4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
76 #include <asm/irq_regs.h>
78 #include "sched_cpupri.h"
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
118 * single value that denotes runtime == period, ie unlimited time.
120 #define RUNTIME_INF ((u64)~0ULL)
122 static inline int rt_policy(int policy
)
124 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
129 static inline int task_has_rt_policy(struct task_struct
*p
)
131 return rt_policy(p
->policy
);
135 * This is the priority-queue data structure of the RT scheduling class:
137 struct rt_prio_array
{
138 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
139 struct list_head queue
[MAX_RT_PRIO
];
142 struct rt_bandwidth
{
143 /* nests inside the rq lock: */
144 raw_spinlock_t rt_runtime_lock
;
147 struct hrtimer rt_period_timer
;
150 static struct rt_bandwidth def_rt_bandwidth
;
152 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
154 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
156 struct rt_bandwidth
*rt_b
=
157 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
163 now
= hrtimer_cb_get_time(timer
);
164 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
169 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
172 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
176 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
178 rt_b
->rt_period
= ns_to_ktime(period
);
179 rt_b
->rt_runtime
= runtime
;
181 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
183 hrtimer_init(&rt_b
->rt_period_timer
,
184 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
185 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
188 static inline int rt_bandwidth_enabled(void)
190 return sysctl_sched_rt_runtime
>= 0;
193 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
197 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
200 if (hrtimer_active(&rt_b
->rt_period_timer
))
203 raw_spin_lock(&rt_b
->rt_runtime_lock
);
208 if (hrtimer_active(&rt_b
->rt_period_timer
))
211 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
212 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
214 soft
= hrtimer_get_softexpires(&rt_b
->rt_period_timer
);
215 hard
= hrtimer_get_expires(&rt_b
->rt_period_timer
);
216 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
217 __hrtimer_start_range_ns(&rt_b
->rt_period_timer
, soft
, delta
,
218 HRTIMER_MODE_ABS_PINNED
, 0);
220 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
226 hrtimer_cancel(&rt_b
->rt_period_timer
);
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
234 static DEFINE_MUTEX(sched_domains_mutex
);
236 #ifdef CONFIG_GROUP_SCHED
238 #include <linux/cgroup.h>
242 static LIST_HEAD(task_groups
);
244 /* task group related information */
246 #ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css
;
250 #ifdef CONFIG_USER_SCHED
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity
**se
;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq
**cfs_rq
;
259 unsigned long shares
;
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity
**rt_se
;
264 struct rt_rq
**rt_rq
;
266 struct rt_bandwidth rt_bandwidth
;
270 struct list_head list
;
272 struct task_group
*parent
;
273 struct list_head siblings
;
274 struct list_head children
;
277 #ifdef CONFIG_USER_SCHED
279 /* Helper function to pass uid information to create_sched_user() */
280 void set_tg_uid(struct user_struct
*user
)
282 user
->tg
->uid
= user
->uid
;
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
290 struct task_group root_task_group
;
292 #ifdef CONFIG_FAIR_GROUP_SCHED
293 /* Default task group's sched entity on each cpu */
294 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
295 /* Default task group's cfs_rq on each cpu */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq
, init_tg_cfs_rq
);
297 #endif /* CONFIG_FAIR_GROUP_SCHED */
299 #ifdef CONFIG_RT_GROUP_SCHED
300 static DEFINE_PER_CPU(struct sched_rt_entity
, init_sched_rt_entity
);
301 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq
, init_rt_rq_var
);
302 #endif /* CONFIG_RT_GROUP_SCHED */
303 #else /* !CONFIG_USER_SCHED */
304 #define root_task_group init_task_group
305 #endif /* CONFIG_USER_SCHED */
307 /* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
310 static DEFINE_SPINLOCK(task_group_lock
);
312 #ifdef CONFIG_FAIR_GROUP_SCHED
315 static int root_task_group_empty(void)
317 return list_empty(&root_task_group
.children
);
321 #ifdef CONFIG_USER_SCHED
322 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
323 #else /* !CONFIG_USER_SCHED */
324 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
325 #endif /* CONFIG_USER_SCHED */
328 * A weight of 0 or 1 can cause arithmetics problems.
329 * A weight of a cfs_rq is the sum of weights of which entities
330 * are queued on this cfs_rq, so a weight of a entity should not be
331 * too large, so as the shares value of a task group.
332 * (The default weight is 1024 - so there's no practical
333 * limitation from this.)
336 #define MAX_SHARES (1UL << 18)
338 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
341 /* Default task group.
342 * Every task in system belong to this group at bootup.
344 struct task_group init_task_group
;
346 /* return group to which a task belongs */
347 static inline struct task_group
*task_group(struct task_struct
*p
)
349 struct task_group
*tg
;
351 #ifdef CONFIG_USER_SCHED
353 tg
= __task_cred(p
)->user
->tg
;
355 #elif defined(CONFIG_CGROUP_SCHED)
356 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
357 struct task_group
, css
);
359 tg
= &init_task_group
;
364 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
365 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
367 #ifdef CONFIG_FAIR_GROUP_SCHED
368 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
369 p
->se
.parent
= task_group(p
)->se
[cpu
];
372 #ifdef CONFIG_RT_GROUP_SCHED
373 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
374 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
380 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
381 static inline struct task_group
*task_group(struct task_struct
*p
)
386 #endif /* CONFIG_GROUP_SCHED */
388 /* CFS-related fields in a runqueue */
390 struct load_weight load
;
391 unsigned long nr_running
;
396 struct rb_root tasks_timeline
;
397 struct rb_node
*rb_leftmost
;
399 struct list_head tasks
;
400 struct list_head
*balance_iterator
;
403 * 'curr' points to currently running entity on this cfs_rq.
404 * It is set to NULL otherwise (i.e when none are currently running).
406 struct sched_entity
*curr
, *next
, *last
;
408 unsigned int nr_spread_over
;
410 #ifdef CONFIG_FAIR_GROUP_SCHED
411 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
421 struct list_head leaf_cfs_rq_list
;
422 struct task_group
*tg
; /* group that "owns" this runqueue */
426 * the part of load.weight contributed by tasks
428 unsigned long task_weight
;
431 * h_load = weight * f(tg)
433 * Where f(tg) is the recursive weight fraction assigned to
436 unsigned long h_load
;
439 * this cpu's part of tg->shares
441 unsigned long shares
;
444 * load.weight at the time we set shares
446 unsigned long rq_weight
;
451 /* Real-Time classes' related field in a runqueue: */
453 struct rt_prio_array active
;
454 unsigned long rt_nr_running
;
455 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
457 int curr
; /* highest queued rt task prio */
459 int next
; /* next highest */
464 unsigned long rt_nr_migratory
;
465 unsigned long rt_nr_total
;
467 struct plist_head pushable_tasks
;
472 /* Nests inside the rq lock: */
473 raw_spinlock_t rt_runtime_lock
;
475 #ifdef CONFIG_RT_GROUP_SCHED
476 unsigned long rt_nr_boosted
;
479 struct list_head leaf_rt_rq_list
;
480 struct task_group
*tg
;
481 struct sched_rt_entity
*rt_se
;
488 * We add the notion of a root-domain which will be used to define per-domain
489 * variables. Each exclusive cpuset essentially defines an island domain by
490 * fully partitioning the member cpus from any other cpuset. Whenever a new
491 * exclusive cpuset is created, we also create and attach a new root-domain
498 cpumask_var_t online
;
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
504 cpumask_var_t rto_mask
;
507 struct cpupri cpupri
;
512 * By default the system creates a single root-domain with all cpus as
513 * members (mimicking the global state we have today).
515 static struct root_domain def_root_domain
;
520 * This is the main, per-CPU runqueue data structure.
522 * Locking rule: those places that want to lock multiple runqueues
523 * (such as the load balancing or the thread migration code), lock
524 * acquire operations must be ordered by ascending &runqueue.
531 * nr_running and cpu_load should be in the same cacheline because
532 * remote CPUs use both these fields when doing load calculation.
534 unsigned long nr_running
;
535 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
538 unsigned char in_nohz_recently
;
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load
;
542 unsigned long nr_load_updates
;
548 #ifdef CONFIG_FAIR_GROUP_SCHED
549 /* list of leaf cfs_rq on this cpu: */
550 struct list_head leaf_cfs_rq_list
;
552 #ifdef CONFIG_RT_GROUP_SCHED
553 struct list_head leaf_rt_rq_list
;
557 * This is part of a global counter where only the total sum
558 * over all CPUs matters. A task can increase this counter on
559 * one CPU and if it got migrated afterwards it may decrease
560 * it on another CPU. Always updated under the runqueue lock:
562 unsigned long nr_uninterruptible
;
564 struct task_struct
*curr
, *idle
;
565 unsigned long next_balance
;
566 struct mm_struct
*prev_mm
;
573 struct root_domain
*rd
;
574 struct sched_domain
*sd
;
576 unsigned char idle_at_tick
;
577 /* For active balancing */
581 /* cpu of this runqueue: */
585 unsigned long avg_load_per_task
;
587 struct task_struct
*migration_thread
;
588 struct list_head migration_queue
;
596 /* calc_load related fields */
597 unsigned long calc_load_update
;
598 long calc_load_active
;
600 #ifdef CONFIG_SCHED_HRTICK
602 int hrtick_csd_pending
;
603 struct call_single_data hrtick_csd
;
605 struct hrtimer hrtick_timer
;
608 #ifdef CONFIG_SCHEDSTATS
610 struct sched_info rq_sched_info
;
611 unsigned long long rq_cpu_time
;
612 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
614 /* sys_sched_yield() stats */
615 unsigned int yld_count
;
617 /* schedule() stats */
618 unsigned int sched_switch
;
619 unsigned int sched_count
;
620 unsigned int sched_goidle
;
622 /* try_to_wake_up() stats */
623 unsigned int ttwu_count
;
624 unsigned int ttwu_local
;
627 unsigned int bkl_count
;
631 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
634 void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
636 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
639 static inline int cpu_of(struct rq
*rq
)
649 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
650 * See detach_destroy_domains: synchronize_sched for details.
652 * The domain tree of any CPU may only be accessed from within
653 * preempt-disabled sections.
655 #define for_each_domain(cpu, __sd) \
656 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
658 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
659 #define this_rq() (&__get_cpu_var(runqueues))
660 #define task_rq(p) cpu_rq(task_cpu(p))
661 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
662 #define raw_rq() (&__raw_get_cpu_var(runqueues))
664 inline void update_rq_clock(struct rq
*rq
)
666 rq
->clock
= sched_clock_cpu(cpu_of(rq
));
670 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
672 #ifdef CONFIG_SCHED_DEBUG
673 # define const_debug __read_mostly
675 # define const_debug static const
680 * @cpu: the processor in question.
682 * Returns true if the current cpu runqueue is locked.
683 * This interface allows printk to be called with the runqueue lock
684 * held and know whether or not it is OK to wake up the klogd.
686 int runqueue_is_locked(int cpu
)
688 return raw_spin_is_locked(&cpu_rq(cpu
)->lock
);
692 * Debugging: various feature bits
695 #define SCHED_FEAT(name, enabled) \
696 __SCHED_FEAT_##name ,
699 #include "sched_features.h"
704 #define SCHED_FEAT(name, enabled) \
705 (1UL << __SCHED_FEAT_##name) * enabled |
707 const_debug
unsigned int sysctl_sched_features
=
708 #include "sched_features.h"
713 #ifdef CONFIG_SCHED_DEBUG
714 #define SCHED_FEAT(name, enabled) \
717 static __read_mostly
char *sched_feat_names
[] = {
718 #include "sched_features.h"
724 static int sched_feat_show(struct seq_file
*m
, void *v
)
728 for (i
= 0; sched_feat_names
[i
]; i
++) {
729 if (!(sysctl_sched_features
& (1UL << i
)))
731 seq_printf(m
, "%s ", sched_feat_names
[i
]);
739 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
740 size_t cnt
, loff_t
*ppos
)
750 if (copy_from_user(&buf
, ubuf
, cnt
))
756 if (strncmp(buf
, "NO_", 3) == 0) {
761 for (i
= 0; sched_feat_names
[i
]; i
++) {
762 if (strcmp(cmp
, sched_feat_names
[i
]) == 0) {
764 sysctl_sched_features
&= ~(1UL << i
);
766 sysctl_sched_features
|= (1UL << i
);
771 if (!sched_feat_names
[i
])
779 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
781 return single_open(filp
, sched_feat_show
, NULL
);
784 static const struct file_operations sched_feat_fops
= {
785 .open
= sched_feat_open
,
786 .write
= sched_feat_write
,
789 .release
= single_release
,
792 static __init
int sched_init_debug(void)
794 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
799 late_initcall(sched_init_debug
);
803 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
806 * Number of tasks to iterate in a single balance run.
807 * Limited because this is done with IRQs disabled.
809 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
812 * ratelimit for updating the group shares.
815 unsigned int sysctl_sched_shares_ratelimit
= 250000;
816 unsigned int normalized_sysctl_sched_shares_ratelimit
= 250000;
819 * Inject some fuzzyness into changing the per-cpu group shares
820 * this avoids remote rq-locks at the expense of fairness.
823 unsigned int sysctl_sched_shares_thresh
= 4;
826 * period over which we average the RT time consumption, measured
831 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
834 * period over which we measure -rt task cpu usage in us.
837 unsigned int sysctl_sched_rt_period
= 1000000;
839 static __read_mostly
int scheduler_running
;
842 * part of the period that we allow rt tasks to run in us.
845 int sysctl_sched_rt_runtime
= 950000;
847 static inline u64
global_rt_period(void)
849 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
852 static inline u64
global_rt_runtime(void)
854 if (sysctl_sched_rt_runtime
< 0)
857 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
860 #ifndef prepare_arch_switch
861 # define prepare_arch_switch(next) do { } while (0)
863 #ifndef finish_arch_switch
864 # define finish_arch_switch(prev) do { } while (0)
867 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
869 return rq
->curr
== p
;
872 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
873 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
875 return task_current(rq
, p
);
878 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
882 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
884 #ifdef CONFIG_DEBUG_SPINLOCK
885 /* this is a valid case when another task releases the spinlock */
886 rq
->lock
.owner
= current
;
889 * If we are tracking spinlock dependencies then we have to
890 * fix up the runqueue lock - which gets 'carried over' from
893 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
895 raw_spin_unlock_irq(&rq
->lock
);
898 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
899 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
904 return task_current(rq
, p
);
908 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
912 * We can optimise this out completely for !SMP, because the
913 * SMP rebalancing from interrupt is the only thing that cares
918 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
919 raw_spin_unlock_irq(&rq
->lock
);
921 raw_spin_unlock(&rq
->lock
);
925 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
929 * After ->oncpu is cleared, the task can be moved to a different CPU.
930 * We must ensure this doesn't happen until the switch is completely
936 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
940 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
943 * __task_rq_lock - lock the runqueue a given task resides on.
944 * Must be called interrupts disabled.
946 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
950 struct rq
*rq
= task_rq(p
);
951 raw_spin_lock(&rq
->lock
);
952 if (likely(rq
== task_rq(p
)))
954 raw_spin_unlock(&rq
->lock
);
959 * task_rq_lock - lock the runqueue a given task resides on and disable
960 * interrupts. Note the ordering: we can safely lookup the task_rq without
961 * explicitly disabling preemption.
963 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
969 local_irq_save(*flags
);
971 raw_spin_lock(&rq
->lock
);
972 if (likely(rq
== task_rq(p
)))
974 raw_spin_unlock_irqrestore(&rq
->lock
, *flags
);
978 void task_rq_unlock_wait(struct task_struct
*p
)
980 struct rq
*rq
= task_rq(p
);
982 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
983 raw_spin_unlock_wait(&rq
->lock
);
986 static void __task_rq_unlock(struct rq
*rq
)
989 raw_spin_unlock(&rq
->lock
);
992 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
995 raw_spin_unlock_irqrestore(&rq
->lock
, *flags
);
999 * this_rq_lock - lock this runqueue and disable interrupts.
1001 static struct rq
*this_rq_lock(void)
1002 __acquires(rq
->lock
)
1006 local_irq_disable();
1008 raw_spin_lock(&rq
->lock
);
1013 #ifdef CONFIG_SCHED_HRTICK
1015 * Use HR-timers to deliver accurate preemption points.
1017 * Its all a bit involved since we cannot program an hrt while holding the
1018 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1021 * When we get rescheduled we reprogram the hrtick_timer outside of the
1027 * - enabled by features
1028 * - hrtimer is actually high res
1030 static inline int hrtick_enabled(struct rq
*rq
)
1032 if (!sched_feat(HRTICK
))
1034 if (!cpu_active(cpu_of(rq
)))
1036 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1039 static void hrtick_clear(struct rq
*rq
)
1041 if (hrtimer_active(&rq
->hrtick_timer
))
1042 hrtimer_cancel(&rq
->hrtick_timer
);
1046 * High-resolution timer tick.
1047 * Runs from hardirq context with interrupts disabled.
1049 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1051 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1053 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1055 raw_spin_lock(&rq
->lock
);
1056 update_rq_clock(rq
);
1057 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1058 raw_spin_unlock(&rq
->lock
);
1060 return HRTIMER_NORESTART
;
1065 * called from hardirq (IPI) context
1067 static void __hrtick_start(void *arg
)
1069 struct rq
*rq
= arg
;
1071 raw_spin_lock(&rq
->lock
);
1072 hrtimer_restart(&rq
->hrtick_timer
);
1073 rq
->hrtick_csd_pending
= 0;
1074 raw_spin_unlock(&rq
->lock
);
1078 * Called to set the hrtick timer state.
1080 * called with rq->lock held and irqs disabled
1082 static void hrtick_start(struct rq
*rq
, u64 delay
)
1084 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1085 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1087 hrtimer_set_expires(timer
, time
);
1089 if (rq
== this_rq()) {
1090 hrtimer_restart(timer
);
1091 } else if (!rq
->hrtick_csd_pending
) {
1092 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
1093 rq
->hrtick_csd_pending
= 1;
1098 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1100 int cpu
= (int)(long)hcpu
;
1103 case CPU_UP_CANCELED
:
1104 case CPU_UP_CANCELED_FROZEN
:
1105 case CPU_DOWN_PREPARE
:
1106 case CPU_DOWN_PREPARE_FROZEN
:
1108 case CPU_DEAD_FROZEN
:
1109 hrtick_clear(cpu_rq(cpu
));
1116 static __init
void init_hrtick(void)
1118 hotcpu_notifier(hotplug_hrtick
, 0);
1122 * Called to set the hrtick timer state.
1124 * called with rq->lock held and irqs disabled
1126 static void hrtick_start(struct rq
*rq
, u64 delay
)
1128 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
1129 HRTIMER_MODE_REL_PINNED
, 0);
1132 static inline void init_hrtick(void)
1135 #endif /* CONFIG_SMP */
1137 static void init_rq_hrtick(struct rq
*rq
)
1140 rq
->hrtick_csd_pending
= 0;
1142 rq
->hrtick_csd
.flags
= 0;
1143 rq
->hrtick_csd
.func
= __hrtick_start
;
1144 rq
->hrtick_csd
.info
= rq
;
1147 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1148 rq
->hrtick_timer
.function
= hrtick
;
1150 #else /* CONFIG_SCHED_HRTICK */
1151 static inline void hrtick_clear(struct rq
*rq
)
1155 static inline void init_rq_hrtick(struct rq
*rq
)
1159 static inline void init_hrtick(void)
1162 #endif /* CONFIG_SCHED_HRTICK */
1165 * resched_task - mark a task 'to be rescheduled now'.
1167 * On UP this means the setting of the need_resched flag, on SMP it
1168 * might also involve a cross-CPU call to trigger the scheduler on
1173 #ifndef tsk_is_polling
1174 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1177 static void resched_task(struct task_struct
*p
)
1181 assert_raw_spin_locked(&task_rq(p
)->lock
);
1183 if (test_tsk_need_resched(p
))
1186 set_tsk_need_resched(p
);
1189 if (cpu
== smp_processor_id())
1192 /* NEED_RESCHED must be visible before we test polling */
1194 if (!tsk_is_polling(p
))
1195 smp_send_reschedule(cpu
);
1198 static void resched_cpu(int cpu
)
1200 struct rq
*rq
= cpu_rq(cpu
);
1201 unsigned long flags
;
1203 if (!raw_spin_trylock_irqsave(&rq
->lock
, flags
))
1205 resched_task(cpu_curr(cpu
));
1206 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1211 * When add_timer_on() enqueues a timer into the timer wheel of an
1212 * idle CPU then this timer might expire before the next timer event
1213 * which is scheduled to wake up that CPU. In case of a completely
1214 * idle system the next event might even be infinite time into the
1215 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1216 * leaves the inner idle loop so the newly added timer is taken into
1217 * account when the CPU goes back to idle and evaluates the timer
1218 * wheel for the next timer event.
1220 void wake_up_idle_cpu(int cpu
)
1222 struct rq
*rq
= cpu_rq(cpu
);
1224 if (cpu
== smp_processor_id())
1228 * This is safe, as this function is called with the timer
1229 * wheel base lock of (cpu) held. When the CPU is on the way
1230 * to idle and has not yet set rq->curr to idle then it will
1231 * be serialized on the timer wheel base lock and take the new
1232 * timer into account automatically.
1234 if (rq
->curr
!= rq
->idle
)
1238 * We can set TIF_RESCHED on the idle task of the other CPU
1239 * lockless. The worst case is that the other CPU runs the
1240 * idle task through an additional NOOP schedule()
1242 set_tsk_need_resched(rq
->idle
);
1244 /* NEED_RESCHED must be visible before we test polling */
1246 if (!tsk_is_polling(rq
->idle
))
1247 smp_send_reschedule(cpu
);
1249 #endif /* CONFIG_NO_HZ */
1251 static u64
sched_avg_period(void)
1253 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1256 static void sched_avg_update(struct rq
*rq
)
1258 s64 period
= sched_avg_period();
1260 while ((s64
)(rq
->clock
- rq
->age_stamp
) > period
) {
1262 * Inline assembly required to prevent the compiler
1263 * optimising this loop into a divmod call.
1264 * See __iter_div_u64_rem() for another example of this.
1266 asm("" : "+rm" (rq
->age_stamp
));
1267 rq
->age_stamp
+= period
;
1272 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1274 rq
->rt_avg
+= rt_delta
;
1275 sched_avg_update(rq
);
1278 #else /* !CONFIG_SMP */
1279 static void resched_task(struct task_struct
*p
)
1281 assert_raw_spin_locked(&task_rq(p
)->lock
);
1282 set_tsk_need_resched(p
);
1285 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1288 #endif /* CONFIG_SMP */
1290 #if BITS_PER_LONG == 32
1291 # define WMULT_CONST (~0UL)
1293 # define WMULT_CONST (1UL << 32)
1296 #define WMULT_SHIFT 32
1299 * Shift right and round:
1301 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1304 * delta *= weight / lw
1306 static unsigned long
1307 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1308 struct load_weight
*lw
)
1312 if (!lw
->inv_weight
) {
1313 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1316 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1320 tmp
= (u64
)delta_exec
* weight
;
1322 * Check whether we'd overflow the 64-bit multiplication:
1324 if (unlikely(tmp
> WMULT_CONST
))
1325 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1328 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1330 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1333 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1339 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1346 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1347 * of tasks with abnormal "nice" values across CPUs the contribution that
1348 * each task makes to its run queue's load is weighted according to its
1349 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1350 * scaled version of the new time slice allocation that they receive on time
1354 #define WEIGHT_IDLEPRIO 3
1355 #define WMULT_IDLEPRIO 1431655765
1358 * Nice levels are multiplicative, with a gentle 10% change for every
1359 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1360 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1361 * that remained on nice 0.
1363 * The "10% effect" is relative and cumulative: from _any_ nice level,
1364 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1365 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1366 * If a task goes up by ~10% and another task goes down by ~10% then
1367 * the relative distance between them is ~25%.)
1369 static const int prio_to_weight
[40] = {
1370 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1371 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1372 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1373 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1374 /* 0 */ 1024, 820, 655, 526, 423,
1375 /* 5 */ 335, 272, 215, 172, 137,
1376 /* 10 */ 110, 87, 70, 56, 45,
1377 /* 15 */ 36, 29, 23, 18, 15,
1381 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1383 * In cases where the weight does not change often, we can use the
1384 * precalculated inverse to speed up arithmetics by turning divisions
1385 * into multiplications:
1387 static const u32 prio_to_wmult
[40] = {
1388 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1389 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1390 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1391 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1392 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1393 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1394 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1395 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1398 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
1401 * runqueue iterator, to support SMP load-balancing between different
1402 * scheduling classes, without having to expose their internal data
1403 * structures to the load-balancing proper:
1405 struct rq_iterator
{
1407 struct task_struct
*(*start
)(void *);
1408 struct task_struct
*(*next
)(void *);
1412 static unsigned long
1413 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1414 unsigned long max_load_move
, struct sched_domain
*sd
,
1415 enum cpu_idle_type idle
, int *all_pinned
,
1416 int *this_best_prio
, struct rq_iterator
*iterator
);
1419 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1420 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1421 struct rq_iterator
*iterator
);
1424 /* Time spent by the tasks of the cpu accounting group executing in ... */
1425 enum cpuacct_stat_index
{
1426 CPUACCT_STAT_USER
, /* ... user mode */
1427 CPUACCT_STAT_SYSTEM
, /* ... kernel mode */
1429 CPUACCT_STAT_NSTATS
,
1432 #ifdef CONFIG_CGROUP_CPUACCT
1433 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1434 static void cpuacct_update_stats(struct task_struct
*tsk
,
1435 enum cpuacct_stat_index idx
, cputime_t val
);
1437 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1438 static inline void cpuacct_update_stats(struct task_struct
*tsk
,
1439 enum cpuacct_stat_index idx
, cputime_t val
) {}
1442 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1444 update_load_add(&rq
->load
, load
);
1447 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1449 update_load_sub(&rq
->load
, load
);
1452 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1453 typedef int (*tg_visitor
)(struct task_group
*, void *);
1456 * Iterate the full tree, calling @down when first entering a node and @up when
1457 * leaving it for the final time.
1459 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1461 struct task_group
*parent
, *child
;
1465 parent
= &root_task_group
;
1467 ret
= (*down
)(parent
, data
);
1470 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1477 ret
= (*up
)(parent
, data
);
1482 parent
= parent
->parent
;
1491 static int tg_nop(struct task_group
*tg
, void *data
)
1498 /* Used instead of source_load when we know the type == 0 */
1499 static unsigned long weighted_cpuload(const int cpu
)
1501 return cpu_rq(cpu
)->load
.weight
;
1505 * Return a low guess at the load of a migration-source cpu weighted
1506 * according to the scheduling class and "nice" value.
1508 * We want to under-estimate the load of migration sources, to
1509 * balance conservatively.
1511 static unsigned long source_load(int cpu
, int type
)
1513 struct rq
*rq
= cpu_rq(cpu
);
1514 unsigned long total
= weighted_cpuload(cpu
);
1516 if (type
== 0 || !sched_feat(LB_BIAS
))
1519 return min(rq
->cpu_load
[type
-1], total
);
1523 * Return a high guess at the load of a migration-target cpu weighted
1524 * according to the scheduling class and "nice" value.
1526 static unsigned long target_load(int cpu
, int type
)
1528 struct rq
*rq
= cpu_rq(cpu
);
1529 unsigned long total
= weighted_cpuload(cpu
);
1531 if (type
== 0 || !sched_feat(LB_BIAS
))
1534 return max(rq
->cpu_load
[type
-1], total
);
1537 static struct sched_group
*group_of(int cpu
)
1539 struct sched_domain
*sd
= rcu_dereference(cpu_rq(cpu
)->sd
);
1547 static unsigned long power_of(int cpu
)
1549 struct sched_group
*group
= group_of(cpu
);
1552 return SCHED_LOAD_SCALE
;
1554 return group
->cpu_power
;
1557 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1559 static unsigned long cpu_avg_load_per_task(int cpu
)
1561 struct rq
*rq
= cpu_rq(cpu
);
1562 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1565 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1567 rq
->avg_load_per_task
= 0;
1569 return rq
->avg_load_per_task
;
1572 #ifdef CONFIG_FAIR_GROUP_SCHED
1574 static __read_mostly
unsigned long *update_shares_data
;
1576 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1579 * Calculate and set the cpu's group shares.
1581 static void update_group_shares_cpu(struct task_group
*tg
, int cpu
,
1582 unsigned long sd_shares
,
1583 unsigned long sd_rq_weight
,
1584 unsigned long *usd_rq_weight
)
1586 unsigned long shares
, rq_weight
;
1589 rq_weight
= usd_rq_weight
[cpu
];
1592 rq_weight
= NICE_0_LOAD
;
1596 * \Sum_j shares_j * rq_weight_i
1597 * shares_i = -----------------------------
1598 * \Sum_j rq_weight_j
1600 shares
= (sd_shares
* rq_weight
) / sd_rq_weight
;
1601 shares
= clamp_t(unsigned long, shares
, MIN_SHARES
, MAX_SHARES
);
1603 if (abs(shares
- tg
->se
[cpu
]->load
.weight
) >
1604 sysctl_sched_shares_thresh
) {
1605 struct rq
*rq
= cpu_rq(cpu
);
1606 unsigned long flags
;
1608 raw_spin_lock_irqsave(&rq
->lock
, flags
);
1609 tg
->cfs_rq
[cpu
]->rq_weight
= boost
? 0 : rq_weight
;
1610 tg
->cfs_rq
[cpu
]->shares
= boost
? 0 : shares
;
1611 __set_se_shares(tg
->se
[cpu
], shares
);
1612 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1617 * Re-compute the task group their per cpu shares over the given domain.
1618 * This needs to be done in a bottom-up fashion because the rq weight of a
1619 * parent group depends on the shares of its child groups.
1621 static int tg_shares_up(struct task_group
*tg
, void *data
)
1623 unsigned long weight
, rq_weight
= 0, sum_weight
= 0, shares
= 0;
1624 unsigned long *usd_rq_weight
;
1625 struct sched_domain
*sd
= data
;
1626 unsigned long flags
;
1632 local_irq_save(flags
);
1633 usd_rq_weight
= per_cpu_ptr(update_shares_data
, smp_processor_id());
1635 for_each_cpu(i
, sched_domain_span(sd
)) {
1636 weight
= tg
->cfs_rq
[i
]->load
.weight
;
1637 usd_rq_weight
[i
] = weight
;
1639 rq_weight
+= weight
;
1641 * If there are currently no tasks on the cpu pretend there
1642 * is one of average load so that when a new task gets to
1643 * run here it will not get delayed by group starvation.
1646 weight
= NICE_0_LOAD
;
1648 sum_weight
+= weight
;
1649 shares
+= tg
->cfs_rq
[i
]->shares
;
1653 rq_weight
= sum_weight
;
1655 if ((!shares
&& rq_weight
) || shares
> tg
->shares
)
1656 shares
= tg
->shares
;
1658 if (!sd
->parent
|| !(sd
->parent
->flags
& SD_LOAD_BALANCE
))
1659 shares
= tg
->shares
;
1661 for_each_cpu(i
, sched_domain_span(sd
))
1662 update_group_shares_cpu(tg
, i
, shares
, rq_weight
, usd_rq_weight
);
1664 local_irq_restore(flags
);
1670 * Compute the cpu's hierarchical load factor for each task group.
1671 * This needs to be done in a top-down fashion because the load of a child
1672 * group is a fraction of its parents load.
1674 static int tg_load_down(struct task_group
*tg
, void *data
)
1677 long cpu
= (long)data
;
1680 load
= cpu_rq(cpu
)->load
.weight
;
1682 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1683 load
*= tg
->cfs_rq
[cpu
]->shares
;
1684 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1687 tg
->cfs_rq
[cpu
]->h_load
= load
;
1692 static void update_shares(struct sched_domain
*sd
)
1697 if (root_task_group_empty())
1700 now
= cpu_clock(raw_smp_processor_id());
1701 elapsed
= now
- sd
->last_update
;
1703 if (elapsed
>= (s64
)(u64
)sysctl_sched_shares_ratelimit
) {
1704 sd
->last_update
= now
;
1705 walk_tg_tree(tg_nop
, tg_shares_up
, sd
);
1709 static void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1711 if (root_task_group_empty())
1714 raw_spin_unlock(&rq
->lock
);
1716 raw_spin_lock(&rq
->lock
);
1719 static void update_h_load(long cpu
)
1721 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1726 static inline void update_shares(struct sched_domain
*sd
)
1730 static inline void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1736 #ifdef CONFIG_PREEMPT
1738 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1741 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1742 * way at the expense of forcing extra atomic operations in all
1743 * invocations. This assures that the double_lock is acquired using the
1744 * same underlying policy as the spinlock_t on this architecture, which
1745 * reduces latency compared to the unfair variant below. However, it
1746 * also adds more overhead and therefore may reduce throughput.
1748 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1749 __releases(this_rq
->lock
)
1750 __acquires(busiest
->lock
)
1751 __acquires(this_rq
->lock
)
1753 raw_spin_unlock(&this_rq
->lock
);
1754 double_rq_lock(this_rq
, busiest
);
1761 * Unfair double_lock_balance: Optimizes throughput at the expense of
1762 * latency by eliminating extra atomic operations when the locks are
1763 * already in proper order on entry. This favors lower cpu-ids and will
1764 * grant the double lock to lower cpus over higher ids under contention,
1765 * regardless of entry order into the function.
1767 static int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1768 __releases(this_rq
->lock
)
1769 __acquires(busiest
->lock
)
1770 __acquires(this_rq
->lock
)
1774 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
1775 if (busiest
< this_rq
) {
1776 raw_spin_unlock(&this_rq
->lock
);
1777 raw_spin_lock(&busiest
->lock
);
1778 raw_spin_lock_nested(&this_rq
->lock
,
1779 SINGLE_DEPTH_NESTING
);
1782 raw_spin_lock_nested(&busiest
->lock
,
1783 SINGLE_DEPTH_NESTING
);
1788 #endif /* CONFIG_PREEMPT */
1791 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1793 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1795 if (unlikely(!irqs_disabled())) {
1796 /* printk() doesn't work good under rq->lock */
1797 raw_spin_unlock(&this_rq
->lock
);
1801 return _double_lock_balance(this_rq
, busiest
);
1804 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1805 __releases(busiest
->lock
)
1807 raw_spin_unlock(&busiest
->lock
);
1808 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1812 #ifdef CONFIG_FAIR_GROUP_SCHED
1813 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1816 cfs_rq
->shares
= shares
;
1821 static void calc_load_account_active(struct rq
*this_rq
);
1822 static void update_sysctl(void);
1823 static int get_update_sysctl_factor(void);
1825 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1827 set_task_rq(p
, cpu
);
1830 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1831 * successfuly executed on another CPU. We must ensure that updates of
1832 * per-task data have been completed by this moment.
1835 task_thread_info(p
)->cpu
= cpu
;
1839 #include "sched_stats.h"
1840 #include "sched_idletask.c"
1841 #include "sched_fair.c"
1842 #include "sched_rt.c"
1843 #ifdef CONFIG_SCHED_DEBUG
1844 # include "sched_debug.c"
1847 #define sched_class_highest (&rt_sched_class)
1848 #define for_each_class(class) \
1849 for (class = sched_class_highest; class; class = class->next)
1851 static void inc_nr_running(struct rq
*rq
)
1856 static void dec_nr_running(struct rq
*rq
)
1861 static void set_load_weight(struct task_struct
*p
)
1863 if (task_has_rt_policy(p
)) {
1864 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1865 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1870 * SCHED_IDLE tasks get minimal weight:
1872 if (p
->policy
== SCHED_IDLE
) {
1873 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1874 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1878 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1879 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1882 static void update_avg(u64
*avg
, u64 sample
)
1884 s64 diff
= sample
- *avg
;
1888 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1891 p
->se
.start_runtime
= p
->se
.sum_exec_runtime
;
1893 sched_info_queued(p
);
1894 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
1898 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1901 if (p
->se
.last_wakeup
) {
1902 update_avg(&p
->se
.avg_overlap
,
1903 p
->se
.sum_exec_runtime
- p
->se
.last_wakeup
);
1904 p
->se
.last_wakeup
= 0;
1906 update_avg(&p
->se
.avg_wakeup
,
1907 sysctl_sched_wakeup_granularity
);
1911 sched_info_dequeued(p
);
1912 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1917 * __normal_prio - return the priority that is based on the static prio
1919 static inline int __normal_prio(struct task_struct
*p
)
1921 return p
->static_prio
;
1925 * Calculate the expected normal priority: i.e. priority
1926 * without taking RT-inheritance into account. Might be
1927 * boosted by interactivity modifiers. Changes upon fork,
1928 * setprio syscalls, and whenever the interactivity
1929 * estimator recalculates.
1931 static inline int normal_prio(struct task_struct
*p
)
1935 if (task_has_rt_policy(p
))
1936 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1938 prio
= __normal_prio(p
);
1943 * Calculate the current priority, i.e. the priority
1944 * taken into account by the scheduler. This value might
1945 * be boosted by RT tasks, or might be boosted by
1946 * interactivity modifiers. Will be RT if the task got
1947 * RT-boosted. If not then it returns p->normal_prio.
1949 static int effective_prio(struct task_struct
*p
)
1951 p
->normal_prio
= normal_prio(p
);
1953 * If we are RT tasks or we were boosted to RT priority,
1954 * keep the priority unchanged. Otherwise, update priority
1955 * to the normal priority:
1957 if (!rt_prio(p
->prio
))
1958 return p
->normal_prio
;
1963 * activate_task - move a task to the runqueue.
1965 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1967 if (task_contributes_to_load(p
))
1968 rq
->nr_uninterruptible
--;
1970 enqueue_task(rq
, p
, wakeup
);
1975 * deactivate_task - remove a task from the runqueue.
1977 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1979 if (task_contributes_to_load(p
))
1980 rq
->nr_uninterruptible
++;
1982 dequeue_task(rq
, p
, sleep
);
1987 * task_curr - is this task currently executing on a CPU?
1988 * @p: the task in question.
1990 inline int task_curr(const struct task_struct
*p
)
1992 return cpu_curr(task_cpu(p
)) == p
;
1995 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1996 const struct sched_class
*prev_class
,
1997 int oldprio
, int running
)
1999 if (prev_class
!= p
->sched_class
) {
2000 if (prev_class
->switched_from
)
2001 prev_class
->switched_from(rq
, p
, running
);
2002 p
->sched_class
->switched_to(rq
, p
, running
);
2004 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
2009 * Is this task likely cache-hot:
2012 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
2016 if (p
->sched_class
!= &fair_sched_class
)
2020 * Buddy candidates are cache hot:
2022 if (sched_feat(CACHE_HOT_BUDDY
) && this_rq()->nr_running
&&
2023 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
2024 &p
->se
== cfs_rq_of(&p
->se
)->last
))
2027 if (sysctl_sched_migration_cost
== -1)
2029 if (sysctl_sched_migration_cost
== 0)
2032 delta
= now
- p
->se
.exec_start
;
2034 return delta
< (s64
)sysctl_sched_migration_cost
;
2037 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
2039 #ifdef CONFIG_SCHED_DEBUG
2041 * We should never call set_task_cpu() on a blocked task,
2042 * ttwu() will sort out the placement.
2044 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
2045 !(task_thread_info(p
)->preempt_count
& PREEMPT_ACTIVE
));
2048 trace_sched_migrate_task(p
, new_cpu
);
2050 if (task_cpu(p
) != new_cpu
) {
2051 p
->se
.nr_migrations
++;
2052 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS
, 1, 1, NULL
, 0);
2055 __set_task_cpu(p
, new_cpu
);
2058 struct migration_req
{
2059 struct list_head list
;
2061 struct task_struct
*task
;
2064 struct completion done
;
2068 * The task's runqueue lock must be held.
2069 * Returns true if you have to wait for migration thread.
2072 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
2074 struct rq
*rq
= task_rq(p
);
2077 * If the task is not on a runqueue (and not running), then
2078 * the next wake-up will properly place the task.
2080 if (!p
->se
.on_rq
&& !task_running(rq
, p
))
2083 init_completion(&req
->done
);
2085 req
->dest_cpu
= dest_cpu
;
2086 list_add(&req
->list
, &rq
->migration_queue
);
2092 * wait_task_context_switch - wait for a thread to complete at least one
2095 * @p must not be current.
2097 void wait_task_context_switch(struct task_struct
*p
)
2099 unsigned long nvcsw
, nivcsw
, flags
;
2107 * The runqueue is assigned before the actual context
2108 * switch. We need to take the runqueue lock.
2110 * We could check initially without the lock but it is
2111 * very likely that we need to take the lock in every
2114 rq
= task_rq_lock(p
, &flags
);
2115 running
= task_running(rq
, p
);
2116 task_rq_unlock(rq
, &flags
);
2118 if (likely(!running
))
2121 * The switch count is incremented before the actual
2122 * context switch. We thus wait for two switches to be
2123 * sure at least one completed.
2125 if ((p
->nvcsw
- nvcsw
) > 1)
2127 if ((p
->nivcsw
- nivcsw
) > 1)
2135 * wait_task_inactive - wait for a thread to unschedule.
2137 * If @match_state is nonzero, it's the @p->state value just checked and
2138 * not expected to change. If it changes, i.e. @p might have woken up,
2139 * then return zero. When we succeed in waiting for @p to be off its CPU,
2140 * we return a positive number (its total switch count). If a second call
2141 * a short while later returns the same number, the caller can be sure that
2142 * @p has remained unscheduled the whole time.
2144 * The caller must ensure that the task *will* unschedule sometime soon,
2145 * else this function might spin for a *long* time. This function can't
2146 * be called with interrupts off, or it may introduce deadlock with
2147 * smp_call_function() if an IPI is sent by the same process we are
2148 * waiting to become inactive.
2150 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
2152 unsigned long flags
;
2159 * We do the initial early heuristics without holding
2160 * any task-queue locks at all. We'll only try to get
2161 * the runqueue lock when things look like they will
2167 * If the task is actively running on another CPU
2168 * still, just relax and busy-wait without holding
2171 * NOTE! Since we don't hold any locks, it's not
2172 * even sure that "rq" stays as the right runqueue!
2173 * But we don't care, since "task_running()" will
2174 * return false if the runqueue has changed and p
2175 * is actually now running somewhere else!
2177 while (task_running(rq
, p
)) {
2178 if (match_state
&& unlikely(p
->state
!= match_state
))
2184 * Ok, time to look more closely! We need the rq
2185 * lock now, to be *sure*. If we're wrong, we'll
2186 * just go back and repeat.
2188 rq
= task_rq_lock(p
, &flags
);
2189 trace_sched_wait_task(rq
, p
);
2190 running
= task_running(rq
, p
);
2191 on_rq
= p
->se
.on_rq
;
2193 if (!match_state
|| p
->state
== match_state
)
2194 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2195 task_rq_unlock(rq
, &flags
);
2198 * If it changed from the expected state, bail out now.
2200 if (unlikely(!ncsw
))
2204 * Was it really running after all now that we
2205 * checked with the proper locks actually held?
2207 * Oops. Go back and try again..
2209 if (unlikely(running
)) {
2215 * It's not enough that it's not actively running,
2216 * it must be off the runqueue _entirely_, and not
2219 * So if it was still runnable (but just not actively
2220 * running right now), it's preempted, and we should
2221 * yield - it could be a while.
2223 if (unlikely(on_rq
)) {
2224 schedule_timeout_uninterruptible(1);
2229 * Ahh, all good. It wasn't running, and it wasn't
2230 * runnable, which means that it will never become
2231 * running in the future either. We're all done!
2240 * kick_process - kick a running thread to enter/exit the kernel
2241 * @p: the to-be-kicked thread
2243 * Cause a process which is running on another CPU to enter
2244 * kernel-mode, without any delay. (to get signals handled.)
2246 * NOTE: this function doesnt have to take the runqueue lock,
2247 * because all it wants to ensure is that the remote task enters
2248 * the kernel. If the IPI races and the task has been migrated
2249 * to another CPU then no harm is done and the purpose has been
2252 void kick_process(struct task_struct
*p
)
2258 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2259 smp_send_reschedule(cpu
);
2262 EXPORT_SYMBOL_GPL(kick_process
);
2263 #endif /* CONFIG_SMP */
2266 * task_oncpu_function_call - call a function on the cpu on which a task runs
2267 * @p: the task to evaluate
2268 * @func: the function to be called
2269 * @info: the function call argument
2271 * Calls the function @func when the task is currently running. This might
2272 * be on the current CPU, which just calls the function directly
2274 void task_oncpu_function_call(struct task_struct
*p
,
2275 void (*func
) (void *info
), void *info
)
2282 smp_call_function_single(cpu
, func
, info
, 1);
2287 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
2290 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(cpu
));
2292 /* Look for allowed, online CPU in same node. */
2293 for_each_cpu_and(dest_cpu
, nodemask
, cpu_active_mask
)
2294 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
2297 /* Any allowed, online CPU? */
2298 dest_cpu
= cpumask_any_and(&p
->cpus_allowed
, cpu_active_mask
);
2299 if (dest_cpu
< nr_cpu_ids
)
2302 /* No more Mr. Nice Guy. */
2303 if (dest_cpu
>= nr_cpu_ids
) {
2305 cpuset_cpus_allowed_locked(p
, &p
->cpus_allowed
);
2307 dest_cpu
= cpumask_any_and(cpu_active_mask
, &p
->cpus_allowed
);
2310 * Don't tell them about moving exiting tasks or
2311 * kernel threads (both mm NULL), since they never
2314 if (p
->mm
&& printk_ratelimit()) {
2315 printk(KERN_INFO
"process %d (%s) no "
2316 "longer affine to cpu%d\n",
2317 task_pid_nr(p
), p
->comm
, cpu
);
2325 * Gets called from 3 sites (exec, fork, wakeup), since it is called without
2326 * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
2329 * exec: is unstable, retry loop
2330 * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
2333 int select_task_rq(struct task_struct
*p
, int sd_flags
, int wake_flags
)
2335 int cpu
= p
->sched_class
->select_task_rq(p
, sd_flags
, wake_flags
);
2338 * In order not to call set_task_cpu() on a blocking task we need
2339 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2342 * Since this is common to all placement strategies, this lives here.
2344 * [ this allows ->select_task() to simply return task_cpu(p) and
2345 * not worry about this generic constraint ]
2347 if (unlikely(!cpumask_test_cpu(cpu
, &p
->cpus_allowed
) ||
2349 cpu
= select_fallback_rq(task_cpu(p
), p
);
2356 * try_to_wake_up - wake up a thread
2357 * @p: the to-be-woken-up thread
2358 * @state: the mask of task states that can be woken
2359 * @sync: do a synchronous wakeup?
2361 * Put it on the run-queue if it's not already there. The "current"
2362 * thread is always on the run-queue (except when the actual
2363 * re-schedule is in progress), and as such you're allowed to do
2364 * the simpler "current->state = TASK_RUNNING" to mark yourself
2365 * runnable without the overhead of this.
2367 * returns failure only if the task is already active.
2369 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
,
2372 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2373 unsigned long flags
;
2374 struct rq
*rq
, *orig_rq
;
2376 if (!sched_feat(SYNC_WAKEUPS
))
2377 wake_flags
&= ~WF_SYNC
;
2379 this_cpu
= get_cpu();
2382 rq
= orig_rq
= task_rq_lock(p
, &flags
);
2383 update_rq_clock(rq
);
2384 if (!(p
->state
& state
))
2394 if (unlikely(task_running(rq
, p
)))
2398 * In order to handle concurrent wakeups and release the rq->lock
2399 * we put the task in TASK_WAKING state.
2401 * First fix up the nr_uninterruptible count:
2403 if (task_contributes_to_load(p
))
2404 rq
->nr_uninterruptible
--;
2405 p
->state
= TASK_WAKING
;
2407 if (p
->sched_class
->task_waking
)
2408 p
->sched_class
->task_waking(rq
, p
);
2410 __task_rq_unlock(rq
);
2412 cpu
= select_task_rq(p
, SD_BALANCE_WAKE
, wake_flags
);
2413 if (cpu
!= orig_cpu
)
2414 set_task_cpu(p
, cpu
);
2416 rq
= __task_rq_lock(p
);
2417 update_rq_clock(rq
);
2419 WARN_ON(p
->state
!= TASK_WAKING
);
2422 #ifdef CONFIG_SCHEDSTATS
2423 schedstat_inc(rq
, ttwu_count
);
2424 if (cpu
== this_cpu
)
2425 schedstat_inc(rq
, ttwu_local
);
2427 struct sched_domain
*sd
;
2428 for_each_domain(this_cpu
, sd
) {
2429 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2430 schedstat_inc(sd
, ttwu_wake_remote
);
2435 #endif /* CONFIG_SCHEDSTATS */
2438 #endif /* CONFIG_SMP */
2439 schedstat_inc(p
, se
.nr_wakeups
);
2440 if (wake_flags
& WF_SYNC
)
2441 schedstat_inc(p
, se
.nr_wakeups_sync
);
2442 if (orig_cpu
!= cpu
)
2443 schedstat_inc(p
, se
.nr_wakeups_migrate
);
2444 if (cpu
== this_cpu
)
2445 schedstat_inc(p
, se
.nr_wakeups_local
);
2447 schedstat_inc(p
, se
.nr_wakeups_remote
);
2448 activate_task(rq
, p
, 1);
2452 * Only attribute actual wakeups done by this task.
2454 if (!in_interrupt()) {
2455 struct sched_entity
*se
= ¤t
->se
;
2456 u64 sample
= se
->sum_exec_runtime
;
2458 if (se
->last_wakeup
)
2459 sample
-= se
->last_wakeup
;
2461 sample
-= se
->start_runtime
;
2462 update_avg(&se
->avg_wakeup
, sample
);
2464 se
->last_wakeup
= se
->sum_exec_runtime
;
2468 trace_sched_wakeup(rq
, p
, success
);
2469 check_preempt_curr(rq
, p
, wake_flags
);
2471 p
->state
= TASK_RUNNING
;
2473 if (p
->sched_class
->task_woken
)
2474 p
->sched_class
->task_woken(rq
, p
);
2476 if (unlikely(rq
->idle_stamp
)) {
2477 u64 delta
= rq
->clock
- rq
->idle_stamp
;
2478 u64 max
= 2*sysctl_sched_migration_cost
;
2483 update_avg(&rq
->avg_idle
, delta
);
2488 task_rq_unlock(rq
, &flags
);
2495 * wake_up_process - Wake up a specific process
2496 * @p: The process to be woken up.
2498 * Attempt to wake up the nominated process and move it to the set of runnable
2499 * processes. Returns 1 if the process was woken up, 0 if it was already
2502 * It may be assumed that this function implies a write memory barrier before
2503 * changing the task state if and only if any tasks are woken up.
2505 int wake_up_process(struct task_struct
*p
)
2507 return try_to_wake_up(p
, TASK_ALL
, 0);
2509 EXPORT_SYMBOL(wake_up_process
);
2511 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2513 return try_to_wake_up(p
, state
, 0);
2517 * Perform scheduler related setup for a newly forked process p.
2518 * p is forked by current.
2520 * __sched_fork() is basic setup used by init_idle() too:
2522 static void __sched_fork(struct task_struct
*p
)
2524 p
->se
.exec_start
= 0;
2525 p
->se
.sum_exec_runtime
= 0;
2526 p
->se
.prev_sum_exec_runtime
= 0;
2527 p
->se
.nr_migrations
= 0;
2528 p
->se
.last_wakeup
= 0;
2529 p
->se
.avg_overlap
= 0;
2530 p
->se
.start_runtime
= 0;
2531 p
->se
.avg_wakeup
= sysctl_sched_wakeup_granularity
;
2533 #ifdef CONFIG_SCHEDSTATS
2534 p
->se
.wait_start
= 0;
2536 p
->se
.wait_count
= 0;
2539 p
->se
.sleep_start
= 0;
2540 p
->se
.sleep_max
= 0;
2541 p
->se
.sum_sleep_runtime
= 0;
2543 p
->se
.block_start
= 0;
2544 p
->se
.block_max
= 0;
2546 p
->se
.slice_max
= 0;
2548 p
->se
.nr_migrations_cold
= 0;
2549 p
->se
.nr_failed_migrations_affine
= 0;
2550 p
->se
.nr_failed_migrations_running
= 0;
2551 p
->se
.nr_failed_migrations_hot
= 0;
2552 p
->se
.nr_forced_migrations
= 0;
2554 p
->se
.nr_wakeups
= 0;
2555 p
->se
.nr_wakeups_sync
= 0;
2556 p
->se
.nr_wakeups_migrate
= 0;
2557 p
->se
.nr_wakeups_local
= 0;
2558 p
->se
.nr_wakeups_remote
= 0;
2559 p
->se
.nr_wakeups_affine
= 0;
2560 p
->se
.nr_wakeups_affine_attempts
= 0;
2561 p
->se
.nr_wakeups_passive
= 0;
2562 p
->se
.nr_wakeups_idle
= 0;
2566 INIT_LIST_HEAD(&p
->rt
.run_list
);
2568 INIT_LIST_HEAD(&p
->se
.group_node
);
2570 #ifdef CONFIG_PREEMPT_NOTIFIERS
2571 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2576 * fork()/clone()-time setup:
2578 void sched_fork(struct task_struct
*p
, int clone_flags
)
2580 int cpu
= get_cpu();
2584 * We mark the process as waking here. This guarantees that
2585 * nobody will actually run it, and a signal or other external
2586 * event cannot wake it up and insert it on the runqueue either.
2588 p
->state
= TASK_WAKING
;
2591 * Revert to default priority/policy on fork if requested.
2593 if (unlikely(p
->sched_reset_on_fork
)) {
2594 if (p
->policy
== SCHED_FIFO
|| p
->policy
== SCHED_RR
) {
2595 p
->policy
= SCHED_NORMAL
;
2596 p
->normal_prio
= p
->static_prio
;
2599 if (PRIO_TO_NICE(p
->static_prio
) < 0) {
2600 p
->static_prio
= NICE_TO_PRIO(0);
2601 p
->normal_prio
= p
->static_prio
;
2606 * We don't need the reset flag anymore after the fork. It has
2607 * fulfilled its duty:
2609 p
->sched_reset_on_fork
= 0;
2613 * Make sure we do not leak PI boosting priority to the child.
2615 p
->prio
= current
->normal_prio
;
2617 if (!rt_prio(p
->prio
))
2618 p
->sched_class
= &fair_sched_class
;
2620 if (p
->sched_class
->task_fork
)
2621 p
->sched_class
->task_fork(p
);
2623 set_task_cpu(p
, cpu
);
2625 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2626 if (likely(sched_info_on()))
2627 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2629 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2632 #ifdef CONFIG_PREEMPT
2633 /* Want to start with kernel preemption disabled. */
2634 task_thread_info(p
)->preempt_count
= 1;
2636 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2642 * wake_up_new_task - wake up a newly created task for the first time.
2644 * This function will do some initial scheduler statistics housekeeping
2645 * that must be done for every newly created context, then puts the task
2646 * on the runqueue and wakes it.
2648 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2650 unsigned long flags
;
2652 int cpu
= get_cpu();
2656 * Fork balancing, do it here and not earlier because:
2657 * - cpus_allowed can change in the fork path
2658 * - any previously selected cpu might disappear through hotplug
2660 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
2661 * ->cpus_allowed is stable, we have preemption disabled, meaning
2662 * cpu_online_mask is stable.
2664 cpu
= select_task_rq(p
, SD_BALANCE_FORK
, 0);
2665 set_task_cpu(p
, cpu
);
2668 rq
= task_rq_lock(p
, &flags
);
2669 BUG_ON(p
->state
!= TASK_WAKING
);
2670 p
->state
= TASK_RUNNING
;
2671 update_rq_clock(rq
);
2672 activate_task(rq
, p
, 0);
2673 trace_sched_wakeup_new(rq
, p
, 1);
2674 check_preempt_curr(rq
, p
, WF_FORK
);
2676 if (p
->sched_class
->task_woken
)
2677 p
->sched_class
->task_woken(rq
, p
);
2679 task_rq_unlock(rq
, &flags
);
2683 #ifdef CONFIG_PREEMPT_NOTIFIERS
2686 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2687 * @notifier: notifier struct to register
2689 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2691 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2693 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2696 * preempt_notifier_unregister - no longer interested in preemption notifications
2697 * @notifier: notifier struct to unregister
2699 * This is safe to call from within a preemption notifier.
2701 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2703 hlist_del(¬ifier
->link
);
2705 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2707 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2709 struct preempt_notifier
*notifier
;
2710 struct hlist_node
*node
;
2712 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2713 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2717 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2718 struct task_struct
*next
)
2720 struct preempt_notifier
*notifier
;
2721 struct hlist_node
*node
;
2723 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2724 notifier
->ops
->sched_out(notifier
, next
);
2727 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2729 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2734 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2735 struct task_struct
*next
)
2739 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2742 * prepare_task_switch - prepare to switch tasks
2743 * @rq: the runqueue preparing to switch
2744 * @prev: the current task that is being switched out
2745 * @next: the task we are going to switch to.
2747 * This is called with the rq lock held and interrupts off. It must
2748 * be paired with a subsequent finish_task_switch after the context
2751 * prepare_task_switch sets up locking and calls architecture specific
2755 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2756 struct task_struct
*next
)
2758 fire_sched_out_preempt_notifiers(prev
, next
);
2759 prepare_lock_switch(rq
, next
);
2760 prepare_arch_switch(next
);
2764 * finish_task_switch - clean up after a task-switch
2765 * @rq: runqueue associated with task-switch
2766 * @prev: the thread we just switched away from.
2768 * finish_task_switch must be called after the context switch, paired
2769 * with a prepare_task_switch call before the context switch.
2770 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2771 * and do any other architecture-specific cleanup actions.
2773 * Note that we may have delayed dropping an mm in context_switch(). If
2774 * so, we finish that here outside of the runqueue lock. (Doing it
2775 * with the lock held can cause deadlocks; see schedule() for
2778 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2779 __releases(rq
->lock
)
2781 struct mm_struct
*mm
= rq
->prev_mm
;
2787 * A task struct has one reference for the use as "current".
2788 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2789 * schedule one last time. The schedule call will never return, and
2790 * the scheduled task must drop that reference.
2791 * The test for TASK_DEAD must occur while the runqueue locks are
2792 * still held, otherwise prev could be scheduled on another cpu, die
2793 * there before we look at prev->state, and then the reference would
2795 * Manfred Spraul <manfred@colorfullife.com>
2797 prev_state
= prev
->state
;
2798 finish_arch_switch(prev
);
2799 perf_event_task_sched_in(current
, cpu_of(rq
));
2800 finish_lock_switch(rq
, prev
);
2802 fire_sched_in_preempt_notifiers(current
);
2805 if (unlikely(prev_state
== TASK_DEAD
)) {
2807 * Remove function-return probe instances associated with this
2808 * task and put them back on the free list.
2810 kprobe_flush_task(prev
);
2811 put_task_struct(prev
);
2817 /* assumes rq->lock is held */
2818 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*prev
)
2820 if (prev
->sched_class
->pre_schedule
)
2821 prev
->sched_class
->pre_schedule(rq
, prev
);
2824 /* rq->lock is NOT held, but preemption is disabled */
2825 static inline void post_schedule(struct rq
*rq
)
2827 if (rq
->post_schedule
) {
2828 unsigned long flags
;
2830 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2831 if (rq
->curr
->sched_class
->post_schedule
)
2832 rq
->curr
->sched_class
->post_schedule(rq
);
2833 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2835 rq
->post_schedule
= 0;
2841 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*p
)
2845 static inline void post_schedule(struct rq
*rq
)
2852 * schedule_tail - first thing a freshly forked thread must call.
2853 * @prev: the thread we just switched away from.
2855 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2856 __releases(rq
->lock
)
2858 struct rq
*rq
= this_rq();
2860 finish_task_switch(rq
, prev
);
2863 * FIXME: do we need to worry about rq being invalidated by the
2868 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2869 /* In this case, finish_task_switch does not reenable preemption */
2872 if (current
->set_child_tid
)
2873 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2877 * context_switch - switch to the new MM and the new
2878 * thread's register state.
2881 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2882 struct task_struct
*next
)
2884 struct mm_struct
*mm
, *oldmm
;
2886 prepare_task_switch(rq
, prev
, next
);
2887 trace_sched_switch(rq
, prev
, next
);
2889 oldmm
= prev
->active_mm
;
2891 * For paravirt, this is coupled with an exit in switch_to to
2892 * combine the page table reload and the switch backend into
2895 arch_start_context_switch(prev
);
2898 next
->active_mm
= oldmm
;
2899 atomic_inc(&oldmm
->mm_count
);
2900 enter_lazy_tlb(oldmm
, next
);
2902 switch_mm(oldmm
, mm
, next
);
2904 if (likely(!prev
->mm
)) {
2905 prev
->active_mm
= NULL
;
2906 rq
->prev_mm
= oldmm
;
2909 * Since the runqueue lock will be released by the next
2910 * task (which is an invalid locking op but in the case
2911 * of the scheduler it's an obvious special-case), so we
2912 * do an early lockdep release here:
2914 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2915 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2918 /* Here we just switch the register state and the stack. */
2919 switch_to(prev
, next
, prev
);
2923 * this_rq must be evaluated again because prev may have moved
2924 * CPUs since it called schedule(), thus the 'rq' on its stack
2925 * frame will be invalid.
2927 finish_task_switch(this_rq(), prev
);
2931 * nr_running, nr_uninterruptible and nr_context_switches:
2933 * externally visible scheduler statistics: current number of runnable
2934 * threads, current number of uninterruptible-sleeping threads, total
2935 * number of context switches performed since bootup.
2937 unsigned long nr_running(void)
2939 unsigned long i
, sum
= 0;
2941 for_each_online_cpu(i
)
2942 sum
+= cpu_rq(i
)->nr_running
;
2947 unsigned long nr_uninterruptible(void)
2949 unsigned long i
, sum
= 0;
2951 for_each_possible_cpu(i
)
2952 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2955 * Since we read the counters lockless, it might be slightly
2956 * inaccurate. Do not allow it to go below zero though:
2958 if (unlikely((long)sum
< 0))
2964 unsigned long long nr_context_switches(void)
2967 unsigned long long sum
= 0;
2969 for_each_possible_cpu(i
)
2970 sum
+= cpu_rq(i
)->nr_switches
;
2975 unsigned long nr_iowait(void)
2977 unsigned long i
, sum
= 0;
2979 for_each_possible_cpu(i
)
2980 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2985 unsigned long nr_iowait_cpu(void)
2987 struct rq
*this = this_rq();
2988 return atomic_read(&this->nr_iowait
);
2991 unsigned long this_cpu_load(void)
2993 struct rq
*this = this_rq();
2994 return this->cpu_load
[0];
2998 /* Variables and functions for calc_load */
2999 static atomic_long_t calc_load_tasks
;
3000 static unsigned long calc_load_update
;
3001 unsigned long avenrun
[3];
3002 EXPORT_SYMBOL(avenrun
);
3005 * get_avenrun - get the load average array
3006 * @loads: pointer to dest load array
3007 * @offset: offset to add
3008 * @shift: shift count to shift the result left
3010 * These values are estimates at best, so no need for locking.
3012 void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
)
3014 loads
[0] = (avenrun
[0] + offset
) << shift
;
3015 loads
[1] = (avenrun
[1] + offset
) << shift
;
3016 loads
[2] = (avenrun
[2] + offset
) << shift
;
3019 static unsigned long
3020 calc_load(unsigned long load
, unsigned long exp
, unsigned long active
)
3023 load
+= active
* (FIXED_1
- exp
);
3024 return load
>> FSHIFT
;
3028 * calc_load - update the avenrun load estimates 10 ticks after the
3029 * CPUs have updated calc_load_tasks.
3031 void calc_global_load(void)
3033 unsigned long upd
= calc_load_update
+ 10;
3036 if (time_before(jiffies
, upd
))
3039 active
= atomic_long_read(&calc_load_tasks
);
3040 active
= active
> 0 ? active
* FIXED_1
: 0;
3042 avenrun
[0] = calc_load(avenrun
[0], EXP_1
, active
);
3043 avenrun
[1] = calc_load(avenrun
[1], EXP_5
, active
);
3044 avenrun
[2] = calc_load(avenrun
[2], EXP_15
, active
);
3046 calc_load_update
+= LOAD_FREQ
;
3050 * Either called from update_cpu_load() or from a cpu going idle
3052 static void calc_load_account_active(struct rq
*this_rq
)
3054 long nr_active
, delta
;
3056 nr_active
= this_rq
->nr_running
;
3057 nr_active
+= (long) this_rq
->nr_uninterruptible
;
3059 if (nr_active
!= this_rq
->calc_load_active
) {
3060 delta
= nr_active
- this_rq
->calc_load_active
;
3061 this_rq
->calc_load_active
= nr_active
;
3062 atomic_long_add(delta
, &calc_load_tasks
);
3067 * Update rq->cpu_load[] statistics. This function is usually called every
3068 * scheduler tick (TICK_NSEC).
3070 static void update_cpu_load(struct rq
*this_rq
)
3072 unsigned long this_load
= this_rq
->load
.weight
;
3075 this_rq
->nr_load_updates
++;
3077 /* Update our load: */
3078 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
3079 unsigned long old_load
, new_load
;
3081 /* scale is effectively 1 << i now, and >> i divides by scale */
3083 old_load
= this_rq
->cpu_load
[i
];
3084 new_load
= this_load
;
3086 * Round up the averaging division if load is increasing. This
3087 * prevents us from getting stuck on 9 if the load is 10, for
3090 if (new_load
> old_load
)
3091 new_load
+= scale
-1;
3092 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
3095 if (time_after_eq(jiffies
, this_rq
->calc_load_update
)) {
3096 this_rq
->calc_load_update
+= LOAD_FREQ
;
3097 calc_load_account_active(this_rq
);
3104 * double_rq_lock - safely lock two runqueues
3106 * Note this does not disable interrupts like task_rq_lock,
3107 * you need to do so manually before calling.
3109 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
3110 __acquires(rq1
->lock
)
3111 __acquires(rq2
->lock
)
3113 BUG_ON(!irqs_disabled());
3115 raw_spin_lock(&rq1
->lock
);
3116 __acquire(rq2
->lock
); /* Fake it out ;) */
3119 raw_spin_lock(&rq1
->lock
);
3120 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
3122 raw_spin_lock(&rq2
->lock
);
3123 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
3126 update_rq_clock(rq1
);
3127 update_rq_clock(rq2
);
3131 * double_rq_unlock - safely unlock two runqueues
3133 * Note this does not restore interrupts like task_rq_unlock,
3134 * you need to do so manually after calling.
3136 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
3137 __releases(rq1
->lock
)
3138 __releases(rq2
->lock
)
3140 raw_spin_unlock(&rq1
->lock
);
3142 raw_spin_unlock(&rq2
->lock
);
3144 __release(rq2
->lock
);
3148 * sched_exec - execve() is a valuable balancing opportunity, because at
3149 * this point the task has the smallest effective memory and cache footprint.
3151 void sched_exec(void)
3153 struct task_struct
*p
= current
;
3154 struct migration_req req
;
3155 int dest_cpu
, this_cpu
;
3156 unsigned long flags
;
3160 this_cpu
= get_cpu();
3161 dest_cpu
= select_task_rq(p
, SD_BALANCE_EXEC
, 0);
3162 if (dest_cpu
== this_cpu
) {
3167 rq
= task_rq_lock(p
, &flags
);
3171 * select_task_rq() can race against ->cpus_allowed
3173 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
)
3174 || unlikely(!cpu_active(dest_cpu
))) {
3175 task_rq_unlock(rq
, &flags
);
3179 /* force the process onto the specified CPU */
3180 if (migrate_task(p
, dest_cpu
, &req
)) {
3181 /* Need to wait for migration thread (might exit: take ref). */
3182 struct task_struct
*mt
= rq
->migration_thread
;
3184 get_task_struct(mt
);
3185 task_rq_unlock(rq
, &flags
);
3186 wake_up_process(mt
);
3187 put_task_struct(mt
);
3188 wait_for_completion(&req
.done
);
3192 task_rq_unlock(rq
, &flags
);
3196 * pull_task - move a task from a remote runqueue to the local runqueue.
3197 * Both runqueues must be locked.
3199 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
3200 struct rq
*this_rq
, int this_cpu
)
3202 deactivate_task(src_rq
, p
, 0);
3203 set_task_cpu(p
, this_cpu
);
3204 activate_task(this_rq
, p
, 0);
3205 check_preempt_curr(this_rq
, p
, 0);
3209 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3212 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
3213 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3216 int tsk_cache_hot
= 0;
3218 * We do not migrate tasks that are:
3219 * 1) running (obviously), or
3220 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3221 * 3) are cache-hot on their current CPU.
3223 if (!cpumask_test_cpu(this_cpu
, &p
->cpus_allowed
)) {
3224 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
3229 if (task_running(rq
, p
)) {
3230 schedstat_inc(p
, se
.nr_failed_migrations_running
);
3235 * Aggressive migration if:
3236 * 1) task is cache cold, or
3237 * 2) too many balance attempts have failed.
3240 tsk_cache_hot
= task_hot(p
, rq
->clock
, sd
);
3241 if (!tsk_cache_hot
||
3242 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
3243 #ifdef CONFIG_SCHEDSTATS
3244 if (tsk_cache_hot
) {
3245 schedstat_inc(sd
, lb_hot_gained
[idle
]);
3246 schedstat_inc(p
, se
.nr_forced_migrations
);
3252 if (tsk_cache_hot
) {
3253 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
3259 static unsigned long
3260 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3261 unsigned long max_load_move
, struct sched_domain
*sd
,
3262 enum cpu_idle_type idle
, int *all_pinned
,
3263 int *this_best_prio
, struct rq_iterator
*iterator
)
3265 int loops
= 0, pulled
= 0, pinned
= 0;
3266 struct task_struct
*p
;
3267 long rem_load_move
= max_load_move
;
3269 if (max_load_move
== 0)
3275 * Start the load-balancing iterator:
3277 p
= iterator
->start(iterator
->arg
);
3279 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
3282 if ((p
->se
.load
.weight
>> 1) > rem_load_move
||
3283 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3284 p
= iterator
->next(iterator
->arg
);
3288 pull_task(busiest
, p
, this_rq
, this_cpu
);
3290 rem_load_move
-= p
->se
.load
.weight
;
3292 #ifdef CONFIG_PREEMPT
3294 * NEWIDLE balancing is a source of latency, so preemptible kernels
3295 * will stop after the first task is pulled to minimize the critical
3298 if (idle
== CPU_NEWLY_IDLE
)
3303 * We only want to steal up to the prescribed amount of weighted load.
3305 if (rem_load_move
> 0) {
3306 if (p
->prio
< *this_best_prio
)
3307 *this_best_prio
= p
->prio
;
3308 p
= iterator
->next(iterator
->arg
);
3313 * Right now, this is one of only two places pull_task() is called,
3314 * so we can safely collect pull_task() stats here rather than
3315 * inside pull_task().
3317 schedstat_add(sd
, lb_gained
[idle
], pulled
);
3320 *all_pinned
= pinned
;
3322 return max_load_move
- rem_load_move
;
3326 * move_tasks tries to move up to max_load_move weighted load from busiest to
3327 * this_rq, as part of a balancing operation within domain "sd".
3328 * Returns 1 if successful and 0 otherwise.
3330 * Called with both runqueues locked.
3332 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3333 unsigned long max_load_move
,
3334 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3337 const struct sched_class
*class = sched_class_highest
;
3338 unsigned long total_load_moved
= 0;
3339 int this_best_prio
= this_rq
->curr
->prio
;
3343 class->load_balance(this_rq
, this_cpu
, busiest
,
3344 max_load_move
- total_load_moved
,
3345 sd
, idle
, all_pinned
, &this_best_prio
);
3346 class = class->next
;
3348 #ifdef CONFIG_PREEMPT
3350 * NEWIDLE balancing is a source of latency, so preemptible
3351 * kernels will stop after the first task is pulled to minimize
3352 * the critical section.
3354 if (idle
== CPU_NEWLY_IDLE
&& this_rq
->nr_running
)
3357 } while (class && max_load_move
> total_load_moved
);
3359 return total_load_moved
> 0;
3363 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3364 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3365 struct rq_iterator
*iterator
)
3367 struct task_struct
*p
= iterator
->start(iterator
->arg
);
3371 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3372 pull_task(busiest
, p
, this_rq
, this_cpu
);
3374 * Right now, this is only the second place pull_task()
3375 * is called, so we can safely collect pull_task()
3376 * stats here rather than inside pull_task().
3378 schedstat_inc(sd
, lb_gained
[idle
]);
3382 p
= iterator
->next(iterator
->arg
);
3389 * move_one_task tries to move exactly one task from busiest to this_rq, as
3390 * part of active balancing operations within "domain".
3391 * Returns 1 if successful and 0 otherwise.
3393 * Called with both runqueues locked.
3395 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3396 struct sched_domain
*sd
, enum cpu_idle_type idle
)
3398 const struct sched_class
*class;
3400 for_each_class(class) {
3401 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
3407 /********** Helpers for find_busiest_group ************************/
3409 * sd_lb_stats - Structure to store the statistics of a sched_domain
3410 * during load balancing.
3412 struct sd_lb_stats
{
3413 struct sched_group
*busiest
; /* Busiest group in this sd */
3414 struct sched_group
*this; /* Local group in this sd */
3415 unsigned long total_load
; /* Total load of all groups in sd */
3416 unsigned long total_pwr
; /* Total power of all groups in sd */
3417 unsigned long avg_load
; /* Average load across all groups in sd */
3419 /** Statistics of this group */
3420 unsigned long this_load
;
3421 unsigned long this_load_per_task
;
3422 unsigned long this_nr_running
;
3424 /* Statistics of the busiest group */
3425 unsigned long max_load
;
3426 unsigned long busiest_load_per_task
;
3427 unsigned long busiest_nr_running
;
3428 unsigned long busiest_group_capacity
;
3430 int group_imb
; /* Is there imbalance in this sd */
3431 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3432 int power_savings_balance
; /* Is powersave balance needed for this sd */
3433 struct sched_group
*group_min
; /* Least loaded group in sd */
3434 struct sched_group
*group_leader
; /* Group which relieves group_min */
3435 unsigned long min_load_per_task
; /* load_per_task in group_min */
3436 unsigned long leader_nr_running
; /* Nr running of group_leader */
3437 unsigned long min_nr_running
; /* Nr running of group_min */
3442 * sg_lb_stats - stats of a sched_group required for load_balancing
3444 struct sg_lb_stats
{
3445 unsigned long avg_load
; /*Avg load across the CPUs of the group */
3446 unsigned long group_load
; /* Total load over the CPUs of the group */
3447 unsigned long sum_nr_running
; /* Nr tasks running in the group */
3448 unsigned long sum_weighted_load
; /* Weighted load of group's tasks */
3449 unsigned long group_capacity
;
3450 int group_imb
; /* Is there an imbalance in the group ? */
3454 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3455 * @group: The group whose first cpu is to be returned.
3457 static inline unsigned int group_first_cpu(struct sched_group
*group
)
3459 return cpumask_first(sched_group_cpus(group
));
3463 * get_sd_load_idx - Obtain the load index for a given sched domain.
3464 * @sd: The sched_domain whose load_idx is to be obtained.
3465 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3467 static inline int get_sd_load_idx(struct sched_domain
*sd
,
3468 enum cpu_idle_type idle
)
3474 load_idx
= sd
->busy_idx
;
3477 case CPU_NEWLY_IDLE
:
3478 load_idx
= sd
->newidle_idx
;
3481 load_idx
= sd
->idle_idx
;
3489 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3491 * init_sd_power_savings_stats - Initialize power savings statistics for
3492 * the given sched_domain, during load balancing.
3494 * @sd: Sched domain whose power-savings statistics are to be initialized.
3495 * @sds: Variable containing the statistics for sd.
3496 * @idle: Idle status of the CPU at which we're performing load-balancing.
3498 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
3499 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
3502 * Busy processors will not participate in power savings
3505 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3506 sds
->power_savings_balance
= 0;
3508 sds
->power_savings_balance
= 1;
3509 sds
->min_nr_running
= ULONG_MAX
;
3510 sds
->leader_nr_running
= 0;
3515 * update_sd_power_savings_stats - Update the power saving stats for a
3516 * sched_domain while performing load balancing.
3518 * @group: sched_group belonging to the sched_domain under consideration.
3519 * @sds: Variable containing the statistics of the sched_domain
3520 * @local_group: Does group contain the CPU for which we're performing
3522 * @sgs: Variable containing the statistics of the group.
3524 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
3525 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
3528 if (!sds
->power_savings_balance
)
3532 * If the local group is idle or completely loaded
3533 * no need to do power savings balance at this domain
3535 if (local_group
&& (sds
->this_nr_running
>= sgs
->group_capacity
||
3536 !sds
->this_nr_running
))
3537 sds
->power_savings_balance
= 0;
3540 * If a group is already running at full capacity or idle,
3541 * don't include that group in power savings calculations
3543 if (!sds
->power_savings_balance
||
3544 sgs
->sum_nr_running
>= sgs
->group_capacity
||
3545 !sgs
->sum_nr_running
)
3549 * Calculate the group which has the least non-idle load.
3550 * This is the group from where we need to pick up the load
3553 if ((sgs
->sum_nr_running
< sds
->min_nr_running
) ||
3554 (sgs
->sum_nr_running
== sds
->min_nr_running
&&
3555 group_first_cpu(group
) > group_first_cpu(sds
->group_min
))) {
3556 sds
->group_min
= group
;
3557 sds
->min_nr_running
= sgs
->sum_nr_running
;
3558 sds
->min_load_per_task
= sgs
->sum_weighted_load
/
3559 sgs
->sum_nr_running
;
3563 * Calculate the group which is almost near its
3564 * capacity but still has some space to pick up some load
3565 * from other group and save more power
3567 if (sgs
->sum_nr_running
+ 1 > sgs
->group_capacity
)
3570 if (sgs
->sum_nr_running
> sds
->leader_nr_running
||
3571 (sgs
->sum_nr_running
== sds
->leader_nr_running
&&
3572 group_first_cpu(group
) < group_first_cpu(sds
->group_leader
))) {
3573 sds
->group_leader
= group
;
3574 sds
->leader_nr_running
= sgs
->sum_nr_running
;
3579 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3580 * @sds: Variable containing the statistics of the sched_domain
3581 * under consideration.
3582 * @this_cpu: Cpu at which we're currently performing load-balancing.
3583 * @imbalance: Variable to store the imbalance.
3586 * Check if we have potential to perform some power-savings balance.
3587 * If yes, set the busiest group to be the least loaded group in the
3588 * sched_domain, so that it's CPUs can be put to idle.
3590 * Returns 1 if there is potential to perform power-savings balance.
3593 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
3594 int this_cpu
, unsigned long *imbalance
)
3596 if (!sds
->power_savings_balance
)
3599 if (sds
->this != sds
->group_leader
||
3600 sds
->group_leader
== sds
->group_min
)
3603 *imbalance
= sds
->min_load_per_task
;
3604 sds
->busiest
= sds
->group_min
;
3609 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3610 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
3611 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
3616 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
3617 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
3622 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
3623 int this_cpu
, unsigned long *imbalance
)
3627 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3630 unsigned long default_scale_freq_power(struct sched_domain
*sd
, int cpu
)
3632 return SCHED_LOAD_SCALE
;
3635 unsigned long __weak
arch_scale_freq_power(struct sched_domain
*sd
, int cpu
)
3637 return default_scale_freq_power(sd
, cpu
);
3640 unsigned long default_scale_smt_power(struct sched_domain
*sd
, int cpu
)
3642 unsigned long weight
= cpumask_weight(sched_domain_span(sd
));
3643 unsigned long smt_gain
= sd
->smt_gain
;
3650 unsigned long __weak
arch_scale_smt_power(struct sched_domain
*sd
, int cpu
)
3652 return default_scale_smt_power(sd
, cpu
);
3655 unsigned long scale_rt_power(int cpu
)
3657 struct rq
*rq
= cpu_rq(cpu
);
3658 u64 total
, available
;
3660 sched_avg_update(rq
);
3662 total
= sched_avg_period() + (rq
->clock
- rq
->age_stamp
);
3663 available
= total
- rq
->rt_avg
;
3665 if (unlikely((s64
)total
< SCHED_LOAD_SCALE
))
3666 total
= SCHED_LOAD_SCALE
;
3668 total
>>= SCHED_LOAD_SHIFT
;
3670 return div_u64(available
, total
);
3673 static void update_cpu_power(struct sched_domain
*sd
, int cpu
)
3675 unsigned long weight
= cpumask_weight(sched_domain_span(sd
));
3676 unsigned long power
= SCHED_LOAD_SCALE
;
3677 struct sched_group
*sdg
= sd
->groups
;
3679 if (sched_feat(ARCH_POWER
))
3680 power
*= arch_scale_freq_power(sd
, cpu
);
3682 power
*= default_scale_freq_power(sd
, cpu
);
3684 power
>>= SCHED_LOAD_SHIFT
;
3686 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
3687 if (sched_feat(ARCH_POWER
))
3688 power
*= arch_scale_smt_power(sd
, cpu
);
3690 power
*= default_scale_smt_power(sd
, cpu
);
3692 power
>>= SCHED_LOAD_SHIFT
;
3695 power
*= scale_rt_power(cpu
);
3696 power
>>= SCHED_LOAD_SHIFT
;
3701 sdg
->cpu_power
= power
;
3704 static void update_group_power(struct sched_domain
*sd
, int cpu
)
3706 struct sched_domain
*child
= sd
->child
;
3707 struct sched_group
*group
, *sdg
= sd
->groups
;
3708 unsigned long power
;
3711 update_cpu_power(sd
, cpu
);
3717 group
= child
->groups
;
3719 power
+= group
->cpu_power
;
3720 group
= group
->next
;
3721 } while (group
!= child
->groups
);
3723 sdg
->cpu_power
= power
;
3727 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3728 * @sd: The sched_domain whose statistics are to be updated.
3729 * @group: sched_group whose statistics are to be updated.
3730 * @this_cpu: Cpu for which load balance is currently performed.
3731 * @idle: Idle status of this_cpu
3732 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3733 * @sd_idle: Idle status of the sched_domain containing group.
3734 * @local_group: Does group contain this_cpu.
3735 * @cpus: Set of cpus considered for load balancing.
3736 * @balance: Should we balance.
3737 * @sgs: variable to hold the statistics for this group.
3739 static inline void update_sg_lb_stats(struct sched_domain
*sd
,
3740 struct sched_group
*group
, int this_cpu
,
3741 enum cpu_idle_type idle
, int load_idx
, int *sd_idle
,
3742 int local_group
, const struct cpumask
*cpus
,
3743 int *balance
, struct sg_lb_stats
*sgs
)
3745 unsigned long load
, max_cpu_load
, min_cpu_load
;
3747 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
3748 unsigned long avg_load_per_task
= 0;
3751 balance_cpu
= group_first_cpu(group
);
3752 if (balance_cpu
== this_cpu
)
3753 update_group_power(sd
, this_cpu
);
3756 /* Tally up the load of all CPUs in the group */
3758 min_cpu_load
= ~0UL;
3760 for_each_cpu_and(i
, sched_group_cpus(group
), cpus
) {
3761 struct rq
*rq
= cpu_rq(i
);
3763 if (*sd_idle
&& rq
->nr_running
)
3766 /* Bias balancing toward cpus of our domain */
3768 if (idle_cpu(i
) && !first_idle_cpu
) {
3773 load
= target_load(i
, load_idx
);
3775 load
= source_load(i
, load_idx
);
3776 if (load
> max_cpu_load
)
3777 max_cpu_load
= load
;
3778 if (min_cpu_load
> load
)
3779 min_cpu_load
= load
;
3782 sgs
->group_load
+= load
;
3783 sgs
->sum_nr_running
+= rq
->nr_running
;
3784 sgs
->sum_weighted_load
+= weighted_cpuload(i
);
3789 * First idle cpu or the first cpu(busiest) in this sched group
3790 * is eligible for doing load balancing at this and above
3791 * domains. In the newly idle case, we will allow all the cpu's
3792 * to do the newly idle load balance.
3794 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
3795 balance_cpu
!= this_cpu
&& balance
) {
3800 /* Adjust by relative CPU power of the group */
3801 sgs
->avg_load
= (sgs
->group_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
3804 * Consider the group unbalanced when the imbalance is larger
3805 * than the average weight of two tasks.
3807 * APZ: with cgroup the avg task weight can vary wildly and
3808 * might not be a suitable number - should we keep a
3809 * normalized nr_running number somewhere that negates
3812 if (sgs
->sum_nr_running
)
3813 avg_load_per_task
= sgs
->sum_weighted_load
/ sgs
->sum_nr_running
;
3815 if ((max_cpu_load
- min_cpu_load
) > 2*avg_load_per_task
)
3818 sgs
->group_capacity
=
3819 DIV_ROUND_CLOSEST(group
->cpu_power
, SCHED_LOAD_SCALE
);
3823 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3824 * @sd: sched_domain whose statistics are to be updated.
3825 * @this_cpu: Cpu for which load balance is currently performed.
3826 * @idle: Idle status of this_cpu
3827 * @sd_idle: Idle status of the sched_domain containing group.
3828 * @cpus: Set of cpus considered for load balancing.
3829 * @balance: Should we balance.
3830 * @sds: variable to hold the statistics for this sched_domain.
3832 static inline void update_sd_lb_stats(struct sched_domain
*sd
, int this_cpu
,
3833 enum cpu_idle_type idle
, int *sd_idle
,
3834 const struct cpumask
*cpus
, int *balance
,
3835 struct sd_lb_stats
*sds
)
3837 struct sched_domain
*child
= sd
->child
;
3838 struct sched_group
*group
= sd
->groups
;
3839 struct sg_lb_stats sgs
;
3840 int load_idx
, prefer_sibling
= 0;
3842 if (child
&& child
->flags
& SD_PREFER_SIBLING
)
3845 init_sd_power_savings_stats(sd
, sds
, idle
);
3846 load_idx
= get_sd_load_idx(sd
, idle
);
3851 local_group
= cpumask_test_cpu(this_cpu
,
3852 sched_group_cpus(group
));
3853 memset(&sgs
, 0, sizeof(sgs
));
3854 update_sg_lb_stats(sd
, group
, this_cpu
, idle
, load_idx
, sd_idle
,
3855 local_group
, cpus
, balance
, &sgs
);
3857 if (local_group
&& balance
&& !(*balance
))
3860 sds
->total_load
+= sgs
.group_load
;
3861 sds
->total_pwr
+= group
->cpu_power
;
3864 * In case the child domain prefers tasks go to siblings
3865 * first, lower the group capacity to one so that we'll try
3866 * and move all the excess tasks away.
3869 sgs
.group_capacity
= min(sgs
.group_capacity
, 1UL);
3872 sds
->this_load
= sgs
.avg_load
;
3874 sds
->this_nr_running
= sgs
.sum_nr_running
;
3875 sds
->this_load_per_task
= sgs
.sum_weighted_load
;
3876 } else if (sgs
.avg_load
> sds
->max_load
&&
3877 (sgs
.sum_nr_running
> sgs
.group_capacity
||
3879 sds
->max_load
= sgs
.avg_load
;
3880 sds
->busiest
= group
;
3881 sds
->busiest_nr_running
= sgs
.sum_nr_running
;
3882 sds
->busiest_group_capacity
= sgs
.group_capacity
;
3883 sds
->busiest_load_per_task
= sgs
.sum_weighted_load
;
3884 sds
->group_imb
= sgs
.group_imb
;
3887 update_sd_power_savings_stats(group
, sds
, local_group
, &sgs
);
3888 group
= group
->next
;
3889 } while (group
!= sd
->groups
);
3893 * fix_small_imbalance - Calculate the minor imbalance that exists
3894 * amongst the groups of a sched_domain, during
3896 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3897 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3898 * @imbalance: Variable to store the imbalance.
3900 static inline void fix_small_imbalance(struct sd_lb_stats
*sds
,
3901 int this_cpu
, unsigned long *imbalance
)
3903 unsigned long tmp
, pwr_now
= 0, pwr_move
= 0;
3904 unsigned int imbn
= 2;
3905 unsigned long scaled_busy_load_per_task
;
3907 if (sds
->this_nr_running
) {
3908 sds
->this_load_per_task
/= sds
->this_nr_running
;
3909 if (sds
->busiest_load_per_task
>
3910 sds
->this_load_per_task
)
3913 sds
->this_load_per_task
=
3914 cpu_avg_load_per_task(this_cpu
);
3916 scaled_busy_load_per_task
= sds
->busiest_load_per_task
3918 scaled_busy_load_per_task
/= sds
->busiest
->cpu_power
;
3920 if (sds
->max_load
- sds
->this_load
+ scaled_busy_load_per_task
>=
3921 (scaled_busy_load_per_task
* imbn
)) {
3922 *imbalance
= sds
->busiest_load_per_task
;
3927 * OK, we don't have enough imbalance to justify moving tasks,
3928 * however we may be able to increase total CPU power used by
3932 pwr_now
+= sds
->busiest
->cpu_power
*
3933 min(sds
->busiest_load_per_task
, sds
->max_load
);
3934 pwr_now
+= sds
->this->cpu_power
*
3935 min(sds
->this_load_per_task
, sds
->this_load
);
3936 pwr_now
/= SCHED_LOAD_SCALE
;
3938 /* Amount of load we'd subtract */
3939 tmp
= (sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
) /
3940 sds
->busiest
->cpu_power
;
3941 if (sds
->max_load
> tmp
)
3942 pwr_move
+= sds
->busiest
->cpu_power
*
3943 min(sds
->busiest_load_per_task
, sds
->max_load
- tmp
);
3945 /* Amount of load we'd add */
3946 if (sds
->max_load
* sds
->busiest
->cpu_power
<
3947 sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
)
3948 tmp
= (sds
->max_load
* sds
->busiest
->cpu_power
) /
3949 sds
->this->cpu_power
;
3951 tmp
= (sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
) /
3952 sds
->this->cpu_power
;
3953 pwr_move
+= sds
->this->cpu_power
*
3954 min(sds
->this_load_per_task
, sds
->this_load
+ tmp
);
3955 pwr_move
/= SCHED_LOAD_SCALE
;
3957 /* Move if we gain throughput */
3958 if (pwr_move
> pwr_now
)
3959 *imbalance
= sds
->busiest_load_per_task
;
3963 * calculate_imbalance - Calculate the amount of imbalance present within the
3964 * groups of a given sched_domain during load balance.
3965 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3966 * @this_cpu: Cpu for which currently load balance is being performed.
3967 * @imbalance: The variable to store the imbalance.
3969 static inline void calculate_imbalance(struct sd_lb_stats
*sds
, int this_cpu
,
3970 unsigned long *imbalance
)
3972 unsigned long max_pull
, load_above_capacity
= ~0UL;
3974 sds
->busiest_load_per_task
/= sds
->busiest_nr_running
;
3975 if (sds
->group_imb
) {
3976 sds
->busiest_load_per_task
=
3977 min(sds
->busiest_load_per_task
, sds
->avg_load
);
3981 * In the presence of smp nice balancing, certain scenarios can have
3982 * max load less than avg load(as we skip the groups at or below
3983 * its cpu_power, while calculating max_load..)
3985 if (sds
->max_load
< sds
->avg_load
) {
3987 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
3990 if (!sds
->group_imb
) {
3992 * Don't want to pull so many tasks that a group would go idle.
3994 load_above_capacity
= (sds
->busiest_nr_running
-
3995 sds
->busiest_group_capacity
);
3997 load_above_capacity
*= (SCHED_LOAD_SCALE
* SCHED_LOAD_SCALE
);
3999 load_above_capacity
/= sds
->busiest
->cpu_power
;
4003 * We're trying to get all the cpus to the average_load, so we don't
4004 * want to push ourselves above the average load, nor do we wish to
4005 * reduce the max loaded cpu below the average load. At the same time,
4006 * we also don't want to reduce the group load below the group capacity
4007 * (so that we can implement power-savings policies etc). Thus we look
4008 * for the minimum possible imbalance.
4009 * Be careful of negative numbers as they'll appear as very large values
4010 * with unsigned longs.
4012 max_pull
= min(sds
->max_load
- sds
->avg_load
, load_above_capacity
);
4014 /* How much load to actually move to equalise the imbalance */
4015 *imbalance
= min(max_pull
* sds
->busiest
->cpu_power
,
4016 (sds
->avg_load
- sds
->this_load
) * sds
->this->cpu_power
)
4020 * if *imbalance is less than the average load per runnable task
4021 * there is no gaurantee that any tasks will be moved so we'll have
4022 * a think about bumping its value to force at least one task to be
4025 if (*imbalance
< sds
->busiest_load_per_task
)
4026 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
4029 /******* find_busiest_group() helpers end here *********************/
4032 * find_busiest_group - Returns the busiest group within the sched_domain
4033 * if there is an imbalance. If there isn't an imbalance, and
4034 * the user has opted for power-savings, it returns a group whose
4035 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4036 * such a group exists.
4038 * Also calculates the amount of weighted load which should be moved
4039 * to restore balance.
4041 * @sd: The sched_domain whose busiest group is to be returned.
4042 * @this_cpu: The cpu for which load balancing is currently being performed.
4043 * @imbalance: Variable which stores amount of weighted load which should
4044 * be moved to restore balance/put a group to idle.
4045 * @idle: The idle status of this_cpu.
4046 * @sd_idle: The idleness of sd
4047 * @cpus: The set of CPUs under consideration for load-balancing.
4048 * @balance: Pointer to a variable indicating if this_cpu
4049 * is the appropriate cpu to perform load balancing at this_level.
4051 * Returns: - the busiest group if imbalance exists.
4052 * - If no imbalance and user has opted for power-savings balance,
4053 * return the least loaded group whose CPUs can be
4054 * put to idle by rebalancing its tasks onto our group.
4056 static struct sched_group
*
4057 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
4058 unsigned long *imbalance
, enum cpu_idle_type idle
,
4059 int *sd_idle
, const struct cpumask
*cpus
, int *balance
)
4061 struct sd_lb_stats sds
;
4063 memset(&sds
, 0, sizeof(sds
));
4066 * Compute the various statistics relavent for load balancing at
4069 update_sd_lb_stats(sd
, this_cpu
, idle
, sd_idle
, cpus
,
4072 /* Cases where imbalance does not exist from POV of this_cpu */
4073 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4075 * 2) There is no busy sibling group to pull from.
4076 * 3) This group is the busiest group.
4077 * 4) This group is more busy than the avg busieness at this
4079 * 5) The imbalance is within the specified limit.
4081 if (balance
&& !(*balance
))
4084 if (!sds
.busiest
|| sds
.busiest_nr_running
== 0)
4087 if (sds
.this_load
>= sds
.max_load
)
4090 sds
.avg_load
= (SCHED_LOAD_SCALE
* sds
.total_load
) / sds
.total_pwr
;
4092 if (sds
.this_load
>= sds
.avg_load
)
4095 if (100 * sds
.max_load
<= sd
->imbalance_pct
* sds
.this_load
)
4098 /* Looks like there is an imbalance. Compute it */
4099 calculate_imbalance(&sds
, this_cpu
, imbalance
);
4104 * There is no obvious imbalance. But check if we can do some balancing
4107 if (check_power_save_busiest_group(&sds
, this_cpu
, imbalance
))
4115 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4118 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
4119 unsigned long imbalance
, const struct cpumask
*cpus
)
4121 struct rq
*busiest
= NULL
, *rq
;
4122 unsigned long max_load
= 0;
4125 for_each_cpu(i
, sched_group_cpus(group
)) {
4126 unsigned long power
= power_of(i
);
4127 unsigned long capacity
= DIV_ROUND_CLOSEST(power
, SCHED_LOAD_SCALE
);
4130 if (!cpumask_test_cpu(i
, cpus
))
4134 wl
= weighted_cpuload(i
);
4137 * When comparing with imbalance, use weighted_cpuload()
4138 * which is not scaled with the cpu power.
4140 if (capacity
&& rq
->nr_running
== 1 && wl
> imbalance
)
4144 * For the load comparisons with the other cpu's, consider
4145 * the weighted_cpuload() scaled with the cpu power, so that
4146 * the load can be moved away from the cpu that is potentially
4147 * running at a lower capacity.
4149 wl
= (wl
* SCHED_LOAD_SCALE
) / power
;
4151 if (wl
> max_load
) {
4161 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4162 * so long as it is large enough.
4164 #define MAX_PINNED_INTERVAL 512
4166 /* Working cpumask for load_balance and load_balance_newidle. */
4167 static DEFINE_PER_CPU(cpumask_var_t
, load_balance_tmpmask
);
4170 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4171 * tasks if there is an imbalance.
4173 static int load_balance(int this_cpu
, struct rq
*this_rq
,
4174 struct sched_domain
*sd
, enum cpu_idle_type idle
,
4177 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
4178 struct sched_group
*group
;
4179 unsigned long imbalance
;
4181 unsigned long flags
;
4182 struct cpumask
*cpus
= __get_cpu_var(load_balance_tmpmask
);
4184 cpumask_copy(cpus
, cpu_active_mask
);
4187 * When power savings policy is enabled for the parent domain, idle
4188 * sibling can pick up load irrespective of busy siblings. In this case,
4189 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4190 * portraying it as CPU_NOT_IDLE.
4192 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4193 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4196 schedstat_inc(sd
, lb_count
[idle
]);
4200 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
4207 schedstat_inc(sd
, lb_nobusyg
[idle
]);
4211 busiest
= find_busiest_queue(group
, idle
, imbalance
, cpus
);
4213 schedstat_inc(sd
, lb_nobusyq
[idle
]);
4217 BUG_ON(busiest
== this_rq
);
4219 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
4222 if (busiest
->nr_running
> 1) {
4224 * Attempt to move tasks. If find_busiest_group has found
4225 * an imbalance but busiest->nr_running <= 1, the group is
4226 * still unbalanced. ld_moved simply stays zero, so it is
4227 * correctly treated as an imbalance.
4229 local_irq_save(flags
);
4230 double_rq_lock(this_rq
, busiest
);
4231 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
4232 imbalance
, sd
, idle
, &all_pinned
);
4233 double_rq_unlock(this_rq
, busiest
);
4234 local_irq_restore(flags
);
4237 * some other cpu did the load balance for us.
4239 if (ld_moved
&& this_cpu
!= smp_processor_id())
4240 resched_cpu(this_cpu
);
4242 /* All tasks on this runqueue were pinned by CPU affinity */
4243 if (unlikely(all_pinned
)) {
4244 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
4245 if (!cpumask_empty(cpus
))
4252 schedstat_inc(sd
, lb_failed
[idle
]);
4253 sd
->nr_balance_failed
++;
4255 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
4257 raw_spin_lock_irqsave(&busiest
->lock
, flags
);
4259 /* don't kick the migration_thread, if the curr
4260 * task on busiest cpu can't be moved to this_cpu
4262 if (!cpumask_test_cpu(this_cpu
,
4263 &busiest
->curr
->cpus_allowed
)) {
4264 raw_spin_unlock_irqrestore(&busiest
->lock
,
4267 goto out_one_pinned
;
4270 if (!busiest
->active_balance
) {
4271 busiest
->active_balance
= 1;
4272 busiest
->push_cpu
= this_cpu
;
4275 raw_spin_unlock_irqrestore(&busiest
->lock
, flags
);
4277 wake_up_process(busiest
->migration_thread
);
4280 * We've kicked active balancing, reset the failure
4283 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
4286 sd
->nr_balance_failed
= 0;
4288 if (likely(!active_balance
)) {
4289 /* We were unbalanced, so reset the balancing interval */
4290 sd
->balance_interval
= sd
->min_interval
;
4293 * If we've begun active balancing, start to back off. This
4294 * case may not be covered by the all_pinned logic if there
4295 * is only 1 task on the busy runqueue (because we don't call
4298 if (sd
->balance_interval
< sd
->max_interval
)
4299 sd
->balance_interval
*= 2;
4302 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4303 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4309 schedstat_inc(sd
, lb_balanced
[idle
]);
4311 sd
->nr_balance_failed
= 0;
4314 /* tune up the balancing interval */
4315 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
4316 (sd
->balance_interval
< sd
->max_interval
))
4317 sd
->balance_interval
*= 2;
4319 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4320 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4331 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4332 * tasks if there is an imbalance.
4334 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4335 * this_rq is locked.
4338 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
4340 struct sched_group
*group
;
4341 struct rq
*busiest
= NULL
;
4342 unsigned long imbalance
;
4346 struct cpumask
*cpus
= __get_cpu_var(load_balance_tmpmask
);
4348 cpumask_copy(cpus
, cpu_active_mask
);
4351 * When power savings policy is enabled for the parent domain, idle
4352 * sibling can pick up load irrespective of busy siblings. In this case,
4353 * let the state of idle sibling percolate up as IDLE, instead of
4354 * portraying it as CPU_NOT_IDLE.
4356 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
4357 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4360 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
4362 update_shares_locked(this_rq
, sd
);
4363 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
4364 &sd_idle
, cpus
, NULL
);
4366 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
4370 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
, cpus
);
4372 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
4376 BUG_ON(busiest
== this_rq
);
4378 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
4381 if (busiest
->nr_running
> 1) {
4382 /* Attempt to move tasks */
4383 double_lock_balance(this_rq
, busiest
);
4384 /* this_rq->clock is already updated */
4385 update_rq_clock(busiest
);
4386 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
4387 imbalance
, sd
, CPU_NEWLY_IDLE
,
4389 double_unlock_balance(this_rq
, busiest
);
4391 if (unlikely(all_pinned
)) {
4392 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
4393 if (!cpumask_empty(cpus
))
4399 int active_balance
= 0;
4401 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
4402 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4403 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4406 if (sched_mc_power_savings
< POWERSAVINGS_BALANCE_WAKEUP
)
4409 if (sd
->nr_balance_failed
++ < 2)
4413 * The only task running in a non-idle cpu can be moved to this
4414 * cpu in an attempt to completely freeup the other CPU
4415 * package. The same method used to move task in load_balance()
4416 * have been extended for load_balance_newidle() to speedup
4417 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4419 * The package power saving logic comes from
4420 * find_busiest_group(). If there are no imbalance, then
4421 * f_b_g() will return NULL. However when sched_mc={1,2} then
4422 * f_b_g() will select a group from which a running task may be
4423 * pulled to this cpu in order to make the other package idle.
4424 * If there is no opportunity to make a package idle and if
4425 * there are no imbalance, then f_b_g() will return NULL and no
4426 * action will be taken in load_balance_newidle().
4428 * Under normal task pull operation due to imbalance, there
4429 * will be more than one task in the source run queue and
4430 * move_tasks() will succeed. ld_moved will be true and this
4431 * active balance code will not be triggered.
4434 /* Lock busiest in correct order while this_rq is held */
4435 double_lock_balance(this_rq
, busiest
);
4438 * don't kick the migration_thread, if the curr
4439 * task on busiest cpu can't be moved to this_cpu
4441 if (!cpumask_test_cpu(this_cpu
, &busiest
->curr
->cpus_allowed
)) {
4442 double_unlock_balance(this_rq
, busiest
);
4447 if (!busiest
->active_balance
) {
4448 busiest
->active_balance
= 1;
4449 busiest
->push_cpu
= this_cpu
;
4453 double_unlock_balance(this_rq
, busiest
);
4455 * Should not call ttwu while holding a rq->lock
4457 raw_spin_unlock(&this_rq
->lock
);
4459 wake_up_process(busiest
->migration_thread
);
4460 raw_spin_lock(&this_rq
->lock
);
4463 sd
->nr_balance_failed
= 0;
4465 update_shares_locked(this_rq
, sd
);
4469 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
4470 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4471 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4473 sd
->nr_balance_failed
= 0;
4479 * idle_balance is called by schedule() if this_cpu is about to become
4480 * idle. Attempts to pull tasks from other CPUs.
4482 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
4484 struct sched_domain
*sd
;
4485 int pulled_task
= 0;
4486 unsigned long next_balance
= jiffies
+ HZ
;
4488 this_rq
->idle_stamp
= this_rq
->clock
;
4490 if (this_rq
->avg_idle
< sysctl_sched_migration_cost
)
4493 for_each_domain(this_cpu
, sd
) {
4494 unsigned long interval
;
4496 if (!(sd
->flags
& SD_LOAD_BALANCE
))
4499 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
4500 /* If we've pulled tasks over stop searching: */
4501 pulled_task
= load_balance_newidle(this_cpu
, this_rq
,
4504 interval
= msecs_to_jiffies(sd
->balance_interval
);
4505 if (time_after(next_balance
, sd
->last_balance
+ interval
))
4506 next_balance
= sd
->last_balance
+ interval
;
4508 this_rq
->idle_stamp
= 0;
4512 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
4514 * We are going idle. next_balance may be set based on
4515 * a busy processor. So reset next_balance.
4517 this_rq
->next_balance
= next_balance
;
4522 * active_load_balance is run by migration threads. It pushes running tasks
4523 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4524 * running on each physical CPU where possible, and avoids physical /
4525 * logical imbalances.
4527 * Called with busiest_rq locked.
4529 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
4531 int target_cpu
= busiest_rq
->push_cpu
;
4532 struct sched_domain
*sd
;
4533 struct rq
*target_rq
;
4535 /* Is there any task to move? */
4536 if (busiest_rq
->nr_running
<= 1)
4539 target_rq
= cpu_rq(target_cpu
);
4542 * This condition is "impossible", if it occurs
4543 * we need to fix it. Originally reported by
4544 * Bjorn Helgaas on a 128-cpu setup.
4546 BUG_ON(busiest_rq
== target_rq
);
4548 /* move a task from busiest_rq to target_rq */
4549 double_lock_balance(busiest_rq
, target_rq
);
4550 update_rq_clock(busiest_rq
);
4551 update_rq_clock(target_rq
);
4553 /* Search for an sd spanning us and the target CPU. */
4554 for_each_domain(target_cpu
, sd
) {
4555 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
4556 cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
4561 schedstat_inc(sd
, alb_count
);
4563 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
4565 schedstat_inc(sd
, alb_pushed
);
4567 schedstat_inc(sd
, alb_failed
);
4569 double_unlock_balance(busiest_rq
, target_rq
);
4574 atomic_t load_balancer
;
4575 cpumask_var_t cpu_mask
;
4576 cpumask_var_t ilb_grp_nohz_mask
;
4577 } nohz ____cacheline_aligned
= {
4578 .load_balancer
= ATOMIC_INIT(-1),
4581 int get_nohz_load_balancer(void)
4583 return atomic_read(&nohz
.load_balancer
);
4586 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4588 * lowest_flag_domain - Return lowest sched_domain containing flag.
4589 * @cpu: The cpu whose lowest level of sched domain is to
4591 * @flag: The flag to check for the lowest sched_domain
4592 * for the given cpu.
4594 * Returns the lowest sched_domain of a cpu which contains the given flag.
4596 static inline struct sched_domain
*lowest_flag_domain(int cpu
, int flag
)
4598 struct sched_domain
*sd
;
4600 for_each_domain(cpu
, sd
)
4601 if (sd
&& (sd
->flags
& flag
))
4608 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4609 * @cpu: The cpu whose domains we're iterating over.
4610 * @sd: variable holding the value of the power_savings_sd
4612 * @flag: The flag to filter the sched_domains to be iterated.
4614 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4615 * set, starting from the lowest sched_domain to the highest.
4617 #define for_each_flag_domain(cpu, sd, flag) \
4618 for (sd = lowest_flag_domain(cpu, flag); \
4619 (sd && (sd->flags & flag)); sd = sd->parent)
4622 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4623 * @ilb_group: group to be checked for semi-idleness
4625 * Returns: 1 if the group is semi-idle. 0 otherwise.
4627 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4628 * and atleast one non-idle CPU. This helper function checks if the given
4629 * sched_group is semi-idle or not.
4631 static inline int is_semi_idle_group(struct sched_group
*ilb_group
)
4633 cpumask_and(nohz
.ilb_grp_nohz_mask
, nohz
.cpu_mask
,
4634 sched_group_cpus(ilb_group
));
4637 * A sched_group is semi-idle when it has atleast one busy cpu
4638 * and atleast one idle cpu.
4640 if (cpumask_empty(nohz
.ilb_grp_nohz_mask
))
4643 if (cpumask_equal(nohz
.ilb_grp_nohz_mask
, sched_group_cpus(ilb_group
)))
4649 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4650 * @cpu: The cpu which is nominating a new idle_load_balancer.
4652 * Returns: Returns the id of the idle load balancer if it exists,
4653 * Else, returns >= nr_cpu_ids.
4655 * This algorithm picks the idle load balancer such that it belongs to a
4656 * semi-idle powersavings sched_domain. The idea is to try and avoid
4657 * completely idle packages/cores just for the purpose of idle load balancing
4658 * when there are other idle cpu's which are better suited for that job.
4660 static int find_new_ilb(int cpu
)
4662 struct sched_domain
*sd
;
4663 struct sched_group
*ilb_group
;
4666 * Have idle load balancer selection from semi-idle packages only
4667 * when power-aware load balancing is enabled
4669 if (!(sched_smt_power_savings
|| sched_mc_power_savings
))
4673 * Optimize for the case when we have no idle CPUs or only one
4674 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4676 if (cpumask_weight(nohz
.cpu_mask
) < 2)
4679 for_each_flag_domain(cpu
, sd
, SD_POWERSAVINGS_BALANCE
) {
4680 ilb_group
= sd
->groups
;
4683 if (is_semi_idle_group(ilb_group
))
4684 return cpumask_first(nohz
.ilb_grp_nohz_mask
);
4686 ilb_group
= ilb_group
->next
;
4688 } while (ilb_group
!= sd
->groups
);
4692 return cpumask_first(nohz
.cpu_mask
);
4694 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4695 static inline int find_new_ilb(int call_cpu
)
4697 return cpumask_first(nohz
.cpu_mask
);
4702 * This routine will try to nominate the ilb (idle load balancing)
4703 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4704 * load balancing on behalf of all those cpus. If all the cpus in the system
4705 * go into this tickless mode, then there will be no ilb owner (as there is
4706 * no need for one) and all the cpus will sleep till the next wakeup event
4709 * For the ilb owner, tick is not stopped. And this tick will be used
4710 * for idle load balancing. ilb owner will still be part of
4713 * While stopping the tick, this cpu will become the ilb owner if there
4714 * is no other owner. And will be the owner till that cpu becomes busy
4715 * or if all cpus in the system stop their ticks at which point
4716 * there is no need for ilb owner.
4718 * When the ilb owner becomes busy, it nominates another owner, during the
4719 * next busy scheduler_tick()
4721 int select_nohz_load_balancer(int stop_tick
)
4723 int cpu
= smp_processor_id();
4726 cpu_rq(cpu
)->in_nohz_recently
= 1;
4728 if (!cpu_active(cpu
)) {
4729 if (atomic_read(&nohz
.load_balancer
) != cpu
)
4733 * If we are going offline and still the leader,
4736 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
4742 cpumask_set_cpu(cpu
, nohz
.cpu_mask
);
4744 /* time for ilb owner also to sleep */
4745 if (cpumask_weight(nohz
.cpu_mask
) == num_active_cpus()) {
4746 if (atomic_read(&nohz
.load_balancer
) == cpu
)
4747 atomic_set(&nohz
.load_balancer
, -1);
4751 if (atomic_read(&nohz
.load_balancer
) == -1) {
4752 /* make me the ilb owner */
4753 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
4755 } else if (atomic_read(&nohz
.load_balancer
) == cpu
) {
4758 if (!(sched_smt_power_savings
||
4759 sched_mc_power_savings
))
4762 * Check to see if there is a more power-efficient
4765 new_ilb
= find_new_ilb(cpu
);
4766 if (new_ilb
< nr_cpu_ids
&& new_ilb
!= cpu
) {
4767 atomic_set(&nohz
.load_balancer
, -1);
4768 resched_cpu(new_ilb
);
4774 if (!cpumask_test_cpu(cpu
, nohz
.cpu_mask
))
4777 cpumask_clear_cpu(cpu
, nohz
.cpu_mask
);
4779 if (atomic_read(&nohz
.load_balancer
) == cpu
)
4780 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
4787 static DEFINE_SPINLOCK(balancing
);
4790 * It checks each scheduling domain to see if it is due to be balanced,
4791 * and initiates a balancing operation if so.
4793 * Balancing parameters are set up in arch_init_sched_domains.
4795 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
4798 struct rq
*rq
= cpu_rq(cpu
);
4799 unsigned long interval
;
4800 struct sched_domain
*sd
;
4801 /* Earliest time when we have to do rebalance again */
4802 unsigned long next_balance
= jiffies
+ 60*HZ
;
4803 int update_next_balance
= 0;
4806 for_each_domain(cpu
, sd
) {
4807 if (!(sd
->flags
& SD_LOAD_BALANCE
))
4810 interval
= sd
->balance_interval
;
4811 if (idle
!= CPU_IDLE
)
4812 interval
*= sd
->busy_factor
;
4814 /* scale ms to jiffies */
4815 interval
= msecs_to_jiffies(interval
);
4816 if (unlikely(!interval
))
4818 if (interval
> HZ
*NR_CPUS
/10)
4819 interval
= HZ
*NR_CPUS
/10;
4821 need_serialize
= sd
->flags
& SD_SERIALIZE
;
4823 if (need_serialize
) {
4824 if (!spin_trylock(&balancing
))
4828 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
4829 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
4831 * We've pulled tasks over so either we're no
4832 * longer idle, or one of our SMT siblings is
4835 idle
= CPU_NOT_IDLE
;
4837 sd
->last_balance
= jiffies
;
4840 spin_unlock(&balancing
);
4842 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
4843 next_balance
= sd
->last_balance
+ interval
;
4844 update_next_balance
= 1;
4848 * Stop the load balance at this level. There is another
4849 * CPU in our sched group which is doing load balancing more
4857 * next_balance will be updated only when there is a need.
4858 * When the cpu is attached to null domain for ex, it will not be
4861 if (likely(update_next_balance
))
4862 rq
->next_balance
= next_balance
;
4866 * run_rebalance_domains is triggered when needed from the scheduler tick.
4867 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4868 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4870 static void run_rebalance_domains(struct softirq_action
*h
)
4872 int this_cpu
= smp_processor_id();
4873 struct rq
*this_rq
= cpu_rq(this_cpu
);
4874 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
4875 CPU_IDLE
: CPU_NOT_IDLE
;
4877 rebalance_domains(this_cpu
, idle
);
4881 * If this cpu is the owner for idle load balancing, then do the
4882 * balancing on behalf of the other idle cpus whose ticks are
4885 if (this_rq
->idle_at_tick
&&
4886 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
4890 for_each_cpu(balance_cpu
, nohz
.cpu_mask
) {
4891 if (balance_cpu
== this_cpu
)
4895 * If this cpu gets work to do, stop the load balancing
4896 * work being done for other cpus. Next load
4897 * balancing owner will pick it up.
4902 rebalance_domains(balance_cpu
, CPU_IDLE
);
4904 rq
= cpu_rq(balance_cpu
);
4905 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
4906 this_rq
->next_balance
= rq
->next_balance
;
4912 static inline int on_null_domain(int cpu
)
4914 return !rcu_dereference(cpu_rq(cpu
)->sd
);
4918 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4920 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4921 * idle load balancing owner or decide to stop the periodic load balancing,
4922 * if the whole system is idle.
4924 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
4928 * If we were in the nohz mode recently and busy at the current
4929 * scheduler tick, then check if we need to nominate new idle
4932 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
4933 rq
->in_nohz_recently
= 0;
4935 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
4936 cpumask_clear_cpu(cpu
, nohz
.cpu_mask
);
4937 atomic_set(&nohz
.load_balancer
, -1);
4940 if (atomic_read(&nohz
.load_balancer
) == -1) {
4941 int ilb
= find_new_ilb(cpu
);
4943 if (ilb
< nr_cpu_ids
)
4949 * If this cpu is idle and doing idle load balancing for all the
4950 * cpus with ticks stopped, is it time for that to stop?
4952 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
4953 cpumask_weight(nohz
.cpu_mask
) == num_online_cpus()) {
4959 * If this cpu is idle and the idle load balancing is done by
4960 * someone else, then no need raise the SCHED_SOFTIRQ
4962 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
4963 cpumask_test_cpu(cpu
, nohz
.cpu_mask
))
4966 /* Don't need to rebalance while attached to NULL domain */
4967 if (time_after_eq(jiffies
, rq
->next_balance
) &&
4968 likely(!on_null_domain(cpu
)))
4969 raise_softirq(SCHED_SOFTIRQ
);
4972 #else /* CONFIG_SMP */
4975 * on UP we do not need to balance between CPUs:
4977 static inline void idle_balance(int cpu
, struct rq
*rq
)
4983 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
4985 EXPORT_PER_CPU_SYMBOL(kstat
);
4988 * Return any ns on the sched_clock that have not yet been accounted in
4989 * @p in case that task is currently running.
4991 * Called with task_rq_lock() held on @rq.
4993 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
4997 if (task_current(rq
, p
)) {
4998 update_rq_clock(rq
);
4999 ns
= rq
->clock
- p
->se
.exec_start
;
5007 unsigned long long task_delta_exec(struct task_struct
*p
)
5009 unsigned long flags
;
5013 rq
= task_rq_lock(p
, &flags
);
5014 ns
= do_task_delta_exec(p
, rq
);
5015 task_rq_unlock(rq
, &flags
);
5021 * Return accounted runtime for the task.
5022 * In case the task is currently running, return the runtime plus current's
5023 * pending runtime that have not been accounted yet.
5025 unsigned long long task_sched_runtime(struct task_struct
*p
)
5027 unsigned long flags
;
5031 rq
= task_rq_lock(p
, &flags
);
5032 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
5033 task_rq_unlock(rq
, &flags
);
5039 * Return sum_exec_runtime for the thread group.
5040 * In case the task is currently running, return the sum plus current's
5041 * pending runtime that have not been accounted yet.
5043 * Note that the thread group might have other running tasks as well,
5044 * so the return value not includes other pending runtime that other
5045 * running tasks might have.
5047 unsigned long long thread_group_sched_runtime(struct task_struct
*p
)
5049 struct task_cputime totals
;
5050 unsigned long flags
;
5054 rq
= task_rq_lock(p
, &flags
);
5055 thread_group_cputime(p
, &totals
);
5056 ns
= totals
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
5057 task_rq_unlock(rq
, &flags
);
5063 * Account user cpu time to a process.
5064 * @p: the process that the cpu time gets accounted to
5065 * @cputime: the cpu time spent in user space since the last update
5066 * @cputime_scaled: cputime scaled by cpu frequency
5068 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
5069 cputime_t cputime_scaled
)
5071 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
5074 /* Add user time to process. */
5075 p
->utime
= cputime_add(p
->utime
, cputime
);
5076 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
5077 account_group_user_time(p
, cputime
);
5079 /* Add user time to cpustat. */
5080 tmp
= cputime_to_cputime64(cputime
);
5081 if (TASK_NICE(p
) > 0)
5082 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
5084 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
5086 cpuacct_update_stats(p
, CPUACCT_STAT_USER
, cputime
);
5087 /* Account for user time used */
5088 acct_update_integrals(p
);
5092 * Account guest cpu time to a process.
5093 * @p: the process that the cpu time gets accounted to
5094 * @cputime: the cpu time spent in virtual machine since the last update
5095 * @cputime_scaled: cputime scaled by cpu frequency
5097 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
5098 cputime_t cputime_scaled
)
5101 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
5103 tmp
= cputime_to_cputime64(cputime
);
5105 /* Add guest time to process. */
5106 p
->utime
= cputime_add(p
->utime
, cputime
);
5107 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
5108 account_group_user_time(p
, cputime
);
5109 p
->gtime
= cputime_add(p
->gtime
, cputime
);
5111 /* Add guest time to cpustat. */
5112 if (TASK_NICE(p
) > 0) {
5113 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
5114 cpustat
->guest_nice
= cputime64_add(cpustat
->guest_nice
, tmp
);
5116 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
5117 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
5122 * Account system cpu time to a process.
5123 * @p: the process that the cpu time gets accounted to
5124 * @hardirq_offset: the offset to subtract from hardirq_count()
5125 * @cputime: the cpu time spent in kernel space since the last update
5126 * @cputime_scaled: cputime scaled by cpu frequency
5128 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
5129 cputime_t cputime
, cputime_t cputime_scaled
)
5131 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
5134 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
5135 account_guest_time(p
, cputime
, cputime_scaled
);
5139 /* Add system time to process. */
5140 p
->stime
= cputime_add(p
->stime
, cputime
);
5141 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
5142 account_group_system_time(p
, cputime
);
5144 /* Add system time to cpustat. */
5145 tmp
= cputime_to_cputime64(cputime
);
5146 if (hardirq_count() - hardirq_offset
)
5147 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
5148 else if (softirq_count())
5149 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
5151 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
5153 cpuacct_update_stats(p
, CPUACCT_STAT_SYSTEM
, cputime
);
5155 /* Account for system time used */
5156 acct_update_integrals(p
);
5160 * Account for involuntary wait time.
5161 * @steal: the cpu time spent in involuntary wait
5163 void account_steal_time(cputime_t cputime
)
5165 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
5166 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
5168 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
5172 * Account for idle time.
5173 * @cputime: the cpu time spent in idle wait
5175 void account_idle_time(cputime_t cputime
)
5177 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
5178 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
5179 struct rq
*rq
= this_rq();
5181 if (atomic_read(&rq
->nr_iowait
) > 0)
5182 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
5184 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
5187 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5190 * Account a single tick of cpu time.
5191 * @p: the process that the cpu time gets accounted to
5192 * @user_tick: indicates if the tick is a user or a system tick
5194 void account_process_tick(struct task_struct
*p
, int user_tick
)
5196 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
5197 struct rq
*rq
= this_rq();
5200 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
5201 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
5202 account_system_time(p
, HARDIRQ_OFFSET
, cputime_one_jiffy
,
5205 account_idle_time(cputime_one_jiffy
);
5209 * Account multiple ticks of steal time.
5210 * @p: the process from which the cpu time has been stolen
5211 * @ticks: number of stolen ticks
5213 void account_steal_ticks(unsigned long ticks
)
5215 account_steal_time(jiffies_to_cputime(ticks
));
5219 * Account multiple ticks of idle time.
5220 * @ticks: number of stolen ticks
5222 void account_idle_ticks(unsigned long ticks
)
5224 account_idle_time(jiffies_to_cputime(ticks
));
5230 * Use precise platform statistics if available:
5232 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5233 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
5239 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
5241 struct task_cputime cputime
;
5243 thread_group_cputime(p
, &cputime
);
5245 *ut
= cputime
.utime
;
5246 *st
= cputime
.stime
;
5250 #ifndef nsecs_to_cputime
5251 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
5254 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
5256 cputime_t rtime
, utime
= p
->utime
, total
= cputime_add(utime
, p
->stime
);
5259 * Use CFS's precise accounting:
5261 rtime
= nsecs_to_cputime(p
->se
.sum_exec_runtime
);
5267 do_div(temp
, total
);
5268 utime
= (cputime_t
)temp
;
5273 * Compare with previous values, to keep monotonicity:
5275 p
->prev_utime
= max(p
->prev_utime
, utime
);
5276 p
->prev_stime
= max(p
->prev_stime
, cputime_sub(rtime
, p
->prev_utime
));
5278 *ut
= p
->prev_utime
;
5279 *st
= p
->prev_stime
;
5283 * Must be called with siglock held.
5285 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
5287 struct signal_struct
*sig
= p
->signal
;
5288 struct task_cputime cputime
;
5289 cputime_t rtime
, utime
, total
;
5291 thread_group_cputime(p
, &cputime
);
5293 total
= cputime_add(cputime
.utime
, cputime
.stime
);
5294 rtime
= nsecs_to_cputime(cputime
.sum_exec_runtime
);
5299 temp
*= cputime
.utime
;
5300 do_div(temp
, total
);
5301 utime
= (cputime_t
)temp
;
5305 sig
->prev_utime
= max(sig
->prev_utime
, utime
);
5306 sig
->prev_stime
= max(sig
->prev_stime
,
5307 cputime_sub(rtime
, sig
->prev_utime
));
5309 *ut
= sig
->prev_utime
;
5310 *st
= sig
->prev_stime
;
5315 * This function gets called by the timer code, with HZ frequency.
5316 * We call it with interrupts disabled.
5318 * It also gets called by the fork code, when changing the parent's
5321 void scheduler_tick(void)
5323 int cpu
= smp_processor_id();
5324 struct rq
*rq
= cpu_rq(cpu
);
5325 struct task_struct
*curr
= rq
->curr
;
5329 raw_spin_lock(&rq
->lock
);
5330 update_rq_clock(rq
);
5331 update_cpu_load(rq
);
5332 curr
->sched_class
->task_tick(rq
, curr
, 0);
5333 raw_spin_unlock(&rq
->lock
);
5335 perf_event_task_tick(curr
, cpu
);
5338 rq
->idle_at_tick
= idle_cpu(cpu
);
5339 trigger_load_balance(rq
, cpu
);
5343 notrace
unsigned long get_parent_ip(unsigned long addr
)
5345 if (in_lock_functions(addr
)) {
5346 addr
= CALLER_ADDR2
;
5347 if (in_lock_functions(addr
))
5348 addr
= CALLER_ADDR3
;
5353 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5354 defined(CONFIG_PREEMPT_TRACER))
5356 void __kprobes
add_preempt_count(int val
)
5358 #ifdef CONFIG_DEBUG_PREEMPT
5362 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5365 preempt_count() += val
;
5366 #ifdef CONFIG_DEBUG_PREEMPT
5368 * Spinlock count overflowing soon?
5370 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
5373 if (preempt_count() == val
)
5374 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
5376 EXPORT_SYMBOL(add_preempt_count
);
5378 void __kprobes
sub_preempt_count(int val
)
5380 #ifdef CONFIG_DEBUG_PREEMPT
5384 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
5387 * Is the spinlock portion underflowing?
5389 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
5390 !(preempt_count() & PREEMPT_MASK
)))
5394 if (preempt_count() == val
)
5395 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
5396 preempt_count() -= val
;
5398 EXPORT_SYMBOL(sub_preempt_count
);
5403 * Print scheduling while atomic bug:
5405 static noinline
void __schedule_bug(struct task_struct
*prev
)
5407 struct pt_regs
*regs
= get_irq_regs();
5409 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
5410 prev
->comm
, prev
->pid
, preempt_count());
5412 debug_show_held_locks(prev
);
5414 if (irqs_disabled())
5415 print_irqtrace_events(prev
);
5424 * Various schedule()-time debugging checks and statistics:
5426 static inline void schedule_debug(struct task_struct
*prev
)
5429 * Test if we are atomic. Since do_exit() needs to call into
5430 * schedule() atomically, we ignore that path for now.
5431 * Otherwise, whine if we are scheduling when we should not be.
5433 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
5434 __schedule_bug(prev
);
5436 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
5438 schedstat_inc(this_rq(), sched_count
);
5439 #ifdef CONFIG_SCHEDSTATS
5440 if (unlikely(prev
->lock_depth
>= 0)) {
5441 schedstat_inc(this_rq(), bkl_count
);
5442 schedstat_inc(prev
, sched_info
.bkl_count
);
5447 static void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
5449 if (prev
->state
== TASK_RUNNING
) {
5450 u64 runtime
= prev
->se
.sum_exec_runtime
;
5452 runtime
-= prev
->se
.prev_sum_exec_runtime
;
5453 runtime
= min_t(u64
, runtime
, 2*sysctl_sched_migration_cost
);
5456 * In order to avoid avg_overlap growing stale when we are
5457 * indeed overlapping and hence not getting put to sleep, grow
5458 * the avg_overlap on preemption.
5460 * We use the average preemption runtime because that
5461 * correlates to the amount of cache footprint a task can
5464 update_avg(&prev
->se
.avg_overlap
, runtime
);
5466 prev
->sched_class
->put_prev_task(rq
, prev
);
5470 * Pick up the highest-prio task:
5472 static inline struct task_struct
*
5473 pick_next_task(struct rq
*rq
)
5475 const struct sched_class
*class;
5476 struct task_struct
*p
;
5479 * Optimization: we know that if all tasks are in
5480 * the fair class we can call that function directly:
5482 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
5483 p
= fair_sched_class
.pick_next_task(rq
);
5488 class = sched_class_highest
;
5490 p
= class->pick_next_task(rq
);
5494 * Will never be NULL as the idle class always
5495 * returns a non-NULL p:
5497 class = class->next
;
5502 * schedule() is the main scheduler function.
5504 asmlinkage
void __sched
schedule(void)
5506 struct task_struct
*prev
, *next
;
5507 unsigned long *switch_count
;
5513 cpu
= smp_processor_id();
5517 switch_count
= &prev
->nivcsw
;
5519 release_kernel_lock(prev
);
5520 need_resched_nonpreemptible
:
5522 schedule_debug(prev
);
5524 if (sched_feat(HRTICK
))
5527 raw_spin_lock_irq(&rq
->lock
);
5528 update_rq_clock(rq
);
5529 clear_tsk_need_resched(prev
);
5531 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
5532 if (unlikely(signal_pending_state(prev
->state
, prev
)))
5533 prev
->state
= TASK_RUNNING
;
5535 deactivate_task(rq
, prev
, 1);
5536 switch_count
= &prev
->nvcsw
;
5539 pre_schedule(rq
, prev
);
5541 if (unlikely(!rq
->nr_running
))
5542 idle_balance(cpu
, rq
);
5544 put_prev_task(rq
, prev
);
5545 next
= pick_next_task(rq
);
5547 if (likely(prev
!= next
)) {
5548 sched_info_switch(prev
, next
);
5549 perf_event_task_sched_out(prev
, next
, cpu
);
5555 context_switch(rq
, prev
, next
); /* unlocks the rq */
5557 * the context switch might have flipped the stack from under
5558 * us, hence refresh the local variables.
5560 cpu
= smp_processor_id();
5563 raw_spin_unlock_irq(&rq
->lock
);
5567 if (unlikely(reacquire_kernel_lock(current
) < 0)) {
5569 switch_count
= &prev
->nivcsw
;
5570 goto need_resched_nonpreemptible
;
5573 preempt_enable_no_resched();
5577 EXPORT_SYMBOL(schedule
);
5579 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
5581 * Look out! "owner" is an entirely speculative pointer
5582 * access and not reliable.
5584 int mutex_spin_on_owner(struct mutex
*lock
, struct thread_info
*owner
)
5589 if (!sched_feat(OWNER_SPIN
))
5592 #ifdef CONFIG_DEBUG_PAGEALLOC
5594 * Need to access the cpu field knowing that
5595 * DEBUG_PAGEALLOC could have unmapped it if
5596 * the mutex owner just released it and exited.
5598 if (probe_kernel_address(&owner
->cpu
, cpu
))
5605 * Even if the access succeeded (likely case),
5606 * the cpu field may no longer be valid.
5608 if (cpu
>= nr_cpumask_bits
)
5612 * We need to validate that we can do a
5613 * get_cpu() and that we have the percpu area.
5615 if (!cpu_online(cpu
))
5622 * Owner changed, break to re-assess state.
5624 if (lock
->owner
!= owner
)
5628 * Is that owner really running on that cpu?
5630 if (task_thread_info(rq
->curr
) != owner
|| need_resched())
5640 #ifdef CONFIG_PREEMPT
5642 * this is the entry point to schedule() from in-kernel preemption
5643 * off of preempt_enable. Kernel preemptions off return from interrupt
5644 * occur there and call schedule directly.
5646 asmlinkage
void __sched
preempt_schedule(void)
5648 struct thread_info
*ti
= current_thread_info();
5651 * If there is a non-zero preempt_count or interrupts are disabled,
5652 * we do not want to preempt the current task. Just return..
5654 if (likely(ti
->preempt_count
|| irqs_disabled()))
5658 add_preempt_count(PREEMPT_ACTIVE
);
5660 sub_preempt_count(PREEMPT_ACTIVE
);
5663 * Check again in case we missed a preemption opportunity
5664 * between schedule and now.
5667 } while (need_resched());
5669 EXPORT_SYMBOL(preempt_schedule
);
5672 * this is the entry point to schedule() from kernel preemption
5673 * off of irq context.
5674 * Note, that this is called and return with irqs disabled. This will
5675 * protect us against recursive calling from irq.
5677 asmlinkage
void __sched
preempt_schedule_irq(void)
5679 struct thread_info
*ti
= current_thread_info();
5681 /* Catch callers which need to be fixed */
5682 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
5685 add_preempt_count(PREEMPT_ACTIVE
);
5688 local_irq_disable();
5689 sub_preempt_count(PREEMPT_ACTIVE
);
5692 * Check again in case we missed a preemption opportunity
5693 * between schedule and now.
5696 } while (need_resched());
5699 #endif /* CONFIG_PREEMPT */
5701 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
5704 return try_to_wake_up(curr
->private, mode
, wake_flags
);
5706 EXPORT_SYMBOL(default_wake_function
);
5709 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5710 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5711 * number) then we wake all the non-exclusive tasks and one exclusive task.
5713 * There are circumstances in which we can try to wake a task which has already
5714 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5715 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5717 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
5718 int nr_exclusive
, int wake_flags
, void *key
)
5720 wait_queue_t
*curr
, *next
;
5722 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
5723 unsigned flags
= curr
->flags
;
5725 if (curr
->func(curr
, mode
, wake_flags
, key
) &&
5726 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
5732 * __wake_up - wake up threads blocked on a waitqueue.
5734 * @mode: which threads
5735 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5736 * @key: is directly passed to the wakeup function
5738 * It may be assumed that this function implies a write memory barrier before
5739 * changing the task state if and only if any tasks are woken up.
5741 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
5742 int nr_exclusive
, void *key
)
5744 unsigned long flags
;
5746 spin_lock_irqsave(&q
->lock
, flags
);
5747 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
5748 spin_unlock_irqrestore(&q
->lock
, flags
);
5750 EXPORT_SYMBOL(__wake_up
);
5753 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5755 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
5757 __wake_up_common(q
, mode
, 1, 0, NULL
);
5760 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
5762 __wake_up_common(q
, mode
, 1, 0, key
);
5766 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5768 * @mode: which threads
5769 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5770 * @key: opaque value to be passed to wakeup targets
5772 * The sync wakeup differs that the waker knows that it will schedule
5773 * away soon, so while the target thread will be woken up, it will not
5774 * be migrated to another CPU - ie. the two threads are 'synchronized'
5775 * with each other. This can prevent needless bouncing between CPUs.
5777 * On UP it can prevent extra preemption.
5779 * It may be assumed that this function implies a write memory barrier before
5780 * changing the task state if and only if any tasks are woken up.
5782 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
5783 int nr_exclusive
, void *key
)
5785 unsigned long flags
;
5786 int wake_flags
= WF_SYNC
;
5791 if (unlikely(!nr_exclusive
))
5794 spin_lock_irqsave(&q
->lock
, flags
);
5795 __wake_up_common(q
, mode
, nr_exclusive
, wake_flags
, key
);
5796 spin_unlock_irqrestore(&q
->lock
, flags
);
5798 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
5801 * __wake_up_sync - see __wake_up_sync_key()
5803 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
5805 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
5807 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
5810 * complete: - signals a single thread waiting on this completion
5811 * @x: holds the state of this particular completion
5813 * This will wake up a single thread waiting on this completion. Threads will be
5814 * awakened in the same order in which they were queued.
5816 * See also complete_all(), wait_for_completion() and related routines.
5818 * It may be assumed that this function implies a write memory barrier before
5819 * changing the task state if and only if any tasks are woken up.
5821 void complete(struct completion
*x
)
5823 unsigned long flags
;
5825 spin_lock_irqsave(&x
->wait
.lock
, flags
);
5827 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
5828 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
5830 EXPORT_SYMBOL(complete
);
5833 * complete_all: - signals all threads waiting on this completion
5834 * @x: holds the state of this particular completion
5836 * This will wake up all threads waiting on this particular completion event.
5838 * It may be assumed that this function implies a write memory barrier before
5839 * changing the task state if and only if any tasks are woken up.
5841 void complete_all(struct completion
*x
)
5843 unsigned long flags
;
5845 spin_lock_irqsave(&x
->wait
.lock
, flags
);
5846 x
->done
+= UINT_MAX
/2;
5847 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
5848 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
5850 EXPORT_SYMBOL(complete_all
);
5852 static inline long __sched
5853 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
5856 DECLARE_WAITQUEUE(wait
, current
);
5858 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
5859 __add_wait_queue_tail(&x
->wait
, &wait
);
5861 if (signal_pending_state(state
, current
)) {
5862 timeout
= -ERESTARTSYS
;
5865 __set_current_state(state
);
5866 spin_unlock_irq(&x
->wait
.lock
);
5867 timeout
= schedule_timeout(timeout
);
5868 spin_lock_irq(&x
->wait
.lock
);
5869 } while (!x
->done
&& timeout
);
5870 __remove_wait_queue(&x
->wait
, &wait
);
5875 return timeout
?: 1;
5879 wait_for_common(struct completion
*x
, long timeout
, int state
)
5883 spin_lock_irq(&x
->wait
.lock
);
5884 timeout
= do_wait_for_common(x
, timeout
, state
);
5885 spin_unlock_irq(&x
->wait
.lock
);
5890 * wait_for_completion: - waits for completion of a task
5891 * @x: holds the state of this particular completion
5893 * This waits to be signaled for completion of a specific task. It is NOT
5894 * interruptible and there is no timeout.
5896 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5897 * and interrupt capability. Also see complete().
5899 void __sched
wait_for_completion(struct completion
*x
)
5901 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
5903 EXPORT_SYMBOL(wait_for_completion
);
5906 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5907 * @x: holds the state of this particular completion
5908 * @timeout: timeout value in jiffies
5910 * This waits for either a completion of a specific task to be signaled or for a
5911 * specified timeout to expire. The timeout is in jiffies. It is not
5914 unsigned long __sched
5915 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
5917 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
5919 EXPORT_SYMBOL(wait_for_completion_timeout
);
5922 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5923 * @x: holds the state of this particular completion
5925 * This waits for completion of a specific task to be signaled. It is
5928 int __sched
wait_for_completion_interruptible(struct completion
*x
)
5930 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
5931 if (t
== -ERESTARTSYS
)
5935 EXPORT_SYMBOL(wait_for_completion_interruptible
);
5938 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5939 * @x: holds the state of this particular completion
5940 * @timeout: timeout value in jiffies
5942 * This waits for either a completion of a specific task to be signaled or for a
5943 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5945 unsigned long __sched
5946 wait_for_completion_interruptible_timeout(struct completion
*x
,
5947 unsigned long timeout
)
5949 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
5951 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
5954 * wait_for_completion_killable: - waits for completion of a task (killable)
5955 * @x: holds the state of this particular completion
5957 * This waits to be signaled for completion of a specific task. It can be
5958 * interrupted by a kill signal.
5960 int __sched
wait_for_completion_killable(struct completion
*x
)
5962 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
5963 if (t
== -ERESTARTSYS
)
5967 EXPORT_SYMBOL(wait_for_completion_killable
);
5970 * try_wait_for_completion - try to decrement a completion without blocking
5971 * @x: completion structure
5973 * Returns: 0 if a decrement cannot be done without blocking
5974 * 1 if a decrement succeeded.
5976 * If a completion is being used as a counting completion,
5977 * attempt to decrement the counter without blocking. This
5978 * enables us to avoid waiting if the resource the completion
5979 * is protecting is not available.
5981 bool try_wait_for_completion(struct completion
*x
)
5983 unsigned long flags
;
5986 spin_lock_irqsave(&x
->wait
.lock
, flags
);
5991 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
5994 EXPORT_SYMBOL(try_wait_for_completion
);
5997 * completion_done - Test to see if a completion has any waiters
5998 * @x: completion structure
6000 * Returns: 0 if there are waiters (wait_for_completion() in progress)
6001 * 1 if there are no waiters.
6004 bool completion_done(struct completion
*x
)
6006 unsigned long flags
;
6009 spin_lock_irqsave(&x
->wait
.lock
, flags
);
6012 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
6015 EXPORT_SYMBOL(completion_done
);
6018 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
6020 unsigned long flags
;
6023 init_waitqueue_entry(&wait
, current
);
6025 __set_current_state(state
);
6027 spin_lock_irqsave(&q
->lock
, flags
);
6028 __add_wait_queue(q
, &wait
);
6029 spin_unlock(&q
->lock
);
6030 timeout
= schedule_timeout(timeout
);
6031 spin_lock_irq(&q
->lock
);
6032 __remove_wait_queue(q
, &wait
);
6033 spin_unlock_irqrestore(&q
->lock
, flags
);
6038 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
6040 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
6042 EXPORT_SYMBOL(interruptible_sleep_on
);
6045 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
6047 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
6049 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
6051 void __sched
sleep_on(wait_queue_head_t
*q
)
6053 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
6055 EXPORT_SYMBOL(sleep_on
);
6057 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
6059 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
6061 EXPORT_SYMBOL(sleep_on_timeout
);
6063 #ifdef CONFIG_RT_MUTEXES
6066 * rt_mutex_setprio - set the current priority of a task
6068 * @prio: prio value (kernel-internal form)
6070 * This function changes the 'effective' priority of a task. It does
6071 * not touch ->normal_prio like __setscheduler().
6073 * Used by the rt_mutex code to implement priority inheritance logic.
6075 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
6077 unsigned long flags
;
6078 int oldprio
, on_rq
, running
;
6080 const struct sched_class
*prev_class
;
6082 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
6084 rq
= task_rq_lock(p
, &flags
);
6085 update_rq_clock(rq
);
6088 prev_class
= p
->sched_class
;
6089 on_rq
= p
->se
.on_rq
;
6090 running
= task_current(rq
, p
);
6092 dequeue_task(rq
, p
, 0);
6094 p
->sched_class
->put_prev_task(rq
, p
);
6097 p
->sched_class
= &rt_sched_class
;
6099 p
->sched_class
= &fair_sched_class
;
6104 p
->sched_class
->set_curr_task(rq
);
6106 enqueue_task(rq
, p
, 0);
6108 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
6110 task_rq_unlock(rq
, &flags
);
6115 void set_user_nice(struct task_struct
*p
, long nice
)
6117 int old_prio
, delta
, on_rq
;
6118 unsigned long flags
;
6121 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
6124 * We have to be careful, if called from sys_setpriority(),
6125 * the task might be in the middle of scheduling on another CPU.
6127 rq
= task_rq_lock(p
, &flags
);
6128 update_rq_clock(rq
);
6130 * The RT priorities are set via sched_setscheduler(), but we still
6131 * allow the 'normal' nice value to be set - but as expected
6132 * it wont have any effect on scheduling until the task is
6133 * SCHED_FIFO/SCHED_RR:
6135 if (task_has_rt_policy(p
)) {
6136 p
->static_prio
= NICE_TO_PRIO(nice
);
6139 on_rq
= p
->se
.on_rq
;
6141 dequeue_task(rq
, p
, 0);
6143 p
->static_prio
= NICE_TO_PRIO(nice
);
6146 p
->prio
= effective_prio(p
);
6147 delta
= p
->prio
- old_prio
;
6150 enqueue_task(rq
, p
, 0);
6152 * If the task increased its priority or is running and
6153 * lowered its priority, then reschedule its CPU:
6155 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
6156 resched_task(rq
->curr
);
6159 task_rq_unlock(rq
, &flags
);
6161 EXPORT_SYMBOL(set_user_nice
);
6164 * can_nice - check if a task can reduce its nice value
6168 int can_nice(const struct task_struct
*p
, const int nice
)
6170 /* convert nice value [19,-20] to rlimit style value [1,40] */
6171 int nice_rlim
= 20 - nice
;
6173 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
6174 capable(CAP_SYS_NICE
));
6177 #ifdef __ARCH_WANT_SYS_NICE
6180 * sys_nice - change the priority of the current process.
6181 * @increment: priority increment
6183 * sys_setpriority is a more generic, but much slower function that
6184 * does similar things.
6186 SYSCALL_DEFINE1(nice
, int, increment
)
6191 * Setpriority might change our priority at the same moment.
6192 * We don't have to worry. Conceptually one call occurs first
6193 * and we have a single winner.
6195 if (increment
< -40)
6200 nice
= TASK_NICE(current
) + increment
;
6206 if (increment
< 0 && !can_nice(current
, nice
))
6209 retval
= security_task_setnice(current
, nice
);
6213 set_user_nice(current
, nice
);
6220 * task_prio - return the priority value of a given task.
6221 * @p: the task in question.
6223 * This is the priority value as seen by users in /proc.
6224 * RT tasks are offset by -200. Normal tasks are centered
6225 * around 0, value goes from -16 to +15.
6227 int task_prio(const struct task_struct
*p
)
6229 return p
->prio
- MAX_RT_PRIO
;
6233 * task_nice - return the nice value of a given task.
6234 * @p: the task in question.
6236 int task_nice(const struct task_struct
*p
)
6238 return TASK_NICE(p
);
6240 EXPORT_SYMBOL(task_nice
);
6243 * idle_cpu - is a given cpu idle currently?
6244 * @cpu: the processor in question.
6246 int idle_cpu(int cpu
)
6248 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
6252 * idle_task - return the idle task for a given cpu.
6253 * @cpu: the processor in question.
6255 struct task_struct
*idle_task(int cpu
)
6257 return cpu_rq(cpu
)->idle
;
6261 * find_process_by_pid - find a process with a matching PID value.
6262 * @pid: the pid in question.
6264 static struct task_struct
*find_process_by_pid(pid_t pid
)
6266 return pid
? find_task_by_vpid(pid
) : current
;
6269 /* Actually do priority change: must hold rq lock. */
6271 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
6273 BUG_ON(p
->se
.on_rq
);
6276 p
->rt_priority
= prio
;
6277 p
->normal_prio
= normal_prio(p
);
6278 /* we are holding p->pi_lock already */
6279 p
->prio
= rt_mutex_getprio(p
);
6280 if (rt_prio(p
->prio
))
6281 p
->sched_class
= &rt_sched_class
;
6283 p
->sched_class
= &fair_sched_class
;
6288 * check the target process has a UID that matches the current process's
6290 static bool check_same_owner(struct task_struct
*p
)
6292 const struct cred
*cred
= current_cred(), *pcred
;
6296 pcred
= __task_cred(p
);
6297 match
= (cred
->euid
== pcred
->euid
||
6298 cred
->euid
== pcred
->uid
);
6303 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
6304 struct sched_param
*param
, bool user
)
6306 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
6307 unsigned long flags
;
6308 const struct sched_class
*prev_class
;
6312 /* may grab non-irq protected spin_locks */
6313 BUG_ON(in_interrupt());
6315 /* double check policy once rq lock held */
6317 reset_on_fork
= p
->sched_reset_on_fork
;
6318 policy
= oldpolicy
= p
->policy
;
6320 reset_on_fork
= !!(policy
& SCHED_RESET_ON_FORK
);
6321 policy
&= ~SCHED_RESET_ON_FORK
;
6323 if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
6324 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
6325 policy
!= SCHED_IDLE
)
6330 * Valid priorities for SCHED_FIFO and SCHED_RR are
6331 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6332 * SCHED_BATCH and SCHED_IDLE is 0.
6334 if (param
->sched_priority
< 0 ||
6335 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
6336 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
6338 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
6342 * Allow unprivileged RT tasks to decrease priority:
6344 if (user
&& !capable(CAP_SYS_NICE
)) {
6345 if (rt_policy(policy
)) {
6346 unsigned long rlim_rtprio
;
6348 if (!lock_task_sighand(p
, &flags
))
6350 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
6351 unlock_task_sighand(p
, &flags
);
6353 /* can't set/change the rt policy */
6354 if (policy
!= p
->policy
&& !rlim_rtprio
)
6357 /* can't increase priority */
6358 if (param
->sched_priority
> p
->rt_priority
&&
6359 param
->sched_priority
> rlim_rtprio
)
6363 * Like positive nice levels, dont allow tasks to
6364 * move out of SCHED_IDLE either:
6366 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
6369 /* can't change other user's priorities */
6370 if (!check_same_owner(p
))
6373 /* Normal users shall not reset the sched_reset_on_fork flag */
6374 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
6379 #ifdef CONFIG_RT_GROUP_SCHED
6381 * Do not allow realtime tasks into groups that have no runtime
6384 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
6385 task_group(p
)->rt_bandwidth
.rt_runtime
== 0)
6389 retval
= security_task_setscheduler(p
, policy
, param
);
6395 * make sure no PI-waiters arrive (or leave) while we are
6396 * changing the priority of the task:
6398 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
6400 * To be able to change p->policy safely, the apropriate
6401 * runqueue lock must be held.
6403 rq
= __task_rq_lock(p
);
6404 /* recheck policy now with rq lock held */
6405 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
6406 policy
= oldpolicy
= -1;
6407 __task_rq_unlock(rq
);
6408 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6411 update_rq_clock(rq
);
6412 on_rq
= p
->se
.on_rq
;
6413 running
= task_current(rq
, p
);
6415 deactivate_task(rq
, p
, 0);
6417 p
->sched_class
->put_prev_task(rq
, p
);
6419 p
->sched_reset_on_fork
= reset_on_fork
;
6422 prev_class
= p
->sched_class
;
6423 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
6426 p
->sched_class
->set_curr_task(rq
);
6428 activate_task(rq
, p
, 0);
6430 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
6432 __task_rq_unlock(rq
);
6433 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6435 rt_mutex_adjust_pi(p
);
6441 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6442 * @p: the task in question.
6443 * @policy: new policy.
6444 * @param: structure containing the new RT priority.
6446 * NOTE that the task may be already dead.
6448 int sched_setscheduler(struct task_struct
*p
, int policy
,
6449 struct sched_param
*param
)
6451 return __sched_setscheduler(p
, policy
, param
, true);
6453 EXPORT_SYMBOL_GPL(sched_setscheduler
);
6456 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6457 * @p: the task in question.
6458 * @policy: new policy.
6459 * @param: structure containing the new RT priority.
6461 * Just like sched_setscheduler, only don't bother checking if the
6462 * current context has permission. For example, this is needed in
6463 * stop_machine(): we create temporary high priority worker threads,
6464 * but our caller might not have that capability.
6466 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
6467 struct sched_param
*param
)
6469 return __sched_setscheduler(p
, policy
, param
, false);
6473 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
6475 struct sched_param lparam
;
6476 struct task_struct
*p
;
6479 if (!param
|| pid
< 0)
6481 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
6486 p
= find_process_by_pid(pid
);
6488 retval
= sched_setscheduler(p
, policy
, &lparam
);
6495 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6496 * @pid: the pid in question.
6497 * @policy: new policy.
6498 * @param: structure containing the new RT priority.
6500 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
6501 struct sched_param __user
*, param
)
6503 /* negative values for policy are not valid */
6507 return do_sched_setscheduler(pid
, policy
, param
);
6511 * sys_sched_setparam - set/change the RT priority of a thread
6512 * @pid: the pid in question.
6513 * @param: structure containing the new RT priority.
6515 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
6517 return do_sched_setscheduler(pid
, -1, param
);
6521 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6522 * @pid: the pid in question.
6524 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
6526 struct task_struct
*p
;
6534 p
= find_process_by_pid(pid
);
6536 retval
= security_task_getscheduler(p
);
6539 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
6546 * sys_sched_getparam - get the RT priority of a thread
6547 * @pid: the pid in question.
6548 * @param: structure containing the RT priority.
6550 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
6552 struct sched_param lp
;
6553 struct task_struct
*p
;
6556 if (!param
|| pid
< 0)
6560 p
= find_process_by_pid(pid
);
6565 retval
= security_task_getscheduler(p
);
6569 lp
.sched_priority
= p
->rt_priority
;
6573 * This one might sleep, we cannot do it with a spinlock held ...
6575 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
6584 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
6586 cpumask_var_t cpus_allowed
, new_mask
;
6587 struct task_struct
*p
;
6593 p
= find_process_by_pid(pid
);
6600 /* Prevent p going away */
6604 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
6608 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
6610 goto out_free_cpus_allowed
;
6613 if (!check_same_owner(p
) && !capable(CAP_SYS_NICE
))
6616 retval
= security_task_setscheduler(p
, 0, NULL
);
6620 cpuset_cpus_allowed(p
, cpus_allowed
);
6621 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
6623 retval
= set_cpus_allowed_ptr(p
, new_mask
);
6626 cpuset_cpus_allowed(p
, cpus_allowed
);
6627 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
6629 * We must have raced with a concurrent cpuset
6630 * update. Just reset the cpus_allowed to the
6631 * cpuset's cpus_allowed
6633 cpumask_copy(new_mask
, cpus_allowed
);
6638 free_cpumask_var(new_mask
);
6639 out_free_cpus_allowed
:
6640 free_cpumask_var(cpus_allowed
);
6647 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
6648 struct cpumask
*new_mask
)
6650 if (len
< cpumask_size())
6651 cpumask_clear(new_mask
);
6652 else if (len
> cpumask_size())
6653 len
= cpumask_size();
6655 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
6659 * sys_sched_setaffinity - set the cpu affinity of a process
6660 * @pid: pid of the process
6661 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6662 * @user_mask_ptr: user-space pointer to the new cpu mask
6664 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
6665 unsigned long __user
*, user_mask_ptr
)
6667 cpumask_var_t new_mask
;
6670 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
6673 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
6675 retval
= sched_setaffinity(pid
, new_mask
);
6676 free_cpumask_var(new_mask
);
6680 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
6682 struct task_struct
*p
;
6683 unsigned long flags
;
6691 p
= find_process_by_pid(pid
);
6695 retval
= security_task_getscheduler(p
);
6699 rq
= task_rq_lock(p
, &flags
);
6700 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
6701 task_rq_unlock(rq
, &flags
);
6711 * sys_sched_getaffinity - get the cpu affinity of a process
6712 * @pid: pid of the process
6713 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6714 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6716 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
6717 unsigned long __user
*, user_mask_ptr
)
6722 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
6724 if (len
& (sizeof(unsigned long)-1))
6727 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
6730 ret
= sched_getaffinity(pid
, mask
);
6732 size_t retlen
= min_t(size_t, len
, cpumask_size());
6734 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
6739 free_cpumask_var(mask
);
6745 * sys_sched_yield - yield the current processor to other threads.
6747 * This function yields the current CPU to other tasks. If there are no
6748 * other threads running on this CPU then this function will return.
6750 SYSCALL_DEFINE0(sched_yield
)
6752 struct rq
*rq
= this_rq_lock();
6754 schedstat_inc(rq
, yld_count
);
6755 current
->sched_class
->yield_task(rq
);
6758 * Since we are going to call schedule() anyway, there's
6759 * no need to preempt or enable interrupts:
6761 __release(rq
->lock
);
6762 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
6763 do_raw_spin_unlock(&rq
->lock
);
6764 preempt_enable_no_resched();
6771 static inline int should_resched(void)
6773 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE
);
6776 static void __cond_resched(void)
6778 add_preempt_count(PREEMPT_ACTIVE
);
6780 sub_preempt_count(PREEMPT_ACTIVE
);
6783 int __sched
_cond_resched(void)
6785 if (should_resched()) {
6791 EXPORT_SYMBOL(_cond_resched
);
6794 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6795 * call schedule, and on return reacquire the lock.
6797 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6798 * operations here to prevent schedule() from being called twice (once via
6799 * spin_unlock(), once by hand).
6801 int __cond_resched_lock(spinlock_t
*lock
)
6803 int resched
= should_resched();
6806 lockdep_assert_held(lock
);
6808 if (spin_needbreak(lock
) || resched
) {
6819 EXPORT_SYMBOL(__cond_resched_lock
);
6821 int __sched
__cond_resched_softirq(void)
6823 BUG_ON(!in_softirq());
6825 if (should_resched()) {
6833 EXPORT_SYMBOL(__cond_resched_softirq
);
6836 * yield - yield the current processor to other threads.
6838 * This is a shortcut for kernel-space yielding - it marks the
6839 * thread runnable and calls sys_sched_yield().
6841 void __sched
yield(void)
6843 set_current_state(TASK_RUNNING
);
6846 EXPORT_SYMBOL(yield
);
6849 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6850 * that process accounting knows that this is a task in IO wait state.
6852 void __sched
io_schedule(void)
6854 struct rq
*rq
= raw_rq();
6856 delayacct_blkio_start();
6857 atomic_inc(&rq
->nr_iowait
);
6858 current
->in_iowait
= 1;
6860 current
->in_iowait
= 0;
6861 atomic_dec(&rq
->nr_iowait
);
6862 delayacct_blkio_end();
6864 EXPORT_SYMBOL(io_schedule
);
6866 long __sched
io_schedule_timeout(long timeout
)
6868 struct rq
*rq
= raw_rq();
6871 delayacct_blkio_start();
6872 atomic_inc(&rq
->nr_iowait
);
6873 current
->in_iowait
= 1;
6874 ret
= schedule_timeout(timeout
);
6875 current
->in_iowait
= 0;
6876 atomic_dec(&rq
->nr_iowait
);
6877 delayacct_blkio_end();
6882 * sys_sched_get_priority_max - return maximum RT priority.
6883 * @policy: scheduling class.
6885 * this syscall returns the maximum rt_priority that can be used
6886 * by a given scheduling class.
6888 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
6895 ret
= MAX_USER_RT_PRIO
-1;
6907 * sys_sched_get_priority_min - return minimum RT priority.
6908 * @policy: scheduling class.
6910 * this syscall returns the minimum rt_priority that can be used
6911 * by a given scheduling class.
6913 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
6931 * sys_sched_rr_get_interval - return the default timeslice of a process.
6932 * @pid: pid of the process.
6933 * @interval: userspace pointer to the timeslice value.
6935 * this syscall writes the default timeslice value of a given process
6936 * into the user-space timespec buffer. A value of '0' means infinity.
6938 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
6939 struct timespec __user
*, interval
)
6941 struct task_struct
*p
;
6942 unsigned int time_slice
;
6943 unsigned long flags
;
6953 p
= find_process_by_pid(pid
);
6957 retval
= security_task_getscheduler(p
);
6961 rq
= task_rq_lock(p
, &flags
);
6962 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
6963 task_rq_unlock(rq
, &flags
);
6966 jiffies_to_timespec(time_slice
, &t
);
6967 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
6975 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
6977 void sched_show_task(struct task_struct
*p
)
6979 unsigned long free
= 0;
6982 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
6983 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
6984 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
6985 #if BITS_PER_LONG == 32
6986 if (state
== TASK_RUNNING
)
6987 printk(KERN_CONT
" running ");
6989 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
6991 if (state
== TASK_RUNNING
)
6992 printk(KERN_CONT
" running task ");
6994 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
6996 #ifdef CONFIG_DEBUG_STACK_USAGE
6997 free
= stack_not_used(p
);
6999 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
7000 task_pid_nr(p
), task_pid_nr(p
->real_parent
),
7001 (unsigned long)task_thread_info(p
)->flags
);
7003 show_stack(p
, NULL
);
7006 void show_state_filter(unsigned long state_filter
)
7008 struct task_struct
*g
, *p
;
7010 #if BITS_PER_LONG == 32
7012 " task PC stack pid father\n");
7015 " task PC stack pid father\n");
7017 read_lock(&tasklist_lock
);
7018 do_each_thread(g
, p
) {
7020 * reset the NMI-timeout, listing all files on a slow
7021 * console might take alot of time:
7023 touch_nmi_watchdog();
7024 if (!state_filter
|| (p
->state
& state_filter
))
7026 } while_each_thread(g
, p
);
7028 touch_all_softlockup_watchdogs();
7030 #ifdef CONFIG_SCHED_DEBUG
7031 sysrq_sched_debug_show();
7033 read_unlock(&tasklist_lock
);
7035 * Only show locks if all tasks are dumped:
7038 debug_show_all_locks();
7041 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
7043 idle
->sched_class
= &idle_sched_class
;
7047 * init_idle - set up an idle thread for a given CPU
7048 * @idle: task in question
7049 * @cpu: cpu the idle task belongs to
7051 * NOTE: this function does not set the idle thread's NEED_RESCHED
7052 * flag, to make booting more robust.
7054 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
7056 struct rq
*rq
= cpu_rq(cpu
);
7057 unsigned long flags
;
7059 raw_spin_lock_irqsave(&rq
->lock
, flags
);
7062 idle
->state
= TASK_RUNNING
;
7063 idle
->se
.exec_start
= sched_clock();
7065 cpumask_copy(&idle
->cpus_allowed
, cpumask_of(cpu
));
7066 __set_task_cpu(idle
, cpu
);
7068 rq
->curr
= rq
->idle
= idle
;
7069 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7072 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
7074 /* Set the preempt count _outside_ the spinlocks! */
7075 #if defined(CONFIG_PREEMPT)
7076 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
7078 task_thread_info(idle
)->preempt_count
= 0;
7081 * The idle tasks have their own, simple scheduling class:
7083 idle
->sched_class
= &idle_sched_class
;
7084 ftrace_graph_init_idle_task(idle
, cpu
);
7088 * In a system that switches off the HZ timer nohz_cpu_mask
7089 * indicates which cpus entered this state. This is used
7090 * in the rcu update to wait only for active cpus. For system
7091 * which do not switch off the HZ timer nohz_cpu_mask should
7092 * always be CPU_BITS_NONE.
7094 cpumask_var_t nohz_cpu_mask
;
7097 * Increase the granularity value when there are more CPUs,
7098 * because with more CPUs the 'effective latency' as visible
7099 * to users decreases. But the relationship is not linear,
7100 * so pick a second-best guess by going with the log2 of the
7103 * This idea comes from the SD scheduler of Con Kolivas:
7105 static int get_update_sysctl_factor(void)
7107 unsigned int cpus
= min_t(int, num_online_cpus(), 8);
7108 unsigned int factor
;
7110 switch (sysctl_sched_tunable_scaling
) {
7111 case SCHED_TUNABLESCALING_NONE
:
7114 case SCHED_TUNABLESCALING_LINEAR
:
7117 case SCHED_TUNABLESCALING_LOG
:
7119 factor
= 1 + ilog2(cpus
);
7126 static void update_sysctl(void)
7128 unsigned int factor
= get_update_sysctl_factor();
7130 #define SET_SYSCTL(name) \
7131 (sysctl_##name = (factor) * normalized_sysctl_##name)
7132 SET_SYSCTL(sched_min_granularity
);
7133 SET_SYSCTL(sched_latency
);
7134 SET_SYSCTL(sched_wakeup_granularity
);
7135 SET_SYSCTL(sched_shares_ratelimit
);
7139 static inline void sched_init_granularity(void)
7146 * This is how migration works:
7148 * 1) we queue a struct migration_req structure in the source CPU's
7149 * runqueue and wake up that CPU's migration thread.
7150 * 2) we down() the locked semaphore => thread blocks.
7151 * 3) migration thread wakes up (implicitly it forces the migrated
7152 * thread off the CPU)
7153 * 4) it gets the migration request and checks whether the migrated
7154 * task is still in the wrong runqueue.
7155 * 5) if it's in the wrong runqueue then the migration thread removes
7156 * it and puts it into the right queue.
7157 * 6) migration thread up()s the semaphore.
7158 * 7) we wake up and the migration is done.
7162 * Change a given task's CPU affinity. Migrate the thread to a
7163 * proper CPU and schedule it away if the CPU it's executing on
7164 * is removed from the allowed bitmask.
7166 * NOTE: the caller must have a valid reference to the task, the
7167 * task must not exit() & deallocate itself prematurely. The
7168 * call is not atomic; no spinlocks may be held.
7170 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
7172 struct migration_req req
;
7173 unsigned long flags
;
7178 * Since we rely on wake-ups to migrate sleeping tasks, don't change
7179 * the ->cpus_allowed mask from under waking tasks, which would be
7180 * possible when we change rq->lock in ttwu(), so synchronize against
7181 * TASK_WAKING to avoid that.
7183 * Make an exception for freshly cloned tasks, since cpuset namespaces
7184 * might move the task about, we have to validate the target in
7185 * wake_up_new_task() anyway since the cpu might have gone away.
7188 while (p
->state
== TASK_WAKING
&& !(p
->flags
& PF_STARTING
))
7191 rq
= task_rq_lock(p
, &flags
);
7193 if (p
->state
== TASK_WAKING
&& !(p
->flags
& PF_STARTING
)) {
7194 task_rq_unlock(rq
, &flags
);
7198 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
7203 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
7204 !cpumask_equal(&p
->cpus_allowed
, new_mask
))) {
7209 if (p
->sched_class
->set_cpus_allowed
)
7210 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
7212 cpumask_copy(&p
->cpus_allowed
, new_mask
);
7213 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
7216 /* Can the task run on the task's current CPU? If so, we're done */
7217 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
7220 if (migrate_task(p
, cpumask_any_and(cpu_active_mask
, new_mask
), &req
)) {
7221 /* Need help from migration thread: drop lock and wait. */
7222 struct task_struct
*mt
= rq
->migration_thread
;
7224 get_task_struct(mt
);
7225 task_rq_unlock(rq
, &flags
);
7226 wake_up_process(rq
->migration_thread
);
7227 put_task_struct(mt
);
7228 wait_for_completion(&req
.done
);
7229 tlb_migrate_finish(p
->mm
);
7233 task_rq_unlock(rq
, &flags
);
7237 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
7240 * Move (not current) task off this cpu, onto dest cpu. We're doing
7241 * this because either it can't run here any more (set_cpus_allowed()
7242 * away from this CPU, or CPU going down), or because we're
7243 * attempting to rebalance this task on exec (sched_exec).
7245 * So we race with normal scheduler movements, but that's OK, as long
7246 * as the task is no longer on this CPU.
7248 * Returns non-zero if task was successfully migrated.
7250 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
7252 struct rq
*rq_dest
, *rq_src
;
7255 if (unlikely(!cpu_active(dest_cpu
)))
7258 rq_src
= cpu_rq(src_cpu
);
7259 rq_dest
= cpu_rq(dest_cpu
);
7261 double_rq_lock(rq_src
, rq_dest
);
7262 /* Already moved. */
7263 if (task_cpu(p
) != src_cpu
)
7265 /* Affinity changed (again). */
7266 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
7270 * If we're not on a rq, the next wake-up will ensure we're
7274 deactivate_task(rq_src
, p
, 0);
7275 set_task_cpu(p
, dest_cpu
);
7276 activate_task(rq_dest
, p
, 0);
7277 check_preempt_curr(rq_dest
, p
, 0);
7282 double_rq_unlock(rq_src
, rq_dest
);
7286 #define RCU_MIGRATION_IDLE 0
7287 #define RCU_MIGRATION_NEED_QS 1
7288 #define RCU_MIGRATION_GOT_QS 2
7289 #define RCU_MIGRATION_MUST_SYNC 3
7292 * migration_thread - this is a highprio system thread that performs
7293 * thread migration by bumping thread off CPU then 'pushing' onto
7296 static int migration_thread(void *data
)
7299 int cpu
= (long)data
;
7303 BUG_ON(rq
->migration_thread
!= current
);
7305 set_current_state(TASK_INTERRUPTIBLE
);
7306 while (!kthread_should_stop()) {
7307 struct migration_req
*req
;
7308 struct list_head
*head
;
7310 raw_spin_lock_irq(&rq
->lock
);
7312 if (cpu_is_offline(cpu
)) {
7313 raw_spin_unlock_irq(&rq
->lock
);
7317 if (rq
->active_balance
) {
7318 active_load_balance(rq
, cpu
);
7319 rq
->active_balance
= 0;
7322 head
= &rq
->migration_queue
;
7324 if (list_empty(head
)) {
7325 raw_spin_unlock_irq(&rq
->lock
);
7327 set_current_state(TASK_INTERRUPTIBLE
);
7330 req
= list_entry(head
->next
, struct migration_req
, list
);
7331 list_del_init(head
->next
);
7333 if (req
->task
!= NULL
) {
7334 raw_spin_unlock(&rq
->lock
);
7335 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
7336 } else if (likely(cpu
== (badcpu
= smp_processor_id()))) {
7337 req
->dest_cpu
= RCU_MIGRATION_GOT_QS
;
7338 raw_spin_unlock(&rq
->lock
);
7340 req
->dest_cpu
= RCU_MIGRATION_MUST_SYNC
;
7341 raw_spin_unlock(&rq
->lock
);
7342 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu
, cpu
);
7346 complete(&req
->done
);
7348 __set_current_state(TASK_RUNNING
);
7353 #ifdef CONFIG_HOTPLUG_CPU
7355 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
7359 local_irq_disable();
7360 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
7366 * Figure out where task on dead CPU should go, use force if necessary.
7368 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
7373 dest_cpu
= select_fallback_rq(dead_cpu
, p
);
7375 /* It can have affinity changed while we were choosing. */
7376 if (unlikely(!__migrate_task_irq(p
, dead_cpu
, dest_cpu
)))
7381 * While a dead CPU has no uninterruptible tasks queued at this point,
7382 * it might still have a nonzero ->nr_uninterruptible counter, because
7383 * for performance reasons the counter is not stricly tracking tasks to
7384 * their home CPUs. So we just add the counter to another CPU's counter,
7385 * to keep the global sum constant after CPU-down:
7387 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
7389 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_active_mask
));
7390 unsigned long flags
;
7392 local_irq_save(flags
);
7393 double_rq_lock(rq_src
, rq_dest
);
7394 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
7395 rq_src
->nr_uninterruptible
= 0;
7396 double_rq_unlock(rq_src
, rq_dest
);
7397 local_irq_restore(flags
);
7400 /* Run through task list and migrate tasks from the dead cpu. */
7401 static void migrate_live_tasks(int src_cpu
)
7403 struct task_struct
*p
, *t
;
7405 read_lock(&tasklist_lock
);
7407 do_each_thread(t
, p
) {
7411 if (task_cpu(p
) == src_cpu
)
7412 move_task_off_dead_cpu(src_cpu
, p
);
7413 } while_each_thread(t
, p
);
7415 read_unlock(&tasklist_lock
);
7419 * Schedules idle task to be the next runnable task on current CPU.
7420 * It does so by boosting its priority to highest possible.
7421 * Used by CPU offline code.
7423 void sched_idle_next(void)
7425 int this_cpu
= smp_processor_id();
7426 struct rq
*rq
= cpu_rq(this_cpu
);
7427 struct task_struct
*p
= rq
->idle
;
7428 unsigned long flags
;
7430 /* cpu has to be offline */
7431 BUG_ON(cpu_online(this_cpu
));
7434 * Strictly not necessary since rest of the CPUs are stopped by now
7435 * and interrupts disabled on the current cpu.
7437 raw_spin_lock_irqsave(&rq
->lock
, flags
);
7439 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
7441 update_rq_clock(rq
);
7442 activate_task(rq
, p
, 0);
7444 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
7448 * Ensures that the idle task is using init_mm right before its cpu goes
7451 void idle_task_exit(void)
7453 struct mm_struct
*mm
= current
->active_mm
;
7455 BUG_ON(cpu_online(smp_processor_id()));
7458 switch_mm(mm
, &init_mm
, current
);
7462 /* called under rq->lock with disabled interrupts */
7463 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
7465 struct rq
*rq
= cpu_rq(dead_cpu
);
7467 /* Must be exiting, otherwise would be on tasklist. */
7468 BUG_ON(!p
->exit_state
);
7470 /* Cannot have done final schedule yet: would have vanished. */
7471 BUG_ON(p
->state
== TASK_DEAD
);
7476 * Drop lock around migration; if someone else moves it,
7477 * that's OK. No task can be added to this CPU, so iteration is
7480 raw_spin_unlock_irq(&rq
->lock
);
7481 move_task_off_dead_cpu(dead_cpu
, p
);
7482 raw_spin_lock_irq(&rq
->lock
);
7487 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7488 static void migrate_dead_tasks(unsigned int dead_cpu
)
7490 struct rq
*rq
= cpu_rq(dead_cpu
);
7491 struct task_struct
*next
;
7494 if (!rq
->nr_running
)
7496 update_rq_clock(rq
);
7497 next
= pick_next_task(rq
);
7500 next
->sched_class
->put_prev_task(rq
, next
);
7501 migrate_dead(dead_cpu
, next
);
7507 * remove the tasks which were accounted by rq from calc_load_tasks.
7509 static void calc_global_load_remove(struct rq
*rq
)
7511 atomic_long_sub(rq
->calc_load_active
, &calc_load_tasks
);
7512 rq
->calc_load_active
= 0;
7514 #endif /* CONFIG_HOTPLUG_CPU */
7516 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7518 static struct ctl_table sd_ctl_dir
[] = {
7520 .procname
= "sched_domain",
7526 static struct ctl_table sd_ctl_root
[] = {
7528 .procname
= "kernel",
7530 .child
= sd_ctl_dir
,
7535 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
7537 struct ctl_table
*entry
=
7538 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
7543 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
7545 struct ctl_table
*entry
;
7548 * In the intermediate directories, both the child directory and
7549 * procname are dynamically allocated and could fail but the mode
7550 * will always be set. In the lowest directory the names are
7551 * static strings and all have proc handlers.
7553 for (entry
= *tablep
; entry
->mode
; entry
++) {
7555 sd_free_ctl_entry(&entry
->child
);
7556 if (entry
->proc_handler
== NULL
)
7557 kfree(entry
->procname
);
7565 set_table_entry(struct ctl_table
*entry
,
7566 const char *procname
, void *data
, int maxlen
,
7567 mode_t mode
, proc_handler
*proc_handler
)
7569 entry
->procname
= procname
;
7571 entry
->maxlen
= maxlen
;
7573 entry
->proc_handler
= proc_handler
;
7576 static struct ctl_table
*
7577 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
7579 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
7584 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
7585 sizeof(long), 0644, proc_doulongvec_minmax
);
7586 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
7587 sizeof(long), 0644, proc_doulongvec_minmax
);
7588 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
7589 sizeof(int), 0644, proc_dointvec_minmax
);
7590 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
7591 sizeof(int), 0644, proc_dointvec_minmax
);
7592 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
7593 sizeof(int), 0644, proc_dointvec_minmax
);
7594 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
7595 sizeof(int), 0644, proc_dointvec_minmax
);
7596 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
7597 sizeof(int), 0644, proc_dointvec_minmax
);
7598 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
7599 sizeof(int), 0644, proc_dointvec_minmax
);
7600 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
7601 sizeof(int), 0644, proc_dointvec_minmax
);
7602 set_table_entry(&table
[9], "cache_nice_tries",
7603 &sd
->cache_nice_tries
,
7604 sizeof(int), 0644, proc_dointvec_minmax
);
7605 set_table_entry(&table
[10], "flags", &sd
->flags
,
7606 sizeof(int), 0644, proc_dointvec_minmax
);
7607 set_table_entry(&table
[11], "name", sd
->name
,
7608 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
7609 /* &table[12] is terminator */
7614 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
7616 struct ctl_table
*entry
, *table
;
7617 struct sched_domain
*sd
;
7618 int domain_num
= 0, i
;
7621 for_each_domain(cpu
, sd
)
7623 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
7628 for_each_domain(cpu
, sd
) {
7629 snprintf(buf
, 32, "domain%d", i
);
7630 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
7632 entry
->child
= sd_alloc_ctl_domain_table(sd
);
7639 static struct ctl_table_header
*sd_sysctl_header
;
7640 static void register_sched_domain_sysctl(void)
7642 int i
, cpu_num
= num_possible_cpus();
7643 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
7646 WARN_ON(sd_ctl_dir
[0].child
);
7647 sd_ctl_dir
[0].child
= entry
;
7652 for_each_possible_cpu(i
) {
7653 snprintf(buf
, 32, "cpu%d", i
);
7654 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
7656 entry
->child
= sd_alloc_ctl_cpu_table(i
);
7660 WARN_ON(sd_sysctl_header
);
7661 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
7664 /* may be called multiple times per register */
7665 static void unregister_sched_domain_sysctl(void)
7667 if (sd_sysctl_header
)
7668 unregister_sysctl_table(sd_sysctl_header
);
7669 sd_sysctl_header
= NULL
;
7670 if (sd_ctl_dir
[0].child
)
7671 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
7674 static void register_sched_domain_sysctl(void)
7677 static void unregister_sched_domain_sysctl(void)
7682 static void set_rq_online(struct rq
*rq
)
7685 const struct sched_class
*class;
7687 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
7690 for_each_class(class) {
7691 if (class->rq_online
)
7692 class->rq_online(rq
);
7697 static void set_rq_offline(struct rq
*rq
)
7700 const struct sched_class
*class;
7702 for_each_class(class) {
7703 if (class->rq_offline
)
7704 class->rq_offline(rq
);
7707 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
7713 * migration_call - callback that gets triggered when a CPU is added.
7714 * Here we can start up the necessary migration thread for the new CPU.
7716 static int __cpuinit
7717 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
7719 struct task_struct
*p
;
7720 int cpu
= (long)hcpu
;
7721 unsigned long flags
;
7726 case CPU_UP_PREPARE
:
7727 case CPU_UP_PREPARE_FROZEN
:
7728 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
7731 kthread_bind(p
, cpu
);
7732 /* Must be high prio: stop_machine expects to yield to it. */
7733 rq
= task_rq_lock(p
, &flags
);
7734 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
7735 task_rq_unlock(rq
, &flags
);
7737 cpu_rq(cpu
)->migration_thread
= p
;
7738 rq
->calc_load_update
= calc_load_update
;
7742 case CPU_ONLINE_FROZEN
:
7743 /* Strictly unnecessary, as first user will wake it. */
7744 wake_up_process(cpu_rq(cpu
)->migration_thread
);
7746 /* Update our root-domain */
7748 raw_spin_lock_irqsave(&rq
->lock
, flags
);
7750 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
7754 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
7757 #ifdef CONFIG_HOTPLUG_CPU
7758 case CPU_UP_CANCELED
:
7759 case CPU_UP_CANCELED_FROZEN
:
7760 if (!cpu_rq(cpu
)->migration_thread
)
7762 /* Unbind it from offline cpu so it can run. Fall thru. */
7763 kthread_bind(cpu_rq(cpu
)->migration_thread
,
7764 cpumask_any(cpu_online_mask
));
7765 kthread_stop(cpu_rq(cpu
)->migration_thread
);
7766 put_task_struct(cpu_rq(cpu
)->migration_thread
);
7767 cpu_rq(cpu
)->migration_thread
= NULL
;
7771 case CPU_DEAD_FROZEN
:
7772 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7773 migrate_live_tasks(cpu
);
7775 kthread_stop(rq
->migration_thread
);
7776 put_task_struct(rq
->migration_thread
);
7777 rq
->migration_thread
= NULL
;
7778 /* Idle task back to normal (off runqueue, low prio) */
7779 raw_spin_lock_irq(&rq
->lock
);
7780 update_rq_clock(rq
);
7781 deactivate_task(rq
, rq
->idle
, 0);
7782 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
7783 rq
->idle
->sched_class
= &idle_sched_class
;
7784 migrate_dead_tasks(cpu
);
7785 raw_spin_unlock_irq(&rq
->lock
);
7787 migrate_nr_uninterruptible(rq
);
7788 BUG_ON(rq
->nr_running
!= 0);
7789 calc_global_load_remove(rq
);
7791 * No need to migrate the tasks: it was best-effort if
7792 * they didn't take sched_hotcpu_mutex. Just wake up
7795 raw_spin_lock_irq(&rq
->lock
);
7796 while (!list_empty(&rq
->migration_queue
)) {
7797 struct migration_req
*req
;
7799 req
= list_entry(rq
->migration_queue
.next
,
7800 struct migration_req
, list
);
7801 list_del_init(&req
->list
);
7802 raw_spin_unlock_irq(&rq
->lock
);
7803 complete(&req
->done
);
7804 raw_spin_lock_irq(&rq
->lock
);
7806 raw_spin_unlock_irq(&rq
->lock
);
7810 case CPU_DYING_FROZEN
:
7811 /* Update our root-domain */
7813 raw_spin_lock_irqsave(&rq
->lock
, flags
);
7815 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
7818 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
7826 * Register at high priority so that task migration (migrate_all_tasks)
7827 * happens before everything else. This has to be lower priority than
7828 * the notifier in the perf_event subsystem, though.
7830 static struct notifier_block __cpuinitdata migration_notifier
= {
7831 .notifier_call
= migration_call
,
7835 static int __init
migration_init(void)
7837 void *cpu
= (void *)(long)smp_processor_id();
7840 /* Start one for the boot CPU: */
7841 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
7842 BUG_ON(err
== NOTIFY_BAD
);
7843 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
7844 register_cpu_notifier(&migration_notifier
);
7848 early_initcall(migration_init
);
7853 #ifdef CONFIG_SCHED_DEBUG
7855 static __read_mostly
int sched_domain_debug_enabled
;
7857 static int __init
sched_domain_debug_setup(char *str
)
7859 sched_domain_debug_enabled
= 1;
7863 early_param("sched_debug", sched_domain_debug_setup
);
7865 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
7866 struct cpumask
*groupmask
)
7868 struct sched_group
*group
= sd
->groups
;
7871 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
7872 cpumask_clear(groupmask
);
7874 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
7876 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
7877 printk("does not load-balance\n");
7879 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
7884 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
7886 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
7887 printk(KERN_ERR
"ERROR: domain->span does not contain "
7890 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
7891 printk(KERN_ERR
"ERROR: domain->groups does not contain"
7895 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
7899 printk(KERN_ERR
"ERROR: group is NULL\n");
7903 if (!group
->cpu_power
) {
7904 printk(KERN_CONT
"\n");
7905 printk(KERN_ERR
"ERROR: domain->cpu_power not "
7910 if (!cpumask_weight(sched_group_cpus(group
))) {
7911 printk(KERN_CONT
"\n");
7912 printk(KERN_ERR
"ERROR: empty group\n");
7916 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
7917 printk(KERN_CONT
"\n");
7918 printk(KERN_ERR
"ERROR: repeated CPUs\n");
7922 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
7924 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
7926 printk(KERN_CONT
" %s", str
);
7927 if (group
->cpu_power
!= SCHED_LOAD_SCALE
) {
7928 printk(KERN_CONT
" (cpu_power = %d)",
7932 group
= group
->next
;
7933 } while (group
!= sd
->groups
);
7934 printk(KERN_CONT
"\n");
7936 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
7937 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
7940 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
7941 printk(KERN_ERR
"ERROR: parent span is not a superset "
7942 "of domain->span\n");
7946 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
7948 cpumask_var_t groupmask
;
7951 if (!sched_domain_debug_enabled
)
7955 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
7959 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
7961 if (!alloc_cpumask_var(&groupmask
, GFP_KERNEL
)) {
7962 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
7967 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
7974 free_cpumask_var(groupmask
);
7976 #else /* !CONFIG_SCHED_DEBUG */
7977 # define sched_domain_debug(sd, cpu) do { } while (0)
7978 #endif /* CONFIG_SCHED_DEBUG */
7980 static int sd_degenerate(struct sched_domain
*sd
)
7982 if (cpumask_weight(sched_domain_span(sd
)) == 1)
7985 /* Following flags need at least 2 groups */
7986 if (sd
->flags
& (SD_LOAD_BALANCE
|
7987 SD_BALANCE_NEWIDLE
|
7991 SD_SHARE_PKG_RESOURCES
)) {
7992 if (sd
->groups
!= sd
->groups
->next
)
7996 /* Following flags don't use groups */
7997 if (sd
->flags
& (SD_WAKE_AFFINE
))
8004 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
8006 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
8008 if (sd_degenerate(parent
))
8011 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
8014 /* Flags needing groups don't count if only 1 group in parent */
8015 if (parent
->groups
== parent
->groups
->next
) {
8016 pflags
&= ~(SD_LOAD_BALANCE
|
8017 SD_BALANCE_NEWIDLE
|
8021 SD_SHARE_PKG_RESOURCES
);
8022 if (nr_node_ids
== 1)
8023 pflags
&= ~SD_SERIALIZE
;
8025 if (~cflags
& pflags
)
8031 static void free_rootdomain(struct root_domain
*rd
)
8033 synchronize_sched();
8035 cpupri_cleanup(&rd
->cpupri
);
8037 free_cpumask_var(rd
->rto_mask
);
8038 free_cpumask_var(rd
->online
);
8039 free_cpumask_var(rd
->span
);
8043 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
8045 struct root_domain
*old_rd
= NULL
;
8046 unsigned long flags
;
8048 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8053 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
8056 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
8059 * If we dont want to free the old_rt yet then
8060 * set old_rd to NULL to skip the freeing later
8063 if (!atomic_dec_and_test(&old_rd
->refcount
))
8067 atomic_inc(&rd
->refcount
);
8070 cpumask_set_cpu(rq
->cpu
, rd
->span
);
8071 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
8074 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8077 free_rootdomain(old_rd
);
8080 static int init_rootdomain(struct root_domain
*rd
, bool bootmem
)
8082 gfp_t gfp
= GFP_KERNEL
;
8084 memset(rd
, 0, sizeof(*rd
));
8089 if (!alloc_cpumask_var(&rd
->span
, gfp
))
8091 if (!alloc_cpumask_var(&rd
->online
, gfp
))
8093 if (!alloc_cpumask_var(&rd
->rto_mask
, gfp
))
8096 if (cpupri_init(&rd
->cpupri
, bootmem
) != 0)
8101 free_cpumask_var(rd
->rto_mask
);
8103 free_cpumask_var(rd
->online
);
8105 free_cpumask_var(rd
->span
);
8110 static void init_defrootdomain(void)
8112 init_rootdomain(&def_root_domain
, true);
8114 atomic_set(&def_root_domain
.refcount
, 1);
8117 static struct root_domain
*alloc_rootdomain(void)
8119 struct root_domain
*rd
;
8121 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
8125 if (init_rootdomain(rd
, false) != 0) {
8134 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
8135 * hold the hotplug lock.
8138 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
8140 struct rq
*rq
= cpu_rq(cpu
);
8141 struct sched_domain
*tmp
;
8143 /* Remove the sched domains which do not contribute to scheduling. */
8144 for (tmp
= sd
; tmp
; ) {
8145 struct sched_domain
*parent
= tmp
->parent
;
8149 if (sd_parent_degenerate(tmp
, parent
)) {
8150 tmp
->parent
= parent
->parent
;
8152 parent
->parent
->child
= tmp
;
8157 if (sd
&& sd_degenerate(sd
)) {
8163 sched_domain_debug(sd
, cpu
);
8165 rq_attach_root(rq
, rd
);
8166 rcu_assign_pointer(rq
->sd
, sd
);
8169 /* cpus with isolated domains */
8170 static cpumask_var_t cpu_isolated_map
;
8172 /* Setup the mask of cpus configured for isolated domains */
8173 static int __init
isolated_cpu_setup(char *str
)
8175 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
8176 cpulist_parse(str
, cpu_isolated_map
);
8180 __setup("isolcpus=", isolated_cpu_setup
);
8183 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8184 * to a function which identifies what group(along with sched group) a CPU
8185 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8186 * (due to the fact that we keep track of groups covered with a struct cpumask).
8188 * init_sched_build_groups will build a circular linked list of the groups
8189 * covered by the given span, and will set each group's ->cpumask correctly,
8190 * and ->cpu_power to 0.
8193 init_sched_build_groups(const struct cpumask
*span
,
8194 const struct cpumask
*cpu_map
,
8195 int (*group_fn
)(int cpu
, const struct cpumask
*cpu_map
,
8196 struct sched_group
**sg
,
8197 struct cpumask
*tmpmask
),
8198 struct cpumask
*covered
, struct cpumask
*tmpmask
)
8200 struct sched_group
*first
= NULL
, *last
= NULL
;
8203 cpumask_clear(covered
);
8205 for_each_cpu(i
, span
) {
8206 struct sched_group
*sg
;
8207 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
8210 if (cpumask_test_cpu(i
, covered
))
8213 cpumask_clear(sched_group_cpus(sg
));
8216 for_each_cpu(j
, span
) {
8217 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
8220 cpumask_set_cpu(j
, covered
);
8221 cpumask_set_cpu(j
, sched_group_cpus(sg
));
8232 #define SD_NODES_PER_DOMAIN 16
8237 * find_next_best_node - find the next node to include in a sched_domain
8238 * @node: node whose sched_domain we're building
8239 * @used_nodes: nodes already in the sched_domain
8241 * Find the next node to include in a given scheduling domain. Simply
8242 * finds the closest node not already in the @used_nodes map.
8244 * Should use nodemask_t.
8246 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
8248 int i
, n
, val
, min_val
, best_node
= 0;
8252 for (i
= 0; i
< nr_node_ids
; i
++) {
8253 /* Start at @node */
8254 n
= (node
+ i
) % nr_node_ids
;
8256 if (!nr_cpus_node(n
))
8259 /* Skip already used nodes */
8260 if (node_isset(n
, *used_nodes
))
8263 /* Simple min distance search */
8264 val
= node_distance(node
, n
);
8266 if (val
< min_val
) {
8272 node_set(best_node
, *used_nodes
);
8277 * sched_domain_node_span - get a cpumask for a node's sched_domain
8278 * @node: node whose cpumask we're constructing
8279 * @span: resulting cpumask
8281 * Given a node, construct a good cpumask for its sched_domain to span. It
8282 * should be one that prevents unnecessary balancing, but also spreads tasks
8285 static void sched_domain_node_span(int node
, struct cpumask
*span
)
8287 nodemask_t used_nodes
;
8290 cpumask_clear(span
);
8291 nodes_clear(used_nodes
);
8293 cpumask_or(span
, span
, cpumask_of_node(node
));
8294 node_set(node
, used_nodes
);
8296 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
8297 int next_node
= find_next_best_node(node
, &used_nodes
);
8299 cpumask_or(span
, span
, cpumask_of_node(next_node
));
8302 #endif /* CONFIG_NUMA */
8304 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
8307 * The cpus mask in sched_group and sched_domain hangs off the end.
8309 * ( See the the comments in include/linux/sched.h:struct sched_group
8310 * and struct sched_domain. )
8312 struct static_sched_group
{
8313 struct sched_group sg
;
8314 DECLARE_BITMAP(cpus
, CONFIG_NR_CPUS
);
8317 struct static_sched_domain
{
8318 struct sched_domain sd
;
8319 DECLARE_BITMAP(span
, CONFIG_NR_CPUS
);
8325 cpumask_var_t domainspan
;
8326 cpumask_var_t covered
;
8327 cpumask_var_t notcovered
;
8329 cpumask_var_t nodemask
;
8330 cpumask_var_t this_sibling_map
;
8331 cpumask_var_t this_core_map
;
8332 cpumask_var_t send_covered
;
8333 cpumask_var_t tmpmask
;
8334 struct sched_group
**sched_group_nodes
;
8335 struct root_domain
*rd
;
8339 sa_sched_groups
= 0,
8344 sa_this_sibling_map
,
8346 sa_sched_group_nodes
,
8356 * SMT sched-domains:
8358 #ifdef CONFIG_SCHED_SMT
8359 static DEFINE_PER_CPU(struct static_sched_domain
, cpu_domains
);
8360 static DEFINE_PER_CPU(struct static_sched_group
, sched_groups
);
8363 cpu_to_cpu_group(int cpu
, const struct cpumask
*cpu_map
,
8364 struct sched_group
**sg
, struct cpumask
*unused
)
8367 *sg
= &per_cpu(sched_groups
, cpu
).sg
;
8370 #endif /* CONFIG_SCHED_SMT */
8373 * multi-core sched-domains:
8375 #ifdef CONFIG_SCHED_MC
8376 static DEFINE_PER_CPU(struct static_sched_domain
, core_domains
);
8377 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_core
);
8378 #endif /* CONFIG_SCHED_MC */
8380 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8382 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
8383 struct sched_group
**sg
, struct cpumask
*mask
)
8387 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
8388 group
= cpumask_first(mask
);
8390 *sg
= &per_cpu(sched_group_core
, group
).sg
;
8393 #elif defined(CONFIG_SCHED_MC)
8395 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
8396 struct sched_group
**sg
, struct cpumask
*unused
)
8399 *sg
= &per_cpu(sched_group_core
, cpu
).sg
;
8404 static DEFINE_PER_CPU(struct static_sched_domain
, phys_domains
);
8405 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_phys
);
8408 cpu_to_phys_group(int cpu
, const struct cpumask
*cpu_map
,
8409 struct sched_group
**sg
, struct cpumask
*mask
)
8412 #ifdef CONFIG_SCHED_MC
8413 cpumask_and(mask
, cpu_coregroup_mask(cpu
), cpu_map
);
8414 group
= cpumask_first(mask
);
8415 #elif defined(CONFIG_SCHED_SMT)
8416 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
8417 group
= cpumask_first(mask
);
8422 *sg
= &per_cpu(sched_group_phys
, group
).sg
;
8428 * The init_sched_build_groups can't handle what we want to do with node
8429 * groups, so roll our own. Now each node has its own list of groups which
8430 * gets dynamically allocated.
8432 static DEFINE_PER_CPU(struct static_sched_domain
, node_domains
);
8433 static struct sched_group
***sched_group_nodes_bycpu
;
8435 static DEFINE_PER_CPU(struct static_sched_domain
, allnodes_domains
);
8436 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_allnodes
);
8438 static int cpu_to_allnodes_group(int cpu
, const struct cpumask
*cpu_map
,
8439 struct sched_group
**sg
,
8440 struct cpumask
*nodemask
)
8444 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(cpu
)), cpu_map
);
8445 group
= cpumask_first(nodemask
);
8448 *sg
= &per_cpu(sched_group_allnodes
, group
).sg
;
8452 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
8454 struct sched_group
*sg
= group_head
;
8460 for_each_cpu(j
, sched_group_cpus(sg
)) {
8461 struct sched_domain
*sd
;
8463 sd
= &per_cpu(phys_domains
, j
).sd
;
8464 if (j
!= group_first_cpu(sd
->groups
)) {
8466 * Only add "power" once for each
8472 sg
->cpu_power
+= sd
->groups
->cpu_power
;
8475 } while (sg
!= group_head
);
8478 static int build_numa_sched_groups(struct s_data
*d
,
8479 const struct cpumask
*cpu_map
, int num
)
8481 struct sched_domain
*sd
;
8482 struct sched_group
*sg
, *prev
;
8485 cpumask_clear(d
->covered
);
8486 cpumask_and(d
->nodemask
, cpumask_of_node(num
), cpu_map
);
8487 if (cpumask_empty(d
->nodemask
)) {
8488 d
->sched_group_nodes
[num
] = NULL
;
8492 sched_domain_node_span(num
, d
->domainspan
);
8493 cpumask_and(d
->domainspan
, d
->domainspan
, cpu_map
);
8495 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
8498 printk(KERN_WARNING
"Can not alloc domain group for node %d\n",
8502 d
->sched_group_nodes
[num
] = sg
;
8504 for_each_cpu(j
, d
->nodemask
) {
8505 sd
= &per_cpu(node_domains
, j
).sd
;
8510 cpumask_copy(sched_group_cpus(sg
), d
->nodemask
);
8512 cpumask_or(d
->covered
, d
->covered
, d
->nodemask
);
8515 for (j
= 0; j
< nr_node_ids
; j
++) {
8516 n
= (num
+ j
) % nr_node_ids
;
8517 cpumask_complement(d
->notcovered
, d
->covered
);
8518 cpumask_and(d
->tmpmask
, d
->notcovered
, cpu_map
);
8519 cpumask_and(d
->tmpmask
, d
->tmpmask
, d
->domainspan
);
8520 if (cpumask_empty(d
->tmpmask
))
8522 cpumask_and(d
->tmpmask
, d
->tmpmask
, cpumask_of_node(n
));
8523 if (cpumask_empty(d
->tmpmask
))
8525 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
8529 "Can not alloc domain group for node %d\n", j
);
8533 cpumask_copy(sched_group_cpus(sg
), d
->tmpmask
);
8534 sg
->next
= prev
->next
;
8535 cpumask_or(d
->covered
, d
->covered
, d
->tmpmask
);
8542 #endif /* CONFIG_NUMA */
8545 /* Free memory allocated for various sched_group structures */
8546 static void free_sched_groups(const struct cpumask
*cpu_map
,
8547 struct cpumask
*nodemask
)
8551 for_each_cpu(cpu
, cpu_map
) {
8552 struct sched_group
**sched_group_nodes
8553 = sched_group_nodes_bycpu
[cpu
];
8555 if (!sched_group_nodes
)
8558 for (i
= 0; i
< nr_node_ids
; i
++) {
8559 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
8561 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
8562 if (cpumask_empty(nodemask
))
8572 if (oldsg
!= sched_group_nodes
[i
])
8575 kfree(sched_group_nodes
);
8576 sched_group_nodes_bycpu
[cpu
] = NULL
;
8579 #else /* !CONFIG_NUMA */
8580 static void free_sched_groups(const struct cpumask
*cpu_map
,
8581 struct cpumask
*nodemask
)
8584 #endif /* CONFIG_NUMA */
8587 * Initialize sched groups cpu_power.
8589 * cpu_power indicates the capacity of sched group, which is used while
8590 * distributing the load between different sched groups in a sched domain.
8591 * Typically cpu_power for all the groups in a sched domain will be same unless
8592 * there are asymmetries in the topology. If there are asymmetries, group
8593 * having more cpu_power will pickup more load compared to the group having
8596 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
8598 struct sched_domain
*child
;
8599 struct sched_group
*group
;
8603 WARN_ON(!sd
|| !sd
->groups
);
8605 if (cpu
!= group_first_cpu(sd
->groups
))
8610 sd
->groups
->cpu_power
= 0;
8613 power
= SCHED_LOAD_SCALE
;
8614 weight
= cpumask_weight(sched_domain_span(sd
));
8616 * SMT siblings share the power of a single core.
8617 * Usually multiple threads get a better yield out of
8618 * that one core than a single thread would have,
8619 * reflect that in sd->smt_gain.
8621 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
8622 power
*= sd
->smt_gain
;
8624 power
>>= SCHED_LOAD_SHIFT
;
8626 sd
->groups
->cpu_power
+= power
;
8631 * Add cpu_power of each child group to this groups cpu_power.
8633 group
= child
->groups
;
8635 sd
->groups
->cpu_power
+= group
->cpu_power
;
8636 group
= group
->next
;
8637 } while (group
!= child
->groups
);
8641 * Initializers for schedule domains
8642 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8645 #ifdef CONFIG_SCHED_DEBUG
8646 # define SD_INIT_NAME(sd, type) sd->name = #type
8648 # define SD_INIT_NAME(sd, type) do { } while (0)
8651 #define SD_INIT(sd, type) sd_init_##type(sd)
8653 #define SD_INIT_FUNC(type) \
8654 static noinline void sd_init_##type(struct sched_domain *sd) \
8656 memset(sd, 0, sizeof(*sd)); \
8657 *sd = SD_##type##_INIT; \
8658 sd->level = SD_LV_##type; \
8659 SD_INIT_NAME(sd, type); \
8664 SD_INIT_FUNC(ALLNODES
)
8667 #ifdef CONFIG_SCHED_SMT
8668 SD_INIT_FUNC(SIBLING
)
8670 #ifdef CONFIG_SCHED_MC
8674 static int default_relax_domain_level
= -1;
8676 static int __init
setup_relax_domain_level(char *str
)
8680 val
= simple_strtoul(str
, NULL
, 0);
8681 if (val
< SD_LV_MAX
)
8682 default_relax_domain_level
= val
;
8686 __setup("relax_domain_level=", setup_relax_domain_level
);
8688 static void set_domain_attribute(struct sched_domain
*sd
,
8689 struct sched_domain_attr
*attr
)
8693 if (!attr
|| attr
->relax_domain_level
< 0) {
8694 if (default_relax_domain_level
< 0)
8697 request
= default_relax_domain_level
;
8699 request
= attr
->relax_domain_level
;
8700 if (request
< sd
->level
) {
8701 /* turn off idle balance on this domain */
8702 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
8704 /* turn on idle balance on this domain */
8705 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
8709 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
8710 const struct cpumask
*cpu_map
)
8713 case sa_sched_groups
:
8714 free_sched_groups(cpu_map
, d
->tmpmask
); /* fall through */
8715 d
->sched_group_nodes
= NULL
;
8717 free_rootdomain(d
->rd
); /* fall through */
8719 free_cpumask_var(d
->tmpmask
); /* fall through */
8720 case sa_send_covered
:
8721 free_cpumask_var(d
->send_covered
); /* fall through */
8722 case sa_this_core_map
:
8723 free_cpumask_var(d
->this_core_map
); /* fall through */
8724 case sa_this_sibling_map
:
8725 free_cpumask_var(d
->this_sibling_map
); /* fall through */
8727 free_cpumask_var(d
->nodemask
); /* fall through */
8728 case sa_sched_group_nodes
:
8730 kfree(d
->sched_group_nodes
); /* fall through */
8732 free_cpumask_var(d
->notcovered
); /* fall through */
8734 free_cpumask_var(d
->covered
); /* fall through */
8736 free_cpumask_var(d
->domainspan
); /* fall through */
8743 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
8744 const struct cpumask
*cpu_map
)
8747 if (!alloc_cpumask_var(&d
->domainspan
, GFP_KERNEL
))
8749 if (!alloc_cpumask_var(&d
->covered
, GFP_KERNEL
))
8750 return sa_domainspan
;
8751 if (!alloc_cpumask_var(&d
->notcovered
, GFP_KERNEL
))
8753 /* Allocate the per-node list of sched groups */
8754 d
->sched_group_nodes
= kcalloc(nr_node_ids
,
8755 sizeof(struct sched_group
*), GFP_KERNEL
);
8756 if (!d
->sched_group_nodes
) {
8757 printk(KERN_WARNING
"Can not alloc sched group node list\n");
8758 return sa_notcovered
;
8760 sched_group_nodes_bycpu
[cpumask_first(cpu_map
)] = d
->sched_group_nodes
;
8762 if (!alloc_cpumask_var(&d
->nodemask
, GFP_KERNEL
))
8763 return sa_sched_group_nodes
;
8764 if (!alloc_cpumask_var(&d
->this_sibling_map
, GFP_KERNEL
))
8766 if (!alloc_cpumask_var(&d
->this_core_map
, GFP_KERNEL
))
8767 return sa_this_sibling_map
;
8768 if (!alloc_cpumask_var(&d
->send_covered
, GFP_KERNEL
))
8769 return sa_this_core_map
;
8770 if (!alloc_cpumask_var(&d
->tmpmask
, GFP_KERNEL
))
8771 return sa_send_covered
;
8772 d
->rd
= alloc_rootdomain();
8774 printk(KERN_WARNING
"Cannot alloc root domain\n");
8777 return sa_rootdomain
;
8780 static struct sched_domain
*__build_numa_sched_domains(struct s_data
*d
,
8781 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
, int i
)
8783 struct sched_domain
*sd
= NULL
;
8785 struct sched_domain
*parent
;
8788 if (cpumask_weight(cpu_map
) >
8789 SD_NODES_PER_DOMAIN
* cpumask_weight(d
->nodemask
)) {
8790 sd
= &per_cpu(allnodes_domains
, i
).sd
;
8791 SD_INIT(sd
, ALLNODES
);
8792 set_domain_attribute(sd
, attr
);
8793 cpumask_copy(sched_domain_span(sd
), cpu_map
);
8794 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
8799 sd
= &per_cpu(node_domains
, i
).sd
;
8801 set_domain_attribute(sd
, attr
);
8802 sched_domain_node_span(cpu_to_node(i
), sched_domain_span(sd
));
8803 sd
->parent
= parent
;
8806 cpumask_and(sched_domain_span(sd
), sched_domain_span(sd
), cpu_map
);
8811 static struct sched_domain
*__build_cpu_sched_domain(struct s_data
*d
,
8812 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
8813 struct sched_domain
*parent
, int i
)
8815 struct sched_domain
*sd
;
8816 sd
= &per_cpu(phys_domains
, i
).sd
;
8818 set_domain_attribute(sd
, attr
);
8819 cpumask_copy(sched_domain_span(sd
), d
->nodemask
);
8820 sd
->parent
= parent
;
8823 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
8827 static struct sched_domain
*__build_mc_sched_domain(struct s_data
*d
,
8828 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
8829 struct sched_domain
*parent
, int i
)
8831 struct sched_domain
*sd
= parent
;
8832 #ifdef CONFIG_SCHED_MC
8833 sd
= &per_cpu(core_domains
, i
).sd
;
8835 set_domain_attribute(sd
, attr
);
8836 cpumask_and(sched_domain_span(sd
), cpu_map
, cpu_coregroup_mask(i
));
8837 sd
->parent
= parent
;
8839 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
8844 static struct sched_domain
*__build_smt_sched_domain(struct s_data
*d
,
8845 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
8846 struct sched_domain
*parent
, int i
)
8848 struct sched_domain
*sd
= parent
;
8849 #ifdef CONFIG_SCHED_SMT
8850 sd
= &per_cpu(cpu_domains
, i
).sd
;
8851 SD_INIT(sd
, SIBLING
);
8852 set_domain_attribute(sd
, attr
);
8853 cpumask_and(sched_domain_span(sd
), cpu_map
, topology_thread_cpumask(i
));
8854 sd
->parent
= parent
;
8856 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
8861 static void build_sched_groups(struct s_data
*d
, enum sched_domain_level l
,
8862 const struct cpumask
*cpu_map
, int cpu
)
8865 #ifdef CONFIG_SCHED_SMT
8866 case SD_LV_SIBLING
: /* set up CPU (sibling) groups */
8867 cpumask_and(d
->this_sibling_map
, cpu_map
,
8868 topology_thread_cpumask(cpu
));
8869 if (cpu
== cpumask_first(d
->this_sibling_map
))
8870 init_sched_build_groups(d
->this_sibling_map
, cpu_map
,
8872 d
->send_covered
, d
->tmpmask
);
8875 #ifdef CONFIG_SCHED_MC
8876 case SD_LV_MC
: /* set up multi-core groups */
8877 cpumask_and(d
->this_core_map
, cpu_map
, cpu_coregroup_mask(cpu
));
8878 if (cpu
== cpumask_first(d
->this_core_map
))
8879 init_sched_build_groups(d
->this_core_map
, cpu_map
,
8881 d
->send_covered
, d
->tmpmask
);
8884 case SD_LV_CPU
: /* set up physical groups */
8885 cpumask_and(d
->nodemask
, cpumask_of_node(cpu
), cpu_map
);
8886 if (!cpumask_empty(d
->nodemask
))
8887 init_sched_build_groups(d
->nodemask
, cpu_map
,
8889 d
->send_covered
, d
->tmpmask
);
8892 case SD_LV_ALLNODES
:
8893 init_sched_build_groups(cpu_map
, cpu_map
, &cpu_to_allnodes_group
,
8894 d
->send_covered
, d
->tmpmask
);
8903 * Build sched domains for a given set of cpus and attach the sched domains
8904 * to the individual cpus
8906 static int __build_sched_domains(const struct cpumask
*cpu_map
,
8907 struct sched_domain_attr
*attr
)
8909 enum s_alloc alloc_state
= sa_none
;
8911 struct sched_domain
*sd
;
8917 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
8918 if (alloc_state
!= sa_rootdomain
)
8920 alloc_state
= sa_sched_groups
;
8923 * Set up domains for cpus specified by the cpu_map.
8925 for_each_cpu(i
, cpu_map
) {
8926 cpumask_and(d
.nodemask
, cpumask_of_node(cpu_to_node(i
)),
8929 sd
= __build_numa_sched_domains(&d
, cpu_map
, attr
, i
);
8930 sd
= __build_cpu_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
8931 sd
= __build_mc_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
8932 sd
= __build_smt_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
8935 for_each_cpu(i
, cpu_map
) {
8936 build_sched_groups(&d
, SD_LV_SIBLING
, cpu_map
, i
);
8937 build_sched_groups(&d
, SD_LV_MC
, cpu_map
, i
);
8940 /* Set up physical groups */
8941 for (i
= 0; i
< nr_node_ids
; i
++)
8942 build_sched_groups(&d
, SD_LV_CPU
, cpu_map
, i
);
8945 /* Set up node groups */
8947 build_sched_groups(&d
, SD_LV_ALLNODES
, cpu_map
, 0);
8949 for (i
= 0; i
< nr_node_ids
; i
++)
8950 if (build_numa_sched_groups(&d
, cpu_map
, i
))
8954 /* Calculate CPU power for physical packages and nodes */
8955 #ifdef CONFIG_SCHED_SMT
8956 for_each_cpu(i
, cpu_map
) {
8957 sd
= &per_cpu(cpu_domains
, i
).sd
;
8958 init_sched_groups_power(i
, sd
);
8961 #ifdef CONFIG_SCHED_MC
8962 for_each_cpu(i
, cpu_map
) {
8963 sd
= &per_cpu(core_domains
, i
).sd
;
8964 init_sched_groups_power(i
, sd
);
8968 for_each_cpu(i
, cpu_map
) {
8969 sd
= &per_cpu(phys_domains
, i
).sd
;
8970 init_sched_groups_power(i
, sd
);
8974 for (i
= 0; i
< nr_node_ids
; i
++)
8975 init_numa_sched_groups_power(d
.sched_group_nodes
[i
]);
8977 if (d
.sd_allnodes
) {
8978 struct sched_group
*sg
;
8980 cpu_to_allnodes_group(cpumask_first(cpu_map
), cpu_map
, &sg
,
8982 init_numa_sched_groups_power(sg
);
8986 /* Attach the domains */
8987 for_each_cpu(i
, cpu_map
) {
8988 #ifdef CONFIG_SCHED_SMT
8989 sd
= &per_cpu(cpu_domains
, i
).sd
;
8990 #elif defined(CONFIG_SCHED_MC)
8991 sd
= &per_cpu(core_domains
, i
).sd
;
8993 sd
= &per_cpu(phys_domains
, i
).sd
;
8995 cpu_attach_domain(sd
, d
.rd
, i
);
8998 d
.sched_group_nodes
= NULL
; /* don't free this we still need it */
8999 __free_domain_allocs(&d
, sa_tmpmask
, cpu_map
);
9003 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
9007 static int build_sched_domains(const struct cpumask
*cpu_map
)
9009 return __build_sched_domains(cpu_map
, NULL
);
9012 static cpumask_var_t
*doms_cur
; /* current sched domains */
9013 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
9014 static struct sched_domain_attr
*dattr_cur
;
9015 /* attribues of custom domains in 'doms_cur' */
9018 * Special case: If a kmalloc of a doms_cur partition (array of
9019 * cpumask) fails, then fallback to a single sched domain,
9020 * as determined by the single cpumask fallback_doms.
9022 static cpumask_var_t fallback_doms
;
9025 * arch_update_cpu_topology lets virtualized architectures update the
9026 * cpu core maps. It is supposed to return 1 if the topology changed
9027 * or 0 if it stayed the same.
9029 int __attribute__((weak
)) arch_update_cpu_topology(void)
9034 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
9037 cpumask_var_t
*doms
;
9039 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
9042 for (i
= 0; i
< ndoms
; i
++) {
9043 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
9044 free_sched_domains(doms
, i
);
9051 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
9054 for (i
= 0; i
< ndoms
; i
++)
9055 free_cpumask_var(doms
[i
]);
9060 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
9061 * For now this just excludes isolated cpus, but could be used to
9062 * exclude other special cases in the future.
9064 static int arch_init_sched_domains(const struct cpumask
*cpu_map
)
9068 arch_update_cpu_topology();
9070 doms_cur
= alloc_sched_domains(ndoms_cur
);
9072 doms_cur
= &fallback_doms
;
9073 cpumask_andnot(doms_cur
[0], cpu_map
, cpu_isolated_map
);
9075 err
= build_sched_domains(doms_cur
[0]);
9076 register_sched_domain_sysctl();
9081 static void arch_destroy_sched_domains(const struct cpumask
*cpu_map
,
9082 struct cpumask
*tmpmask
)
9084 free_sched_groups(cpu_map
, tmpmask
);
9088 * Detach sched domains from a group of cpus specified in cpu_map
9089 * These cpus will now be attached to the NULL domain
9091 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
9093 /* Save because hotplug lock held. */
9094 static DECLARE_BITMAP(tmpmask
, CONFIG_NR_CPUS
);
9097 for_each_cpu(i
, cpu_map
)
9098 cpu_attach_domain(NULL
, &def_root_domain
, i
);
9099 synchronize_sched();
9100 arch_destroy_sched_domains(cpu_map
, to_cpumask(tmpmask
));
9103 /* handle null as "default" */
9104 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
9105 struct sched_domain_attr
*new, int idx_new
)
9107 struct sched_domain_attr tmp
;
9114 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
9115 new ? (new + idx_new
) : &tmp
,
9116 sizeof(struct sched_domain_attr
));
9120 * Partition sched domains as specified by the 'ndoms_new'
9121 * cpumasks in the array doms_new[] of cpumasks. This compares
9122 * doms_new[] to the current sched domain partitioning, doms_cur[].
9123 * It destroys each deleted domain and builds each new domain.
9125 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
9126 * The masks don't intersect (don't overlap.) We should setup one
9127 * sched domain for each mask. CPUs not in any of the cpumasks will
9128 * not be load balanced. If the same cpumask appears both in the
9129 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9132 * The passed in 'doms_new' should be allocated using
9133 * alloc_sched_domains. This routine takes ownership of it and will
9134 * free_sched_domains it when done with it. If the caller failed the
9135 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9136 * and partition_sched_domains() will fallback to the single partition
9137 * 'fallback_doms', it also forces the domains to be rebuilt.
9139 * If doms_new == NULL it will be replaced with cpu_online_mask.
9140 * ndoms_new == 0 is a special case for destroying existing domains,
9141 * and it will not create the default domain.
9143 * Call with hotplug lock held
9145 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
9146 struct sched_domain_attr
*dattr_new
)
9151 mutex_lock(&sched_domains_mutex
);
9153 /* always unregister in case we don't destroy any domains */
9154 unregister_sched_domain_sysctl();
9156 /* Let architecture update cpu core mappings. */
9157 new_topology
= arch_update_cpu_topology();
9159 n
= doms_new
? ndoms_new
: 0;
9161 /* Destroy deleted domains */
9162 for (i
= 0; i
< ndoms_cur
; i
++) {
9163 for (j
= 0; j
< n
&& !new_topology
; j
++) {
9164 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
9165 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
9168 /* no match - a current sched domain not in new doms_new[] */
9169 detach_destroy_domains(doms_cur
[i
]);
9174 if (doms_new
== NULL
) {
9176 doms_new
= &fallback_doms
;
9177 cpumask_andnot(doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
9178 WARN_ON_ONCE(dattr_new
);
9181 /* Build new domains */
9182 for (i
= 0; i
< ndoms_new
; i
++) {
9183 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
9184 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
9185 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
9188 /* no match - add a new doms_new */
9189 __build_sched_domains(doms_new
[i
],
9190 dattr_new
? dattr_new
+ i
: NULL
);
9195 /* Remember the new sched domains */
9196 if (doms_cur
!= &fallback_doms
)
9197 free_sched_domains(doms_cur
, ndoms_cur
);
9198 kfree(dattr_cur
); /* kfree(NULL) is safe */
9199 doms_cur
= doms_new
;
9200 dattr_cur
= dattr_new
;
9201 ndoms_cur
= ndoms_new
;
9203 register_sched_domain_sysctl();
9205 mutex_unlock(&sched_domains_mutex
);
9208 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9209 static void arch_reinit_sched_domains(void)
9213 /* Destroy domains first to force the rebuild */
9214 partition_sched_domains(0, NULL
, NULL
);
9216 rebuild_sched_domains();
9220 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
9222 unsigned int level
= 0;
9224 if (sscanf(buf
, "%u", &level
) != 1)
9228 * level is always be positive so don't check for
9229 * level < POWERSAVINGS_BALANCE_NONE which is 0
9230 * What happens on 0 or 1 byte write,
9231 * need to check for count as well?
9234 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
9238 sched_smt_power_savings
= level
;
9240 sched_mc_power_savings
= level
;
9242 arch_reinit_sched_domains();
9247 #ifdef CONFIG_SCHED_MC
9248 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
9251 return sprintf(page
, "%u\n", sched_mc_power_savings
);
9253 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
9254 const char *buf
, size_t count
)
9256 return sched_power_savings_store(buf
, count
, 0);
9258 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
9259 sched_mc_power_savings_show
,
9260 sched_mc_power_savings_store
);
9263 #ifdef CONFIG_SCHED_SMT
9264 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
9267 return sprintf(page
, "%u\n", sched_smt_power_savings
);
9269 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
9270 const char *buf
, size_t count
)
9272 return sched_power_savings_store(buf
, count
, 1);
9274 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
9275 sched_smt_power_savings_show
,
9276 sched_smt_power_savings_store
);
9279 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
9283 #ifdef CONFIG_SCHED_SMT
9285 err
= sysfs_create_file(&cls
->kset
.kobj
,
9286 &attr_sched_smt_power_savings
.attr
);
9288 #ifdef CONFIG_SCHED_MC
9289 if (!err
&& mc_capable())
9290 err
= sysfs_create_file(&cls
->kset
.kobj
,
9291 &attr_sched_mc_power_savings
.attr
);
9295 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9297 #ifndef CONFIG_CPUSETS
9299 * Add online and remove offline CPUs from the scheduler domains.
9300 * When cpusets are enabled they take over this function.
9302 static int update_sched_domains(struct notifier_block
*nfb
,
9303 unsigned long action
, void *hcpu
)
9307 case CPU_ONLINE_FROZEN
:
9308 case CPU_DOWN_PREPARE
:
9309 case CPU_DOWN_PREPARE_FROZEN
:
9310 case CPU_DOWN_FAILED
:
9311 case CPU_DOWN_FAILED_FROZEN
:
9312 partition_sched_domains(1, NULL
, NULL
);
9321 static int update_runtime(struct notifier_block
*nfb
,
9322 unsigned long action
, void *hcpu
)
9324 int cpu
= (int)(long)hcpu
;
9327 case CPU_DOWN_PREPARE
:
9328 case CPU_DOWN_PREPARE_FROZEN
:
9329 disable_runtime(cpu_rq(cpu
));
9332 case CPU_DOWN_FAILED
:
9333 case CPU_DOWN_FAILED_FROZEN
:
9335 case CPU_ONLINE_FROZEN
:
9336 enable_runtime(cpu_rq(cpu
));
9344 void __init
sched_init_smp(void)
9346 cpumask_var_t non_isolated_cpus
;
9348 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
9349 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
9351 #if defined(CONFIG_NUMA)
9352 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
9354 BUG_ON(sched_group_nodes_bycpu
== NULL
);
9357 mutex_lock(&sched_domains_mutex
);
9358 arch_init_sched_domains(cpu_active_mask
);
9359 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
9360 if (cpumask_empty(non_isolated_cpus
))
9361 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
9362 mutex_unlock(&sched_domains_mutex
);
9365 #ifndef CONFIG_CPUSETS
9366 /* XXX: Theoretical race here - CPU may be hotplugged now */
9367 hotcpu_notifier(update_sched_domains
, 0);
9370 /* RT runtime code needs to handle some hotplug events */
9371 hotcpu_notifier(update_runtime
, 0);
9375 /* Move init over to a non-isolated CPU */
9376 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
9378 sched_init_granularity();
9379 free_cpumask_var(non_isolated_cpus
);
9381 init_sched_rt_class();
9384 void __init
sched_init_smp(void)
9386 sched_init_granularity();
9388 #endif /* CONFIG_SMP */
9390 const_debug
unsigned int sysctl_timer_migration
= 1;
9392 int in_sched_functions(unsigned long addr
)
9394 return in_lock_functions(addr
) ||
9395 (addr
>= (unsigned long)__sched_text_start
9396 && addr
< (unsigned long)__sched_text_end
);
9399 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
9401 cfs_rq
->tasks_timeline
= RB_ROOT
;
9402 INIT_LIST_HEAD(&cfs_rq
->tasks
);
9403 #ifdef CONFIG_FAIR_GROUP_SCHED
9406 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
9409 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
9411 struct rt_prio_array
*array
;
9414 array
= &rt_rq
->active
;
9415 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
9416 INIT_LIST_HEAD(array
->queue
+ i
);
9417 __clear_bit(i
, array
->bitmap
);
9419 /* delimiter for bitsearch: */
9420 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
9422 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9423 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
9425 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
9429 rt_rq
->rt_nr_migratory
= 0;
9430 rt_rq
->overloaded
= 0;
9431 plist_head_init_raw(&rt_rq
->pushable_tasks
, &rq
->lock
);
9435 rt_rq
->rt_throttled
= 0;
9436 rt_rq
->rt_runtime
= 0;
9437 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
9439 #ifdef CONFIG_RT_GROUP_SCHED
9440 rt_rq
->rt_nr_boosted
= 0;
9445 #ifdef CONFIG_FAIR_GROUP_SCHED
9446 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
9447 struct sched_entity
*se
, int cpu
, int add
,
9448 struct sched_entity
*parent
)
9450 struct rq
*rq
= cpu_rq(cpu
);
9451 tg
->cfs_rq
[cpu
] = cfs_rq
;
9452 init_cfs_rq(cfs_rq
, rq
);
9455 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
9458 /* se could be NULL for init_task_group */
9463 se
->cfs_rq
= &rq
->cfs
;
9465 se
->cfs_rq
= parent
->my_q
;
9468 se
->load
.weight
= tg
->shares
;
9469 se
->load
.inv_weight
= 0;
9470 se
->parent
= parent
;
9474 #ifdef CONFIG_RT_GROUP_SCHED
9475 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
9476 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
9477 struct sched_rt_entity
*parent
)
9479 struct rq
*rq
= cpu_rq(cpu
);
9481 tg
->rt_rq
[cpu
] = rt_rq
;
9482 init_rt_rq(rt_rq
, rq
);
9484 rt_rq
->rt_se
= rt_se
;
9485 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
9487 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
9489 tg
->rt_se
[cpu
] = rt_se
;
9494 rt_se
->rt_rq
= &rq
->rt
;
9496 rt_se
->rt_rq
= parent
->my_q
;
9498 rt_se
->my_q
= rt_rq
;
9499 rt_se
->parent
= parent
;
9500 INIT_LIST_HEAD(&rt_se
->run_list
);
9504 void __init
sched_init(void)
9507 unsigned long alloc_size
= 0, ptr
;
9509 #ifdef CONFIG_FAIR_GROUP_SCHED
9510 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
9512 #ifdef CONFIG_RT_GROUP_SCHED
9513 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
9515 #ifdef CONFIG_USER_SCHED
9518 #ifdef CONFIG_CPUMASK_OFFSTACK
9519 alloc_size
+= num_possible_cpus() * cpumask_size();
9522 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
9524 #ifdef CONFIG_FAIR_GROUP_SCHED
9525 init_task_group
.se
= (struct sched_entity
**)ptr
;
9526 ptr
+= nr_cpu_ids
* sizeof(void **);
9528 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
9529 ptr
+= nr_cpu_ids
* sizeof(void **);
9531 #ifdef CONFIG_USER_SCHED
9532 root_task_group
.se
= (struct sched_entity
**)ptr
;
9533 ptr
+= nr_cpu_ids
* sizeof(void **);
9535 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
9536 ptr
+= nr_cpu_ids
* sizeof(void **);
9537 #endif /* CONFIG_USER_SCHED */
9538 #endif /* CONFIG_FAIR_GROUP_SCHED */
9539 #ifdef CONFIG_RT_GROUP_SCHED
9540 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
9541 ptr
+= nr_cpu_ids
* sizeof(void **);
9543 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
9544 ptr
+= nr_cpu_ids
* sizeof(void **);
9546 #ifdef CONFIG_USER_SCHED
9547 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
9548 ptr
+= nr_cpu_ids
* sizeof(void **);
9550 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
9551 ptr
+= nr_cpu_ids
* sizeof(void **);
9552 #endif /* CONFIG_USER_SCHED */
9553 #endif /* CONFIG_RT_GROUP_SCHED */
9554 #ifdef CONFIG_CPUMASK_OFFSTACK
9555 for_each_possible_cpu(i
) {
9556 per_cpu(load_balance_tmpmask
, i
) = (void *)ptr
;
9557 ptr
+= cpumask_size();
9559 #endif /* CONFIG_CPUMASK_OFFSTACK */
9563 init_defrootdomain();
9566 init_rt_bandwidth(&def_rt_bandwidth
,
9567 global_rt_period(), global_rt_runtime());
9569 #ifdef CONFIG_RT_GROUP_SCHED
9570 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
9571 global_rt_period(), global_rt_runtime());
9572 #ifdef CONFIG_USER_SCHED
9573 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
9574 global_rt_period(), RUNTIME_INF
);
9575 #endif /* CONFIG_USER_SCHED */
9576 #endif /* CONFIG_RT_GROUP_SCHED */
9578 #ifdef CONFIG_GROUP_SCHED
9579 list_add(&init_task_group
.list
, &task_groups
);
9580 INIT_LIST_HEAD(&init_task_group
.children
);
9582 #ifdef CONFIG_USER_SCHED
9583 INIT_LIST_HEAD(&root_task_group
.children
);
9584 init_task_group
.parent
= &root_task_group
;
9585 list_add(&init_task_group
.siblings
, &root_task_group
.children
);
9586 #endif /* CONFIG_USER_SCHED */
9587 #endif /* CONFIG_GROUP_SCHED */
9589 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9590 update_shares_data
= __alloc_percpu(nr_cpu_ids
* sizeof(unsigned long),
9591 __alignof__(unsigned long));
9593 for_each_possible_cpu(i
) {
9597 raw_spin_lock_init(&rq
->lock
);
9599 rq
->calc_load_active
= 0;
9600 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
9601 init_cfs_rq(&rq
->cfs
, rq
);
9602 init_rt_rq(&rq
->rt
, rq
);
9603 #ifdef CONFIG_FAIR_GROUP_SCHED
9604 init_task_group
.shares
= init_task_group_load
;
9605 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
9606 #ifdef CONFIG_CGROUP_SCHED
9608 * How much cpu bandwidth does init_task_group get?
9610 * In case of task-groups formed thr' the cgroup filesystem, it
9611 * gets 100% of the cpu resources in the system. This overall
9612 * system cpu resource is divided among the tasks of
9613 * init_task_group and its child task-groups in a fair manner,
9614 * based on each entity's (task or task-group's) weight
9615 * (se->load.weight).
9617 * In other words, if init_task_group has 10 tasks of weight
9618 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9619 * then A0's share of the cpu resource is:
9621 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9623 * We achieve this by letting init_task_group's tasks sit
9624 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9626 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
9627 #elif defined CONFIG_USER_SCHED
9628 root_task_group
.shares
= NICE_0_LOAD
;
9629 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, 0, NULL
);
9631 * In case of task-groups formed thr' the user id of tasks,
9632 * init_task_group represents tasks belonging to root user.
9633 * Hence it forms a sibling of all subsequent groups formed.
9634 * In this case, init_task_group gets only a fraction of overall
9635 * system cpu resource, based on the weight assigned to root
9636 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9637 * by letting tasks of init_task_group sit in a separate cfs_rq
9638 * (init_tg_cfs_rq) and having one entity represent this group of
9639 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9641 init_tg_cfs_entry(&init_task_group
,
9642 &per_cpu(init_tg_cfs_rq
, i
),
9643 &per_cpu(init_sched_entity
, i
), i
, 1,
9644 root_task_group
.se
[i
]);
9647 #endif /* CONFIG_FAIR_GROUP_SCHED */
9649 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
9650 #ifdef CONFIG_RT_GROUP_SCHED
9651 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
9652 #ifdef CONFIG_CGROUP_SCHED
9653 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
9654 #elif defined CONFIG_USER_SCHED
9655 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, 0, NULL
);
9656 init_tg_rt_entry(&init_task_group
,
9657 &per_cpu(init_rt_rq_var
, i
),
9658 &per_cpu(init_sched_rt_entity
, i
), i
, 1,
9659 root_task_group
.rt_se
[i
]);
9663 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
9664 rq
->cpu_load
[j
] = 0;
9668 rq
->post_schedule
= 0;
9669 rq
->active_balance
= 0;
9670 rq
->next_balance
= jiffies
;
9674 rq
->migration_thread
= NULL
;
9676 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
9677 INIT_LIST_HEAD(&rq
->migration_queue
);
9678 rq_attach_root(rq
, &def_root_domain
);
9681 atomic_set(&rq
->nr_iowait
, 0);
9684 set_load_weight(&init_task
);
9686 #ifdef CONFIG_PREEMPT_NOTIFIERS
9687 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
9691 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
9694 #ifdef CONFIG_RT_MUTEXES
9695 plist_head_init_raw(&init_task
.pi_waiters
, &init_task
.pi_lock
);
9699 * The boot idle thread does lazy MMU switching as well:
9701 atomic_inc(&init_mm
.mm_count
);
9702 enter_lazy_tlb(&init_mm
, current
);
9705 * Make us the idle thread. Technically, schedule() should not be
9706 * called from this thread, however somewhere below it might be,
9707 * but because we are the idle thread, we just pick up running again
9708 * when this runqueue becomes "idle".
9710 init_idle(current
, smp_processor_id());
9712 calc_load_update
= jiffies
+ LOAD_FREQ
;
9715 * During early bootup we pretend to be a normal task:
9717 current
->sched_class
= &fair_sched_class
;
9719 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9720 zalloc_cpumask_var(&nohz_cpu_mask
, GFP_NOWAIT
);
9723 zalloc_cpumask_var(&nohz
.cpu_mask
, GFP_NOWAIT
);
9724 alloc_cpumask_var(&nohz
.ilb_grp_nohz_mask
, GFP_NOWAIT
);
9726 /* May be allocated at isolcpus cmdline parse time */
9727 if (cpu_isolated_map
== NULL
)
9728 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
9733 scheduler_running
= 1;
9736 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9737 static inline int preempt_count_equals(int preempt_offset
)
9739 int nested
= (preempt_count() & ~PREEMPT_ACTIVE
) + rcu_preempt_depth();
9741 return (nested
== PREEMPT_INATOMIC_BASE
+ preempt_offset
);
9744 void __might_sleep(char *file
, int line
, int preempt_offset
)
9747 static unsigned long prev_jiffy
; /* ratelimiting */
9749 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled()) ||
9750 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
9752 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
9754 prev_jiffy
= jiffies
;
9757 "BUG: sleeping function called from invalid context at %s:%d\n",
9760 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9761 in_atomic(), irqs_disabled(),
9762 current
->pid
, current
->comm
);
9764 debug_show_held_locks(current
);
9765 if (irqs_disabled())
9766 print_irqtrace_events(current
);
9770 EXPORT_SYMBOL(__might_sleep
);
9773 #ifdef CONFIG_MAGIC_SYSRQ
9774 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
9778 update_rq_clock(rq
);
9779 on_rq
= p
->se
.on_rq
;
9781 deactivate_task(rq
, p
, 0);
9782 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
9784 activate_task(rq
, p
, 0);
9785 resched_task(rq
->curr
);
9789 void normalize_rt_tasks(void)
9791 struct task_struct
*g
, *p
;
9792 unsigned long flags
;
9795 read_lock_irqsave(&tasklist_lock
, flags
);
9796 do_each_thread(g
, p
) {
9798 * Only normalize user tasks:
9803 p
->se
.exec_start
= 0;
9804 #ifdef CONFIG_SCHEDSTATS
9805 p
->se
.wait_start
= 0;
9806 p
->se
.sleep_start
= 0;
9807 p
->se
.block_start
= 0;
9812 * Renice negative nice level userspace
9815 if (TASK_NICE(p
) < 0 && p
->mm
)
9816 set_user_nice(p
, 0);
9820 raw_spin_lock(&p
->pi_lock
);
9821 rq
= __task_rq_lock(p
);
9823 normalize_task(rq
, p
);
9825 __task_rq_unlock(rq
);
9826 raw_spin_unlock(&p
->pi_lock
);
9827 } while_each_thread(g
, p
);
9829 read_unlock_irqrestore(&tasklist_lock
, flags
);
9832 #endif /* CONFIG_MAGIC_SYSRQ */
9836 * These functions are only useful for the IA64 MCA handling.
9838 * They can only be called when the whole system has been
9839 * stopped - every CPU needs to be quiescent, and no scheduling
9840 * activity can take place. Using them for anything else would
9841 * be a serious bug, and as a result, they aren't even visible
9842 * under any other configuration.
9846 * curr_task - return the current task for a given cpu.
9847 * @cpu: the processor in question.
9849 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9851 struct task_struct
*curr_task(int cpu
)
9853 return cpu_curr(cpu
);
9857 * set_curr_task - set the current task for a given cpu.
9858 * @cpu: the processor in question.
9859 * @p: the task pointer to set.
9861 * Description: This function must only be used when non-maskable interrupts
9862 * are serviced on a separate stack. It allows the architecture to switch the
9863 * notion of the current task on a cpu in a non-blocking manner. This function
9864 * must be called with all CPU's synchronized, and interrupts disabled, the
9865 * and caller must save the original value of the current task (see
9866 * curr_task() above) and restore that value before reenabling interrupts and
9867 * re-starting the system.
9869 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9871 void set_curr_task(int cpu
, struct task_struct
*p
)
9878 #ifdef CONFIG_FAIR_GROUP_SCHED
9879 static void free_fair_sched_group(struct task_group
*tg
)
9883 for_each_possible_cpu(i
) {
9885 kfree(tg
->cfs_rq
[i
]);
9895 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9897 struct cfs_rq
*cfs_rq
;
9898 struct sched_entity
*se
;
9902 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
9905 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
9909 tg
->shares
= NICE_0_LOAD
;
9911 for_each_possible_cpu(i
) {
9914 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
9915 GFP_KERNEL
, cpu_to_node(i
));
9919 se
= kzalloc_node(sizeof(struct sched_entity
),
9920 GFP_KERNEL
, cpu_to_node(i
));
9924 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent
->se
[i
]);
9935 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
9937 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
9938 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
9941 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
9943 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
9945 #else /* !CONFG_FAIR_GROUP_SCHED */
9946 static inline void free_fair_sched_group(struct task_group
*tg
)
9951 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9956 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
9960 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
9963 #endif /* CONFIG_FAIR_GROUP_SCHED */
9965 #ifdef CONFIG_RT_GROUP_SCHED
9966 static void free_rt_sched_group(struct task_group
*tg
)
9970 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
9972 for_each_possible_cpu(i
) {
9974 kfree(tg
->rt_rq
[i
]);
9976 kfree(tg
->rt_se
[i
]);
9984 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9986 struct rt_rq
*rt_rq
;
9987 struct sched_rt_entity
*rt_se
;
9991 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
9994 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
9998 init_rt_bandwidth(&tg
->rt_bandwidth
,
9999 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
10001 for_each_possible_cpu(i
) {
10004 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
10005 GFP_KERNEL
, cpu_to_node(i
));
10009 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
10010 GFP_KERNEL
, cpu_to_node(i
));
10014 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent
->rt_se
[i
]);
10025 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
10027 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
10028 &cpu_rq(cpu
)->leaf_rt_rq_list
);
10031 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
10033 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
10035 #else /* !CONFIG_RT_GROUP_SCHED */
10036 static inline void free_rt_sched_group(struct task_group
*tg
)
10041 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
10046 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
10050 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
10053 #endif /* CONFIG_RT_GROUP_SCHED */
10055 #ifdef CONFIG_GROUP_SCHED
10056 static void free_sched_group(struct task_group
*tg
)
10058 free_fair_sched_group(tg
);
10059 free_rt_sched_group(tg
);
10063 /* allocate runqueue etc for a new task group */
10064 struct task_group
*sched_create_group(struct task_group
*parent
)
10066 struct task_group
*tg
;
10067 unsigned long flags
;
10070 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
10072 return ERR_PTR(-ENOMEM
);
10074 if (!alloc_fair_sched_group(tg
, parent
))
10077 if (!alloc_rt_sched_group(tg
, parent
))
10080 spin_lock_irqsave(&task_group_lock
, flags
);
10081 for_each_possible_cpu(i
) {
10082 register_fair_sched_group(tg
, i
);
10083 register_rt_sched_group(tg
, i
);
10085 list_add_rcu(&tg
->list
, &task_groups
);
10087 WARN_ON(!parent
); /* root should already exist */
10089 tg
->parent
= parent
;
10090 INIT_LIST_HEAD(&tg
->children
);
10091 list_add_rcu(&tg
->siblings
, &parent
->children
);
10092 spin_unlock_irqrestore(&task_group_lock
, flags
);
10097 free_sched_group(tg
);
10098 return ERR_PTR(-ENOMEM
);
10101 /* rcu callback to free various structures associated with a task group */
10102 static void free_sched_group_rcu(struct rcu_head
*rhp
)
10104 /* now it should be safe to free those cfs_rqs */
10105 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
10108 /* Destroy runqueue etc associated with a task group */
10109 void sched_destroy_group(struct task_group
*tg
)
10111 unsigned long flags
;
10114 spin_lock_irqsave(&task_group_lock
, flags
);
10115 for_each_possible_cpu(i
) {
10116 unregister_fair_sched_group(tg
, i
);
10117 unregister_rt_sched_group(tg
, i
);
10119 list_del_rcu(&tg
->list
);
10120 list_del_rcu(&tg
->siblings
);
10121 spin_unlock_irqrestore(&task_group_lock
, flags
);
10123 /* wait for possible concurrent references to cfs_rqs complete */
10124 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
10127 /* change task's runqueue when it moves between groups.
10128 * The caller of this function should have put the task in its new group
10129 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10130 * reflect its new group.
10132 void sched_move_task(struct task_struct
*tsk
)
10134 int on_rq
, running
;
10135 unsigned long flags
;
10138 rq
= task_rq_lock(tsk
, &flags
);
10140 update_rq_clock(rq
);
10142 running
= task_current(rq
, tsk
);
10143 on_rq
= tsk
->se
.on_rq
;
10146 dequeue_task(rq
, tsk
, 0);
10147 if (unlikely(running
))
10148 tsk
->sched_class
->put_prev_task(rq
, tsk
);
10150 set_task_rq(tsk
, task_cpu(tsk
));
10152 #ifdef CONFIG_FAIR_GROUP_SCHED
10153 if (tsk
->sched_class
->moved_group
)
10154 tsk
->sched_class
->moved_group(tsk
, on_rq
);
10157 if (unlikely(running
))
10158 tsk
->sched_class
->set_curr_task(rq
);
10160 enqueue_task(rq
, tsk
, 0);
10162 task_rq_unlock(rq
, &flags
);
10164 #endif /* CONFIG_GROUP_SCHED */
10166 #ifdef CONFIG_FAIR_GROUP_SCHED
10167 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
10169 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
10174 dequeue_entity(cfs_rq
, se
, 0);
10176 se
->load
.weight
= shares
;
10177 se
->load
.inv_weight
= 0;
10180 enqueue_entity(cfs_rq
, se
, 0);
10183 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
10185 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
10186 struct rq
*rq
= cfs_rq
->rq
;
10187 unsigned long flags
;
10189 raw_spin_lock_irqsave(&rq
->lock
, flags
);
10190 __set_se_shares(se
, shares
);
10191 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
10194 static DEFINE_MUTEX(shares_mutex
);
10196 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
10199 unsigned long flags
;
10202 * We can't change the weight of the root cgroup.
10207 if (shares
< MIN_SHARES
)
10208 shares
= MIN_SHARES
;
10209 else if (shares
> MAX_SHARES
)
10210 shares
= MAX_SHARES
;
10212 mutex_lock(&shares_mutex
);
10213 if (tg
->shares
== shares
)
10216 spin_lock_irqsave(&task_group_lock
, flags
);
10217 for_each_possible_cpu(i
)
10218 unregister_fair_sched_group(tg
, i
);
10219 list_del_rcu(&tg
->siblings
);
10220 spin_unlock_irqrestore(&task_group_lock
, flags
);
10222 /* wait for any ongoing reference to this group to finish */
10223 synchronize_sched();
10226 * Now we are free to modify the group's share on each cpu
10227 * w/o tripping rebalance_share or load_balance_fair.
10229 tg
->shares
= shares
;
10230 for_each_possible_cpu(i
) {
10232 * force a rebalance
10234 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
10235 set_se_shares(tg
->se
[i
], shares
);
10239 * Enable load balance activity on this group, by inserting it back on
10240 * each cpu's rq->leaf_cfs_rq_list.
10242 spin_lock_irqsave(&task_group_lock
, flags
);
10243 for_each_possible_cpu(i
)
10244 register_fair_sched_group(tg
, i
);
10245 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
10246 spin_unlock_irqrestore(&task_group_lock
, flags
);
10248 mutex_unlock(&shares_mutex
);
10252 unsigned long sched_group_shares(struct task_group
*tg
)
10258 #ifdef CONFIG_RT_GROUP_SCHED
10260 * Ensure that the real time constraints are schedulable.
10262 static DEFINE_MUTEX(rt_constraints_mutex
);
10264 static unsigned long to_ratio(u64 period
, u64 runtime
)
10266 if (runtime
== RUNTIME_INF
)
10269 return div64_u64(runtime
<< 20, period
);
10272 /* Must be called with tasklist_lock held */
10273 static inline int tg_has_rt_tasks(struct task_group
*tg
)
10275 struct task_struct
*g
, *p
;
10277 do_each_thread(g
, p
) {
10278 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
10280 } while_each_thread(g
, p
);
10285 struct rt_schedulable_data
{
10286 struct task_group
*tg
;
10291 static int tg_schedulable(struct task_group
*tg
, void *data
)
10293 struct rt_schedulable_data
*d
= data
;
10294 struct task_group
*child
;
10295 unsigned long total
, sum
= 0;
10296 u64 period
, runtime
;
10298 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
10299 runtime
= tg
->rt_bandwidth
.rt_runtime
;
10302 period
= d
->rt_period
;
10303 runtime
= d
->rt_runtime
;
10306 #ifdef CONFIG_USER_SCHED
10307 if (tg
== &root_task_group
) {
10308 period
= global_rt_period();
10309 runtime
= global_rt_runtime();
10314 * Cannot have more runtime than the period.
10316 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
10320 * Ensure we don't starve existing RT tasks.
10322 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
10325 total
= to_ratio(period
, runtime
);
10328 * Nobody can have more than the global setting allows.
10330 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
10334 * The sum of our children's runtime should not exceed our own.
10336 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
10337 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
10338 runtime
= child
->rt_bandwidth
.rt_runtime
;
10340 if (child
== d
->tg
) {
10341 period
= d
->rt_period
;
10342 runtime
= d
->rt_runtime
;
10345 sum
+= to_ratio(period
, runtime
);
10354 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
10356 struct rt_schedulable_data data
= {
10358 .rt_period
= period
,
10359 .rt_runtime
= runtime
,
10362 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
10365 static int tg_set_bandwidth(struct task_group
*tg
,
10366 u64 rt_period
, u64 rt_runtime
)
10370 mutex_lock(&rt_constraints_mutex
);
10371 read_lock(&tasklist_lock
);
10372 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
10376 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
10377 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
10378 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
10380 for_each_possible_cpu(i
) {
10381 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
10383 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
10384 rt_rq
->rt_runtime
= rt_runtime
;
10385 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
10387 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
10389 read_unlock(&tasklist_lock
);
10390 mutex_unlock(&rt_constraints_mutex
);
10395 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
10397 u64 rt_runtime
, rt_period
;
10399 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
10400 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
10401 if (rt_runtime_us
< 0)
10402 rt_runtime
= RUNTIME_INF
;
10404 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
10407 long sched_group_rt_runtime(struct task_group
*tg
)
10411 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
10414 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
10415 do_div(rt_runtime_us
, NSEC_PER_USEC
);
10416 return rt_runtime_us
;
10419 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
10421 u64 rt_runtime
, rt_period
;
10423 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
10424 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
10426 if (rt_period
== 0)
10429 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
10432 long sched_group_rt_period(struct task_group
*tg
)
10436 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
10437 do_div(rt_period_us
, NSEC_PER_USEC
);
10438 return rt_period_us
;
10441 static int sched_rt_global_constraints(void)
10443 u64 runtime
, period
;
10446 if (sysctl_sched_rt_period
<= 0)
10449 runtime
= global_rt_runtime();
10450 period
= global_rt_period();
10453 * Sanity check on the sysctl variables.
10455 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
10458 mutex_lock(&rt_constraints_mutex
);
10459 read_lock(&tasklist_lock
);
10460 ret
= __rt_schedulable(NULL
, 0, 0);
10461 read_unlock(&tasklist_lock
);
10462 mutex_unlock(&rt_constraints_mutex
);
10467 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
10469 /* Don't accept realtime tasks when there is no way for them to run */
10470 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
10476 #else /* !CONFIG_RT_GROUP_SCHED */
10477 static int sched_rt_global_constraints(void)
10479 unsigned long flags
;
10482 if (sysctl_sched_rt_period
<= 0)
10486 * There's always some RT tasks in the root group
10487 * -- migration, kstopmachine etc..
10489 if (sysctl_sched_rt_runtime
== 0)
10492 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
10493 for_each_possible_cpu(i
) {
10494 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
10496 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
10497 rt_rq
->rt_runtime
= global_rt_runtime();
10498 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
10500 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
10504 #endif /* CONFIG_RT_GROUP_SCHED */
10506 int sched_rt_handler(struct ctl_table
*table
, int write
,
10507 void __user
*buffer
, size_t *lenp
,
10511 int old_period
, old_runtime
;
10512 static DEFINE_MUTEX(mutex
);
10514 mutex_lock(&mutex
);
10515 old_period
= sysctl_sched_rt_period
;
10516 old_runtime
= sysctl_sched_rt_runtime
;
10518 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
10520 if (!ret
&& write
) {
10521 ret
= sched_rt_global_constraints();
10523 sysctl_sched_rt_period
= old_period
;
10524 sysctl_sched_rt_runtime
= old_runtime
;
10526 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
10527 def_rt_bandwidth
.rt_period
=
10528 ns_to_ktime(global_rt_period());
10531 mutex_unlock(&mutex
);
10536 #ifdef CONFIG_CGROUP_SCHED
10538 /* return corresponding task_group object of a cgroup */
10539 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
10541 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
10542 struct task_group
, css
);
10545 static struct cgroup_subsys_state
*
10546 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10548 struct task_group
*tg
, *parent
;
10550 if (!cgrp
->parent
) {
10551 /* This is early initialization for the top cgroup */
10552 return &init_task_group
.css
;
10555 parent
= cgroup_tg(cgrp
->parent
);
10556 tg
= sched_create_group(parent
);
10558 return ERR_PTR(-ENOMEM
);
10564 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10566 struct task_group
*tg
= cgroup_tg(cgrp
);
10568 sched_destroy_group(tg
);
10572 cpu_cgroup_can_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
10574 #ifdef CONFIG_RT_GROUP_SCHED
10575 if (!sched_rt_can_attach(cgroup_tg(cgrp
), tsk
))
10578 /* We don't support RT-tasks being in separate groups */
10579 if (tsk
->sched_class
!= &fair_sched_class
)
10586 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
10587 struct task_struct
*tsk
, bool threadgroup
)
10589 int retval
= cpu_cgroup_can_attach_task(cgrp
, tsk
);
10593 struct task_struct
*c
;
10595 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
10596 retval
= cpu_cgroup_can_attach_task(cgrp
, c
);
10608 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
10609 struct cgroup
*old_cont
, struct task_struct
*tsk
,
10612 sched_move_task(tsk
);
10614 struct task_struct
*c
;
10616 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
10617 sched_move_task(c
);
10623 #ifdef CONFIG_FAIR_GROUP_SCHED
10624 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
10627 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
10630 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
10632 struct task_group
*tg
= cgroup_tg(cgrp
);
10634 return (u64
) tg
->shares
;
10636 #endif /* CONFIG_FAIR_GROUP_SCHED */
10638 #ifdef CONFIG_RT_GROUP_SCHED
10639 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
10642 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
10645 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
10647 return sched_group_rt_runtime(cgroup_tg(cgrp
));
10650 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
10653 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
10656 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
10658 return sched_group_rt_period(cgroup_tg(cgrp
));
10660 #endif /* CONFIG_RT_GROUP_SCHED */
10662 static struct cftype cpu_files
[] = {
10663 #ifdef CONFIG_FAIR_GROUP_SCHED
10666 .read_u64
= cpu_shares_read_u64
,
10667 .write_u64
= cpu_shares_write_u64
,
10670 #ifdef CONFIG_RT_GROUP_SCHED
10672 .name
= "rt_runtime_us",
10673 .read_s64
= cpu_rt_runtime_read
,
10674 .write_s64
= cpu_rt_runtime_write
,
10677 .name
= "rt_period_us",
10678 .read_u64
= cpu_rt_period_read_uint
,
10679 .write_u64
= cpu_rt_period_write_uint
,
10684 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
10686 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
10689 struct cgroup_subsys cpu_cgroup_subsys
= {
10691 .create
= cpu_cgroup_create
,
10692 .destroy
= cpu_cgroup_destroy
,
10693 .can_attach
= cpu_cgroup_can_attach
,
10694 .attach
= cpu_cgroup_attach
,
10695 .populate
= cpu_cgroup_populate
,
10696 .subsys_id
= cpu_cgroup_subsys_id
,
10700 #endif /* CONFIG_CGROUP_SCHED */
10702 #ifdef CONFIG_CGROUP_CPUACCT
10705 * CPU accounting code for task groups.
10707 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10708 * (balbir@in.ibm.com).
10711 /* track cpu usage of a group of tasks and its child groups */
10713 struct cgroup_subsys_state css
;
10714 /* cpuusage holds pointer to a u64-type object on every cpu */
10716 struct percpu_counter cpustat
[CPUACCT_STAT_NSTATS
];
10717 struct cpuacct
*parent
;
10720 struct cgroup_subsys cpuacct_subsys
;
10722 /* return cpu accounting group corresponding to this container */
10723 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
10725 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
10726 struct cpuacct
, css
);
10729 /* return cpu accounting group to which this task belongs */
10730 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
10732 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
10733 struct cpuacct
, css
);
10736 /* create a new cpu accounting group */
10737 static struct cgroup_subsys_state
*cpuacct_create(
10738 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10740 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
10746 ca
->cpuusage
= alloc_percpu(u64
);
10750 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
10751 if (percpu_counter_init(&ca
->cpustat
[i
], 0))
10752 goto out_free_counters
;
10755 ca
->parent
= cgroup_ca(cgrp
->parent
);
10761 percpu_counter_destroy(&ca
->cpustat
[i
]);
10762 free_percpu(ca
->cpuusage
);
10766 return ERR_PTR(-ENOMEM
);
10769 /* destroy an existing cpu accounting group */
10771 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10773 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10776 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
10777 percpu_counter_destroy(&ca
->cpustat
[i
]);
10778 free_percpu(ca
->cpuusage
);
10782 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
10784 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
10787 #ifndef CONFIG_64BIT
10789 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10791 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
10793 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
10801 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
10803 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
10805 #ifndef CONFIG_64BIT
10807 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10809 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
10811 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
10817 /* return total cpu usage (in nanoseconds) of a group */
10818 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
10820 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10821 u64 totalcpuusage
= 0;
10824 for_each_present_cpu(i
)
10825 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
10827 return totalcpuusage
;
10830 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
10833 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10842 for_each_present_cpu(i
)
10843 cpuacct_cpuusage_write(ca
, i
, 0);
10849 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
10850 struct seq_file
*m
)
10852 struct cpuacct
*ca
= cgroup_ca(cgroup
);
10856 for_each_present_cpu(i
) {
10857 percpu
= cpuacct_cpuusage_read(ca
, i
);
10858 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
10860 seq_printf(m
, "\n");
10864 static const char *cpuacct_stat_desc
[] = {
10865 [CPUACCT_STAT_USER
] = "user",
10866 [CPUACCT_STAT_SYSTEM
] = "system",
10869 static int cpuacct_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
10870 struct cgroup_map_cb
*cb
)
10872 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10875 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++) {
10876 s64 val
= percpu_counter_read(&ca
->cpustat
[i
]);
10877 val
= cputime64_to_clock_t(val
);
10878 cb
->fill(cb
, cpuacct_stat_desc
[i
], val
);
10883 static struct cftype files
[] = {
10886 .read_u64
= cpuusage_read
,
10887 .write_u64
= cpuusage_write
,
10890 .name
= "usage_percpu",
10891 .read_seq_string
= cpuacct_percpu_seq_read
,
10895 .read_map
= cpuacct_stats_show
,
10899 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10901 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
10905 * charge this task's execution time to its accounting group.
10907 * called with rq->lock held.
10909 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
10911 struct cpuacct
*ca
;
10914 if (unlikely(!cpuacct_subsys
.active
))
10917 cpu
= task_cpu(tsk
);
10923 for (; ca
; ca
= ca
->parent
) {
10924 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
10925 *cpuusage
+= cputime
;
10932 * Charge the system/user time to the task's accounting group.
10934 static void cpuacct_update_stats(struct task_struct
*tsk
,
10935 enum cpuacct_stat_index idx
, cputime_t val
)
10937 struct cpuacct
*ca
;
10939 if (unlikely(!cpuacct_subsys
.active
))
10946 percpu_counter_add(&ca
->cpustat
[idx
], val
);
10952 struct cgroup_subsys cpuacct_subsys
= {
10954 .create
= cpuacct_create
,
10955 .destroy
= cpuacct_destroy
,
10956 .populate
= cpuacct_populate
,
10957 .subsys_id
= cpuacct_subsys_id
,
10959 #endif /* CONFIG_CGROUP_CPUACCT */
10963 int rcu_expedited_torture_stats(char *page
)
10967 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats
);
10969 void synchronize_sched_expedited(void)
10972 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
10974 #else /* #ifndef CONFIG_SMP */
10976 static DEFINE_PER_CPU(struct migration_req
, rcu_migration_req
);
10977 static DEFINE_MUTEX(rcu_sched_expedited_mutex
);
10979 #define RCU_EXPEDITED_STATE_POST -2
10980 #define RCU_EXPEDITED_STATE_IDLE -1
10982 static int rcu_expedited_state
= RCU_EXPEDITED_STATE_IDLE
;
10984 int rcu_expedited_torture_stats(char *page
)
10989 cnt
+= sprintf(&page
[cnt
], "state: %d /", rcu_expedited_state
);
10990 for_each_online_cpu(cpu
) {
10991 cnt
+= sprintf(&page
[cnt
], " %d:%d",
10992 cpu
, per_cpu(rcu_migration_req
, cpu
).dest_cpu
);
10994 cnt
+= sprintf(&page
[cnt
], "\n");
10997 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats
);
10999 static long synchronize_sched_expedited_count
;
11002 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
11003 * approach to force grace period to end quickly. This consumes
11004 * significant time on all CPUs, and is thus not recommended for
11005 * any sort of common-case code.
11007 * Note that it is illegal to call this function while holding any
11008 * lock that is acquired by a CPU-hotplug notifier. Failing to
11009 * observe this restriction will result in deadlock.
11011 void synchronize_sched_expedited(void)
11014 unsigned long flags
;
11015 bool need_full_sync
= 0;
11017 struct migration_req
*req
;
11021 smp_mb(); /* ensure prior mod happens before capturing snap. */
11022 snap
= ACCESS_ONCE(synchronize_sched_expedited_count
) + 1;
11024 while (!mutex_trylock(&rcu_sched_expedited_mutex
)) {
11026 if (trycount
++ < 10)
11027 udelay(trycount
* num_online_cpus());
11029 synchronize_sched();
11032 if (ACCESS_ONCE(synchronize_sched_expedited_count
) - snap
> 0) {
11033 smp_mb(); /* ensure test happens before caller kfree */
11038 rcu_expedited_state
= RCU_EXPEDITED_STATE_POST
;
11039 for_each_online_cpu(cpu
) {
11041 req
= &per_cpu(rcu_migration_req
, cpu
);
11042 init_completion(&req
->done
);
11044 req
->dest_cpu
= RCU_MIGRATION_NEED_QS
;
11045 raw_spin_lock_irqsave(&rq
->lock
, flags
);
11046 list_add(&req
->list
, &rq
->migration_queue
);
11047 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
11048 wake_up_process(rq
->migration_thread
);
11050 for_each_online_cpu(cpu
) {
11051 rcu_expedited_state
= cpu
;
11052 req
= &per_cpu(rcu_migration_req
, cpu
);
11054 wait_for_completion(&req
->done
);
11055 raw_spin_lock_irqsave(&rq
->lock
, flags
);
11056 if (unlikely(req
->dest_cpu
== RCU_MIGRATION_MUST_SYNC
))
11057 need_full_sync
= 1;
11058 req
->dest_cpu
= RCU_MIGRATION_IDLE
;
11059 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
11061 rcu_expedited_state
= RCU_EXPEDITED_STATE_IDLE
;
11062 synchronize_sched_expedited_count
++;
11063 mutex_unlock(&rcu_sched_expedited_mutex
);
11065 if (need_full_sync
)
11066 synchronize_sched();
11068 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
11070 #endif /* #else #ifndef CONFIG_SMP */