2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * Driver for FEC on MPC8540 and TSEC on MPC8540/MPC8560
6 * Based on 8260_io/fcc_enet.c
9 * Maintainer: Kumar Gala (kumar.gala@freescale.com)
11 * Copyright (c) 2002-2004 Freescale Semiconductor, Inc.
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
18 * Gianfar: AKA Lambda Draconis, "Dragon"
25 * This driver is designed for the non-CPM ethernet controllers
26 * on the 85xx and 83xx family of integrated processors
28 * The driver is initialized through platform_device. Structures which
29 * define the configuration needed by the board are defined in a
30 * board structure in arch/ppc/platforms (though I do not
31 * discount the possibility that other architectures could one
34 * The Gianfar Ethernet Controller uses a ring of buffer
35 * descriptors. The beginning is indicated by a register
36 * pointing to the physical address of the start of the ring.
37 * The end is determined by a "wrap" bit being set in the
38 * last descriptor of the ring.
40 * When a packet is received, the RXF bit in the
41 * IEVENT register is set, triggering an interrupt when the
42 * corresponding bit in the IMASK register is also set (if
43 * interrupt coalescing is active, then the interrupt may not
44 * happen immediately, but will wait until either a set number
45 * of frames or amount of time have passed). In NAPI, the
46 * interrupt handler will signal there is work to be done, and
47 * exit. Without NAPI, the packet(s) will be handled
48 * immediately. Both methods will start at the last known empty
49 * descriptor, and process every subsequent descriptor until there
50 * are none left with data (NAPI will stop after a set number of
51 * packets to give time to other tasks, but will eventually
52 * process all the packets). The data arrives inside a
53 * pre-allocated skb, and so after the skb is passed up to the
54 * stack, a new skb must be allocated, and the address field in
55 * the buffer descriptor must be updated to indicate this new
58 * When the kernel requests that a packet be transmitted, the
59 * driver starts where it left off last time, and points the
60 * descriptor at the buffer which was passed in. The driver
61 * then informs the DMA engine that there are packets ready to
62 * be transmitted. Once the controller is finished transmitting
63 * the packet, an interrupt may be triggered (under the same
64 * conditions as for reception, but depending on the TXF bit).
65 * The driver then cleans up the buffer.
68 #include <linux/config.h>
69 #include <linux/kernel.h>
70 #include <linux/sched.h>
71 #include <linux/string.h>
72 #include <linux/errno.h>
73 #include <linux/unistd.h>
74 #include <linux/slab.h>
75 #include <linux/interrupt.h>
76 #include <linux/init.h>
77 #include <linux/delay.h>
78 #include <linux/netdevice.h>
79 #include <linux/etherdevice.h>
80 #include <linux/skbuff.h>
81 #include <linux/if_vlan.h>
82 #include <linux/spinlock.h>
84 #include <linux/device.h>
86 #include <linux/tcp.h>
87 #include <linux/udp.h>
91 #include <asm/uaccess.h>
92 #include <linux/module.h>
93 #include <linux/version.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/crc32.h>
96 #include <linux/mii.h>
97 #include <linux/phy.h>
100 #include "gianfar_mii.h"
102 #define TX_TIMEOUT (1*HZ)
103 #define SKB_ALLOC_TIMEOUT 1000000
104 #undef BRIEF_GFAR_ERRORS
105 #undef VERBOSE_GFAR_ERRORS
107 #ifdef CONFIG_GFAR_NAPI
108 #define RECEIVE(x) netif_receive_skb(x)
110 #define RECEIVE(x) netif_rx(x)
113 const char gfar_driver_name
[] = "Gianfar Ethernet";
114 const char gfar_driver_version
[] = "1.2";
116 static int gfar_enet_open(struct net_device
*dev
);
117 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
118 static void gfar_timeout(struct net_device
*dev
);
119 static int gfar_close(struct net_device
*dev
);
120 struct sk_buff
*gfar_new_skb(struct net_device
*dev
, struct rxbd8
*bdp
);
121 static struct net_device_stats
*gfar_get_stats(struct net_device
*dev
);
122 static int gfar_set_mac_address(struct net_device
*dev
);
123 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
);
124 static irqreturn_t
gfar_error(int irq
, void *dev_id
, struct pt_regs
*regs
);
125 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
, struct pt_regs
*regs
);
126 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
);
127 static void adjust_link(struct net_device
*dev
);
128 static void init_registers(struct net_device
*dev
);
129 static int init_phy(struct net_device
*dev
);
130 static int gfar_probe(struct device
*device
);
131 static int gfar_remove(struct device
*device
);
132 static void free_skb_resources(struct gfar_private
*priv
);
133 static void gfar_set_multi(struct net_device
*dev
);
134 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
);
135 #ifdef CONFIG_GFAR_NAPI
136 static int gfar_poll(struct net_device
*dev
, int *budget
);
138 int gfar_clean_rx_ring(struct net_device
*dev
, int rx_work_limit
);
139 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
, int length
);
140 static void gfar_vlan_rx_register(struct net_device
*netdev
,
141 struct vlan_group
*grp
);
142 static void gfar_vlan_rx_kill_vid(struct net_device
*netdev
, uint16_t vid
);
144 extern struct ethtool_ops gfar_ethtool_ops
;
146 MODULE_AUTHOR("Freescale Semiconductor, Inc");
147 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
148 MODULE_LICENSE("GPL");
150 int gfar_uses_fcb(struct gfar_private
*priv
)
152 if (priv
->vlan_enable
|| priv
->rx_csum_enable
)
158 /* Set up the ethernet device structure, private data,
159 * and anything else we need before we start */
160 static int gfar_probe(struct device
*device
)
163 struct net_device
*dev
= NULL
;
164 struct gfar_private
*priv
= NULL
;
165 struct platform_device
*pdev
= to_platform_device(device
);
166 struct gianfar_platform_data
*einfo
;
171 einfo
= (struct gianfar_platform_data
*) pdev
->dev
.platform_data
;
174 printk(KERN_ERR
"gfar %d: Missing additional data!\n",
180 /* Create an ethernet device instance */
181 dev
= alloc_etherdev(sizeof (*priv
));
186 priv
= netdev_priv(dev
);
188 /* Set the info in the priv to the current info */
191 /* fill out IRQ fields */
192 if (einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
193 priv
->interruptTransmit
= platform_get_irq_byname(pdev
, "tx");
194 priv
->interruptReceive
= platform_get_irq_byname(pdev
, "rx");
195 priv
->interruptError
= platform_get_irq_byname(pdev
, "error");
197 priv
->interruptTransmit
= platform_get_irq(pdev
, 0);
200 /* get a pointer to the register memory */
201 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
202 priv
->regs
= (struct gfar
*)
203 ioremap(r
->start
, sizeof (struct gfar
));
205 if (NULL
== priv
->regs
) {
210 spin_lock_init(&priv
->lock
);
212 dev_set_drvdata(device
, dev
);
214 /* Stop the DMA engine now, in case it was running before */
215 /* (The firmware could have used it, and left it running). */
216 /* To do this, we write Graceful Receive Stop and Graceful */
217 /* Transmit Stop, and then wait until the corresponding bits */
218 /* in IEVENT indicate the stops have completed. */
219 tempval
= gfar_read(&priv
->regs
->dmactrl
);
220 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
221 gfar_write(&priv
->regs
->dmactrl
, tempval
);
223 tempval
= gfar_read(&priv
->regs
->dmactrl
);
224 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
225 gfar_write(&priv
->regs
->dmactrl
, tempval
);
227 while (!(gfar_read(&priv
->regs
->ievent
) & (IEVENT_GRSC
| IEVENT_GTSC
)))
230 /* Reset MAC layer */
231 gfar_write(&priv
->regs
->maccfg1
, MACCFG1_SOFT_RESET
);
233 tempval
= (MACCFG1_TX_FLOW
| MACCFG1_RX_FLOW
);
234 gfar_write(&priv
->regs
->maccfg1
, tempval
);
236 /* Initialize MACCFG2. */
237 gfar_write(&priv
->regs
->maccfg2
, MACCFG2_INIT_SETTINGS
);
239 /* Initialize ECNTRL */
240 gfar_write(&priv
->regs
->ecntrl
, ECNTRL_INIT_SETTINGS
);
242 /* Copy the station address into the dev structure, */
243 memcpy(dev
->dev_addr
, einfo
->mac_addr
, MAC_ADDR_LEN
);
245 /* Set the dev->base_addr to the gfar reg region */
246 dev
->base_addr
= (unsigned long) (priv
->regs
);
248 SET_MODULE_OWNER(dev
);
249 SET_NETDEV_DEV(dev
, device
);
251 /* Fill in the dev structure */
252 dev
->open
= gfar_enet_open
;
253 dev
->hard_start_xmit
= gfar_start_xmit
;
254 dev
->tx_timeout
= gfar_timeout
;
255 dev
->watchdog_timeo
= TX_TIMEOUT
;
256 #ifdef CONFIG_GFAR_NAPI
257 dev
->poll
= gfar_poll
;
258 dev
->weight
= GFAR_DEV_WEIGHT
;
260 dev
->stop
= gfar_close
;
261 dev
->get_stats
= gfar_get_stats
;
262 dev
->change_mtu
= gfar_change_mtu
;
264 dev
->set_multicast_list
= gfar_set_multi
;
266 dev
->ethtool_ops
= &gfar_ethtool_ops
;
268 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_CSUM
) {
269 priv
->rx_csum_enable
= 1;
270 dev
->features
|= NETIF_F_IP_CSUM
;
272 priv
->rx_csum_enable
= 0;
276 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_VLAN
) {
277 dev
->vlan_rx_register
= gfar_vlan_rx_register
;
278 dev
->vlan_rx_kill_vid
= gfar_vlan_rx_kill_vid
;
280 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
282 priv
->vlan_enable
= 1;
285 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
) {
286 priv
->extended_hash
= 1;
287 priv
->hash_width
= 9;
289 priv
->hash_regs
[0] = &priv
->regs
->igaddr0
;
290 priv
->hash_regs
[1] = &priv
->regs
->igaddr1
;
291 priv
->hash_regs
[2] = &priv
->regs
->igaddr2
;
292 priv
->hash_regs
[3] = &priv
->regs
->igaddr3
;
293 priv
->hash_regs
[4] = &priv
->regs
->igaddr4
;
294 priv
->hash_regs
[5] = &priv
->regs
->igaddr5
;
295 priv
->hash_regs
[6] = &priv
->regs
->igaddr6
;
296 priv
->hash_regs
[7] = &priv
->regs
->igaddr7
;
297 priv
->hash_regs
[8] = &priv
->regs
->gaddr0
;
298 priv
->hash_regs
[9] = &priv
->regs
->gaddr1
;
299 priv
->hash_regs
[10] = &priv
->regs
->gaddr2
;
300 priv
->hash_regs
[11] = &priv
->regs
->gaddr3
;
301 priv
->hash_regs
[12] = &priv
->regs
->gaddr4
;
302 priv
->hash_regs
[13] = &priv
->regs
->gaddr5
;
303 priv
->hash_regs
[14] = &priv
->regs
->gaddr6
;
304 priv
->hash_regs
[15] = &priv
->regs
->gaddr7
;
307 priv
->extended_hash
= 0;
308 priv
->hash_width
= 8;
310 priv
->hash_regs
[0] = &priv
->regs
->gaddr0
;
311 priv
->hash_regs
[1] = &priv
->regs
->gaddr1
;
312 priv
->hash_regs
[2] = &priv
->regs
->gaddr2
;
313 priv
->hash_regs
[3] = &priv
->regs
->gaddr3
;
314 priv
->hash_regs
[4] = &priv
->regs
->gaddr4
;
315 priv
->hash_regs
[5] = &priv
->regs
->gaddr5
;
316 priv
->hash_regs
[6] = &priv
->regs
->gaddr6
;
317 priv
->hash_regs
[7] = &priv
->regs
->gaddr7
;
320 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_PADDING
)
321 priv
->padding
= DEFAULT_PADDING
;
325 dev
->hard_header_len
+= priv
->padding
;
327 if (dev
->features
& NETIF_F_IP_CSUM
)
328 dev
->hard_header_len
+= GMAC_FCB_LEN
;
330 priv
->rx_buffer_size
= DEFAULT_RX_BUFFER_SIZE
;
331 #ifdef CONFIG_GFAR_BUFSTASH
332 priv
->rx_stash_size
= STASH_LENGTH
;
334 priv
->tx_ring_size
= DEFAULT_TX_RING_SIZE
;
335 priv
->rx_ring_size
= DEFAULT_RX_RING_SIZE
;
337 priv
->txcoalescing
= DEFAULT_TX_COALESCE
;
338 priv
->txcount
= DEFAULT_TXCOUNT
;
339 priv
->txtime
= DEFAULT_TXTIME
;
340 priv
->rxcoalescing
= DEFAULT_RX_COALESCE
;
341 priv
->rxcount
= DEFAULT_RXCOUNT
;
342 priv
->rxtime
= DEFAULT_RXTIME
;
344 /* Enable most messages by default */
345 priv
->msg_enable
= (NETIF_MSG_IFUP
<< 1 ) - 1;
347 err
= register_netdev(dev
);
350 printk(KERN_ERR
"%s: Cannot register net device, aborting.\n",
355 /* Print out the device info */
356 printk(KERN_INFO DEVICE_NAME
, dev
->name
);
357 for (idx
= 0; idx
< 6; idx
++)
358 printk("%2.2x%c", dev
->dev_addr
[idx
], idx
== 5 ? ' ' : ':');
361 /* Even more device info helps when determining which kernel */
362 /* provided which set of benchmarks. Since this is global for all */
363 /* devices, we only print it once */
364 #ifdef CONFIG_GFAR_NAPI
365 printk(KERN_INFO
"%s: Running with NAPI enabled\n", dev
->name
);
367 printk(KERN_INFO
"%s: Running with NAPI disabled\n", dev
->name
);
369 printk(KERN_INFO
"%s: %d/%d RX/TX BD ring size\n",
370 dev
->name
, priv
->rx_ring_size
, priv
->tx_ring_size
);
375 iounmap((void *) priv
->regs
);
381 static int gfar_remove(struct device
*device
)
383 struct net_device
*dev
= dev_get_drvdata(device
);
384 struct gfar_private
*priv
= netdev_priv(dev
);
386 dev_set_drvdata(device
, NULL
);
388 iounmap((void *) priv
->regs
);
395 /* Initializes driver's PHY state, and attaches to the PHY.
396 * Returns 0 on success.
398 static int init_phy(struct net_device
*dev
)
400 struct gfar_private
*priv
= netdev_priv(dev
);
401 uint gigabit_support
=
402 priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
?
403 SUPPORTED_1000baseT_Full
: 0;
404 struct phy_device
*phydev
;
408 priv
->oldduplex
= -1;
410 phydev
= phy_connect(dev
, priv
->einfo
->bus_id
, &adjust_link
, 0);
412 if (IS_ERR(phydev
)) {
413 printk(KERN_ERR
"%s: Could not attach to PHY\n", dev
->name
);
414 return PTR_ERR(phydev
);
417 /* Remove any features not supported by the controller */
418 phydev
->supported
&= (GFAR_SUPPORTED
| gigabit_support
);
419 phydev
->advertising
= phydev
->supported
;
421 priv
->phydev
= phydev
;
426 static void init_registers(struct net_device
*dev
)
428 struct gfar_private
*priv
= netdev_priv(dev
);
431 gfar_write(&priv
->regs
->ievent
, IEVENT_INIT_CLEAR
);
433 /* Initialize IMASK */
434 gfar_write(&priv
->regs
->imask
, IMASK_INIT_CLEAR
);
436 /* Init hash registers to zero */
437 gfar_write(&priv
->regs
->igaddr0
, 0);
438 gfar_write(&priv
->regs
->igaddr1
, 0);
439 gfar_write(&priv
->regs
->igaddr2
, 0);
440 gfar_write(&priv
->regs
->igaddr3
, 0);
441 gfar_write(&priv
->regs
->igaddr4
, 0);
442 gfar_write(&priv
->regs
->igaddr5
, 0);
443 gfar_write(&priv
->regs
->igaddr6
, 0);
444 gfar_write(&priv
->regs
->igaddr7
, 0);
446 gfar_write(&priv
->regs
->gaddr0
, 0);
447 gfar_write(&priv
->regs
->gaddr1
, 0);
448 gfar_write(&priv
->regs
->gaddr2
, 0);
449 gfar_write(&priv
->regs
->gaddr3
, 0);
450 gfar_write(&priv
->regs
->gaddr4
, 0);
451 gfar_write(&priv
->regs
->gaddr5
, 0);
452 gfar_write(&priv
->regs
->gaddr6
, 0);
453 gfar_write(&priv
->regs
->gaddr7
, 0);
455 /* Zero out the rmon mib registers if it has them */
456 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_RMON
) {
457 memset((void *) &(priv
->regs
->rmon
), 0,
458 sizeof (struct rmon_mib
));
460 /* Mask off the CAM interrupts */
461 gfar_write(&priv
->regs
->rmon
.cam1
, 0xffffffff);
462 gfar_write(&priv
->regs
->rmon
.cam2
, 0xffffffff);
465 /* Initialize the max receive buffer length */
466 gfar_write(&priv
->regs
->mrblr
, priv
->rx_buffer_size
);
468 #ifdef CONFIG_GFAR_BUFSTASH
469 /* If we are stashing buffers, we need to set the
470 * extraction length to the size of the buffer */
471 gfar_write(&priv
->regs
->attreli
, priv
->rx_stash_size
<< 16);
474 /* Initialize the Minimum Frame Length Register */
475 gfar_write(&priv
->regs
->minflr
, MINFLR_INIT_SETTINGS
);
477 /* Setup Attributes so that snooping is on for rx */
478 gfar_write(&priv
->regs
->attr
, ATTR_INIT_SETTINGS
);
479 gfar_write(&priv
->regs
->attreli
, ATTRELI_INIT_SETTINGS
);
481 /* Assign the TBI an address which won't conflict with the PHYs */
482 gfar_write(&priv
->regs
->tbipa
, TBIPA_VALUE
);
486 /* Halt the receive and transmit queues */
487 void gfar_halt(struct net_device
*dev
)
489 struct gfar_private
*priv
= netdev_priv(dev
);
490 struct gfar
*regs
= priv
->regs
;
493 /* Mask all interrupts */
494 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
496 /* Clear all interrupts */
497 gfar_write(®s
->ievent
, IEVENT_INIT_CLEAR
);
499 /* Stop the DMA, and wait for it to stop */
500 tempval
= gfar_read(&priv
->regs
->dmactrl
);
501 if ((tempval
& (DMACTRL_GRS
| DMACTRL_GTS
))
502 != (DMACTRL_GRS
| DMACTRL_GTS
)) {
503 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
504 gfar_write(&priv
->regs
->dmactrl
, tempval
);
506 while (!(gfar_read(&priv
->regs
->ievent
) &
507 (IEVENT_GRSC
| IEVENT_GTSC
)))
511 /* Disable Rx and Tx */
512 tempval
= gfar_read(®s
->maccfg1
);
513 tempval
&= ~(MACCFG1_RX_EN
| MACCFG1_TX_EN
);
514 gfar_write(®s
->maccfg1
, tempval
);
517 void stop_gfar(struct net_device
*dev
)
519 struct gfar_private
*priv
= netdev_priv(dev
);
520 struct gfar
*regs
= priv
->regs
;
523 phy_stop(priv
->phydev
);
526 spin_lock_irqsave(&priv
->lock
, flags
);
530 spin_unlock_irqrestore(&priv
->lock
, flags
);
533 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
534 free_irq(priv
->interruptError
, dev
);
535 free_irq(priv
->interruptTransmit
, dev
);
536 free_irq(priv
->interruptReceive
, dev
);
538 free_irq(priv
->interruptTransmit
, dev
);
541 free_skb_resources(priv
);
543 dma_free_coherent(NULL
,
544 sizeof(struct txbd8
)*priv
->tx_ring_size
545 + sizeof(struct rxbd8
)*priv
->rx_ring_size
,
547 gfar_read(®s
->tbase0
));
550 /* If there are any tx skbs or rx skbs still around, free them.
551 * Then free tx_skbuff and rx_skbuff */
552 static void free_skb_resources(struct gfar_private
*priv
)
558 /* Go through all the buffer descriptors and free their data buffers */
559 txbdp
= priv
->tx_bd_base
;
561 for (i
= 0; i
< priv
->tx_ring_size
; i
++) {
563 if (priv
->tx_skbuff
[i
]) {
564 dma_unmap_single(NULL
, txbdp
->bufPtr
,
567 dev_kfree_skb_any(priv
->tx_skbuff
[i
]);
568 priv
->tx_skbuff
[i
] = NULL
;
572 kfree(priv
->tx_skbuff
);
574 rxbdp
= priv
->rx_bd_base
;
576 /* rx_skbuff is not guaranteed to be allocated, so only
577 * free it and its contents if it is allocated */
578 if(priv
->rx_skbuff
!= NULL
) {
579 for (i
= 0; i
< priv
->rx_ring_size
; i
++) {
580 if (priv
->rx_skbuff
[i
]) {
581 dma_unmap_single(NULL
, rxbdp
->bufPtr
,
586 dev_kfree_skb_any(priv
->rx_skbuff
[i
]);
587 priv
->rx_skbuff
[i
] = NULL
;
597 kfree(priv
->rx_skbuff
);
601 void gfar_start(struct net_device
*dev
)
603 struct gfar_private
*priv
= netdev_priv(dev
);
604 struct gfar
*regs
= priv
->regs
;
607 /* Enable Rx and Tx in MACCFG1 */
608 tempval
= gfar_read(®s
->maccfg1
);
609 tempval
|= (MACCFG1_RX_EN
| MACCFG1_TX_EN
);
610 gfar_write(®s
->maccfg1
, tempval
);
612 /* Initialize DMACTRL to have WWR and WOP */
613 tempval
= gfar_read(&priv
->regs
->dmactrl
);
614 tempval
|= DMACTRL_INIT_SETTINGS
;
615 gfar_write(&priv
->regs
->dmactrl
, tempval
);
617 /* Clear THLT, so that the DMA starts polling now */
618 gfar_write(®s
->tstat
, TSTAT_CLEAR_THALT
);
620 /* Make sure we aren't stopped */
621 tempval
= gfar_read(&priv
->regs
->dmactrl
);
622 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
623 gfar_write(&priv
->regs
->dmactrl
, tempval
);
625 /* Unmask the interrupts we look for */
626 gfar_write(®s
->imask
, IMASK_DEFAULT
);
629 /* Bring the controller up and running */
630 int startup_gfar(struct net_device
*dev
)
637 struct gfar_private
*priv
= netdev_priv(dev
);
638 struct gfar
*regs
= priv
->regs
;
642 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
644 /* Allocate memory for the buffer descriptors */
645 vaddr
= (unsigned long) dma_alloc_coherent(NULL
,
646 sizeof (struct txbd8
) * priv
->tx_ring_size
+
647 sizeof (struct rxbd8
) * priv
->rx_ring_size
,
651 if (netif_msg_ifup(priv
))
652 printk(KERN_ERR
"%s: Could not allocate buffer descriptors!\n",
657 priv
->tx_bd_base
= (struct txbd8
*) vaddr
;
659 /* enet DMA only understands physical addresses */
660 gfar_write(®s
->tbase0
, addr
);
662 /* Start the rx descriptor ring where the tx ring leaves off */
663 addr
= addr
+ sizeof (struct txbd8
) * priv
->tx_ring_size
;
664 vaddr
= vaddr
+ sizeof (struct txbd8
) * priv
->tx_ring_size
;
665 priv
->rx_bd_base
= (struct rxbd8
*) vaddr
;
666 gfar_write(®s
->rbase0
, addr
);
668 /* Setup the skbuff rings */
670 (struct sk_buff
**) kmalloc(sizeof (struct sk_buff
*) *
671 priv
->tx_ring_size
, GFP_KERNEL
);
673 if (NULL
== priv
->tx_skbuff
) {
674 if (netif_msg_ifup(priv
))
675 printk(KERN_ERR
"%s: Could not allocate tx_skbuff\n",
681 for (i
= 0; i
< priv
->tx_ring_size
; i
++)
682 priv
->tx_skbuff
[i
] = NULL
;
685 (struct sk_buff
**) kmalloc(sizeof (struct sk_buff
*) *
686 priv
->rx_ring_size
, GFP_KERNEL
);
688 if (NULL
== priv
->rx_skbuff
) {
689 if (netif_msg_ifup(priv
))
690 printk(KERN_ERR
"%s: Could not allocate rx_skbuff\n",
696 for (i
= 0; i
< priv
->rx_ring_size
; i
++)
697 priv
->rx_skbuff
[i
] = NULL
;
699 /* Initialize some variables in our dev structure */
700 priv
->dirty_tx
= priv
->cur_tx
= priv
->tx_bd_base
;
701 priv
->cur_rx
= priv
->rx_bd_base
;
702 priv
->skb_curtx
= priv
->skb_dirtytx
= 0;
705 /* Initialize Transmit Descriptor Ring */
706 txbdp
= priv
->tx_bd_base
;
707 for (i
= 0; i
< priv
->tx_ring_size
; i
++) {
714 /* Set the last descriptor in the ring to indicate wrap */
716 txbdp
->status
|= TXBD_WRAP
;
718 rxbdp
= priv
->rx_bd_base
;
719 for (i
= 0; i
< priv
->rx_ring_size
; i
++) {
720 struct sk_buff
*skb
= NULL
;
724 skb
= gfar_new_skb(dev
, rxbdp
);
726 priv
->rx_skbuff
[i
] = skb
;
731 /* Set the last descriptor in the ring to wrap */
733 rxbdp
->status
|= RXBD_WRAP
;
735 /* If the device has multiple interrupts, register for
736 * them. Otherwise, only register for the one */
737 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
738 /* Install our interrupt handlers for Error,
739 * Transmit, and Receive */
740 if (request_irq(priv
->interruptError
, gfar_error
,
741 0, "enet_error", dev
) < 0) {
742 if (netif_msg_intr(priv
))
743 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
744 dev
->name
, priv
->interruptError
);
750 if (request_irq(priv
->interruptTransmit
, gfar_transmit
,
751 0, "enet_tx", dev
) < 0) {
752 if (netif_msg_intr(priv
))
753 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
754 dev
->name
, priv
->interruptTransmit
);
761 if (request_irq(priv
->interruptReceive
, gfar_receive
,
762 0, "enet_rx", dev
) < 0) {
763 if (netif_msg_intr(priv
))
764 printk(KERN_ERR
"%s: Can't get IRQ %d (receive0)\n",
765 dev
->name
, priv
->interruptReceive
);
771 if (request_irq(priv
->interruptTransmit
, gfar_interrupt
,
772 0, "gfar_interrupt", dev
) < 0) {
773 if (netif_msg_intr(priv
))
774 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
775 dev
->name
, priv
->interruptError
);
782 phy_start(priv
->phydev
);
784 /* Configure the coalescing support */
785 if (priv
->txcoalescing
)
786 gfar_write(®s
->txic
,
787 mk_ic_value(priv
->txcount
, priv
->txtime
));
789 gfar_write(®s
->txic
, 0);
791 if (priv
->rxcoalescing
)
792 gfar_write(®s
->rxic
,
793 mk_ic_value(priv
->rxcount
, priv
->rxtime
));
795 gfar_write(®s
->rxic
, 0);
797 if (priv
->rx_csum_enable
)
798 rctrl
|= RCTRL_CHECKSUMMING
;
800 if (priv
->extended_hash
)
801 rctrl
|= RCTRL_EXTHASH
;
803 if (priv
->vlan_enable
)
806 /* Init rctrl based on our settings */
807 gfar_write(&priv
->regs
->rctrl
, rctrl
);
809 if (dev
->features
& NETIF_F_IP_CSUM
)
810 gfar_write(&priv
->regs
->tctrl
, TCTRL_INIT_CSUM
);
817 free_irq(priv
->interruptTransmit
, dev
);
819 free_irq(priv
->interruptError
, dev
);
822 free_skb_resources(priv
);
824 dma_free_coherent(NULL
,
825 sizeof(struct txbd8
)*priv
->tx_ring_size
826 + sizeof(struct rxbd8
)*priv
->rx_ring_size
,
828 gfar_read(®s
->tbase0
));
833 /* Called when something needs to use the ethernet device */
834 /* Returns 0 for success. */
835 static int gfar_enet_open(struct net_device
*dev
)
839 /* Initialize a bunch of registers */
842 gfar_set_mac_address(dev
);
849 err
= startup_gfar(dev
);
851 netif_start_queue(dev
);
856 static struct txfcb
*gfar_add_fcb(struct sk_buff
*skb
, struct txbd8
*bdp
)
858 struct txfcb
*fcb
= (struct txfcb
*)skb_push (skb
, GMAC_FCB_LEN
);
860 memset(fcb
, 0, GMAC_FCB_LEN
);
862 /* Flag the bd so the controller looks for the FCB */
863 bdp
->status
|= TXBD_TOE
;
868 static inline void gfar_tx_checksum(struct sk_buff
*skb
, struct txfcb
*fcb
)
872 /* If we're here, it's a IP packet with a TCP or UDP
873 * payload. We set it to checksum, using a pseudo-header
881 /* Notify the controller what the protocol is */
882 if (skb
->nh
.iph
->protocol
== IPPROTO_UDP
)
885 /* l3os is the distance between the start of the
886 * frame (skb->data) and the start of the IP hdr.
887 * l4os is the distance between the start of the
888 * l3 hdr and the l4 hdr */
889 fcb
->l3os
= (u16
)(skb
->nh
.raw
- skb
->data
- GMAC_FCB_LEN
);
890 fcb
->l4os
= (u16
)(skb
->h
.raw
- skb
->nh
.raw
);
892 len
= skb
->nh
.iph
->tot_len
- fcb
->l4os
;
894 /* Provide the pseudoheader csum */
895 fcb
->phcs
= ~csum_tcpudp_magic(skb
->nh
.iph
->saddr
,
896 skb
->nh
.iph
->daddr
, len
,
897 skb
->nh
.iph
->protocol
, 0);
900 void gfar_tx_vlan(struct sk_buff
*skb
, struct txfcb
*fcb
)
903 fcb
->vlctl
= vlan_tx_tag_get(skb
);
906 /* This is called by the kernel when a frame is ready for transmission. */
907 /* It is pointed to by the dev->hard_start_xmit function pointer */
908 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
910 struct gfar_private
*priv
= netdev_priv(dev
);
911 struct txfcb
*fcb
= NULL
;
914 /* Update transmit stats */
915 priv
->stats
.tx_bytes
+= skb
->len
;
918 spin_lock_irq(&priv
->lock
);
920 /* Point at the first free tx descriptor */
921 txbdp
= priv
->cur_tx
;
923 /* Clear all but the WRAP status flags */
924 txbdp
->status
&= TXBD_WRAP
;
926 /* Set up checksumming */
927 if ((dev
->features
& NETIF_F_IP_CSUM
)
928 && (CHECKSUM_HW
== skb
->ip_summed
)) {
929 fcb
= gfar_add_fcb(skb
, txbdp
);
930 gfar_tx_checksum(skb
, fcb
);
933 if (priv
->vlan_enable
&&
934 unlikely(priv
->vlgrp
&& vlan_tx_tag_present(skb
))) {
936 fcb
= gfar_add_fcb(skb
, txbdp
);
938 gfar_tx_vlan(skb
, fcb
);
941 /* Set buffer length and pointer */
942 txbdp
->length
= skb
->len
;
943 txbdp
->bufPtr
= dma_map_single(NULL
, skb
->data
,
944 skb
->len
, DMA_TO_DEVICE
);
946 /* Save the skb pointer so we can free it later */
947 priv
->tx_skbuff
[priv
->skb_curtx
] = skb
;
949 /* Update the current skb pointer (wrapping if this was the last) */
951 (priv
->skb_curtx
+ 1) & TX_RING_MOD_MASK(priv
->tx_ring_size
);
953 /* Flag the BD as interrupt-causing */
954 txbdp
->status
|= TXBD_INTERRUPT
;
956 /* Flag the BD as ready to go, last in frame, and */
958 txbdp
->status
|= (TXBD_READY
| TXBD_LAST
| TXBD_CRC
);
960 dev
->trans_start
= jiffies
;
962 /* If this was the last BD in the ring, the next one */
963 /* is at the beginning of the ring */
964 if (txbdp
->status
& TXBD_WRAP
)
965 txbdp
= priv
->tx_bd_base
;
969 /* If the next BD still needs to be cleaned up, then the bds
970 are full. We need to tell the kernel to stop sending us stuff. */
971 if (txbdp
== priv
->dirty_tx
) {
972 netif_stop_queue(dev
);
974 priv
->stats
.tx_fifo_errors
++;
977 /* Update the current txbd to the next one */
978 priv
->cur_tx
= txbdp
;
980 /* Tell the DMA to go go go */
981 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
984 spin_unlock_irq(&priv
->lock
);
989 /* Stops the kernel queue, and halts the controller */
990 static int gfar_close(struct net_device
*dev
)
992 struct gfar_private
*priv
= netdev_priv(dev
);
995 /* Disconnect from the PHY */
996 phy_disconnect(priv
->phydev
);
999 netif_stop_queue(dev
);
1004 /* returns a net_device_stats structure pointer */
1005 static struct net_device_stats
* gfar_get_stats(struct net_device
*dev
)
1007 struct gfar_private
*priv
= netdev_priv(dev
);
1009 return &(priv
->stats
);
1012 /* Changes the mac address if the controller is not running. */
1013 int gfar_set_mac_address(struct net_device
*dev
)
1015 struct gfar_private
*priv
= netdev_priv(dev
);
1017 char tmpbuf
[MAC_ADDR_LEN
];
1020 /* Now copy it into the mac registers backwards, cuz */
1021 /* little endian is silly */
1022 for (i
= 0; i
< MAC_ADDR_LEN
; i
++)
1023 tmpbuf
[MAC_ADDR_LEN
- 1 - i
] = dev
->dev_addr
[i
];
1025 gfar_write(&priv
->regs
->macstnaddr1
, *((u32
*) (tmpbuf
)));
1027 tempval
= *((u32
*) (tmpbuf
+ 4));
1029 gfar_write(&priv
->regs
->macstnaddr2
, tempval
);
1035 /* Enables and disables VLAN insertion/extraction */
1036 static void gfar_vlan_rx_register(struct net_device
*dev
,
1037 struct vlan_group
*grp
)
1039 struct gfar_private
*priv
= netdev_priv(dev
);
1040 unsigned long flags
;
1043 spin_lock_irqsave(&priv
->lock
, flags
);
1048 /* Enable VLAN tag insertion */
1049 tempval
= gfar_read(&priv
->regs
->tctrl
);
1050 tempval
|= TCTRL_VLINS
;
1052 gfar_write(&priv
->regs
->tctrl
, tempval
);
1054 /* Enable VLAN tag extraction */
1055 tempval
= gfar_read(&priv
->regs
->rctrl
);
1056 tempval
|= RCTRL_VLEX
;
1057 gfar_write(&priv
->regs
->rctrl
, tempval
);
1059 /* Disable VLAN tag insertion */
1060 tempval
= gfar_read(&priv
->regs
->tctrl
);
1061 tempval
&= ~TCTRL_VLINS
;
1062 gfar_write(&priv
->regs
->tctrl
, tempval
);
1064 /* Disable VLAN tag extraction */
1065 tempval
= gfar_read(&priv
->regs
->rctrl
);
1066 tempval
&= ~RCTRL_VLEX
;
1067 gfar_write(&priv
->regs
->rctrl
, tempval
);
1070 spin_unlock_irqrestore(&priv
->lock
, flags
);
1074 static void gfar_vlan_rx_kill_vid(struct net_device
*dev
, uint16_t vid
)
1076 struct gfar_private
*priv
= netdev_priv(dev
);
1077 unsigned long flags
;
1079 spin_lock_irqsave(&priv
->lock
, flags
);
1082 priv
->vlgrp
->vlan_devices
[vid
] = NULL
;
1084 spin_unlock_irqrestore(&priv
->lock
, flags
);
1088 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
)
1090 int tempsize
, tempval
;
1091 struct gfar_private
*priv
= netdev_priv(dev
);
1092 int oldsize
= priv
->rx_buffer_size
;
1093 int frame_size
= new_mtu
+ ETH_HLEN
;
1095 if (priv
->vlan_enable
)
1096 frame_size
+= VLAN_ETH_HLEN
;
1098 if (gfar_uses_fcb(priv
))
1099 frame_size
+= GMAC_FCB_LEN
;
1101 frame_size
+= priv
->padding
;
1103 if ((frame_size
< 64) || (frame_size
> JUMBO_FRAME_SIZE
)) {
1104 if (netif_msg_drv(priv
))
1105 printk(KERN_ERR
"%s: Invalid MTU setting\n",
1111 (frame_size
& ~(INCREMENTAL_BUFFER_SIZE
- 1)) +
1112 INCREMENTAL_BUFFER_SIZE
;
1114 /* Only stop and start the controller if it isn't already
1116 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
1119 priv
->rx_buffer_size
= tempsize
;
1123 gfar_write(&priv
->regs
->mrblr
, priv
->rx_buffer_size
);
1124 gfar_write(&priv
->regs
->maxfrm
, priv
->rx_buffer_size
);
1126 /* If the mtu is larger than the max size for standard
1127 * ethernet frames (ie, a jumbo frame), then set maccfg2
1128 * to allow huge frames, and to check the length */
1129 tempval
= gfar_read(&priv
->regs
->maccfg2
);
1131 if (priv
->rx_buffer_size
> DEFAULT_RX_BUFFER_SIZE
)
1132 tempval
|= (MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
1134 tempval
&= ~(MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
1136 gfar_write(&priv
->regs
->maccfg2
, tempval
);
1138 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
1144 /* gfar_timeout gets called when a packet has not been
1145 * transmitted after a set amount of time.
1146 * For now, assume that clearing out all the structures, and
1147 * starting over will fix the problem. */
1148 static void gfar_timeout(struct net_device
*dev
)
1150 struct gfar_private
*priv
= netdev_priv(dev
);
1152 priv
->stats
.tx_errors
++;
1154 if (dev
->flags
& IFF_UP
) {
1159 netif_schedule(dev
);
1162 /* Interrupt Handler for Transmit complete */
1163 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
, struct pt_regs
*regs
)
1165 struct net_device
*dev
= (struct net_device
*) dev_id
;
1166 struct gfar_private
*priv
= netdev_priv(dev
);
1170 gfar_write(&priv
->regs
->ievent
, IEVENT_TX_MASK
);
1173 spin_lock(&priv
->lock
);
1174 bdp
= priv
->dirty_tx
;
1175 while ((bdp
->status
& TXBD_READY
) == 0) {
1176 /* If dirty_tx and cur_tx are the same, then either the */
1177 /* ring is empty or full now (it could only be full in the beginning, */
1178 /* obviously). If it is empty, we are done. */
1179 if ((bdp
== priv
->cur_tx
) && (netif_queue_stopped(dev
) == 0))
1182 priv
->stats
.tx_packets
++;
1184 /* Deferred means some collisions occurred during transmit, */
1185 /* but we eventually sent the packet. */
1186 if (bdp
->status
& TXBD_DEF
)
1187 priv
->stats
.collisions
++;
1189 /* Free the sk buffer associated with this TxBD */
1190 dev_kfree_skb_irq(priv
->tx_skbuff
[priv
->skb_dirtytx
]);
1191 priv
->tx_skbuff
[priv
->skb_dirtytx
] = NULL
;
1193 (priv
->skb_dirtytx
+
1194 1) & TX_RING_MOD_MASK(priv
->tx_ring_size
);
1196 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1197 if (bdp
->status
& TXBD_WRAP
)
1198 bdp
= priv
->tx_bd_base
;
1202 /* Move dirty_tx to be the next bd */
1203 priv
->dirty_tx
= bdp
;
1205 /* We freed a buffer, so now we can restart transmission */
1206 if (netif_queue_stopped(dev
))
1207 netif_wake_queue(dev
);
1208 } /* while ((bdp->status & TXBD_READY) == 0) */
1210 /* If we are coalescing the interrupts, reset the timer */
1211 /* Otherwise, clear it */
1212 if (priv
->txcoalescing
)
1213 gfar_write(&priv
->regs
->txic
,
1214 mk_ic_value(priv
->txcount
, priv
->txtime
));
1216 gfar_write(&priv
->regs
->txic
, 0);
1218 spin_unlock(&priv
->lock
);
1223 struct sk_buff
* gfar_new_skb(struct net_device
*dev
, struct rxbd8
*bdp
)
1225 struct gfar_private
*priv
= netdev_priv(dev
);
1226 struct sk_buff
*skb
= NULL
;
1227 unsigned int timeout
= SKB_ALLOC_TIMEOUT
;
1229 /* We have to allocate the skb, so keep trying till we succeed */
1230 while ((!skb
) && timeout
--)
1231 skb
= dev_alloc_skb(priv
->rx_buffer_size
+ RXBUF_ALIGNMENT
);
1236 /* We need the data buffer to be aligned properly. We will reserve
1237 * as many bytes as needed to align the data properly
1241 (((unsigned) skb
->data
) & (RXBUF_ALIGNMENT
- 1)));
1245 bdp
->bufPtr
= dma_map_single(NULL
, skb
->data
,
1246 priv
->rx_buffer_size
+ RXBUF_ALIGNMENT
,
1251 /* Mark the buffer empty */
1252 bdp
->status
|= (RXBD_EMPTY
| RXBD_INTERRUPT
);
1257 static inline void count_errors(unsigned short status
, struct gfar_private
*priv
)
1259 struct net_device_stats
*stats
= &priv
->stats
;
1260 struct gfar_extra_stats
*estats
= &priv
->extra_stats
;
1262 /* If the packet was truncated, none of the other errors
1264 if (status
& RXBD_TRUNCATED
) {
1265 stats
->rx_length_errors
++;
1271 /* Count the errors, if there were any */
1272 if (status
& (RXBD_LARGE
| RXBD_SHORT
)) {
1273 stats
->rx_length_errors
++;
1275 if (status
& RXBD_LARGE
)
1280 if (status
& RXBD_NONOCTET
) {
1281 stats
->rx_frame_errors
++;
1282 estats
->rx_nonoctet
++;
1284 if (status
& RXBD_CRCERR
) {
1285 estats
->rx_crcerr
++;
1286 stats
->rx_crc_errors
++;
1288 if (status
& RXBD_OVERRUN
) {
1289 estats
->rx_overrun
++;
1290 stats
->rx_crc_errors
++;
1294 irqreturn_t
gfar_receive(int irq
, void *dev_id
, struct pt_regs
*regs
)
1296 struct net_device
*dev
= (struct net_device
*) dev_id
;
1297 struct gfar_private
*priv
= netdev_priv(dev
);
1299 #ifdef CONFIG_GFAR_NAPI
1303 /* Clear IEVENT, so rx interrupt isn't called again
1304 * because of this interrupt */
1305 gfar_write(&priv
->regs
->ievent
, IEVENT_RX_MASK
);
1308 #ifdef CONFIG_GFAR_NAPI
1309 if (netif_rx_schedule_prep(dev
)) {
1310 tempval
= gfar_read(&priv
->regs
->imask
);
1311 tempval
&= IMASK_RX_DISABLED
;
1312 gfar_write(&priv
->regs
->imask
, tempval
);
1314 __netif_rx_schedule(dev
);
1316 if (netif_msg_rx_err(priv
))
1317 printk(KERN_DEBUG
"%s: receive called twice (%x)[%x]\n",
1318 dev
->name
, gfar_read(&priv
->regs
->ievent
),
1319 gfar_read(&priv
->regs
->imask
));
1323 spin_lock(&priv
->lock
);
1324 gfar_clean_rx_ring(dev
, priv
->rx_ring_size
);
1326 /* If we are coalescing interrupts, update the timer */
1327 /* Otherwise, clear it */
1328 if (priv
->rxcoalescing
)
1329 gfar_write(&priv
->regs
->rxic
,
1330 mk_ic_value(priv
->rxcount
, priv
->rxtime
));
1332 gfar_write(&priv
->regs
->rxic
, 0);
1334 spin_unlock(&priv
->lock
);
1340 static inline int gfar_rx_vlan(struct sk_buff
*skb
,
1341 struct vlan_group
*vlgrp
, unsigned short vlctl
)
1343 #ifdef CONFIG_GFAR_NAPI
1344 return vlan_hwaccel_receive_skb(skb
, vlgrp
, vlctl
);
1346 return vlan_hwaccel_rx(skb
, vlgrp
, vlctl
);
1350 static inline void gfar_rx_checksum(struct sk_buff
*skb
, struct rxfcb
*fcb
)
1352 /* If valid headers were found, and valid sums
1353 * were verified, then we tell the kernel that no
1354 * checksumming is necessary. Otherwise, it is */
1355 if (fcb
->cip
&& !fcb
->eip
&& fcb
->ctu
&& !fcb
->etu
)
1356 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1358 skb
->ip_summed
= CHECKSUM_NONE
;
1362 static inline struct rxfcb
*gfar_get_fcb(struct sk_buff
*skb
)
1364 struct rxfcb
*fcb
= (struct rxfcb
*)skb
->data
;
1366 /* Remove the FCB from the skb */
1367 skb_pull(skb
, GMAC_FCB_LEN
);
1372 /* gfar_process_frame() -- handle one incoming packet if skb
1374 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
1377 struct gfar_private
*priv
= netdev_priv(dev
);
1378 struct rxfcb
*fcb
= NULL
;
1381 if (netif_msg_rx_err(priv
))
1382 printk(KERN_WARNING
"%s: Missing skb!!.\n", dev
->name
);
1383 priv
->stats
.rx_dropped
++;
1384 priv
->extra_stats
.rx_skbmissing
++;
1388 /* Prep the skb for the packet */
1389 skb_put(skb
, length
);
1391 /* Grab the FCB if there is one */
1392 if (gfar_uses_fcb(priv
))
1393 fcb
= gfar_get_fcb(skb
);
1395 /* Remove the padded bytes, if there are any */
1397 skb_pull(skb
, priv
->padding
);
1399 if (priv
->rx_csum_enable
)
1400 gfar_rx_checksum(skb
, fcb
);
1402 /* Tell the skb what kind of packet this is */
1403 skb
->protocol
= eth_type_trans(skb
, dev
);
1405 /* Send the packet up the stack */
1406 if (unlikely(priv
->vlgrp
&& fcb
->vln
))
1407 ret
= gfar_rx_vlan(skb
, priv
->vlgrp
, fcb
->vlctl
);
1411 if (NET_RX_DROP
== ret
)
1412 priv
->extra_stats
.kernel_dropped
++;
1418 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1419 * until the budget/quota has been reached. Returns the number
1422 int gfar_clean_rx_ring(struct net_device
*dev
, int rx_work_limit
)
1425 struct sk_buff
*skb
;
1428 struct gfar_private
*priv
= netdev_priv(dev
);
1430 /* Get the first full descriptor */
1433 while (!((bdp
->status
& RXBD_EMPTY
) || (--rx_work_limit
< 0))) {
1434 skb
= priv
->rx_skbuff
[priv
->skb_currx
];
1437 (RXBD_LARGE
| RXBD_SHORT
| RXBD_NONOCTET
1438 | RXBD_CRCERR
| RXBD_OVERRUN
| RXBD_TRUNCATED
))) {
1439 /* Increment the number of packets */
1440 priv
->stats
.rx_packets
++;
1443 /* Remove the FCS from the packet length */
1444 pkt_len
= bdp
->length
- 4;
1446 gfar_process_frame(dev
, skb
, pkt_len
);
1448 priv
->stats
.rx_bytes
+= pkt_len
;
1450 count_errors(bdp
->status
, priv
);
1453 dev_kfree_skb_any(skb
);
1455 priv
->rx_skbuff
[priv
->skb_currx
] = NULL
;
1458 dev
->last_rx
= jiffies
;
1460 /* Clear the status flags for this buffer */
1461 bdp
->status
&= ~RXBD_STATS
;
1463 /* Add another skb for the future */
1464 skb
= gfar_new_skb(dev
, bdp
);
1465 priv
->rx_skbuff
[priv
->skb_currx
] = skb
;
1467 /* Update to the next pointer */
1468 if (bdp
->status
& RXBD_WRAP
)
1469 bdp
= priv
->rx_bd_base
;
1473 /* update to point at the next skb */
1476 1) & RX_RING_MOD_MASK(priv
->rx_ring_size
);
1480 /* Update the current rxbd pointer to be the next one */
1483 /* If no packets have arrived since the
1484 * last one we processed, clear the IEVENT RX and
1485 * BSY bits so that another interrupt won't be
1486 * generated when we set IMASK */
1487 if (bdp
->status
& RXBD_EMPTY
)
1488 gfar_write(&priv
->regs
->ievent
, IEVENT_RX_MASK
);
1493 #ifdef CONFIG_GFAR_NAPI
1494 static int gfar_poll(struct net_device
*dev
, int *budget
)
1497 struct gfar_private
*priv
= netdev_priv(dev
);
1498 int rx_work_limit
= *budget
;
1500 if (rx_work_limit
> dev
->quota
)
1501 rx_work_limit
= dev
->quota
;
1503 howmany
= gfar_clean_rx_ring(dev
, rx_work_limit
);
1505 dev
->quota
-= howmany
;
1506 rx_work_limit
-= howmany
;
1509 if (rx_work_limit
>= 0) {
1510 netif_rx_complete(dev
);
1512 /* Clear the halt bit in RSTAT */
1513 gfar_write(&priv
->regs
->rstat
, RSTAT_CLEAR_RHALT
);
1515 gfar_write(&priv
->regs
->imask
, IMASK_DEFAULT
);
1517 /* If we are coalescing interrupts, update the timer */
1518 /* Otherwise, clear it */
1519 if (priv
->rxcoalescing
)
1520 gfar_write(&priv
->regs
->rxic
,
1521 mk_ic_value(priv
->rxcount
, priv
->rxtime
));
1523 gfar_write(&priv
->regs
->rxic
, 0);
1526 return (rx_work_limit
< 0) ? 1 : 0;
1530 /* The interrupt handler for devices with one interrupt */
1531 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
)
1533 struct net_device
*dev
= dev_id
;
1534 struct gfar_private
*priv
= netdev_priv(dev
);
1536 /* Save ievent for future reference */
1537 u32 events
= gfar_read(&priv
->regs
->ievent
);
1540 gfar_write(&priv
->regs
->ievent
, events
);
1542 /* Check for reception */
1543 if ((events
& IEVENT_RXF0
) || (events
& IEVENT_RXB0
))
1544 gfar_receive(irq
, dev_id
, regs
);
1546 /* Check for transmit completion */
1547 if ((events
& IEVENT_TXF
) || (events
& IEVENT_TXB
))
1548 gfar_transmit(irq
, dev_id
, regs
);
1550 /* Update error statistics */
1551 if (events
& IEVENT_TXE
) {
1552 priv
->stats
.tx_errors
++;
1554 if (events
& IEVENT_LC
)
1555 priv
->stats
.tx_window_errors
++;
1556 if (events
& IEVENT_CRL
)
1557 priv
->stats
.tx_aborted_errors
++;
1558 if (events
& IEVENT_XFUN
) {
1559 if (netif_msg_tx_err(priv
))
1560 printk(KERN_WARNING
"%s: tx underrun. dropped packet\n", dev
->name
);
1561 priv
->stats
.tx_dropped
++;
1562 priv
->extra_stats
.tx_underrun
++;
1564 /* Reactivate the Tx Queues */
1565 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
1568 if (events
& IEVENT_BSY
) {
1569 priv
->stats
.rx_errors
++;
1570 priv
->extra_stats
.rx_bsy
++;
1572 gfar_receive(irq
, dev_id
, regs
);
1574 #ifndef CONFIG_GFAR_NAPI
1575 /* Clear the halt bit in RSTAT */
1576 gfar_write(&priv
->regs
->rstat
, RSTAT_CLEAR_RHALT
);
1579 if (netif_msg_rx_err(priv
))
1580 printk(KERN_DEBUG
"%s: busy error (rhalt: %x)\n",
1582 gfar_read(&priv
->regs
->rstat
));
1584 if (events
& IEVENT_BABR
) {
1585 priv
->stats
.rx_errors
++;
1586 priv
->extra_stats
.rx_babr
++;
1588 if (netif_msg_rx_err(priv
))
1589 printk(KERN_DEBUG
"%s: babbling error\n", dev
->name
);
1591 if (events
& IEVENT_EBERR
) {
1592 priv
->extra_stats
.eberr
++;
1593 if (netif_msg_rx_err(priv
))
1594 printk(KERN_DEBUG
"%s: EBERR\n", dev
->name
);
1596 if ((events
& IEVENT_RXC
) && (netif_msg_rx_err(priv
)))
1597 printk(KERN_DEBUG
"%s: control frame\n", dev
->name
);
1599 if (events
& IEVENT_BABT
) {
1600 priv
->extra_stats
.tx_babt
++;
1601 if (netif_msg_rx_err(priv
))
1602 printk(KERN_DEBUG
"%s: babt error\n", dev
->name
);
1608 /* Called every time the controller might need to be made
1609 * aware of new link state. The PHY code conveys this
1610 * information through variables in the phydev structure, and this
1611 * function converts those variables into the appropriate
1612 * register values, and can bring down the device if needed.
1614 static void adjust_link(struct net_device
*dev
)
1616 struct gfar_private
*priv
= netdev_priv(dev
);
1617 struct gfar
*regs
= priv
->regs
;
1618 unsigned long flags
;
1619 struct phy_device
*phydev
= priv
->phydev
;
1622 spin_lock_irqsave(&priv
->lock
, flags
);
1624 u32 tempval
= gfar_read(®s
->maccfg2
);
1626 /* Now we make sure that we can be in full duplex mode.
1627 * If not, we operate in half-duplex mode. */
1628 if (phydev
->duplex
!= priv
->oldduplex
) {
1630 if (!(phydev
->duplex
))
1631 tempval
&= ~(MACCFG2_FULL_DUPLEX
);
1633 tempval
|= MACCFG2_FULL_DUPLEX
;
1635 priv
->oldduplex
= phydev
->duplex
;
1638 if (phydev
->speed
!= priv
->oldspeed
) {
1640 switch (phydev
->speed
) {
1643 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_GMII
);
1648 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_MII
);
1651 if (netif_msg_link(priv
))
1653 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
1654 dev
->name
, phydev
->speed
);
1658 priv
->oldspeed
= phydev
->speed
;
1661 gfar_write(®s
->maccfg2
, tempval
);
1663 if (!priv
->oldlink
) {
1666 netif_schedule(dev
);
1668 } else if (priv
->oldlink
) {
1672 priv
->oldduplex
= -1;
1675 if (new_state
&& netif_msg_link(priv
))
1676 phy_print_status(phydev
);
1678 spin_unlock_irqrestore(&priv
->lock
, flags
);
1681 /* Update the hash table based on the current list of multicast
1682 * addresses we subscribe to. Also, change the promiscuity of
1683 * the device based on the flags (this function is called
1684 * whenever dev->flags is changed */
1685 static void gfar_set_multi(struct net_device
*dev
)
1687 struct dev_mc_list
*mc_ptr
;
1688 struct gfar_private
*priv
= netdev_priv(dev
);
1689 struct gfar
*regs
= priv
->regs
;
1692 if(dev
->flags
& IFF_PROMISC
) {
1693 if (netif_msg_drv(priv
))
1694 printk(KERN_INFO
"%s: Entering promiscuous mode.\n",
1696 /* Set RCTRL to PROM */
1697 tempval
= gfar_read(®s
->rctrl
);
1698 tempval
|= RCTRL_PROM
;
1699 gfar_write(®s
->rctrl
, tempval
);
1701 /* Set RCTRL to not PROM */
1702 tempval
= gfar_read(®s
->rctrl
);
1703 tempval
&= ~(RCTRL_PROM
);
1704 gfar_write(®s
->rctrl
, tempval
);
1707 if(dev
->flags
& IFF_ALLMULTI
) {
1708 /* Set the hash to rx all multicast frames */
1709 gfar_write(®s
->igaddr0
, 0xffffffff);
1710 gfar_write(®s
->igaddr1
, 0xffffffff);
1711 gfar_write(®s
->igaddr2
, 0xffffffff);
1712 gfar_write(®s
->igaddr3
, 0xffffffff);
1713 gfar_write(®s
->igaddr4
, 0xffffffff);
1714 gfar_write(®s
->igaddr5
, 0xffffffff);
1715 gfar_write(®s
->igaddr6
, 0xffffffff);
1716 gfar_write(®s
->igaddr7
, 0xffffffff);
1717 gfar_write(®s
->gaddr0
, 0xffffffff);
1718 gfar_write(®s
->gaddr1
, 0xffffffff);
1719 gfar_write(®s
->gaddr2
, 0xffffffff);
1720 gfar_write(®s
->gaddr3
, 0xffffffff);
1721 gfar_write(®s
->gaddr4
, 0xffffffff);
1722 gfar_write(®s
->gaddr5
, 0xffffffff);
1723 gfar_write(®s
->gaddr6
, 0xffffffff);
1724 gfar_write(®s
->gaddr7
, 0xffffffff);
1726 /* zero out the hash */
1727 gfar_write(®s
->igaddr0
, 0x0);
1728 gfar_write(®s
->igaddr1
, 0x0);
1729 gfar_write(®s
->igaddr2
, 0x0);
1730 gfar_write(®s
->igaddr3
, 0x0);
1731 gfar_write(®s
->igaddr4
, 0x0);
1732 gfar_write(®s
->igaddr5
, 0x0);
1733 gfar_write(®s
->igaddr6
, 0x0);
1734 gfar_write(®s
->igaddr7
, 0x0);
1735 gfar_write(®s
->gaddr0
, 0x0);
1736 gfar_write(®s
->gaddr1
, 0x0);
1737 gfar_write(®s
->gaddr2
, 0x0);
1738 gfar_write(®s
->gaddr3
, 0x0);
1739 gfar_write(®s
->gaddr4
, 0x0);
1740 gfar_write(®s
->gaddr5
, 0x0);
1741 gfar_write(®s
->gaddr6
, 0x0);
1742 gfar_write(®s
->gaddr7
, 0x0);
1744 if(dev
->mc_count
== 0)
1747 /* Parse the list, and set the appropriate bits */
1748 for(mc_ptr
= dev
->mc_list
; mc_ptr
; mc_ptr
= mc_ptr
->next
) {
1749 gfar_set_hash_for_addr(dev
, mc_ptr
->dmi_addr
);
1756 /* Set the appropriate hash bit for the given addr */
1757 /* The algorithm works like so:
1758 * 1) Take the Destination Address (ie the multicast address), and
1759 * do a CRC on it (little endian), and reverse the bits of the
1761 * 2) Use the 8 most significant bits as a hash into a 256-entry
1762 * table. The table is controlled through 8 32-bit registers:
1763 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1764 * gaddr7. This means that the 3 most significant bits in the
1765 * hash index which gaddr register to use, and the 5 other bits
1766 * indicate which bit (assuming an IBM numbering scheme, which
1767 * for PowerPC (tm) is usually the case) in the register holds
1769 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
)
1772 struct gfar_private
*priv
= netdev_priv(dev
);
1773 u32 result
= ether_crc(MAC_ADDR_LEN
, addr
);
1774 int width
= priv
->hash_width
;
1775 u8 whichbit
= (result
>> (32 - width
)) & 0x1f;
1776 u8 whichreg
= result
>> (32 - width
+ 5);
1777 u32 value
= (1 << (31-whichbit
));
1779 tempval
= gfar_read(priv
->hash_regs
[whichreg
]);
1781 gfar_write(priv
->hash_regs
[whichreg
], tempval
);
1786 /* GFAR error interrupt handler */
1787 static irqreturn_t
gfar_error(int irq
, void *dev_id
, struct pt_regs
*regs
)
1789 struct net_device
*dev
= dev_id
;
1790 struct gfar_private
*priv
= netdev_priv(dev
);
1792 /* Save ievent for future reference */
1793 u32 events
= gfar_read(&priv
->regs
->ievent
);
1796 gfar_write(&priv
->regs
->ievent
, IEVENT_ERR_MASK
);
1799 if (netif_msg_rx_err(priv
) || netif_msg_tx_err(priv
))
1800 printk(KERN_DEBUG
"%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
1801 dev
->name
, events
, gfar_read(&priv
->regs
->imask
));
1803 /* Update the error counters */
1804 if (events
& IEVENT_TXE
) {
1805 priv
->stats
.tx_errors
++;
1807 if (events
& IEVENT_LC
)
1808 priv
->stats
.tx_window_errors
++;
1809 if (events
& IEVENT_CRL
)
1810 priv
->stats
.tx_aborted_errors
++;
1811 if (events
& IEVENT_XFUN
) {
1812 if (netif_msg_tx_err(priv
))
1813 printk(KERN_DEBUG
"%s: underrun. packet dropped.\n",
1815 priv
->stats
.tx_dropped
++;
1816 priv
->extra_stats
.tx_underrun
++;
1818 /* Reactivate the Tx Queues */
1819 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
1821 if (netif_msg_tx_err(priv
))
1822 printk(KERN_DEBUG
"%s: Transmit Error\n", dev
->name
);
1824 if (events
& IEVENT_BSY
) {
1825 priv
->stats
.rx_errors
++;
1826 priv
->extra_stats
.rx_bsy
++;
1828 gfar_receive(irq
, dev_id
, regs
);
1830 #ifndef CONFIG_GFAR_NAPI
1831 /* Clear the halt bit in RSTAT */
1832 gfar_write(&priv
->regs
->rstat
, RSTAT_CLEAR_RHALT
);
1835 if (netif_msg_rx_err(priv
))
1836 printk(KERN_DEBUG
"%s: busy error (rhalt: %x)\n",
1838 gfar_read(&priv
->regs
->rstat
));
1840 if (events
& IEVENT_BABR
) {
1841 priv
->stats
.rx_errors
++;
1842 priv
->extra_stats
.rx_babr
++;
1844 if (netif_msg_rx_err(priv
))
1845 printk(KERN_DEBUG
"%s: babbling error\n", dev
->name
);
1847 if (events
& IEVENT_EBERR
) {
1848 priv
->extra_stats
.eberr
++;
1849 if (netif_msg_rx_err(priv
))
1850 printk(KERN_DEBUG
"%s: EBERR\n", dev
->name
);
1852 if ((events
& IEVENT_RXC
) && netif_msg_rx_status(priv
))
1853 if (netif_msg_rx_status(priv
))
1854 printk(KERN_DEBUG
"%s: control frame\n", dev
->name
);
1856 if (events
& IEVENT_BABT
) {
1857 priv
->extra_stats
.tx_babt
++;
1858 if (netif_msg_tx_err(priv
))
1859 printk(KERN_DEBUG
"%s: babt error\n", dev
->name
);
1864 /* Structure for a device driver */
1865 static struct device_driver gfar_driver
= {
1866 .name
= "fsl-gianfar",
1867 .bus
= &platform_bus_type
,
1868 .probe
= gfar_probe
,
1869 .remove
= gfar_remove
,
1872 static int __init
gfar_init(void)
1874 int err
= gfar_mdio_init();
1879 err
= driver_register(&gfar_driver
);
1887 static void __exit
gfar_exit(void)
1889 driver_unregister(&gfar_driver
);
1893 module_init(gfar_init
);
1894 module_exit(gfar_exit
);