1 /* bnx2.c: Broadcom NX2 network driver.
3 * Copyright (c) 2004, 2005 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Written by: Michael Chan (mchan@broadcom.com)
15 #define DRV_MODULE_NAME "bnx2"
16 #define PFX DRV_MODULE_NAME ": "
17 #define DRV_MODULE_VERSION "1.2.21"
18 #define DRV_MODULE_RELDATE "September 7, 2005"
20 #define RUN_AT(x) (jiffies + (x))
22 /* Time in jiffies before concluding the transmitter is hung. */
23 #define TX_TIMEOUT (5*HZ)
25 static char version
[] __devinitdata
=
26 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME
" v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
28 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
29 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706 Driver");
30 MODULE_LICENSE("GPL");
31 MODULE_VERSION(DRV_MODULE_VERSION
);
33 static int disable_msi
= 0;
35 module_param(disable_msi
, int, 0);
36 MODULE_PARM_DESC(disable_msi
, "Disable Message Signaled Interrupt (MSI)");
46 /* indexed by board_t, above */
49 } board_info
[] __devinitdata
= {
50 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
51 { "HP NC370T Multifunction Gigabit Server Adapter" },
52 { "HP NC370i Multifunction Gigabit Server Adapter" },
53 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
54 { "HP NC370F Multifunction Gigabit Server Adapter" },
57 static struct pci_device_id bnx2_pci_tbl
[] = {
58 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
59 PCI_VENDOR_ID_HP
, 0x3101, 0, 0, NC370T
},
60 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
61 PCI_VENDOR_ID_HP
, 0x3106, 0, 0, NC370I
},
62 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
63 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706
},
64 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
65 PCI_VENDOR_ID_HP
, 0x3102, 0, 0, NC370F
},
66 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
67 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706S
},
71 static struct flash_spec flash_table
[] =
74 {0x00000000, 0x40030380, 0x009f0081, 0xa184a053, 0xaf000400,
75 1, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
76 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
79 {0x02000000, 0x62008380, 0x009f0081, 0xa184a053, 0xaf000400,
80 1, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
81 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
83 /* ATMEL AT45DB011B (buffered flash) */
84 {0x02000003, 0x6e008173, 0x00570081, 0x68848353, 0xaf000400,
85 1, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
86 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
,
88 /* Saifun SA25F005 (non-buffered flash) */
89 /* strap, cfg1, & write1 need updates */
90 {0x01000003, 0x5f008081, 0x00050081, 0x03840253, 0xaf020406,
91 0, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
92 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
,
93 "Non-buffered flash (64kB)"},
94 /* Saifun SA25F010 (non-buffered flash) */
95 /* strap, cfg1, & write1 need updates */
96 {0x00000001, 0x47008081, 0x00050081, 0x03840253, 0xaf020406,
97 0, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
98 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*2,
99 "Non-buffered flash (128kB)"},
100 /* Saifun SA25F020 (non-buffered flash) */
101 /* strap, cfg1, & write1 need updates */
102 {0x00000003, 0x4f008081, 0x00050081, 0x03840253, 0xaf020406,
103 0, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
104 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*4,
105 "Non-buffered flash (256kB)"},
108 MODULE_DEVICE_TABLE(pci
, bnx2_pci_tbl
);
110 static inline u32
bnx2_tx_avail(struct bnx2
*bp
)
112 u32 diff
= TX_RING_IDX(bp
->tx_prod
) - TX_RING_IDX(bp
->tx_cons
);
114 if (diff
> MAX_TX_DESC_CNT
)
115 diff
= (diff
& MAX_TX_DESC_CNT
) - 1;
116 return (bp
->tx_ring_size
- diff
);
120 bnx2_reg_rd_ind(struct bnx2
*bp
, u32 offset
)
122 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
123 return (REG_RD(bp
, BNX2_PCICFG_REG_WINDOW
));
127 bnx2_reg_wr_ind(struct bnx2
*bp
, u32 offset
, u32 val
)
129 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
130 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, val
);
134 bnx2_ctx_wr(struct bnx2
*bp
, u32 cid_addr
, u32 offset
, u32 val
)
137 REG_WR(bp
, BNX2_CTX_DATA_ADR
, offset
);
138 REG_WR(bp
, BNX2_CTX_DATA
, val
);
142 bnx2_read_phy(struct bnx2
*bp
, u32 reg
, u32
*val
)
147 if (bp
->phy_flags
& PHY_INT_MODE_AUTO_POLLING_FLAG
) {
148 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
149 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
151 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
152 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
157 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) |
158 BNX2_EMAC_MDIO_COMM_COMMAND_READ
| BNX2_EMAC_MDIO_COMM_DISEXT
|
159 BNX2_EMAC_MDIO_COMM_START_BUSY
;
160 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
162 for (i
= 0; i
< 50; i
++) {
165 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
166 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
169 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
170 val1
&= BNX2_EMAC_MDIO_COMM_DATA
;
176 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
) {
185 if (bp
->phy_flags
& PHY_INT_MODE_AUTO_POLLING_FLAG
) {
186 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
187 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
189 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
190 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
199 bnx2_write_phy(struct bnx2
*bp
, u32 reg
, u32 val
)
204 if (bp
->phy_flags
& PHY_INT_MODE_AUTO_POLLING_FLAG
) {
205 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
206 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
208 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
209 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
214 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) | val
|
215 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE
|
216 BNX2_EMAC_MDIO_COMM_START_BUSY
| BNX2_EMAC_MDIO_COMM_DISEXT
;
217 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
219 for (i
= 0; i
< 50; i
++) {
222 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
223 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
229 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)
234 if (bp
->phy_flags
& PHY_INT_MODE_AUTO_POLLING_FLAG
) {
235 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
236 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
238 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
239 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
248 bnx2_disable_int(struct bnx2
*bp
)
250 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
251 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
252 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
256 bnx2_enable_int(struct bnx2
*bp
)
260 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
261 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
| bp
->last_status_idx
);
263 val
= REG_RD(bp
, BNX2_HC_COMMAND
);
264 REG_WR(bp
, BNX2_HC_COMMAND
, val
| BNX2_HC_COMMAND_COAL_NOW
);
268 bnx2_disable_int_sync(struct bnx2
*bp
)
270 atomic_inc(&bp
->intr_sem
);
271 bnx2_disable_int(bp
);
272 synchronize_irq(bp
->pdev
->irq
);
276 bnx2_netif_stop(struct bnx2
*bp
)
278 bnx2_disable_int_sync(bp
);
279 if (netif_running(bp
->dev
)) {
280 netif_poll_disable(bp
->dev
);
281 netif_tx_disable(bp
->dev
);
282 bp
->dev
->trans_start
= jiffies
; /* prevent tx timeout */
287 bnx2_netif_start(struct bnx2
*bp
)
289 if (atomic_dec_and_test(&bp
->intr_sem
)) {
290 if (netif_running(bp
->dev
)) {
291 netif_wake_queue(bp
->dev
);
292 netif_poll_enable(bp
->dev
);
299 bnx2_free_mem(struct bnx2
*bp
)
302 pci_free_consistent(bp
->pdev
, sizeof(struct statistics_block
),
303 bp
->stats_blk
, bp
->stats_blk_mapping
);
304 bp
->stats_blk
= NULL
;
306 if (bp
->status_blk
) {
307 pci_free_consistent(bp
->pdev
, sizeof(struct status_block
),
308 bp
->status_blk
, bp
->status_blk_mapping
);
309 bp
->status_blk
= NULL
;
311 if (bp
->tx_desc_ring
) {
312 pci_free_consistent(bp
->pdev
,
313 sizeof(struct tx_bd
) * TX_DESC_CNT
,
314 bp
->tx_desc_ring
, bp
->tx_desc_mapping
);
315 bp
->tx_desc_ring
= NULL
;
317 kfree(bp
->tx_buf_ring
);
318 bp
->tx_buf_ring
= NULL
;
319 if (bp
->rx_desc_ring
) {
320 pci_free_consistent(bp
->pdev
,
321 sizeof(struct rx_bd
) * RX_DESC_CNT
,
322 bp
->rx_desc_ring
, bp
->rx_desc_mapping
);
323 bp
->rx_desc_ring
= NULL
;
325 kfree(bp
->rx_buf_ring
);
326 bp
->rx_buf_ring
= NULL
;
330 bnx2_alloc_mem(struct bnx2
*bp
)
332 bp
->tx_buf_ring
= kmalloc(sizeof(struct sw_bd
) * TX_DESC_CNT
,
334 if (bp
->tx_buf_ring
== NULL
)
337 memset(bp
->tx_buf_ring
, 0, sizeof(struct sw_bd
) * TX_DESC_CNT
);
338 bp
->tx_desc_ring
= pci_alloc_consistent(bp
->pdev
,
339 sizeof(struct tx_bd
) *
341 &bp
->tx_desc_mapping
);
342 if (bp
->tx_desc_ring
== NULL
)
345 bp
->rx_buf_ring
= kmalloc(sizeof(struct sw_bd
) * RX_DESC_CNT
,
347 if (bp
->rx_buf_ring
== NULL
)
350 memset(bp
->rx_buf_ring
, 0, sizeof(struct sw_bd
) * RX_DESC_CNT
);
351 bp
->rx_desc_ring
= pci_alloc_consistent(bp
->pdev
,
352 sizeof(struct rx_bd
) *
354 &bp
->rx_desc_mapping
);
355 if (bp
->rx_desc_ring
== NULL
)
358 bp
->status_blk
= pci_alloc_consistent(bp
->pdev
,
359 sizeof(struct status_block
),
360 &bp
->status_blk_mapping
);
361 if (bp
->status_blk
== NULL
)
364 memset(bp
->status_blk
, 0, sizeof(struct status_block
));
366 bp
->stats_blk
= pci_alloc_consistent(bp
->pdev
,
367 sizeof(struct statistics_block
),
368 &bp
->stats_blk_mapping
);
369 if (bp
->stats_blk
== NULL
)
372 memset(bp
->stats_blk
, 0, sizeof(struct statistics_block
));
382 bnx2_report_link(struct bnx2
*bp
)
385 netif_carrier_on(bp
->dev
);
386 printk(KERN_INFO PFX
"%s NIC Link is Up, ", bp
->dev
->name
);
388 printk("%d Mbps ", bp
->line_speed
);
390 if (bp
->duplex
== DUPLEX_FULL
)
391 printk("full duplex");
393 printk("half duplex");
396 if (bp
->flow_ctrl
& FLOW_CTRL_RX
) {
397 printk(", receive ");
398 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
399 printk("& transmit ");
402 printk(", transmit ");
404 printk("flow control ON");
409 netif_carrier_off(bp
->dev
);
410 printk(KERN_ERR PFX
"%s NIC Link is Down\n", bp
->dev
->name
);
415 bnx2_resolve_flow_ctrl(struct bnx2
*bp
)
417 u32 local_adv
, remote_adv
;
420 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
421 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
423 if (bp
->duplex
== DUPLEX_FULL
) {
424 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
429 if (bp
->duplex
!= DUPLEX_FULL
) {
433 bnx2_read_phy(bp
, MII_ADVERTISE
, &local_adv
);
434 bnx2_read_phy(bp
, MII_LPA
, &remote_adv
);
436 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
437 u32 new_local_adv
= 0;
438 u32 new_remote_adv
= 0;
440 if (local_adv
& ADVERTISE_1000XPAUSE
)
441 new_local_adv
|= ADVERTISE_PAUSE_CAP
;
442 if (local_adv
& ADVERTISE_1000XPSE_ASYM
)
443 new_local_adv
|= ADVERTISE_PAUSE_ASYM
;
444 if (remote_adv
& ADVERTISE_1000XPAUSE
)
445 new_remote_adv
|= ADVERTISE_PAUSE_CAP
;
446 if (remote_adv
& ADVERTISE_1000XPSE_ASYM
)
447 new_remote_adv
|= ADVERTISE_PAUSE_ASYM
;
449 local_adv
= new_local_adv
;
450 remote_adv
= new_remote_adv
;
453 /* See Table 28B-3 of 802.3ab-1999 spec. */
454 if (local_adv
& ADVERTISE_PAUSE_CAP
) {
455 if(local_adv
& ADVERTISE_PAUSE_ASYM
) {
456 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
457 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
459 else if (remote_adv
& ADVERTISE_PAUSE_ASYM
) {
460 bp
->flow_ctrl
= FLOW_CTRL_RX
;
464 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
465 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
469 else if (local_adv
& ADVERTISE_PAUSE_ASYM
) {
470 if ((remote_adv
& ADVERTISE_PAUSE_CAP
) &&
471 (remote_adv
& ADVERTISE_PAUSE_ASYM
)) {
473 bp
->flow_ctrl
= FLOW_CTRL_TX
;
479 bnx2_serdes_linkup(struct bnx2
*bp
)
481 u32 bmcr
, local_adv
, remote_adv
, common
;
484 bp
->line_speed
= SPEED_1000
;
486 bnx2_read_phy(bp
, MII_BMCR
, &bmcr
);
487 if (bmcr
& BMCR_FULLDPLX
) {
488 bp
->duplex
= DUPLEX_FULL
;
491 bp
->duplex
= DUPLEX_HALF
;
494 if (!(bmcr
& BMCR_ANENABLE
)) {
498 bnx2_read_phy(bp
, MII_ADVERTISE
, &local_adv
);
499 bnx2_read_phy(bp
, MII_LPA
, &remote_adv
);
501 common
= local_adv
& remote_adv
;
502 if (common
& (ADVERTISE_1000XHALF
| ADVERTISE_1000XFULL
)) {
504 if (common
& ADVERTISE_1000XFULL
) {
505 bp
->duplex
= DUPLEX_FULL
;
508 bp
->duplex
= DUPLEX_HALF
;
516 bnx2_copper_linkup(struct bnx2
*bp
)
520 bnx2_read_phy(bp
, MII_BMCR
, &bmcr
);
521 if (bmcr
& BMCR_ANENABLE
) {
522 u32 local_adv
, remote_adv
, common
;
524 bnx2_read_phy(bp
, MII_CTRL1000
, &local_adv
);
525 bnx2_read_phy(bp
, MII_STAT1000
, &remote_adv
);
527 common
= local_adv
& (remote_adv
>> 2);
528 if (common
& ADVERTISE_1000FULL
) {
529 bp
->line_speed
= SPEED_1000
;
530 bp
->duplex
= DUPLEX_FULL
;
532 else if (common
& ADVERTISE_1000HALF
) {
533 bp
->line_speed
= SPEED_1000
;
534 bp
->duplex
= DUPLEX_HALF
;
537 bnx2_read_phy(bp
, MII_ADVERTISE
, &local_adv
);
538 bnx2_read_phy(bp
, MII_LPA
, &remote_adv
);
540 common
= local_adv
& remote_adv
;
541 if (common
& ADVERTISE_100FULL
) {
542 bp
->line_speed
= SPEED_100
;
543 bp
->duplex
= DUPLEX_FULL
;
545 else if (common
& ADVERTISE_100HALF
) {
546 bp
->line_speed
= SPEED_100
;
547 bp
->duplex
= DUPLEX_HALF
;
549 else if (common
& ADVERTISE_10FULL
) {
550 bp
->line_speed
= SPEED_10
;
551 bp
->duplex
= DUPLEX_FULL
;
553 else if (common
& ADVERTISE_10HALF
) {
554 bp
->line_speed
= SPEED_10
;
555 bp
->duplex
= DUPLEX_HALF
;
564 if (bmcr
& BMCR_SPEED100
) {
565 bp
->line_speed
= SPEED_100
;
568 bp
->line_speed
= SPEED_10
;
570 if (bmcr
& BMCR_FULLDPLX
) {
571 bp
->duplex
= DUPLEX_FULL
;
574 bp
->duplex
= DUPLEX_HALF
;
582 bnx2_set_mac_link(struct bnx2
*bp
)
586 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x2620);
587 if (bp
->link_up
&& (bp
->line_speed
== SPEED_1000
) &&
588 (bp
->duplex
== DUPLEX_HALF
)) {
589 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x26ff);
592 /* Configure the EMAC mode register. */
593 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
595 val
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
596 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
);
599 if (bp
->line_speed
!= SPEED_1000
)
600 val
|= BNX2_EMAC_MODE_PORT_MII
;
602 val
|= BNX2_EMAC_MODE_PORT_GMII
;
605 val
|= BNX2_EMAC_MODE_PORT_GMII
;
608 /* Set the MAC to operate in the appropriate duplex mode. */
609 if (bp
->duplex
== DUPLEX_HALF
)
610 val
|= BNX2_EMAC_MODE_HALF_DUPLEX
;
611 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
613 /* Enable/disable rx PAUSE. */
614 bp
->rx_mode
&= ~BNX2_EMAC_RX_MODE_FLOW_EN
;
616 if (bp
->flow_ctrl
& FLOW_CTRL_RX
)
617 bp
->rx_mode
|= BNX2_EMAC_RX_MODE_FLOW_EN
;
618 REG_WR(bp
, BNX2_EMAC_RX_MODE
, bp
->rx_mode
);
620 /* Enable/disable tx PAUSE. */
621 val
= REG_RD(bp
, BNX2_EMAC_TX_MODE
);
622 val
&= ~BNX2_EMAC_TX_MODE_FLOW_EN
;
624 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
625 val
|= BNX2_EMAC_TX_MODE_FLOW_EN
;
626 REG_WR(bp
, BNX2_EMAC_TX_MODE
, val
);
628 /* Acknowledge the interrupt. */
629 REG_WR(bp
, BNX2_EMAC_STATUS
, BNX2_EMAC_STATUS_LINK_CHANGE
);
635 bnx2_set_link(struct bnx2
*bp
)
640 if (bp
->loopback
== MAC_LOOPBACK
) {
645 link_up
= bp
->link_up
;
647 bnx2_read_phy(bp
, MII_BMSR
, &bmsr
);
648 bnx2_read_phy(bp
, MII_BMSR
, &bmsr
);
650 if ((bp
->phy_flags
& PHY_SERDES_FLAG
) &&
651 (CHIP_NUM(bp
) == CHIP_NUM_5706
)) {
654 val
= REG_RD(bp
, BNX2_EMAC_STATUS
);
655 if (val
& BNX2_EMAC_STATUS_LINK
)
656 bmsr
|= BMSR_LSTATUS
;
658 bmsr
&= ~BMSR_LSTATUS
;
661 if (bmsr
& BMSR_LSTATUS
) {
664 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
665 bnx2_serdes_linkup(bp
);
668 bnx2_copper_linkup(bp
);
670 bnx2_resolve_flow_ctrl(bp
);
673 if ((bp
->phy_flags
& PHY_SERDES_FLAG
) &&
674 (bp
->autoneg
& AUTONEG_SPEED
)) {
678 bnx2_read_phy(bp
, MII_BMCR
, &bmcr
);
679 if (!(bmcr
& BMCR_ANENABLE
)) {
680 bnx2_write_phy(bp
, MII_BMCR
, bmcr
|
684 bp
->phy_flags
&= ~PHY_PARALLEL_DETECT_FLAG
;
688 if (bp
->link_up
!= link_up
) {
689 bnx2_report_link(bp
);
692 bnx2_set_mac_link(bp
);
698 bnx2_reset_phy(struct bnx2
*bp
)
703 bnx2_write_phy(bp
, MII_BMCR
, BMCR_RESET
);
705 #define PHY_RESET_MAX_WAIT 100
706 for (i
= 0; i
< PHY_RESET_MAX_WAIT
; i
++) {
709 bnx2_read_phy(bp
, MII_BMCR
, ®
);
710 if (!(reg
& BMCR_RESET
)) {
715 if (i
== PHY_RESET_MAX_WAIT
) {
722 bnx2_phy_get_pause_adv(struct bnx2
*bp
)
726 if ((bp
->req_flow_ctrl
& (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) ==
727 (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) {
729 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
730 adv
= ADVERTISE_1000XPAUSE
;
733 adv
= ADVERTISE_PAUSE_CAP
;
736 else if (bp
->req_flow_ctrl
& FLOW_CTRL_TX
) {
737 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
738 adv
= ADVERTISE_1000XPSE_ASYM
;
741 adv
= ADVERTISE_PAUSE_ASYM
;
744 else if (bp
->req_flow_ctrl
& FLOW_CTRL_RX
) {
745 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
746 adv
= ADVERTISE_1000XPAUSE
| ADVERTISE_1000XPSE_ASYM
;
749 adv
= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
756 bnx2_setup_serdes_phy(struct bnx2
*bp
)
761 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
764 bnx2_read_phy(bp
, MII_BMCR
, &bmcr
);
765 new_bmcr
= bmcr
& ~BMCR_ANENABLE
;
766 new_bmcr
|= BMCR_SPEED1000
;
767 if (bp
->req_duplex
== DUPLEX_FULL
) {
768 new_bmcr
|= BMCR_FULLDPLX
;
771 new_bmcr
&= ~BMCR_FULLDPLX
;
773 if (new_bmcr
!= bmcr
) {
774 /* Force a link down visible on the other side */
776 bnx2_read_phy(bp
, MII_ADVERTISE
, &adv
);
777 adv
&= ~(ADVERTISE_1000XFULL
|
778 ADVERTISE_1000XHALF
);
779 bnx2_write_phy(bp
, MII_ADVERTISE
, adv
);
780 bnx2_write_phy(bp
, MII_BMCR
, bmcr
|
781 BMCR_ANRESTART
| BMCR_ANENABLE
);
784 netif_carrier_off(bp
->dev
);
786 bnx2_write_phy(bp
, MII_BMCR
, new_bmcr
);
791 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
792 new_adv
|= ADVERTISE_1000XFULL
;
794 new_adv
|= bnx2_phy_get_pause_adv(bp
);
796 bnx2_read_phy(bp
, MII_ADVERTISE
, &adv
);
797 bnx2_read_phy(bp
, MII_BMCR
, &bmcr
);
799 bp
->serdes_an_pending
= 0;
800 if ((adv
!= new_adv
) || ((bmcr
& BMCR_ANENABLE
) == 0)) {
801 /* Force a link down visible on the other side */
805 bnx2_write_phy(bp
, MII_BMCR
, BMCR_LOOPBACK
);
806 for (i
= 0; i
< 110; i
++) {
811 bnx2_write_phy(bp
, MII_ADVERTISE
, new_adv
);
812 bnx2_write_phy(bp
, MII_BMCR
, bmcr
| BMCR_ANRESTART
|
814 if (CHIP_NUM(bp
) == CHIP_NUM_5706
) {
815 /* Speed up link-up time when the link partner
816 * does not autonegotiate which is very common
817 * in blade servers. Some blade servers use
818 * IPMI for kerboard input and it's important
819 * to minimize link disruptions. Autoneg. involves
820 * exchanging base pages plus 3 next pages and
821 * normally completes in about 120 msec.
823 bp
->current_interval
= SERDES_AN_TIMEOUT
;
824 bp
->serdes_an_pending
= 1;
825 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
832 #define ETHTOOL_ALL_FIBRE_SPEED \
833 (ADVERTISED_1000baseT_Full)
835 #define ETHTOOL_ALL_COPPER_SPEED \
836 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
837 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
838 ADVERTISED_1000baseT_Full)
840 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
841 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
843 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
846 bnx2_setup_copper_phy(struct bnx2
*bp
)
851 bnx2_read_phy(bp
, MII_BMCR
, &bmcr
);
853 if (bp
->autoneg
& AUTONEG_SPEED
) {
854 u32 adv_reg
, adv1000_reg
;
856 u32 new_adv1000_reg
= 0;
858 bnx2_read_phy(bp
, MII_ADVERTISE
, &adv_reg
);
859 adv_reg
&= (PHY_ALL_10_100_SPEED
| ADVERTISE_PAUSE_CAP
|
860 ADVERTISE_PAUSE_ASYM
);
862 bnx2_read_phy(bp
, MII_CTRL1000
, &adv1000_reg
);
863 adv1000_reg
&= PHY_ALL_1000_SPEED
;
865 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
866 new_adv_reg
|= ADVERTISE_10HALF
;
867 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
868 new_adv_reg
|= ADVERTISE_10FULL
;
869 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
870 new_adv_reg
|= ADVERTISE_100HALF
;
871 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
872 new_adv_reg
|= ADVERTISE_100FULL
;
873 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
874 new_adv1000_reg
|= ADVERTISE_1000FULL
;
876 new_adv_reg
|= ADVERTISE_CSMA
;
878 new_adv_reg
|= bnx2_phy_get_pause_adv(bp
);
880 if ((adv1000_reg
!= new_adv1000_reg
) ||
881 (adv_reg
!= new_adv_reg
) ||
882 ((bmcr
& BMCR_ANENABLE
) == 0)) {
884 bnx2_write_phy(bp
, MII_ADVERTISE
, new_adv_reg
);
885 bnx2_write_phy(bp
, MII_CTRL1000
, new_adv1000_reg
);
886 bnx2_write_phy(bp
, MII_BMCR
, BMCR_ANRESTART
|
889 else if (bp
->link_up
) {
890 /* Flow ctrl may have changed from auto to forced */
893 bnx2_resolve_flow_ctrl(bp
);
894 bnx2_set_mac_link(bp
);
900 if (bp
->req_line_speed
== SPEED_100
) {
901 new_bmcr
|= BMCR_SPEED100
;
903 if (bp
->req_duplex
== DUPLEX_FULL
) {
904 new_bmcr
|= BMCR_FULLDPLX
;
906 if (new_bmcr
!= bmcr
) {
910 bnx2_read_phy(bp
, MII_BMSR
, &bmsr
);
911 bnx2_read_phy(bp
, MII_BMSR
, &bmsr
);
913 if (bmsr
& BMSR_LSTATUS
) {
914 /* Force link down */
915 bnx2_write_phy(bp
, MII_BMCR
, BMCR_LOOPBACK
);
918 bnx2_read_phy(bp
, MII_BMSR
, &bmsr
);
919 bnx2_read_phy(bp
, MII_BMSR
, &bmsr
);
921 } while ((bmsr
& BMSR_LSTATUS
) && (i
< 620));
924 bnx2_write_phy(bp
, MII_BMCR
, new_bmcr
);
926 /* Normally, the new speed is setup after the link has
927 * gone down and up again. In some cases, link will not go
928 * down so we need to set up the new speed here.
930 if (bmsr
& BMSR_LSTATUS
) {
931 bp
->line_speed
= bp
->req_line_speed
;
932 bp
->duplex
= bp
->req_duplex
;
933 bnx2_resolve_flow_ctrl(bp
);
934 bnx2_set_mac_link(bp
);
941 bnx2_setup_phy(struct bnx2
*bp
)
943 if (bp
->loopback
== MAC_LOOPBACK
)
946 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
947 return (bnx2_setup_serdes_phy(bp
));
950 return (bnx2_setup_copper_phy(bp
));
955 bnx2_init_serdes_phy(struct bnx2
*bp
)
957 bp
->phy_flags
&= ~PHY_PARALLEL_DETECT_FLAG
;
959 if (CHIP_NUM(bp
) == CHIP_NUM_5706
) {
960 REG_WR(bp
, BNX2_MISC_UNUSED0
, 0x300);
963 if (bp
->dev
->mtu
> 1500) {
966 /* Set extended packet length bit */
967 bnx2_write_phy(bp
, 0x18, 0x7);
968 bnx2_read_phy(bp
, 0x18, &val
);
969 bnx2_write_phy(bp
, 0x18, (val
& 0xfff8) | 0x4000);
971 bnx2_write_phy(bp
, 0x1c, 0x6c00);
972 bnx2_read_phy(bp
, 0x1c, &val
);
973 bnx2_write_phy(bp
, 0x1c, (val
& 0x3ff) | 0xec02);
978 bnx2_write_phy(bp
, 0x18, 0x7);
979 bnx2_read_phy(bp
, 0x18, &val
);
980 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
982 bnx2_write_phy(bp
, 0x1c, 0x6c00);
983 bnx2_read_phy(bp
, 0x1c, &val
);
984 bnx2_write_phy(bp
, 0x1c, (val
& 0x3fd) | 0xec00);
991 bnx2_init_copper_phy(struct bnx2
*bp
)
993 bp
->phy_flags
|= PHY_CRC_FIX_FLAG
;
995 if (bp
->phy_flags
& PHY_CRC_FIX_FLAG
) {
996 bnx2_write_phy(bp
, 0x18, 0x0c00);
997 bnx2_write_phy(bp
, 0x17, 0x000a);
998 bnx2_write_phy(bp
, 0x15, 0x310b);
999 bnx2_write_phy(bp
, 0x17, 0x201f);
1000 bnx2_write_phy(bp
, 0x15, 0x9506);
1001 bnx2_write_phy(bp
, 0x17, 0x401f);
1002 bnx2_write_phy(bp
, 0x15, 0x14e2);
1003 bnx2_write_phy(bp
, 0x18, 0x0400);
1006 if (bp
->dev
->mtu
> 1500) {
1009 /* Set extended packet length bit */
1010 bnx2_write_phy(bp
, 0x18, 0x7);
1011 bnx2_read_phy(bp
, 0x18, &val
);
1012 bnx2_write_phy(bp
, 0x18, val
| 0x4000);
1014 bnx2_read_phy(bp
, 0x10, &val
);
1015 bnx2_write_phy(bp
, 0x10, val
| 0x1);
1020 bnx2_write_phy(bp
, 0x18, 0x7);
1021 bnx2_read_phy(bp
, 0x18, &val
);
1022 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
1024 bnx2_read_phy(bp
, 0x10, &val
);
1025 bnx2_write_phy(bp
, 0x10, val
& ~0x1);
1033 bnx2_init_phy(struct bnx2
*bp
)
1038 bp
->phy_flags
&= ~PHY_INT_MODE_MASK_FLAG
;
1039 bp
->phy_flags
|= PHY_INT_MODE_LINK_READY_FLAG
;
1041 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
1045 bnx2_read_phy(bp
, MII_PHYSID1
, &val
);
1046 bp
->phy_id
= val
<< 16;
1047 bnx2_read_phy(bp
, MII_PHYSID2
, &val
);
1048 bp
->phy_id
|= val
& 0xffff;
1050 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
1051 rc
= bnx2_init_serdes_phy(bp
);
1054 rc
= bnx2_init_copper_phy(bp
);
1063 bnx2_set_mac_loopback(struct bnx2
*bp
)
1067 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
1068 mac_mode
&= ~BNX2_EMAC_MODE_PORT
;
1069 mac_mode
|= BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
;
1070 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
1076 bnx2_fw_sync(struct bnx2
*bp
, u32 msg_data
)
1081 if (bp
->fw_timed_out
)
1085 msg_data
|= bp
->fw_wr_seq
;
1087 REG_WR_IND(bp
, HOST_VIEW_SHMEM_BASE
+ BNX2_DRV_MB
, msg_data
);
1089 /* wait for an acknowledgement. */
1090 for (i
= 0; i
< (FW_ACK_TIME_OUT_MS
* 1000)/5; i
++) {
1093 val
= REG_RD_IND(bp
, HOST_VIEW_SHMEM_BASE
+ BNX2_FW_MB
);
1095 if ((val
& BNX2_FW_MSG_ACK
) == (msg_data
& BNX2_DRV_MSG_SEQ
))
1099 /* If we timed out, inform the firmware that this is the case. */
1100 if (((val
& BNX2_FW_MSG_ACK
) != (msg_data
& BNX2_DRV_MSG_SEQ
)) &&
1101 ((msg_data
& BNX2_DRV_MSG_DATA
) != BNX2_DRV_MSG_DATA_WAIT0
)) {
1103 msg_data
&= ~BNX2_DRV_MSG_CODE
;
1104 msg_data
|= BNX2_DRV_MSG_CODE_FW_TIMEOUT
;
1106 REG_WR_IND(bp
, HOST_VIEW_SHMEM_BASE
+ BNX2_DRV_MB
, msg_data
);
1108 bp
->fw_timed_out
= 1;
1117 bnx2_init_context(struct bnx2
*bp
)
1123 u32 vcid_addr
, pcid_addr
, offset
;
1127 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
1130 vcid_addr
= GET_PCID_ADDR(vcid
);
1132 new_vcid
= 0x60 + (vcid
& 0xf0) + (vcid
& 0x7);
1137 pcid_addr
= GET_PCID_ADDR(new_vcid
);
1140 vcid_addr
= GET_CID_ADDR(vcid
);
1141 pcid_addr
= vcid_addr
;
1144 REG_WR(bp
, BNX2_CTX_VIRT_ADDR
, 0x00);
1145 REG_WR(bp
, BNX2_CTX_PAGE_TBL
, pcid_addr
);
1147 /* Zero out the context. */
1148 for (offset
= 0; offset
< PHY_CTX_SIZE
; offset
+= 4) {
1149 CTX_WR(bp
, 0x00, offset
, 0);
1152 REG_WR(bp
, BNX2_CTX_VIRT_ADDR
, vcid_addr
);
1153 REG_WR(bp
, BNX2_CTX_PAGE_TBL
, pcid_addr
);
1158 bnx2_alloc_bad_rbuf(struct bnx2
*bp
)
1164 good_mbuf
= kmalloc(512 * sizeof(u16
), GFP_KERNEL
);
1165 if (good_mbuf
== NULL
) {
1166 printk(KERN_ERR PFX
"Failed to allocate memory in "
1167 "bnx2_alloc_bad_rbuf\n");
1171 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
1172 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE
);
1176 /* Allocate a bunch of mbufs and save the good ones in an array. */
1177 val
= REG_RD_IND(bp
, BNX2_RBUF_STATUS1
);
1178 while (val
& BNX2_RBUF_STATUS1_FREE_COUNT
) {
1179 REG_WR_IND(bp
, BNX2_RBUF_COMMAND
, BNX2_RBUF_COMMAND_ALLOC_REQ
);
1181 val
= REG_RD_IND(bp
, BNX2_RBUF_FW_BUF_ALLOC
);
1183 val
&= BNX2_RBUF_FW_BUF_ALLOC_VALUE
;
1185 /* The addresses with Bit 9 set are bad memory blocks. */
1186 if (!(val
& (1 << 9))) {
1187 good_mbuf
[good_mbuf_cnt
] = (u16
) val
;
1191 val
= REG_RD_IND(bp
, BNX2_RBUF_STATUS1
);
1194 /* Free the good ones back to the mbuf pool thus discarding
1195 * all the bad ones. */
1196 while (good_mbuf_cnt
) {
1199 val
= good_mbuf
[good_mbuf_cnt
];
1200 val
= (val
<< 9) | val
| 1;
1202 REG_WR_IND(bp
, BNX2_RBUF_FW_BUF_FREE
, val
);
1209 bnx2_set_mac_addr(struct bnx2
*bp
)
1212 u8
*mac_addr
= bp
->dev
->dev_addr
;
1214 val
= (mac_addr
[0] << 8) | mac_addr
[1];
1216 REG_WR(bp
, BNX2_EMAC_MAC_MATCH0
, val
);
1218 val
= (mac_addr
[2] << 24) | (mac_addr
[3] << 16) |
1219 (mac_addr
[4] << 8) | mac_addr
[5];
1221 REG_WR(bp
, BNX2_EMAC_MAC_MATCH1
, val
);
1225 bnx2_alloc_rx_skb(struct bnx2
*bp
, u16 index
)
1227 struct sk_buff
*skb
;
1228 struct sw_bd
*rx_buf
= &bp
->rx_buf_ring
[index
];
1230 struct rx_bd
*rxbd
= &bp
->rx_desc_ring
[index
];
1231 unsigned long align
;
1233 skb
= dev_alloc_skb(bp
->rx_buf_size
);
1238 if (unlikely((align
= (unsigned long) skb
->data
& 0x7))) {
1239 skb_reserve(skb
, 8 - align
);
1243 mapping
= pci_map_single(bp
->pdev
, skb
->data
, bp
->rx_buf_use_size
,
1244 PCI_DMA_FROMDEVICE
);
1247 pci_unmap_addr_set(rx_buf
, mapping
, mapping
);
1249 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
1250 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
1252 bp
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
1258 bnx2_phy_int(struct bnx2
*bp
)
1260 u32 new_link_state
, old_link_state
;
1262 new_link_state
= bp
->status_blk
->status_attn_bits
&
1263 STATUS_ATTN_BITS_LINK_STATE
;
1264 old_link_state
= bp
->status_blk
->status_attn_bits_ack
&
1265 STATUS_ATTN_BITS_LINK_STATE
;
1266 if (new_link_state
!= old_link_state
) {
1267 if (new_link_state
) {
1268 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_SET_CMD
,
1269 STATUS_ATTN_BITS_LINK_STATE
);
1272 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD
,
1273 STATUS_ATTN_BITS_LINK_STATE
);
1280 bnx2_tx_int(struct bnx2
*bp
)
1282 u16 hw_cons
, sw_cons
, sw_ring_cons
;
1285 hw_cons
= bp
->status_blk
->status_tx_quick_consumer_index0
;
1286 if ((hw_cons
& MAX_TX_DESC_CNT
) == MAX_TX_DESC_CNT
) {
1289 sw_cons
= bp
->tx_cons
;
1291 while (sw_cons
!= hw_cons
) {
1292 struct sw_bd
*tx_buf
;
1293 struct sk_buff
*skb
;
1296 sw_ring_cons
= TX_RING_IDX(sw_cons
);
1298 tx_buf
= &bp
->tx_buf_ring
[sw_ring_cons
];
1301 /* partial BD completions possible with TSO packets */
1302 if (skb_shinfo(skb
)->tso_size
) {
1303 u16 last_idx
, last_ring_idx
;
1305 last_idx
= sw_cons
+
1306 skb_shinfo(skb
)->nr_frags
+ 1;
1307 last_ring_idx
= sw_ring_cons
+
1308 skb_shinfo(skb
)->nr_frags
+ 1;
1309 if (unlikely(last_ring_idx
>= MAX_TX_DESC_CNT
)) {
1312 if (((s16
) ((s16
) last_idx
- (s16
) hw_cons
)) > 0) {
1317 pci_unmap_single(bp
->pdev
, pci_unmap_addr(tx_buf
, mapping
),
1318 skb_headlen(skb
), PCI_DMA_TODEVICE
);
1321 last
= skb_shinfo(skb
)->nr_frags
;
1323 for (i
= 0; i
< last
; i
++) {
1324 sw_cons
= NEXT_TX_BD(sw_cons
);
1326 pci_unmap_page(bp
->pdev
,
1328 &bp
->tx_buf_ring
[TX_RING_IDX(sw_cons
)],
1330 skb_shinfo(skb
)->frags
[i
].size
,
1334 sw_cons
= NEXT_TX_BD(sw_cons
);
1336 tx_free_bd
+= last
+ 1;
1338 dev_kfree_skb_irq(skb
);
1340 hw_cons
= bp
->status_blk
->status_tx_quick_consumer_index0
;
1341 if ((hw_cons
& MAX_TX_DESC_CNT
) == MAX_TX_DESC_CNT
) {
1346 bp
->tx_cons
= sw_cons
;
1348 if (unlikely(netif_queue_stopped(bp
->dev
))) {
1349 spin_lock(&bp
->tx_lock
);
1350 if ((netif_queue_stopped(bp
->dev
)) &&
1351 (bnx2_tx_avail(bp
) > MAX_SKB_FRAGS
)) {
1353 netif_wake_queue(bp
->dev
);
1355 spin_unlock(&bp
->tx_lock
);
1360 bnx2_reuse_rx_skb(struct bnx2
*bp
, struct sk_buff
*skb
,
1363 struct sw_bd
*cons_rx_buf
= &bp
->rx_buf_ring
[cons
];
1364 struct sw_bd
*prod_rx_buf
= &bp
->rx_buf_ring
[prod
];
1365 struct rx_bd
*cons_bd
= &bp
->rx_desc_ring
[cons
];
1366 struct rx_bd
*prod_bd
= &bp
->rx_desc_ring
[prod
];
1368 pci_dma_sync_single_for_device(bp
->pdev
,
1369 pci_unmap_addr(cons_rx_buf
, mapping
),
1370 bp
->rx_offset
+ RX_COPY_THRESH
, PCI_DMA_FROMDEVICE
);
1372 prod_rx_buf
->skb
= cons_rx_buf
->skb
;
1373 pci_unmap_addr_set(prod_rx_buf
, mapping
,
1374 pci_unmap_addr(cons_rx_buf
, mapping
));
1376 memcpy(prod_bd
, cons_bd
, 8);
1378 bp
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
1383 bnx2_rx_int(struct bnx2
*bp
, int budget
)
1385 u16 hw_cons
, sw_cons
, sw_ring_cons
, sw_prod
, sw_ring_prod
;
1386 struct l2_fhdr
*rx_hdr
;
1389 hw_cons
= bp
->status_blk
->status_rx_quick_consumer_index0
;
1390 if ((hw_cons
& MAX_RX_DESC_CNT
) == MAX_RX_DESC_CNT
) {
1393 sw_cons
= bp
->rx_cons
;
1394 sw_prod
= bp
->rx_prod
;
1396 /* Memory barrier necessary as speculative reads of the rx
1397 * buffer can be ahead of the index in the status block
1400 while (sw_cons
!= hw_cons
) {
1403 struct sw_bd
*rx_buf
;
1404 struct sk_buff
*skb
;
1406 sw_ring_cons
= RX_RING_IDX(sw_cons
);
1407 sw_ring_prod
= RX_RING_IDX(sw_prod
);
1409 rx_buf
= &bp
->rx_buf_ring
[sw_ring_cons
];
1411 pci_dma_sync_single_for_cpu(bp
->pdev
,
1412 pci_unmap_addr(rx_buf
, mapping
),
1413 bp
->rx_offset
+ RX_COPY_THRESH
, PCI_DMA_FROMDEVICE
);
1415 rx_hdr
= (struct l2_fhdr
*) skb
->data
;
1416 len
= rx_hdr
->l2_fhdr_pkt_len
- 4;
1418 if (rx_hdr
->l2_fhdr_errors
&
1419 (L2_FHDR_ERRORS_BAD_CRC
|
1420 L2_FHDR_ERRORS_PHY_DECODE
|
1421 L2_FHDR_ERRORS_ALIGNMENT
|
1422 L2_FHDR_ERRORS_TOO_SHORT
|
1423 L2_FHDR_ERRORS_GIANT_FRAME
)) {
1428 /* Since we don't have a jumbo ring, copy small packets
1431 if ((bp
->dev
->mtu
> 1500) && (len
<= RX_COPY_THRESH
)) {
1432 struct sk_buff
*new_skb
;
1434 new_skb
= dev_alloc_skb(len
+ 2);
1435 if (new_skb
== NULL
)
1439 memcpy(new_skb
->data
,
1440 skb
->data
+ bp
->rx_offset
- 2,
1443 skb_reserve(new_skb
, 2);
1444 skb_put(new_skb
, len
);
1445 new_skb
->dev
= bp
->dev
;
1447 bnx2_reuse_rx_skb(bp
, skb
,
1448 sw_ring_cons
, sw_ring_prod
);
1452 else if (bnx2_alloc_rx_skb(bp
, sw_ring_prod
) == 0) {
1453 pci_unmap_single(bp
->pdev
,
1454 pci_unmap_addr(rx_buf
, mapping
),
1455 bp
->rx_buf_use_size
, PCI_DMA_FROMDEVICE
);
1457 skb_reserve(skb
, bp
->rx_offset
);
1462 bnx2_reuse_rx_skb(bp
, skb
,
1463 sw_ring_cons
, sw_ring_prod
);
1467 skb
->protocol
= eth_type_trans(skb
, bp
->dev
);
1469 if ((len
> (bp
->dev
->mtu
+ ETH_HLEN
)) &&
1470 (htons(skb
->protocol
) != 0x8100)) {
1472 dev_kfree_skb_irq(skb
);
1477 status
= rx_hdr
->l2_fhdr_status
;
1478 skb
->ip_summed
= CHECKSUM_NONE
;
1480 (status
& (L2_FHDR_STATUS_TCP_SEGMENT
|
1481 L2_FHDR_STATUS_UDP_DATAGRAM
))) {
1483 u16 cksum
= rx_hdr
->l2_fhdr_tcp_udp_xsum
;
1485 if (cksum
== 0xffff)
1486 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1490 if ((status
& L2_FHDR_STATUS_L2_VLAN_TAG
) && (bp
->vlgrp
!= 0)) {
1491 vlan_hwaccel_receive_skb(skb
, bp
->vlgrp
,
1492 rx_hdr
->l2_fhdr_vlan_tag
);
1496 netif_receive_skb(skb
);
1498 bp
->dev
->last_rx
= jiffies
;
1504 sw_cons
= NEXT_RX_BD(sw_cons
);
1505 sw_prod
= NEXT_RX_BD(sw_prod
);
1507 if ((rx_pkt
== budget
))
1510 bp
->rx_cons
= sw_cons
;
1511 bp
->rx_prod
= sw_prod
;
1513 REG_WR16(bp
, MB_RX_CID_ADDR
+ BNX2_L2CTX_HOST_BDIDX
, sw_prod
);
1515 REG_WR(bp
, MB_RX_CID_ADDR
+ BNX2_L2CTX_HOST_BSEQ
, bp
->rx_prod_bseq
);
1523 /* MSI ISR - The only difference between this and the INTx ISR
1524 * is that the MSI interrupt is always serviced.
1527 bnx2_msi(int irq
, void *dev_instance
, struct pt_regs
*regs
)
1529 struct net_device
*dev
= dev_instance
;
1530 struct bnx2
*bp
= dev
->priv
;
1532 prefetch(bp
->status_blk
);
1533 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
1534 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
1535 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
1537 /* Return here if interrupt is disabled. */
1538 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
1541 netif_rx_schedule(dev
);
1547 bnx2_interrupt(int irq
, void *dev_instance
, struct pt_regs
*regs
)
1549 struct net_device
*dev
= dev_instance
;
1550 struct bnx2
*bp
= dev
->priv
;
1552 /* When using INTx, it is possible for the interrupt to arrive
1553 * at the CPU before the status block posted prior to the
1554 * interrupt. Reading a register will flush the status block.
1555 * When using MSI, the MSI message will always complete after
1556 * the status block write.
1558 if ((bp
->status_blk
->status_idx
== bp
->last_status_idx
) &&
1559 (REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
) &
1560 BNX2_PCICFG_MISC_STATUS_INTA_VALUE
))
1563 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
1564 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
1565 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
1567 /* Return here if interrupt is shared and is disabled. */
1568 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
1571 netif_rx_schedule(dev
);
1577 bnx2_poll(struct net_device
*dev
, int *budget
)
1579 struct bnx2
*bp
= dev
->priv
;
1582 bp
->last_status_idx
= bp
->status_blk
->status_idx
;
1585 if ((bp
->status_blk
->status_attn_bits
&
1586 STATUS_ATTN_BITS_LINK_STATE
) !=
1587 (bp
->status_blk
->status_attn_bits_ack
&
1588 STATUS_ATTN_BITS_LINK_STATE
)) {
1590 spin_lock(&bp
->phy_lock
);
1592 spin_unlock(&bp
->phy_lock
);
1595 if (bp
->status_blk
->status_tx_quick_consumer_index0
!= bp
->tx_cons
) {
1599 if (bp
->status_blk
->status_rx_quick_consumer_index0
!= bp
->rx_cons
) {
1600 int orig_budget
= *budget
;
1603 if (orig_budget
> dev
->quota
)
1604 orig_budget
= dev
->quota
;
1606 work_done
= bnx2_rx_int(bp
, orig_budget
);
1607 *budget
-= work_done
;
1608 dev
->quota
-= work_done
;
1610 if (work_done
>= orig_budget
) {
1616 netif_rx_complete(dev
);
1617 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
1618 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
1619 bp
->last_status_idx
);
1626 /* Called with rtnl_lock from vlan functions and also dev->xmit_lock
1627 * from set_multicast.
1630 bnx2_set_rx_mode(struct net_device
*dev
)
1632 struct bnx2
*bp
= dev
->priv
;
1633 u32 rx_mode
, sort_mode
;
1636 spin_lock_bh(&bp
->phy_lock
);
1638 rx_mode
= bp
->rx_mode
& ~(BNX2_EMAC_RX_MODE_PROMISCUOUS
|
1639 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
);
1640 sort_mode
= 1 | BNX2_RPM_SORT_USER0_BC_EN
;
1643 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
1646 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
1648 if (dev
->flags
& IFF_PROMISC
) {
1649 /* Promiscuous mode. */
1650 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
1651 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
;
1653 else if (dev
->flags
& IFF_ALLMULTI
) {
1654 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
1655 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
1658 sort_mode
|= BNX2_RPM_SORT_USER0_MC_EN
;
1661 /* Accept one or more multicast(s). */
1662 struct dev_mc_list
*mclist
;
1663 u32 mc_filter
[NUM_MC_HASH_REGISTERS
];
1668 memset(mc_filter
, 0, 4 * NUM_MC_HASH_REGISTERS
);
1670 for (i
= 0, mclist
= dev
->mc_list
; mclist
&& i
< dev
->mc_count
;
1671 i
++, mclist
= mclist
->next
) {
1673 crc
= ether_crc_le(ETH_ALEN
, mclist
->dmi_addr
);
1675 regidx
= (bit
& 0xe0) >> 5;
1677 mc_filter
[regidx
] |= (1 << bit
);
1680 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
1681 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
1685 sort_mode
|= BNX2_RPM_SORT_USER0_MC_HSH_EN
;
1688 if (rx_mode
!= bp
->rx_mode
) {
1689 bp
->rx_mode
= rx_mode
;
1690 REG_WR(bp
, BNX2_EMAC_RX_MODE
, rx_mode
);
1693 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
1694 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
);
1695 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
| BNX2_RPM_SORT_USER0_ENA
);
1697 spin_unlock_bh(&bp
->phy_lock
);
1701 load_rv2p_fw(struct bnx2
*bp
, u32
*rv2p_code
, u32 rv2p_code_len
,
1708 for (i
= 0; i
< rv2p_code_len
; i
+= 8) {
1709 REG_WR(bp
, BNX2_RV2P_INSTR_HIGH
, *rv2p_code
);
1711 REG_WR(bp
, BNX2_RV2P_INSTR_LOW
, *rv2p_code
);
1714 if (rv2p_proc
== RV2P_PROC1
) {
1715 val
= (i
/ 8) | BNX2_RV2P_PROC1_ADDR_CMD_RDWR
;
1716 REG_WR(bp
, BNX2_RV2P_PROC1_ADDR_CMD
, val
);
1719 val
= (i
/ 8) | BNX2_RV2P_PROC2_ADDR_CMD_RDWR
;
1720 REG_WR(bp
, BNX2_RV2P_PROC2_ADDR_CMD
, val
);
1724 /* Reset the processor, un-stall is done later. */
1725 if (rv2p_proc
== RV2P_PROC1
) {
1726 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC1_RESET
);
1729 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC2_RESET
);
1734 load_cpu_fw(struct bnx2
*bp
, struct cpu_reg
*cpu_reg
, struct fw_info
*fw
)
1740 val
= REG_RD_IND(bp
, cpu_reg
->mode
);
1741 val
|= cpu_reg
->mode_value_halt
;
1742 REG_WR_IND(bp
, cpu_reg
->mode
, val
);
1743 REG_WR_IND(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
1745 /* Load the Text area. */
1746 offset
= cpu_reg
->spad_base
+ (fw
->text_addr
- cpu_reg
->mips_view_base
);
1750 for (j
= 0; j
< (fw
->text_len
/ 4); j
++, offset
+= 4) {
1751 REG_WR_IND(bp
, offset
, fw
->text
[j
]);
1755 /* Load the Data area. */
1756 offset
= cpu_reg
->spad_base
+ (fw
->data_addr
- cpu_reg
->mips_view_base
);
1760 for (j
= 0; j
< (fw
->data_len
/ 4); j
++, offset
+= 4) {
1761 REG_WR_IND(bp
, offset
, fw
->data
[j
]);
1765 /* Load the SBSS area. */
1766 offset
= cpu_reg
->spad_base
+ (fw
->sbss_addr
- cpu_reg
->mips_view_base
);
1770 for (j
= 0; j
< (fw
->sbss_len
/ 4); j
++, offset
+= 4) {
1771 REG_WR_IND(bp
, offset
, fw
->sbss
[j
]);
1775 /* Load the BSS area. */
1776 offset
= cpu_reg
->spad_base
+ (fw
->bss_addr
- cpu_reg
->mips_view_base
);
1780 for (j
= 0; j
< (fw
->bss_len
/4); j
++, offset
+= 4) {
1781 REG_WR_IND(bp
, offset
, fw
->bss
[j
]);
1785 /* Load the Read-Only area. */
1786 offset
= cpu_reg
->spad_base
+
1787 (fw
->rodata_addr
- cpu_reg
->mips_view_base
);
1791 for (j
= 0; j
< (fw
->rodata_len
/ 4); j
++, offset
+= 4) {
1792 REG_WR_IND(bp
, offset
, fw
->rodata
[j
]);
1796 /* Clear the pre-fetch instruction. */
1797 REG_WR_IND(bp
, cpu_reg
->inst
, 0);
1798 REG_WR_IND(bp
, cpu_reg
->pc
, fw
->start_addr
);
1800 /* Start the CPU. */
1801 val
= REG_RD_IND(bp
, cpu_reg
->mode
);
1802 val
&= ~cpu_reg
->mode_value_halt
;
1803 REG_WR_IND(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
1804 REG_WR_IND(bp
, cpu_reg
->mode
, val
);
1808 bnx2_init_cpus(struct bnx2
*bp
)
1810 struct cpu_reg cpu_reg
;
1813 /* Initialize the RV2P processor. */
1814 load_rv2p_fw(bp
, bnx2_rv2p_proc1
, sizeof(bnx2_rv2p_proc1
), RV2P_PROC1
);
1815 load_rv2p_fw(bp
, bnx2_rv2p_proc2
, sizeof(bnx2_rv2p_proc2
), RV2P_PROC2
);
1817 /* Initialize the RX Processor. */
1818 cpu_reg
.mode
= BNX2_RXP_CPU_MODE
;
1819 cpu_reg
.mode_value_halt
= BNX2_RXP_CPU_MODE_SOFT_HALT
;
1820 cpu_reg
.mode_value_sstep
= BNX2_RXP_CPU_MODE_STEP_ENA
;
1821 cpu_reg
.state
= BNX2_RXP_CPU_STATE
;
1822 cpu_reg
.state_value_clear
= 0xffffff;
1823 cpu_reg
.gpr0
= BNX2_RXP_CPU_REG_FILE
;
1824 cpu_reg
.evmask
= BNX2_RXP_CPU_EVENT_MASK
;
1825 cpu_reg
.pc
= BNX2_RXP_CPU_PROGRAM_COUNTER
;
1826 cpu_reg
.inst
= BNX2_RXP_CPU_INSTRUCTION
;
1827 cpu_reg
.bp
= BNX2_RXP_CPU_HW_BREAKPOINT
;
1828 cpu_reg
.spad_base
= BNX2_RXP_SCRATCH
;
1829 cpu_reg
.mips_view_base
= 0x8000000;
1831 fw
.ver_major
= bnx2_RXP_b06FwReleaseMajor
;
1832 fw
.ver_minor
= bnx2_RXP_b06FwReleaseMinor
;
1833 fw
.ver_fix
= bnx2_RXP_b06FwReleaseFix
;
1834 fw
.start_addr
= bnx2_RXP_b06FwStartAddr
;
1836 fw
.text_addr
= bnx2_RXP_b06FwTextAddr
;
1837 fw
.text_len
= bnx2_RXP_b06FwTextLen
;
1839 fw
.text
= bnx2_RXP_b06FwText
;
1841 fw
.data_addr
= bnx2_RXP_b06FwDataAddr
;
1842 fw
.data_len
= bnx2_RXP_b06FwDataLen
;
1844 fw
.data
= bnx2_RXP_b06FwData
;
1846 fw
.sbss_addr
= bnx2_RXP_b06FwSbssAddr
;
1847 fw
.sbss_len
= bnx2_RXP_b06FwSbssLen
;
1849 fw
.sbss
= bnx2_RXP_b06FwSbss
;
1851 fw
.bss_addr
= bnx2_RXP_b06FwBssAddr
;
1852 fw
.bss_len
= bnx2_RXP_b06FwBssLen
;
1854 fw
.bss
= bnx2_RXP_b06FwBss
;
1856 fw
.rodata_addr
= bnx2_RXP_b06FwRodataAddr
;
1857 fw
.rodata_len
= bnx2_RXP_b06FwRodataLen
;
1858 fw
.rodata_index
= 0;
1859 fw
.rodata
= bnx2_RXP_b06FwRodata
;
1861 load_cpu_fw(bp
, &cpu_reg
, &fw
);
1863 /* Initialize the TX Processor. */
1864 cpu_reg
.mode
= BNX2_TXP_CPU_MODE
;
1865 cpu_reg
.mode_value_halt
= BNX2_TXP_CPU_MODE_SOFT_HALT
;
1866 cpu_reg
.mode_value_sstep
= BNX2_TXP_CPU_MODE_STEP_ENA
;
1867 cpu_reg
.state
= BNX2_TXP_CPU_STATE
;
1868 cpu_reg
.state_value_clear
= 0xffffff;
1869 cpu_reg
.gpr0
= BNX2_TXP_CPU_REG_FILE
;
1870 cpu_reg
.evmask
= BNX2_TXP_CPU_EVENT_MASK
;
1871 cpu_reg
.pc
= BNX2_TXP_CPU_PROGRAM_COUNTER
;
1872 cpu_reg
.inst
= BNX2_TXP_CPU_INSTRUCTION
;
1873 cpu_reg
.bp
= BNX2_TXP_CPU_HW_BREAKPOINT
;
1874 cpu_reg
.spad_base
= BNX2_TXP_SCRATCH
;
1875 cpu_reg
.mips_view_base
= 0x8000000;
1877 fw
.ver_major
= bnx2_TXP_b06FwReleaseMajor
;
1878 fw
.ver_minor
= bnx2_TXP_b06FwReleaseMinor
;
1879 fw
.ver_fix
= bnx2_TXP_b06FwReleaseFix
;
1880 fw
.start_addr
= bnx2_TXP_b06FwStartAddr
;
1882 fw
.text_addr
= bnx2_TXP_b06FwTextAddr
;
1883 fw
.text_len
= bnx2_TXP_b06FwTextLen
;
1885 fw
.text
= bnx2_TXP_b06FwText
;
1887 fw
.data_addr
= bnx2_TXP_b06FwDataAddr
;
1888 fw
.data_len
= bnx2_TXP_b06FwDataLen
;
1890 fw
.data
= bnx2_TXP_b06FwData
;
1892 fw
.sbss_addr
= bnx2_TXP_b06FwSbssAddr
;
1893 fw
.sbss_len
= bnx2_TXP_b06FwSbssLen
;
1895 fw
.sbss
= bnx2_TXP_b06FwSbss
;
1897 fw
.bss_addr
= bnx2_TXP_b06FwBssAddr
;
1898 fw
.bss_len
= bnx2_TXP_b06FwBssLen
;
1900 fw
.bss
= bnx2_TXP_b06FwBss
;
1902 fw
.rodata_addr
= bnx2_TXP_b06FwRodataAddr
;
1903 fw
.rodata_len
= bnx2_TXP_b06FwRodataLen
;
1904 fw
.rodata_index
= 0;
1905 fw
.rodata
= bnx2_TXP_b06FwRodata
;
1907 load_cpu_fw(bp
, &cpu_reg
, &fw
);
1909 /* Initialize the TX Patch-up Processor. */
1910 cpu_reg
.mode
= BNX2_TPAT_CPU_MODE
;
1911 cpu_reg
.mode_value_halt
= BNX2_TPAT_CPU_MODE_SOFT_HALT
;
1912 cpu_reg
.mode_value_sstep
= BNX2_TPAT_CPU_MODE_STEP_ENA
;
1913 cpu_reg
.state
= BNX2_TPAT_CPU_STATE
;
1914 cpu_reg
.state_value_clear
= 0xffffff;
1915 cpu_reg
.gpr0
= BNX2_TPAT_CPU_REG_FILE
;
1916 cpu_reg
.evmask
= BNX2_TPAT_CPU_EVENT_MASK
;
1917 cpu_reg
.pc
= BNX2_TPAT_CPU_PROGRAM_COUNTER
;
1918 cpu_reg
.inst
= BNX2_TPAT_CPU_INSTRUCTION
;
1919 cpu_reg
.bp
= BNX2_TPAT_CPU_HW_BREAKPOINT
;
1920 cpu_reg
.spad_base
= BNX2_TPAT_SCRATCH
;
1921 cpu_reg
.mips_view_base
= 0x8000000;
1923 fw
.ver_major
= bnx2_TPAT_b06FwReleaseMajor
;
1924 fw
.ver_minor
= bnx2_TPAT_b06FwReleaseMinor
;
1925 fw
.ver_fix
= bnx2_TPAT_b06FwReleaseFix
;
1926 fw
.start_addr
= bnx2_TPAT_b06FwStartAddr
;
1928 fw
.text_addr
= bnx2_TPAT_b06FwTextAddr
;
1929 fw
.text_len
= bnx2_TPAT_b06FwTextLen
;
1931 fw
.text
= bnx2_TPAT_b06FwText
;
1933 fw
.data_addr
= bnx2_TPAT_b06FwDataAddr
;
1934 fw
.data_len
= bnx2_TPAT_b06FwDataLen
;
1936 fw
.data
= bnx2_TPAT_b06FwData
;
1938 fw
.sbss_addr
= bnx2_TPAT_b06FwSbssAddr
;
1939 fw
.sbss_len
= bnx2_TPAT_b06FwSbssLen
;
1941 fw
.sbss
= bnx2_TPAT_b06FwSbss
;
1943 fw
.bss_addr
= bnx2_TPAT_b06FwBssAddr
;
1944 fw
.bss_len
= bnx2_TPAT_b06FwBssLen
;
1946 fw
.bss
= bnx2_TPAT_b06FwBss
;
1948 fw
.rodata_addr
= bnx2_TPAT_b06FwRodataAddr
;
1949 fw
.rodata_len
= bnx2_TPAT_b06FwRodataLen
;
1950 fw
.rodata_index
= 0;
1951 fw
.rodata
= bnx2_TPAT_b06FwRodata
;
1953 load_cpu_fw(bp
, &cpu_reg
, &fw
);
1955 /* Initialize the Completion Processor. */
1956 cpu_reg
.mode
= BNX2_COM_CPU_MODE
;
1957 cpu_reg
.mode_value_halt
= BNX2_COM_CPU_MODE_SOFT_HALT
;
1958 cpu_reg
.mode_value_sstep
= BNX2_COM_CPU_MODE_STEP_ENA
;
1959 cpu_reg
.state
= BNX2_COM_CPU_STATE
;
1960 cpu_reg
.state_value_clear
= 0xffffff;
1961 cpu_reg
.gpr0
= BNX2_COM_CPU_REG_FILE
;
1962 cpu_reg
.evmask
= BNX2_COM_CPU_EVENT_MASK
;
1963 cpu_reg
.pc
= BNX2_COM_CPU_PROGRAM_COUNTER
;
1964 cpu_reg
.inst
= BNX2_COM_CPU_INSTRUCTION
;
1965 cpu_reg
.bp
= BNX2_COM_CPU_HW_BREAKPOINT
;
1966 cpu_reg
.spad_base
= BNX2_COM_SCRATCH
;
1967 cpu_reg
.mips_view_base
= 0x8000000;
1969 fw
.ver_major
= bnx2_COM_b06FwReleaseMajor
;
1970 fw
.ver_minor
= bnx2_COM_b06FwReleaseMinor
;
1971 fw
.ver_fix
= bnx2_COM_b06FwReleaseFix
;
1972 fw
.start_addr
= bnx2_COM_b06FwStartAddr
;
1974 fw
.text_addr
= bnx2_COM_b06FwTextAddr
;
1975 fw
.text_len
= bnx2_COM_b06FwTextLen
;
1977 fw
.text
= bnx2_COM_b06FwText
;
1979 fw
.data_addr
= bnx2_COM_b06FwDataAddr
;
1980 fw
.data_len
= bnx2_COM_b06FwDataLen
;
1982 fw
.data
= bnx2_COM_b06FwData
;
1984 fw
.sbss_addr
= bnx2_COM_b06FwSbssAddr
;
1985 fw
.sbss_len
= bnx2_COM_b06FwSbssLen
;
1987 fw
.sbss
= bnx2_COM_b06FwSbss
;
1989 fw
.bss_addr
= bnx2_COM_b06FwBssAddr
;
1990 fw
.bss_len
= bnx2_COM_b06FwBssLen
;
1992 fw
.bss
= bnx2_COM_b06FwBss
;
1994 fw
.rodata_addr
= bnx2_COM_b06FwRodataAddr
;
1995 fw
.rodata_len
= bnx2_COM_b06FwRodataLen
;
1996 fw
.rodata_index
= 0;
1997 fw
.rodata
= bnx2_COM_b06FwRodata
;
1999 load_cpu_fw(bp
, &cpu_reg
, &fw
);
2004 bnx2_set_power_state(struct bnx2
*bp
, pci_power_t state
)
2008 pci_read_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
2014 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
2015 (pmcsr
& ~PCI_PM_CTRL_STATE_MASK
) |
2016 PCI_PM_CTRL_PME_STATUS
);
2018 if (pmcsr
& PCI_PM_CTRL_STATE_MASK
)
2019 /* delay required during transition out of D3hot */
2022 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
2023 val
|= BNX2_EMAC_MODE_MPKT_RCVD
| BNX2_EMAC_MODE_ACPI_RCVD
;
2024 val
&= ~BNX2_EMAC_MODE_MPKT
;
2025 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
2027 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
2028 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
2029 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
2040 autoneg
= bp
->autoneg
;
2041 advertising
= bp
->advertising
;
2043 bp
->autoneg
= AUTONEG_SPEED
;
2044 bp
->advertising
= ADVERTISED_10baseT_Half
|
2045 ADVERTISED_10baseT_Full
|
2046 ADVERTISED_100baseT_Half
|
2047 ADVERTISED_100baseT_Full
|
2050 bnx2_setup_copper_phy(bp
);
2052 bp
->autoneg
= autoneg
;
2053 bp
->advertising
= advertising
;
2055 bnx2_set_mac_addr(bp
);
2057 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
2059 /* Enable port mode. */
2060 val
&= ~BNX2_EMAC_MODE_PORT
;
2061 val
|= BNX2_EMAC_MODE_PORT_MII
|
2062 BNX2_EMAC_MODE_MPKT_RCVD
|
2063 BNX2_EMAC_MODE_ACPI_RCVD
|
2064 BNX2_EMAC_MODE_FORCE_LINK
|
2065 BNX2_EMAC_MODE_MPKT
;
2067 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
2069 /* receive all multicast */
2070 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
2071 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
2074 REG_WR(bp
, BNX2_EMAC_RX_MODE
,
2075 BNX2_EMAC_RX_MODE_SORT_MODE
);
2077 val
= 1 | BNX2_RPM_SORT_USER0_BC_EN
|
2078 BNX2_RPM_SORT_USER0_MC_EN
;
2079 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
2080 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
);
2081 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
|
2082 BNX2_RPM_SORT_USER0_ENA
);
2084 /* Need to enable EMAC and RPM for WOL. */
2085 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
2086 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE
|
2087 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE
|
2088 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE
);
2090 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
2091 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
2092 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
2094 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
2097 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
2100 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT3
| wol_msg
);
2102 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
2103 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
2104 (CHIP_ID(bp
) == CHIP_ID_5706_A1
)) {
2113 pmcsr
|= PCI_PM_CTRL_PME_ENABLE
;
2115 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
2118 /* No more memory access after this point until
2119 * device is brought back to D0.
2131 bnx2_acquire_nvram_lock(struct bnx2
*bp
)
2136 /* Request access to the flash interface. */
2137 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_SET2
);
2138 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
2139 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
2140 if (val
& BNX2_NVM_SW_ARB_ARB_ARB2
)
2146 if (j
>= NVRAM_TIMEOUT_COUNT
)
2153 bnx2_release_nvram_lock(struct bnx2
*bp
)
2158 /* Relinquish nvram interface. */
2159 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_CLR2
);
2161 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
2162 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
2163 if (!(val
& BNX2_NVM_SW_ARB_ARB_ARB2
))
2169 if (j
>= NVRAM_TIMEOUT_COUNT
)
2177 bnx2_enable_nvram_write(struct bnx2
*bp
)
2181 val
= REG_RD(bp
, BNX2_MISC_CFG
);
2182 REG_WR(bp
, BNX2_MISC_CFG
, val
| BNX2_MISC_CFG_NVM_WR_EN_PCI
);
2184 if (!bp
->flash_info
->buffered
) {
2187 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
2188 REG_WR(bp
, BNX2_NVM_COMMAND
,
2189 BNX2_NVM_COMMAND_WREN
| BNX2_NVM_COMMAND_DOIT
);
2191 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
2194 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
2195 if (val
& BNX2_NVM_COMMAND_DONE
)
2199 if (j
>= NVRAM_TIMEOUT_COUNT
)
2206 bnx2_disable_nvram_write(struct bnx2
*bp
)
2210 val
= REG_RD(bp
, BNX2_MISC_CFG
);
2211 REG_WR(bp
, BNX2_MISC_CFG
, val
& ~BNX2_MISC_CFG_NVM_WR_EN
);
2216 bnx2_enable_nvram_access(struct bnx2
*bp
)
2220 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
2221 /* Enable both bits, even on read. */
2222 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
2223 val
| BNX2_NVM_ACCESS_ENABLE_EN
| BNX2_NVM_ACCESS_ENABLE_WR_EN
);
2227 bnx2_disable_nvram_access(struct bnx2
*bp
)
2231 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
2232 /* Disable both bits, even after read. */
2233 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
2234 val
& ~(BNX2_NVM_ACCESS_ENABLE_EN
|
2235 BNX2_NVM_ACCESS_ENABLE_WR_EN
));
2239 bnx2_nvram_erase_page(struct bnx2
*bp
, u32 offset
)
2244 if (bp
->flash_info
->buffered
)
2245 /* Buffered flash, no erase needed */
2248 /* Build an erase command */
2249 cmd
= BNX2_NVM_COMMAND_ERASE
| BNX2_NVM_COMMAND_WR
|
2250 BNX2_NVM_COMMAND_DOIT
;
2252 /* Need to clear DONE bit separately. */
2253 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
2255 /* Address of the NVRAM to read from. */
2256 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
2258 /* Issue an erase command. */
2259 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
2261 /* Wait for completion. */
2262 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
2267 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
2268 if (val
& BNX2_NVM_COMMAND_DONE
)
2272 if (j
>= NVRAM_TIMEOUT_COUNT
)
2279 bnx2_nvram_read_dword(struct bnx2
*bp
, u32 offset
, u8
*ret_val
, u32 cmd_flags
)
2284 /* Build the command word. */
2285 cmd
= BNX2_NVM_COMMAND_DOIT
| cmd_flags
;
2287 /* Calculate an offset of a buffered flash. */
2288 if (bp
->flash_info
->buffered
) {
2289 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
2290 bp
->flash_info
->page_bits
) +
2291 (offset
% bp
->flash_info
->page_size
);
2294 /* Need to clear DONE bit separately. */
2295 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
2297 /* Address of the NVRAM to read from. */
2298 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
2300 /* Issue a read command. */
2301 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
2303 /* Wait for completion. */
2304 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
2309 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
2310 if (val
& BNX2_NVM_COMMAND_DONE
) {
2311 val
= REG_RD(bp
, BNX2_NVM_READ
);
2313 val
= be32_to_cpu(val
);
2314 memcpy(ret_val
, &val
, 4);
2318 if (j
>= NVRAM_TIMEOUT_COUNT
)
2326 bnx2_nvram_write_dword(struct bnx2
*bp
, u32 offset
, u8
*val
, u32 cmd_flags
)
2331 /* Build the command word. */
2332 cmd
= BNX2_NVM_COMMAND_DOIT
| BNX2_NVM_COMMAND_WR
| cmd_flags
;
2334 /* Calculate an offset of a buffered flash. */
2335 if (bp
->flash_info
->buffered
) {
2336 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
2337 bp
->flash_info
->page_bits
) +
2338 (offset
% bp
->flash_info
->page_size
);
2341 /* Need to clear DONE bit separately. */
2342 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
2344 memcpy(&val32
, val
, 4);
2345 val32
= cpu_to_be32(val32
);
2347 /* Write the data. */
2348 REG_WR(bp
, BNX2_NVM_WRITE
, val32
);
2350 /* Address of the NVRAM to write to. */
2351 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
2353 /* Issue the write command. */
2354 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
2356 /* Wait for completion. */
2357 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
2360 if (REG_RD(bp
, BNX2_NVM_COMMAND
) & BNX2_NVM_COMMAND_DONE
)
2363 if (j
>= NVRAM_TIMEOUT_COUNT
)
2370 bnx2_init_nvram(struct bnx2
*bp
)
2373 int j
, entry_count
, rc
;
2374 struct flash_spec
*flash
;
2376 /* Determine the selected interface. */
2377 val
= REG_RD(bp
, BNX2_NVM_CFG1
);
2379 entry_count
= sizeof(flash_table
) / sizeof(struct flash_spec
);
2382 if (val
& 0x40000000) {
2384 /* Flash interface has been reconfigured */
2385 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
2388 if (val
== flash
->config1
) {
2389 bp
->flash_info
= flash
;
2395 /* Not yet been reconfigured */
2397 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
2400 if ((val
& FLASH_STRAP_MASK
) == flash
->strapping
) {
2401 bp
->flash_info
= flash
;
2403 /* Request access to the flash interface. */
2404 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
2407 /* Enable access to flash interface */
2408 bnx2_enable_nvram_access(bp
);
2410 /* Reconfigure the flash interface */
2411 REG_WR(bp
, BNX2_NVM_CFG1
, flash
->config1
);
2412 REG_WR(bp
, BNX2_NVM_CFG2
, flash
->config2
);
2413 REG_WR(bp
, BNX2_NVM_CFG3
, flash
->config3
);
2414 REG_WR(bp
, BNX2_NVM_WRITE1
, flash
->write1
);
2416 /* Disable access to flash interface */
2417 bnx2_disable_nvram_access(bp
);
2418 bnx2_release_nvram_lock(bp
);
2423 } /* if (val & 0x40000000) */
2425 if (j
== entry_count
) {
2426 bp
->flash_info
= NULL
;
2427 printk(KERN_ALERT
"Unknown flash/EEPROM type.\n");
2435 bnx2_nvram_read(struct bnx2
*bp
, u32 offset
, u8
*ret_buf
,
2439 u32 cmd_flags
, offset32
, len32
, extra
;
2444 /* Request access to the flash interface. */
2445 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
2448 /* Enable access to flash interface */
2449 bnx2_enable_nvram_access(bp
);
2462 pre_len
= 4 - (offset
& 3);
2464 if (pre_len
>= len32
) {
2466 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
2467 BNX2_NVM_COMMAND_LAST
;
2470 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
2473 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
2478 memcpy(ret_buf
, buf
+ (offset
& 3), pre_len
);
2485 extra
= 4 - (len32
& 3);
2486 len32
= (len32
+ 4) & ~3;
2493 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
2495 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
2496 BNX2_NVM_COMMAND_LAST
;
2498 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
2500 memcpy(ret_buf
, buf
, 4 - extra
);
2502 else if (len32
> 0) {
2505 /* Read the first word. */
2509 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
2511 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, cmd_flags
);
2513 /* Advance to the next dword. */
2518 while (len32
> 4 && rc
== 0) {
2519 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, 0);
2521 /* Advance to the next dword. */
2530 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
2531 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
2533 memcpy(ret_buf
, buf
, 4 - extra
);
2536 /* Disable access to flash interface */
2537 bnx2_disable_nvram_access(bp
);
2539 bnx2_release_nvram_lock(bp
);
2545 bnx2_nvram_write(struct bnx2
*bp
, u32 offset
, u8
*data_buf
,
2548 u32 written
, offset32
, len32
;
2549 u8
*buf
, start
[4], end
[4];
2551 int align_start
, align_end
;
2556 align_start
= align_end
= 0;
2558 if ((align_start
= (offset32
& 3))) {
2560 len32
+= align_start
;
2561 if ((rc
= bnx2_nvram_read(bp
, offset32
, start
, 4)))
2566 if ((len32
> 4) || !align_start
) {
2567 align_end
= 4 - (len32
& 3);
2569 if ((rc
= bnx2_nvram_read(bp
, offset32
+ len32
- 4,
2576 if (align_start
|| align_end
) {
2577 buf
= kmalloc(len32
, GFP_KERNEL
);
2581 memcpy(buf
, start
, 4);
2584 memcpy(buf
+ len32
- 4, end
, 4);
2586 memcpy(buf
+ align_start
, data_buf
, buf_size
);
2590 while ((written
< len32
) && (rc
== 0)) {
2591 u32 page_start
, page_end
, data_start
, data_end
;
2592 u32 addr
, cmd_flags
;
2594 u8 flash_buffer
[264];
2596 /* Find the page_start addr */
2597 page_start
= offset32
+ written
;
2598 page_start
-= (page_start
% bp
->flash_info
->page_size
);
2599 /* Find the page_end addr */
2600 page_end
= page_start
+ bp
->flash_info
->page_size
;
2601 /* Find the data_start addr */
2602 data_start
= (written
== 0) ? offset32
: page_start
;
2603 /* Find the data_end addr */
2604 data_end
= (page_end
> offset32
+ len32
) ?
2605 (offset32
+ len32
) : page_end
;
2607 /* Request access to the flash interface. */
2608 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
2609 goto nvram_write_end
;
2611 /* Enable access to flash interface */
2612 bnx2_enable_nvram_access(bp
);
2614 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
2615 if (bp
->flash_info
->buffered
== 0) {
2618 /* Read the whole page into the buffer
2619 * (non-buffer flash only) */
2620 for (j
= 0; j
< bp
->flash_info
->page_size
; j
+= 4) {
2621 if (j
== (bp
->flash_info
->page_size
- 4)) {
2622 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
2624 rc
= bnx2_nvram_read_dword(bp
,
2630 goto nvram_write_end
;
2636 /* Enable writes to flash interface (unlock write-protect) */
2637 if ((rc
= bnx2_enable_nvram_write(bp
)) != 0)
2638 goto nvram_write_end
;
2640 /* Erase the page */
2641 if ((rc
= bnx2_nvram_erase_page(bp
, page_start
)) != 0)
2642 goto nvram_write_end
;
2644 /* Re-enable the write again for the actual write */
2645 bnx2_enable_nvram_write(bp
);
2647 /* Loop to write back the buffer data from page_start to
2650 if (bp
->flash_info
->buffered
== 0) {
2651 for (addr
= page_start
; addr
< data_start
;
2652 addr
+= 4, i
+= 4) {
2654 rc
= bnx2_nvram_write_dword(bp
, addr
,
2655 &flash_buffer
[i
], cmd_flags
);
2658 goto nvram_write_end
;
2664 /* Loop to write the new data from data_start to data_end */
2665 for (addr
= data_start
; addr
< data_end
; addr
+= 4, i
++) {
2666 if ((addr
== page_end
- 4) ||
2667 ((bp
->flash_info
->buffered
) &&
2668 (addr
== data_end
- 4))) {
2670 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
2672 rc
= bnx2_nvram_write_dword(bp
, addr
, buf
,
2676 goto nvram_write_end
;
2682 /* Loop to write back the buffer data from data_end
2684 if (bp
->flash_info
->buffered
== 0) {
2685 for (addr
= data_end
; addr
< page_end
;
2686 addr
+= 4, i
+= 4) {
2688 if (addr
== page_end
-4) {
2689 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
2691 rc
= bnx2_nvram_write_dword(bp
, addr
,
2692 &flash_buffer
[i
], cmd_flags
);
2695 goto nvram_write_end
;
2701 /* Disable writes to flash interface (lock write-protect) */
2702 bnx2_disable_nvram_write(bp
);
2704 /* Disable access to flash interface */
2705 bnx2_disable_nvram_access(bp
);
2706 bnx2_release_nvram_lock(bp
);
2708 /* Increment written */
2709 written
+= data_end
- data_start
;
2713 if (align_start
|| align_end
)
2719 bnx2_reset_chip(struct bnx2
*bp
, u32 reset_code
)
2724 /* Wait for the current PCI transaction to complete before
2725 * issuing a reset. */
2726 REG_WR(bp
, BNX2_MISC_ENABLE_CLR_BITS
,
2727 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE
|
2728 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE
|
2729 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE
|
2730 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE
);
2731 val
= REG_RD(bp
, BNX2_MISC_ENABLE_CLR_BITS
);
2734 /* Deposit a driver reset signature so the firmware knows that
2735 * this is a soft reset. */
2736 REG_WR_IND(bp
, HOST_VIEW_SHMEM_BASE
+ BNX2_DRV_RESET_SIGNATURE
,
2737 BNX2_DRV_RESET_SIGNATURE_MAGIC
);
2739 bp
->fw_timed_out
= 0;
2741 /* Wait for the firmware to tell us it is ok to issue a reset. */
2742 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT0
| reset_code
);
2744 /* Do a dummy read to force the chip to complete all current transaction
2745 * before we issue a reset. */
2746 val
= REG_RD(bp
, BNX2_MISC_ID
);
2748 val
= BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
2749 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
2750 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
2753 REG_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
2755 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
2756 (CHIP_ID(bp
) == CHIP_ID_5706_A1
))
2759 /* Reset takes approximate 30 usec */
2760 for (i
= 0; i
< 10; i
++) {
2761 val
= REG_RD(bp
, BNX2_PCICFG_MISC_CONFIG
);
2762 if ((val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
2763 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) == 0) {
2769 if (val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
2770 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) {
2771 printk(KERN_ERR PFX
"Chip reset did not complete\n");
2775 /* Make sure byte swapping is properly configured. */
2776 val
= REG_RD(bp
, BNX2_PCI_SWAP_DIAG0
);
2777 if (val
!= 0x01020304) {
2778 printk(KERN_ERR PFX
"Chip not in correct endian mode\n");
2782 bp
->fw_timed_out
= 0;
2784 /* Wait for the firmware to finish its initialization. */
2785 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT1
| reset_code
);
2787 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
2788 /* Adjust the voltage regular to two steps lower. The default
2789 * of this register is 0x0000000e. */
2790 REG_WR(bp
, BNX2_MISC_VREG_CONTROL
, 0x000000fa);
2792 /* Remove bad rbuf memory from the free pool. */
2793 rc
= bnx2_alloc_bad_rbuf(bp
);
2800 bnx2_init_chip(struct bnx2
*bp
)
2804 /* Make sure the interrupt is not active. */
2805 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
2807 val
= BNX2_DMA_CONFIG_DATA_BYTE_SWAP
|
2808 BNX2_DMA_CONFIG_DATA_WORD_SWAP
|
2810 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP
|
2812 BNX2_DMA_CONFIG_CNTL_WORD_SWAP
|
2813 DMA_READ_CHANS
<< 12 |
2814 DMA_WRITE_CHANS
<< 16;
2816 val
|= (0x2 << 20) | (1 << 11);
2818 if ((bp
->flags
& PCIX_FLAG
) && (bp
->bus_speed_mhz
= 133))
2821 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) &&
2822 (CHIP_ID(bp
) != CHIP_ID_5706_A0
) && !(bp
->flags
& PCIX_FLAG
))
2823 val
|= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA
;
2825 REG_WR(bp
, BNX2_DMA_CONFIG
, val
);
2827 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
2828 val
= REG_RD(bp
, BNX2_TDMA_CONFIG
);
2829 val
|= BNX2_TDMA_CONFIG_ONE_DMA
;
2830 REG_WR(bp
, BNX2_TDMA_CONFIG
, val
);
2833 if (bp
->flags
& PCIX_FLAG
) {
2836 pci_read_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
2838 pci_write_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
2839 val16
& ~PCI_X_CMD_ERO
);
2842 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
2843 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE
|
2844 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE
|
2845 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE
);
2847 /* Initialize context mapping and zero out the quick contexts. The
2848 * context block must have already been enabled. */
2849 bnx2_init_context(bp
);
2852 bnx2_init_nvram(bp
);
2854 bnx2_set_mac_addr(bp
);
2856 val
= REG_RD(bp
, BNX2_MQ_CONFIG
);
2857 val
&= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE
;
2858 val
|= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256
;
2859 REG_WR(bp
, BNX2_MQ_CONFIG
, val
);
2861 val
= 0x10000 + (MAX_CID_CNT
* MB_KERNEL_CTX_SIZE
);
2862 REG_WR(bp
, BNX2_MQ_KNL_BYP_WIND_START
, val
);
2863 REG_WR(bp
, BNX2_MQ_KNL_WIND_END
, val
);
2865 val
= (BCM_PAGE_BITS
- 8) << 24;
2866 REG_WR(bp
, BNX2_RV2P_CONFIG
, val
);
2868 /* Configure page size. */
2869 val
= REG_RD(bp
, BNX2_TBDR_CONFIG
);
2870 val
&= ~BNX2_TBDR_CONFIG_PAGE_SIZE
;
2871 val
|= (BCM_PAGE_BITS
- 8) << 24 | 0x40;
2872 REG_WR(bp
, BNX2_TBDR_CONFIG
, val
);
2874 val
= bp
->mac_addr
[0] +
2875 (bp
->mac_addr
[1] << 8) +
2876 (bp
->mac_addr
[2] << 16) +
2878 (bp
->mac_addr
[4] << 8) +
2879 (bp
->mac_addr
[5] << 16);
2880 REG_WR(bp
, BNX2_EMAC_BACKOFF_SEED
, val
);
2882 /* Program the MTU. Also include 4 bytes for CRC32. */
2883 val
= bp
->dev
->mtu
+ ETH_HLEN
+ 4;
2884 if (val
> (MAX_ETHERNET_PACKET_SIZE
+ 4))
2885 val
|= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA
;
2886 REG_WR(bp
, BNX2_EMAC_RX_MTU_SIZE
, val
);
2888 bp
->last_status_idx
= 0;
2889 bp
->rx_mode
= BNX2_EMAC_RX_MODE_SORT_MODE
;
2891 /* Set up how to generate a link change interrupt. */
2892 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
2894 REG_WR(bp
, BNX2_HC_STATUS_ADDR_L
,
2895 (u64
) bp
->status_blk_mapping
& 0xffffffff);
2896 REG_WR(bp
, BNX2_HC_STATUS_ADDR_H
, (u64
) bp
->status_blk_mapping
>> 32);
2898 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_L
,
2899 (u64
) bp
->stats_blk_mapping
& 0xffffffff);
2900 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_H
,
2901 (u64
) bp
->stats_blk_mapping
>> 32);
2903 REG_WR(bp
, BNX2_HC_TX_QUICK_CONS_TRIP
,
2904 (bp
->tx_quick_cons_trip_int
<< 16) | bp
->tx_quick_cons_trip
);
2906 REG_WR(bp
, BNX2_HC_RX_QUICK_CONS_TRIP
,
2907 (bp
->rx_quick_cons_trip_int
<< 16) | bp
->rx_quick_cons_trip
);
2909 REG_WR(bp
, BNX2_HC_COMP_PROD_TRIP
,
2910 (bp
->comp_prod_trip_int
<< 16) | bp
->comp_prod_trip
);
2912 REG_WR(bp
, BNX2_HC_TX_TICKS
, (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
2914 REG_WR(bp
, BNX2_HC_RX_TICKS
, (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
2916 REG_WR(bp
, BNX2_HC_COM_TICKS
,
2917 (bp
->com_ticks_int
<< 16) | bp
->com_ticks
);
2919 REG_WR(bp
, BNX2_HC_CMD_TICKS
,
2920 (bp
->cmd_ticks_int
<< 16) | bp
->cmd_ticks
);
2922 REG_WR(bp
, BNX2_HC_STATS_TICKS
, bp
->stats_ticks
& 0xffff00);
2923 REG_WR(bp
, BNX2_HC_STAT_COLLECT_TICKS
, 0xbb8); /* 3ms */
2925 if (CHIP_ID(bp
) == CHIP_ID_5706_A1
)
2926 REG_WR(bp
, BNX2_HC_CONFIG
, BNX2_HC_CONFIG_COLLECT_STATS
);
2928 REG_WR(bp
, BNX2_HC_CONFIG
, BNX2_HC_CONFIG_RX_TMR_MODE
|
2929 BNX2_HC_CONFIG_TX_TMR_MODE
|
2930 BNX2_HC_CONFIG_COLLECT_STATS
);
2933 /* Clear internal stats counters. */
2934 REG_WR(bp
, BNX2_HC_COMMAND
, BNX2_HC_COMMAND_CLR_STAT_NOW
);
2936 REG_WR(bp
, BNX2_HC_ATTN_BITS_ENABLE
, STATUS_ATTN_BITS_LINK_STATE
);
2938 /* Initialize the receive filter. */
2939 bnx2_set_rx_mode(bp
->dev
);
2941 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT2
| BNX2_DRV_MSG_CODE_RESET
);
2943 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
, 0x5ffffff);
2944 REG_RD(bp
, BNX2_MISC_ENABLE_SET_BITS
);
2953 bnx2_init_tx_ring(struct bnx2
*bp
)
2958 txbd
= &bp
->tx_desc_ring
[MAX_TX_DESC_CNT
];
2960 txbd
->tx_bd_haddr_hi
= (u64
) bp
->tx_desc_mapping
>> 32;
2961 txbd
->tx_bd_haddr_lo
= (u64
) bp
->tx_desc_mapping
& 0xffffffff;
2965 bp
->tx_prod_bseq
= 0;
2967 val
= BNX2_L2CTX_TYPE_TYPE_L2
;
2968 val
|= BNX2_L2CTX_TYPE_SIZE_L2
;
2969 CTX_WR(bp
, GET_CID_ADDR(TX_CID
), BNX2_L2CTX_TYPE
, val
);
2971 val
= BNX2_L2CTX_CMD_TYPE_TYPE_L2
;
2973 CTX_WR(bp
, GET_CID_ADDR(TX_CID
), BNX2_L2CTX_CMD_TYPE
, val
);
2975 val
= (u64
) bp
->tx_desc_mapping
>> 32;
2976 CTX_WR(bp
, GET_CID_ADDR(TX_CID
), BNX2_L2CTX_TBDR_BHADDR_HI
, val
);
2978 val
= (u64
) bp
->tx_desc_mapping
& 0xffffffff;
2979 CTX_WR(bp
, GET_CID_ADDR(TX_CID
), BNX2_L2CTX_TBDR_BHADDR_LO
, val
);
2983 bnx2_init_rx_ring(struct bnx2
*bp
)
2987 u16 prod
, ring_prod
;
2990 /* 8 for CRC and VLAN */
2991 bp
->rx_buf_use_size
= bp
->dev
->mtu
+ ETH_HLEN
+ bp
->rx_offset
+ 8;
2992 /* 8 for alignment */
2993 bp
->rx_buf_size
= bp
->rx_buf_use_size
+ 8;
2995 ring_prod
= prod
= bp
->rx_prod
= 0;
2997 bp
->rx_prod_bseq
= 0;
2999 rxbd
= &bp
->rx_desc_ring
[0];
3000 for (i
= 0; i
< MAX_RX_DESC_CNT
; i
++, rxbd
++) {
3001 rxbd
->rx_bd_len
= bp
->rx_buf_use_size
;
3002 rxbd
->rx_bd_flags
= RX_BD_FLAGS_START
| RX_BD_FLAGS_END
;
3005 rxbd
->rx_bd_haddr_hi
= (u64
) bp
->rx_desc_mapping
>> 32;
3006 rxbd
->rx_bd_haddr_lo
= (u64
) bp
->rx_desc_mapping
& 0xffffffff;
3008 val
= BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE
;
3009 val
|= BNX2_L2CTX_CTX_TYPE_SIZE_L2
;
3011 CTX_WR(bp
, GET_CID_ADDR(RX_CID
), BNX2_L2CTX_CTX_TYPE
, val
);
3013 val
= (u64
) bp
->rx_desc_mapping
>> 32;
3014 CTX_WR(bp
, GET_CID_ADDR(RX_CID
), BNX2_L2CTX_NX_BDHADDR_HI
, val
);
3016 val
= (u64
) bp
->rx_desc_mapping
& 0xffffffff;
3017 CTX_WR(bp
, GET_CID_ADDR(RX_CID
), BNX2_L2CTX_NX_BDHADDR_LO
, val
);
3019 for ( ;ring_prod
< bp
->rx_ring_size
; ) {
3020 if (bnx2_alloc_rx_skb(bp
, ring_prod
) < 0) {
3023 prod
= NEXT_RX_BD(prod
);
3024 ring_prod
= RX_RING_IDX(prod
);
3028 REG_WR16(bp
, MB_RX_CID_ADDR
+ BNX2_L2CTX_HOST_BDIDX
, prod
);
3030 REG_WR(bp
, MB_RX_CID_ADDR
+ BNX2_L2CTX_HOST_BSEQ
, bp
->rx_prod_bseq
);
3034 bnx2_free_tx_skbs(struct bnx2
*bp
)
3038 if (bp
->tx_buf_ring
== NULL
)
3041 for (i
= 0; i
< TX_DESC_CNT
; ) {
3042 struct sw_bd
*tx_buf
= &bp
->tx_buf_ring
[i
];
3043 struct sk_buff
*skb
= tx_buf
->skb
;
3051 pci_unmap_single(bp
->pdev
, pci_unmap_addr(tx_buf
, mapping
),
3052 skb_headlen(skb
), PCI_DMA_TODEVICE
);
3056 last
= skb_shinfo(skb
)->nr_frags
;
3057 for (j
= 0; j
< last
; j
++) {
3058 tx_buf
= &bp
->tx_buf_ring
[i
+ j
+ 1];
3059 pci_unmap_page(bp
->pdev
,
3060 pci_unmap_addr(tx_buf
, mapping
),
3061 skb_shinfo(skb
)->frags
[j
].size
,
3064 dev_kfree_skb_any(skb
);
3071 bnx2_free_rx_skbs(struct bnx2
*bp
)
3075 if (bp
->rx_buf_ring
== NULL
)
3078 for (i
= 0; i
< RX_DESC_CNT
; i
++) {
3079 struct sw_bd
*rx_buf
= &bp
->rx_buf_ring
[i
];
3080 struct sk_buff
*skb
= rx_buf
->skb
;
3085 pci_unmap_single(bp
->pdev
, pci_unmap_addr(rx_buf
, mapping
),
3086 bp
->rx_buf_use_size
, PCI_DMA_FROMDEVICE
);
3090 dev_kfree_skb_any(skb
);
3095 bnx2_free_skbs(struct bnx2
*bp
)
3097 bnx2_free_tx_skbs(bp
);
3098 bnx2_free_rx_skbs(bp
);
3102 bnx2_reset_nic(struct bnx2
*bp
, u32 reset_code
)
3106 rc
= bnx2_reset_chip(bp
, reset_code
);
3112 bnx2_init_tx_ring(bp
);
3113 bnx2_init_rx_ring(bp
);
3118 bnx2_init_nic(struct bnx2
*bp
)
3122 if ((rc
= bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
)) != 0)
3131 bnx2_test_registers(struct bnx2
*bp
)
3141 { 0x006c, 0, 0x00000000, 0x0000003f },
3142 { 0x0090, 0, 0xffffffff, 0x00000000 },
3143 { 0x0094, 0, 0x00000000, 0x00000000 },
3145 { 0x0404, 0, 0x00003f00, 0x00000000 },
3146 { 0x0418, 0, 0x00000000, 0xffffffff },
3147 { 0x041c, 0, 0x00000000, 0xffffffff },
3148 { 0x0420, 0, 0x00000000, 0x80ffffff },
3149 { 0x0424, 0, 0x00000000, 0x00000000 },
3150 { 0x0428, 0, 0x00000000, 0x00000001 },
3151 { 0x0450, 0, 0x00000000, 0x0000ffff },
3152 { 0x0454, 0, 0x00000000, 0xffffffff },
3153 { 0x0458, 0, 0x00000000, 0xffffffff },
3155 { 0x0808, 0, 0x00000000, 0xffffffff },
3156 { 0x0854, 0, 0x00000000, 0xffffffff },
3157 { 0x0868, 0, 0x00000000, 0x77777777 },
3158 { 0x086c, 0, 0x00000000, 0x77777777 },
3159 { 0x0870, 0, 0x00000000, 0x77777777 },
3160 { 0x0874, 0, 0x00000000, 0x77777777 },
3162 { 0x0c00, 0, 0x00000000, 0x00000001 },
3163 { 0x0c04, 0, 0x00000000, 0x03ff0001 },
3164 { 0x0c08, 0, 0x0f0ff073, 0x00000000 },
3165 { 0x0c0c, 0, 0x00ffffff, 0x00000000 },
3166 { 0x0c30, 0, 0x00000000, 0xffffffff },
3167 { 0x0c34, 0, 0x00000000, 0xffffffff },
3168 { 0x0c38, 0, 0x00000000, 0xffffffff },
3169 { 0x0c3c, 0, 0x00000000, 0xffffffff },
3170 { 0x0c40, 0, 0x00000000, 0xffffffff },
3171 { 0x0c44, 0, 0x00000000, 0xffffffff },
3172 { 0x0c48, 0, 0x00000000, 0x0007ffff },
3173 { 0x0c4c, 0, 0x00000000, 0xffffffff },
3174 { 0x0c50, 0, 0x00000000, 0xffffffff },
3175 { 0x0c54, 0, 0x00000000, 0xffffffff },
3176 { 0x0c58, 0, 0x00000000, 0xffffffff },
3177 { 0x0c5c, 0, 0x00000000, 0xffffffff },
3178 { 0x0c60, 0, 0x00000000, 0xffffffff },
3179 { 0x0c64, 0, 0x00000000, 0xffffffff },
3180 { 0x0c68, 0, 0x00000000, 0xffffffff },
3181 { 0x0c6c, 0, 0x00000000, 0xffffffff },
3182 { 0x0c70, 0, 0x00000000, 0xffffffff },
3183 { 0x0c74, 0, 0x00000000, 0xffffffff },
3184 { 0x0c78, 0, 0x00000000, 0xffffffff },
3185 { 0x0c7c, 0, 0x00000000, 0xffffffff },
3186 { 0x0c80, 0, 0x00000000, 0xffffffff },
3187 { 0x0c84, 0, 0x00000000, 0xffffffff },
3188 { 0x0c88, 0, 0x00000000, 0xffffffff },
3189 { 0x0c8c, 0, 0x00000000, 0xffffffff },
3190 { 0x0c90, 0, 0x00000000, 0xffffffff },
3191 { 0x0c94, 0, 0x00000000, 0xffffffff },
3192 { 0x0c98, 0, 0x00000000, 0xffffffff },
3193 { 0x0c9c, 0, 0x00000000, 0xffffffff },
3194 { 0x0ca0, 0, 0x00000000, 0xffffffff },
3195 { 0x0ca4, 0, 0x00000000, 0xffffffff },
3196 { 0x0ca8, 0, 0x00000000, 0x0007ffff },
3197 { 0x0cac, 0, 0x00000000, 0xffffffff },
3198 { 0x0cb0, 0, 0x00000000, 0xffffffff },
3199 { 0x0cb4, 0, 0x00000000, 0xffffffff },
3200 { 0x0cb8, 0, 0x00000000, 0xffffffff },
3201 { 0x0cbc, 0, 0x00000000, 0xffffffff },
3202 { 0x0cc0, 0, 0x00000000, 0xffffffff },
3203 { 0x0cc4, 0, 0x00000000, 0xffffffff },
3204 { 0x0cc8, 0, 0x00000000, 0xffffffff },
3205 { 0x0ccc, 0, 0x00000000, 0xffffffff },
3206 { 0x0cd0, 0, 0x00000000, 0xffffffff },
3207 { 0x0cd4, 0, 0x00000000, 0xffffffff },
3208 { 0x0cd8, 0, 0x00000000, 0xffffffff },
3209 { 0x0cdc, 0, 0x00000000, 0xffffffff },
3210 { 0x0ce0, 0, 0x00000000, 0xffffffff },
3211 { 0x0ce4, 0, 0x00000000, 0xffffffff },
3212 { 0x0ce8, 0, 0x00000000, 0xffffffff },
3213 { 0x0cec, 0, 0x00000000, 0xffffffff },
3214 { 0x0cf0, 0, 0x00000000, 0xffffffff },
3215 { 0x0cf4, 0, 0x00000000, 0xffffffff },
3216 { 0x0cf8, 0, 0x00000000, 0xffffffff },
3217 { 0x0cfc, 0, 0x00000000, 0xffffffff },
3218 { 0x0d00, 0, 0x00000000, 0xffffffff },
3219 { 0x0d04, 0, 0x00000000, 0xffffffff },
3221 { 0x1000, 0, 0x00000000, 0x00000001 },
3222 { 0x1004, 0, 0x00000000, 0x000f0001 },
3223 { 0x1044, 0, 0x00000000, 0xffc003ff },
3224 { 0x1080, 0, 0x00000000, 0x0001ffff },
3225 { 0x1084, 0, 0x00000000, 0xffffffff },
3226 { 0x1088, 0, 0x00000000, 0xffffffff },
3227 { 0x108c, 0, 0x00000000, 0xffffffff },
3228 { 0x1090, 0, 0x00000000, 0xffffffff },
3229 { 0x1094, 0, 0x00000000, 0xffffffff },
3230 { 0x1098, 0, 0x00000000, 0xffffffff },
3231 { 0x109c, 0, 0x00000000, 0xffffffff },
3232 { 0x10a0, 0, 0x00000000, 0xffffffff },
3234 { 0x1408, 0, 0x01c00800, 0x00000000 },
3235 { 0x149c, 0, 0x8000ffff, 0x00000000 },
3236 { 0x14a8, 0, 0x00000000, 0x000001ff },
3237 { 0x14ac, 0, 0x4fffffff, 0x10000000 },
3238 { 0x14b0, 0, 0x00000002, 0x00000001 },
3239 { 0x14b8, 0, 0x00000000, 0x00000000 },
3240 { 0x14c0, 0, 0x00000000, 0x00000009 },
3241 { 0x14c4, 0, 0x00003fff, 0x00000000 },
3242 { 0x14cc, 0, 0x00000000, 0x00000001 },
3243 { 0x14d0, 0, 0xffffffff, 0x00000000 },
3244 { 0x1500, 0, 0x00000000, 0xffffffff },
3245 { 0x1504, 0, 0x00000000, 0xffffffff },
3246 { 0x1508, 0, 0x00000000, 0xffffffff },
3247 { 0x150c, 0, 0x00000000, 0xffffffff },
3248 { 0x1510, 0, 0x00000000, 0xffffffff },
3249 { 0x1514, 0, 0x00000000, 0xffffffff },
3250 { 0x1518, 0, 0x00000000, 0xffffffff },
3251 { 0x151c, 0, 0x00000000, 0xffffffff },
3252 { 0x1520, 0, 0x00000000, 0xffffffff },
3253 { 0x1524, 0, 0x00000000, 0xffffffff },
3254 { 0x1528, 0, 0x00000000, 0xffffffff },
3255 { 0x152c, 0, 0x00000000, 0xffffffff },
3256 { 0x1530, 0, 0x00000000, 0xffffffff },
3257 { 0x1534, 0, 0x00000000, 0xffffffff },
3258 { 0x1538, 0, 0x00000000, 0xffffffff },
3259 { 0x153c, 0, 0x00000000, 0xffffffff },
3260 { 0x1540, 0, 0x00000000, 0xffffffff },
3261 { 0x1544, 0, 0x00000000, 0xffffffff },
3262 { 0x1548, 0, 0x00000000, 0xffffffff },
3263 { 0x154c, 0, 0x00000000, 0xffffffff },
3264 { 0x1550, 0, 0x00000000, 0xffffffff },
3265 { 0x1554, 0, 0x00000000, 0xffffffff },
3266 { 0x1558, 0, 0x00000000, 0xffffffff },
3267 { 0x1600, 0, 0x00000000, 0xffffffff },
3268 { 0x1604, 0, 0x00000000, 0xffffffff },
3269 { 0x1608, 0, 0x00000000, 0xffffffff },
3270 { 0x160c, 0, 0x00000000, 0xffffffff },
3271 { 0x1610, 0, 0x00000000, 0xffffffff },
3272 { 0x1614, 0, 0x00000000, 0xffffffff },
3273 { 0x1618, 0, 0x00000000, 0xffffffff },
3274 { 0x161c, 0, 0x00000000, 0xffffffff },
3275 { 0x1620, 0, 0x00000000, 0xffffffff },
3276 { 0x1624, 0, 0x00000000, 0xffffffff },
3277 { 0x1628, 0, 0x00000000, 0xffffffff },
3278 { 0x162c, 0, 0x00000000, 0xffffffff },
3279 { 0x1630, 0, 0x00000000, 0xffffffff },
3280 { 0x1634, 0, 0x00000000, 0xffffffff },
3281 { 0x1638, 0, 0x00000000, 0xffffffff },
3282 { 0x163c, 0, 0x00000000, 0xffffffff },
3283 { 0x1640, 0, 0x00000000, 0xffffffff },
3284 { 0x1644, 0, 0x00000000, 0xffffffff },
3285 { 0x1648, 0, 0x00000000, 0xffffffff },
3286 { 0x164c, 0, 0x00000000, 0xffffffff },
3287 { 0x1650, 0, 0x00000000, 0xffffffff },
3288 { 0x1654, 0, 0x00000000, 0xffffffff },
3290 { 0x1800, 0, 0x00000000, 0x00000001 },
3291 { 0x1804, 0, 0x00000000, 0x00000003 },
3292 { 0x1840, 0, 0x00000000, 0xffffffff },
3293 { 0x1844, 0, 0x00000000, 0xffffffff },
3294 { 0x1848, 0, 0x00000000, 0xffffffff },
3295 { 0x184c, 0, 0x00000000, 0xffffffff },
3296 { 0x1850, 0, 0x00000000, 0xffffffff },
3297 { 0x1900, 0, 0x7ffbffff, 0x00000000 },
3298 { 0x1904, 0, 0xffffffff, 0x00000000 },
3299 { 0x190c, 0, 0xffffffff, 0x00000000 },
3300 { 0x1914, 0, 0xffffffff, 0x00000000 },
3301 { 0x191c, 0, 0xffffffff, 0x00000000 },
3302 { 0x1924, 0, 0xffffffff, 0x00000000 },
3303 { 0x192c, 0, 0xffffffff, 0x00000000 },
3304 { 0x1934, 0, 0xffffffff, 0x00000000 },
3305 { 0x193c, 0, 0xffffffff, 0x00000000 },
3306 { 0x1944, 0, 0xffffffff, 0x00000000 },
3307 { 0x194c, 0, 0xffffffff, 0x00000000 },
3308 { 0x1954, 0, 0xffffffff, 0x00000000 },
3309 { 0x195c, 0, 0xffffffff, 0x00000000 },
3310 { 0x1964, 0, 0xffffffff, 0x00000000 },
3311 { 0x196c, 0, 0xffffffff, 0x00000000 },
3312 { 0x1974, 0, 0xffffffff, 0x00000000 },
3313 { 0x197c, 0, 0xffffffff, 0x00000000 },
3314 { 0x1980, 0, 0x0700ffff, 0x00000000 },
3316 { 0x1c00, 0, 0x00000000, 0x00000001 },
3317 { 0x1c04, 0, 0x00000000, 0x00000003 },
3318 { 0x1c08, 0, 0x0000000f, 0x00000000 },
3319 { 0x1c40, 0, 0x00000000, 0xffffffff },
3320 { 0x1c44, 0, 0x00000000, 0xffffffff },
3321 { 0x1c48, 0, 0x00000000, 0xffffffff },
3322 { 0x1c4c, 0, 0x00000000, 0xffffffff },
3323 { 0x1c50, 0, 0x00000000, 0xffffffff },
3324 { 0x1d00, 0, 0x7ffbffff, 0x00000000 },
3325 { 0x1d04, 0, 0xffffffff, 0x00000000 },
3326 { 0x1d0c, 0, 0xffffffff, 0x00000000 },
3327 { 0x1d14, 0, 0xffffffff, 0x00000000 },
3328 { 0x1d1c, 0, 0xffffffff, 0x00000000 },
3329 { 0x1d24, 0, 0xffffffff, 0x00000000 },
3330 { 0x1d2c, 0, 0xffffffff, 0x00000000 },
3331 { 0x1d34, 0, 0xffffffff, 0x00000000 },
3332 { 0x1d3c, 0, 0xffffffff, 0x00000000 },
3333 { 0x1d44, 0, 0xffffffff, 0x00000000 },
3334 { 0x1d4c, 0, 0xffffffff, 0x00000000 },
3335 { 0x1d54, 0, 0xffffffff, 0x00000000 },
3336 { 0x1d5c, 0, 0xffffffff, 0x00000000 },
3337 { 0x1d64, 0, 0xffffffff, 0x00000000 },
3338 { 0x1d6c, 0, 0xffffffff, 0x00000000 },
3339 { 0x1d74, 0, 0xffffffff, 0x00000000 },
3340 { 0x1d7c, 0, 0xffffffff, 0x00000000 },
3341 { 0x1d80, 0, 0x0700ffff, 0x00000000 },
3343 { 0x2004, 0, 0x00000000, 0x0337000f },
3344 { 0x2008, 0, 0xffffffff, 0x00000000 },
3345 { 0x200c, 0, 0xffffffff, 0x00000000 },
3346 { 0x2010, 0, 0xffffffff, 0x00000000 },
3347 { 0x2014, 0, 0x801fff80, 0x00000000 },
3348 { 0x2018, 0, 0x000003ff, 0x00000000 },
3350 { 0x2800, 0, 0x00000000, 0x00000001 },
3351 { 0x2804, 0, 0x00000000, 0x00003f01 },
3352 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
3353 { 0x2810, 0, 0xffff0000, 0x00000000 },
3354 { 0x2814, 0, 0xffff0000, 0x00000000 },
3355 { 0x2818, 0, 0xffff0000, 0x00000000 },
3356 { 0x281c, 0, 0xffff0000, 0x00000000 },
3357 { 0x2834, 0, 0xffffffff, 0x00000000 },
3358 { 0x2840, 0, 0x00000000, 0xffffffff },
3359 { 0x2844, 0, 0x00000000, 0xffffffff },
3360 { 0x2848, 0, 0xffffffff, 0x00000000 },
3361 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
3363 { 0x2c00, 0, 0x00000000, 0x00000011 },
3364 { 0x2c04, 0, 0x00000000, 0x00030007 },
3366 { 0x3000, 0, 0x00000000, 0x00000001 },
3367 { 0x3004, 0, 0x00000000, 0x007007ff },
3368 { 0x3008, 0, 0x00000003, 0x00000000 },
3369 { 0x300c, 0, 0xffffffff, 0x00000000 },
3370 { 0x3010, 0, 0xffffffff, 0x00000000 },
3371 { 0x3014, 0, 0xffffffff, 0x00000000 },
3372 { 0x3034, 0, 0xffffffff, 0x00000000 },
3373 { 0x3038, 0, 0xffffffff, 0x00000000 },
3374 { 0x3050, 0, 0x00000001, 0x00000000 },
3376 { 0x3c00, 0, 0x00000000, 0x00000001 },
3377 { 0x3c04, 0, 0x00000000, 0x00070000 },
3378 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
3379 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
3380 { 0x3c10, 0, 0xffffffff, 0x00000000 },
3381 { 0x3c14, 0, 0x00000000, 0xffffffff },
3382 { 0x3c18, 0, 0x00000000, 0xffffffff },
3383 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
3384 { 0x3c20, 0, 0xffffff00, 0x00000000 },
3385 { 0x3c24, 0, 0xffffffff, 0x00000000 },
3386 { 0x3c28, 0, 0xffffffff, 0x00000000 },
3387 { 0x3c2c, 0, 0xffffffff, 0x00000000 },
3388 { 0x3c30, 0, 0xffffffff, 0x00000000 },
3389 { 0x3c34, 0, 0xffffffff, 0x00000000 },
3390 { 0x3c38, 0, 0xffffffff, 0x00000000 },
3391 { 0x3c3c, 0, 0xffffffff, 0x00000000 },
3392 { 0x3c40, 0, 0xffffffff, 0x00000000 },
3393 { 0x3c44, 0, 0xffffffff, 0x00000000 },
3394 { 0x3c48, 0, 0xffffffff, 0x00000000 },
3395 { 0x3c4c, 0, 0xffffffff, 0x00000000 },
3396 { 0x3c50, 0, 0xffffffff, 0x00000000 },
3397 { 0x3c54, 0, 0xffffffff, 0x00000000 },
3398 { 0x3c58, 0, 0xffffffff, 0x00000000 },
3399 { 0x3c5c, 0, 0xffffffff, 0x00000000 },
3400 { 0x3c60, 0, 0xffffffff, 0x00000000 },
3401 { 0x3c64, 0, 0xffffffff, 0x00000000 },
3402 { 0x3c68, 0, 0xffffffff, 0x00000000 },
3403 { 0x3c6c, 0, 0xffffffff, 0x00000000 },
3404 { 0x3c70, 0, 0xffffffff, 0x00000000 },
3405 { 0x3c74, 0, 0x0000003f, 0x00000000 },
3406 { 0x3c78, 0, 0x00000000, 0x00000000 },
3407 { 0x3c7c, 0, 0x00000000, 0x00000000 },
3408 { 0x3c80, 0, 0x3fffffff, 0x00000000 },
3409 { 0x3c84, 0, 0x0000003f, 0x00000000 },
3410 { 0x3c88, 0, 0x00000000, 0xffffffff },
3411 { 0x3c8c, 0, 0x00000000, 0xffffffff },
3413 { 0x4000, 0, 0x00000000, 0x00000001 },
3414 { 0x4004, 0, 0x00000000, 0x00030000 },
3415 { 0x4008, 0, 0x00000ff0, 0x00000000 },
3416 { 0x400c, 0, 0xffffffff, 0x00000000 },
3417 { 0x4088, 0, 0x00000000, 0x00070303 },
3419 { 0x4400, 0, 0x00000000, 0x00000001 },
3420 { 0x4404, 0, 0x00000000, 0x00003f01 },
3421 { 0x4408, 0, 0x7fff00ff, 0x00000000 },
3422 { 0x440c, 0, 0xffffffff, 0x00000000 },
3423 { 0x4410, 0, 0xffff, 0x0000 },
3424 { 0x4414, 0, 0xffff, 0x0000 },
3425 { 0x4418, 0, 0xffff, 0x0000 },
3426 { 0x441c, 0, 0xffff, 0x0000 },
3427 { 0x4428, 0, 0xffffffff, 0x00000000 },
3428 { 0x442c, 0, 0xffffffff, 0x00000000 },
3429 { 0x4430, 0, 0xffffffff, 0x00000000 },
3430 { 0x4434, 0, 0xffffffff, 0x00000000 },
3431 { 0x4438, 0, 0xffffffff, 0x00000000 },
3432 { 0x443c, 0, 0xffffffff, 0x00000000 },
3433 { 0x4440, 0, 0xffffffff, 0x00000000 },
3434 { 0x4444, 0, 0xffffffff, 0x00000000 },
3436 { 0x4c00, 0, 0x00000000, 0x00000001 },
3437 { 0x4c04, 0, 0x00000000, 0x0000003f },
3438 { 0x4c08, 0, 0xffffffff, 0x00000000 },
3439 { 0x4c0c, 0, 0x0007fc00, 0x00000000 },
3440 { 0x4c10, 0, 0x80003fe0, 0x00000000 },
3441 { 0x4c14, 0, 0xffffffff, 0x00000000 },
3442 { 0x4c44, 0, 0x00000000, 0x9fff9fff },
3443 { 0x4c48, 0, 0x00000000, 0xb3009fff },
3444 { 0x4c4c, 0, 0x00000000, 0x77f33b30 },
3445 { 0x4c50, 0, 0x00000000, 0xffffffff },
3447 { 0x5004, 0, 0x00000000, 0x0000007f },
3448 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
3449 { 0x500c, 0, 0xf800f800, 0x07ff07ff },
3451 { 0x5400, 0, 0x00000008, 0x00000001 },
3452 { 0x5404, 0, 0x00000000, 0x0000003f },
3453 { 0x5408, 0, 0x0000001f, 0x00000000 },
3454 { 0x540c, 0, 0xffffffff, 0x00000000 },
3455 { 0x5410, 0, 0xffffffff, 0x00000000 },
3456 { 0x5414, 0, 0x0000ffff, 0x00000000 },
3457 { 0x5418, 0, 0x0000ffff, 0x00000000 },
3458 { 0x541c, 0, 0x0000ffff, 0x00000000 },
3459 { 0x5420, 0, 0x0000ffff, 0x00000000 },
3460 { 0x5428, 0, 0x000000ff, 0x00000000 },
3461 { 0x542c, 0, 0xff00ffff, 0x00000000 },
3462 { 0x5430, 0, 0x001fff80, 0x00000000 },
3463 { 0x5438, 0, 0xffffffff, 0x00000000 },
3464 { 0x543c, 0, 0xffffffff, 0x00000000 },
3465 { 0x5440, 0, 0xf800f800, 0x07ff07ff },
3467 { 0x5c00, 0, 0x00000000, 0x00000001 },
3468 { 0x5c04, 0, 0x00000000, 0x0003000f },
3469 { 0x5c08, 0, 0x00000003, 0x00000000 },
3470 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
3471 { 0x5c10, 0, 0x00000000, 0xffffffff },
3472 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
3473 { 0x5c84, 0, 0x00000000, 0x0000f333 },
3474 { 0x5c88, 0, 0x00000000, 0x00077373 },
3475 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
3477 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
3478 { 0x680c, 0, 0xffffffff, 0x00000000 },
3479 { 0x6810, 0, 0xffffffff, 0x00000000 },
3480 { 0x6814, 0, 0xffffffff, 0x00000000 },
3481 { 0x6818, 0, 0xffffffff, 0x00000000 },
3482 { 0x681c, 0, 0xffffffff, 0x00000000 },
3483 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
3484 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
3485 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
3486 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
3487 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
3488 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
3489 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
3490 { 0x683c, 0, 0x0000ffff, 0x00000000 },
3491 { 0x6840, 0, 0x00000ff0, 0x00000000 },
3492 { 0x6844, 0, 0x00ffff00, 0x00000000 },
3493 { 0x684c, 0, 0xffffffff, 0x00000000 },
3494 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
3495 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
3496 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
3497 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
3498 { 0x6908, 0, 0x00000000, 0x0001ff0f },
3499 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
3501 { 0xffff, 0, 0x00000000, 0x00000000 },
3505 for (i
= 0; reg_tbl
[i
].offset
!= 0xffff; i
++) {
3506 u32 offset
, rw_mask
, ro_mask
, save_val
, val
;
3508 offset
= (u32
) reg_tbl
[i
].offset
;
3509 rw_mask
= reg_tbl
[i
].rw_mask
;
3510 ro_mask
= reg_tbl
[i
].ro_mask
;
3512 save_val
= readl(bp
->regview
+ offset
);
3514 writel(0, bp
->regview
+ offset
);
3516 val
= readl(bp
->regview
+ offset
);
3517 if ((val
& rw_mask
) != 0) {
3521 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
3525 writel(0xffffffff, bp
->regview
+ offset
);
3527 val
= readl(bp
->regview
+ offset
);
3528 if ((val
& rw_mask
) != rw_mask
) {
3532 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
3536 writel(save_val
, bp
->regview
+ offset
);
3540 writel(save_val
, bp
->regview
+ offset
);
3548 bnx2_do_mem_test(struct bnx2
*bp
, u32 start
, u32 size
)
3550 static u32 test_pattern
[] = { 0x00000000, 0xffffffff, 0x55555555,
3551 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
3554 for (i
= 0; i
< sizeof(test_pattern
) / 4; i
++) {
3557 for (offset
= 0; offset
< size
; offset
+= 4) {
3559 REG_WR_IND(bp
, start
+ offset
, test_pattern
[i
]);
3561 if (REG_RD_IND(bp
, start
+ offset
) !=
3571 bnx2_test_memory(struct bnx2
*bp
)
3579 { 0x60000, 0x4000 },
3580 { 0xa0000, 0x4000 },
3581 { 0xe0000, 0x4000 },
3582 { 0x120000, 0x4000 },
3583 { 0x1a0000, 0x4000 },
3584 { 0x160000, 0x4000 },
3588 for (i
= 0; mem_tbl
[i
].offset
!= 0xffffffff; i
++) {
3589 if ((ret
= bnx2_do_mem_test(bp
, mem_tbl
[i
].offset
,
3590 mem_tbl
[i
].len
)) != 0) {
3599 bnx2_test_loopback(struct bnx2
*bp
)
3601 unsigned int pkt_size
, num_pkts
, i
;
3602 struct sk_buff
*skb
, *rx_skb
;
3603 unsigned char *packet
;
3604 u16 rx_start_idx
, rx_idx
, send_idx
;
3608 struct sw_bd
*rx_buf
;
3609 struct l2_fhdr
*rx_hdr
;
3612 if (!netif_running(bp
->dev
))
3615 bp
->loopback
= MAC_LOOPBACK
;
3616 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_DIAG
);
3617 bnx2_set_mac_loopback(bp
);
3620 skb
= dev_alloc_skb(pkt_size
);
3621 packet
= skb_put(skb
, pkt_size
);
3622 memcpy(packet
, bp
->mac_addr
, 6);
3623 memset(packet
+ 6, 0x0, 8);
3624 for (i
= 14; i
< pkt_size
; i
++)
3625 packet
[i
] = (unsigned char) (i
& 0xff);
3627 map
= pci_map_single(bp
->pdev
, skb
->data
, pkt_size
,
3630 val
= REG_RD(bp
, BNX2_HC_COMMAND
);
3631 REG_WR(bp
, BNX2_HC_COMMAND
, val
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
3632 REG_RD(bp
, BNX2_HC_COMMAND
);
3635 rx_start_idx
= bp
->status_blk
->status_rx_quick_consumer_index0
;
3641 txbd
= &bp
->tx_desc_ring
[send_idx
];
3643 txbd
->tx_bd_haddr_hi
= (u64
) map
>> 32;
3644 txbd
->tx_bd_haddr_lo
= (u64
) map
& 0xffffffff;
3645 txbd
->tx_bd_mss_nbytes
= pkt_size
;
3646 txbd
->tx_bd_vlan_tag_flags
= TX_BD_FLAGS_START
| TX_BD_FLAGS_END
;
3649 send_idx
= NEXT_TX_BD(send_idx
);
3651 send_bseq
+= pkt_size
;
3653 REG_WR16(bp
, MB_TX_CID_ADDR
+ BNX2_L2CTX_TX_HOST_BIDX
, send_idx
);
3654 REG_WR(bp
, MB_TX_CID_ADDR
+ BNX2_L2CTX_TX_HOST_BSEQ
, send_bseq
);
3659 val
= REG_RD(bp
, BNX2_HC_COMMAND
);
3660 REG_WR(bp
, BNX2_HC_COMMAND
, val
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
3661 REG_RD(bp
, BNX2_HC_COMMAND
);
3665 pci_unmap_single(bp
->pdev
, map
, pkt_size
, PCI_DMA_TODEVICE
);
3666 dev_kfree_skb_irq(skb
);
3668 if (bp
->status_blk
->status_tx_quick_consumer_index0
!= send_idx
) {
3669 goto loopback_test_done
;
3672 rx_idx
= bp
->status_blk
->status_rx_quick_consumer_index0
;
3673 if (rx_idx
!= rx_start_idx
+ num_pkts
) {
3674 goto loopback_test_done
;
3677 rx_buf
= &bp
->rx_buf_ring
[rx_start_idx
];
3678 rx_skb
= rx_buf
->skb
;
3680 rx_hdr
= (struct l2_fhdr
*) rx_skb
->data
;
3681 skb_reserve(rx_skb
, bp
->rx_offset
);
3683 pci_dma_sync_single_for_cpu(bp
->pdev
,
3684 pci_unmap_addr(rx_buf
, mapping
),
3685 bp
->rx_buf_size
, PCI_DMA_FROMDEVICE
);
3687 if (rx_hdr
->l2_fhdr_errors
&
3688 (L2_FHDR_ERRORS_BAD_CRC
|
3689 L2_FHDR_ERRORS_PHY_DECODE
|
3690 L2_FHDR_ERRORS_ALIGNMENT
|
3691 L2_FHDR_ERRORS_TOO_SHORT
|
3692 L2_FHDR_ERRORS_GIANT_FRAME
)) {
3694 goto loopback_test_done
;
3697 if ((rx_hdr
->l2_fhdr_pkt_len
- 4) != pkt_size
) {
3698 goto loopback_test_done
;
3701 for (i
= 14; i
< pkt_size
; i
++) {
3702 if (*(rx_skb
->data
+ i
) != (unsigned char) (i
& 0xff)) {
3703 goto loopback_test_done
;
3714 #define NVRAM_SIZE 0x200
3715 #define CRC32_RESIDUAL 0xdebb20e3
3718 bnx2_test_nvram(struct bnx2
*bp
)
3720 u32 buf
[NVRAM_SIZE
/ 4];
3721 u8
*data
= (u8
*) buf
;
3725 if ((rc
= bnx2_nvram_read(bp
, 0, data
, 4)) != 0)
3726 goto test_nvram_done
;
3728 magic
= be32_to_cpu(buf
[0]);
3729 if (magic
!= 0x669955aa) {
3731 goto test_nvram_done
;
3734 if ((rc
= bnx2_nvram_read(bp
, 0x100, data
, NVRAM_SIZE
)) != 0)
3735 goto test_nvram_done
;
3737 csum
= ether_crc_le(0x100, data
);
3738 if (csum
!= CRC32_RESIDUAL
) {
3740 goto test_nvram_done
;
3743 csum
= ether_crc_le(0x100, data
+ 0x100);
3744 if (csum
!= CRC32_RESIDUAL
) {
3753 bnx2_test_link(struct bnx2
*bp
)
3757 spin_lock_bh(&bp
->phy_lock
);
3758 bnx2_read_phy(bp
, MII_BMSR
, &bmsr
);
3759 bnx2_read_phy(bp
, MII_BMSR
, &bmsr
);
3760 spin_unlock_bh(&bp
->phy_lock
);
3762 if (bmsr
& BMSR_LSTATUS
) {
3769 bnx2_test_intr(struct bnx2
*bp
)
3775 if (!netif_running(bp
->dev
))
3778 status_idx
= REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff;
3780 /* This register is not touched during run-time. */
3781 val
= REG_RD(bp
, BNX2_HC_COMMAND
);
3782 REG_WR(bp
, BNX2_HC_COMMAND
, val
| BNX2_HC_COMMAND_COAL_NOW
);
3783 REG_RD(bp
, BNX2_HC_COMMAND
);
3785 for (i
= 0; i
< 10; i
++) {
3786 if ((REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff) !=
3792 msleep_interruptible(10);
3801 bnx2_timer(unsigned long data
)
3803 struct bnx2
*bp
= (struct bnx2
*) data
;
3806 if (!netif_running(bp
->dev
))
3809 if (atomic_read(&bp
->intr_sem
) != 0)
3810 goto bnx2_restart_timer
;
3812 msg
= (u32
) ++bp
->fw_drv_pulse_wr_seq
;
3813 REG_WR_IND(bp
, HOST_VIEW_SHMEM_BASE
+ BNX2_DRV_PULSE_MB
, msg
);
3815 if ((bp
->phy_flags
& PHY_SERDES_FLAG
) &&
3816 (CHIP_NUM(bp
) == CHIP_NUM_5706
)) {
3818 spin_lock(&bp
->phy_lock
);
3819 if (bp
->serdes_an_pending
) {
3820 bp
->serdes_an_pending
--;
3822 else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
3825 bp
->current_interval
= bp
->timer_interval
;
3827 bnx2_read_phy(bp
, MII_BMCR
, &bmcr
);
3829 if (bmcr
& BMCR_ANENABLE
) {
3832 bnx2_write_phy(bp
, 0x1c, 0x7c00);
3833 bnx2_read_phy(bp
, 0x1c, &phy1
);
3835 bnx2_write_phy(bp
, 0x17, 0x0f01);
3836 bnx2_read_phy(bp
, 0x15, &phy2
);
3837 bnx2_write_phy(bp
, 0x17, 0x0f01);
3838 bnx2_read_phy(bp
, 0x15, &phy2
);
3840 if ((phy1
& 0x10) && /* SIGNAL DETECT */
3841 !(phy2
& 0x20)) { /* no CONFIG */
3843 bmcr
&= ~BMCR_ANENABLE
;
3844 bmcr
|= BMCR_SPEED1000
|
3846 bnx2_write_phy(bp
, MII_BMCR
, bmcr
);
3848 PHY_PARALLEL_DETECT_FLAG
;
3852 else if ((bp
->link_up
) && (bp
->autoneg
& AUTONEG_SPEED
) &&
3853 (bp
->phy_flags
& PHY_PARALLEL_DETECT_FLAG
)) {
3856 bnx2_write_phy(bp
, 0x17, 0x0f01);
3857 bnx2_read_phy(bp
, 0x15, &phy2
);
3861 bnx2_read_phy(bp
, MII_BMCR
, &bmcr
);
3862 bmcr
|= BMCR_ANENABLE
;
3863 bnx2_write_phy(bp
, MII_BMCR
, bmcr
);
3865 bp
->phy_flags
&= ~PHY_PARALLEL_DETECT_FLAG
;
3870 bp
->current_interval
= bp
->timer_interval
;
3872 spin_unlock(&bp
->phy_lock
);
3876 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
3879 /* Called with rtnl_lock */
3881 bnx2_open(struct net_device
*dev
)
3883 struct bnx2
*bp
= dev
->priv
;
3886 bnx2_set_power_state(bp
, PCI_D0
);
3887 bnx2_disable_int(bp
);
3889 rc
= bnx2_alloc_mem(bp
);
3893 if ((CHIP_ID(bp
) != CHIP_ID_5706_A0
) &&
3894 (CHIP_ID(bp
) != CHIP_ID_5706_A1
) &&
3897 if (pci_enable_msi(bp
->pdev
) == 0) {
3898 bp
->flags
|= USING_MSI_FLAG
;
3899 rc
= request_irq(bp
->pdev
->irq
, bnx2_msi
, 0, dev
->name
,
3903 rc
= request_irq(bp
->pdev
->irq
, bnx2_interrupt
,
3904 SA_SHIRQ
, dev
->name
, dev
);
3908 rc
= request_irq(bp
->pdev
->irq
, bnx2_interrupt
, SA_SHIRQ
,
3916 rc
= bnx2_init_nic(bp
);
3919 free_irq(bp
->pdev
->irq
, dev
);
3920 if (bp
->flags
& USING_MSI_FLAG
) {
3921 pci_disable_msi(bp
->pdev
);
3922 bp
->flags
&= ~USING_MSI_FLAG
;
3929 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
3931 atomic_set(&bp
->intr_sem
, 0);
3933 bnx2_enable_int(bp
);
3935 if (bp
->flags
& USING_MSI_FLAG
) {
3936 /* Test MSI to make sure it is working
3937 * If MSI test fails, go back to INTx mode
3939 if (bnx2_test_intr(bp
) != 0) {
3940 printk(KERN_WARNING PFX
"%s: No interrupt was generated"
3941 " using MSI, switching to INTx mode. Please"
3942 " report this failure to the PCI maintainer"
3943 " and include system chipset information.\n",
3946 bnx2_disable_int(bp
);
3947 free_irq(bp
->pdev
->irq
, dev
);
3948 pci_disable_msi(bp
->pdev
);
3949 bp
->flags
&= ~USING_MSI_FLAG
;
3951 rc
= bnx2_init_nic(bp
);
3954 rc
= request_irq(bp
->pdev
->irq
, bnx2_interrupt
,
3955 SA_SHIRQ
, dev
->name
, dev
);
3960 del_timer_sync(&bp
->timer
);
3963 bnx2_enable_int(bp
);
3966 if (bp
->flags
& USING_MSI_FLAG
) {
3967 printk(KERN_INFO PFX
"%s: using MSI\n", dev
->name
);
3970 netif_start_queue(dev
);
3976 bnx2_reset_task(void *data
)
3978 struct bnx2
*bp
= data
;
3980 if (!netif_running(bp
->dev
))
3983 bp
->in_reset_task
= 1;
3984 bnx2_netif_stop(bp
);
3988 atomic_set(&bp
->intr_sem
, 1);
3989 bnx2_netif_start(bp
);
3990 bp
->in_reset_task
= 0;
3994 bnx2_tx_timeout(struct net_device
*dev
)
3996 struct bnx2
*bp
= dev
->priv
;
3998 /* This allows the netif to be shutdown gracefully before resetting */
3999 schedule_work(&bp
->reset_task
);
4003 /* Called with rtnl_lock */
4005 bnx2_vlan_rx_register(struct net_device
*dev
, struct vlan_group
*vlgrp
)
4007 struct bnx2
*bp
= dev
->priv
;
4009 bnx2_netif_stop(bp
);
4012 bnx2_set_rx_mode(dev
);
4014 bnx2_netif_start(bp
);
4017 /* Called with rtnl_lock */
4019 bnx2_vlan_rx_kill_vid(struct net_device
*dev
, uint16_t vid
)
4021 struct bnx2
*bp
= dev
->priv
;
4023 bnx2_netif_stop(bp
);
4026 bp
->vlgrp
->vlan_devices
[vid
] = NULL
;
4027 bnx2_set_rx_mode(dev
);
4029 bnx2_netif_start(bp
);
4033 /* Called with dev->xmit_lock.
4034 * hard_start_xmit is pseudo-lockless - a lock is only required when
4035 * the tx queue is full. This way, we get the benefit of lockless
4036 * operations most of the time without the complexities to handle
4037 * netif_stop_queue/wake_queue race conditions.
4040 bnx2_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
4042 struct bnx2
*bp
= dev
->priv
;
4045 struct sw_bd
*tx_buf
;
4046 u32 len
, vlan_tag_flags
, last_frag
, mss
;
4047 u16 prod
, ring_prod
;
4050 if (unlikely(bnx2_tx_avail(bp
) < (skb_shinfo(skb
)->nr_frags
+ 1))) {
4051 netif_stop_queue(dev
);
4052 printk(KERN_ERR PFX
"%s: BUG! Tx ring full when queue awake!\n",
4055 return NETDEV_TX_BUSY
;
4057 len
= skb_headlen(skb
);
4059 ring_prod
= TX_RING_IDX(prod
);
4062 if (skb
->ip_summed
== CHECKSUM_HW
) {
4063 vlan_tag_flags
|= TX_BD_FLAGS_TCP_UDP_CKSUM
;
4066 if (bp
->vlgrp
!= 0 && vlan_tx_tag_present(skb
)) {
4068 (TX_BD_FLAGS_VLAN_TAG
| (vlan_tx_tag_get(skb
) << 16));
4071 if ((mss
= skb_shinfo(skb
)->tso_size
) &&
4072 (skb
->len
> (bp
->dev
->mtu
+ ETH_HLEN
))) {
4073 u32 tcp_opt_len
, ip_tcp_len
;
4075 if (skb_header_cloned(skb
) &&
4076 pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
)) {
4078 return NETDEV_TX_OK
;
4081 tcp_opt_len
= ((skb
->h
.th
->doff
- 5) * 4);
4082 vlan_tag_flags
|= TX_BD_FLAGS_SW_LSO
;
4085 if (skb
->h
.th
->doff
> 5) {
4086 tcp_opt_len
= (skb
->h
.th
->doff
- 5) << 2;
4088 ip_tcp_len
= (skb
->nh
.iph
->ihl
<< 2) + sizeof(struct tcphdr
);
4090 skb
->nh
.iph
->check
= 0;
4091 skb
->nh
.iph
->tot_len
= ntohs(mss
+ ip_tcp_len
+ tcp_opt_len
);
4093 ~csum_tcpudp_magic(skb
->nh
.iph
->saddr
,
4097 if (tcp_opt_len
|| (skb
->nh
.iph
->ihl
> 5)) {
4098 vlan_tag_flags
|= ((skb
->nh
.iph
->ihl
- 5) +
4099 (tcp_opt_len
>> 2)) << 8;
4108 mapping
= pci_map_single(bp
->pdev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
4110 tx_buf
= &bp
->tx_buf_ring
[ring_prod
];
4112 pci_unmap_addr_set(tx_buf
, mapping
, mapping
);
4114 txbd
= &bp
->tx_desc_ring
[ring_prod
];
4116 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
4117 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
4118 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
4119 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
| TX_BD_FLAGS_START
;
4121 last_frag
= skb_shinfo(skb
)->nr_frags
;
4123 for (i
= 0; i
< last_frag
; i
++) {
4124 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
4126 prod
= NEXT_TX_BD(prod
);
4127 ring_prod
= TX_RING_IDX(prod
);
4128 txbd
= &bp
->tx_desc_ring
[ring_prod
];
4131 mapping
= pci_map_page(bp
->pdev
, frag
->page
, frag
->page_offset
,
4132 len
, PCI_DMA_TODEVICE
);
4133 pci_unmap_addr_set(&bp
->tx_buf_ring
[ring_prod
],
4136 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
4137 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
4138 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
4139 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
;
4142 txbd
->tx_bd_vlan_tag_flags
|= TX_BD_FLAGS_END
;
4144 prod
= NEXT_TX_BD(prod
);
4145 bp
->tx_prod_bseq
+= skb
->len
;
4147 REG_WR16(bp
, MB_TX_CID_ADDR
+ BNX2_L2CTX_TX_HOST_BIDX
, prod
);
4148 REG_WR(bp
, MB_TX_CID_ADDR
+ BNX2_L2CTX_TX_HOST_BSEQ
, bp
->tx_prod_bseq
);
4153 dev
->trans_start
= jiffies
;
4155 if (unlikely(bnx2_tx_avail(bp
) <= MAX_SKB_FRAGS
)) {
4156 spin_lock(&bp
->tx_lock
);
4157 netif_stop_queue(dev
);
4159 if (bnx2_tx_avail(bp
) > MAX_SKB_FRAGS
)
4160 netif_wake_queue(dev
);
4161 spin_unlock(&bp
->tx_lock
);
4164 return NETDEV_TX_OK
;
4167 /* Called with rtnl_lock */
4169 bnx2_close(struct net_device
*dev
)
4171 struct bnx2
*bp
= dev
->priv
;
4174 /* Calling flush_scheduled_work() may deadlock because
4175 * linkwatch_event() may be on the workqueue and it will try to get
4176 * the rtnl_lock which we are holding.
4178 while (bp
->in_reset_task
)
4181 bnx2_netif_stop(bp
);
4182 del_timer_sync(&bp
->timer
);
4184 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
4186 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
4187 bnx2_reset_chip(bp
, reset_code
);
4188 free_irq(bp
->pdev
->irq
, dev
);
4189 if (bp
->flags
& USING_MSI_FLAG
) {
4190 pci_disable_msi(bp
->pdev
);
4191 bp
->flags
&= ~USING_MSI_FLAG
;
4196 netif_carrier_off(bp
->dev
);
4197 bnx2_set_power_state(bp
, PCI_D3hot
);
4201 #define GET_NET_STATS64(ctr) \
4202 (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
4203 (unsigned long) (ctr##_lo)
4205 #define GET_NET_STATS32(ctr) \
4208 #if (BITS_PER_LONG == 64)
4209 #define GET_NET_STATS GET_NET_STATS64
4211 #define GET_NET_STATS GET_NET_STATS32
4214 static struct net_device_stats
*
4215 bnx2_get_stats(struct net_device
*dev
)
4217 struct bnx2
*bp
= dev
->priv
;
4218 struct statistics_block
*stats_blk
= bp
->stats_blk
;
4219 struct net_device_stats
*net_stats
= &bp
->net_stats
;
4221 if (bp
->stats_blk
== NULL
) {
4224 net_stats
->rx_packets
=
4225 GET_NET_STATS(stats_blk
->stat_IfHCInUcastPkts
) +
4226 GET_NET_STATS(stats_blk
->stat_IfHCInMulticastPkts
) +
4227 GET_NET_STATS(stats_blk
->stat_IfHCInBroadcastPkts
);
4229 net_stats
->tx_packets
=
4230 GET_NET_STATS(stats_blk
->stat_IfHCOutUcastPkts
) +
4231 GET_NET_STATS(stats_blk
->stat_IfHCOutMulticastPkts
) +
4232 GET_NET_STATS(stats_blk
->stat_IfHCOutBroadcastPkts
);
4234 net_stats
->rx_bytes
=
4235 GET_NET_STATS(stats_blk
->stat_IfHCInOctets
);
4237 net_stats
->tx_bytes
=
4238 GET_NET_STATS(stats_blk
->stat_IfHCOutOctets
);
4240 net_stats
->multicast
=
4241 GET_NET_STATS(stats_blk
->stat_IfHCOutMulticastPkts
);
4243 net_stats
->collisions
=
4244 (unsigned long) stats_blk
->stat_EtherStatsCollisions
;
4246 net_stats
->rx_length_errors
=
4247 (unsigned long) (stats_blk
->stat_EtherStatsUndersizePkts
+
4248 stats_blk
->stat_EtherStatsOverrsizePkts
);
4250 net_stats
->rx_over_errors
=
4251 (unsigned long) stats_blk
->stat_IfInMBUFDiscards
;
4253 net_stats
->rx_frame_errors
=
4254 (unsigned long) stats_blk
->stat_Dot3StatsAlignmentErrors
;
4256 net_stats
->rx_crc_errors
=
4257 (unsigned long) stats_blk
->stat_Dot3StatsFCSErrors
;
4259 net_stats
->rx_errors
= net_stats
->rx_length_errors
+
4260 net_stats
->rx_over_errors
+ net_stats
->rx_frame_errors
+
4261 net_stats
->rx_crc_errors
;
4263 net_stats
->tx_aborted_errors
=
4264 (unsigned long) (stats_blk
->stat_Dot3StatsExcessiveCollisions
+
4265 stats_blk
->stat_Dot3StatsLateCollisions
);
4267 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
4268 net_stats
->tx_carrier_errors
= 0;
4270 net_stats
->tx_carrier_errors
=
4272 stats_blk
->stat_Dot3StatsCarrierSenseErrors
;
4275 net_stats
->tx_errors
=
4277 stats_blk
->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
4279 net_stats
->tx_aborted_errors
+
4280 net_stats
->tx_carrier_errors
;
4285 /* All ethtool functions called with rtnl_lock */
4288 bnx2_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
4290 struct bnx2
*bp
= dev
->priv
;
4292 cmd
->supported
= SUPPORTED_Autoneg
;
4293 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
4294 cmd
->supported
|= SUPPORTED_1000baseT_Full
|
4297 cmd
->port
= PORT_FIBRE
;
4300 cmd
->supported
|= SUPPORTED_10baseT_Half
|
4301 SUPPORTED_10baseT_Full
|
4302 SUPPORTED_100baseT_Half
|
4303 SUPPORTED_100baseT_Full
|
4304 SUPPORTED_1000baseT_Full
|
4307 cmd
->port
= PORT_TP
;
4310 cmd
->advertising
= bp
->advertising
;
4312 if (bp
->autoneg
& AUTONEG_SPEED
) {
4313 cmd
->autoneg
= AUTONEG_ENABLE
;
4316 cmd
->autoneg
= AUTONEG_DISABLE
;
4319 if (netif_carrier_ok(dev
)) {
4320 cmd
->speed
= bp
->line_speed
;
4321 cmd
->duplex
= bp
->duplex
;
4328 cmd
->transceiver
= XCVR_INTERNAL
;
4329 cmd
->phy_address
= bp
->phy_addr
;
4335 bnx2_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
4337 struct bnx2
*bp
= dev
->priv
;
4338 u8 autoneg
= bp
->autoneg
;
4339 u8 req_duplex
= bp
->req_duplex
;
4340 u16 req_line_speed
= bp
->req_line_speed
;
4341 u32 advertising
= bp
->advertising
;
4343 if (cmd
->autoneg
== AUTONEG_ENABLE
) {
4344 autoneg
|= AUTONEG_SPEED
;
4346 cmd
->advertising
&= ETHTOOL_ALL_COPPER_SPEED
;
4348 /* allow advertising 1 speed */
4349 if ((cmd
->advertising
== ADVERTISED_10baseT_Half
) ||
4350 (cmd
->advertising
== ADVERTISED_10baseT_Full
) ||
4351 (cmd
->advertising
== ADVERTISED_100baseT_Half
) ||
4352 (cmd
->advertising
== ADVERTISED_100baseT_Full
)) {
4354 if (bp
->phy_flags
& PHY_SERDES_FLAG
)
4357 advertising
= cmd
->advertising
;
4360 else if (cmd
->advertising
== ADVERTISED_1000baseT_Full
) {
4361 advertising
= cmd
->advertising
;
4363 else if (cmd
->advertising
== ADVERTISED_1000baseT_Half
) {
4367 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
4368 advertising
= ETHTOOL_ALL_FIBRE_SPEED
;
4371 advertising
= ETHTOOL_ALL_COPPER_SPEED
;
4374 advertising
|= ADVERTISED_Autoneg
;
4377 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
4378 if ((cmd
->speed
!= SPEED_1000
) ||
4379 (cmd
->duplex
!= DUPLEX_FULL
)) {
4383 else if (cmd
->speed
== SPEED_1000
) {
4386 autoneg
&= ~AUTONEG_SPEED
;
4387 req_line_speed
= cmd
->speed
;
4388 req_duplex
= cmd
->duplex
;
4392 bp
->autoneg
= autoneg
;
4393 bp
->advertising
= advertising
;
4394 bp
->req_line_speed
= req_line_speed
;
4395 bp
->req_duplex
= req_duplex
;
4397 spin_lock_bh(&bp
->phy_lock
);
4401 spin_unlock_bh(&bp
->phy_lock
);
4407 bnx2_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
4409 struct bnx2
*bp
= dev
->priv
;
4411 strcpy(info
->driver
, DRV_MODULE_NAME
);
4412 strcpy(info
->version
, DRV_MODULE_VERSION
);
4413 strcpy(info
->bus_info
, pci_name(bp
->pdev
));
4414 info
->fw_version
[0] = ((bp
->fw_ver
& 0xff000000) >> 24) + '0';
4415 info
->fw_version
[2] = ((bp
->fw_ver
& 0xff0000) >> 16) + '0';
4416 info
->fw_version
[4] = ((bp
->fw_ver
& 0xff00) >> 8) + '0';
4417 info
->fw_version
[6] = (bp
->fw_ver
& 0xff) + '0';
4418 info
->fw_version
[1] = info
->fw_version
[3] = info
->fw_version
[5] = '.';
4419 info
->fw_version
[7] = 0;
4423 bnx2_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
4425 struct bnx2
*bp
= dev
->priv
;
4427 if (bp
->flags
& NO_WOL_FLAG
) {
4432 wol
->supported
= WAKE_MAGIC
;
4434 wol
->wolopts
= WAKE_MAGIC
;
4438 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
4442 bnx2_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
4444 struct bnx2
*bp
= dev
->priv
;
4446 if (wol
->wolopts
& ~WAKE_MAGIC
)
4449 if (wol
->wolopts
& WAKE_MAGIC
) {
4450 if (bp
->flags
& NO_WOL_FLAG
)
4462 bnx2_nway_reset(struct net_device
*dev
)
4464 struct bnx2
*bp
= dev
->priv
;
4467 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
4471 spin_lock_bh(&bp
->phy_lock
);
4473 /* Force a link down visible on the other side */
4474 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
4475 bnx2_write_phy(bp
, MII_BMCR
, BMCR_LOOPBACK
);
4476 spin_unlock_bh(&bp
->phy_lock
);
4480 spin_lock_bh(&bp
->phy_lock
);
4481 if (CHIP_NUM(bp
) == CHIP_NUM_5706
) {
4482 bp
->current_interval
= SERDES_AN_TIMEOUT
;
4483 bp
->serdes_an_pending
= 1;
4484 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
4488 bnx2_read_phy(bp
, MII_BMCR
, &bmcr
);
4489 bmcr
&= ~BMCR_LOOPBACK
;
4490 bnx2_write_phy(bp
, MII_BMCR
, bmcr
| BMCR_ANRESTART
| BMCR_ANENABLE
);
4492 spin_unlock_bh(&bp
->phy_lock
);
4498 bnx2_get_eeprom_len(struct net_device
*dev
)
4500 struct bnx2
*bp
= dev
->priv
;
4502 if (bp
->flash_info
== 0)
4505 return (int) bp
->flash_info
->total_size
;
4509 bnx2_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
4512 struct bnx2
*bp
= dev
->priv
;
4515 if (eeprom
->offset
> bp
->flash_info
->total_size
)
4518 if ((eeprom
->offset
+ eeprom
->len
) > bp
->flash_info
->total_size
)
4519 eeprom
->len
= bp
->flash_info
->total_size
- eeprom
->offset
;
4521 rc
= bnx2_nvram_read(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
4527 bnx2_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
4530 struct bnx2
*bp
= dev
->priv
;
4533 if (eeprom
->offset
> bp
->flash_info
->total_size
)
4536 if ((eeprom
->offset
+ eeprom
->len
) > bp
->flash_info
->total_size
)
4537 eeprom
->len
= bp
->flash_info
->total_size
- eeprom
->offset
;
4539 rc
= bnx2_nvram_write(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
4545 bnx2_get_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
4547 struct bnx2
*bp
= dev
->priv
;
4549 memset(coal
, 0, sizeof(struct ethtool_coalesce
));
4551 coal
->rx_coalesce_usecs
= bp
->rx_ticks
;
4552 coal
->rx_max_coalesced_frames
= bp
->rx_quick_cons_trip
;
4553 coal
->rx_coalesce_usecs_irq
= bp
->rx_ticks_int
;
4554 coal
->rx_max_coalesced_frames_irq
= bp
->rx_quick_cons_trip_int
;
4556 coal
->tx_coalesce_usecs
= bp
->tx_ticks
;
4557 coal
->tx_max_coalesced_frames
= bp
->tx_quick_cons_trip
;
4558 coal
->tx_coalesce_usecs_irq
= bp
->tx_ticks_int
;
4559 coal
->tx_max_coalesced_frames_irq
= bp
->tx_quick_cons_trip_int
;
4561 coal
->stats_block_coalesce_usecs
= bp
->stats_ticks
;
4567 bnx2_set_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
4569 struct bnx2
*bp
= dev
->priv
;
4571 bp
->rx_ticks
= (u16
) coal
->rx_coalesce_usecs
;
4572 if (bp
->rx_ticks
> 0x3ff) bp
->rx_ticks
= 0x3ff;
4574 bp
->rx_quick_cons_trip
= (u16
) coal
->rx_max_coalesced_frames
;
4575 if (bp
->rx_quick_cons_trip
> 0xff) bp
->rx_quick_cons_trip
= 0xff;
4577 bp
->rx_ticks_int
= (u16
) coal
->rx_coalesce_usecs_irq
;
4578 if (bp
->rx_ticks_int
> 0x3ff) bp
->rx_ticks_int
= 0x3ff;
4580 bp
->rx_quick_cons_trip_int
= (u16
) coal
->rx_max_coalesced_frames_irq
;
4581 if (bp
->rx_quick_cons_trip_int
> 0xff)
4582 bp
->rx_quick_cons_trip_int
= 0xff;
4584 bp
->tx_ticks
= (u16
) coal
->tx_coalesce_usecs
;
4585 if (bp
->tx_ticks
> 0x3ff) bp
->tx_ticks
= 0x3ff;
4587 bp
->tx_quick_cons_trip
= (u16
) coal
->tx_max_coalesced_frames
;
4588 if (bp
->tx_quick_cons_trip
> 0xff) bp
->tx_quick_cons_trip
= 0xff;
4590 bp
->tx_ticks_int
= (u16
) coal
->tx_coalesce_usecs_irq
;
4591 if (bp
->tx_ticks_int
> 0x3ff) bp
->tx_ticks_int
= 0x3ff;
4593 bp
->tx_quick_cons_trip_int
= (u16
) coal
->tx_max_coalesced_frames_irq
;
4594 if (bp
->tx_quick_cons_trip_int
> 0xff) bp
->tx_quick_cons_trip_int
=
4597 bp
->stats_ticks
= coal
->stats_block_coalesce_usecs
;
4598 if (bp
->stats_ticks
> 0xffff00) bp
->stats_ticks
= 0xffff00;
4599 bp
->stats_ticks
&= 0xffff00;
4601 if (netif_running(bp
->dev
)) {
4602 bnx2_netif_stop(bp
);
4604 bnx2_netif_start(bp
);
4611 bnx2_get_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
4613 struct bnx2
*bp
= dev
->priv
;
4615 ering
->rx_max_pending
= MAX_RX_DESC_CNT
;
4616 ering
->rx_mini_max_pending
= 0;
4617 ering
->rx_jumbo_max_pending
= 0;
4619 ering
->rx_pending
= bp
->rx_ring_size
;
4620 ering
->rx_mini_pending
= 0;
4621 ering
->rx_jumbo_pending
= 0;
4623 ering
->tx_max_pending
= MAX_TX_DESC_CNT
;
4624 ering
->tx_pending
= bp
->tx_ring_size
;
4628 bnx2_set_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
4630 struct bnx2
*bp
= dev
->priv
;
4632 if ((ering
->rx_pending
> MAX_RX_DESC_CNT
) ||
4633 (ering
->tx_pending
> MAX_TX_DESC_CNT
) ||
4634 (ering
->tx_pending
<= MAX_SKB_FRAGS
)) {
4638 bp
->rx_ring_size
= ering
->rx_pending
;
4639 bp
->tx_ring_size
= ering
->tx_pending
;
4641 if (netif_running(bp
->dev
)) {
4642 bnx2_netif_stop(bp
);
4644 bnx2_netif_start(bp
);
4651 bnx2_get_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
4653 struct bnx2
*bp
= dev
->priv
;
4655 epause
->autoneg
= ((bp
->autoneg
& AUTONEG_FLOW_CTRL
) != 0);
4656 epause
->rx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_RX
) != 0);
4657 epause
->tx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_TX
) != 0);
4661 bnx2_set_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
4663 struct bnx2
*bp
= dev
->priv
;
4665 bp
->req_flow_ctrl
= 0;
4666 if (epause
->rx_pause
)
4667 bp
->req_flow_ctrl
|= FLOW_CTRL_RX
;
4668 if (epause
->tx_pause
)
4669 bp
->req_flow_ctrl
|= FLOW_CTRL_TX
;
4671 if (epause
->autoneg
) {
4672 bp
->autoneg
|= AUTONEG_FLOW_CTRL
;
4675 bp
->autoneg
&= ~AUTONEG_FLOW_CTRL
;
4678 spin_lock_bh(&bp
->phy_lock
);
4682 spin_unlock_bh(&bp
->phy_lock
);
4688 bnx2_get_rx_csum(struct net_device
*dev
)
4690 struct bnx2
*bp
= dev
->priv
;
4696 bnx2_set_rx_csum(struct net_device
*dev
, u32 data
)
4698 struct bnx2
*bp
= dev
->priv
;
4704 #define BNX2_NUM_STATS 45
4707 char string
[ETH_GSTRING_LEN
];
4708 } bnx2_stats_str_arr
[BNX2_NUM_STATS
] = {
4710 { "rx_error_bytes" },
4712 { "tx_error_bytes" },
4713 { "rx_ucast_packets" },
4714 { "rx_mcast_packets" },
4715 { "rx_bcast_packets" },
4716 { "tx_ucast_packets" },
4717 { "tx_mcast_packets" },
4718 { "tx_bcast_packets" },
4719 { "tx_mac_errors" },
4720 { "tx_carrier_errors" },
4721 { "rx_crc_errors" },
4722 { "rx_align_errors" },
4723 { "tx_single_collisions" },
4724 { "tx_multi_collisions" },
4726 { "tx_excess_collisions" },
4727 { "tx_late_collisions" },
4728 { "tx_total_collisions" },
4731 { "rx_undersize_packets" },
4732 { "rx_oversize_packets" },
4733 { "rx_64_byte_packets" },
4734 { "rx_65_to_127_byte_packets" },
4735 { "rx_128_to_255_byte_packets" },
4736 { "rx_256_to_511_byte_packets" },
4737 { "rx_512_to_1023_byte_packets" },
4738 { "rx_1024_to_1522_byte_packets" },
4739 { "rx_1523_to_9022_byte_packets" },
4740 { "tx_64_byte_packets" },
4741 { "tx_65_to_127_byte_packets" },
4742 { "tx_128_to_255_byte_packets" },
4743 { "tx_256_to_511_byte_packets" },
4744 { "tx_512_to_1023_byte_packets" },
4745 { "tx_1024_to_1522_byte_packets" },
4746 { "tx_1523_to_9022_byte_packets" },
4747 { "rx_xon_frames" },
4748 { "rx_xoff_frames" },
4749 { "tx_xon_frames" },
4750 { "tx_xoff_frames" },
4751 { "rx_mac_ctrl_frames" },
4752 { "rx_filtered_packets" },
4756 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
4758 static unsigned long bnx2_stats_offset_arr
[BNX2_NUM_STATS
] = {
4759 STATS_OFFSET32(stat_IfHCInOctets_hi
),
4760 STATS_OFFSET32(stat_IfHCInBadOctets_hi
),
4761 STATS_OFFSET32(stat_IfHCOutOctets_hi
),
4762 STATS_OFFSET32(stat_IfHCOutBadOctets_hi
),
4763 STATS_OFFSET32(stat_IfHCInUcastPkts_hi
),
4764 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi
),
4765 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi
),
4766 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi
),
4767 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi
),
4768 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi
),
4769 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
),
4770 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors
),
4771 STATS_OFFSET32(stat_Dot3StatsFCSErrors
),
4772 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors
),
4773 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames
),
4774 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames
),
4775 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions
),
4776 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions
),
4777 STATS_OFFSET32(stat_Dot3StatsLateCollisions
),
4778 STATS_OFFSET32(stat_EtherStatsCollisions
),
4779 STATS_OFFSET32(stat_EtherStatsFragments
),
4780 STATS_OFFSET32(stat_EtherStatsJabbers
),
4781 STATS_OFFSET32(stat_EtherStatsUndersizePkts
),
4782 STATS_OFFSET32(stat_EtherStatsOverrsizePkts
),
4783 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets
),
4784 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets
),
4785 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets
),
4786 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets
),
4787 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets
),
4788 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets
),
4789 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets
),
4790 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets
),
4791 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets
),
4792 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets
),
4793 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets
),
4794 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets
),
4795 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets
),
4796 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets
),
4797 STATS_OFFSET32(stat_XonPauseFramesReceived
),
4798 STATS_OFFSET32(stat_XoffPauseFramesReceived
),
4799 STATS_OFFSET32(stat_OutXonSent
),
4800 STATS_OFFSET32(stat_OutXoffSent
),
4801 STATS_OFFSET32(stat_MacControlFramesReceived
),
4802 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards
),
4803 STATS_OFFSET32(stat_IfInMBUFDiscards
),
4806 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
4807 * skipped because of errata.
4809 static u8 bnx2_5706_stats_len_arr
[BNX2_NUM_STATS
] = {
4810 8,0,8,8,8,8,8,8,8,8,
4811 4,0,4,4,4,4,4,4,4,4,
4812 4,4,4,4,4,4,4,4,4,4,
4813 4,4,4,4,4,4,4,4,4,4,
4817 #define BNX2_NUM_TESTS 6
4820 char string
[ETH_GSTRING_LEN
];
4821 } bnx2_tests_str_arr
[BNX2_NUM_TESTS
] = {
4822 { "register_test (offline)" },
4823 { "memory_test (offline)" },
4824 { "loopback_test (offline)" },
4825 { "nvram_test (online)" },
4826 { "interrupt_test (online)" },
4827 { "link_test (online)" },
4831 bnx2_self_test_count(struct net_device
*dev
)
4833 return BNX2_NUM_TESTS
;
4837 bnx2_self_test(struct net_device
*dev
, struct ethtool_test
*etest
, u64
*buf
)
4839 struct bnx2
*bp
= dev
->priv
;
4841 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_TESTS
);
4842 if (etest
->flags
& ETH_TEST_FL_OFFLINE
) {
4843 bnx2_netif_stop(bp
);
4844 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_DIAG
);
4847 if (bnx2_test_registers(bp
) != 0) {
4849 etest
->flags
|= ETH_TEST_FL_FAILED
;
4851 if (bnx2_test_memory(bp
) != 0) {
4853 etest
->flags
|= ETH_TEST_FL_FAILED
;
4855 if (bnx2_test_loopback(bp
) != 0) {
4857 etest
->flags
|= ETH_TEST_FL_FAILED
;
4860 if (!netif_running(bp
->dev
)) {
4861 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_RESET
);
4865 bnx2_netif_start(bp
);
4868 /* wait for link up */
4869 msleep_interruptible(3000);
4870 if ((!bp
->link_up
) && !(bp
->phy_flags
& PHY_SERDES_FLAG
))
4871 msleep_interruptible(4000);
4874 if (bnx2_test_nvram(bp
) != 0) {
4876 etest
->flags
|= ETH_TEST_FL_FAILED
;
4878 if (bnx2_test_intr(bp
) != 0) {
4880 etest
->flags
|= ETH_TEST_FL_FAILED
;
4883 if (bnx2_test_link(bp
) != 0) {
4885 etest
->flags
|= ETH_TEST_FL_FAILED
;
4891 bnx2_get_strings(struct net_device
*dev
, u32 stringset
, u8
*buf
)
4893 switch (stringset
) {
4895 memcpy(buf
, bnx2_stats_str_arr
,
4896 sizeof(bnx2_stats_str_arr
));
4899 memcpy(buf
, bnx2_tests_str_arr
,
4900 sizeof(bnx2_tests_str_arr
));
4906 bnx2_get_stats_count(struct net_device
*dev
)
4908 return BNX2_NUM_STATS
;
4912 bnx2_get_ethtool_stats(struct net_device
*dev
,
4913 struct ethtool_stats
*stats
, u64
*buf
)
4915 struct bnx2
*bp
= dev
->priv
;
4917 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
4918 u8
*stats_len_arr
= NULL
;
4920 if (hw_stats
== NULL
) {
4921 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_STATS
);
4925 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
4926 stats_len_arr
= bnx2_5706_stats_len_arr
;
4928 for (i
= 0; i
< BNX2_NUM_STATS
; i
++) {
4929 if (stats_len_arr
[i
] == 0) {
4930 /* skip this counter */
4934 if (stats_len_arr
[i
] == 4) {
4935 /* 4-byte counter */
4937 *(hw_stats
+ bnx2_stats_offset_arr
[i
]);
4940 /* 8-byte counter */
4941 buf
[i
] = (((u64
) *(hw_stats
+
4942 bnx2_stats_offset_arr
[i
])) << 32) +
4943 *(hw_stats
+ bnx2_stats_offset_arr
[i
] + 1);
4948 bnx2_phys_id(struct net_device
*dev
, u32 data
)
4950 struct bnx2
*bp
= dev
->priv
;
4957 save
= REG_RD(bp
, BNX2_MISC_CFG
);
4958 REG_WR(bp
, BNX2_MISC_CFG
, BNX2_MISC_CFG_LEDMODE_MAC
);
4960 for (i
= 0; i
< (data
* 2); i
++) {
4962 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
);
4965 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
|
4966 BNX2_EMAC_LED_1000MB_OVERRIDE
|
4967 BNX2_EMAC_LED_100MB_OVERRIDE
|
4968 BNX2_EMAC_LED_10MB_OVERRIDE
|
4969 BNX2_EMAC_LED_TRAFFIC_OVERRIDE
|
4970 BNX2_EMAC_LED_TRAFFIC
);
4972 msleep_interruptible(500);
4973 if (signal_pending(current
))
4976 REG_WR(bp
, BNX2_EMAC_LED
, 0);
4977 REG_WR(bp
, BNX2_MISC_CFG
, save
);
4981 static struct ethtool_ops bnx2_ethtool_ops
= {
4982 .get_settings
= bnx2_get_settings
,
4983 .set_settings
= bnx2_set_settings
,
4984 .get_drvinfo
= bnx2_get_drvinfo
,
4985 .get_wol
= bnx2_get_wol
,
4986 .set_wol
= bnx2_set_wol
,
4987 .nway_reset
= bnx2_nway_reset
,
4988 .get_link
= ethtool_op_get_link
,
4989 .get_eeprom_len
= bnx2_get_eeprom_len
,
4990 .get_eeprom
= bnx2_get_eeprom
,
4991 .set_eeprom
= bnx2_set_eeprom
,
4992 .get_coalesce
= bnx2_get_coalesce
,
4993 .set_coalesce
= bnx2_set_coalesce
,
4994 .get_ringparam
= bnx2_get_ringparam
,
4995 .set_ringparam
= bnx2_set_ringparam
,
4996 .get_pauseparam
= bnx2_get_pauseparam
,
4997 .set_pauseparam
= bnx2_set_pauseparam
,
4998 .get_rx_csum
= bnx2_get_rx_csum
,
4999 .set_rx_csum
= bnx2_set_rx_csum
,
5000 .get_tx_csum
= ethtool_op_get_tx_csum
,
5001 .set_tx_csum
= ethtool_op_set_tx_csum
,
5002 .get_sg
= ethtool_op_get_sg
,
5003 .set_sg
= ethtool_op_set_sg
,
5005 .get_tso
= ethtool_op_get_tso
,
5006 .set_tso
= ethtool_op_set_tso
,
5008 .self_test_count
= bnx2_self_test_count
,
5009 .self_test
= bnx2_self_test
,
5010 .get_strings
= bnx2_get_strings
,
5011 .phys_id
= bnx2_phys_id
,
5012 .get_stats_count
= bnx2_get_stats_count
,
5013 .get_ethtool_stats
= bnx2_get_ethtool_stats
,
5014 .get_perm_addr
= ethtool_op_get_perm_addr
,
5017 /* Called with rtnl_lock */
5019 bnx2_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
5021 struct mii_ioctl_data
*data
= if_mii(ifr
);
5022 struct bnx2
*bp
= dev
->priv
;
5027 data
->phy_id
= bp
->phy_addr
;
5033 spin_lock_bh(&bp
->phy_lock
);
5034 err
= bnx2_read_phy(bp
, data
->reg_num
& 0x1f, &mii_regval
);
5035 spin_unlock_bh(&bp
->phy_lock
);
5037 data
->val_out
= mii_regval
;
5043 if (!capable(CAP_NET_ADMIN
))
5046 spin_lock_bh(&bp
->phy_lock
);
5047 err
= bnx2_write_phy(bp
, data
->reg_num
& 0x1f, data
->val_in
);
5048 spin_unlock_bh(&bp
->phy_lock
);
5059 /* Called with rtnl_lock */
5061 bnx2_change_mac_addr(struct net_device
*dev
, void *p
)
5063 struct sockaddr
*addr
= p
;
5064 struct bnx2
*bp
= dev
->priv
;
5066 if (!is_valid_ether_addr(addr
->sa_data
))
5069 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
5070 if (netif_running(dev
))
5071 bnx2_set_mac_addr(bp
);
5076 /* Called with rtnl_lock */
5078 bnx2_change_mtu(struct net_device
*dev
, int new_mtu
)
5080 struct bnx2
*bp
= dev
->priv
;
5082 if (((new_mtu
+ ETH_HLEN
) > MAX_ETHERNET_JUMBO_PACKET_SIZE
) ||
5083 ((new_mtu
+ ETH_HLEN
) < MIN_ETHERNET_PACKET_SIZE
))
5087 if (netif_running(dev
)) {
5088 bnx2_netif_stop(bp
);
5092 bnx2_netif_start(bp
);
5097 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
5099 poll_bnx2(struct net_device
*dev
)
5101 struct bnx2
*bp
= dev
->priv
;
5103 disable_irq(bp
->pdev
->irq
);
5104 bnx2_interrupt(bp
->pdev
->irq
, dev
, NULL
);
5105 enable_irq(bp
->pdev
->irq
);
5109 static int __devinit
5110 bnx2_init_board(struct pci_dev
*pdev
, struct net_device
*dev
)
5113 unsigned long mem_len
;
5117 SET_MODULE_OWNER(dev
);
5118 SET_NETDEV_DEV(dev
, &pdev
->dev
);
5124 /* enable device (incl. PCI PM wakeup), and bus-mastering */
5125 rc
= pci_enable_device(pdev
);
5127 printk(KERN_ERR PFX
"Cannot enable PCI device, aborting.");
5131 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
5132 printk(KERN_ERR PFX
"Cannot find PCI device base address, "
5135 goto err_out_disable
;
5138 rc
= pci_request_regions(pdev
, DRV_MODULE_NAME
);
5140 printk(KERN_ERR PFX
"Cannot obtain PCI resources, aborting.\n");
5141 goto err_out_disable
;
5144 pci_set_master(pdev
);
5146 bp
->pm_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
5147 if (bp
->pm_cap
== 0) {
5148 printk(KERN_ERR PFX
"Cannot find power management capability, "
5151 goto err_out_release
;
5154 bp
->pcix_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PCIX
);
5155 if (bp
->pcix_cap
== 0) {
5156 printk(KERN_ERR PFX
"Cannot find PCIX capability, aborting.\n");
5158 goto err_out_release
;
5161 if (pci_set_dma_mask(pdev
, DMA_64BIT_MASK
) == 0) {
5162 bp
->flags
|= USING_DAC_FLAG
;
5163 if (pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
) != 0) {
5164 printk(KERN_ERR PFX
"pci_set_consistent_dma_mask "
5165 "failed, aborting.\n");
5167 goto err_out_release
;
5170 else if (pci_set_dma_mask(pdev
, DMA_32BIT_MASK
) != 0) {
5171 printk(KERN_ERR PFX
"System does not support DMA, aborting.\n");
5173 goto err_out_release
;
5179 spin_lock_init(&bp
->phy_lock
);
5180 spin_lock_init(&bp
->tx_lock
);
5181 INIT_WORK(&bp
->reset_task
, bnx2_reset_task
, bp
);
5183 dev
->base_addr
= dev
->mem_start
= pci_resource_start(pdev
, 0);
5184 mem_len
= MB_GET_CID_ADDR(17);
5185 dev
->mem_end
= dev
->mem_start
+ mem_len
;
5186 dev
->irq
= pdev
->irq
;
5188 bp
->regview
= ioremap_nocache(dev
->base_addr
, mem_len
);
5191 printk(KERN_ERR PFX
"Cannot map register space, aborting.\n");
5193 goto err_out_release
;
5196 /* Configure byte swap and enable write to the reg_window registers.
5197 * Rely on CPU to do target byte swapping on big endian systems
5198 * The chip's target access swapping will not swap all accesses
5200 pci_write_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
,
5201 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
5202 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
);
5204 bnx2_set_power_state(bp
, PCI_D0
);
5206 bp
->chip_id
= REG_RD(bp
, BNX2_MISC_ID
);
5210 /* Get bus information. */
5211 reg
= REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
);
5212 if (reg
& BNX2_PCICFG_MISC_STATUS_PCIX_DET
) {
5215 bp
->flags
|= PCIX_FLAG
;
5217 clkreg
= REG_RD(bp
, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS
);
5219 clkreg
&= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET
;
5221 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ
:
5222 bp
->bus_speed_mhz
= 133;
5225 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ
:
5226 bp
->bus_speed_mhz
= 100;
5229 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ
:
5230 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ
:
5231 bp
->bus_speed_mhz
= 66;
5234 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ
:
5235 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ
:
5236 bp
->bus_speed_mhz
= 50;
5239 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW
:
5240 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ
:
5241 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ
:
5242 bp
->bus_speed_mhz
= 33;
5247 if (reg
& BNX2_PCICFG_MISC_STATUS_M66EN
)
5248 bp
->bus_speed_mhz
= 66;
5250 bp
->bus_speed_mhz
= 33;
5253 if (reg
& BNX2_PCICFG_MISC_STATUS_32BIT_DET
)
5254 bp
->flags
|= PCI_32BIT_FLAG
;
5256 /* 5706A0 may falsely detect SERR and PERR. */
5257 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
5258 reg
= REG_RD(bp
, PCI_COMMAND
);
5259 reg
&= ~(PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
5260 REG_WR(bp
, PCI_COMMAND
, reg
);
5262 else if ((CHIP_ID(bp
) == CHIP_ID_5706_A1
) &&
5263 !(bp
->flags
& PCIX_FLAG
)) {
5265 printk(KERN_ERR PFX
"5706 A1 can only be used in a PCIX bus, "
5270 bnx2_init_nvram(bp
);
5272 /* Get the permanent MAC address. First we need to make sure the
5273 * firmware is actually running.
5275 reg
= REG_RD_IND(bp
, HOST_VIEW_SHMEM_BASE
+ BNX2_DEV_INFO_SIGNATURE
);
5277 if ((reg
& BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK
) !=
5278 BNX2_DEV_INFO_SIGNATURE_MAGIC
) {
5279 printk(KERN_ERR PFX
"Firmware not running, aborting.\n");
5284 bp
->fw_ver
= REG_RD_IND(bp
, HOST_VIEW_SHMEM_BASE
+
5285 BNX2_DEV_INFO_BC_REV
);
5287 reg
= REG_RD_IND(bp
, HOST_VIEW_SHMEM_BASE
+ BNX2_PORT_HW_CFG_MAC_UPPER
);
5288 bp
->mac_addr
[0] = (u8
) (reg
>> 8);
5289 bp
->mac_addr
[1] = (u8
) reg
;
5291 reg
= REG_RD_IND(bp
, HOST_VIEW_SHMEM_BASE
+ BNX2_PORT_HW_CFG_MAC_LOWER
);
5292 bp
->mac_addr
[2] = (u8
) (reg
>> 24);
5293 bp
->mac_addr
[3] = (u8
) (reg
>> 16);
5294 bp
->mac_addr
[4] = (u8
) (reg
>> 8);
5295 bp
->mac_addr
[5] = (u8
) reg
;
5297 bp
->tx_ring_size
= MAX_TX_DESC_CNT
;
5298 bp
->rx_ring_size
= 100;
5302 bp
->rx_offset
= sizeof(struct l2_fhdr
) + 2;
5304 bp
->tx_quick_cons_trip_int
= 20;
5305 bp
->tx_quick_cons_trip
= 20;
5306 bp
->tx_ticks_int
= 80;
5309 bp
->rx_quick_cons_trip_int
= 6;
5310 bp
->rx_quick_cons_trip
= 6;
5311 bp
->rx_ticks_int
= 18;
5314 bp
->stats_ticks
= 1000000 & 0xffff00;
5316 bp
->timer_interval
= HZ
;
5317 bp
->current_interval
= HZ
;
5319 /* Disable WOL support if we are running on a SERDES chip. */
5320 if (CHIP_BOND_ID(bp
) & CHIP_BOND_ID_SERDES_BIT
) {
5321 bp
->phy_flags
|= PHY_SERDES_FLAG
;
5322 bp
->flags
|= NO_WOL_FLAG
;
5325 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
5326 bp
->tx_quick_cons_trip_int
=
5327 bp
->tx_quick_cons_trip
;
5328 bp
->tx_ticks_int
= bp
->tx_ticks
;
5329 bp
->rx_quick_cons_trip_int
=
5330 bp
->rx_quick_cons_trip
;
5331 bp
->rx_ticks_int
= bp
->rx_ticks
;
5332 bp
->comp_prod_trip_int
= bp
->comp_prod_trip
;
5333 bp
->com_ticks_int
= bp
->com_ticks
;
5334 bp
->cmd_ticks_int
= bp
->cmd_ticks
;
5337 bp
->autoneg
= AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
;
5338 bp
->req_line_speed
= 0;
5339 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
5340 bp
->advertising
= ETHTOOL_ALL_FIBRE_SPEED
| ADVERTISED_Autoneg
;
5342 reg
= REG_RD_IND(bp
, HOST_VIEW_SHMEM_BASE
+
5343 BNX2_PORT_HW_CFG_CONFIG
);
5344 reg
&= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK
;
5345 if (reg
== BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G
) {
5347 bp
->req_line_speed
= bp
->line_speed
= SPEED_1000
;
5348 bp
->req_duplex
= DUPLEX_FULL
;
5352 bp
->advertising
= ETHTOOL_ALL_COPPER_SPEED
| ADVERTISED_Autoneg
;
5355 bp
->req_flow_ctrl
= FLOW_CTRL_RX
| FLOW_CTRL_TX
;
5357 init_timer(&bp
->timer
);
5358 bp
->timer
.expires
= RUN_AT(bp
->timer_interval
);
5359 bp
->timer
.data
= (unsigned long) bp
;
5360 bp
->timer
.function
= bnx2_timer
;
5366 iounmap(bp
->regview
);
5371 pci_release_regions(pdev
);
5374 pci_disable_device(pdev
);
5375 pci_set_drvdata(pdev
, NULL
);
5381 static int __devinit
5382 bnx2_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
5384 static int version_printed
= 0;
5385 struct net_device
*dev
= NULL
;
5389 if (version_printed
++ == 0)
5390 printk(KERN_INFO
"%s", version
);
5392 /* dev zeroed in init_etherdev */
5393 dev
= alloc_etherdev(sizeof(*bp
));
5398 rc
= bnx2_init_board(pdev
, dev
);
5404 dev
->open
= bnx2_open
;
5405 dev
->hard_start_xmit
= bnx2_start_xmit
;
5406 dev
->stop
= bnx2_close
;
5407 dev
->get_stats
= bnx2_get_stats
;
5408 dev
->set_multicast_list
= bnx2_set_rx_mode
;
5409 dev
->do_ioctl
= bnx2_ioctl
;
5410 dev
->set_mac_address
= bnx2_change_mac_addr
;
5411 dev
->change_mtu
= bnx2_change_mtu
;
5412 dev
->tx_timeout
= bnx2_tx_timeout
;
5413 dev
->watchdog_timeo
= TX_TIMEOUT
;
5415 dev
->vlan_rx_register
= bnx2_vlan_rx_register
;
5416 dev
->vlan_rx_kill_vid
= bnx2_vlan_rx_kill_vid
;
5418 dev
->poll
= bnx2_poll
;
5419 dev
->ethtool_ops
= &bnx2_ethtool_ops
;
5424 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
5425 dev
->poll_controller
= poll_bnx2
;
5428 if ((rc
= register_netdev(dev
))) {
5429 printk(KERN_ERR PFX
"Cannot register net device\n");
5431 iounmap(bp
->regview
);
5432 pci_release_regions(pdev
);
5433 pci_disable_device(pdev
);
5434 pci_set_drvdata(pdev
, NULL
);
5439 pci_set_drvdata(pdev
, dev
);
5441 memcpy(dev
->dev_addr
, bp
->mac_addr
, 6);
5442 memcpy(dev
->perm_addr
, bp
->mac_addr
, 6);
5443 bp
->name
= board_info
[ent
->driver_data
].name
,
5444 printk(KERN_INFO
"%s: %s (%c%d) PCI%s %s %dMHz found at mem %lx, "
5448 ((CHIP_ID(bp
) & 0xf000) >> 12) + 'A',
5449 ((CHIP_ID(bp
) & 0x0ff0) >> 4),
5450 ((bp
->flags
& PCIX_FLAG
) ? "-X" : ""),
5451 ((bp
->flags
& PCI_32BIT_FLAG
) ? "32-bit" : "64-bit"),
5456 printk("node addr ");
5457 for (i
= 0; i
< 6; i
++)
5458 printk("%2.2x", dev
->dev_addr
[i
]);
5461 dev
->features
|= NETIF_F_SG
;
5462 if (bp
->flags
& USING_DAC_FLAG
)
5463 dev
->features
|= NETIF_F_HIGHDMA
;
5464 dev
->features
|= NETIF_F_IP_CSUM
;
5466 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
5469 dev
->features
|= NETIF_F_TSO
;
5472 netif_carrier_off(bp
->dev
);
5477 static void __devexit
5478 bnx2_remove_one(struct pci_dev
*pdev
)
5480 struct net_device
*dev
= pci_get_drvdata(pdev
);
5481 struct bnx2
*bp
= dev
->priv
;
5483 flush_scheduled_work();
5485 unregister_netdev(dev
);
5488 iounmap(bp
->regview
);
5491 pci_release_regions(pdev
);
5492 pci_disable_device(pdev
);
5493 pci_set_drvdata(pdev
, NULL
);
5497 bnx2_suspend(struct pci_dev
*pdev
, pm_message_t state
)
5499 struct net_device
*dev
= pci_get_drvdata(pdev
);
5500 struct bnx2
*bp
= dev
->priv
;
5503 if (!netif_running(dev
))
5506 bnx2_netif_stop(bp
);
5507 netif_device_detach(dev
);
5508 del_timer_sync(&bp
->timer
);
5510 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
5512 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
5513 bnx2_reset_chip(bp
, reset_code
);
5515 bnx2_set_power_state(bp
, pci_choose_state(pdev
, state
));
5520 bnx2_resume(struct pci_dev
*pdev
)
5522 struct net_device
*dev
= pci_get_drvdata(pdev
);
5523 struct bnx2
*bp
= dev
->priv
;
5525 if (!netif_running(dev
))
5528 bnx2_set_power_state(bp
, PCI_D0
);
5529 netif_device_attach(dev
);
5531 bnx2_netif_start(bp
);
5535 static struct pci_driver bnx2_pci_driver
= {
5536 .name
= DRV_MODULE_NAME
,
5537 .id_table
= bnx2_pci_tbl
,
5538 .probe
= bnx2_init_one
,
5539 .remove
= __devexit_p(bnx2_remove_one
),
5540 .suspend
= bnx2_suspend
,
5541 .resume
= bnx2_resume
,
5544 static int __init
bnx2_init(void)
5546 return pci_module_init(&bnx2_pci_driver
);
5549 static void __exit
bnx2_cleanup(void)
5551 pci_unregister_driver(&bnx2_pci_driver
);
5554 module_init(bnx2_init
);
5555 module_exit(bnx2_cleanup
);