2 * Copyright (c) 2008-2010 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 #include <linux/slab.h>
19 #include <asm/unaligned.h>
24 #include "ar9003_mac.h"
26 static bool ath9k_hw_set_reset_reg(struct ath_hw
*ah
, u32 type
);
28 MODULE_AUTHOR("Atheros Communications");
29 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
30 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
31 MODULE_LICENSE("Dual BSD/GPL");
33 static int __init
ath9k_init(void)
37 module_init(ath9k_init
);
39 static void __exit
ath9k_exit(void)
43 module_exit(ath9k_exit
);
45 /* Private hardware callbacks */
47 static void ath9k_hw_init_cal_settings(struct ath_hw
*ah
)
49 ath9k_hw_private_ops(ah
)->init_cal_settings(ah
);
52 static void ath9k_hw_init_mode_regs(struct ath_hw
*ah
)
54 ath9k_hw_private_ops(ah
)->init_mode_regs(ah
);
57 static bool ath9k_hw_macversion_supported(struct ath_hw
*ah
)
59 struct ath_hw_private_ops
*priv_ops
= ath9k_hw_private_ops(ah
);
61 return priv_ops
->macversion_supported(ah
->hw_version
.macVersion
);
64 static u32
ath9k_hw_compute_pll_control(struct ath_hw
*ah
,
65 struct ath9k_channel
*chan
)
67 return ath9k_hw_private_ops(ah
)->compute_pll_control(ah
, chan
);
70 static void ath9k_hw_init_mode_gain_regs(struct ath_hw
*ah
)
72 if (!ath9k_hw_private_ops(ah
)->init_mode_gain_regs
)
75 ath9k_hw_private_ops(ah
)->init_mode_gain_regs(ah
);
78 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw
*ah
)
80 /* You will not have this callback if using the old ANI */
81 if (!ath9k_hw_private_ops(ah
)->ani_cache_ini_regs
)
84 ath9k_hw_private_ops(ah
)->ani_cache_ini_regs(ah
);
87 /********************/
88 /* Helper Functions */
89 /********************/
91 static void ath9k_hw_set_clockrate(struct ath_hw
*ah
)
93 struct ieee80211_conf
*conf
= &ath9k_hw_common(ah
)->hw
->conf
;
94 struct ath_common
*common
= ath9k_hw_common(ah
);
95 unsigned int clockrate
;
97 if (!ah
->curchan
) /* should really check for CCK instead */
98 clockrate
= ATH9K_CLOCK_RATE_CCK
;
99 else if (conf
->channel
->band
== IEEE80211_BAND_2GHZ
)
100 clockrate
= ATH9K_CLOCK_RATE_2GHZ_OFDM
;
101 else if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_FASTCLOCK
)
102 clockrate
= ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM
;
104 clockrate
= ATH9K_CLOCK_RATE_5GHZ_OFDM
;
106 if (conf_is_ht40(conf
))
109 common
->clockrate
= clockrate
;
112 static u32
ath9k_hw_mac_to_clks(struct ath_hw
*ah
, u32 usecs
)
114 struct ath_common
*common
= ath9k_hw_common(ah
);
116 return usecs
* common
->clockrate
;
119 bool ath9k_hw_wait(struct ath_hw
*ah
, u32 reg
, u32 mask
, u32 val
, u32 timeout
)
123 BUG_ON(timeout
< AH_TIME_QUANTUM
);
125 for (i
= 0; i
< (timeout
/ AH_TIME_QUANTUM
); i
++) {
126 if ((REG_READ(ah
, reg
) & mask
) == val
)
129 udelay(AH_TIME_QUANTUM
);
132 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_ANY
,
133 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
134 timeout
, reg
, REG_READ(ah
, reg
), mask
, val
);
138 EXPORT_SYMBOL(ath9k_hw_wait
);
140 u32
ath9k_hw_reverse_bits(u32 val
, u32 n
)
145 for (i
= 0, retval
= 0; i
< n
; i
++) {
146 retval
= (retval
<< 1) | (val
& 1);
152 bool ath9k_get_channel_edges(struct ath_hw
*ah
,
156 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
158 if (flags
& CHANNEL_5GHZ
) {
159 *low
= pCap
->low_5ghz_chan
;
160 *high
= pCap
->high_5ghz_chan
;
163 if ((flags
& CHANNEL_2GHZ
)) {
164 *low
= pCap
->low_2ghz_chan
;
165 *high
= pCap
->high_2ghz_chan
;
171 u16
ath9k_hw_computetxtime(struct ath_hw
*ah
,
173 u32 frameLen
, u16 rateix
,
176 u32 bitsPerSymbol
, numBits
, numSymbols
, phyTime
, txTime
;
182 case WLAN_RC_PHY_CCK
:
183 phyTime
= CCK_PREAMBLE_BITS
+ CCK_PLCP_BITS
;
186 numBits
= frameLen
<< 3;
187 txTime
= CCK_SIFS_TIME
+ phyTime
+ ((numBits
* 1000) / kbps
);
189 case WLAN_RC_PHY_OFDM
:
190 if (ah
->curchan
&& IS_CHAN_QUARTER_RATE(ah
->curchan
)) {
191 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME_QUARTER
) / 1000;
192 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
193 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
194 txTime
= OFDM_SIFS_TIME_QUARTER
195 + OFDM_PREAMBLE_TIME_QUARTER
196 + (numSymbols
* OFDM_SYMBOL_TIME_QUARTER
);
197 } else if (ah
->curchan
&&
198 IS_CHAN_HALF_RATE(ah
->curchan
)) {
199 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME_HALF
) / 1000;
200 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
201 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
202 txTime
= OFDM_SIFS_TIME_HALF
+
203 OFDM_PREAMBLE_TIME_HALF
204 + (numSymbols
* OFDM_SYMBOL_TIME_HALF
);
206 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME
) / 1000;
207 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
208 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
209 txTime
= OFDM_SIFS_TIME
+ OFDM_PREAMBLE_TIME
210 + (numSymbols
* OFDM_SYMBOL_TIME
);
214 ath_err(ath9k_hw_common(ah
),
215 "Unknown phy %u (rate ix %u)\n", phy
, rateix
);
222 EXPORT_SYMBOL(ath9k_hw_computetxtime
);
224 void ath9k_hw_get_channel_centers(struct ath_hw
*ah
,
225 struct ath9k_channel
*chan
,
226 struct chan_centers
*centers
)
230 if (!IS_CHAN_HT40(chan
)) {
231 centers
->ctl_center
= centers
->ext_center
=
232 centers
->synth_center
= chan
->channel
;
236 if ((chan
->chanmode
== CHANNEL_A_HT40PLUS
) ||
237 (chan
->chanmode
== CHANNEL_G_HT40PLUS
)) {
238 centers
->synth_center
=
239 chan
->channel
+ HT40_CHANNEL_CENTER_SHIFT
;
242 centers
->synth_center
=
243 chan
->channel
- HT40_CHANNEL_CENTER_SHIFT
;
247 centers
->ctl_center
=
248 centers
->synth_center
- (extoff
* HT40_CHANNEL_CENTER_SHIFT
);
249 /* 25 MHz spacing is supported by hw but not on upper layers */
250 centers
->ext_center
=
251 centers
->synth_center
+ (extoff
* HT40_CHANNEL_CENTER_SHIFT
);
258 static void ath9k_hw_read_revisions(struct ath_hw
*ah
)
262 val
= REG_READ(ah
, AR_SREV
) & AR_SREV_ID
;
265 val
= REG_READ(ah
, AR_SREV
);
266 ah
->hw_version
.macVersion
=
267 (val
& AR_SREV_VERSION2
) >> AR_SREV_TYPE2_S
;
268 ah
->hw_version
.macRev
= MS(val
, AR_SREV_REVISION2
);
269 ah
->is_pciexpress
= (val
& AR_SREV_TYPE2_HOST_MODE
) ? 0 : 1;
271 if (!AR_SREV_9100(ah
))
272 ah
->hw_version
.macVersion
= MS(val
, AR_SREV_VERSION
);
274 ah
->hw_version
.macRev
= val
& AR_SREV_REVISION
;
276 if (ah
->hw_version
.macVersion
== AR_SREV_VERSION_5416_PCIE
)
277 ah
->is_pciexpress
= true;
281 /************************************/
282 /* HW Attach, Detach, Init Routines */
283 /************************************/
285 static void ath9k_hw_disablepcie(struct ath_hw
*ah
)
287 if (AR_SREV_9100(ah
))
290 ENABLE_REGWRITE_BUFFER(ah
);
292 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x9248fc00);
293 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x24924924);
294 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x28000029);
295 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x57160824);
296 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x25980579);
297 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x00000000);
298 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x1aaabe40);
299 REG_WRITE(ah
, AR_PCIE_SERDES
, 0xbe105554);
300 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x000e1007);
302 REG_WRITE(ah
, AR_PCIE_SERDES2
, 0x00000000);
304 REGWRITE_BUFFER_FLUSH(ah
);
307 /* This should work for all families including legacy */
308 static bool ath9k_hw_chip_test(struct ath_hw
*ah
)
310 struct ath_common
*common
= ath9k_hw_common(ah
);
311 u32 regAddr
[2] = { AR_STA_ID0
};
313 static const u32 patternData
[4] = {
314 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
318 if (!AR_SREV_9300_20_OR_LATER(ah
)) {
320 regAddr
[1] = AR_PHY_BASE
+ (8 << 2);
324 for (i
= 0; i
< loop_max
; i
++) {
325 u32 addr
= regAddr
[i
];
328 regHold
[i
] = REG_READ(ah
, addr
);
329 for (j
= 0; j
< 0x100; j
++) {
330 wrData
= (j
<< 16) | j
;
331 REG_WRITE(ah
, addr
, wrData
);
332 rdData
= REG_READ(ah
, addr
);
333 if (rdData
!= wrData
) {
335 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
336 addr
, wrData
, rdData
);
340 for (j
= 0; j
< 4; j
++) {
341 wrData
= patternData
[j
];
342 REG_WRITE(ah
, addr
, wrData
);
343 rdData
= REG_READ(ah
, addr
);
344 if (wrData
!= rdData
) {
346 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
347 addr
, wrData
, rdData
);
351 REG_WRITE(ah
, regAddr
[i
], regHold
[i
]);
358 static void ath9k_hw_init_config(struct ath_hw
*ah
)
362 ah
->config
.dma_beacon_response_time
= 2;
363 ah
->config
.sw_beacon_response_time
= 10;
364 ah
->config
.additional_swba_backoff
= 0;
365 ah
->config
.ack_6mb
= 0x0;
366 ah
->config
.cwm_ignore_extcca
= 0;
367 ah
->config
.pcie_powersave_enable
= 0;
368 ah
->config
.pcie_clock_req
= 0;
369 ah
->config
.pcie_waen
= 0;
370 ah
->config
.analog_shiftreg
= 1;
371 ah
->config
.enable_ani
= true;
373 for (i
= 0; i
< AR_EEPROM_MODAL_SPURS
; i
++) {
374 ah
->config
.spurchans
[i
][0] = AR_NO_SPUR
;
375 ah
->config
.spurchans
[i
][1] = AR_NO_SPUR
;
378 if (ah
->hw_version
.devid
!= AR2427_DEVID_PCIE
)
379 ah
->config
.ht_enable
= 1;
381 ah
->config
.ht_enable
= 0;
383 ah
->config
.rx_intr_mitigation
= true;
384 ah
->config
.pcieSerDesWrite
= true;
387 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
388 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
389 * This means we use it for all AR5416 devices, and the few
390 * minor PCI AR9280 devices out there.
392 * Serialization is required because these devices do not handle
393 * well the case of two concurrent reads/writes due to the latency
394 * involved. During one read/write another read/write can be issued
395 * on another CPU while the previous read/write may still be working
396 * on our hardware, if we hit this case the hardware poops in a loop.
397 * We prevent this by serializing reads and writes.
399 * This issue is not present on PCI-Express devices or pre-AR5416
400 * devices (legacy, 802.11abg).
402 if (num_possible_cpus() > 1)
403 ah
->config
.serialize_regmode
= SER_REG_MODE_AUTO
;
406 static void ath9k_hw_init_defaults(struct ath_hw
*ah
)
408 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
410 regulatory
->country_code
= CTRY_DEFAULT
;
411 regulatory
->power_limit
= MAX_RATE_POWER
;
412 regulatory
->tp_scale
= ATH9K_TP_SCALE_MAX
;
414 ah
->hw_version
.magic
= AR5416_MAGIC
;
415 ah
->hw_version
.subvendorid
= 0;
418 ah
->sta_id1_defaults
=
419 AR_STA_ID1_CRPT_MIC_ENABLE
|
420 AR_STA_ID1_MCAST_KSRCH
;
421 ah
->beacon_interval
= 100;
422 ah
->enable_32kHz_clock
= DONT_USE_32KHZ
;
423 ah
->slottime
= (u32
) -1;
424 ah
->globaltxtimeout
= (u32
) -1;
425 ah
->power_mode
= ATH9K_PM_UNDEFINED
;
428 static int ath9k_hw_init_macaddr(struct ath_hw
*ah
)
430 struct ath_common
*common
= ath9k_hw_common(ah
);
434 static const u32 EEP_MAC
[] = { EEP_MAC_LSW
, EEP_MAC_MID
, EEP_MAC_MSW
};
437 for (i
= 0; i
< 3; i
++) {
438 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_MAC
[i
]);
440 common
->macaddr
[2 * i
] = eeval
>> 8;
441 common
->macaddr
[2 * i
+ 1] = eeval
& 0xff;
443 if (sum
== 0 || sum
== 0xffff * 3)
444 return -EADDRNOTAVAIL
;
449 static int ath9k_hw_post_init(struct ath_hw
*ah
)
453 if (!AR_SREV_9271(ah
)) {
454 if (!ath9k_hw_chip_test(ah
))
458 if (!AR_SREV_9300_20_OR_LATER(ah
)) {
459 ecode
= ar9002_hw_rf_claim(ah
);
464 ecode
= ath9k_hw_eeprom_init(ah
);
468 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_CONFIG
,
469 "Eeprom VER: %d, REV: %d\n",
470 ah
->eep_ops
->get_eeprom_ver(ah
),
471 ah
->eep_ops
->get_eeprom_rev(ah
));
473 ecode
= ath9k_hw_rf_alloc_ext_banks(ah
);
475 ath_err(ath9k_hw_common(ah
),
476 "Failed allocating banks for external radio\n");
477 ath9k_hw_rf_free_ext_banks(ah
);
481 if (!AR_SREV_9100(ah
)) {
482 ath9k_hw_ani_setup(ah
);
483 ath9k_hw_ani_init(ah
);
489 static void ath9k_hw_attach_ops(struct ath_hw
*ah
)
491 if (AR_SREV_9300_20_OR_LATER(ah
))
492 ar9003_hw_attach_ops(ah
);
494 ar9002_hw_attach_ops(ah
);
497 /* Called for all hardware families */
498 static int __ath9k_hw_init(struct ath_hw
*ah
)
500 struct ath_common
*common
= ath9k_hw_common(ah
);
503 if (ah
->hw_version
.devid
== AR5416_AR9100_DEVID
)
504 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9100
;
506 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_POWER_ON
)) {
507 ath_err(common
, "Couldn't reset chip\n");
511 ath9k_hw_init_defaults(ah
);
512 ath9k_hw_init_config(ah
);
514 ath9k_hw_attach_ops(ah
);
516 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
)) {
517 ath_err(common
, "Couldn't wakeup chip\n");
521 if (ah
->config
.serialize_regmode
== SER_REG_MODE_AUTO
) {
522 if (ah
->hw_version
.macVersion
== AR_SREV_VERSION_5416_PCI
||
523 ((AR_SREV_9160(ah
) || AR_SREV_9280(ah
)) &&
524 !ah
->is_pciexpress
)) {
525 ah
->config
.serialize_regmode
=
528 ah
->config
.serialize_regmode
=
533 ath_dbg(common
, ATH_DBG_RESET
, "serialize_regmode is %d\n",
534 ah
->config
.serialize_regmode
);
536 if (AR_SREV_9285(ah
) || AR_SREV_9271(ah
))
537 ah
->config
.max_txtrig_level
= MAX_TX_FIFO_THRESHOLD
>> 1;
539 ah
->config
.max_txtrig_level
= MAX_TX_FIFO_THRESHOLD
;
541 if (!ath9k_hw_macversion_supported(ah
)) {
543 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
544 ah
->hw_version
.macVersion
, ah
->hw_version
.macRev
);
548 if (AR_SREV_9271(ah
) || AR_SREV_9100(ah
))
549 ah
->is_pciexpress
= false;
551 ah
->hw_version
.phyRev
= REG_READ(ah
, AR_PHY_CHIP_ID
);
552 ath9k_hw_init_cal_settings(ah
);
554 ah
->ani_function
= ATH9K_ANI_ALL
;
555 if (AR_SREV_9280_20_OR_LATER(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
556 ah
->ani_function
&= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL
;
557 if (!AR_SREV_9300_20_OR_LATER(ah
))
558 ah
->ani_function
&= ~ATH9K_ANI_MRC_CCK
;
560 ath9k_hw_init_mode_regs(ah
);
563 * Read back AR_WA into a permanent copy and set bits 14 and 17.
564 * We need to do this to avoid RMW of this register. We cannot
565 * read the reg when chip is asleep.
567 ah
->WARegVal
= REG_READ(ah
, AR_WA
);
568 ah
->WARegVal
|= (AR_WA_D3_L1_DISABLE
|
569 AR_WA_ASPM_TIMER_BASED_DISABLE
);
571 if (ah
->is_pciexpress
)
572 ath9k_hw_configpcipowersave(ah
, 0, 0);
574 ath9k_hw_disablepcie(ah
);
576 if (!AR_SREV_9300_20_OR_LATER(ah
))
577 ar9002_hw_cck_chan14_spread(ah
);
579 r
= ath9k_hw_post_init(ah
);
583 ath9k_hw_init_mode_gain_regs(ah
);
584 r
= ath9k_hw_fill_cap_info(ah
);
588 r
= ath9k_hw_init_macaddr(ah
);
590 ath_err(common
, "Failed to initialize MAC address\n");
594 if (AR_SREV_9285(ah
) || AR_SREV_9271(ah
))
595 ah
->tx_trig_level
= (AR_FTRIG_256B
>> AR_FTRIG_S
);
597 ah
->tx_trig_level
= (AR_FTRIG_512B
>> AR_FTRIG_S
);
599 ah
->bb_watchdog_timeout_ms
= 25;
601 common
->state
= ATH_HW_INITIALIZED
;
606 int ath9k_hw_init(struct ath_hw
*ah
)
609 struct ath_common
*common
= ath9k_hw_common(ah
);
611 /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
612 switch (ah
->hw_version
.devid
) {
613 case AR5416_DEVID_PCI
:
614 case AR5416_DEVID_PCIE
:
615 case AR5416_AR9100_DEVID
:
616 case AR9160_DEVID_PCI
:
617 case AR9280_DEVID_PCI
:
618 case AR9280_DEVID_PCIE
:
619 case AR9285_DEVID_PCIE
:
620 case AR9287_DEVID_PCI
:
621 case AR9287_DEVID_PCIE
:
622 case AR2427_DEVID_PCIE
:
623 case AR9300_DEVID_PCIE
:
624 case AR9300_DEVID_AR9485_PCIE
:
627 if (common
->bus_ops
->ath_bus_type
== ATH_USB
)
629 ath_err(common
, "Hardware device ID 0x%04x not supported\n",
630 ah
->hw_version
.devid
);
634 ret
= __ath9k_hw_init(ah
);
637 "Unable to initialize hardware; initialization status: %d\n",
644 EXPORT_SYMBOL(ath9k_hw_init
);
646 static void ath9k_hw_init_qos(struct ath_hw
*ah
)
648 ENABLE_REGWRITE_BUFFER(ah
);
650 REG_WRITE(ah
, AR_MIC_QOS_CONTROL
, 0x100aa);
651 REG_WRITE(ah
, AR_MIC_QOS_SELECT
, 0x3210);
653 REG_WRITE(ah
, AR_QOS_NO_ACK
,
654 SM(2, AR_QOS_NO_ACK_TWO_BIT
) |
655 SM(5, AR_QOS_NO_ACK_BIT_OFF
) |
656 SM(0, AR_QOS_NO_ACK_BYTE_OFF
));
658 REG_WRITE(ah
, AR_TXOP_X
, AR_TXOP_X_VAL
);
659 REG_WRITE(ah
, AR_TXOP_0_3
, 0xFFFFFFFF);
660 REG_WRITE(ah
, AR_TXOP_4_7
, 0xFFFFFFFF);
661 REG_WRITE(ah
, AR_TXOP_8_11
, 0xFFFFFFFF);
662 REG_WRITE(ah
, AR_TXOP_12_15
, 0xFFFFFFFF);
664 REGWRITE_BUFFER_FLUSH(ah
);
667 static void ath9k_hw_init_pll(struct ath_hw
*ah
,
668 struct ath9k_channel
*chan
)
672 if (AR_SREV_9485(ah
))
673 REG_WRITE(ah
, AR_RTC_PLL_CONTROL2
, 0x886666);
675 pll
= ath9k_hw_compute_pll_control(ah
, chan
);
677 REG_WRITE(ah
, AR_RTC_PLL_CONTROL
, pll
);
679 /* Switch the core clock for ar9271 to 117Mhz */
680 if (AR_SREV_9271(ah
)) {
682 REG_WRITE(ah
, 0x50040, 0x304);
685 udelay(RTC_PLL_SETTLE_DELAY
);
687 REG_WRITE(ah
, AR_RTC_SLEEP_CLK
, AR_RTC_FORCE_DERIVED_CLK
);
690 static void ath9k_hw_init_interrupt_masks(struct ath_hw
*ah
,
691 enum nl80211_iftype opmode
)
693 u32 imr_reg
= AR_IMR_TXERR
|
699 if (AR_SREV_9300_20_OR_LATER(ah
)) {
700 imr_reg
|= AR_IMR_RXOK_HP
;
701 if (ah
->config
.rx_intr_mitigation
)
702 imr_reg
|= AR_IMR_RXINTM
| AR_IMR_RXMINTR
;
704 imr_reg
|= AR_IMR_RXOK_LP
;
707 if (ah
->config
.rx_intr_mitigation
)
708 imr_reg
|= AR_IMR_RXINTM
| AR_IMR_RXMINTR
;
710 imr_reg
|= AR_IMR_RXOK
;
713 if (ah
->config
.tx_intr_mitigation
)
714 imr_reg
|= AR_IMR_TXINTM
| AR_IMR_TXMINTR
;
716 imr_reg
|= AR_IMR_TXOK
;
718 if (opmode
== NL80211_IFTYPE_AP
)
719 imr_reg
|= AR_IMR_MIB
;
721 ENABLE_REGWRITE_BUFFER(ah
);
723 REG_WRITE(ah
, AR_IMR
, imr_reg
);
724 ah
->imrs2_reg
|= AR_IMR_S2_GTT
;
725 REG_WRITE(ah
, AR_IMR_S2
, ah
->imrs2_reg
);
727 if (!AR_SREV_9100(ah
)) {
728 REG_WRITE(ah
, AR_INTR_SYNC_CAUSE
, 0xFFFFFFFF);
729 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, AR_INTR_SYNC_DEFAULT
);
730 REG_WRITE(ah
, AR_INTR_SYNC_MASK
, 0);
733 REGWRITE_BUFFER_FLUSH(ah
);
735 if (AR_SREV_9300_20_OR_LATER(ah
)) {
736 REG_WRITE(ah
, AR_INTR_PRIO_ASYNC_ENABLE
, 0);
737 REG_WRITE(ah
, AR_INTR_PRIO_ASYNC_MASK
, 0);
738 REG_WRITE(ah
, AR_INTR_PRIO_SYNC_ENABLE
, 0);
739 REG_WRITE(ah
, AR_INTR_PRIO_SYNC_MASK
, 0);
743 static void ath9k_hw_setslottime(struct ath_hw
*ah
, u32 us
)
745 u32 val
= ath9k_hw_mac_to_clks(ah
, us
);
746 val
= min(val
, (u32
) 0xFFFF);
747 REG_WRITE(ah
, AR_D_GBL_IFS_SLOT
, val
);
750 static void ath9k_hw_set_ack_timeout(struct ath_hw
*ah
, u32 us
)
752 u32 val
= ath9k_hw_mac_to_clks(ah
, us
);
753 val
= min(val
, (u32
) MS(0xFFFFFFFF, AR_TIME_OUT_ACK
));
754 REG_RMW_FIELD(ah
, AR_TIME_OUT
, AR_TIME_OUT_ACK
, val
);
757 static void ath9k_hw_set_cts_timeout(struct ath_hw
*ah
, u32 us
)
759 u32 val
= ath9k_hw_mac_to_clks(ah
, us
);
760 val
= min(val
, (u32
) MS(0xFFFFFFFF, AR_TIME_OUT_CTS
));
761 REG_RMW_FIELD(ah
, AR_TIME_OUT
, AR_TIME_OUT_CTS
, val
);
764 static bool ath9k_hw_set_global_txtimeout(struct ath_hw
*ah
, u32 tu
)
767 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_XMIT
,
768 "bad global tx timeout %u\n", tu
);
769 ah
->globaltxtimeout
= (u32
) -1;
772 REG_RMW_FIELD(ah
, AR_GTXTO
, AR_GTXTO_TIMEOUT_LIMIT
, tu
);
773 ah
->globaltxtimeout
= tu
;
778 void ath9k_hw_init_global_settings(struct ath_hw
*ah
)
780 struct ieee80211_conf
*conf
= &ath9k_hw_common(ah
)->hw
->conf
;
785 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_RESET
, "ah->misc_mode 0x%x\n",
788 if (ah
->misc_mode
!= 0)
789 REG_WRITE(ah
, AR_PCU_MISC
,
790 REG_READ(ah
, AR_PCU_MISC
) | ah
->misc_mode
);
792 if (conf
->channel
&& conf
->channel
->band
== IEEE80211_BAND_5GHZ
)
797 /* As defined by IEEE 802.11-2007 17.3.8.6 */
798 slottime
= ah
->slottime
+ 3 * ah
->coverage_class
;
799 acktimeout
= slottime
+ sifstime
;
802 * Workaround for early ACK timeouts, add an offset to match the
803 * initval's 64us ack timeout value.
804 * This was initially only meant to work around an issue with delayed
805 * BA frames in some implementations, but it has been found to fix ACK
806 * timeout issues in other cases as well.
808 if (conf
->channel
&& conf
->channel
->band
== IEEE80211_BAND_2GHZ
)
809 acktimeout
+= 64 - sifstime
- ah
->slottime
;
811 ath9k_hw_setslottime(ah
, slottime
);
812 ath9k_hw_set_ack_timeout(ah
, acktimeout
);
813 ath9k_hw_set_cts_timeout(ah
, acktimeout
);
814 if (ah
->globaltxtimeout
!= (u32
) -1)
815 ath9k_hw_set_global_txtimeout(ah
, ah
->globaltxtimeout
);
817 EXPORT_SYMBOL(ath9k_hw_init_global_settings
);
819 void ath9k_hw_deinit(struct ath_hw
*ah
)
821 struct ath_common
*common
= ath9k_hw_common(ah
);
823 if (common
->state
< ATH_HW_INITIALIZED
)
826 ath9k_hw_setpower(ah
, ATH9K_PM_FULL_SLEEP
);
829 ath9k_hw_rf_free_ext_banks(ah
);
831 EXPORT_SYMBOL(ath9k_hw_deinit
);
837 u32
ath9k_regd_get_ctl(struct ath_regulatory
*reg
, struct ath9k_channel
*chan
)
839 u32 ctl
= ath_regd_get_band_ctl(reg
, chan
->chan
->band
);
843 else if (IS_CHAN_G(chan
))
851 /****************************************/
852 /* Reset and Channel Switching Routines */
853 /****************************************/
855 static inline void ath9k_hw_set_dma(struct ath_hw
*ah
)
857 struct ath_common
*common
= ath9k_hw_common(ah
);
860 ENABLE_REGWRITE_BUFFER(ah
);
863 * set AHB_MODE not to do cacheline prefetches
865 if (!AR_SREV_9300_20_OR_LATER(ah
)) {
866 regval
= REG_READ(ah
, AR_AHB_MODE
);
867 REG_WRITE(ah
, AR_AHB_MODE
, regval
| AR_AHB_PREFETCH_RD_EN
);
871 * let mac dma reads be in 128 byte chunks
873 regval
= REG_READ(ah
, AR_TXCFG
) & ~AR_TXCFG_DMASZ_MASK
;
874 REG_WRITE(ah
, AR_TXCFG
, regval
| AR_TXCFG_DMASZ_128B
);
876 REGWRITE_BUFFER_FLUSH(ah
);
879 * Restore TX Trigger Level to its pre-reset value.
880 * The initial value depends on whether aggregation is enabled, and is
881 * adjusted whenever underruns are detected.
883 if (!AR_SREV_9300_20_OR_LATER(ah
))
884 REG_RMW_FIELD(ah
, AR_TXCFG
, AR_FTRIG
, ah
->tx_trig_level
);
886 ENABLE_REGWRITE_BUFFER(ah
);
889 * let mac dma writes be in 128 byte chunks
891 regval
= REG_READ(ah
, AR_RXCFG
) & ~AR_RXCFG_DMASZ_MASK
;
892 REG_WRITE(ah
, AR_RXCFG
, regval
| AR_RXCFG_DMASZ_128B
);
895 * Setup receive FIFO threshold to hold off TX activities
897 REG_WRITE(ah
, AR_RXFIFO_CFG
, 0x200);
899 if (AR_SREV_9300_20_OR_LATER(ah
)) {
900 REG_RMW_FIELD(ah
, AR_RXBP_THRESH
, AR_RXBP_THRESH_HP
, 0x1);
901 REG_RMW_FIELD(ah
, AR_RXBP_THRESH
, AR_RXBP_THRESH_LP
, 0x1);
903 ath9k_hw_set_rx_bufsize(ah
, common
->rx_bufsize
-
904 ah
->caps
.rx_status_len
);
908 * reduce the number of usable entries in PCU TXBUF to avoid
909 * wrap around issues.
911 if (AR_SREV_9285(ah
)) {
912 /* For AR9285 the number of Fifos are reduced to half.
913 * So set the usable tx buf size also to half to
914 * avoid data/delimiter underruns
916 REG_WRITE(ah
, AR_PCU_TXBUF_CTRL
,
917 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE
);
918 } else if (!AR_SREV_9271(ah
)) {
919 REG_WRITE(ah
, AR_PCU_TXBUF_CTRL
,
920 AR_PCU_TXBUF_CTRL_USABLE_SIZE
);
923 REGWRITE_BUFFER_FLUSH(ah
);
925 if (AR_SREV_9300_20_OR_LATER(ah
))
926 ath9k_hw_reset_txstatus_ring(ah
);
929 static void ath9k_hw_set_operating_mode(struct ath_hw
*ah
, int opmode
)
933 val
= REG_READ(ah
, AR_STA_ID1
);
934 val
&= ~(AR_STA_ID1_STA_AP
| AR_STA_ID1_ADHOC
);
936 case NL80211_IFTYPE_AP
:
937 REG_WRITE(ah
, AR_STA_ID1
, val
| AR_STA_ID1_STA_AP
938 | AR_STA_ID1_KSRCH_MODE
);
939 REG_CLR_BIT(ah
, AR_CFG
, AR_CFG_AP_ADHOC_INDICATION
);
941 case NL80211_IFTYPE_ADHOC
:
942 case NL80211_IFTYPE_MESH_POINT
:
943 REG_WRITE(ah
, AR_STA_ID1
, val
| AR_STA_ID1_ADHOC
944 | AR_STA_ID1_KSRCH_MODE
);
945 REG_SET_BIT(ah
, AR_CFG
, AR_CFG_AP_ADHOC_INDICATION
);
947 case NL80211_IFTYPE_STATION
:
948 REG_WRITE(ah
, AR_STA_ID1
, val
| AR_STA_ID1_KSRCH_MODE
);
951 if (ah
->is_monitoring
)
952 REG_WRITE(ah
, AR_STA_ID1
, val
| AR_STA_ID1_KSRCH_MODE
);
957 void ath9k_hw_get_delta_slope_vals(struct ath_hw
*ah
, u32 coef_scaled
,
958 u32
*coef_mantissa
, u32
*coef_exponent
)
960 u32 coef_exp
, coef_man
;
962 for (coef_exp
= 31; coef_exp
> 0; coef_exp
--)
963 if ((coef_scaled
>> coef_exp
) & 0x1)
966 coef_exp
= 14 - (coef_exp
- COEF_SCALE_S
);
968 coef_man
= coef_scaled
+ (1 << (COEF_SCALE_S
- coef_exp
- 1));
970 *coef_mantissa
= coef_man
>> (COEF_SCALE_S
- coef_exp
);
971 *coef_exponent
= coef_exp
- 16;
974 static bool ath9k_hw_set_reset(struct ath_hw
*ah
, int type
)
979 if (AR_SREV_9100(ah
)) {
980 u32 val
= REG_READ(ah
, AR_RTC_DERIVED_CLK
);
981 val
&= ~AR_RTC_DERIVED_CLK_PERIOD
;
982 val
|= SM(1, AR_RTC_DERIVED_CLK_PERIOD
);
983 REG_WRITE(ah
, AR_RTC_DERIVED_CLK
, val
);
984 (void)REG_READ(ah
, AR_RTC_DERIVED_CLK
);
987 ENABLE_REGWRITE_BUFFER(ah
);
989 if (AR_SREV_9300_20_OR_LATER(ah
)) {
990 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
994 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
|
995 AR_RTC_FORCE_WAKE_ON_INT
);
997 if (AR_SREV_9100(ah
)) {
998 rst_flags
= AR_RTC_RC_MAC_WARM
| AR_RTC_RC_MAC_COLD
|
999 AR_RTC_RC_COLD_RESET
| AR_RTC_RC_WARM_RESET
;
1001 tmpReg
= REG_READ(ah
, AR_INTR_SYNC_CAUSE
);
1003 (AR_INTR_SYNC_LOCAL_TIMEOUT
|
1004 AR_INTR_SYNC_RADM_CPL_TIMEOUT
)) {
1006 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, 0);
1009 if (!AR_SREV_9300_20_OR_LATER(ah
))
1011 REG_WRITE(ah
, AR_RC
, val
);
1013 } else if (!AR_SREV_9300_20_OR_LATER(ah
))
1014 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
);
1016 rst_flags
= AR_RTC_RC_MAC_WARM
;
1017 if (type
== ATH9K_RESET_COLD
)
1018 rst_flags
|= AR_RTC_RC_MAC_COLD
;
1021 REG_WRITE(ah
, AR_RTC_RC
, rst_flags
);
1023 REGWRITE_BUFFER_FLUSH(ah
);
1027 REG_WRITE(ah
, AR_RTC_RC
, 0);
1028 if (!ath9k_hw_wait(ah
, AR_RTC_RC
, AR_RTC_RC_M
, 0, AH_WAIT_TIMEOUT
)) {
1029 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_RESET
,
1030 "RTC stuck in MAC reset\n");
1034 if (!AR_SREV_9100(ah
))
1035 REG_WRITE(ah
, AR_RC
, 0);
1037 if (AR_SREV_9100(ah
))
1043 static bool ath9k_hw_set_reset_power_on(struct ath_hw
*ah
)
1045 ENABLE_REGWRITE_BUFFER(ah
);
1047 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1048 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
1052 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
|
1053 AR_RTC_FORCE_WAKE_ON_INT
);
1055 if (!AR_SREV_9100(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
1056 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
);
1058 REG_WRITE(ah
, AR_RTC_RESET
, 0);
1061 REGWRITE_BUFFER_FLUSH(ah
);
1063 if (!AR_SREV_9300_20_OR_LATER(ah
))
1066 if (!AR_SREV_9100(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
1067 REG_WRITE(ah
, AR_RC
, 0);
1069 REG_WRITE(ah
, AR_RTC_RESET
, 1);
1071 if (!ath9k_hw_wait(ah
,
1076 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_RESET
,
1077 "RTC not waking up\n");
1081 ath9k_hw_read_revisions(ah
);
1083 return ath9k_hw_set_reset(ah
, ATH9K_RESET_WARM
);
1086 static bool ath9k_hw_set_reset_reg(struct ath_hw
*ah
, u32 type
)
1088 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1089 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
1093 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
,
1094 AR_RTC_FORCE_WAKE_EN
| AR_RTC_FORCE_WAKE_ON_INT
);
1097 case ATH9K_RESET_POWER_ON
:
1098 return ath9k_hw_set_reset_power_on(ah
);
1099 case ATH9K_RESET_WARM
:
1100 case ATH9K_RESET_COLD
:
1101 return ath9k_hw_set_reset(ah
, type
);
1107 static bool ath9k_hw_chip_reset(struct ath_hw
*ah
,
1108 struct ath9k_channel
*chan
)
1110 if (AR_SREV_9280(ah
) && ah
->eep_ops
->get_eeprom(ah
, EEP_OL_PWRCTRL
)) {
1111 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_POWER_ON
))
1113 } else if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_WARM
))
1116 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
1119 ah
->chip_fullsleep
= false;
1120 ath9k_hw_init_pll(ah
, chan
);
1121 ath9k_hw_set_rfmode(ah
, chan
);
1126 static bool ath9k_hw_channel_change(struct ath_hw
*ah
,
1127 struct ath9k_channel
*chan
)
1129 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
1130 struct ath_common
*common
= ath9k_hw_common(ah
);
1131 struct ieee80211_channel
*channel
= chan
->chan
;
1135 for (qnum
= 0; qnum
< AR_NUM_QCU
; qnum
++) {
1136 if (ath9k_hw_numtxpending(ah
, qnum
)) {
1137 ath_dbg(common
, ATH_DBG_QUEUE
,
1138 "Transmit frames pending on queue %d\n", qnum
);
1143 if (!ath9k_hw_rfbus_req(ah
)) {
1144 ath_err(common
, "Could not kill baseband RX\n");
1148 ath9k_hw_set_channel_regs(ah
, chan
);
1150 r
= ath9k_hw_rf_set_freq(ah
, chan
);
1152 ath_err(common
, "Failed to set channel\n");
1155 ath9k_hw_set_clockrate(ah
);
1157 ah
->eep_ops
->set_txpower(ah
, chan
,
1158 ath9k_regd_get_ctl(regulatory
, chan
),
1159 channel
->max_antenna_gain
* 2,
1160 channel
->max_power
* 2,
1161 min((u32
) MAX_RATE_POWER
,
1162 (u32
) regulatory
->power_limit
), false);
1164 ath9k_hw_rfbus_done(ah
);
1166 if (IS_CHAN_OFDM(chan
) || IS_CHAN_HT(chan
))
1167 ath9k_hw_set_delta_slope(ah
, chan
);
1169 ath9k_hw_spur_mitigate_freq(ah
, chan
);
1174 bool ath9k_hw_check_alive(struct ath_hw
*ah
)
1179 if (AR_SREV_9285_12_OR_LATER(ah
))
1183 reg
= REG_READ(ah
, AR_OBS_BUS_1
);
1185 if ((reg
& 0x7E7FFFEF) == 0x00702400)
1188 switch (reg
& 0x7E000B00) {
1196 } while (count
-- > 0);
1200 EXPORT_SYMBOL(ath9k_hw_check_alive
);
1202 int ath9k_hw_reset(struct ath_hw
*ah
, struct ath9k_channel
*chan
,
1203 struct ath9k_hw_cal_data
*caldata
, bool bChannelChange
)
1205 struct ath_common
*common
= ath9k_hw_common(ah
);
1207 struct ath9k_channel
*curchan
= ah
->curchan
;
1213 ah
->txchainmask
= common
->tx_chainmask
;
1214 ah
->rxchainmask
= common
->rx_chainmask
;
1216 if (!ah
->chip_fullsleep
) {
1217 ath9k_hw_abortpcurecv(ah
);
1218 if (!ath9k_hw_stopdmarecv(ah
)) {
1219 ath_dbg(common
, ATH_DBG_XMIT
,
1220 "Failed to stop receive dma\n");
1221 bChannelChange
= false;
1225 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
1228 if (curchan
&& !ah
->chip_fullsleep
)
1229 ath9k_hw_getnf(ah
, curchan
);
1231 ah
->caldata
= caldata
;
1233 (chan
->channel
!= caldata
->channel
||
1234 (chan
->channelFlags
& ~CHANNEL_CW_INT
) !=
1235 (caldata
->channelFlags
& ~CHANNEL_CW_INT
))) {
1236 /* Operating channel changed, reset channel calibration data */
1237 memset(caldata
, 0, sizeof(*caldata
));
1238 ath9k_init_nfcal_hist_buffer(ah
, chan
);
1241 if (bChannelChange
&&
1242 (ah
->chip_fullsleep
!= true) &&
1243 (ah
->curchan
!= NULL
) &&
1244 (chan
->channel
!= ah
->curchan
->channel
) &&
1245 ((chan
->channelFlags
& CHANNEL_ALL
) ==
1246 (ah
->curchan
->channelFlags
& CHANNEL_ALL
)) &&
1247 (!AR_SREV_9280(ah
) || AR_DEVID_7010(ah
))) {
1249 if (ath9k_hw_channel_change(ah
, chan
)) {
1250 ath9k_hw_loadnf(ah
, ah
->curchan
);
1251 ath9k_hw_start_nfcal(ah
, true);
1252 if (AR_SREV_9271(ah
))
1253 ar9002_hw_load_ani_reg(ah
, chan
);
1258 saveDefAntenna
= REG_READ(ah
, AR_DEF_ANTENNA
);
1259 if (saveDefAntenna
== 0)
1262 macStaId1
= REG_READ(ah
, AR_STA_ID1
) & AR_STA_ID1_BASE_RATE_11B
;
1264 /* For chips on which RTC reset is done, save TSF before it gets cleared */
1265 if (AR_SREV_9100(ah
) ||
1266 (AR_SREV_9280(ah
) && ah
->eep_ops
->get_eeprom(ah
, EEP_OL_PWRCTRL
)))
1267 tsf
= ath9k_hw_gettsf64(ah
);
1269 saveLedState
= REG_READ(ah
, AR_CFG_LED
) &
1270 (AR_CFG_LED_ASSOC_CTL
| AR_CFG_LED_MODE_SEL
|
1271 AR_CFG_LED_BLINK_THRESH_SEL
| AR_CFG_LED_BLINK_SLOW
);
1273 ath9k_hw_mark_phy_inactive(ah
);
1275 /* Only required on the first reset */
1276 if (AR_SREV_9271(ah
) && ah
->htc_reset_init
) {
1278 AR9271_RESET_POWER_DOWN_CONTROL
,
1279 AR9271_RADIO_RF_RST
);
1283 if (!ath9k_hw_chip_reset(ah
, chan
)) {
1284 ath_err(common
, "Chip reset failed\n");
1288 /* Only required on the first reset */
1289 if (AR_SREV_9271(ah
) && ah
->htc_reset_init
) {
1290 ah
->htc_reset_init
= false;
1292 AR9271_RESET_POWER_DOWN_CONTROL
,
1293 AR9271_GATE_MAC_CTL
);
1299 ath9k_hw_settsf64(ah
, tsf
);
1301 if (AR_SREV_9280_20_OR_LATER(ah
))
1302 REG_SET_BIT(ah
, AR_GPIO_INPUT_EN_VAL
, AR_GPIO_JTAG_DISABLE
);
1304 if (!AR_SREV_9300_20_OR_LATER(ah
))
1305 ar9002_hw_enable_async_fifo(ah
);
1307 r
= ath9k_hw_process_ini(ah
, chan
);
1312 * Some AR91xx SoC devices frequently fail to accept TSF writes
1313 * right after the chip reset. When that happens, write a new
1314 * value after the initvals have been applied, with an offset
1315 * based on measured time difference
1317 if (AR_SREV_9100(ah
) && (ath9k_hw_gettsf64(ah
) < tsf
)) {
1319 ath9k_hw_settsf64(ah
, tsf
);
1322 /* Setup MFP options for CCMP */
1323 if (AR_SREV_9280_20_OR_LATER(ah
)) {
1324 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1325 * frames when constructing CCMP AAD. */
1326 REG_RMW_FIELD(ah
, AR_AES_MUTE_MASK1
, AR_AES_MUTE_MASK1_FC_MGMT
,
1328 ah
->sw_mgmt_crypto
= false;
1329 } else if (AR_SREV_9160_10_OR_LATER(ah
)) {
1330 /* Disable hardware crypto for management frames */
1331 REG_CLR_BIT(ah
, AR_PCU_MISC_MODE2
,
1332 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE
);
1333 REG_SET_BIT(ah
, AR_PCU_MISC_MODE2
,
1334 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT
);
1335 ah
->sw_mgmt_crypto
= true;
1337 ah
->sw_mgmt_crypto
= true;
1339 if (IS_CHAN_OFDM(chan
) || IS_CHAN_HT(chan
))
1340 ath9k_hw_set_delta_slope(ah
, chan
);
1342 ath9k_hw_spur_mitigate_freq(ah
, chan
);
1343 ah
->eep_ops
->set_board_values(ah
, chan
);
1345 ath9k_hw_set_operating_mode(ah
, ah
->opmode
);
1347 ENABLE_REGWRITE_BUFFER(ah
);
1349 REG_WRITE(ah
, AR_STA_ID0
, get_unaligned_le32(common
->macaddr
));
1350 REG_WRITE(ah
, AR_STA_ID1
, get_unaligned_le16(common
->macaddr
+ 4)
1352 | AR_STA_ID1_RTS_USE_DEF
1354 ack_6mb
? AR_STA_ID1_ACKCTS_6MB
: 0)
1355 | ah
->sta_id1_defaults
);
1356 ath_hw_setbssidmask(common
);
1357 REG_WRITE(ah
, AR_DEF_ANTENNA
, saveDefAntenna
);
1358 ath9k_hw_write_associd(ah
);
1359 REG_WRITE(ah
, AR_ISR
, ~0);
1360 REG_WRITE(ah
, AR_RSSI_THR
, INIT_RSSI_THR
);
1362 REGWRITE_BUFFER_FLUSH(ah
);
1364 r
= ath9k_hw_rf_set_freq(ah
, chan
);
1368 ath9k_hw_set_clockrate(ah
);
1370 ENABLE_REGWRITE_BUFFER(ah
);
1372 for (i
= 0; i
< AR_NUM_DCU
; i
++)
1373 REG_WRITE(ah
, AR_DQCUMASK(i
), 1 << i
);
1375 REGWRITE_BUFFER_FLUSH(ah
);
1378 for (i
= 0; i
< ah
->caps
.total_queues
; i
++)
1379 ath9k_hw_resettxqueue(ah
, i
);
1381 ath9k_hw_init_interrupt_masks(ah
, ah
->opmode
);
1382 ath9k_hw_ani_cache_ini_regs(ah
);
1383 ath9k_hw_init_qos(ah
);
1385 if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_RFSILENT
)
1386 ath9k_enable_rfkill(ah
);
1388 ath9k_hw_init_global_settings(ah
);
1390 if (!AR_SREV_9300_20_OR_LATER(ah
)) {
1391 ar9002_hw_update_async_fifo(ah
);
1392 ar9002_hw_enable_wep_aggregation(ah
);
1395 REG_WRITE(ah
, AR_STA_ID1
,
1396 REG_READ(ah
, AR_STA_ID1
) | AR_STA_ID1_PRESERVE_SEQNUM
);
1398 ath9k_hw_set_dma(ah
);
1400 REG_WRITE(ah
, AR_OBS
, 8);
1402 if (ah
->config
.rx_intr_mitigation
) {
1403 REG_RMW_FIELD(ah
, AR_RIMT
, AR_RIMT_LAST
, 500);
1404 REG_RMW_FIELD(ah
, AR_RIMT
, AR_RIMT_FIRST
, 2000);
1407 if (ah
->config
.tx_intr_mitigation
) {
1408 REG_RMW_FIELD(ah
, AR_TIMT
, AR_TIMT_LAST
, 300);
1409 REG_RMW_FIELD(ah
, AR_TIMT
, AR_TIMT_FIRST
, 750);
1412 ath9k_hw_init_bb(ah
, chan
);
1414 if (!ath9k_hw_init_cal(ah
, chan
))
1417 ENABLE_REGWRITE_BUFFER(ah
);
1419 ath9k_hw_restore_chainmask(ah
);
1420 REG_WRITE(ah
, AR_CFG_LED
, saveLedState
| AR_CFG_SCLK_32KHZ
);
1422 REGWRITE_BUFFER_FLUSH(ah
);
1425 * For big endian systems turn on swapping for descriptors
1427 if (AR_SREV_9100(ah
)) {
1429 mask
= REG_READ(ah
, AR_CFG
);
1430 if (mask
& (AR_CFG_SWRB
| AR_CFG_SWTB
| AR_CFG_SWRG
)) {
1431 ath_dbg(common
, ATH_DBG_RESET
,
1432 "CFG Byte Swap Set 0x%x\n", mask
);
1435 INIT_CONFIG_STATUS
| AR_CFG_SWRB
| AR_CFG_SWTB
;
1436 REG_WRITE(ah
, AR_CFG
, mask
);
1437 ath_dbg(common
, ATH_DBG_RESET
,
1438 "Setting CFG 0x%x\n", REG_READ(ah
, AR_CFG
));
1441 if (common
->bus_ops
->ath_bus_type
== ATH_USB
) {
1442 /* Configure AR9271 target WLAN */
1443 if (AR_SREV_9271(ah
))
1444 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWRB
| AR_CFG_SWTB
);
1446 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWTD
| AR_CFG_SWRD
);
1450 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWTD
| AR_CFG_SWRD
);
1454 if (ah
->btcoex_hw
.enabled
)
1455 ath9k_hw_btcoex_enable(ah
);
1457 if (AR_SREV_9300_20_OR_LATER(ah
))
1458 ar9003_hw_bb_watchdog_config(ah
);
1462 EXPORT_SYMBOL(ath9k_hw_reset
);
1464 /******************************/
1465 /* Power Management (Chipset) */
1466 /******************************/
1469 * Notify Power Mgt is disabled in self-generated frames.
1470 * If requested, force chip to sleep.
1472 static void ath9k_set_power_sleep(struct ath_hw
*ah
, int setChip
)
1474 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
1477 * Clear the RTC force wake bit to allow the
1478 * mac to go to sleep.
1480 REG_CLR_BIT(ah
, AR_RTC_FORCE_WAKE
,
1481 AR_RTC_FORCE_WAKE_EN
);
1482 if (!AR_SREV_9100(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
1483 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
| AR_RC_HOSTIF
);
1485 /* Shutdown chip. Active low */
1486 if (!AR_SREV_5416(ah
) && !AR_SREV_9271(ah
))
1487 REG_CLR_BIT(ah
, (AR_RTC_RESET
),
1491 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1492 if (AR_SREV_9300_20_OR_LATER(ah
))
1493 REG_WRITE(ah
, AR_WA
,
1494 ah
->WARegVal
& ~AR_WA_D3_L1_DISABLE
);
1498 * Notify Power Management is enabled in self-generating
1499 * frames. If request, set power mode of chip to
1500 * auto/normal. Duration in units of 128us (1/8 TU).
1502 static void ath9k_set_power_network_sleep(struct ath_hw
*ah
, int setChip
)
1504 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
1506 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
1508 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)) {
1509 /* Set WakeOnInterrupt bit; clear ForceWake bit */
1510 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
,
1511 AR_RTC_FORCE_WAKE_ON_INT
);
1514 * Clear the RTC force wake bit to allow the
1515 * mac to go to sleep.
1517 REG_CLR_BIT(ah
, AR_RTC_FORCE_WAKE
,
1518 AR_RTC_FORCE_WAKE_EN
);
1522 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1523 if (AR_SREV_9300_20_OR_LATER(ah
))
1524 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
& ~AR_WA_D3_L1_DISABLE
);
1527 static bool ath9k_hw_set_power_awake(struct ath_hw
*ah
, int setChip
)
1532 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1533 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1534 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
1539 if ((REG_READ(ah
, AR_RTC_STATUS
) &
1540 AR_RTC_STATUS_M
) == AR_RTC_STATUS_SHUTDOWN
) {
1541 if (ath9k_hw_set_reset_reg(ah
,
1542 ATH9K_RESET_POWER_ON
) != true) {
1545 if (!AR_SREV_9300_20_OR_LATER(ah
))
1546 ath9k_hw_init_pll(ah
, NULL
);
1548 if (AR_SREV_9100(ah
))
1549 REG_SET_BIT(ah
, AR_RTC_RESET
,
1552 REG_SET_BIT(ah
, AR_RTC_FORCE_WAKE
,
1553 AR_RTC_FORCE_WAKE_EN
);
1556 for (i
= POWER_UP_TIME
/ 50; i
> 0; i
--) {
1557 val
= REG_READ(ah
, AR_RTC_STATUS
) & AR_RTC_STATUS_M
;
1558 if (val
== AR_RTC_STATUS_ON
)
1561 REG_SET_BIT(ah
, AR_RTC_FORCE_WAKE
,
1562 AR_RTC_FORCE_WAKE_EN
);
1565 ath_err(ath9k_hw_common(ah
),
1566 "Failed to wakeup in %uus\n",
1567 POWER_UP_TIME
/ 20);
1572 REG_CLR_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
1577 bool ath9k_hw_setpower(struct ath_hw
*ah
, enum ath9k_power_mode mode
)
1579 struct ath_common
*common
= ath9k_hw_common(ah
);
1580 int status
= true, setChip
= true;
1581 static const char *modes
[] = {
1588 if (ah
->power_mode
== mode
)
1591 ath_dbg(common
, ATH_DBG_RESET
, "%s -> %s\n",
1592 modes
[ah
->power_mode
], modes
[mode
]);
1595 case ATH9K_PM_AWAKE
:
1596 status
= ath9k_hw_set_power_awake(ah
, setChip
);
1598 case ATH9K_PM_FULL_SLEEP
:
1599 ath9k_set_power_sleep(ah
, setChip
);
1600 ah
->chip_fullsleep
= true;
1602 case ATH9K_PM_NETWORK_SLEEP
:
1603 ath9k_set_power_network_sleep(ah
, setChip
);
1606 ath_err(common
, "Unknown power mode %u\n", mode
);
1609 ah
->power_mode
= mode
;
1612 * XXX: If this warning never comes up after a while then
1613 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
1614 * ath9k_hw_setpower() return type void.
1616 ATH_DBG_WARN_ON_ONCE(!status
);
1620 EXPORT_SYMBOL(ath9k_hw_setpower
);
1622 /*******************/
1623 /* Beacon Handling */
1624 /*******************/
1626 void ath9k_hw_beaconinit(struct ath_hw
*ah
, u32 next_beacon
, u32 beacon_period
)
1630 ah
->beacon_interval
= beacon_period
;
1632 ENABLE_REGWRITE_BUFFER(ah
);
1634 switch (ah
->opmode
) {
1635 case NL80211_IFTYPE_ADHOC
:
1636 case NL80211_IFTYPE_MESH_POINT
:
1637 REG_SET_BIT(ah
, AR_TXCFG
,
1638 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY
);
1639 REG_WRITE(ah
, AR_NEXT_NDP_TIMER
,
1640 TU_TO_USEC(next_beacon
+
1641 (ah
->atim_window
? ah
->
1643 flags
|= AR_NDP_TIMER_EN
;
1644 case NL80211_IFTYPE_AP
:
1645 REG_WRITE(ah
, AR_NEXT_TBTT_TIMER
, TU_TO_USEC(next_beacon
));
1646 REG_WRITE(ah
, AR_NEXT_DMA_BEACON_ALERT
,
1647 TU_TO_USEC(next_beacon
-
1649 dma_beacon_response_time
));
1650 REG_WRITE(ah
, AR_NEXT_SWBA
,
1651 TU_TO_USEC(next_beacon
-
1653 sw_beacon_response_time
));
1655 AR_TBTT_TIMER_EN
| AR_DBA_TIMER_EN
| AR_SWBA_TIMER_EN
;
1658 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_BEACON
,
1659 "%s: unsupported opmode: %d\n",
1660 __func__
, ah
->opmode
);
1665 REG_WRITE(ah
, AR_BEACON_PERIOD
, TU_TO_USEC(beacon_period
));
1666 REG_WRITE(ah
, AR_DMA_BEACON_PERIOD
, TU_TO_USEC(beacon_period
));
1667 REG_WRITE(ah
, AR_SWBA_PERIOD
, TU_TO_USEC(beacon_period
));
1668 REG_WRITE(ah
, AR_NDP_PERIOD
, TU_TO_USEC(beacon_period
));
1670 REGWRITE_BUFFER_FLUSH(ah
);
1672 beacon_period
&= ~ATH9K_BEACON_ENA
;
1673 if (beacon_period
& ATH9K_BEACON_RESET_TSF
) {
1674 ath9k_hw_reset_tsf(ah
);
1677 REG_SET_BIT(ah
, AR_TIMER_MODE
, flags
);
1679 EXPORT_SYMBOL(ath9k_hw_beaconinit
);
1681 void ath9k_hw_set_sta_beacon_timers(struct ath_hw
*ah
,
1682 const struct ath9k_beacon_state
*bs
)
1684 u32 nextTbtt
, beaconintval
, dtimperiod
, beacontimeout
;
1685 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
1686 struct ath_common
*common
= ath9k_hw_common(ah
);
1688 ENABLE_REGWRITE_BUFFER(ah
);
1690 REG_WRITE(ah
, AR_NEXT_TBTT_TIMER
, TU_TO_USEC(bs
->bs_nexttbtt
));
1692 REG_WRITE(ah
, AR_BEACON_PERIOD
,
1693 TU_TO_USEC(bs
->bs_intval
& ATH9K_BEACON_PERIOD
));
1694 REG_WRITE(ah
, AR_DMA_BEACON_PERIOD
,
1695 TU_TO_USEC(bs
->bs_intval
& ATH9K_BEACON_PERIOD
));
1697 REGWRITE_BUFFER_FLUSH(ah
);
1699 REG_RMW_FIELD(ah
, AR_RSSI_THR
,
1700 AR_RSSI_THR_BM_THR
, bs
->bs_bmissthreshold
);
1702 beaconintval
= bs
->bs_intval
& ATH9K_BEACON_PERIOD
;
1704 if (bs
->bs_sleepduration
> beaconintval
)
1705 beaconintval
= bs
->bs_sleepduration
;
1707 dtimperiod
= bs
->bs_dtimperiod
;
1708 if (bs
->bs_sleepduration
> dtimperiod
)
1709 dtimperiod
= bs
->bs_sleepduration
;
1711 if (beaconintval
== dtimperiod
)
1712 nextTbtt
= bs
->bs_nextdtim
;
1714 nextTbtt
= bs
->bs_nexttbtt
;
1716 ath_dbg(common
, ATH_DBG_BEACON
, "next DTIM %d\n", bs
->bs_nextdtim
);
1717 ath_dbg(common
, ATH_DBG_BEACON
, "next beacon %d\n", nextTbtt
);
1718 ath_dbg(common
, ATH_DBG_BEACON
, "beacon period %d\n", beaconintval
);
1719 ath_dbg(common
, ATH_DBG_BEACON
, "DTIM period %d\n", dtimperiod
);
1721 ENABLE_REGWRITE_BUFFER(ah
);
1723 REG_WRITE(ah
, AR_NEXT_DTIM
,
1724 TU_TO_USEC(bs
->bs_nextdtim
- SLEEP_SLOP
));
1725 REG_WRITE(ah
, AR_NEXT_TIM
, TU_TO_USEC(nextTbtt
- SLEEP_SLOP
));
1727 REG_WRITE(ah
, AR_SLEEP1
,
1728 SM((CAB_TIMEOUT_VAL
<< 3), AR_SLEEP1_CAB_TIMEOUT
)
1729 | AR_SLEEP1_ASSUME_DTIM
);
1731 if (pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)
1732 beacontimeout
= (BEACON_TIMEOUT_VAL
<< 3);
1734 beacontimeout
= MIN_BEACON_TIMEOUT_VAL
;
1736 REG_WRITE(ah
, AR_SLEEP2
,
1737 SM(beacontimeout
, AR_SLEEP2_BEACON_TIMEOUT
));
1739 REG_WRITE(ah
, AR_TIM_PERIOD
, TU_TO_USEC(beaconintval
));
1740 REG_WRITE(ah
, AR_DTIM_PERIOD
, TU_TO_USEC(dtimperiod
));
1742 REGWRITE_BUFFER_FLUSH(ah
);
1744 REG_SET_BIT(ah
, AR_TIMER_MODE
,
1745 AR_TBTT_TIMER_EN
| AR_TIM_TIMER_EN
|
1748 /* TSF Out of Range Threshold */
1749 REG_WRITE(ah
, AR_TSFOOR_THRESHOLD
, bs
->bs_tsfoor_threshold
);
1751 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers
);
1753 /*******************/
1754 /* HW Capabilities */
1755 /*******************/
1757 int ath9k_hw_fill_cap_info(struct ath_hw
*ah
)
1759 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
1760 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
1761 struct ath_common
*common
= ath9k_hw_common(ah
);
1762 struct ath_btcoex_hw
*btcoex_hw
= &ah
->btcoex_hw
;
1764 u16 capField
= 0, eeval
;
1765 u8 ant_div_ctl1
, tx_chainmask
, rx_chainmask
;
1767 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_REG_0
);
1768 regulatory
->current_rd
= eeval
;
1770 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_REG_1
);
1771 if (AR_SREV_9285_12_OR_LATER(ah
))
1772 eeval
|= AR9285_RDEXT_DEFAULT
;
1773 regulatory
->current_rd_ext
= eeval
;
1775 capField
= ah
->eep_ops
->get_eeprom(ah
, EEP_OP_CAP
);
1777 if (ah
->opmode
!= NL80211_IFTYPE_AP
&&
1778 ah
->hw_version
.subvendorid
== AR_SUBVENDOR_ID_NEW_A
) {
1779 if (regulatory
->current_rd
== 0x64 ||
1780 regulatory
->current_rd
== 0x65)
1781 regulatory
->current_rd
+= 5;
1782 else if (regulatory
->current_rd
== 0x41)
1783 regulatory
->current_rd
= 0x43;
1784 ath_dbg(common
, ATH_DBG_REGULATORY
,
1785 "regdomain mapped to 0x%x\n", regulatory
->current_rd
);
1788 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_OP_MODE
);
1789 if ((eeval
& (AR5416_OPFLAGS_11G
| AR5416_OPFLAGS_11A
)) == 0) {
1791 "no band has been marked as supported in EEPROM\n");
1795 if (eeval
& AR5416_OPFLAGS_11A
)
1796 pCap
->hw_caps
|= ATH9K_HW_CAP_5GHZ
;
1798 if (eeval
& AR5416_OPFLAGS_11G
)
1799 pCap
->hw_caps
|= ATH9K_HW_CAP_2GHZ
;
1801 pCap
->tx_chainmask
= ah
->eep_ops
->get_eeprom(ah
, EEP_TX_MASK
);
1803 * For AR9271 we will temporarilly uses the rx chainmax as read from
1806 if ((ah
->hw_version
.devid
== AR5416_DEVID_PCI
) &&
1807 !(eeval
& AR5416_OPFLAGS_11A
) &&
1808 !(AR_SREV_9271(ah
)))
1809 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
1810 pCap
->rx_chainmask
= ath9k_hw_gpio_get(ah
, 0) ? 0x5 : 0x7;
1812 /* Use rx_chainmask from EEPROM. */
1813 pCap
->rx_chainmask
= ah
->eep_ops
->get_eeprom(ah
, EEP_RX_MASK
);
1815 ah
->misc_mode
|= AR_PCU_MIC_NEW_LOC_ENA
;
1817 /* enable key search for every frame in an aggregate */
1818 if (AR_SREV_9300_20_OR_LATER(ah
))
1819 ah
->misc_mode
|= AR_PCU_ALWAYS_PERFORM_KEYSEARCH
;
1821 pCap
->low_2ghz_chan
= 2312;
1822 pCap
->high_2ghz_chan
= 2732;
1824 pCap
->low_5ghz_chan
= 4920;
1825 pCap
->high_5ghz_chan
= 6100;
1827 common
->crypt_caps
|= ATH_CRYPT_CAP_CIPHER_AESCCM
;
1829 if (ah
->config
.ht_enable
)
1830 pCap
->hw_caps
|= ATH9K_HW_CAP_HT
;
1832 pCap
->hw_caps
&= ~ATH9K_HW_CAP_HT
;
1834 if (capField
& AR_EEPROM_EEPCAP_MAXQCU
)
1835 pCap
->total_queues
=
1836 MS(capField
, AR_EEPROM_EEPCAP_MAXQCU
);
1838 pCap
->total_queues
= ATH9K_NUM_TX_QUEUES
;
1840 if (capField
& AR_EEPROM_EEPCAP_KC_ENTRIES
)
1841 pCap
->keycache_size
=
1842 1 << MS(capField
, AR_EEPROM_EEPCAP_KC_ENTRIES
);
1844 pCap
->keycache_size
= AR_KEYTABLE_SIZE
;
1846 if (AR_SREV_9285(ah
) || AR_SREV_9271(ah
))
1847 pCap
->tx_triglevel_max
= MAX_TX_FIFO_THRESHOLD
>> 1;
1849 pCap
->tx_triglevel_max
= MAX_TX_FIFO_THRESHOLD
;
1851 if (AR_SREV_9271(ah
))
1852 pCap
->num_gpio_pins
= AR9271_NUM_GPIO
;
1853 else if (AR_DEVID_7010(ah
))
1854 pCap
->num_gpio_pins
= AR7010_NUM_GPIO
;
1855 else if (AR_SREV_9285_12_OR_LATER(ah
))
1856 pCap
->num_gpio_pins
= AR9285_NUM_GPIO
;
1857 else if (AR_SREV_9280_20_OR_LATER(ah
))
1858 pCap
->num_gpio_pins
= AR928X_NUM_GPIO
;
1860 pCap
->num_gpio_pins
= AR_NUM_GPIO
;
1862 if (AR_SREV_9160_10_OR_LATER(ah
) || AR_SREV_9100(ah
)) {
1863 pCap
->hw_caps
|= ATH9K_HW_CAP_CST
;
1864 pCap
->rts_aggr_limit
= ATH_AMPDU_LIMIT_MAX
;
1866 pCap
->rts_aggr_limit
= (8 * 1024);
1869 pCap
->hw_caps
|= ATH9K_HW_CAP_ENHANCEDPM
;
1871 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1872 ah
->rfsilent
= ah
->eep_ops
->get_eeprom(ah
, EEP_RF_SILENT
);
1873 if (ah
->rfsilent
& EEP_RFSILENT_ENABLED
) {
1875 MS(ah
->rfsilent
, EEP_RFSILENT_GPIO_SEL
);
1876 ah
->rfkill_polarity
=
1877 MS(ah
->rfsilent
, EEP_RFSILENT_POLARITY
);
1879 pCap
->hw_caps
|= ATH9K_HW_CAP_RFSILENT
;
1882 if (AR_SREV_9271(ah
) || AR_SREV_9300_20_OR_LATER(ah
))
1883 pCap
->hw_caps
|= ATH9K_HW_CAP_AUTOSLEEP
;
1885 pCap
->hw_caps
&= ~ATH9K_HW_CAP_AUTOSLEEP
;
1887 if (AR_SREV_9280(ah
) || AR_SREV_9285(ah
))
1888 pCap
->hw_caps
&= ~ATH9K_HW_CAP_4KB_SPLITTRANS
;
1890 pCap
->hw_caps
|= ATH9K_HW_CAP_4KB_SPLITTRANS
;
1892 if (regulatory
->current_rd_ext
& (1 << REG_EXT_JAPAN_MIDBAND
)) {
1894 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A
|
1895 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN
|
1896 AR_EEPROM_EEREGCAP_EN_KK_U2
|
1897 AR_EEPROM_EEREGCAP_EN_KK_MIDBAND
;
1900 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A
|
1901 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN
;
1904 /* Advertise midband for AR5416 with FCC midband set in eeprom */
1905 if (regulatory
->current_rd_ext
& (1 << REG_EXT_FCC_MIDBAND
) &&
1907 pCap
->reg_cap
|= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND
;
1909 pCap
->num_antcfg_5ghz
=
1910 ah
->eep_ops
->get_num_ant_config(ah
, ATH9K_HAL_FREQ_BAND_5GHZ
);
1911 pCap
->num_antcfg_2ghz
=
1912 ah
->eep_ops
->get_num_ant_config(ah
, ATH9K_HAL_FREQ_BAND_2GHZ
);
1914 if (AR_SREV_9280_20_OR_LATER(ah
) && common
->btcoex_enabled
) {
1915 btcoex_hw
->btactive_gpio
= ATH_BTACTIVE_GPIO
;
1916 btcoex_hw
->wlanactive_gpio
= ATH_WLANACTIVE_GPIO
;
1918 if (AR_SREV_9285(ah
)) {
1919 btcoex_hw
->scheme
= ATH_BTCOEX_CFG_3WIRE
;
1920 btcoex_hw
->btpriority_gpio
= ATH_BTPRIORITY_GPIO
;
1922 btcoex_hw
->scheme
= ATH_BTCOEX_CFG_2WIRE
;
1925 btcoex_hw
->scheme
= ATH_BTCOEX_CFG_NONE
;
1928 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1929 pCap
->hw_caps
|= ATH9K_HW_CAP_EDMA
| ATH9K_HW_CAP_FASTCLOCK
;
1930 if (!AR_SREV_9485(ah
))
1931 pCap
->hw_caps
|= ATH9K_HW_CAP_LDPC
;
1933 pCap
->rx_hp_qdepth
= ATH9K_HW_RX_HP_QDEPTH
;
1934 pCap
->rx_lp_qdepth
= ATH9K_HW_RX_LP_QDEPTH
;
1935 pCap
->rx_status_len
= sizeof(struct ar9003_rxs
);
1936 pCap
->tx_desc_len
= sizeof(struct ar9003_txc
);
1937 pCap
->txs_len
= sizeof(struct ar9003_txs
);
1938 if (ah
->eep_ops
->get_eeprom(ah
, EEP_PAPRD
))
1939 pCap
->hw_caps
|= ATH9K_HW_CAP_PAPRD
;
1941 pCap
->tx_desc_len
= sizeof(struct ath_desc
);
1942 if (AR_SREV_9280_20(ah
) &&
1943 ((ah
->eep_ops
->get_eeprom(ah
, EEP_MINOR_REV
) <=
1944 AR5416_EEP_MINOR_VER_16
) ||
1945 ah
->eep_ops
->get_eeprom(ah
, EEP_FSTCLK_5G
)))
1946 pCap
->hw_caps
|= ATH9K_HW_CAP_FASTCLOCK
;
1949 if (AR_SREV_9300_20_OR_LATER(ah
))
1950 pCap
->hw_caps
|= ATH9K_HW_CAP_RAC_SUPPORTED
;
1952 if (AR_SREV_9300_20_OR_LATER(ah
))
1953 ah
->ent_mode
= REG_READ(ah
, AR_ENT_OTP
);
1955 if (AR_SREV_9287_11_OR_LATER(ah
) || AR_SREV_9271(ah
))
1956 pCap
->hw_caps
|= ATH9K_HW_CAP_SGI_20
;
1958 if (AR_SREV_9285(ah
))
1959 if (ah
->eep_ops
->get_eeprom(ah
, EEP_MODAL_VER
) >= 3) {
1961 ah
->eep_ops
->get_eeprom(ah
, EEP_ANT_DIV_CTL1
);
1962 if ((ant_div_ctl1
& 0x1) && ((ant_div_ctl1
>> 3) & 0x1))
1963 pCap
->hw_caps
|= ATH9K_HW_CAP_ANT_DIV_COMB
;
1965 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1966 if (ah
->eep_ops
->get_eeprom(ah
, EEP_CHAIN_MASK_REDUCE
))
1967 pCap
->hw_caps
|= ATH9K_HW_CAP_APM
;
1972 if (AR_SREV_9485_10(ah
)) {
1973 pCap
->pcie_lcr_extsync_en
= true;
1974 pCap
->pcie_lcr_offset
= 0x80;
1977 tx_chainmask
= pCap
->tx_chainmask
;
1978 rx_chainmask
= pCap
->rx_chainmask
;
1979 while (tx_chainmask
|| rx_chainmask
) {
1980 if (tx_chainmask
& BIT(0))
1981 pCap
->max_txchains
++;
1982 if (rx_chainmask
& BIT(0))
1983 pCap
->max_rxchains
++;
1992 /****************************/
1993 /* GPIO / RFKILL / Antennae */
1994 /****************************/
1996 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw
*ah
,
2000 u32 gpio_shift
, tmp
;
2003 addr
= AR_GPIO_OUTPUT_MUX3
;
2005 addr
= AR_GPIO_OUTPUT_MUX2
;
2007 addr
= AR_GPIO_OUTPUT_MUX1
;
2009 gpio_shift
= (gpio
% 6) * 5;
2011 if (AR_SREV_9280_20_OR_LATER(ah
)
2012 || (addr
!= AR_GPIO_OUTPUT_MUX1
)) {
2013 REG_RMW(ah
, addr
, (type
<< gpio_shift
),
2014 (0x1f << gpio_shift
));
2016 tmp
= REG_READ(ah
, addr
);
2017 tmp
= ((tmp
& 0x1F0) << 1) | (tmp
& ~0x1F0);
2018 tmp
&= ~(0x1f << gpio_shift
);
2019 tmp
|= (type
<< gpio_shift
);
2020 REG_WRITE(ah
, addr
, tmp
);
2024 void ath9k_hw_cfg_gpio_input(struct ath_hw
*ah
, u32 gpio
)
2028 BUG_ON(gpio
>= ah
->caps
.num_gpio_pins
);
2030 if (AR_DEVID_7010(ah
)) {
2032 REG_RMW(ah
, AR7010_GPIO_OE
,
2033 (AR7010_GPIO_OE_AS_INPUT
<< gpio_shift
),
2034 (AR7010_GPIO_OE_MASK
<< gpio_shift
));
2038 gpio_shift
= gpio
<< 1;
2041 (AR_GPIO_OE_OUT_DRV_NO
<< gpio_shift
),
2042 (AR_GPIO_OE_OUT_DRV
<< gpio_shift
));
2044 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input
);
2046 u32
ath9k_hw_gpio_get(struct ath_hw
*ah
, u32 gpio
)
2048 #define MS_REG_READ(x, y) \
2049 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2051 if (gpio
>= ah
->caps
.num_gpio_pins
)
2054 if (AR_DEVID_7010(ah
)) {
2056 val
= REG_READ(ah
, AR7010_GPIO_IN
);
2057 return (MS(val
, AR7010_GPIO_IN_VAL
) & AR_GPIO_BIT(gpio
)) == 0;
2058 } else if (AR_SREV_9300_20_OR_LATER(ah
))
2059 return (MS(REG_READ(ah
, AR_GPIO_IN
), AR9300_GPIO_IN_VAL
) &
2060 AR_GPIO_BIT(gpio
)) != 0;
2061 else if (AR_SREV_9271(ah
))
2062 return MS_REG_READ(AR9271
, gpio
) != 0;
2063 else if (AR_SREV_9287_11_OR_LATER(ah
))
2064 return MS_REG_READ(AR9287
, gpio
) != 0;
2065 else if (AR_SREV_9285_12_OR_LATER(ah
))
2066 return MS_REG_READ(AR9285
, gpio
) != 0;
2067 else if (AR_SREV_9280_20_OR_LATER(ah
))
2068 return MS_REG_READ(AR928X
, gpio
) != 0;
2070 return MS_REG_READ(AR
, gpio
) != 0;
2072 EXPORT_SYMBOL(ath9k_hw_gpio_get
);
2074 void ath9k_hw_cfg_output(struct ath_hw
*ah
, u32 gpio
,
2079 if (AR_DEVID_7010(ah
)) {
2081 REG_RMW(ah
, AR7010_GPIO_OE
,
2082 (AR7010_GPIO_OE_AS_OUTPUT
<< gpio_shift
),
2083 (AR7010_GPIO_OE_MASK
<< gpio_shift
));
2087 ath9k_hw_gpio_cfg_output_mux(ah
, gpio
, ah_signal_type
);
2088 gpio_shift
= 2 * gpio
;
2091 (AR_GPIO_OE_OUT_DRV_ALL
<< gpio_shift
),
2092 (AR_GPIO_OE_OUT_DRV
<< gpio_shift
));
2094 EXPORT_SYMBOL(ath9k_hw_cfg_output
);
2096 void ath9k_hw_set_gpio(struct ath_hw
*ah
, u32 gpio
, u32 val
)
2098 if (AR_DEVID_7010(ah
)) {
2100 REG_RMW(ah
, AR7010_GPIO_OUT
, ((val
&1) << gpio
),
2105 if (AR_SREV_9271(ah
))
2108 REG_RMW(ah
, AR_GPIO_IN_OUT
, ((val
& 1) << gpio
),
2111 EXPORT_SYMBOL(ath9k_hw_set_gpio
);
2113 u32
ath9k_hw_getdefantenna(struct ath_hw
*ah
)
2115 return REG_READ(ah
, AR_DEF_ANTENNA
) & 0x7;
2117 EXPORT_SYMBOL(ath9k_hw_getdefantenna
);
2119 void ath9k_hw_setantenna(struct ath_hw
*ah
, u32 antenna
)
2121 REG_WRITE(ah
, AR_DEF_ANTENNA
, (antenna
& 0x7));
2123 EXPORT_SYMBOL(ath9k_hw_setantenna
);
2125 /*********************/
2126 /* General Operation */
2127 /*********************/
2129 u32
ath9k_hw_getrxfilter(struct ath_hw
*ah
)
2131 u32 bits
= REG_READ(ah
, AR_RX_FILTER
);
2132 u32 phybits
= REG_READ(ah
, AR_PHY_ERR
);
2134 if (phybits
& AR_PHY_ERR_RADAR
)
2135 bits
|= ATH9K_RX_FILTER_PHYRADAR
;
2136 if (phybits
& (AR_PHY_ERR_OFDM_TIMING
| AR_PHY_ERR_CCK_TIMING
))
2137 bits
|= ATH9K_RX_FILTER_PHYERR
;
2141 EXPORT_SYMBOL(ath9k_hw_getrxfilter
);
2143 void ath9k_hw_setrxfilter(struct ath_hw
*ah
, u32 bits
)
2147 ENABLE_REGWRITE_BUFFER(ah
);
2149 REG_WRITE(ah
, AR_RX_FILTER
, bits
);
2152 if (bits
& ATH9K_RX_FILTER_PHYRADAR
)
2153 phybits
|= AR_PHY_ERR_RADAR
;
2154 if (bits
& ATH9K_RX_FILTER_PHYERR
)
2155 phybits
|= AR_PHY_ERR_OFDM_TIMING
| AR_PHY_ERR_CCK_TIMING
;
2156 REG_WRITE(ah
, AR_PHY_ERR
, phybits
);
2159 REG_WRITE(ah
, AR_RXCFG
,
2160 REG_READ(ah
, AR_RXCFG
) | AR_RXCFG_ZLFDMA
);
2162 REG_WRITE(ah
, AR_RXCFG
,
2163 REG_READ(ah
, AR_RXCFG
) & ~AR_RXCFG_ZLFDMA
);
2165 REGWRITE_BUFFER_FLUSH(ah
);
2167 EXPORT_SYMBOL(ath9k_hw_setrxfilter
);
2169 bool ath9k_hw_phy_disable(struct ath_hw
*ah
)
2171 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_WARM
))
2174 ath9k_hw_init_pll(ah
, NULL
);
2177 EXPORT_SYMBOL(ath9k_hw_phy_disable
);
2179 bool ath9k_hw_disable(struct ath_hw
*ah
)
2181 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
2184 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_COLD
))
2187 ath9k_hw_init_pll(ah
, NULL
);
2190 EXPORT_SYMBOL(ath9k_hw_disable
);
2192 void ath9k_hw_set_txpowerlimit(struct ath_hw
*ah
, u32 limit
, bool test
)
2194 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
2195 struct ath9k_channel
*chan
= ah
->curchan
;
2196 struct ieee80211_channel
*channel
= chan
->chan
;
2198 regulatory
->power_limit
= min(limit
, (u32
) MAX_RATE_POWER
);
2200 ah
->eep_ops
->set_txpower(ah
, chan
,
2201 ath9k_regd_get_ctl(regulatory
, chan
),
2202 channel
->max_antenna_gain
* 2,
2203 channel
->max_power
* 2,
2204 min((u32
) MAX_RATE_POWER
,
2205 (u32
) regulatory
->power_limit
), test
);
2207 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit
);
2209 void ath9k_hw_setopmode(struct ath_hw
*ah
)
2211 ath9k_hw_set_operating_mode(ah
, ah
->opmode
);
2213 EXPORT_SYMBOL(ath9k_hw_setopmode
);
2215 void ath9k_hw_setmcastfilter(struct ath_hw
*ah
, u32 filter0
, u32 filter1
)
2217 REG_WRITE(ah
, AR_MCAST_FIL0
, filter0
);
2218 REG_WRITE(ah
, AR_MCAST_FIL1
, filter1
);
2220 EXPORT_SYMBOL(ath9k_hw_setmcastfilter
);
2222 void ath9k_hw_write_associd(struct ath_hw
*ah
)
2224 struct ath_common
*common
= ath9k_hw_common(ah
);
2226 REG_WRITE(ah
, AR_BSS_ID0
, get_unaligned_le32(common
->curbssid
));
2227 REG_WRITE(ah
, AR_BSS_ID1
, get_unaligned_le16(common
->curbssid
+ 4) |
2228 ((common
->curaid
& 0x3fff) << AR_BSS_ID1_AID_S
));
2230 EXPORT_SYMBOL(ath9k_hw_write_associd
);
2232 #define ATH9K_MAX_TSF_READ 10
2234 u64
ath9k_hw_gettsf64(struct ath_hw
*ah
)
2236 u32 tsf_lower
, tsf_upper1
, tsf_upper2
;
2239 tsf_upper1
= REG_READ(ah
, AR_TSF_U32
);
2240 for (i
= 0; i
< ATH9K_MAX_TSF_READ
; i
++) {
2241 tsf_lower
= REG_READ(ah
, AR_TSF_L32
);
2242 tsf_upper2
= REG_READ(ah
, AR_TSF_U32
);
2243 if (tsf_upper2
== tsf_upper1
)
2245 tsf_upper1
= tsf_upper2
;
2248 WARN_ON( i
== ATH9K_MAX_TSF_READ
);
2250 return (((u64
)tsf_upper1
<< 32) | tsf_lower
);
2252 EXPORT_SYMBOL(ath9k_hw_gettsf64
);
2254 void ath9k_hw_settsf64(struct ath_hw
*ah
, u64 tsf64
)
2256 REG_WRITE(ah
, AR_TSF_L32
, tsf64
& 0xffffffff);
2257 REG_WRITE(ah
, AR_TSF_U32
, (tsf64
>> 32) & 0xffffffff);
2259 EXPORT_SYMBOL(ath9k_hw_settsf64
);
2261 void ath9k_hw_reset_tsf(struct ath_hw
*ah
)
2263 if (!ath9k_hw_wait(ah
, AR_SLP32_MODE
, AR_SLP32_TSF_WRITE_STATUS
, 0,
2264 AH_TSF_WRITE_TIMEOUT
))
2265 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_RESET
,
2266 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2268 REG_WRITE(ah
, AR_RESET_TSF
, AR_RESET_TSF_ONCE
);
2270 EXPORT_SYMBOL(ath9k_hw_reset_tsf
);
2272 void ath9k_hw_set_tsfadjust(struct ath_hw
*ah
, u32 setting
)
2275 ah
->misc_mode
|= AR_PCU_TX_ADD_TSF
;
2277 ah
->misc_mode
&= ~AR_PCU_TX_ADD_TSF
;
2279 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust
);
2281 void ath9k_hw_set11nmac2040(struct ath_hw
*ah
)
2283 struct ieee80211_conf
*conf
= &ath9k_hw_common(ah
)->hw
->conf
;
2286 if (conf_is_ht40(conf
) && !ah
->config
.cwm_ignore_extcca
)
2287 macmode
= AR_2040_JOINED_RX_CLEAR
;
2291 REG_WRITE(ah
, AR_2040_MODE
, macmode
);
2294 /* HW Generic timers configuration */
2296 static const struct ath_gen_timer_configuration gen_tmr_configuration
[] =
2298 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2299 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2300 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2301 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2302 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2303 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2304 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2305 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2306 {AR_NEXT_NDP2_TIMER
, AR_NDP2_PERIOD
, AR_NDP2_TIMER_MODE
, 0x0001},
2307 {AR_NEXT_NDP2_TIMER
+ 1*4, AR_NDP2_PERIOD
+ 1*4,
2308 AR_NDP2_TIMER_MODE
, 0x0002},
2309 {AR_NEXT_NDP2_TIMER
+ 2*4, AR_NDP2_PERIOD
+ 2*4,
2310 AR_NDP2_TIMER_MODE
, 0x0004},
2311 {AR_NEXT_NDP2_TIMER
+ 3*4, AR_NDP2_PERIOD
+ 3*4,
2312 AR_NDP2_TIMER_MODE
, 0x0008},
2313 {AR_NEXT_NDP2_TIMER
+ 4*4, AR_NDP2_PERIOD
+ 4*4,
2314 AR_NDP2_TIMER_MODE
, 0x0010},
2315 {AR_NEXT_NDP2_TIMER
+ 5*4, AR_NDP2_PERIOD
+ 5*4,
2316 AR_NDP2_TIMER_MODE
, 0x0020},
2317 {AR_NEXT_NDP2_TIMER
+ 6*4, AR_NDP2_PERIOD
+ 6*4,
2318 AR_NDP2_TIMER_MODE
, 0x0040},
2319 {AR_NEXT_NDP2_TIMER
+ 7*4, AR_NDP2_PERIOD
+ 7*4,
2320 AR_NDP2_TIMER_MODE
, 0x0080}
2323 /* HW generic timer primitives */
2325 /* compute and clear index of rightmost 1 */
2326 static u32
rightmost_index(struct ath_gen_timer_table
*timer_table
, u32
*mask
)
2336 return timer_table
->gen_timer_index
[b
];
2339 static u32
ath9k_hw_gettsf32(struct ath_hw
*ah
)
2341 return REG_READ(ah
, AR_TSF_L32
);
2344 struct ath_gen_timer
*ath_gen_timer_alloc(struct ath_hw
*ah
,
2345 void (*trigger
)(void *),
2346 void (*overflow
)(void *),
2350 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
2351 struct ath_gen_timer
*timer
;
2353 timer
= kzalloc(sizeof(struct ath_gen_timer
), GFP_KERNEL
);
2355 if (timer
== NULL
) {
2356 ath_err(ath9k_hw_common(ah
),
2357 "Failed to allocate memory for hw timer[%d]\n",
2362 /* allocate a hardware generic timer slot */
2363 timer_table
->timers
[timer_index
] = timer
;
2364 timer
->index
= timer_index
;
2365 timer
->trigger
= trigger
;
2366 timer
->overflow
= overflow
;
2371 EXPORT_SYMBOL(ath_gen_timer_alloc
);
2373 void ath9k_hw_gen_timer_start(struct ath_hw
*ah
,
2374 struct ath_gen_timer
*timer
,
2378 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
2381 BUG_ON(!timer_period
);
2383 set_bit(timer
->index
, &timer_table
->timer_mask
.timer_bits
);
2385 tsf
= ath9k_hw_gettsf32(ah
);
2387 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_HWTIMER
,
2388 "current tsf %x period %x timer_next %x\n",
2389 tsf
, timer_period
, timer_next
);
2392 * Pull timer_next forward if the current TSF already passed it
2393 * because of software latency
2395 if (timer_next
< tsf
)
2396 timer_next
= tsf
+ timer_period
;
2399 * Program generic timer registers
2401 REG_WRITE(ah
, gen_tmr_configuration
[timer
->index
].next_addr
,
2403 REG_WRITE(ah
, gen_tmr_configuration
[timer
->index
].period_addr
,
2405 REG_SET_BIT(ah
, gen_tmr_configuration
[timer
->index
].mode_addr
,
2406 gen_tmr_configuration
[timer
->index
].mode_mask
);
2408 /* Enable both trigger and thresh interrupt masks */
2409 REG_SET_BIT(ah
, AR_IMR_S5
,
2410 (SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_THRESH
) |
2411 SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_TRIG
)));
2413 EXPORT_SYMBOL(ath9k_hw_gen_timer_start
);
2415 void ath9k_hw_gen_timer_stop(struct ath_hw
*ah
, struct ath_gen_timer
*timer
)
2417 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
2419 if ((timer
->index
< AR_FIRST_NDP_TIMER
) ||
2420 (timer
->index
>= ATH_MAX_GEN_TIMER
)) {
2424 /* Clear generic timer enable bits. */
2425 REG_CLR_BIT(ah
, gen_tmr_configuration
[timer
->index
].mode_addr
,
2426 gen_tmr_configuration
[timer
->index
].mode_mask
);
2428 /* Disable both trigger and thresh interrupt masks */
2429 REG_CLR_BIT(ah
, AR_IMR_S5
,
2430 (SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_THRESH
) |
2431 SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_TRIG
)));
2433 clear_bit(timer
->index
, &timer_table
->timer_mask
.timer_bits
);
2435 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop
);
2437 void ath_gen_timer_free(struct ath_hw
*ah
, struct ath_gen_timer
*timer
)
2439 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
2441 /* free the hardware generic timer slot */
2442 timer_table
->timers
[timer
->index
] = NULL
;
2445 EXPORT_SYMBOL(ath_gen_timer_free
);
2448 * Generic Timer Interrupts handling
2450 void ath_gen_timer_isr(struct ath_hw
*ah
)
2452 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
2453 struct ath_gen_timer
*timer
;
2454 struct ath_common
*common
= ath9k_hw_common(ah
);
2455 u32 trigger_mask
, thresh_mask
, index
;
2457 /* get hardware generic timer interrupt status */
2458 trigger_mask
= ah
->intr_gen_timer_trigger
;
2459 thresh_mask
= ah
->intr_gen_timer_thresh
;
2460 trigger_mask
&= timer_table
->timer_mask
.val
;
2461 thresh_mask
&= timer_table
->timer_mask
.val
;
2463 trigger_mask
&= ~thresh_mask
;
2465 while (thresh_mask
) {
2466 index
= rightmost_index(timer_table
, &thresh_mask
);
2467 timer
= timer_table
->timers
[index
];
2469 ath_dbg(common
, ATH_DBG_HWTIMER
,
2470 "TSF overflow for Gen timer %d\n", index
);
2471 timer
->overflow(timer
->arg
);
2474 while (trigger_mask
) {
2475 index
= rightmost_index(timer_table
, &trigger_mask
);
2476 timer
= timer_table
->timers
[index
];
2478 ath_dbg(common
, ATH_DBG_HWTIMER
,
2479 "Gen timer[%d] trigger\n", index
);
2480 timer
->trigger(timer
->arg
);
2483 EXPORT_SYMBOL(ath_gen_timer_isr
);
2489 void ath9k_hw_htc_resetinit(struct ath_hw
*ah
)
2491 ah
->htc_reset_init
= true;
2493 EXPORT_SYMBOL(ath9k_hw_htc_resetinit
);
2498 } ath_mac_bb_names
[] = {
2499 /* Devices with external radios */
2500 { AR_SREV_VERSION_5416_PCI
, "5416" },
2501 { AR_SREV_VERSION_5416_PCIE
, "5418" },
2502 { AR_SREV_VERSION_9100
, "9100" },
2503 { AR_SREV_VERSION_9160
, "9160" },
2504 /* Single-chip solutions */
2505 { AR_SREV_VERSION_9280
, "9280" },
2506 { AR_SREV_VERSION_9285
, "9285" },
2507 { AR_SREV_VERSION_9287
, "9287" },
2508 { AR_SREV_VERSION_9271
, "9271" },
2509 { AR_SREV_VERSION_9300
, "9300" },
2512 /* For devices with external radios */
2516 } ath_rf_names
[] = {
2518 { AR_RAD5133_SREV_MAJOR
, "5133" },
2519 { AR_RAD5122_SREV_MAJOR
, "5122" },
2520 { AR_RAD2133_SREV_MAJOR
, "2133" },
2521 { AR_RAD2122_SREV_MAJOR
, "2122" }
2525 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2527 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version
)
2531 for (i
=0; i
<ARRAY_SIZE(ath_mac_bb_names
); i
++) {
2532 if (ath_mac_bb_names
[i
].version
== mac_bb_version
) {
2533 return ath_mac_bb_names
[i
].name
;
2541 * Return the RF name. "????" is returned if the RF is unknown.
2542 * Used for devices with external radios.
2544 static const char *ath9k_hw_rf_name(u16 rf_version
)
2548 for (i
=0; i
<ARRAY_SIZE(ath_rf_names
); i
++) {
2549 if (ath_rf_names
[i
].version
== rf_version
) {
2550 return ath_rf_names
[i
].name
;
2557 void ath9k_hw_name(struct ath_hw
*ah
, char *hw_name
, size_t len
)
2561 /* chipsets >= AR9280 are single-chip */
2562 if (AR_SREV_9280_20_OR_LATER(ah
)) {
2563 used
= snprintf(hw_name
, len
,
2564 "Atheros AR%s Rev:%x",
2565 ath9k_hw_mac_bb_name(ah
->hw_version
.macVersion
),
2566 ah
->hw_version
.macRev
);
2569 used
= snprintf(hw_name
, len
,
2570 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2571 ath9k_hw_mac_bb_name(ah
->hw_version
.macVersion
),
2572 ah
->hw_version
.macRev
,
2573 ath9k_hw_rf_name((ah
->hw_version
.analog5GhzRev
&
2574 AR_RADIO_SREV_MAJOR
)),
2575 ah
->hw_version
.phyRev
);
2578 hw_name
[used
] = '\0';
2580 EXPORT_SYMBOL(ath9k_hw_name
);