2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
21 * Copyright (C) 2010 Freescale Semiconductor, Inc.
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/pci.h>
33 #include <linux/init.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/spinlock.h>
39 #include <linux/workqueue.h>
40 #include <linux/bitops.h>
42 #include <linux/irq.h>
43 #include <linux/clk.h>
44 #include <linux/platform_device.h>
45 #include <linux/phy.h>
46 #include <linux/fec.h>
48 #include <asm/cacheflush.h>
51 #include <asm/coldfire.h>
52 #include <asm/mcfsim.h>
57 #if defined(CONFIG_ARCH_MXC) || defined(CONFIG_SOC_IMX28)
58 #define FEC_ALIGNMENT 0xf
60 #define FEC_ALIGNMENT 0x3
63 #define DRIVER_NAME "fec"
65 /* Controller is ENET-MAC */
66 #define FEC_QUIRK_ENET_MAC (1 << 0)
67 /* Controller needs driver to swap frame */
68 #define FEC_QUIRK_SWAP_FRAME (1 << 1)
70 static struct platform_device_id fec_devtype
[] = {
76 .driver_data
= FEC_QUIRK_ENET_MAC
| FEC_QUIRK_SWAP_FRAME
,
80 static unsigned char macaddr
[ETH_ALEN
];
81 module_param_array(macaddr
, byte
, NULL
, 0);
82 MODULE_PARM_DESC(macaddr
, "FEC Ethernet MAC address");
84 #if defined(CONFIG_M5272)
86 * Some hardware gets it MAC address out of local flash memory.
87 * if this is non-zero then assume it is the address to get MAC from.
89 #if defined(CONFIG_NETtel)
90 #define FEC_FLASHMAC 0xf0006006
91 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
92 #define FEC_FLASHMAC 0xf0006000
93 #elif defined(CONFIG_CANCam)
94 #define FEC_FLASHMAC 0xf0020000
95 #elif defined (CONFIG_M5272C3)
96 #define FEC_FLASHMAC (0xffe04000 + 4)
97 #elif defined(CONFIG_MOD5272)
98 #define FEC_FLASHMAC 0xffc0406b
100 #define FEC_FLASHMAC 0
102 #endif /* CONFIG_M5272 */
104 /* The number of Tx and Rx buffers. These are allocated from the page
105 * pool. The code may assume these are power of two, so it it best
106 * to keep them that size.
107 * We don't need to allocate pages for the transmitter. We just use
108 * the skbuffer directly.
110 #define FEC_ENET_RX_PAGES 8
111 #define FEC_ENET_RX_FRSIZE 2048
112 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
113 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
114 #define FEC_ENET_TX_FRSIZE 2048
115 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
116 #define TX_RING_SIZE 16 /* Must be power of two */
117 #define TX_RING_MOD_MASK 15 /* for this to work */
119 #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
120 #error "FEC: descriptor ring size constants too large"
123 /* Interrupt events/masks. */
124 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
125 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
126 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
127 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
128 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
129 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
130 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
131 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
132 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
133 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
135 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
137 /* The FEC stores dest/src/type, data, and checksum for receive packets.
139 #define PKT_MAXBUF_SIZE 1518
140 #define PKT_MINBUF_SIZE 64
141 #define PKT_MAXBLR_SIZE 1520
145 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
146 * size bits. Other FEC hardware does not, so we need to take that into
147 * account when setting it.
149 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
150 defined(CONFIG_M520x) || defined(CONFIG_M532x) || \
151 defined(CONFIG_ARCH_MXC) || defined(CONFIG_SOC_IMX28)
152 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
154 #define OPT_FRAME_SIZE 0
157 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
158 * tx_bd_base always point to the base of the buffer descriptors. The
159 * cur_rx and cur_tx point to the currently available buffer.
160 * The dirty_tx tracks the current buffer that is being sent by the
161 * controller. The cur_tx and dirty_tx are equal under both completely
162 * empty and completely full conditions. The empty/ready indicator in
163 * the buffer descriptor determines the actual condition.
165 struct fec_enet_private
{
166 /* Hardware registers of the FEC device */
169 struct net_device
*netdev
;
173 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
174 unsigned char *tx_bounce
[TX_RING_SIZE
];
175 struct sk_buff
* tx_skbuff
[TX_RING_SIZE
];
176 struct sk_buff
* rx_skbuff
[RX_RING_SIZE
];
180 /* CPM dual port RAM relative addresses */
182 /* Address of Rx and Tx buffers */
183 struct bufdesc
*rx_bd_base
;
184 struct bufdesc
*tx_bd_base
;
185 /* The next free ring entry */
186 struct bufdesc
*cur_rx
, *cur_tx
;
187 /* The ring entries to be free()ed */
188 struct bufdesc
*dirty_tx
;
191 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
194 struct platform_device
*pdev
;
198 /* Phylib and MDIO interface */
199 struct mii_bus
*mii_bus
;
200 struct phy_device
*phy_dev
;
203 phy_interface_t phy_interface
;
206 struct completion mdio_done
;
209 static irqreturn_t
fec_enet_interrupt(int irq
, void * dev_id
);
210 static void fec_enet_tx(struct net_device
*dev
);
211 static void fec_enet_rx(struct net_device
*dev
);
212 static int fec_enet_close(struct net_device
*dev
);
213 static void fec_restart(struct net_device
*dev
, int duplex
);
214 static void fec_stop(struct net_device
*dev
);
216 /* FEC MII MMFR bits definition */
217 #define FEC_MMFR_ST (1 << 30)
218 #define FEC_MMFR_OP_READ (2 << 28)
219 #define FEC_MMFR_OP_WRITE (1 << 28)
220 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
221 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
222 #define FEC_MMFR_TA (2 << 16)
223 #define FEC_MMFR_DATA(v) (v & 0xffff)
225 #define FEC_MII_TIMEOUT 1000 /* us */
227 /* Transmitter timeout */
228 #define TX_TIMEOUT (2 * HZ)
230 static void *swap_buffer(void *bufaddr
, int len
)
233 unsigned int *buf
= bufaddr
;
235 for (i
= 0; i
< (len
+ 3) / 4; i
++, buf
++)
236 *buf
= cpu_to_be32(*buf
);
242 fec_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
244 struct fec_enet_private
*fep
= netdev_priv(dev
);
245 const struct platform_device_id
*id_entry
=
246 platform_get_device_id(fep
->pdev
);
249 unsigned short status
;
253 /* Link is down or autonegotiation is in progress. */
254 return NETDEV_TX_BUSY
;
257 spin_lock_irqsave(&fep
->hw_lock
, flags
);
258 /* Fill in a Tx ring entry */
261 status
= bdp
->cbd_sc
;
263 if (status
& BD_ENET_TX_READY
) {
264 /* Ooops. All transmit buffers are full. Bail out.
265 * This should not happen, since dev->tbusy should be set.
267 printk("%s: tx queue full!.\n", dev
->name
);
268 spin_unlock_irqrestore(&fep
->hw_lock
, flags
);
269 return NETDEV_TX_BUSY
;
272 /* Clear all of the status flags */
273 status
&= ~BD_ENET_TX_STATS
;
275 /* Set buffer length and buffer pointer */
277 bdp
->cbd_datlen
= skb
->len
;
280 * On some FEC implementations data must be aligned on
281 * 4-byte boundaries. Use bounce buffers to copy data
282 * and get it aligned. Ugh.
284 if (((unsigned long) bufaddr
) & FEC_ALIGNMENT
) {
286 index
= bdp
- fep
->tx_bd_base
;
287 memcpy(fep
->tx_bounce
[index
], (void *)skb
->data
, skb
->len
);
288 bufaddr
= fep
->tx_bounce
[index
];
292 * Some design made an incorrect assumption on endian mode of
293 * the system that it's running on. As the result, driver has to
294 * swap every frame going to and coming from the controller.
296 if (id_entry
->driver_data
& FEC_QUIRK_SWAP_FRAME
)
297 swap_buffer(bufaddr
, skb
->len
);
299 /* Save skb pointer */
300 fep
->tx_skbuff
[fep
->skb_cur
] = skb
;
302 dev
->stats
.tx_bytes
+= skb
->len
;
303 fep
->skb_cur
= (fep
->skb_cur
+1) & TX_RING_MOD_MASK
;
305 /* Push the data cache so the CPM does not get stale memory
308 bdp
->cbd_bufaddr
= dma_map_single(&dev
->dev
, bufaddr
,
309 FEC_ENET_TX_FRSIZE
, DMA_TO_DEVICE
);
311 /* Send it on its way. Tell FEC it's ready, interrupt when done,
312 * it's the last BD of the frame, and to put the CRC on the end.
314 status
|= (BD_ENET_TX_READY
| BD_ENET_TX_INTR
315 | BD_ENET_TX_LAST
| BD_ENET_TX_TC
);
316 bdp
->cbd_sc
= status
;
318 /* Trigger transmission start */
319 writel(0, fep
->hwp
+ FEC_X_DES_ACTIVE
);
321 /* If this was the last BD in the ring, start at the beginning again. */
322 if (status
& BD_ENET_TX_WRAP
)
323 bdp
= fep
->tx_bd_base
;
327 if (bdp
== fep
->dirty_tx
) {
329 netif_stop_queue(dev
);
334 spin_unlock_irqrestore(&fep
->hw_lock
, flags
);
340 fec_timeout(struct net_device
*dev
)
342 struct fec_enet_private
*fep
= netdev_priv(dev
);
344 dev
->stats
.tx_errors
++;
346 fec_restart(dev
, fep
->full_duplex
);
347 netif_wake_queue(dev
);
351 fec_enet_interrupt(int irq
, void * dev_id
)
353 struct net_device
*dev
= dev_id
;
354 struct fec_enet_private
*fep
= netdev_priv(dev
);
356 irqreturn_t ret
= IRQ_NONE
;
359 int_events
= readl(fep
->hwp
+ FEC_IEVENT
);
360 writel(int_events
, fep
->hwp
+ FEC_IEVENT
);
362 if (int_events
& FEC_ENET_RXF
) {
367 /* Transmit OK, or non-fatal error. Update the buffer
368 * descriptors. FEC handles all errors, we just discover
369 * them as part of the transmit process.
371 if (int_events
& FEC_ENET_TXF
) {
376 if (int_events
& FEC_ENET_MII
) {
378 complete(&fep
->mdio_done
);
380 } while (int_events
);
387 fec_enet_tx(struct net_device
*dev
)
389 struct fec_enet_private
*fep
;
391 unsigned short status
;
394 fep
= netdev_priv(dev
);
395 spin_lock(&fep
->hw_lock
);
398 while (((status
= bdp
->cbd_sc
) & BD_ENET_TX_READY
) == 0) {
399 if (bdp
== fep
->cur_tx
&& fep
->tx_full
== 0)
402 dma_unmap_single(&dev
->dev
, bdp
->cbd_bufaddr
, FEC_ENET_TX_FRSIZE
, DMA_TO_DEVICE
);
403 bdp
->cbd_bufaddr
= 0;
405 skb
= fep
->tx_skbuff
[fep
->skb_dirty
];
406 /* Check for errors. */
407 if (status
& (BD_ENET_TX_HB
| BD_ENET_TX_LC
|
408 BD_ENET_TX_RL
| BD_ENET_TX_UN
|
410 dev
->stats
.tx_errors
++;
411 if (status
& BD_ENET_TX_HB
) /* No heartbeat */
412 dev
->stats
.tx_heartbeat_errors
++;
413 if (status
& BD_ENET_TX_LC
) /* Late collision */
414 dev
->stats
.tx_window_errors
++;
415 if (status
& BD_ENET_TX_RL
) /* Retrans limit */
416 dev
->stats
.tx_aborted_errors
++;
417 if (status
& BD_ENET_TX_UN
) /* Underrun */
418 dev
->stats
.tx_fifo_errors
++;
419 if (status
& BD_ENET_TX_CSL
) /* Carrier lost */
420 dev
->stats
.tx_carrier_errors
++;
422 dev
->stats
.tx_packets
++;
425 if (status
& BD_ENET_TX_READY
)
426 printk("HEY! Enet xmit interrupt and TX_READY.\n");
428 /* Deferred means some collisions occurred during transmit,
429 * but we eventually sent the packet OK.
431 if (status
& BD_ENET_TX_DEF
)
432 dev
->stats
.collisions
++;
434 /* Free the sk buffer associated with this last transmit */
435 dev_kfree_skb_any(skb
);
436 fep
->tx_skbuff
[fep
->skb_dirty
] = NULL
;
437 fep
->skb_dirty
= (fep
->skb_dirty
+ 1) & TX_RING_MOD_MASK
;
439 /* Update pointer to next buffer descriptor to be transmitted */
440 if (status
& BD_ENET_TX_WRAP
)
441 bdp
= fep
->tx_bd_base
;
445 /* Since we have freed up a buffer, the ring is no longer full
449 if (netif_queue_stopped(dev
))
450 netif_wake_queue(dev
);
454 spin_unlock(&fep
->hw_lock
);
458 /* During a receive, the cur_rx points to the current incoming buffer.
459 * When we update through the ring, if the next incoming buffer has
460 * not been given to the system, we just set the empty indicator,
461 * effectively tossing the packet.
464 fec_enet_rx(struct net_device
*dev
)
466 struct fec_enet_private
*fep
= netdev_priv(dev
);
467 const struct platform_device_id
*id_entry
=
468 platform_get_device_id(fep
->pdev
);
470 unsigned short status
;
479 spin_lock(&fep
->hw_lock
);
481 /* First, grab all of the stats for the incoming packet.
482 * These get messed up if we get called due to a busy condition.
486 while (!((status
= bdp
->cbd_sc
) & BD_ENET_RX_EMPTY
)) {
488 /* Since we have allocated space to hold a complete frame,
489 * the last indicator should be set.
491 if ((status
& BD_ENET_RX_LAST
) == 0)
492 printk("FEC ENET: rcv is not +last\n");
495 goto rx_processing_done
;
497 /* Check for errors. */
498 if (status
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
| BD_ENET_RX_NO
|
499 BD_ENET_RX_CR
| BD_ENET_RX_OV
)) {
500 dev
->stats
.rx_errors
++;
501 if (status
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
)) {
502 /* Frame too long or too short. */
503 dev
->stats
.rx_length_errors
++;
505 if (status
& BD_ENET_RX_NO
) /* Frame alignment */
506 dev
->stats
.rx_frame_errors
++;
507 if (status
& BD_ENET_RX_CR
) /* CRC Error */
508 dev
->stats
.rx_crc_errors
++;
509 if (status
& BD_ENET_RX_OV
) /* FIFO overrun */
510 dev
->stats
.rx_fifo_errors
++;
513 /* Report late collisions as a frame error.
514 * On this error, the BD is closed, but we don't know what we
515 * have in the buffer. So, just drop this frame on the floor.
517 if (status
& BD_ENET_RX_CL
) {
518 dev
->stats
.rx_errors
++;
519 dev
->stats
.rx_frame_errors
++;
520 goto rx_processing_done
;
523 /* Process the incoming frame. */
524 dev
->stats
.rx_packets
++;
525 pkt_len
= bdp
->cbd_datlen
;
526 dev
->stats
.rx_bytes
+= pkt_len
;
527 data
= (__u8
*)__va(bdp
->cbd_bufaddr
);
529 dma_unmap_single(NULL
, bdp
->cbd_bufaddr
, bdp
->cbd_datlen
,
532 if (id_entry
->driver_data
& FEC_QUIRK_SWAP_FRAME
)
533 swap_buffer(data
, pkt_len
);
535 /* This does 16 byte alignment, exactly what we need.
536 * The packet length includes FCS, but we don't want to
537 * include that when passing upstream as it messes up
538 * bridging applications.
540 skb
= dev_alloc_skb(pkt_len
- 4 + NET_IP_ALIGN
);
542 if (unlikely(!skb
)) {
543 printk("%s: Memory squeeze, dropping packet.\n",
545 dev
->stats
.rx_dropped
++;
547 skb_reserve(skb
, NET_IP_ALIGN
);
548 skb_put(skb
, pkt_len
- 4); /* Make room */
549 skb_copy_to_linear_data(skb
, data
, pkt_len
- 4);
550 skb
->protocol
= eth_type_trans(skb
, dev
);
554 bdp
->cbd_bufaddr
= dma_map_single(NULL
, data
, bdp
->cbd_datlen
,
557 /* Clear the status flags for this buffer */
558 status
&= ~BD_ENET_RX_STATS
;
560 /* Mark the buffer empty */
561 status
|= BD_ENET_RX_EMPTY
;
562 bdp
->cbd_sc
= status
;
564 /* Update BD pointer to next entry */
565 if (status
& BD_ENET_RX_WRAP
)
566 bdp
= fep
->rx_bd_base
;
569 /* Doing this here will keep the FEC running while we process
570 * incoming frames. On a heavily loaded network, we should be
571 * able to keep up at the expense of system resources.
573 writel(0, fep
->hwp
+ FEC_R_DES_ACTIVE
);
577 spin_unlock(&fep
->hw_lock
);
580 /* ------------------------------------------------------------------------- */
581 static void __inline__
fec_get_mac(struct net_device
*dev
)
583 struct fec_enet_private
*fep
= netdev_priv(dev
);
584 struct fec_platform_data
*pdata
= fep
->pdev
->dev
.platform_data
;
585 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
588 * try to get mac address in following order:
590 * 1) module parameter via kernel command line in form
591 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
596 * 2) from flash or fuse (via platform data)
598 if (!is_valid_ether_addr(iap
)) {
601 iap
= (unsigned char *)FEC_FLASHMAC
;
604 memcpy(iap
, pdata
->mac
, ETH_ALEN
);
609 * 3) FEC mac registers set by bootloader
611 if (!is_valid_ether_addr(iap
)) {
612 *((unsigned long *) &tmpaddr
[0]) =
613 be32_to_cpu(readl(fep
->hwp
+ FEC_ADDR_LOW
));
614 *((unsigned short *) &tmpaddr
[4]) =
615 be16_to_cpu(readl(fep
->hwp
+ FEC_ADDR_HIGH
) >> 16);
619 memcpy(dev
->dev_addr
, iap
, ETH_ALEN
);
621 /* Adjust MAC if using macaddr */
623 dev
->dev_addr
[ETH_ALEN
-1] = macaddr
[ETH_ALEN
-1] + fep
->pdev
->id
;
626 /* ------------------------------------------------------------------------- */
631 static void fec_enet_adjust_link(struct net_device
*dev
)
633 struct fec_enet_private
*fep
= netdev_priv(dev
);
634 struct phy_device
*phy_dev
= fep
->phy_dev
;
637 int status_change
= 0;
639 spin_lock_irqsave(&fep
->hw_lock
, flags
);
641 /* Prevent a state halted on mii error */
642 if (fep
->mii_timeout
&& phy_dev
->state
== PHY_HALTED
) {
643 phy_dev
->state
= PHY_RESUMING
;
647 /* Duplex link change */
649 if (fep
->full_duplex
!= phy_dev
->duplex
) {
650 fec_restart(dev
, phy_dev
->duplex
);
655 /* Link on or off change */
656 if (phy_dev
->link
!= fep
->link
) {
657 fep
->link
= phy_dev
->link
;
659 fec_restart(dev
, phy_dev
->duplex
);
666 spin_unlock_irqrestore(&fep
->hw_lock
, flags
);
669 phy_print_status(phy_dev
);
672 static int fec_enet_mdio_read(struct mii_bus
*bus
, int mii_id
, int regnum
)
674 struct fec_enet_private
*fep
= bus
->priv
;
675 unsigned long time_left
;
677 fep
->mii_timeout
= 0;
678 init_completion(&fep
->mdio_done
);
680 /* start a read op */
681 writel(FEC_MMFR_ST
| FEC_MMFR_OP_READ
|
682 FEC_MMFR_PA(mii_id
) | FEC_MMFR_RA(regnum
) |
683 FEC_MMFR_TA
, fep
->hwp
+ FEC_MII_DATA
);
685 /* wait for end of transfer */
686 time_left
= wait_for_completion_timeout(&fep
->mdio_done
,
687 usecs_to_jiffies(FEC_MII_TIMEOUT
));
688 if (time_left
== 0) {
689 fep
->mii_timeout
= 1;
690 printk(KERN_ERR
"FEC: MDIO read timeout\n");
695 return FEC_MMFR_DATA(readl(fep
->hwp
+ FEC_MII_DATA
));
698 static int fec_enet_mdio_write(struct mii_bus
*bus
, int mii_id
, int regnum
,
701 struct fec_enet_private
*fep
= bus
->priv
;
702 unsigned long time_left
;
704 fep
->mii_timeout
= 0;
705 init_completion(&fep
->mdio_done
);
707 /* start a write op */
708 writel(FEC_MMFR_ST
| FEC_MMFR_OP_WRITE
|
709 FEC_MMFR_PA(mii_id
) | FEC_MMFR_RA(regnum
) |
710 FEC_MMFR_TA
| FEC_MMFR_DATA(value
),
711 fep
->hwp
+ FEC_MII_DATA
);
713 /* wait for end of transfer */
714 time_left
= wait_for_completion_timeout(&fep
->mdio_done
,
715 usecs_to_jiffies(FEC_MII_TIMEOUT
));
716 if (time_left
== 0) {
717 fep
->mii_timeout
= 1;
718 printk(KERN_ERR
"FEC: MDIO write timeout\n");
725 static int fec_enet_mdio_reset(struct mii_bus
*bus
)
730 static int fec_enet_mii_probe(struct net_device
*dev
)
732 struct fec_enet_private
*fep
= netdev_priv(dev
);
733 struct phy_device
*phy_dev
= NULL
;
734 char mdio_bus_id
[MII_BUS_ID_SIZE
];
735 char phy_name
[MII_BUS_ID_SIZE
+ 3];
737 int dev_id
= fep
->pdev
->id
;
741 /* check for attached phy */
742 for (phy_id
= 0; (phy_id
< PHY_MAX_ADDR
); phy_id
++) {
743 if ((fep
->mii_bus
->phy_mask
& (1 << phy_id
)))
745 if (fep
->mii_bus
->phy_map
[phy_id
] == NULL
)
747 if (fep
->mii_bus
->phy_map
[phy_id
]->phy_id
== 0)
751 strncpy(mdio_bus_id
, fep
->mii_bus
->id
, MII_BUS_ID_SIZE
);
755 if (phy_id
>= PHY_MAX_ADDR
) {
756 printk(KERN_INFO
"%s: no PHY, assuming direct connection "
757 "to switch\n", dev
->name
);
758 strncpy(mdio_bus_id
, "0", MII_BUS_ID_SIZE
);
762 snprintf(phy_name
, MII_BUS_ID_SIZE
, PHY_ID_FMT
, mdio_bus_id
, phy_id
);
763 phy_dev
= phy_connect(dev
, phy_name
, &fec_enet_adjust_link
, 0,
764 PHY_INTERFACE_MODE_MII
);
765 if (IS_ERR(phy_dev
)) {
766 printk(KERN_ERR
"%s: could not attach to PHY\n", dev
->name
);
767 return PTR_ERR(phy_dev
);
770 /* mask with MAC supported features */
771 phy_dev
->supported
&= PHY_BASIC_FEATURES
;
772 phy_dev
->advertising
= phy_dev
->supported
;
774 fep
->phy_dev
= phy_dev
;
776 fep
->full_duplex
= 0;
778 printk(KERN_INFO
"%s: Freescale FEC PHY driver [%s] "
779 "(mii_bus:phy_addr=%s, irq=%d)\n", dev
->name
,
780 fep
->phy_dev
->drv
->name
, dev_name(&fep
->phy_dev
->dev
),
786 static int fec_enet_mii_init(struct platform_device
*pdev
)
788 static struct mii_bus
*fec0_mii_bus
;
789 struct net_device
*dev
= platform_get_drvdata(pdev
);
790 struct fec_enet_private
*fep
= netdev_priv(dev
);
791 const struct platform_device_id
*id_entry
=
792 platform_get_device_id(fep
->pdev
);
796 * The dual fec interfaces are not equivalent with enet-mac.
797 * Here are the differences:
799 * - fec0 supports MII & RMII modes while fec1 only supports RMII
800 * - fec0 acts as the 1588 time master while fec1 is slave
801 * - external phys can only be configured by fec0
803 * That is to say fec1 can not work independently. It only works
804 * when fec0 is working. The reason behind this design is that the
805 * second interface is added primarily for Switch mode.
807 * Because of the last point above, both phys are attached on fec0
808 * mdio interface in board design, and need to be configured by
811 if ((id_entry
->driver_data
& FEC_QUIRK_ENET_MAC
) && pdev
->id
) {
812 /* fec1 uses fec0 mii_bus */
813 fep
->mii_bus
= fec0_mii_bus
;
817 fep
->mii_timeout
= 0;
820 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
822 fep
->phy_speed
= DIV_ROUND_UP(clk_get_rate(fep
->clk
), 5000000) << 1;
823 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
825 fep
->mii_bus
= mdiobus_alloc();
826 if (fep
->mii_bus
== NULL
) {
831 fep
->mii_bus
->name
= "fec_enet_mii_bus";
832 fep
->mii_bus
->read
= fec_enet_mdio_read
;
833 fep
->mii_bus
->write
= fec_enet_mdio_write
;
834 fep
->mii_bus
->reset
= fec_enet_mdio_reset
;
835 snprintf(fep
->mii_bus
->id
, MII_BUS_ID_SIZE
, "%x", pdev
->id
+ 1);
836 fep
->mii_bus
->priv
= fep
;
837 fep
->mii_bus
->parent
= &pdev
->dev
;
839 fep
->mii_bus
->irq
= kmalloc(sizeof(int) * PHY_MAX_ADDR
, GFP_KERNEL
);
840 if (!fep
->mii_bus
->irq
) {
842 goto err_out_free_mdiobus
;
845 for (i
= 0; i
< PHY_MAX_ADDR
; i
++)
846 fep
->mii_bus
->irq
[i
] = PHY_POLL
;
848 platform_set_drvdata(dev
, fep
->mii_bus
);
850 if (mdiobus_register(fep
->mii_bus
))
851 goto err_out_free_mdio_irq
;
853 /* save fec0 mii_bus */
854 if (id_entry
->driver_data
& FEC_QUIRK_ENET_MAC
)
855 fec0_mii_bus
= fep
->mii_bus
;
859 err_out_free_mdio_irq
:
860 kfree(fep
->mii_bus
->irq
);
861 err_out_free_mdiobus
:
862 mdiobus_free(fep
->mii_bus
);
867 static void fec_enet_mii_remove(struct fec_enet_private
*fep
)
870 phy_disconnect(fep
->phy_dev
);
871 mdiobus_unregister(fep
->mii_bus
);
872 kfree(fep
->mii_bus
->irq
);
873 mdiobus_free(fep
->mii_bus
);
876 static int fec_enet_get_settings(struct net_device
*dev
,
877 struct ethtool_cmd
*cmd
)
879 struct fec_enet_private
*fep
= netdev_priv(dev
);
880 struct phy_device
*phydev
= fep
->phy_dev
;
885 return phy_ethtool_gset(phydev
, cmd
);
888 static int fec_enet_set_settings(struct net_device
*dev
,
889 struct ethtool_cmd
*cmd
)
891 struct fec_enet_private
*fep
= netdev_priv(dev
);
892 struct phy_device
*phydev
= fep
->phy_dev
;
897 return phy_ethtool_sset(phydev
, cmd
);
900 static void fec_enet_get_drvinfo(struct net_device
*dev
,
901 struct ethtool_drvinfo
*info
)
903 struct fec_enet_private
*fep
= netdev_priv(dev
);
905 strcpy(info
->driver
, fep
->pdev
->dev
.driver
->name
);
906 strcpy(info
->version
, "Revision: 1.0");
907 strcpy(info
->bus_info
, dev_name(&dev
->dev
));
910 static struct ethtool_ops fec_enet_ethtool_ops
= {
911 .get_settings
= fec_enet_get_settings
,
912 .set_settings
= fec_enet_set_settings
,
913 .get_drvinfo
= fec_enet_get_drvinfo
,
914 .get_link
= ethtool_op_get_link
,
917 static int fec_enet_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
919 struct fec_enet_private
*fep
= netdev_priv(dev
);
920 struct phy_device
*phydev
= fep
->phy_dev
;
922 if (!netif_running(dev
))
928 return phy_mii_ioctl(phydev
, rq
, cmd
);
931 static void fec_enet_free_buffers(struct net_device
*dev
)
933 struct fec_enet_private
*fep
= netdev_priv(dev
);
938 bdp
= fep
->rx_bd_base
;
939 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
940 skb
= fep
->rx_skbuff
[i
];
942 if (bdp
->cbd_bufaddr
)
943 dma_unmap_single(&dev
->dev
, bdp
->cbd_bufaddr
,
944 FEC_ENET_RX_FRSIZE
, DMA_FROM_DEVICE
);
950 bdp
= fep
->tx_bd_base
;
951 for (i
= 0; i
< TX_RING_SIZE
; i
++)
952 kfree(fep
->tx_bounce
[i
]);
955 static int fec_enet_alloc_buffers(struct net_device
*dev
)
957 struct fec_enet_private
*fep
= netdev_priv(dev
);
962 bdp
= fep
->rx_bd_base
;
963 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
964 skb
= dev_alloc_skb(FEC_ENET_RX_FRSIZE
);
966 fec_enet_free_buffers(dev
);
969 fep
->rx_skbuff
[i
] = skb
;
971 bdp
->cbd_bufaddr
= dma_map_single(&dev
->dev
, skb
->data
,
972 FEC_ENET_RX_FRSIZE
, DMA_FROM_DEVICE
);
973 bdp
->cbd_sc
= BD_ENET_RX_EMPTY
;
977 /* Set the last buffer to wrap. */
979 bdp
->cbd_sc
|= BD_SC_WRAP
;
981 bdp
= fep
->tx_bd_base
;
982 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
983 fep
->tx_bounce
[i
] = kmalloc(FEC_ENET_TX_FRSIZE
, GFP_KERNEL
);
986 bdp
->cbd_bufaddr
= 0;
990 /* Set the last buffer to wrap. */
992 bdp
->cbd_sc
|= BD_SC_WRAP
;
998 fec_enet_open(struct net_device
*dev
)
1000 struct fec_enet_private
*fep
= netdev_priv(dev
);
1003 /* I should reset the ring buffers here, but I don't yet know
1004 * a simple way to do that.
1007 ret
= fec_enet_alloc_buffers(dev
);
1011 /* Probe and connect to PHY when open the interface */
1012 ret
= fec_enet_mii_probe(dev
);
1014 fec_enet_free_buffers(dev
);
1017 phy_start(fep
->phy_dev
);
1018 netif_start_queue(dev
);
1024 fec_enet_close(struct net_device
*dev
)
1026 struct fec_enet_private
*fep
= netdev_priv(dev
);
1028 /* Don't know what to do yet. */
1030 netif_stop_queue(dev
);
1034 phy_disconnect(fep
->phy_dev
);
1036 fec_enet_free_buffers(dev
);
1041 /* Set or clear the multicast filter for this adaptor.
1042 * Skeleton taken from sunlance driver.
1043 * The CPM Ethernet implementation allows Multicast as well as individual
1044 * MAC address filtering. Some of the drivers check to make sure it is
1045 * a group multicast address, and discard those that are not. I guess I
1046 * will do the same for now, but just remove the test if you want
1047 * individual filtering as well (do the upper net layers want or support
1048 * this kind of feature?).
1051 #define HASH_BITS 6 /* #bits in hash */
1052 #define CRC32_POLY 0xEDB88320
1054 static void set_multicast_list(struct net_device
*dev
)
1056 struct fec_enet_private
*fep
= netdev_priv(dev
);
1057 struct netdev_hw_addr
*ha
;
1058 unsigned int i
, bit
, data
, crc
, tmp
;
1061 if (dev
->flags
& IFF_PROMISC
) {
1062 tmp
= readl(fep
->hwp
+ FEC_R_CNTRL
);
1064 writel(tmp
, fep
->hwp
+ FEC_R_CNTRL
);
1068 tmp
= readl(fep
->hwp
+ FEC_R_CNTRL
);
1070 writel(tmp
, fep
->hwp
+ FEC_R_CNTRL
);
1072 if (dev
->flags
& IFF_ALLMULTI
) {
1073 /* Catch all multicast addresses, so set the
1076 writel(0xffffffff, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
1077 writel(0xffffffff, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
1082 /* Clear filter and add the addresses in hash register
1084 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
1085 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
1087 netdev_for_each_mc_addr(ha
, dev
) {
1088 /* Only support group multicast for now */
1089 if (!(ha
->addr
[0] & 1))
1092 /* calculate crc32 value of mac address */
1095 for (i
= 0; i
< dev
->addr_len
; i
++) {
1097 for (bit
= 0; bit
< 8; bit
++, data
>>= 1) {
1099 (((crc
^ data
) & 1) ? CRC32_POLY
: 0);
1103 /* only upper 6 bits (HASH_BITS) are used
1104 * which point to specific bit in he hash registers
1106 hash
= (crc
>> (32 - HASH_BITS
)) & 0x3f;
1109 tmp
= readl(fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
1110 tmp
|= 1 << (hash
- 32);
1111 writel(tmp
, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
1113 tmp
= readl(fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
1115 writel(tmp
, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
1120 /* Set a MAC change in hardware. */
1122 fec_set_mac_address(struct net_device
*dev
, void *p
)
1124 struct fec_enet_private
*fep
= netdev_priv(dev
);
1125 struct sockaddr
*addr
= p
;
1127 if (!is_valid_ether_addr(addr
->sa_data
))
1128 return -EADDRNOTAVAIL
;
1130 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
1132 writel(dev
->dev_addr
[3] | (dev
->dev_addr
[2] << 8) |
1133 (dev
->dev_addr
[1] << 16) | (dev
->dev_addr
[0] << 24),
1134 fep
->hwp
+ FEC_ADDR_LOW
);
1135 writel((dev
->dev_addr
[5] << 16) | (dev
->dev_addr
[4] << 24),
1136 fep
->hwp
+ FEC_ADDR_HIGH
);
1140 static const struct net_device_ops fec_netdev_ops
= {
1141 .ndo_open
= fec_enet_open
,
1142 .ndo_stop
= fec_enet_close
,
1143 .ndo_start_xmit
= fec_enet_start_xmit
,
1144 .ndo_set_multicast_list
= set_multicast_list
,
1145 .ndo_change_mtu
= eth_change_mtu
,
1146 .ndo_validate_addr
= eth_validate_addr
,
1147 .ndo_tx_timeout
= fec_timeout
,
1148 .ndo_set_mac_address
= fec_set_mac_address
,
1149 .ndo_do_ioctl
= fec_enet_ioctl
,
1153 * XXX: We need to clean up on failure exits here.
1156 static int fec_enet_init(struct net_device
*dev
)
1158 struct fec_enet_private
*fep
= netdev_priv(dev
);
1159 struct bufdesc
*cbd_base
;
1160 struct bufdesc
*bdp
;
1163 /* Allocate memory for buffer descriptors. */
1164 cbd_base
= dma_alloc_coherent(NULL
, PAGE_SIZE
, &fep
->bd_dma
,
1167 printk("FEC: allocate descriptor memory failed?\n");
1171 spin_lock_init(&fep
->hw_lock
);
1173 fep
->hwp
= (void __iomem
*)dev
->base_addr
;
1176 /* Get the Ethernet address */
1179 /* Set receive and transmit descriptor base. */
1180 fep
->rx_bd_base
= cbd_base
;
1181 fep
->tx_bd_base
= cbd_base
+ RX_RING_SIZE
;
1183 /* The FEC Ethernet specific entries in the device structure */
1184 dev
->watchdog_timeo
= TX_TIMEOUT
;
1185 dev
->netdev_ops
= &fec_netdev_ops
;
1186 dev
->ethtool_ops
= &fec_enet_ethtool_ops
;
1188 /* Initialize the receive buffer descriptors. */
1189 bdp
= fep
->rx_bd_base
;
1190 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1192 /* Initialize the BD for every fragment in the page. */
1197 /* Set the last buffer to wrap */
1199 bdp
->cbd_sc
|= BD_SC_WRAP
;
1201 /* ...and the same for transmit */
1202 bdp
= fep
->tx_bd_base
;
1203 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1205 /* Initialize the BD for every fragment in the page. */
1207 bdp
->cbd_bufaddr
= 0;
1211 /* Set the last buffer to wrap */
1213 bdp
->cbd_sc
|= BD_SC_WRAP
;
1215 fec_restart(dev
, 0);
1220 /* This function is called to start or restart the FEC during a link
1221 * change. This only happens when switching between half and full
1225 fec_restart(struct net_device
*dev
, int duplex
)
1227 struct fec_enet_private
*fep
= netdev_priv(dev
);
1228 const struct platform_device_id
*id_entry
=
1229 platform_get_device_id(fep
->pdev
);
1231 u32 val
, temp_mac
[2];
1233 /* Whack a reset. We should wait for this. */
1234 writel(1, fep
->hwp
+ FEC_ECNTRL
);
1238 * enet-mac reset will reset mac address registers too,
1239 * so need to reconfigure it.
1241 if (id_entry
->driver_data
& FEC_QUIRK_ENET_MAC
) {
1242 memcpy(&temp_mac
, dev
->dev_addr
, ETH_ALEN
);
1243 writel(cpu_to_be32(temp_mac
[0]), fep
->hwp
+ FEC_ADDR_LOW
);
1244 writel(cpu_to_be32(temp_mac
[1]), fep
->hwp
+ FEC_ADDR_HIGH
);
1247 /* Clear any outstanding interrupt. */
1248 writel(0xffc00000, fep
->hwp
+ FEC_IEVENT
);
1250 /* Reset all multicast. */
1251 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
1252 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
1253 #ifndef CONFIG_M5272
1254 writel(0, fep
->hwp
+ FEC_HASH_TABLE_HIGH
);
1255 writel(0, fep
->hwp
+ FEC_HASH_TABLE_LOW
);
1258 /* Set maximum receive buffer size. */
1259 writel(PKT_MAXBLR_SIZE
, fep
->hwp
+ FEC_R_BUFF_SIZE
);
1261 /* Set receive and transmit descriptor base. */
1262 writel(fep
->bd_dma
, fep
->hwp
+ FEC_R_DES_START
);
1263 writel((unsigned long)fep
->bd_dma
+ sizeof(struct bufdesc
) * RX_RING_SIZE
,
1264 fep
->hwp
+ FEC_X_DES_START
);
1266 fep
->dirty_tx
= fep
->cur_tx
= fep
->tx_bd_base
;
1267 fep
->cur_rx
= fep
->rx_bd_base
;
1269 /* Reset SKB transmit buffers. */
1270 fep
->skb_cur
= fep
->skb_dirty
= 0;
1271 for (i
= 0; i
<= TX_RING_MOD_MASK
; i
++) {
1272 if (fep
->tx_skbuff
[i
]) {
1273 dev_kfree_skb_any(fep
->tx_skbuff
[i
]);
1274 fep
->tx_skbuff
[i
] = NULL
;
1278 /* Enable MII mode */
1280 /* MII enable / FD enable */
1281 writel(OPT_FRAME_SIZE
| 0x04, fep
->hwp
+ FEC_R_CNTRL
);
1282 writel(0x04, fep
->hwp
+ FEC_X_CNTRL
);
1284 /* MII enable / No Rcv on Xmit */
1285 writel(OPT_FRAME_SIZE
| 0x06, fep
->hwp
+ FEC_R_CNTRL
);
1286 writel(0x0, fep
->hwp
+ FEC_X_CNTRL
);
1288 fep
->full_duplex
= duplex
;
1291 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
1294 * The phy interface and speed need to get configured
1295 * differently on enet-mac.
1297 if (id_entry
->driver_data
& FEC_QUIRK_ENET_MAC
) {
1298 val
= readl(fep
->hwp
+ FEC_R_CNTRL
);
1301 if (fep
->phy_interface
== PHY_INTERFACE_MODE_RMII
)
1307 if (fep
->phy_dev
&& fep
->phy_dev
->speed
== SPEED_100
)
1312 writel(val
, fep
->hwp
+ FEC_R_CNTRL
);
1314 #ifdef FEC_MIIGSK_ENR
1315 if (fep
->phy_interface
== PHY_INTERFACE_MODE_RMII
) {
1316 /* disable the gasket and wait */
1317 writel(0, fep
->hwp
+ FEC_MIIGSK_ENR
);
1318 while (readl(fep
->hwp
+ FEC_MIIGSK_ENR
) & 4)
1322 * configure the gasket:
1323 * RMII, 50 MHz, no loopback, no echo
1325 writel(1, fep
->hwp
+ FEC_MIIGSK_CFGR
);
1327 /* re-enable the gasket */
1328 writel(2, fep
->hwp
+ FEC_MIIGSK_ENR
);
1333 /* And last, enable the transmit and receive processing */
1334 writel(2, fep
->hwp
+ FEC_ECNTRL
);
1335 writel(0, fep
->hwp
+ FEC_R_DES_ACTIVE
);
1337 /* Enable interrupts we wish to service */
1338 writel(FEC_DEFAULT_IMASK
, fep
->hwp
+ FEC_IMASK
);
1342 fec_stop(struct net_device
*dev
)
1344 struct fec_enet_private
*fep
= netdev_priv(dev
);
1346 /* We cannot expect a graceful transmit stop without link !!! */
1348 writel(1, fep
->hwp
+ FEC_X_CNTRL
); /* Graceful transmit stop */
1350 if (!(readl(fep
->hwp
+ FEC_IEVENT
) & FEC_ENET_GRA
))
1351 printk("fec_stop : Graceful transmit stop did not complete !\n");
1354 /* Whack a reset. We should wait for this. */
1355 writel(1, fep
->hwp
+ FEC_ECNTRL
);
1357 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
1358 writel(FEC_DEFAULT_IMASK
, fep
->hwp
+ FEC_IMASK
);
1361 static int __devinit
1362 fec_probe(struct platform_device
*pdev
)
1364 struct fec_enet_private
*fep
;
1365 struct fec_platform_data
*pdata
;
1366 struct net_device
*ndev
;
1367 int i
, irq
, ret
= 0;
1370 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1374 r
= request_mem_region(r
->start
, resource_size(r
), pdev
->name
);
1378 /* Init network device */
1379 ndev
= alloc_etherdev(sizeof(struct fec_enet_private
));
1383 SET_NETDEV_DEV(ndev
, &pdev
->dev
);
1385 /* setup board info structure */
1386 fep
= netdev_priv(ndev
);
1387 memset(fep
, 0, sizeof(*fep
));
1389 ndev
->base_addr
= (unsigned long)ioremap(r
->start
, resource_size(r
));
1392 if (!ndev
->base_addr
) {
1394 goto failed_ioremap
;
1397 platform_set_drvdata(pdev
, ndev
);
1399 pdata
= pdev
->dev
.platform_data
;
1401 fep
->phy_interface
= pdata
->phy
;
1403 /* This device has up to three irqs on some platforms */
1404 for (i
= 0; i
< 3; i
++) {
1405 irq
= platform_get_irq(pdev
, i
);
1408 ret
= request_irq(irq
, fec_enet_interrupt
, IRQF_DISABLED
, pdev
->name
, ndev
);
1411 irq
= platform_get_irq(pdev
, i
);
1412 free_irq(irq
, ndev
);
1419 fep
->clk
= clk_get(&pdev
->dev
, "fec_clk");
1420 if (IS_ERR(fep
->clk
)) {
1421 ret
= PTR_ERR(fep
->clk
);
1424 clk_enable(fep
->clk
);
1426 ret
= fec_enet_init(ndev
);
1430 ret
= fec_enet_mii_init(pdev
);
1432 goto failed_mii_init
;
1434 /* Carrier starts down, phylib will bring it up */
1435 netif_carrier_off(ndev
);
1437 ret
= register_netdev(ndev
);
1439 goto failed_register
;
1444 fec_enet_mii_remove(fep
);
1447 clk_disable(fep
->clk
);
1450 for (i
= 0; i
< 3; i
++) {
1451 irq
= platform_get_irq(pdev
, i
);
1453 free_irq(irq
, ndev
);
1456 iounmap((void __iomem
*)ndev
->base_addr
);
1463 static int __devexit
1464 fec_drv_remove(struct platform_device
*pdev
)
1466 struct net_device
*ndev
= platform_get_drvdata(pdev
);
1467 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1469 platform_set_drvdata(pdev
, NULL
);
1472 fec_enet_mii_remove(fep
);
1473 clk_disable(fep
->clk
);
1475 iounmap((void __iomem
*)ndev
->base_addr
);
1476 unregister_netdev(ndev
);
1483 fec_suspend(struct device
*dev
)
1485 struct net_device
*ndev
= dev_get_drvdata(dev
);
1486 struct fec_enet_private
*fep
;
1489 fep
= netdev_priv(ndev
);
1490 if (netif_running(ndev
)) {
1492 netif_device_detach(ndev
);
1494 clk_disable(fep
->clk
);
1500 fec_resume(struct device
*dev
)
1502 struct net_device
*ndev
= dev_get_drvdata(dev
);
1503 struct fec_enet_private
*fep
;
1506 fep
= netdev_priv(ndev
);
1507 clk_enable(fep
->clk
);
1508 if (netif_running(ndev
)) {
1509 fec_restart(ndev
, fep
->full_duplex
);
1510 netif_device_attach(ndev
);
1516 static const struct dev_pm_ops fec_pm_ops
= {
1517 .suspend
= fec_suspend
,
1518 .resume
= fec_resume
,
1519 .freeze
= fec_suspend
,
1521 .poweroff
= fec_suspend
,
1522 .restore
= fec_resume
,
1526 static struct platform_driver fec_driver
= {
1528 .name
= DRIVER_NAME
,
1529 .owner
= THIS_MODULE
,
1534 .id_table
= fec_devtype
,
1536 .remove
= __devexit_p(fec_drv_remove
),
1540 fec_enet_module_init(void)
1542 printk(KERN_INFO
"FEC Ethernet Driver\n");
1544 return platform_driver_register(&fec_driver
);
1548 fec_enet_cleanup(void)
1550 platform_driver_unregister(&fec_driver
);
1553 module_exit(fec_enet_cleanup
);
1554 module_init(fec_enet_module_init
);
1556 MODULE_LICENSE("GPL");