init(void)
35 return 0;
37 module_init(ath9k_init);
39 static void __exit ath9k_exit(void)
41 return;
43 module_exit(ath9k_exit);
45 /* Private hardware callbacks */
47 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
49 ath9k_hw_private_ops(ah)->init_cal_settings(ah);
52 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
54 ath9k_hw_private_ops(ah)->init_mode_regs(ah);
57 static bool ath9k_hw_macversion_supported(struct ath_hw *ah)
59 struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
61 return priv_ops->macversion_supported(ah->hw_version.macVersion);
64 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
65 struct ath9k_channel *chan)
67 return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
70 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
72 if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
73 return;
75 ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
78 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
80 /* You will not have this callback if using the old ANI */
81 if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
82 return;
84 ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
87 /********************/
88 /* Helper Functions */
89 /********************/
91 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
93 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
94 struct ath_common *common = ath9k_hw_common(ah);
95 unsigned int clockrate;
97 if (!ah->curchan) /* should really check for CCK instead */
98 clockrate = ATH9K_CLOCK_RATE_CCK;
99 else if (conf->channel->band == IEEE80211_BAND_2GHZ)
100 clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
101 else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
102 clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
103 else
104 clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
106 if (conf_is_ht40(conf))
107 clockrate *= 2;
109 common->clockrate = clockrate;
112 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
114 struct ath_common *common = ath9k_hw_common(ah);
116 return usecs * common->clockrate;
119 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
121 int i;
123 BUG_ON(timeout < AH_TIME_QUANTUM);
125 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
126 if ((REG_READ(ah, reg) & mask) == val)
127 return true;
129 udelay(AH_TIME_QUANTUM);
132 ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
133 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
134 timeout, reg, REG_READ(ah, reg), mask, val);
136 return false;
138 EXPORT_SYMBOL(ath9k_hw_wait);
140 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
142 u32 retval;
143 int i;
145 for (i = 0, retval = 0; i < n; i++) {
146 retval = (retval << 1) | (val & 1);
147 val >>= 1;
149 return retval;
152 bool ath9k_get_channel_edges(struct ath_hw *ah,
153 u16 flags, u16 *low,
154 u16 *high)
156 struct ath9k_hw_capabilities *pCap = &ah->caps;
158 if (flags & CHANNEL_5GHZ) {
159 *low = pCap->low_5ghz_chan;
160 *high = pCap->high_5ghz_chan;
161 return true;
163 if ((flags & CHANNEL_2GHZ)) {
164 *low = pCap->low_2ghz_chan;
165 *high = pCap->high_2ghz_chan;
166 return true;
168 return false;
171 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
172 u8 phy, int kbps,
173 u32 frameLen, u16 rateix,
174 bool shortPreamble)
176 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
178 if (kbps == 0)
179 return 0;
181 switch (phy) {
182 case WLAN_RC_PHY_CCK:
183 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
184 if (shortPreamble)
185 phyTime >>= 1;
186 numBits = frameLen << 3;
187 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
188 break;
189 case WLAN_RC_PHY_OFDM:
190 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
191 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
192 numBits = OFDM_PLCP_BITS + (frameLen << 3);
193 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
194 txTime = OFDM_SIFS_TIME_QUARTER
195 + OFDM_PREAMBLE_TIME_QUARTER
196 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
197 } else if (ah->curchan &&
198 IS_CHAN_HALF_RATE(ah->curchan)) {
199 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
200 numBits = OFDM_PLCP_BITS + (frameLen << 3);
201 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
202 txTime = OFDM_SIFS_TIME_HALF +
203 OFDM_PREAMBLE_TIME_HALF
204 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
205 } else {
206 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
207 numBits = OFDM_PLCP_BITS + (frameLen << 3);
208 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
209 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
210 + (numSymbols * OFDM_SYMBOL_TIME);
212 break;
213 default:
214 ath_err(ath9k_hw_common(ah),
215 "Unknown phy %u (rate ix %u)\n", phy, rateix);
216 txTime = 0;
217 break;
220 return txTime;
222 EXPORT_SYMBOL(ath9k_hw_computetxtime);
224 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
225 struct ath9k_channel *chan,
226 struct chan_centers *centers)
228 int8_t extoff;
230 if (!IS_CHAN_HT40(chan)) {
231 centers->ctl_center = centers->ext_center =
232 centers->synth_center = chan->channel;
233 return;
236 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
237 (chan->chanmode == CHANNEL_G_HT40PLUS)) {
238 centers->synth_center =
239 chan->channel + HT40_CHANNEL_CENTER_SHIFT;
240 extoff = 1;
241 } else {
242 centers->synth_center =
243 chan->channel - HT40_CHANNEL_CENTER_SHIFT;
244 extoff = -1;
247 centers->ctl_center =
248 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
249 /* 25 MHz spacing is supported by hw but not on upper layers */
250 centers->ext_center =
251 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
254 /******************/
255 /* Chip Revisions */
256 /******************/
258 static void ath9k_hw_read_revisions(struct ath_hw *ah)
260 u32 val;
262 val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
264 if (val == 0xFF) {
265 val = REG_READ(ah, AR_SREV);
266 ah->hw_version.macVersion =
267 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
268 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
269 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
270 } else {
271 if (!AR_SREV_9100(ah))
272 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
274 ah->hw_version.macRev = val & AR_SREV_REVISION;
276 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
277 ah->is_pciexpress = true;
281 /************************************/
282 /* HW Attach, Detach, Init Routines */
283 /************************************/
285 static void ath9k_hw_disablepcie(struct ath_hw *ah)
287 if (AR_SREV_9100(ah))
288 return;
290 ENABLE_REGWRITE_BUFFER(ah);
292 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
293 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
294 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
295 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
296 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
297 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
298 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
299 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
300 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
302 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
304 REGWRITE_BUFFER_FLUSH(ah);
307 /* This should work for all families including legacy */
308 static bool ath9k_hw_chip_test(struct ath_hw *ah)
310 struct ath_common *common = ath9k_hw_common(ah);
311 u32 regAddr[2] = { AR_STA_ID0 };
312 u32 regHold[2];
313 static const u32 patternData[4] = {
314 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
316 int i, j, loop_max;
318 if (!AR_SREV_9300_20_OR_LATER(ah)) {
319 loop_max = 2;
320 regAddr[1] = AR_PHY_BASE + (8 << 2);
321 } else
322 loop_max = 1;
324 for (i = 0; i < loop_max; i++) {
325 u32 addr = regAddr[i];
326 u32 wrData, rdData;
328 regHold[i] = REG_READ(ah, addr);
329 for (j = 0; j < 0x100; j++) {
330 wrData = (j << 16) | j;
331 REG_WRITE(ah, addr, wrData);
332 rdData = REG_READ(ah, addr);
333 if (rdData != wrData) {
334 ath_err(common,
335 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
336 addr, wrData, rdData);
337 return false;
340 for (j = 0; j < 4; j++) {
341 wrData = patternData[j];
342 REG_WRITE(ah, addr, wrData);
343 rdData = REG_READ(ah, addr);
344 if (wrData != rdData) {
345 ath_err(common,
346 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
347 addr, wrData, rdData);
348 return false;
351 REG_WRITE(ah, regAddr[i], regHold[i]);
353 udelay(100);
355 return true;
358 static void ath9k_hw_init_config(struct ath_hw *ah)
360 int i;
362 ah->config.dma_beacon_response_time = 2;
363 ah->config.sw_beacon_response_time = 10;
364 ah->config.additional_swba_backoff = 0;
365 ah->config.ack_6mb = 0x0;
366 ah->config.cwm_ignore_extcca = 0;
367 ah->config.pcie_powersave_enable = 0;
368 ah->config.pcie_clock_req = 0;
369 ah->config.pcie_waen = 0;
370 ah->config.analog_shiftreg = 1;
371 ah->config.enable_ani = true;
373 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
374 ah->config.spurchans[i][0] = AR_NO_SPUR;
375 ah->config.spurchans[i][1] = AR_NO_SPUR;
378 if (ah->hw_version.devid != AR2427_DEVID_PCIE)
379 ah->config.ht_enable = 1;
380 else
381 ah->config.ht_enable = 0;
383 ah->config.rx_intr_mitigation = true;
384 ah->config.pcieSerDesWrite = true;
387 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
388 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
389 * This means we use it for all AR5416 devices, and the few
390 * minor PCI AR9280 devices out there.
392 * Serialization is required because these devices do not handle
393 * well the case of two concurrent reads/writes due to the latency
394 * involved. During one read/write another read/write can be issued
395 * on another CPU while the previous read/write may still be working
396 * on our hardware, if we hit this case the hardware poops in a loop.
397 * We prevent this by serializing reads and writes.
399 * This issue is not present on PCI-Express devices or pre-AR5416
400 * devices (legacy, 802.11abg).
402 if (num_possible_cpus() > 1)
403 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
406 static void ath9k_hw_init_defaults(struct ath_hw *ah)
408 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
410 regulatory->country_code = CTRY_DEFAULT;
411 regulatory->power_limit = MAX_RATE_POWER;
412 regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
414 ah->hw_version.magic = AR5416_MAGIC;
415 ah->hw_version.subvendorid = 0;
417 ah->atim_window = 0;
418 ah->sta_id1_defaults =
419 AR_STA_ID1_CRPT_MIC_ENABLE |
420 AR_STA_ID1_MCAST_KSRCH;
421 ah->beacon_interval = 100;
422 ah->enable_32kHz_clock = DONT_USE_32KHZ;
423 ah->slottime = (u32) -1;
424 ah->globaltxtimeout = (u32) -1;
425 ah->power_mode = ATH9K_PM_UNDEFINED;
428 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
430 struct ath_common *common = ath9k_hw_common(ah);
431 u32 sum;
432 int i;
433 u16 eeval;
434 static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
436 sum = 0;
437 for (i = 0; i < 3; i++) {
438 eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
439 sum += eeval;
440 common->macaddr[2 * i] = eeval >> 8;
441 common->macaddr[2 * i + 1] = eeval & 0xff;
443 if (sum == 0 || sum == 0xffff * 3)
444 return -EADDRNOTAVAIL;
446 return 0;
449 static int ath9k_hw_post_init(struct ath_hw *ah)
451 int ecode;
453 if (!AR_SREV_9271(ah)) {
454 if (!ath9k_hw_chip_test(ah))
455 return -ENODEV;
458 if (!AR_SREV_9300_20_OR_LATER(ah)) {
459 ecode = ar9002_hw_rf_claim(ah);
460 if (ecode != 0)
461 return ecode;
464 ecode = ath9k_hw_eeprom_init(ah);
465 if (ecode != 0)
466 return ecode;
468 ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
469 "Eeprom VER: %d, REV: %d\n",
470 ah->eep_ops->get_eeprom_ver(ah),
471 ah->eep_ops->get_eeprom_rev(ah));
473 ecode = ath9k_hw_rf_alloc_ext_banks(ah);
474 if (ecode) {
475 ath_err(ath9k_hw_common(ah),
476 "Failed allocating banks for external radio\n");
477 ath9k_hw_rf_free_ext_banks(ah);
478 return ecode;
481 if (!AR_SREV_9100(ah)) {
482 ath9k_hw_ani_setup(ah);
483 ath9k_hw_ani_init(ah);
486 return 0;
489 static void ath9k_hw_attach_ops(struct ath_hw *ah)
491 if (AR_SREV_9300_20_OR_LATER(ah))
492 ar9003_hw_attach_ops(ah);
493 else
494 ar9002_hw_attach_ops(ah);
497 /* Called for all hardware families */
498 static int __ath9k_hw_init(struct ath_hw *ah)
500 struct ath_common *common = ath9k_hw_common(ah);
501 int r = 0;
503 if (ah->hw_version.devid == AR5416_AR9100_DEVID)
504 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
506 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
507 ath_err(common, "Couldn't reset chip\n");
508 return -EIO;
511 ath9k_hw_init_defaults(ah);
512 ath9k_hw_init_config(ah);
514 ath9k_hw_attach_ops(ah);
516 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
517 ath_err(common, "Couldn't wakeup chip\n");
518 return -EIO;
521 if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
522 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
523 ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
524 !ah->is_pciexpress)) {
525 ah->config.serialize_regmode =
526 SER_REG_MODE_ON;
527 } else {
528 ah->config.serialize_regmode =
529 SER_REG_MODE_OFF;
533 ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
534 ah->config.serialize_regmode);
536 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
537 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
538 else
539 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
541 if (!ath9k_hw_macversion_supported(ah)) {
542 ath_err(common,
543 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
544 ah->hw_version.macVersion, ah->hw_version.macRev);
545 return -EOPNOTSUPP;
548 if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
549 ah->is_pciexpress = false;
551 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
552 ath9k_hw_init_cal_settings(ah);
554 ah->ani_function = ATH9K_ANI_ALL;
555 if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
556 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
557 if (!AR_SREV_9300_20_OR_LATER(ah))
558 ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
560 ath9k_hw_init_mode_regs(ah);
563 * Read back AR_WA into a permanent copy and set bits 14 and 17.
564 * We need to do this to avoid RMW of this register. We cannot
565 * read the reg when chip is asleep.
567 ah->WARegVal = REG_READ(ah, AR_WA);
568 ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
569 AR_WA_ASPM_TIMER_BASED_DISABLE);
571 if (ah->is_pciexpress)
572 ath9k_hw_configpcipowersave(ah, 0, 0);
573 else
574 ath9k_hw_disablepcie(ah);
576 if (!AR_SREV_9300_20_OR_LATER(ah))
577 ar9002_hw_cck_chan14_spread(ah);
579 r = ath9k_hw_post_init(ah);
580 if (r)
581 return r;
583 ath9k_hw_init_mode_gain_regs(ah);
584 r = ath9k_hw_fill_cap_info(ah);
585 if (r)
586 return r;
588 r = ath9k_hw_init_macaddr(ah);
589 if (r) {
590 ath_err(common, "Failed to initialize MAC address\n");
591 return r;
594 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
595 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
596 else
597 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
599 ah->bb_watchdog_timeout_ms = 25;
601 common->state = ATH_HW_INITIALIZED;
603 return 0;
606 int ath9k_hw_init(struct ath_hw *ah)
608 int ret;
609 struct ath_common *common = ath9k_hw_common(ah);
611 /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
612 switch (ah->hw_version.devid) {
613 case AR5416_DEVID_PCI:
614 case AR5416_DEVID_PCIE:
615 case AR5416_AR9100_DEVID:
616 case AR9160_DEVID_PCI:
617 case AR9280_DEVID_PCI:
618 case AR9280_DEVID_PCIE:
619 case AR9285_DEVID_PCIE:
620 case AR9287_DEVID_PCI:
621 case AR9287_DEVID_PCIE:
622 case AR2427_DEVID_PCIE:
623 case AR9300_DEVID_PCIE:
624 case AR9300_DEVID_AR9485_PCIE:
625 break;
626 default:
627 if (common->bus_ops->ath_bus_type == ATH_USB)
628 break;
629 ath_err(common, "Hardware device ID 0x%04x not supported\n",
630 ah->hw_version.devid);
631 return -EOPNOTSUPP;
634 ret = __ath9k_hw_init(ah);
635 if (ret) {
636 ath_err(common,
637 "Unable to initialize hardware; initialization status: %d\n",
638 ret);
639 return ret;
642 return 0;
644 EXPORT_SYMBOL(ath9k_hw_init);
646 static void ath9k_hw_init_qos(struct ath_hw *ah)
648 ENABLE_REGWRITE_BUFFER(ah);
650 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
651 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
653 REG_WRITE(ah, AR_QOS_NO_ACK,
654 SM(2, AR_QOS_NO_ACK_TWO_BIT) |
655 SM(5, AR_QOS_NO_ACK_BIT_OFF) |
656 SM(0, AR_QOS_NO_ACK_BYTE_OFF));
658 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
659 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
660 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
661 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
662 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
664 REGWRITE_BUFFER_FLUSH(ah);
667 static void ath9k_hw_init_pll(struct ath_hw *ah,
668 struct ath9k_channel *chan)
670 u32 pll;
672 if (AR_SREV_9485(ah))
673 REG_WRITE(ah, AR_RTC_PLL_CONTROL2, 0x886666);
675 pll = ath9k_hw_compute_pll_control(ah, chan);
677 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
679 /* Switch the core clock for ar9271 to 117Mhz */
680 if (AR_SREV_9271(ah)) {
681 udelay(500);
682 REG_WRITE(ah, 0x50040, 0x304);
685 udelay(RTC_PLL_SETTLE_DELAY);
687 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
690 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
691 enum nl80211_iftype opmode)
693 u32 imr_reg = AR_IMR_TXERR |
694 AR_IMR_TXURN |
695 AR_IMR_RXERR |
696 AR_IMR_RXORN |
697 AR_IMR_BCNMISC;
699 if (AR_SREV_9300_20_OR_LATER(ah)) {
700 imr_reg |= AR_IMR_RXOK_HP;
701 if (ah->config.rx_intr_mitigation)
702 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
703 else
704 imr_reg |= AR_IMR_RXOK_LP;
706 } else {
707 if (ah->config.rx_intr_mitigation)
708 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
709 else
710 imr_reg |= AR_IMR_RXOK;
713 if (ah->config.tx_intr_mitigation)
714 imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
715 else
716 imr_reg |= AR_IMR_TXOK;
718 if (opmode == NL80211_IFTYPE_AP)
719 imr_reg |= AR_IMR_MIB;
721 ENABLE_REGWRITE_BUFFER(ah);
723 REG_WRITE(ah, AR_IMR, imr_reg);
724 ah->imrs2_reg |= AR_IMR_S2_GTT;
725 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
727 if (!AR_SREV_9100(ah)) {
728 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
729 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
730 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
733 REGWRITE_BUFFER_FLUSH(ah);
735 if (AR_SREV_9300_20_OR_LATER(ah)) {
736 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
737 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
738 REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
739 REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
743 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
745 u32 val = ath9k_hw_mac_to_clks(ah, us);
746 val = min(val, (u32) 0xFFFF);
747 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
750 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
752 u32 val = ath9k_hw_mac_to_clks(ah, us);
753 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
754 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
757 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
759 u32 val = ath9k_hw_mac_to_clks(ah, us);
760 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
761 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
764 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
766 if (tu > 0xFFFF) {
767 ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
768 "bad global tx timeout %u\n", tu);
769 ah->globaltxtimeout = (u32) -1;
770 return false;
771 } else {
772 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
773 ah->globaltxtimeout = tu;
774 return true;
778 void ath9k_hw_init_global_settings(struct ath_hw *ah)
780 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
781 int acktimeout;
782 int slottime;
783 int sifstime;
785 ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
786 ah->misc_mode);
788 if (ah->misc_mode != 0)
789 REG_WRITE(ah, AR_PCU_MISC,
790 REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
792 if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
793 sifstime = 16;
794 else
795 sifstime = 10;
797 /* As defined by IEEE 802.11-2007 17.3.8.6 */
798 slottime = ah->slottime + 3 * ah->coverage_class;
799 acktimeout = slottime + sifstime;
802 * Workaround for early ACK timeouts, add an offset to match the
803 * initval's 64us ack timeout value.
804 * This was initially only meant to work around an issue with delayed
805 * BA frames in some implementations, but it has been found to fix ACK
806 * timeout issues in other cases as well.
808 if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
809 acktimeout += 64 - sifstime - ah->slottime;
811 ath9k_hw_setslottime(ah, slottime);
812 ath9k_hw_set_ack_timeout(ah, acktimeout);
813 ath9k_hw_set_cts_timeout(ah, acktimeout);
814 if (ah->globaltxtimeout != (u32) -1)
815 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
817 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
819 void ath9k_hw_deinit(struct ath_hw *ah)
821 struct ath_common *common = ath9k_hw_common(ah);
823 if (common->state < ATH_HW_INITIALIZED)
824 goto free_hw;
826 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
828 free_hw:
829 ath9k_hw_rf_free_ext_banks(ah);
831 EXPORT_SYMBOL(ath9k_hw_deinit);
833 /*******/
834 /* INI */
835 /*******/
837 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
839 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
841 if (IS_CHAN_B(chan))
842 ctl |= CTL_11B;
843 else if (IS_CHAN_G(chan))
844 ctl |= CTL_11G;
845 else
846 ctl |= CTL_11A;
848 return ctl;
851 /****************************************/
852 /* Reset and Channel Switching Routines */
853 /****************************************/
855 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
857 struct ath_common *common = ath9k_hw_common(ah);
858 u32 regval;
860 ENABLE_REGWRITE_BUFFER(ah);
863 * set AHB_MODE not to do cacheline prefetches
865 if (!AR_SREV_9300_20_OR_LATER(ah)) {
866 regval = REG_READ(ah, AR_AHB_MODE);
867 REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
871 * let mac dma reads be in 128 byte chunks
873 regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
874 REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
876 REGWRITE_BUFFER_FLUSH(ah);
879 * Restore TX Trigger Level to its pre-reset value.
880 * The initial value depends on whether aggregation is enabled, and is
881 * adjusted whenever underruns are detected.
883 if (!AR_SREV_9300_20_OR_LATER(ah))
884 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
886 ENABLE_REGWRITE_BUFFER(ah);
889 * let mac dma writes be in 128 byte chunks
891 regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
892 REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
895 * Setup receive FIFO threshold to hold off TX activities
897 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
899 if (AR_SREV_9300_20_OR_LATER(ah)) {
900 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
901 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
903 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
904 ah->caps.rx_status_len);
908 * reduce the number of usable entries in PCU TXBUF to avoid
909 * wrap around issues.
911 if (AR_SREV_9285(ah)) {
912 /* For AR9285 the number of Fifos are reduced to half.
913 * So set the usable tx buf size also to half to
914 * avoid data/delimiter underruns
916 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
917 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
918 } else if (!AR_SREV_9271(ah)) {
919 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
920 AR_PCU_TXBUF_CTRL_USABLE_SIZE);
923 REGWRITE_BUFFER_FLUSH(ah);
925 if (AR_SREV_9300_20_OR_LATER(ah))
926 ath9k_hw_reset_txstatus_ring(ah);
929 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
931 u32 val;
933 val = REG_READ(ah, AR_STA_ID1);
934 val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
935 switch (opmode) {
936 case NL80211_IFTYPE_AP:
937 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
938 | AR_STA_ID1_KSRCH_MODE);
939 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
940 break;
941 case NL80211_IFTYPE_ADHOC:
942 case NL80211_IFTYPE_MESH_POINT:
943 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
944 | AR_STA_ID1_KSRCH_MODE);
945 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
946 break;
947 case NL80211_IFTYPE_STATION:
948 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
949 break;
950 default:
951 if (ah->is_monitoring)
952 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
953 break;
957 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
958 u32 *coef_mantissa, u32 *coef_exponent)
960 u32 coef_exp, coef_man;
962 for (coef_exp = 31; coef_exp > 0; coef_exp--)
963 if ((coef_scaled >> coef_exp) & 0x1)
964 break;
966 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
968 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
970 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
971 *coef_exponent = coef_exp - 16;
974 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
976 u32 rst_flags;
977 u32 tmpReg;
979 if (AR_SREV_9100(ah)) {
980 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
981 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
982 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
983 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
984 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
987 ENABLE_REGWRITE_BUFFER(ah);
989 if (AR_SREV_9300_20_OR_LATER(ah)) {
990 REG_WRITE(ah, AR_WA, ah->WARegVal);
991 udelay(10);
994 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
995 AR_RTC_FORCE_WAKE_ON_INT);
997 if (AR_SREV_9100(ah)) {
998 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
999 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1000 } else {
1001 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1002 if (tmpReg &
1003 (AR_INTR_SYNC_LOCAL_TIMEOUT |
1004 AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1005 u32 val;
1006 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1008 val = AR_RC_HOSTIF;
1009 if (!AR_SREV_9300_20_OR_LATER(ah))
1010 val |= AR_RC_AHB;
1011 REG_WRITE(ah, AR_RC, val);
1013 } else if (!AR_SREV_9300_20_OR_LATER(ah))
1014 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1016 rst_flags = AR_RTC_RC_MAC_WARM;
1017 if (type == ATH9K_RESET_COLD)
1018 rst_flags |= AR_RTC_RC_MAC_COLD;
1021 REG_WRITE(ah, AR_RTC_RC, rst_flags);
1023 REGWRITE_BUFFER_FLUSH(ah);
1025 udelay(50);
1027 REG_WRITE(ah, AR_RTC_RC, 0);
1028 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1029 ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1030 "RTC stuck in MAC reset\n");
1031 return false;
1034 if (!AR_SREV_9100(ah))
1035 REG_WRITE(ah, AR_RC, 0);
1037 if (AR_SREV_9100(ah))
1038 udelay(50);
1040 return true;
1043 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1045 ENABLE_REGWRITE_BUFFER(ah);
1047 if (AR_SREV_9300_20_OR_LATER(ah)) {
1048 REG_WRITE(ah, AR_WA, ah->WARegVal);
1049 udelay(10);
1052 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1053 AR_RTC_FORCE_WAKE_ON_INT);
1055 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1056 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1058 REG_WRITE(ah, AR_RTC_RESET, 0);
1059 udelay(2);
1061 REGWRITE_BUFFER_FLUSH(ah);
1063 if (!AR_SREV_9300_20_OR_LATER(ah))
1064 udelay(2);
1066 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1067 REG_WRITE(ah, AR_RC, 0);
1069 REG_WRITE(ah, AR_RTC_RESET, 1);
1071 if (!ath9k_hw_wait(ah,
1072 AR_RTC_STATUS,
1073 AR_RTC_STATUS_M,
1074 AR_RTC_STATUS_ON,
1075 AH_WAIT_TIMEOUT)) {
1076 ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1077 "RTC not waking up\n");
1078 return false;
1081 ath9k_hw_read_revisions(ah);
1083 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1086 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1088 if (AR_SREV_9300_20_OR_LATER(ah)) {
1089 REG_WRITE(ah, AR_WA, ah->WARegVal);
1090 udelay(10);
1093 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1094 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1096 switch (type) {
1097 case ATH9K_RESET_POWER_ON:
1098 return ath9k_hw_set_reset_power_on(ah);
1099 case ATH9K_RESET_WARM:
1100 case ATH9K_RESET_COLD:
1101 return ath9k_hw_set_reset(ah, type);
1102 default:
1103 return false;
1107 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1108 struct ath9k_channel *chan)
1110 if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1111 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1112 return false;
1113 } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1114 return false;
1116 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1117 return false;
1119 ah->chip_fullsleep = false;
1120 ath9k_hw_init_pll(ah, chan);
1121 ath9k_hw_set_rfmode(ah, chan);
1123 return true;
1126 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1127 struct ath9k_channel *chan)
1129 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1130 struct ath_common *common = ath9k_hw_common(ah);
1131 struct ieee80211_channel *channel = chan->chan;
1132 u32 qnum;
1133 int r;
1135 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1136 if (ath9k_hw_numtxpending(ah, qnum)) {
1137 ath_dbg(common, ATH_DBG_QUEUE,
1138 "Transmit frames pending on queue %d\n", qnum);
1139 return false;
1143 if (!ath9k_hw_rfbus_req(ah)) {
1144 ath_err(common, "Could not kill baseband RX\n");
1145 return false;
1148 ath9k_hw_set_channel_regs(ah, chan);
1150 r = ath9k_hw_rf_set_freq(ah, chan);
1151 if (r) {
1152 ath_err(common, "Failed to set channel\n");
1153 return false;
1155 ath9k_hw_set_clockrate(ah);
1157 ah->eep_ops->set_txpower(ah, chan,
1158 ath9k_regd_get_ctl(regulatory, chan),
1159 channel->max_antenna_gain * 2,
1160 channel->max_power * 2,
1161 min((u32) MAX_RATE_POWER,
1162 (u32) regulatory->power_limit), false);
1164 ath9k_hw_rfbus_done(ah);
1166 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1167 ath9k_hw_set_delta_slope(ah, chan);
1169 ath9k_hw_spur_mitigate_freq(ah, chan);
1171 return true;
1174 bool ath9k_hw_check_alive(struct ath_hw *ah)
1176 int count = 50;
1177 u32 reg;
1179 if (AR_SREV_9285_12_OR_LATER(ah))
1180 return true;
1182 do {
1183 reg = REG_READ(ah, AR_OBS_BUS_1);
1185 if ((reg & 0x7E7FFFEF) == 0x00702400)
1186 continue;
1188 switch (reg & 0x7E000B00) {
1189 case 0x1E000000:
1190 case 0x52000B00:
1191 case 0x18000B00:
1192 continue;
1193 default:
1194 return true;
1196 } while (count-- > 0);
1198 return false;
1200 EXPORT_SYMBOL(ath9k_hw_check_alive);
1202 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1203 struct ath9k_hw_cal_data *caldata, bool bChannelChange)
1205 struct ath_common *common = ath9k_hw_common(ah);
1206 u32 saveLedState;
1207 struct ath9k_channel *curchan = ah->curchan;
1208 u32 saveDefAntenna;
1209 u32 macStaId1;
1210 u64 tsf = 0;
1211 int i, r;
1213 ah->txchainmask = common->tx_chainmask;
1214 ah->rxchainmask = common->rx_chainmask;
1216 if (!ah->chip_fullsleep) {
1217 ath9k_hw_abortpcurecv(ah);
1218 if (!ath9k_hw_stopdmarecv(ah)) {
1219 ath_dbg(common, ATH_DBG_XMIT,
1220 "Failed to stop receive dma\n");
1221 bChannelChange = false;
1225 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1226 return -EIO;
1228 if (curchan && !ah->chip_fullsleep)
1229 ath9k_hw_getnf(ah, curchan);
1231 ah->caldata = caldata;
1232 if (caldata &&
1233 (chan->channel != caldata->channel ||
1234 (chan->channelFlags & ~CHANNEL_CW_INT) !=
1235 (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1236 /* Operating channel changed, reset channel calibration data */
1237 memset(caldata, 0, sizeof(*caldata));
1238 ath9k_init_nfcal_hist_buffer(ah, chan);
1241 if (bChannelChange &&
1242 (ah->chip_fullsleep != true) &&
1243 (ah->curchan != NULL) &&
1244 (chan->channel != ah->curchan->channel) &&
1245 ((chan->channelFlags & CHANNEL_ALL) ==
1246 (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1247 (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
1249 if (ath9k_hw_channel_change(ah, chan)) {
1250 ath9k_hw_loadnf(ah, ah->curchan);
1251 ath9k_hw_start_nfcal(ah, true);
1252 if (AR_SREV_9271(ah))
1253 ar9002_hw_load_ani_reg(ah, chan);
1254 return 0;
1258 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1259 if (saveDefAntenna == 0)
1260 saveDefAntenna = 1;
1262 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1264 /* For chips on which RTC reset is done, save TSF before it gets cleared */
1265 if (AR_SREV_9100(ah) ||
1266 (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1267 tsf = ath9k_hw_gettsf64(ah);
1269 saveLedState = REG_READ(ah, AR_CFG_LED) &
1270 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1271 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1273 ath9k_hw_mark_phy_inactive(ah);
1275 /* Only required on the first reset */
1276 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1277 REG_WRITE(ah,
1278 AR9271_RESET_POWER_DOWN_CONTROL,
1279 AR9271_RADIO_RF_RST);
1280 udelay(50);
1283 if (!ath9k_hw_chip_reset(ah, chan)) {
1284 ath_err(common, "Chip reset failed\n");
1285 return -EINVAL;
1288 /* Only required on the first reset */
1289 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1290 ah->htc_reset_init = false;
1291 REG_WRITE(ah,
1292 AR9271_RESET_POWER_DOWN_CONTROL,
1293 AR9271_GATE_MAC_CTL);
1294 udelay(50);
1297 /* Restore TSF */
1298 if (tsf)
1299 ath9k_hw_settsf64(ah, tsf);
1301 if (AR_SREV_9280_20_OR_LATER(ah))
1302 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1304 if (!AR_SREV_9300_20_OR_LATER(ah))
1305 ar9002_hw_enable_async_fifo(ah);
1307 r = ath9k_hw_process_ini(ah, chan);
1308 if (r)
1309 return r;
1312 * Some AR91xx SoC devices frequently fail to accept TSF writes
1313 * right after the chip reset. When that happens, write a new
1314 * value after the initvals have been applied, with an offset
1315 * based on measured time difference
1317 if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1318 tsf += 1500;
1319 ath9k_hw_settsf64(ah, tsf);
1322 /* Setup MFP options for CCMP */
1323 if (AR_SREV_9280_20_OR_LATER(ah)) {
1324 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1325 * frames when constructing CCMP AAD. */
1326 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1327 0xc7ff);
1328 ah->sw_mgmt_crypto = false;
1329 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1330 /* Disable hardware crypto for management frames */
1331 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1332 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1333 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1334 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1335 ah->sw_mgmt_crypto = true;
1336 } else
1337 ah->sw_mgmt_crypto = true;
1339 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1340 ath9k_hw_set_delta_slope(ah, chan);
1342 ath9k_hw_spur_mitigate_freq(ah, chan);
1343 ah->eep_ops->set_board_values(ah, chan);
1345 ath9k_hw_set_operating_mode(ah, ah->opmode);
1347 ENABLE_REGWRITE_BUFFER(ah);
1349 REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1350 REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1351 | macStaId1
1352 | AR_STA_ID1_RTS_USE_DEF
1353 | (ah->config.
1354 ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1355 | ah->sta_id1_defaults);
1356 ath_hw_setbssidmask(common);
1357 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1358 ath9k_hw_write_associd(ah);
1359 REG_WRITE(ah, AR_ISR, ~0);
1360 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1362 REGWRITE_BUFFER_FLUSH(ah);
1364 r = ath9k_hw_rf_set_freq(ah, chan);
1365 if (r)
1366 return r;
1368 ath9k_hw_set_clockrate(ah);
1370 ENABLE_REGWRITE_BUFFER(ah);
1372 for (i = 0; i < AR_NUM_DCU; i++)
1373 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1375 REGWRITE_BUFFER_FLUSH(ah);
1377 ah->intr_txqs = 0;
1378 for (i = 0; i < ah->caps.total_queues; i++)
1379 ath9k_hw_resettxqueue(ah, i);
1381 ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1382 ath9k_hw_ani_cache_ini_regs(ah);
1383 ath9k_hw_init_qos(ah);
1385 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1386 ath9k_enable_rfkill(ah);
1388 ath9k_hw_init_global_settings(ah);
1390 if (!AR_SREV_9300_20_OR_LATER(ah)) {
1391 ar9002_hw_update_async_fifo(ah);
1392 ar9002_hw_enable_wep_aggregation(ah);
1395 REG_WRITE(ah, AR_STA_ID1,
1396 REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
1398 ath9k_hw_set_dma(ah);
1400 REG_WRITE(ah, AR_OBS, 8);
1402 if (ah->config.rx_intr_mitigation) {
1403 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1404 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1407 if (ah->config.tx_intr_mitigation) {
1408 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1409 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1412 ath9k_hw_init_bb(ah, chan);
1414 if (!ath9k_hw_init_cal(ah, chan))
1415 return -EIO;
1417 ENABLE_REGWRITE_BUFFER(ah);
1419 ath9k_hw_restore_chainmask(ah);
1420 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1422 REGWRITE_BUFFER_FLUSH(ah);
1425 * For big endian systems turn on swapping for descriptors
1427 if (AR_SREV_9100(ah)) {
1428 u32 mask;
1429 mask = REG_READ(ah, AR_CFG);
1430 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1431 ath_dbg(common, ATH_DBG_RESET,
1432 "CFG Byte Swap Set 0x%x\n", mask);
1433 } else {
1434 mask =
1435 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1436 REG_WRITE(ah, AR_CFG, mask);
1437 ath_dbg(common, ATH_DBG_RESET,
1438 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1440 } else {
1441 if (common->bus_ops->ath_bus_type == ATH_USB) {
1442 /* Configure AR9271 target WLAN */
1443 if (AR_SREV_9271(ah))
1444 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1445 else
1446 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1448 #ifdef __BIG_ENDIAN
1449 else
1450 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1451 #endif
1454 if (ah->btcoex_hw.enabled)
1455 ath9k_hw_btcoex_enable(ah);
1457 if (AR_SREV_9300_20_OR_LATER(ah))
1458 ar9003_hw_bb_watchdog_config(ah);
1460 return 0;
1462 EXPORT_SYMBOL(ath9k_hw_reset);
1464 /******************************/
1465 /* Power Management (Chipset) */
1466 /******************************/
1469 * Notify Power Mgt is disabled in self-generated frames.
1470 * If requested, force chip to sleep.
1472 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1474 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1475 if (setChip) {
1477 * Clear the RTC force wake bit to allow the
1478 * mac to go to sleep.
1480 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1481 AR_RTC_FORCE_WAKE_EN);
1482 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1483 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1485 /* Shutdown chip. Active low */
1486 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
1487 REG_CLR_BIT(ah, (AR_RTC_RESET),
1488 AR_RTC_RESET_EN);
1491 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1492 if (AR_SREV_9300_20_OR_LATER(ah))
1493 REG_WRITE(ah, AR_WA,
1494 ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1498 * Notify Power Management is enabled in self-generating
1499 * frames. If request, set power mode of chip to
1500 * auto/normal. Duration in units of 128us (1/8 TU).
1502 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1504 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1505 if (setChip) {
1506 struct ath9k_hw_capabilities *pCap = &ah->caps;
1508 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1509 /* Set WakeOnInterrupt bit; clear ForceWake bit */
1510 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1511 AR_RTC_FORCE_WAKE_ON_INT);
1512 } else {
1514 * Clear the RTC force wake bit to allow the
1515 * mac to go to sleep.
1517 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1518 AR_RTC_FORCE_WAKE_EN);
1522 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1523 if (AR_SREV_9300_20_OR_LATER(ah))
1524 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1527 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1529 u32 val;
1530 int i;
1532 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1533 if (AR_SREV_9300_20_OR_LATER(ah)) {
1534 REG_WRITE(ah, AR_WA, ah->WARegVal);
1535 udelay(10);
1538 if (setChip) {
1539 if ((REG_READ(ah, AR_RTC_STATUS) &
1540 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1541 if (ath9k_hw_set_reset_reg(ah,
1542 ATH9K_RESET_POWER_ON) != true) {
1543 return false;
1545 if (!AR_SREV_9300_20_OR_LATER(ah))
1546 ath9k_hw_init_pll(ah, NULL);
1548 if (AR_SREV_9100(ah))
1549 REG_SET_BIT(ah, AR_RTC_RESET,
1550 AR_RTC_RESET_EN);
1552 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1553 AR_RTC_FORCE_WAKE_EN);
1554 udelay(50);
1556 for (i = POWER_UP_TIME / 50; i > 0; i--) {
1557 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1558 if (val == AR_RTC_STATUS_ON)
1559 break;
1560 udelay(50);
1561 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1562 AR_RTC_FORCE_WAKE_EN);
1564 if (i == 0) {
1565 ath_err(ath9k_hw_common(ah),
1566 "Failed to wakeup in %uus\n",
1567 POWER_UP_TIME / 20);
1568 return false;
1572 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1574 return true;
1577 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1579 struct ath_common *common = ath9k_hw_common(ah);
1580 int status = true, setChip = true;
1581 static const char *modes[] = {
1582 "AWAKE",
1583 "FULL-SLEEP",
1584 "NETWORK SLEEP",
1585 "UNDEFINED"
1588 if (ah->power_mode == mode)
1589 return status;
1591 ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
1592 modes[ah->power_mode], modes[mode]);
1594 switch (mode) {
1595 case ATH9K_PM_AWAKE:
1596 status = ath9k_hw_set_power_awake(ah, setChip);
1597 break;
1598 case ATH9K_PM_FULL_SLEEP:
1599 ath9k_set_power_sleep(ah, setChip);
1600 ah->chip_fullsleep = true;
1601 break;
1602 case ATH9K_PM_NETWORK_SLEEP:
1603 ath9k_set_power_network_sleep(ah, setChip);
1604 break;
1605 default:
1606 ath_err(common, "Unknown power mode %u\n", mode);
1607 return false;
1609 ah->power_mode = mode;
1612 * XXX: If this warning never comes up after a while then
1613 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
1614 * ath9k_hw_setpower() return type void.
1616 ATH_DBG_WARN_ON_ONCE(!status);
1618 return status;
1620 EXPORT_SYMBOL(ath9k_hw_setpower);
1622 /*******************/
1623 /* Beacon Handling */
1624 /*******************/
1626 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1628 int flags = 0;
1630 ah->beacon_interval = beacon_period;
1632 ENABLE_REGWRITE_BUFFER(ah);
1634 switch (ah->opmode) {
1635 case NL80211_IFTYPE_ADHOC:
1636 case NL80211_IFTYPE_MESH_POINT:
1637 REG_SET_BIT(ah, AR_TXCFG,
1638 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1639 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
1640 TU_TO_USEC(next_beacon +
1641 (ah->atim_window ? ah->
1642 atim_window : 1)));
1643 flags |= AR_NDP_TIMER_EN;
1644 case NL80211_IFTYPE_AP:
1645 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1646 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
1647 TU_TO_USEC(next_beacon -
1648 ah->config.
1649 dma_beacon_response_time));
1650 REG_WRITE(ah, AR_NEXT_SWBA,
1651 TU_TO_USEC(next_beacon -
1652 ah->config.
1653 sw_beacon_response_time));
1654 flags |=
1655 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1656 break;
1657 default:
1658 ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
1659 "%s: unsupported opmode: %d\n",
1660 __func__, ah->opmode);
1661 return;
1662 break;
1665 REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1666 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1667 REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
1668 REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
1670 REGWRITE_BUFFER_FLUSH(ah);
1672 beacon_period &= ~ATH9K_BEACON_ENA;
1673 if (beacon_period & ATH9K_BEACON_RESET_TSF) {
1674 ath9k_hw_reset_tsf(ah);
1677 REG_SET_BIT(ah, AR_TIMER_MODE, flags);
1679 EXPORT_SYMBOL(ath9k_hw_beaconinit);
1681 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
1682 const struct ath9k_beacon_state *bs)
1684 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
1685 struct ath9k_hw_capabilities *pCap = &ah->caps;
1686 struct ath_common *common = ath9k_hw_common(ah);
1688 ENABLE_REGWRITE_BUFFER(ah);
1690 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
1692 REG_WRITE(ah, AR_BEACON_PERIOD,
1693 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1694 REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
1695 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1697 REGWRITE_BUFFER_FLUSH(ah);
1699 REG_RMW_FIELD(ah, AR_RSSI_THR,
1700 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
1702 beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
1704 if (bs->bs_sleepduration > beaconintval)
1705 beaconintval = bs->bs_sleepduration;
1707 dtimperiod = bs->bs_dtimperiod;
1708 if (bs->bs_sleepduration > dtimperiod)
1709 dtimperiod = bs->bs_sleepduration;
1711 if (beaconintval == dtimperiod)
1712 nextTbtt = bs->bs_nextdtim;
1713 else
1714 nextTbtt = bs->bs_nexttbtt;
1716 ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
1717 ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
1718 ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
1719 ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
1721 ENABLE_REGWRITE_BUFFER(ah);
1723 REG_WRITE(ah, AR_NEXT_DTIM,
1724 TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
1725 REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
1727 REG_WRITE(ah, AR_SLEEP1,
1728 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
1729 | AR_SLEEP1_ASSUME_DTIM);
1731 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
1732 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
1733 else
1734 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
1736 REG_WRITE(ah, AR_SLEEP2,
1737 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
1739 REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
1740 REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
1742 REGWRITE_BUFFER_FLUSH(ah);
1744 REG_SET_BIT(ah, AR_TIMER_MODE,
1745 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
1746 AR_DTIM_TIMER_EN);
1748 /* TSF Out of Range Threshold */
1749 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
1751 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
1753 /*******************/
1754 /* HW Capabilities */
1755 /*******************/
1757 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
1759 struct ath9k_hw_capabilities *pCap = &ah->caps;
1760 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1761 struct ath_common *common = ath9k_hw_common(ah);
1762 struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
1764 u16 capField = 0, eeval;
1765 u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
1767 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
1768 regulatory->current_rd = eeval;
1770 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
1771 if (AR_SREV_9285_12_OR_LATER(ah))
1772 eeval |= AR9285_RDEXT_DEFAULT;
1773 regulatory->current_rd_ext = eeval;
1775 capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
1777 if (ah->opmode != NL80211_IFTYPE_AP &&
1778 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
1779 if (regulatory->current_rd == 0x64 ||
1780 regulatory->current_rd == 0x65)
1781 regulatory->current_rd += 5;
1782 else if (regulatory->current_rd == 0x41)
1783 regulatory->current_rd = 0x43;
1784 ath_dbg(common, ATH_DBG_REGULATORY,
1785 "regdomain mapped to 0x%x\n", regulatory->current_rd);
1788 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
1789 if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
1790 ath_err(common,
1791 "no band has been marked as supported in EEPROM\n");
1792 return -EINVAL;
1795 if (eeval & AR5416_OPFLAGS_11A)
1796 pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
1798 if (eeval & AR5416_OPFLAGS_11G)
1799 pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
1801 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
1803 * For AR9271 we will temporarilly uses the rx chainmax as read from
1804 * the EEPROM.
1806 if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
1807 !(eeval & AR5416_OPFLAGS_11A) &&
1808 !(AR_SREV_9271(ah)))
1809 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
1810 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
1811 else
1812 /* Use rx_chainmask from EEPROM. */
1813 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
1815 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
1817 /* enable key search for every frame in an aggregate */
1818 if (AR_SREV_9300_20_OR_LATER(ah))
1819 ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
1821 pCap->low_2ghz_chan = 2312;
1822 pCap->high_2ghz_chan = 2732;
1824 pCap->low_5ghz_chan = 4920;
1825 pCap->high_5ghz_chan = 6100;
1827 common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
1829 if (ah->config.ht_enable)
1830 pCap->hw_caps |= ATH9K_HW_CAP_HT;
1831 else
1832 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
1834 if (capField & AR_EEPROM_EEPCAP_MAXQCU)
1835 pCap->total_queues =
1836 MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
1837 else
1838 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
1840 if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
1841 pCap->keycache_size =
1842 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
1843 else
1844 pCap->keycache_size = AR_KEYTABLE_SIZE;
1846 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
1847 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
1848 else
1849 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
1851 if (AR_SREV_9271(ah))
1852 pCap->num_gpio_pins = AR9271_NUM_GPIO;
1853 else if (AR_DEVID_7010(ah))
1854 pCap->num_gpio_pins = AR7010_NUM_GPIO;
1855 else if (AR_SREV_9285_12_OR_LATER(ah))
1856 pCap->num_gpio_pins = AR9285_NUM_GPIO;
1857 else if (AR_SREV_9280_20_OR_LATER(ah))
1858 pCap->num_gpio_pins = AR928X_NUM_GPIO;
1859 else
1860 pCap->num_gpio_pins = AR_NUM_GPIO;
1862 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
1863 pCap->hw_caps |= ATH9K_HW_CAP_CST;
1864 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
1865 } else {
1866 pCap->rts_aggr_limit = (8 * 1024);
1869 pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
1871 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1872 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
1873 if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
1874 ah->rfkill_gpio =
1875 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
1876 ah->rfkill_polarity =
1877 MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
1879 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
1881 #endif
1882 if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
1883 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
1884 else
1885 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
1887 if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
1888 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
1889 else
1890 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
1892 if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
1893 pCap->reg_cap =
1894 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
1895 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
1896 AR_EEPROM_EEREGCAP_EN_KK_U2 |
1897 AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
1898 } else {
1899 pCap->reg_cap =
1900 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
1901 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
1904 /* Advertise midband for AR5416 with FCC midband set in eeprom */
1905 if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
1906 AR_SREV_5416(ah))
1907 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
1909 pCap->num_antcfg_5ghz =
1910 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
1911 pCap->num_antcfg_2ghz =
1912 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
1914 if (AR_SREV_9280_20_OR_LATER(ah) && common->btcoex_enabled) {
1915 btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
1916 btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
1918 if (AR_SREV_9285(ah)) {
1919 btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
1920 btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
1921 } else {
1922 btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
1924 } else {
1925 btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
1928 if (AR_SREV_9300_20_OR_LATER(ah)) {
1929 pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
1930 if (!AR_SREV_9485(ah))
1931 pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
1933 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
1934 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
1935 pCap->rx_status_len = sizeof(struct ar9003_rxs);
1936 pCap->tx_desc_len = sizeof(struct ar9003_txc);
1937 pCap->txs_len = sizeof(struct ar9003_txs);
1938 if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
1939 pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
1940 } else {
1941 pCap->tx_desc_len = sizeof(struct ath_desc);
1942 if (AR_SREV_9280_20(ah) &&
1943 ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
1944 AR5416_EEP_MINOR_VER_16) ||
1945 ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
1946 pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
1949 if (AR_SREV_9300_20_OR_LATER(ah))
1950 pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
1952 if (AR_SREV_9300_20_OR_LATER(ah))
1953 ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
1955 if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
1956 pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
1958 if (AR_SREV_9285(ah))
1959 if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
1960 ant_div_ctl1 =
1961 ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
1962 if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
1963 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
1965 if (AR_SREV_9300_20_OR_LATER(ah)) {
1966 if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
1967 pCap->hw_caps |= ATH9K_HW_CAP_APM;
1972 if (AR_SREV_9485_10(ah)) {
1973 pCap->pcie_lcr_extsync_en = true;
1974 pCap->pcie_lcr_offset = 0x80;
1977 tx_chainmask = pCap->tx_chainmask;
1978 rx_chainmask = pCap->rx_chainmask;
1979 while (tx_chainmask || rx_chainmask) {
1980 if (tx_chainmask & BIT(0))
1981 pCap->max_txchains++;
1982 if (rx_chainmask & BIT(0))
1983 pCap->max_rxchains++;
1985 tx_chainmask >>= 1;
1986 rx_chainmask >>= 1;
1989 return 0;
1992 /****************************/
1993 /* GPIO / RFKILL / Antennae */
1994 /****************************/
1996 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
1997 u32 gpio, u32 type)
1999 int addr;
2000 u32 gpio_shift, tmp;
2002 if (gpio > 11)
2003 addr = AR_GPIO_OUTPUT_MUX3;
2004 else if (gpio > 5)
2005 addr = AR_GPIO_OUTPUT_MUX2;
2006 else
2007 addr = AR_GPIO_OUTPUT_MUX1;
2009 gpio_shift = (gpio % 6) * 5;
2011 if (AR_SREV_9280_20_OR_LATER(ah)
2012 || (addr != AR_GPIO_OUTPUT_MUX1)) {
2013 REG_RMW(ah, addr, (type << gpio_shift),
2014 (0x1f << gpio_shift));
2015 } else {
2016 tmp = REG_READ(ah, addr);
2017 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2018 tmp &= ~(0x1f << gpio_shift);
2019 tmp |= (type << gpio_shift);
2020 REG_WRITE(ah, addr, tmp);
2024 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2026 u32 gpio_shift;
2028 BUG_ON(gpio >= ah->caps.num_gpio_pins);
2030 if (AR_DEVID_7010(ah)) {
2031 gpio_shift = gpio;
2032 REG_RMW(ah, AR7010_GPIO_OE,
2033 (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2034 (AR7010_GPIO_OE_MASK << gpio_shift));
2035 return;
2038 gpio_shift = gpio << 1;
2039 REG_RMW(ah,
2040 AR_GPIO_OE_OUT,
2041 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2042 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2044 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2046 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2048 #define MS_REG_READ(x, y) \
2049 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2051 if (gpio >= ah->caps.num_gpio_pins)
2052 return 0xffffffff;
2054 if (AR_DEVID_7010(ah)) {
2055 u32 val;
2056 val = REG_READ(ah, AR7010_GPIO_IN);
2057 return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2058 } else if (AR_SREV_9300_20_OR_LATER(ah))
2059 return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2060 AR_GPIO_BIT(gpio)) != 0;
2061 else if (AR_SREV_9271(ah))
2062 return MS_REG_READ(AR9271, gpio) != 0;
2063 else if (AR_SREV_9287_11_OR_LATER(ah))
2064 return MS_REG_READ(AR9287, gpio) != 0;
2065 else if (AR_SREV_9285_12_OR_LATER(ah))
2066 return MS_REG_READ(AR9285, gpio) != 0;
2067 else if (AR_SREV_9280_20_OR_LATER(ah))
2068 return MS_REG_READ(AR928X, gpio) != 0;
2069 else
2070 return MS_REG_READ(AR, gpio) != 0;
2072 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2074 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2075 u32 ah_signal_type)
2077 u32 gpio_shift;
2079 if (AR_DEVID_7010(ah)) {
2080 gpio_shift = gpio;
2081 REG_RMW(ah, AR7010_GPIO_OE,
2082 (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2083 (AR7010_GPIO_OE_MASK << gpio_shift));
2084 return;
2087 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2088 gpio_shift = 2 * gpio;
2089 REG_RMW(ah,
2090 AR_GPIO_OE_OUT,
2091 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2092 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2094 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2096 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2098 if (AR_DEVID_7010(ah)) {
2099 val = val ? 0 : 1;
2100 REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2101 AR_GPIO_BIT(gpio));
2102 return;
2105 if (AR_SREV_9271(ah))
2106 val = ~val;
2108 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2109 AR_GPIO_BIT(gpio));
2111 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2113 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2115 return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2117 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2119 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2121 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2123 EXPORT_SYMBOL(ath9k_hw_setantenna);
2125 /*********************/
2126 /* General Operation */
2127 /*********************/
2129 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2131 u32 bits = REG_READ(ah, AR_RX_FILTER);
2132 u32 phybits = REG_READ(ah, AR_PHY_ERR);
2134 if (phybits & AR_PHY_ERR_RADAR)
2135 bits |= ATH9K_RX_FILTER_PHYRADAR;
2136 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2137 bits |= ATH9K_RX_FILTER_PHYERR;
2139 return bits;
2141 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2143 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2145 u32 phybits;
2147 ENABLE_REGWRITE_BUFFER(ah);
2149 REG_WRITE(ah, AR_RX_FILTER, bits);
2151 phybits = 0;
2152 if (bits & ATH9K_RX_FILTER_PHYRADAR)
2153 phybits |= AR_PHY_ERR_RADAR;
2154 if (bits & ATH9K_RX_FILTER_PHYERR)
2155 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2156 REG_WRITE(ah, AR_PHY_ERR, phybits);
2158 if (phybits)
2159 REG_WRITE(ah, AR_RXCFG,
2160 REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
2161 else
2162 REG_WRITE(ah, AR_RXCFG,
2163 REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
2165 REGWRITE_BUFFER_FLUSH(ah);
2167 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2169 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2171 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2172 return false;
2174 ath9k_hw_init_pll(ah, NULL);
2175 return true;
2177 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2179 bool ath9k_hw_disable(struct ath_hw *ah)
2181 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2182 return false;
2184 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2185 return false;
2187 ath9k_hw_init_pll(ah, NULL);
2188 return true;
2190 EXPORT_SYMBOL(ath9k_hw_disable);
2192 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2194 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2195 struct ath9k_channel *chan = ah->curchan;
2196 struct ieee80211_channel *channel = chan->chan;
2198 regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
2200 ah->eep_ops->set_txpower(ah, chan,
2201 ath9k_regd_get_ctl(regulatory, chan),
2202 channel->max_antenna_gain * 2,
2203 channel->max_power * 2,
2204 min((u32) MAX_RATE_POWER,
2205 (u32) regulatory->power_limit), test);
2207 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2209 void ath9k_hw_setopmode(struct ath_hw *ah)
2211 ath9k_hw_set_operating_mode(ah, ah->opmode);
2213 EXPORT_SYMBOL(ath9k_hw_setopmode);
2215 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2217 REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2218 REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2220 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2222 void ath9k_hw_write_associd(struct ath_hw *ah)
2224 struct ath_common *common = ath9k_hw_common(ah);
2226 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2227 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2228 ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2230 EXPORT_SYMBOL(ath9k_hw_write_associd);
2232 #define ATH9K_MAX_TSF_READ 10
2234 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2236 u32 tsf_lower, tsf_upper1, tsf_upper2;
2237 int i;
2239 tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2240 for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2241 tsf_lower = REG_READ(ah, AR_TSF_L32);
2242 tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2243 if (tsf_upper2 == tsf_upper1)
2244 break;
2245 tsf_upper1 = tsf_upper2;
2248 WARN_ON( i == ATH9K_MAX_TSF_READ );
2250 return (((u64)tsf_upper1 << 32) | tsf_lower);
2252 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2254 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2256 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2257 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2259 EXPORT_SYMBOL(ath9k_hw_settsf64);
2261 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2263 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2264 AH_TSF_WRITE_TIMEOUT))
2265 ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
2266 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2268 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2270 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2272 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2274 if (setting)
2275 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2276 else
2277 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2279 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2281 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2283 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2284 u32 macmode;
2286 if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2287 macmode = AR_2040_JOINED_RX_CLEAR;
2288 else
2289 macmode = 0;
2291 REG_WRITE(ah, AR_2040_MODE, macmode);
2294 /* HW Generic timers configuration */
2296 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2298 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2299 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2300 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2301 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2302 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2303 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2304 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2305 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2306 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2307 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2308 AR_NDP2_TIMER_MODE, 0x0002},
2309 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2310 AR_NDP2_TIMER_MODE, 0x0004},
2311 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2312 AR_NDP2_TIMER_MODE, 0x0008},
2313 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2314 AR_NDP2_TIMER_MODE, 0x0010},
2315 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2316 AR_NDP2_TIMER_MODE, 0x0020},
2317 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2318 AR_NDP2_TIMER_MODE, 0x0040},
2319 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2320 AR_NDP2_TIMER_MODE, 0x0080}
2323 /* HW generic timer primitives */
2325 /* compute and clear index of rightmost 1 */
2326 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2328 u32 b;
2330 b = *mask;
2331 b &= (0-b);
2332 *mask &= ~b;
2333 b *= debruijn32;
2334 b >>= 27;
2336 return timer_table->gen_timer_index[b];
2339 static u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2341 return REG_READ(ah, AR_TSF_L32);
2344 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2345 void (*trigger)(void *),
2346 void (*overflow)(void *),
2347 void *arg,
2348 u8 timer_index)
2350 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2351 struct ath_gen_timer *timer;
2353 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2355 if (timer == NULL) {
2356 ath_err(ath9k_hw_common(ah),
2357 "Failed to allocate memory for hw timer[%d]\n",
2358 timer_index);
2359 return NULL;
2362 /* allocate a hardware generic timer slot */
2363 timer_table->timers[timer_index] = timer;
2364 timer->index = timer_index;
2365 timer->trigger = trigger;
2366 timer->overflow = overflow;
2367 timer->arg = arg;
2369 return timer;
2371 EXPORT_SYMBOL(ath_gen_timer_alloc);
2373 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2374 struct ath_gen_timer *timer,
2375 u32 timer_next,
2376 u32 timer_period)
2378 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2379 u32 tsf;
2381 BUG_ON(!timer_period);
2383 set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2385 tsf = ath9k_hw_gettsf32(ah);
2387 ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2388 "current tsf %x period %x timer_next %x\n",
2389 tsf, timer_period, timer_next);
2392 * Pull timer_next forward if the current TSF already passed it
2393 * because of software latency
2395 if (timer_next < tsf)
2396 timer_next = tsf + timer_period;
2399 * Program generic timer registers
2401 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2402 timer_next);
2403 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2404 timer_period);
2405 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2406 gen_tmr_configuration[timer->index].mode_mask);
2408 /* Enable both trigger and thresh interrupt masks */
2409 REG_SET_BIT(ah, AR_IMR_S5,
2410 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2411 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2413 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2415 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2417 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2419 if ((timer->index < AR_FIRST_NDP_TIMER) ||
2420 (timer->index >= ATH_MAX_GEN_TIMER)) {
2421 return;
2424 /* Clear generic timer enable bits. */
2425 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2426 gen_tmr_configuration[timer->index].mode_mask);
2428 /* Disable both trigger and thresh interrupt masks */
2429 REG_CLR_BIT(ah, AR_IMR_S5,
2430 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2431 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2433 clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2435 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2437 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2439 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2441 /* free the hardware generic timer slot */
2442 timer_table->timers[timer->index] = NULL;
2443 kfree(timer);
2445 EXPORT_SYMBOL(ath_gen_timer_free);
2448 * Generic Timer Interrupts handling
2450 void ath_gen_timer_isr(struct ath_hw *ah)
2452 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2453 struct ath_gen_timer *timer;
2454 struct ath_common *common = ath9k_hw_common(ah);
2455 u32 trigger_mask, thresh_mask, index;
2457 /* get hardware generic timer interrupt status */
2458 trigger_mask = ah->intr_gen_timer_trigger;
2459 thresh_mask = ah->intr_gen_timer_thresh;
2460 trigger_mask &= timer_table->timer_mask.val;
2461 thresh_mask &= timer_table->timer_mask.val;
2463 trigger_mask &= ~thresh_mask;
2465 while (thresh_mask) {
2466 index = rightmost_index(timer_table, &thresh_mask);
2467 timer = timer_table->timers[index];
2468 BUG_ON(!timer);
2469 ath_dbg(common, ATH_DBG_HWTIMER,
2470 "TSF overflow for Gen timer %d\n", index);
2471 timer->overflow(timer->arg);
2474 while (trigger_mask) {
2475 index = rightmost_index(timer_table, &trigger_mask);
2476 timer = timer_table->timers[index];
2477 BUG_ON(!timer);
2478 ath_dbg(common, ATH_DBG_HWTIMER,
2479 "Gen timer[%d] trigger\n", index);
2480 timer->trigger(timer->arg);
2483 EXPORT_SYMBOL(ath_gen_timer_isr);
2485 /********/
2486 /* HTC */
2487 /********/
2489 void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2491 ah->htc_reset_init = true;
2493 EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2495 static struct {
2496 u32 version;
2497 const char * name;
2498 } ath_mac_bb_names[] = {
2499 /* Devices with external radios */
2500 { AR_SREV_VERSION_5416_PCI, "5416" },
2501 { AR_SREV_VERSION_5416_PCIE, "5418" },
2502 { AR_SREV_VERSION_9100, "9100" },
2503 { AR_SREV_VERSION_9160, "9160" },
2504 /* Single-chip solutions */
2505 { AR_SREV_VERSION_9280, "9280" },
2506 { AR_SREV_VERSION_9285, "9285" },
2507 { AR_SREV_VERSION_9287, "9287" },
2508 { AR_SREV_VERSION_9271, "9271" },
2509 { AR_SREV_VERSION_9300, "9300" },
2512 /* For devices with external radios */
2513 static struct {
2514 u16 version;
2515 const char * name;
2516 } ath_rf_names[] = {
2517 { 0, "5133" },
2518 { AR_RAD5133_SREV_MAJOR, "5133" },
2519 { AR_RAD5122_SREV_MAJOR, "5122" },
2520 { AR_RAD2133_SREV_MAJOR, "2133" },
2521 { AR_RAD2122_SREV_MAJOR, "2122" }
2525 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2527 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2529 int i;
2531 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2532 if (ath_mac_bb_names[i].version == mac_bb_version) {
2533 return ath_mac_bb_names[i].name;
2537 return "????";
2541 * Return the RF name. "????" is returned if the RF is unknown.
2542 * Used for devices with external radios.
2544 static const char *ath9k_hw_rf_name(u16 rf_version)
2546 int i;
2548 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2549 if (ath_rf_names[i].version == rf_version) {
2550 return ath_rf_names[i].name;
2554 return "????";
2557 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2559 int used;
2561 /* chipsets >= AR9280 are single-chip */
2562 if (AR_SREV_9280_20_OR_LATER(ah)) {
2563 used = snprintf(hw_name, len,
2564 "Atheros AR%s Rev:%x",
2565 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2566 ah->hw_version.macRev);
2568 else {
2569 used = snprintf(hw_name, len,
2570 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2571 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2572 ah->hw_version.macRev,
2573 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2574 AR_RADIO_SREV_MAJOR)),
2575 ah->hw_version.phyRev);
2578 hw_name[used] = '\0';
2580 EXPORT_SYMBOL(ath9k_hw_name);