1 /*******************************************************************************
4 Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 The full GNU General Public License is included in this distribution in the
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * e100.c: Intel(R) PRO/100 ethernet driver
32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on
33 * original e100 driver, but better described as a munging of
34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
37 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
38 * Open Source Software Developers Manual,
39 * http://sourceforge.net/projects/e1000
46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47 * controller family, which includes the 82557, 82558, 82559, 82550,
48 * 82551, and 82562 devices. 82558 and greater controllers
49 * integrate the Intel 82555 PHY. The controllers are used in
50 * server and client network interface cards, as well as in
51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52 * configurations. 8255x supports a 32-bit linear addressing
53 * mode and operates at 33Mhz PCI clock rate.
55 * II. Driver Operation
57 * Memory-mapped mode is used exclusively to access the device's
58 * shared-memory structure, the Control/Status Registers (CSR). All
59 * setup, configuration, and control of the device, including queuing
60 * of Tx, Rx, and configuration commands is through the CSR.
61 * cmd_lock serializes accesses to the CSR command register. cb_lock
62 * protects the shared Command Block List (CBL).
64 * 8255x is highly MII-compliant and all access to the PHY go
65 * through the Management Data Interface (MDI). Consequently, the
66 * driver leverages the mii.c library shared with other MII-compliant
69 * Big- and Little-Endian byte order as well as 32- and 64-bit
70 * archs are supported. Weak-ordered memory and non-cache-coherent
71 * archs are supported.
75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
76 * together in a fixed-size ring (CBL) thus forming the flexible mode
77 * memory structure. A TCB marked with the suspend-bit indicates
78 * the end of the ring. The last TCB processed suspends the
79 * controller, and the controller can be restarted by issue a CU
80 * resume command to continue from the suspend point, or a CU start
81 * command to start at a given position in the ring.
83 * Non-Tx commands (config, multicast setup, etc) are linked
84 * into the CBL ring along with Tx commands. The common structure
85 * used for both Tx and non-Tx commands is the Command Block (CB).
87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
88 * is the next CB to check for completion; cb_to_send is the first
89 * CB to start on in case of a previous failure to resume. CB clean
90 * up happens in interrupt context in response to a CU interrupt.
91 * cbs_avail keeps track of number of free CB resources available.
93 * Hardware padding of short packets to minimum packet size is
94 * enabled. 82557 pads with 7Eh, while the later controllers pad
99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
100 * Descriptors (RFD) + data buffer, thus forming the simplified mode
101 * memory structure. Rx skbs are allocated to contain both the RFD
102 * and the data buffer, but the RFD is pulled off before the skb is
103 * indicated. The data buffer is aligned such that encapsulated
104 * protocol headers are u32-aligned. Since the RFD is part of the
105 * mapped shared memory, and completion status is contained within
106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
107 * view from software and hardware.
109 * Under typical operation, the receive unit (RU) is start once,
110 * and the controller happily fills RFDs as frames arrive. If
111 * replacement RFDs cannot be allocated, or the RU goes non-active,
112 * the RU must be restarted. Frame arrival generates an interrupt,
113 * and Rx indication and re-allocation happen in the same context,
114 * therefore no locking is required. A software-generated interrupt
115 * is generated from the watchdog to recover from a failed allocation
116 * senario where all Rx resources have been indicated and none re-
121 * VLAN offloading of tagging, stripping and filtering is not
122 * supported, but driver will accommodate the extra 4-byte VLAN tag
123 * for processing by upper layers. Tx/Rx Checksum offloading is not
124 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
125 * not supported (hardware limitation).
127 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
129 * Thanks to JC (jchapman@katalix.com) for helping with
130 * testing/troubleshooting the development driver.
133 * o several entry points race with dev->close
134 * o check for tx-no-resources/stop Q races with tx clean/wake Q
137 #include <linux/config.h>
138 #include <linux/module.h>
139 #include <linux/moduleparam.h>
140 #include <linux/kernel.h>
141 #include <linux/types.h>
142 #include <linux/slab.h>
143 #include <linux/delay.h>
144 #include <linux/init.h>
145 #include <linux/pci.h>
146 #include <linux/dma-mapping.h>
147 #include <linux/netdevice.h>
148 #include <linux/etherdevice.h>
149 #include <linux/mii.h>
150 #include <linux/if_vlan.h>
151 #include <linux/skbuff.h>
152 #include <linux/ethtool.h>
153 #include <linux/string.h>
154 #include <asm/unaligned.h>
157 #define DRV_NAME "e100"
158 #define DRV_EXT "-NAPI"
159 #define DRV_VERSION "3.4.8-k2"DRV_EXT
160 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
161 #define DRV_COPYRIGHT "Copyright(c) 1999-2005 Intel Corporation"
162 #define PFX DRV_NAME ": "
164 #define E100_WATCHDOG_PERIOD (2 * HZ)
165 #define E100_NAPI_WEIGHT 16
167 MODULE_DESCRIPTION(DRV_DESCRIPTION
);
168 MODULE_AUTHOR(DRV_COPYRIGHT
);
169 MODULE_LICENSE("GPL");
170 MODULE_VERSION(DRV_VERSION
);
172 static int debug
= 3;
173 module_param(debug
, int, 0);
174 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
175 #define DPRINTK(nlevel, klevel, fmt, args...) \
176 (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \
177 printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \
178 __FUNCTION__ , ## args))
180 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
181 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
182 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
183 static struct pci_device_id e100_id_table
[] = {
184 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
185 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
186 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
187 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
188 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
189 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
190 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
191 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
192 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
193 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
194 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
195 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
196 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
197 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
198 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
199 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
200 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
201 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
202 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
203 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
204 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
205 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
206 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
207 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
208 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
209 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
210 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
211 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
212 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
213 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
214 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
215 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
216 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
217 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
218 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
219 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
220 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
221 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
222 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
223 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
224 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
227 MODULE_DEVICE_TABLE(pci
, e100_id_table
);
230 mac_82557_D100_A
= 0,
231 mac_82557_D100_B
= 1,
232 mac_82557_D100_C
= 2,
233 mac_82558_D101_A4
= 4,
234 mac_82558_D101_B0
= 5,
238 mac_82550_D102_C
= 13,
246 phy_100a
= 0x000003E0,
247 phy_100c
= 0x035002A8,
248 phy_82555_tx
= 0x015002A8,
249 phy_nsc_tx
= 0x5C002000,
250 phy_82562_et
= 0x033002A8,
251 phy_82562_em
= 0x032002A8,
252 phy_82562_ek
= 0x031002A8,
253 phy_82562_eh
= 0x017002A8,
254 phy_unknown
= 0xFFFFFFFF,
257 /* CSR (Control/Status Registers) */
282 RU_UNINITIALIZED
= -1,
286 stat_ack_not_ours
= 0x00,
287 stat_ack_sw_gen
= 0x04,
289 stat_ack_cu_idle
= 0x20,
290 stat_ack_frame_rx
= 0x40,
291 stat_ack_cu_cmd_done
= 0x80,
292 stat_ack_not_present
= 0xFF,
293 stat_ack_rx
= (stat_ack_sw_gen
| stat_ack_rnr
| stat_ack_frame_rx
),
294 stat_ack_tx
= (stat_ack_cu_idle
| stat_ack_cu_cmd_done
),
298 irq_mask_none
= 0x00,
306 ruc_load_base
= 0x06,
309 cuc_dump_addr
= 0x40,
310 cuc_dump_stats
= 0x50,
311 cuc_load_base
= 0x60,
312 cuc_dump_reset
= 0x70,
316 cuc_dump_complete
= 0x0000A005,
317 cuc_dump_reset_complete
= 0x0000A007,
321 software_reset
= 0x0000,
323 selective_reset
= 0x0002,
326 enum eeprom_ctrl_lo
{
334 mdi_write
= 0x04000000,
335 mdi_read
= 0x08000000,
336 mdi_ready
= 0x10000000,
346 enum eeprom_offsets
{
347 eeprom_cnfg_mdix
= 0x03,
349 eeprom_config_asf
= 0x0D,
350 eeprom_smbus_addr
= 0x90,
353 enum eeprom_cnfg_mdix
{
354 eeprom_mdix_enabled
= 0x0080,
358 eeprom_id_wol
= 0x0020,
361 enum eeprom_config_asf
{
367 cb_complete
= 0x8000,
396 struct rx
*next
, *prev
;
401 #if defined(__BIG_ENDIAN_BITFIELD)
407 /*0*/ u8
X(byte_count
:6, pad0
:2);
408 /*1*/ u8
X(X(rx_fifo_limit
:4, tx_fifo_limit
:3), pad1
:1);
409 /*2*/ u8 adaptive_ifs
;
410 /*3*/ u8
X(X(X(X(mwi_enable
:1, type_enable
:1), read_align_enable
:1),
411 term_write_cache_line
:1), pad3
:4);
412 /*4*/ u8
X(rx_dma_max_count
:7, pad4
:1);
413 /*5*/ u8
X(tx_dma_max_count
:7, dma_max_count_enable
:1);
414 /*6*/ u8
X(X(X(X(X(X(X(late_scb_update
:1, direct_rx_dma
:1),
415 tno_intr
:1), cna_intr
:1), standard_tcb
:1), standard_stat_counter
:1),
416 rx_discard_overruns
:1), rx_save_bad_frames
:1);
417 /*7*/ u8
X(X(X(X(X(rx_discard_short_frames
:1, tx_underrun_retry
:2),
418 pad7
:2), rx_extended_rfd
:1), tx_two_frames_in_fifo
:1),
420 /*8*/ u8
X(X(mii_mode
:1, pad8
:6), csma_disabled
:1);
421 /*9*/ u8
X(X(X(X(X(rx_tcpudp_checksum
:1, pad9
:3), vlan_arp_tco
:1),
422 link_status_wake
:1), arp_wake
:1), mcmatch_wake
:1);
423 /*10*/ u8
X(X(X(pad10
:3, no_source_addr_insertion
:1), preamble_length
:2),
425 /*11*/ u8
X(linear_priority
:3, pad11
:5);
426 /*12*/ u8
X(X(linear_priority_mode
:1, pad12
:3), ifs
:4);
427 /*13*/ u8 ip_addr_lo
;
428 /*14*/ u8 ip_addr_hi
;
429 /*15*/ u8
X(X(X(X(X(X(X(promiscuous_mode
:1, broadcast_disabled
:1),
430 wait_after_win
:1), pad15_1
:1), ignore_ul_bit
:1), crc_16_bit
:1),
431 pad15_2
:1), crs_or_cdt
:1);
432 /*16*/ u8 fc_delay_lo
;
433 /*17*/ u8 fc_delay_hi
;
434 /*18*/ u8
X(X(X(X(X(rx_stripping
:1, tx_padding
:1), rx_crc_transfer
:1),
435 rx_long_ok
:1), fc_priority_threshold
:3), pad18
:1);
436 /*19*/ u8
X(X(X(X(X(X(X(addr_wake
:1, magic_packet_disable
:1),
437 fc_disable
:1), fc_restop
:1), fc_restart
:1), fc_reject
:1),
438 full_duplex_force
:1), full_duplex_pin
:1);
439 /*20*/ u8
X(X(X(pad20_1
:5, fc_priority_location
:1), multi_ia
:1), pad20_2
:1);
440 /*21*/ u8
X(X(pad21_1
:3, multicast_all
:1), pad21_2
:4);
441 /*22*/ u8
X(X(rx_d102_mode
:1, rx_vlan_drop
:1), pad22
:6);
445 #define E100_MAX_MULTICAST_ADDRS 64
448 u8 addr
[E100_MAX_MULTICAST_ADDRS
* ETH_ALEN
+ 2/*pad*/];
451 /* Important: keep total struct u32-aligned */
452 #define UCODE_SIZE 134
459 u32 ucode
[UCODE_SIZE
];
460 struct config config
;
473 u32 dump_buffer_addr
;
475 struct cb
*next
, *prev
;
481 lb_none
= 0, lb_mac
= 1, lb_phy
= 3,
485 u32 tx_good_frames
, tx_max_collisions
, tx_late_collisions
,
486 tx_underruns
, tx_lost_crs
, tx_deferred
, tx_single_collisions
,
487 tx_multiple_collisions
, tx_total_collisions
;
488 u32 rx_good_frames
, rx_crc_errors
, rx_alignment_errors
,
489 rx_resource_errors
, rx_overrun_errors
, rx_cdt_errors
,
490 rx_short_frame_errors
;
491 u32 fc_xmt_pause
, fc_rcv_pause
, fc_rcv_unsupported
;
492 u16 xmt_tco_frames
, rcv_tco_frames
;
512 struct param_range rfds
;
513 struct param_range cbs
;
517 /* Begin: frequently used values: keep adjacent for cache effect */
518 u32 msg_enable ____cacheline_aligned
;
519 struct net_device
*netdev
;
520 struct pci_dev
*pdev
;
522 struct rx
*rxs ____cacheline_aligned
;
523 struct rx
*rx_to_use
;
524 struct rx
*rx_to_clean
;
525 struct rfd blank_rfd
;
526 enum ru_state ru_running
;
528 spinlock_t cb_lock ____cacheline_aligned
;
530 struct csr __iomem
*csr
;
531 enum scb_cmd_lo cuc_cmd
;
532 unsigned int cbs_avail
;
534 struct cb
*cb_to_use
;
535 struct cb
*cb_to_send
;
536 struct cb
*cb_to_clean
;
538 /* End: frequently used values: keep adjacent for cache effect */
542 promiscuous
= (1 << 1),
543 multicast_all
= (1 << 2),
544 wol_magic
= (1 << 3),
545 ich_10h_workaround
= (1 << 4),
546 } flags ____cacheline_aligned
;
550 struct params params
;
551 struct net_device_stats net_stats
;
552 struct timer_list watchdog
;
553 struct timer_list blink_timer
;
554 struct mii_if_info mii
;
555 struct work_struct tx_timeout_task
;
556 enum loopback loopback
;
561 dma_addr_t cbs_dma_addr
;
567 u32 tx_single_collisions
;
568 u32 tx_multiple_collisions
;
573 u32 rx_fc_unsupported
;
575 u32 rx_over_length_errors
;
583 static inline void e100_write_flush(struct nic
*nic
)
585 /* Flush previous PCI writes through intermediate bridges
586 * by doing a benign read */
587 (void)readb(&nic
->csr
->scb
.status
);
590 static inline void e100_enable_irq(struct nic
*nic
)
594 spin_lock_irqsave(&nic
->cmd_lock
, flags
);
595 writeb(irq_mask_none
, &nic
->csr
->scb
.cmd_hi
);
596 spin_unlock_irqrestore(&nic
->cmd_lock
, flags
);
597 e100_write_flush(nic
);
600 static inline void e100_disable_irq(struct nic
*nic
)
604 spin_lock_irqsave(&nic
->cmd_lock
, flags
);
605 writeb(irq_mask_all
, &nic
->csr
->scb
.cmd_hi
);
606 spin_unlock_irqrestore(&nic
->cmd_lock
, flags
);
607 e100_write_flush(nic
);
610 static void e100_hw_reset(struct nic
*nic
)
612 /* Put CU and RU into idle with a selective reset to get
613 * device off of PCI bus */
614 writel(selective_reset
, &nic
->csr
->port
);
615 e100_write_flush(nic
); udelay(20);
617 /* Now fully reset device */
618 writel(software_reset
, &nic
->csr
->port
);
619 e100_write_flush(nic
); udelay(20);
621 /* Mask off our interrupt line - it's unmasked after reset */
622 e100_disable_irq(nic
);
625 static int e100_self_test(struct nic
*nic
)
627 u32 dma_addr
= nic
->dma_addr
+ offsetof(struct mem
, selftest
);
629 /* Passing the self-test is a pretty good indication
630 * that the device can DMA to/from host memory */
632 nic
->mem
->selftest
.signature
= 0;
633 nic
->mem
->selftest
.result
= 0xFFFFFFFF;
635 writel(selftest
| dma_addr
, &nic
->csr
->port
);
636 e100_write_flush(nic
);
637 /* Wait 10 msec for self-test to complete */
640 /* Interrupts are enabled after self-test */
641 e100_disable_irq(nic
);
643 /* Check results of self-test */
644 if(nic
->mem
->selftest
.result
!= 0) {
645 DPRINTK(HW
, ERR
, "Self-test failed: result=0x%08X\n",
646 nic
->mem
->selftest
.result
);
649 if(nic
->mem
->selftest
.signature
== 0) {
650 DPRINTK(HW
, ERR
, "Self-test failed: timed out\n");
657 static void e100_eeprom_write(struct nic
*nic
, u16 addr_len
, u16 addr
, u16 data
)
659 u32 cmd_addr_data
[3];
663 /* Three cmds: write/erase enable, write data, write/erase disable */
664 cmd_addr_data
[0] = op_ewen
<< (addr_len
- 2);
665 cmd_addr_data
[1] = (((op_write
<< addr_len
) | addr
) << 16) |
667 cmd_addr_data
[2] = op_ewds
<< (addr_len
- 2);
669 /* Bit-bang cmds to write word to eeprom */
670 for(j
= 0; j
< 3; j
++) {
673 writeb(eecs
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
674 e100_write_flush(nic
); udelay(4);
676 for(i
= 31; i
>= 0; i
--) {
677 ctrl
= (cmd_addr_data
[j
] & (1 << i
)) ?
679 writeb(ctrl
, &nic
->csr
->eeprom_ctrl_lo
);
680 e100_write_flush(nic
); udelay(4);
682 writeb(ctrl
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
683 e100_write_flush(nic
); udelay(4);
685 /* Wait 10 msec for cmd to complete */
689 writeb(0, &nic
->csr
->eeprom_ctrl_lo
);
690 e100_write_flush(nic
); udelay(4);
694 /* General technique stolen from the eepro100 driver - very clever */
695 static u16
e100_eeprom_read(struct nic
*nic
, u16
*addr_len
, u16 addr
)
702 cmd_addr_data
= ((op_read
<< *addr_len
) | addr
) << 16;
705 writeb(eecs
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
706 e100_write_flush(nic
); udelay(4);
708 /* Bit-bang to read word from eeprom */
709 for(i
= 31; i
>= 0; i
--) {
710 ctrl
= (cmd_addr_data
& (1 << i
)) ? eecs
| eedi
: eecs
;
711 writeb(ctrl
, &nic
->csr
->eeprom_ctrl_lo
);
712 e100_write_flush(nic
); udelay(4);
714 writeb(ctrl
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
715 e100_write_flush(nic
); udelay(4);
717 /* Eeprom drives a dummy zero to EEDO after receiving
718 * complete address. Use this to adjust addr_len. */
719 ctrl
= readb(&nic
->csr
->eeprom_ctrl_lo
);
720 if(!(ctrl
& eedo
) && i
> 16) {
721 *addr_len
-= (i
- 16);
725 data
= (data
<< 1) | (ctrl
& eedo
? 1 : 0);
729 writeb(0, &nic
->csr
->eeprom_ctrl_lo
);
730 e100_write_flush(nic
); udelay(4);
732 return le16_to_cpu(data
);
735 /* Load entire EEPROM image into driver cache and validate checksum */
736 static int e100_eeprom_load(struct nic
*nic
)
738 u16 addr
, addr_len
= 8, checksum
= 0;
740 /* Try reading with an 8-bit addr len to discover actual addr len */
741 e100_eeprom_read(nic
, &addr_len
, 0);
742 nic
->eeprom_wc
= 1 << addr_len
;
744 for(addr
= 0; addr
< nic
->eeprom_wc
; addr
++) {
745 nic
->eeprom
[addr
] = e100_eeprom_read(nic
, &addr_len
, addr
);
746 if(addr
< nic
->eeprom_wc
- 1)
747 checksum
+= cpu_to_le16(nic
->eeprom
[addr
]);
750 /* The checksum, stored in the last word, is calculated such that
751 * the sum of words should be 0xBABA */
752 checksum
= le16_to_cpu(0xBABA - checksum
);
753 if(checksum
!= nic
->eeprom
[nic
->eeprom_wc
- 1]) {
754 DPRINTK(PROBE
, ERR
, "EEPROM corrupted\n");
761 /* Save (portion of) driver EEPROM cache to device and update checksum */
762 static int e100_eeprom_save(struct nic
*nic
, u16 start
, u16 count
)
764 u16 addr
, addr_len
= 8, checksum
= 0;
766 /* Try reading with an 8-bit addr len to discover actual addr len */
767 e100_eeprom_read(nic
, &addr_len
, 0);
768 nic
->eeprom_wc
= 1 << addr_len
;
770 if(start
+ count
>= nic
->eeprom_wc
)
773 for(addr
= start
; addr
< start
+ count
; addr
++)
774 e100_eeprom_write(nic
, addr_len
, addr
, nic
->eeprom
[addr
]);
776 /* The checksum, stored in the last word, is calculated such that
777 * the sum of words should be 0xBABA */
778 for(addr
= 0; addr
< nic
->eeprom_wc
- 1; addr
++)
779 checksum
+= cpu_to_le16(nic
->eeprom
[addr
]);
780 nic
->eeprom
[nic
->eeprom_wc
- 1] = le16_to_cpu(0xBABA - checksum
);
781 e100_eeprom_write(nic
, addr_len
, nic
->eeprom_wc
- 1,
782 nic
->eeprom
[nic
->eeprom_wc
- 1]);
787 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
788 static inline int e100_exec_cmd(struct nic
*nic
, u8 cmd
, dma_addr_t dma_addr
)
794 spin_lock_irqsave(&nic
->cmd_lock
, flags
);
796 /* Previous command is accepted when SCB clears */
797 for(i
= 0; i
< E100_WAIT_SCB_TIMEOUT
; i
++) {
798 if(likely(!readb(&nic
->csr
->scb
.cmd_lo
)))
801 if(unlikely(i
> (E100_WAIT_SCB_TIMEOUT
>> 1)))
804 if(unlikely(i
== E100_WAIT_SCB_TIMEOUT
)) {
809 if(unlikely(cmd
!= cuc_resume
))
810 writel(dma_addr
, &nic
->csr
->scb
.gen_ptr
);
811 writeb(cmd
, &nic
->csr
->scb
.cmd_lo
);
814 spin_unlock_irqrestore(&nic
->cmd_lock
, flags
);
819 static inline int e100_exec_cb(struct nic
*nic
, struct sk_buff
*skb
,
820 void (*cb_prepare
)(struct nic
*, struct cb
*, struct sk_buff
*))
826 spin_lock_irqsave(&nic
->cb_lock
, flags
);
828 if(unlikely(!nic
->cbs_avail
)) {
834 nic
->cb_to_use
= cb
->next
;
838 if(unlikely(!nic
->cbs_avail
))
841 cb_prepare(nic
, cb
, skb
);
843 /* Order is important otherwise we'll be in a race with h/w:
844 * set S-bit in current first, then clear S-bit in previous. */
845 cb
->command
|= cpu_to_le16(cb_s
);
847 cb
->prev
->command
&= cpu_to_le16(~cb_s
);
849 while(nic
->cb_to_send
!= nic
->cb_to_use
) {
850 if(unlikely(e100_exec_cmd(nic
, nic
->cuc_cmd
,
851 nic
->cb_to_send
->dma_addr
))) {
852 /* Ok, here's where things get sticky. It's
853 * possible that we can't schedule the command
854 * because the controller is too busy, so
855 * let's just queue the command and try again
856 * when another command is scheduled. */
859 schedule_work(&nic
->tx_timeout_task
);
863 nic
->cuc_cmd
= cuc_resume
;
864 nic
->cb_to_send
= nic
->cb_to_send
->next
;
869 spin_unlock_irqrestore(&nic
->cb_lock
, flags
);
874 static u16
mdio_ctrl(struct nic
*nic
, u32 addr
, u32 dir
, u32 reg
, u16 data
)
879 writel((reg
<< 16) | (addr
<< 21) | dir
| data
, &nic
->csr
->mdi_ctrl
);
881 for(i
= 0; i
< 100; i
++) {
883 if((data_out
= readl(&nic
->csr
->mdi_ctrl
)) & mdi_ready
)
888 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
889 dir
== mdi_read
? "READ" : "WRITE", addr
, reg
, data
, data_out
);
890 return (u16
)data_out
;
893 static int mdio_read(struct net_device
*netdev
, int addr
, int reg
)
895 return mdio_ctrl(netdev_priv(netdev
), addr
, mdi_read
, reg
, 0);
898 static void mdio_write(struct net_device
*netdev
, int addr
, int reg
, int data
)
900 mdio_ctrl(netdev_priv(netdev
), addr
, mdi_write
, reg
, data
);
903 static void e100_get_defaults(struct nic
*nic
)
905 struct param_range rfds
= { .min
= 16, .max
= 256, .count
= 64 };
906 struct param_range cbs
= { .min
= 64, .max
= 256, .count
= 64 };
908 pci_read_config_byte(nic
->pdev
, PCI_REVISION_ID
, &nic
->rev_id
);
909 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
910 nic
->mac
= (nic
->flags
& ich
) ? mac_82559_D101M
: nic
->rev_id
;
911 if(nic
->mac
== mac_unknown
)
912 nic
->mac
= mac_82557_D100_A
;
914 nic
->params
.rfds
= rfds
;
915 nic
->params
.cbs
= cbs
;
917 /* Quadwords to DMA into FIFO before starting frame transmit */
918 nic
->tx_threshold
= 0xE0;
920 /* no interrupt for every tx completion, delay = 256us if not 557*/
921 nic
->tx_command
= cpu_to_le16(cb_tx
| cb_tx_sf
|
922 ((nic
->mac
>= mac_82558_D101_A4
) ? cb_cid
: cb_i
));
924 /* Template for a freshly allocated RFD */
925 nic
->blank_rfd
.command
= cpu_to_le16(cb_el
);
926 nic
->blank_rfd
.rbd
= 0xFFFFFFFF;
927 nic
->blank_rfd
.size
= cpu_to_le16(VLAN_ETH_FRAME_LEN
);
930 nic
->mii
.phy_id_mask
= 0x1F;
931 nic
->mii
.reg_num_mask
= 0x1F;
932 nic
->mii
.dev
= nic
->netdev
;
933 nic
->mii
.mdio_read
= mdio_read
;
934 nic
->mii
.mdio_write
= mdio_write
;
937 static void e100_configure(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
939 struct config
*config
= &cb
->u
.config
;
940 u8
*c
= (u8
*)config
;
942 cb
->command
= cpu_to_le16(cb_config
);
944 memset(config
, 0, sizeof(struct config
));
946 config
->byte_count
= 0x16; /* bytes in this struct */
947 config
->rx_fifo_limit
= 0x8; /* bytes in FIFO before DMA */
948 config
->direct_rx_dma
= 0x1; /* reserved */
949 config
->standard_tcb
= 0x1; /* 1=standard, 0=extended */
950 config
->standard_stat_counter
= 0x1; /* 1=standard, 0=extended */
951 config
->rx_discard_short_frames
= 0x1; /* 1=discard, 0=pass */
952 config
->tx_underrun_retry
= 0x3; /* # of underrun retries */
953 config
->mii_mode
= 0x1; /* 1=MII mode, 0=503 mode */
955 config
->no_source_addr_insertion
= 0x1; /* 1=no, 0=yes */
956 config
->preamble_length
= 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
957 config
->ifs
= 0x6; /* x16 = inter frame spacing */
958 config
->ip_addr_hi
= 0xF2; /* ARP IP filter - not used */
959 config
->pad15_1
= 0x1;
960 config
->pad15_2
= 0x1;
961 config
->crs_or_cdt
= 0x0; /* 0=CRS only, 1=CRS or CDT */
962 config
->fc_delay_hi
= 0x40; /* time delay for fc frame */
963 config
->tx_padding
= 0x1; /* 1=pad short frames */
964 config
->fc_priority_threshold
= 0x7; /* 7=priority fc disabled */
966 config
->full_duplex_pin
= 0x1; /* 1=examine FDX# pin */
967 config
->pad20_1
= 0x1F;
968 config
->fc_priority_location
= 0x1; /* 1=byte#31, 0=byte#19 */
969 config
->pad21_1
= 0x5;
971 config
->adaptive_ifs
= nic
->adaptive_ifs
;
972 config
->loopback
= nic
->loopback
;
974 if(nic
->mii
.force_media
&& nic
->mii
.full_duplex
)
975 config
->full_duplex_force
= 0x1; /* 1=force, 0=auto */
977 if(nic
->flags
& promiscuous
|| nic
->loopback
) {
978 config
->rx_save_bad_frames
= 0x1; /* 1=save, 0=discard */
979 config
->rx_discard_short_frames
= 0x0; /* 1=discard, 0=save */
980 config
->promiscuous_mode
= 0x1; /* 1=on, 0=off */
983 if(nic
->flags
& multicast_all
)
984 config
->multicast_all
= 0x1; /* 1=accept, 0=no */
986 /* disable WoL when up */
987 if(netif_running(nic
->netdev
) || !(nic
->flags
& wol_magic
))
988 config
->magic_packet_disable
= 0x1; /* 1=off, 0=on */
990 if(nic
->mac
>= mac_82558_D101_A4
) {
991 config
->fc_disable
= 0x1; /* 1=Tx fc off, 0=Tx fc on */
992 config
->mwi_enable
= 0x1; /* 1=enable, 0=disable */
993 config
->standard_tcb
= 0x0; /* 1=standard, 0=extended */
994 config
->rx_long_ok
= 0x1; /* 1=VLANs ok, 0=standard */
995 if(nic
->mac
>= mac_82559_D101M
)
996 config
->tno_intr
= 0x1; /* TCO stats enable */
998 config
->standard_stat_counter
= 0x0;
1001 DPRINTK(HW
, DEBUG
, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1002 c
[0], c
[1], c
[2], c
[3], c
[4], c
[5], c
[6], c
[7]);
1003 DPRINTK(HW
, DEBUG
, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1004 c
[8], c
[9], c
[10], c
[11], c
[12], c
[13], c
[14], c
[15]);
1005 DPRINTK(HW
, DEBUG
, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1006 c
[16], c
[17], c
[18], c
[19], c
[20], c
[21], c
[22], c
[23]);
1009 static void e100_load_ucode(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
1012 static const u32 ucode
[UCODE_SIZE
] = {
1013 /* NFS packets are misinterpreted as TCO packets and
1014 * incorrectly routed to the BMC over SMBus. This
1015 * microcode patch checks the fragmented IP bit in the
1016 * NFS/UDP header to distinguish between NFS and TCO. */
1017 0x0EF70E36, 0x1FFF1FFF, 0x1FFF1FFF, 0x1FFF1FFF, 0x1FFF1FFF,
1018 0x1FFF1FFF, 0x00906E41, 0x00800E3C, 0x00E00E39, 0x00000000,
1019 0x00906EFD, 0x00900EFD, 0x00E00EF8,
1022 if(nic
->mac
== mac_82551_F
|| nic
->mac
== mac_82551_10
) {
1023 for(i
= 0; i
< UCODE_SIZE
; i
++)
1024 cb
->u
.ucode
[i
] = cpu_to_le32(ucode
[i
]);
1025 cb
->command
= cpu_to_le16(cb_ucode
);
1027 cb
->command
= cpu_to_le16(cb_nop
);
1030 static void e100_setup_iaaddr(struct nic
*nic
, struct cb
*cb
,
1031 struct sk_buff
*skb
)
1033 cb
->command
= cpu_to_le16(cb_iaaddr
);
1034 memcpy(cb
->u
.iaaddr
, nic
->netdev
->dev_addr
, ETH_ALEN
);
1037 static void e100_dump(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
1039 cb
->command
= cpu_to_le16(cb_dump
);
1040 cb
->u
.dump_buffer_addr
= cpu_to_le32(nic
->dma_addr
+
1041 offsetof(struct mem
, dump_buf
));
1044 #define NCONFIG_AUTO_SWITCH 0x0080
1045 #define MII_NSC_CONG MII_RESV1
1046 #define NSC_CONG_ENABLE 0x0100
1047 #define NSC_CONG_TXREADY 0x0400
1048 #define ADVERTISE_FC_SUPPORTED 0x0400
1049 static int e100_phy_init(struct nic
*nic
)
1051 struct net_device
*netdev
= nic
->netdev
;
1053 u16 bmcr
, stat
, id_lo
, id_hi
, cong
;
1055 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1056 for(addr
= 0; addr
< 32; addr
++) {
1057 nic
->mii
.phy_id
= (addr
== 0) ? 1 : (addr
== 1) ? 0 : addr
;
1058 bmcr
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMCR
);
1059 stat
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMSR
);
1060 stat
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMSR
);
1061 if(!((bmcr
== 0xFFFF) || ((stat
== 0) && (bmcr
== 0))))
1064 DPRINTK(HW
, DEBUG
, "phy_addr = %d\n", nic
->mii
.phy_id
);
1068 /* Selected the phy and isolate the rest */
1069 for(addr
= 0; addr
< 32; addr
++) {
1070 if(addr
!= nic
->mii
.phy_id
) {
1071 mdio_write(netdev
, addr
, MII_BMCR
, BMCR_ISOLATE
);
1073 bmcr
= mdio_read(netdev
, addr
, MII_BMCR
);
1074 mdio_write(netdev
, addr
, MII_BMCR
,
1075 bmcr
& ~BMCR_ISOLATE
);
1080 id_lo
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_PHYSID1
);
1081 id_hi
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_PHYSID2
);
1082 nic
->phy
= (u32
)id_hi
<< 16 | (u32
)id_lo
;
1083 DPRINTK(HW
, DEBUG
, "phy ID = 0x%08X\n", nic
->phy
);
1085 /* Handle National tx phys */
1086 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF
1087 if((nic
->phy
& NCS_PHY_MODEL_MASK
) == phy_nsc_tx
) {
1088 /* Disable congestion control */
1089 cong
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_NSC_CONG
);
1090 cong
|= NSC_CONG_TXREADY
;
1091 cong
&= ~NSC_CONG_ENABLE
;
1092 mdio_write(netdev
, nic
->mii
.phy_id
, MII_NSC_CONG
, cong
);
1095 if((nic
->mac
>= mac_82550_D102
) || ((nic
->flags
& ich
) &&
1096 (mdio_read(netdev
, nic
->mii
.phy_id
, MII_TPISTATUS
) & 0x8000))) {
1097 /* enable/disable MDI/MDI-X auto-switching.
1098 MDI/MDI-X auto-switching is disabled for 82551ER/QM chips */
1099 if((nic
->mac
== mac_82551_E
) || (nic
->mac
== mac_82551_F
) ||
1100 (nic
->mac
== mac_82551_10
) || (nic
->mii
.force_media
) ||
1101 !(nic
->eeprom
[eeprom_cnfg_mdix
] & eeprom_mdix_enabled
))
1102 mdio_write(netdev
, nic
->mii
.phy_id
, MII_NCONFIG
, 0);
1104 mdio_write(netdev
, nic
->mii
.phy_id
, MII_NCONFIG
, NCONFIG_AUTO_SWITCH
);
1110 static int e100_hw_init(struct nic
*nic
)
1116 DPRINTK(HW
, ERR
, "e100_hw_init\n");
1117 if(!in_interrupt() && (err
= e100_self_test(nic
)))
1120 if((err
= e100_phy_init(nic
)))
1122 if((err
= e100_exec_cmd(nic
, cuc_load_base
, 0)))
1124 if((err
= e100_exec_cmd(nic
, ruc_load_base
, 0)))
1126 if((err
= e100_exec_cb(nic
, NULL
, e100_load_ucode
)))
1128 if((err
= e100_exec_cb(nic
, NULL
, e100_configure
)))
1130 if((err
= e100_exec_cb(nic
, NULL
, e100_setup_iaaddr
)))
1132 if((err
= e100_exec_cmd(nic
, cuc_dump_addr
,
1133 nic
->dma_addr
+ offsetof(struct mem
, stats
))))
1135 if((err
= e100_exec_cmd(nic
, cuc_dump_reset
, 0)))
1138 e100_disable_irq(nic
);
1143 static void e100_multi(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
1145 struct net_device
*netdev
= nic
->netdev
;
1146 struct dev_mc_list
*list
= netdev
->mc_list
;
1147 u16 i
, count
= min(netdev
->mc_count
, E100_MAX_MULTICAST_ADDRS
);
1149 cb
->command
= cpu_to_le16(cb_multi
);
1150 cb
->u
.multi
.count
= cpu_to_le16(count
* ETH_ALEN
);
1151 for(i
= 0; list
&& i
< count
; i
++, list
= list
->next
)
1152 memcpy(&cb
->u
.multi
.addr
[i
*ETH_ALEN
], &list
->dmi_addr
,
1156 static void e100_set_multicast_list(struct net_device
*netdev
)
1158 struct nic
*nic
= netdev_priv(netdev
);
1160 DPRINTK(HW
, DEBUG
, "mc_count=%d, flags=0x%04X\n",
1161 netdev
->mc_count
, netdev
->flags
);
1163 if(netdev
->flags
& IFF_PROMISC
)
1164 nic
->flags
|= promiscuous
;
1166 nic
->flags
&= ~promiscuous
;
1168 if(netdev
->flags
& IFF_ALLMULTI
||
1169 netdev
->mc_count
> E100_MAX_MULTICAST_ADDRS
)
1170 nic
->flags
|= multicast_all
;
1172 nic
->flags
&= ~multicast_all
;
1174 e100_exec_cb(nic
, NULL
, e100_configure
);
1175 e100_exec_cb(nic
, NULL
, e100_multi
);
1178 static void e100_update_stats(struct nic
*nic
)
1180 struct net_device_stats
*ns
= &nic
->net_stats
;
1181 struct stats
*s
= &nic
->mem
->stats
;
1182 u32
*complete
= (nic
->mac
< mac_82558_D101_A4
) ? &s
->fc_xmt_pause
:
1183 (nic
->mac
< mac_82559_D101M
) ? (u32
*)&s
->xmt_tco_frames
:
1186 /* Device's stats reporting may take several microseconds to
1187 * complete, so where always waiting for results of the
1188 * previous command. */
1190 if(*complete
== le32_to_cpu(cuc_dump_reset_complete
)) {
1192 nic
->tx_frames
= le32_to_cpu(s
->tx_good_frames
);
1193 nic
->tx_collisions
= le32_to_cpu(s
->tx_total_collisions
);
1194 ns
->tx_aborted_errors
+= le32_to_cpu(s
->tx_max_collisions
);
1195 ns
->tx_window_errors
+= le32_to_cpu(s
->tx_late_collisions
);
1196 ns
->tx_carrier_errors
+= le32_to_cpu(s
->tx_lost_crs
);
1197 ns
->tx_fifo_errors
+= le32_to_cpu(s
->tx_underruns
);
1198 ns
->collisions
+= nic
->tx_collisions
;
1199 ns
->tx_errors
+= le32_to_cpu(s
->tx_max_collisions
) +
1200 le32_to_cpu(s
->tx_lost_crs
);
1201 ns
->rx_dropped
+= le32_to_cpu(s
->rx_resource_errors
);
1202 ns
->rx_length_errors
+= le32_to_cpu(s
->rx_short_frame_errors
) +
1203 nic
->rx_over_length_errors
;
1204 ns
->rx_crc_errors
+= le32_to_cpu(s
->rx_crc_errors
);
1205 ns
->rx_frame_errors
+= le32_to_cpu(s
->rx_alignment_errors
);
1206 ns
->rx_over_errors
+= le32_to_cpu(s
->rx_overrun_errors
);
1207 ns
->rx_fifo_errors
+= le32_to_cpu(s
->rx_overrun_errors
);
1208 ns
->rx_errors
+= le32_to_cpu(s
->rx_crc_errors
) +
1209 le32_to_cpu(s
->rx_alignment_errors
) +
1210 le32_to_cpu(s
->rx_short_frame_errors
) +
1211 le32_to_cpu(s
->rx_cdt_errors
);
1212 nic
->tx_deferred
+= le32_to_cpu(s
->tx_deferred
);
1213 nic
->tx_single_collisions
+=
1214 le32_to_cpu(s
->tx_single_collisions
);
1215 nic
->tx_multiple_collisions
+=
1216 le32_to_cpu(s
->tx_multiple_collisions
);
1217 if(nic
->mac
>= mac_82558_D101_A4
) {
1218 nic
->tx_fc_pause
+= le32_to_cpu(s
->fc_xmt_pause
);
1219 nic
->rx_fc_pause
+= le32_to_cpu(s
->fc_rcv_pause
);
1220 nic
->rx_fc_unsupported
+=
1221 le32_to_cpu(s
->fc_rcv_unsupported
);
1222 if(nic
->mac
>= mac_82559_D101M
) {
1223 nic
->tx_tco_frames
+=
1224 le16_to_cpu(s
->xmt_tco_frames
);
1225 nic
->rx_tco_frames
+=
1226 le16_to_cpu(s
->rcv_tco_frames
);
1232 if(e100_exec_cmd(nic
, cuc_dump_reset
, 0))
1233 DPRINTK(TX_ERR
, DEBUG
, "exec cuc_dump_reset failed\n");
1236 static void e100_adjust_adaptive_ifs(struct nic
*nic
, int speed
, int duplex
)
1238 /* Adjust inter-frame-spacing (IFS) between two transmits if
1239 * we're getting collisions on a half-duplex connection. */
1241 if(duplex
== DUPLEX_HALF
) {
1242 u32 prev
= nic
->adaptive_ifs
;
1243 u32 min_frames
= (speed
== SPEED_100
) ? 1000 : 100;
1245 if((nic
->tx_frames
/ 32 < nic
->tx_collisions
) &&
1246 (nic
->tx_frames
> min_frames
)) {
1247 if(nic
->adaptive_ifs
< 60)
1248 nic
->adaptive_ifs
+= 5;
1249 } else if (nic
->tx_frames
< min_frames
) {
1250 if(nic
->adaptive_ifs
>= 5)
1251 nic
->adaptive_ifs
-= 5;
1253 if(nic
->adaptive_ifs
!= prev
)
1254 e100_exec_cb(nic
, NULL
, e100_configure
);
1258 static void e100_watchdog(unsigned long data
)
1260 struct nic
*nic
= (struct nic
*)data
;
1261 struct ethtool_cmd cmd
;
1263 DPRINTK(TIMER
, DEBUG
, "right now = %ld\n", jiffies
);
1265 /* mii library handles link maintenance tasks */
1267 mii_ethtool_gset(&nic
->mii
, &cmd
);
1269 if(mii_link_ok(&nic
->mii
) && !netif_carrier_ok(nic
->netdev
)) {
1270 DPRINTK(LINK
, INFO
, "link up, %sMbps, %s-duplex\n",
1271 cmd
.speed
== SPEED_100
? "100" : "10",
1272 cmd
.duplex
== DUPLEX_FULL
? "full" : "half");
1273 } else if(!mii_link_ok(&nic
->mii
) && netif_carrier_ok(nic
->netdev
)) {
1274 DPRINTK(LINK
, INFO
, "link down\n");
1277 mii_check_link(&nic
->mii
);
1279 /* Software generated interrupt to recover from (rare) Rx
1280 * allocation failure.
1281 * Unfortunately have to use a spinlock to not re-enable interrupts
1282 * accidentally, due to hardware that shares a register between the
1283 * interrupt mask bit and the SW Interrupt generation bit */
1284 spin_lock_irq(&nic
->cmd_lock
);
1285 writeb(readb(&nic
->csr
->scb
.cmd_hi
) | irq_sw_gen
,&nic
->csr
->scb
.cmd_hi
);
1286 spin_unlock_irq(&nic
->cmd_lock
);
1287 e100_write_flush(nic
);
1289 e100_update_stats(nic
);
1290 e100_adjust_adaptive_ifs(nic
, cmd
.speed
, cmd
.duplex
);
1292 if(nic
->mac
<= mac_82557_D100_C
)
1293 /* Issue a multicast command to workaround a 557 lock up */
1294 e100_set_multicast_list(nic
->netdev
);
1296 if(nic
->flags
& ich
&& cmd
.speed
==SPEED_10
&& cmd
.duplex
==DUPLEX_HALF
)
1297 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1298 nic
->flags
|= ich_10h_workaround
;
1300 nic
->flags
&= ~ich_10h_workaround
;
1302 mod_timer(&nic
->watchdog
, jiffies
+ E100_WATCHDOG_PERIOD
);
1305 static inline void e100_xmit_prepare(struct nic
*nic
, struct cb
*cb
,
1306 struct sk_buff
*skb
)
1308 cb
->command
= nic
->tx_command
;
1309 /* interrupt every 16 packets regardless of delay */
1310 if((nic
->cbs_avail
& ~15) == nic
->cbs_avail
) cb
->command
|= cb_i
;
1311 cb
->u
.tcb
.tbd_array
= cb
->dma_addr
+ offsetof(struct cb
, u
.tcb
.tbd
);
1312 cb
->u
.tcb
.tcb_byte_count
= 0;
1313 cb
->u
.tcb
.threshold
= nic
->tx_threshold
;
1314 cb
->u
.tcb
.tbd_count
= 1;
1315 cb
->u
.tcb
.tbd
.buf_addr
= cpu_to_le32(pci_map_single(nic
->pdev
,
1316 skb
->data
, skb
->len
, PCI_DMA_TODEVICE
));
1317 // check for mapping failure?
1318 cb
->u
.tcb
.tbd
.size
= cpu_to_le16(skb
->len
);
1321 static int e100_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
)
1323 struct nic
*nic
= netdev_priv(netdev
);
1326 if(nic
->flags
& ich_10h_workaround
) {
1327 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1328 Issue a NOP command followed by a 1us delay before
1329 issuing the Tx command. */
1330 if(e100_exec_cmd(nic
, cuc_nop
, 0))
1331 DPRINTK(TX_ERR
, DEBUG
, "exec cuc_nop failed\n");
1335 err
= e100_exec_cb(nic
, skb
, e100_xmit_prepare
);
1339 /* We queued the skb, but now we're out of space. */
1340 DPRINTK(TX_ERR
, DEBUG
, "No space for CB\n");
1341 netif_stop_queue(netdev
);
1344 /* This is a hard error - log it. */
1345 DPRINTK(TX_ERR
, DEBUG
, "Out of Tx resources, returning skb\n");
1346 netif_stop_queue(netdev
);
1350 netdev
->trans_start
= jiffies
;
1354 static inline int e100_tx_clean(struct nic
*nic
)
1359 spin_lock(&nic
->cb_lock
);
1361 DPRINTK(TX_DONE
, DEBUG
, "cb->status = 0x%04X\n",
1362 nic
->cb_to_clean
->status
);
1364 /* Clean CBs marked complete */
1365 for(cb
= nic
->cb_to_clean
;
1366 cb
->status
& cpu_to_le16(cb_complete
);
1367 cb
= nic
->cb_to_clean
= cb
->next
) {
1368 if(likely(cb
->skb
!= NULL
)) {
1369 nic
->net_stats
.tx_packets
++;
1370 nic
->net_stats
.tx_bytes
+= cb
->skb
->len
;
1372 pci_unmap_single(nic
->pdev
,
1373 le32_to_cpu(cb
->u
.tcb
.tbd
.buf_addr
),
1374 le16_to_cpu(cb
->u
.tcb
.tbd
.size
),
1376 dev_kfree_skb_any(cb
->skb
);
1384 spin_unlock(&nic
->cb_lock
);
1386 /* Recover from running out of Tx resources in xmit_frame */
1387 if(unlikely(tx_cleaned
&& netif_queue_stopped(nic
->netdev
)))
1388 netif_wake_queue(nic
->netdev
);
1393 static void e100_clean_cbs(struct nic
*nic
)
1396 while(nic
->cbs_avail
!= nic
->params
.cbs
.count
) {
1397 struct cb
*cb
= nic
->cb_to_clean
;
1399 pci_unmap_single(nic
->pdev
,
1400 le32_to_cpu(cb
->u
.tcb
.tbd
.buf_addr
),
1401 le16_to_cpu(cb
->u
.tcb
.tbd
.size
),
1403 dev_kfree_skb(cb
->skb
);
1405 nic
->cb_to_clean
= nic
->cb_to_clean
->next
;
1408 pci_free_consistent(nic
->pdev
,
1409 sizeof(struct cb
) * nic
->params
.cbs
.count
,
1410 nic
->cbs
, nic
->cbs_dma_addr
);
1414 nic
->cuc_cmd
= cuc_start
;
1415 nic
->cb_to_use
= nic
->cb_to_send
= nic
->cb_to_clean
=
1419 static int e100_alloc_cbs(struct nic
*nic
)
1422 unsigned int i
, count
= nic
->params
.cbs
.count
;
1424 nic
->cuc_cmd
= cuc_start
;
1425 nic
->cb_to_use
= nic
->cb_to_send
= nic
->cb_to_clean
= NULL
;
1428 nic
->cbs
= pci_alloc_consistent(nic
->pdev
,
1429 sizeof(struct cb
) * count
, &nic
->cbs_dma_addr
);
1433 for(cb
= nic
->cbs
, i
= 0; i
< count
; cb
++, i
++) {
1434 cb
->next
= (i
+ 1 < count
) ? cb
+ 1 : nic
->cbs
;
1435 cb
->prev
= (i
== 0) ? nic
->cbs
+ count
- 1 : cb
- 1;
1437 cb
->dma_addr
= nic
->cbs_dma_addr
+ i
* sizeof(struct cb
);
1438 cb
->link
= cpu_to_le32(nic
->cbs_dma_addr
+
1439 ((i
+1) % count
) * sizeof(struct cb
));
1443 nic
->cb_to_use
= nic
->cb_to_send
= nic
->cb_to_clean
= nic
->cbs
;
1444 nic
->cbs_avail
= count
;
1449 static inline void e100_start_receiver(struct nic
*nic
, struct rx
*rx
)
1451 if(!nic
->rxs
) return;
1452 if(RU_SUSPENDED
!= nic
->ru_running
) return;
1454 /* handle init time starts */
1455 if(!rx
) rx
= nic
->rxs
;
1457 /* (Re)start RU if suspended or idle and RFA is non-NULL */
1459 e100_exec_cmd(nic
, ruc_start
, rx
->dma_addr
);
1460 nic
->ru_running
= RU_RUNNING
;
1464 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
1465 static inline int e100_rx_alloc_skb(struct nic
*nic
, struct rx
*rx
)
1467 if(!(rx
->skb
= dev_alloc_skb(RFD_BUF_LEN
+ NET_IP_ALIGN
)))
1470 /* Align, init, and map the RFD. */
1471 rx
->skb
->dev
= nic
->netdev
;
1472 skb_reserve(rx
->skb
, NET_IP_ALIGN
);
1473 memcpy(rx
->skb
->data
, &nic
->blank_rfd
, sizeof(struct rfd
));
1474 rx
->dma_addr
= pci_map_single(nic
->pdev
, rx
->skb
->data
,
1475 RFD_BUF_LEN
, PCI_DMA_BIDIRECTIONAL
);
1477 if(pci_dma_mapping_error(rx
->dma_addr
)) {
1478 dev_kfree_skb_any(rx
->skb
);
1484 /* Link the RFD to end of RFA by linking previous RFD to
1485 * this one, and clearing EL bit of previous. */
1487 struct rfd
*prev_rfd
= (struct rfd
*)rx
->prev
->skb
->data
;
1488 put_unaligned(cpu_to_le32(rx
->dma_addr
),
1489 (u32
*)&prev_rfd
->link
);
1491 prev_rfd
->command
&= ~cpu_to_le16(cb_el
);
1492 pci_dma_sync_single_for_device(nic
->pdev
, rx
->prev
->dma_addr
,
1493 sizeof(struct rfd
), PCI_DMA_TODEVICE
);
1499 static inline int e100_rx_indicate(struct nic
*nic
, struct rx
*rx
,
1500 unsigned int *work_done
, unsigned int work_to_do
)
1502 struct sk_buff
*skb
= rx
->skb
;
1503 struct rfd
*rfd
= (struct rfd
*)skb
->data
;
1504 u16 rfd_status
, actual_size
;
1506 if(unlikely(work_done
&& *work_done
>= work_to_do
))
1509 /* Need to sync before taking a peek at cb_complete bit */
1510 pci_dma_sync_single_for_cpu(nic
->pdev
, rx
->dma_addr
,
1511 sizeof(struct rfd
), PCI_DMA_FROMDEVICE
);
1512 rfd_status
= le16_to_cpu(rfd
->status
);
1514 DPRINTK(RX_STATUS
, DEBUG
, "status=0x%04X\n", rfd_status
);
1516 /* If data isn't ready, nothing to indicate */
1517 if(unlikely(!(rfd_status
& cb_complete
)))
1520 /* Get actual data size */
1521 actual_size
= le16_to_cpu(rfd
->actual_size
) & 0x3FFF;
1522 if(unlikely(actual_size
> RFD_BUF_LEN
- sizeof(struct rfd
)))
1523 actual_size
= RFD_BUF_LEN
- sizeof(struct rfd
);
1526 pci_unmap_single(nic
->pdev
, rx
->dma_addr
,
1527 RFD_BUF_LEN
, PCI_DMA_FROMDEVICE
);
1529 /* this allows for a fast restart without re-enabling interrupts */
1530 if(le16_to_cpu(rfd
->command
) & cb_el
)
1531 nic
->ru_running
= RU_SUSPENDED
;
1533 /* Pull off the RFD and put the actual data (minus eth hdr) */
1534 skb_reserve(skb
, sizeof(struct rfd
));
1535 skb_put(skb
, actual_size
);
1536 skb
->protocol
= eth_type_trans(skb
, nic
->netdev
);
1538 if(unlikely(!(rfd_status
& cb_ok
))) {
1539 /* Don't indicate if hardware indicates errors */
1540 nic
->net_stats
.rx_dropped
++;
1541 dev_kfree_skb_any(skb
);
1542 } else if(actual_size
> nic
->netdev
->mtu
+ VLAN_ETH_HLEN
) {
1543 /* Don't indicate oversized frames */
1544 nic
->rx_over_length_errors
++;
1545 nic
->net_stats
.rx_dropped
++;
1546 dev_kfree_skb_any(skb
);
1548 nic
->net_stats
.rx_packets
++;
1549 nic
->net_stats
.rx_bytes
+= actual_size
;
1550 nic
->netdev
->last_rx
= jiffies
;
1551 netif_receive_skb(skb
);
1561 static inline void e100_rx_clean(struct nic
*nic
, unsigned int *work_done
,
1562 unsigned int work_to_do
)
1565 int restart_required
= 0;
1566 struct rx
*rx_to_start
= NULL
;
1568 /* are we already rnr? then pay attention!!! this ensures that
1569 * the state machine progression never allows a start with a
1570 * partially cleaned list, avoiding a race between hardware
1571 * and rx_to_clean when in NAPI mode */
1572 if(RU_SUSPENDED
== nic
->ru_running
)
1573 restart_required
= 1;
1575 /* Indicate newly arrived packets */
1576 for(rx
= nic
->rx_to_clean
; rx
->skb
; rx
= nic
->rx_to_clean
= rx
->next
) {
1577 int err
= e100_rx_indicate(nic
, rx
, work_done
, work_to_do
);
1578 if(-EAGAIN
== err
) {
1579 /* hit quota so have more work to do, restart once
1580 * cleanup is complete */
1581 restart_required
= 0;
1583 } else if(-ENODATA
== err
)
1584 break; /* No more to clean */
1587 /* save our starting point as the place we'll restart the receiver */
1588 if(restart_required
)
1589 rx_to_start
= nic
->rx_to_clean
;
1591 /* Alloc new skbs to refill list */
1592 for(rx
= nic
->rx_to_use
; !rx
->skb
; rx
= nic
->rx_to_use
= rx
->next
) {
1593 if(unlikely(e100_rx_alloc_skb(nic
, rx
)))
1594 break; /* Better luck next time (see watchdog) */
1597 if(restart_required
) {
1599 writeb(stat_ack_rnr
, &nic
->csr
->scb
.stat_ack
);
1600 e100_start_receiver(nic
, rx_to_start
);
1606 static void e100_rx_clean_list(struct nic
*nic
)
1609 unsigned int i
, count
= nic
->params
.rfds
.count
;
1611 nic
->ru_running
= RU_UNINITIALIZED
;
1614 for(rx
= nic
->rxs
, i
= 0; i
< count
; rx
++, i
++) {
1616 pci_unmap_single(nic
->pdev
, rx
->dma_addr
,
1617 RFD_BUF_LEN
, PCI_DMA_FROMDEVICE
);
1618 dev_kfree_skb(rx
->skb
);
1625 nic
->rx_to_use
= nic
->rx_to_clean
= NULL
;
1628 static int e100_rx_alloc_list(struct nic
*nic
)
1631 unsigned int i
, count
= nic
->params
.rfds
.count
;
1633 nic
->rx_to_use
= nic
->rx_to_clean
= NULL
;
1634 nic
->ru_running
= RU_UNINITIALIZED
;
1636 if(!(nic
->rxs
= kmalloc(sizeof(struct rx
) * count
, GFP_ATOMIC
)))
1638 memset(nic
->rxs
, 0, sizeof(struct rx
) * count
);
1640 for(rx
= nic
->rxs
, i
= 0; i
< count
; rx
++, i
++) {
1641 rx
->next
= (i
+ 1 < count
) ? rx
+ 1 : nic
->rxs
;
1642 rx
->prev
= (i
== 0) ? nic
->rxs
+ count
- 1 : rx
- 1;
1643 if(e100_rx_alloc_skb(nic
, rx
)) {
1644 e100_rx_clean_list(nic
);
1649 nic
->rx_to_use
= nic
->rx_to_clean
= nic
->rxs
;
1650 nic
->ru_running
= RU_SUSPENDED
;
1655 static irqreturn_t
e100_intr(int irq
, void *dev_id
, struct pt_regs
*regs
)
1657 struct net_device
*netdev
= dev_id
;
1658 struct nic
*nic
= netdev_priv(netdev
);
1659 u8 stat_ack
= readb(&nic
->csr
->scb
.stat_ack
);
1661 DPRINTK(INTR
, DEBUG
, "stat_ack = 0x%02X\n", stat_ack
);
1663 if(stat_ack
== stat_ack_not_ours
|| /* Not our interrupt */
1664 stat_ack
== stat_ack_not_present
) /* Hardware is ejected */
1667 /* Ack interrupt(s) */
1668 writeb(stat_ack
, &nic
->csr
->scb
.stat_ack
);
1670 /* We hit Receive No Resource (RNR); restart RU after cleaning */
1671 if(stat_ack
& stat_ack_rnr
)
1672 nic
->ru_running
= RU_SUSPENDED
;
1674 if(likely(netif_rx_schedule_prep(netdev
))) {
1675 e100_disable_irq(nic
);
1676 __netif_rx_schedule(netdev
);
1682 static int e100_poll(struct net_device
*netdev
, int *budget
)
1684 struct nic
*nic
= netdev_priv(netdev
);
1685 unsigned int work_to_do
= min(netdev
->quota
, *budget
);
1686 unsigned int work_done
= 0;
1689 e100_rx_clean(nic
, &work_done
, work_to_do
);
1690 tx_cleaned
= e100_tx_clean(nic
);
1692 /* If no Rx and Tx cleanup work was done, exit polling mode. */
1693 if((!tx_cleaned
&& (work_done
== 0)) || !netif_running(netdev
)) {
1694 netif_rx_complete(netdev
);
1695 e100_enable_irq(nic
);
1699 *budget
-= work_done
;
1700 netdev
->quota
-= work_done
;
1705 #ifdef CONFIG_NET_POLL_CONTROLLER
1706 static void e100_netpoll(struct net_device
*netdev
)
1708 struct nic
*nic
= netdev_priv(netdev
);
1709 e100_disable_irq(nic
);
1710 e100_intr(nic
->pdev
->irq
, netdev
, NULL
);
1712 e100_enable_irq(nic
);
1716 static struct net_device_stats
*e100_get_stats(struct net_device
*netdev
)
1718 struct nic
*nic
= netdev_priv(netdev
);
1719 return &nic
->net_stats
;
1722 static int e100_set_mac_address(struct net_device
*netdev
, void *p
)
1724 struct nic
*nic
= netdev_priv(netdev
);
1725 struct sockaddr
*addr
= p
;
1727 if (!is_valid_ether_addr(addr
->sa_data
))
1728 return -EADDRNOTAVAIL
;
1730 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
1731 e100_exec_cb(nic
, NULL
, e100_setup_iaaddr
);
1736 static int e100_change_mtu(struct net_device
*netdev
, int new_mtu
)
1738 if(new_mtu
< ETH_ZLEN
|| new_mtu
> ETH_DATA_LEN
)
1740 netdev
->mtu
= new_mtu
;
1745 static int e100_asf(struct nic
*nic
)
1747 /* ASF can be enabled from eeprom */
1748 return((nic
->pdev
->device
>= 0x1050) && (nic
->pdev
->device
<= 0x1057) &&
1749 (nic
->eeprom
[eeprom_config_asf
] & eeprom_asf
) &&
1750 !(nic
->eeprom
[eeprom_config_asf
] & eeprom_gcl
) &&
1751 ((nic
->eeprom
[eeprom_smbus_addr
] & 0xFF) != 0xFE));
1755 static int e100_up(struct nic
*nic
)
1759 if((err
= e100_rx_alloc_list(nic
)))
1761 if((err
= e100_alloc_cbs(nic
)))
1762 goto err_rx_clean_list
;
1763 if((err
= e100_hw_init(nic
)))
1765 e100_set_multicast_list(nic
->netdev
);
1766 e100_start_receiver(nic
, 0);
1767 mod_timer(&nic
->watchdog
, jiffies
);
1768 if((err
= request_irq(nic
->pdev
->irq
, e100_intr
, SA_SHIRQ
,
1769 nic
->netdev
->name
, nic
->netdev
)))
1771 netif_wake_queue(nic
->netdev
);
1772 netif_poll_enable(nic
->netdev
);
1773 /* enable ints _after_ enabling poll, preventing a race between
1774 * disable ints+schedule */
1775 e100_enable_irq(nic
);
1779 del_timer_sync(&nic
->watchdog
);
1781 e100_clean_cbs(nic
);
1783 e100_rx_clean_list(nic
);
1787 static void e100_down(struct nic
*nic
)
1789 /* wait here for poll to complete */
1790 netif_poll_disable(nic
->netdev
);
1791 netif_stop_queue(nic
->netdev
);
1793 free_irq(nic
->pdev
->irq
, nic
->netdev
);
1794 del_timer_sync(&nic
->watchdog
);
1795 netif_carrier_off(nic
->netdev
);
1796 e100_clean_cbs(nic
);
1797 e100_rx_clean_list(nic
);
1800 static void e100_tx_timeout(struct net_device
*netdev
)
1802 struct nic
*nic
= netdev_priv(netdev
);
1804 /* Reset outside of interrupt context, to avoid request_irq
1805 * in interrupt context */
1806 schedule_work(&nic
->tx_timeout_task
);
1809 static void e100_tx_timeout_task(struct net_device
*netdev
)
1811 struct nic
*nic
= netdev_priv(netdev
);
1813 DPRINTK(TX_ERR
, DEBUG
, "scb.status=0x%02X\n",
1814 readb(&nic
->csr
->scb
.status
));
1815 e100_down(netdev_priv(netdev
));
1816 e100_up(netdev_priv(netdev
));
1819 static int e100_loopback_test(struct nic
*nic
, enum loopback loopback_mode
)
1822 struct sk_buff
*skb
;
1824 /* Use driver resources to perform internal MAC or PHY
1825 * loopback test. A single packet is prepared and transmitted
1826 * in loopback mode, and the test passes if the received
1827 * packet compares byte-for-byte to the transmitted packet. */
1829 if((err
= e100_rx_alloc_list(nic
)))
1831 if((err
= e100_alloc_cbs(nic
)))
1834 /* ICH PHY loopback is broken so do MAC loopback instead */
1835 if(nic
->flags
& ich
&& loopback_mode
== lb_phy
)
1836 loopback_mode
= lb_mac
;
1838 nic
->loopback
= loopback_mode
;
1839 if((err
= e100_hw_init(nic
)))
1840 goto err_loopback_none
;
1842 if(loopback_mode
== lb_phy
)
1843 mdio_write(nic
->netdev
, nic
->mii
.phy_id
, MII_BMCR
,
1846 e100_start_receiver(nic
, 0);
1848 if(!(skb
= dev_alloc_skb(ETH_DATA_LEN
))) {
1850 goto err_loopback_none
;
1852 skb_put(skb
, ETH_DATA_LEN
);
1853 memset(skb
->data
, 0xFF, ETH_DATA_LEN
);
1854 e100_xmit_frame(skb
, nic
->netdev
);
1858 if(memcmp(nic
->rx_to_clean
->skb
->data
+ sizeof(struct rfd
),
1859 skb
->data
, ETH_DATA_LEN
))
1863 mdio_write(nic
->netdev
, nic
->mii
.phy_id
, MII_BMCR
, 0);
1864 nic
->loopback
= lb_none
;
1866 e100_clean_cbs(nic
);
1868 e100_rx_clean_list(nic
);
1872 #define MII_LED_CONTROL 0x1B
1873 static void e100_blink_led(unsigned long data
)
1875 struct nic
*nic
= (struct nic
*)data
;
1883 nic
->leds
= (nic
->leds
& led_on
) ? led_off
:
1884 (nic
->mac
< mac_82559_D101M
) ? led_on_557
: led_on_559
;
1885 mdio_write(nic
->netdev
, nic
->mii
.phy_id
, MII_LED_CONTROL
, nic
->leds
);
1886 mod_timer(&nic
->blink_timer
, jiffies
+ HZ
/ 4);
1889 static int e100_get_settings(struct net_device
*netdev
, struct ethtool_cmd
*cmd
)
1891 struct nic
*nic
= netdev_priv(netdev
);
1892 return mii_ethtool_gset(&nic
->mii
, cmd
);
1895 static int e100_set_settings(struct net_device
*netdev
, struct ethtool_cmd
*cmd
)
1897 struct nic
*nic
= netdev_priv(netdev
);
1900 mdio_write(netdev
, nic
->mii
.phy_id
, MII_BMCR
, BMCR_RESET
);
1901 err
= mii_ethtool_sset(&nic
->mii
, cmd
);
1902 e100_exec_cb(nic
, NULL
, e100_configure
);
1907 static void e100_get_drvinfo(struct net_device
*netdev
,
1908 struct ethtool_drvinfo
*info
)
1910 struct nic
*nic
= netdev_priv(netdev
);
1911 strcpy(info
->driver
, DRV_NAME
);
1912 strcpy(info
->version
, DRV_VERSION
);
1913 strcpy(info
->fw_version
, "N/A");
1914 strcpy(info
->bus_info
, pci_name(nic
->pdev
));
1917 static int e100_get_regs_len(struct net_device
*netdev
)
1919 struct nic
*nic
= netdev_priv(netdev
);
1920 #define E100_PHY_REGS 0x1C
1921 #define E100_REGS_LEN 1 + E100_PHY_REGS + \
1922 sizeof(nic->mem->dump_buf) / sizeof(u32)
1923 return E100_REGS_LEN
* sizeof(u32
);
1926 static void e100_get_regs(struct net_device
*netdev
,
1927 struct ethtool_regs
*regs
, void *p
)
1929 struct nic
*nic
= netdev_priv(netdev
);
1933 regs
->version
= (1 << 24) | nic
->rev_id
;
1934 buff
[0] = readb(&nic
->csr
->scb
.cmd_hi
) << 24 |
1935 readb(&nic
->csr
->scb
.cmd_lo
) << 16 |
1936 readw(&nic
->csr
->scb
.status
);
1937 for(i
= E100_PHY_REGS
; i
>= 0; i
--)
1938 buff
[1 + E100_PHY_REGS
- i
] =
1939 mdio_read(netdev
, nic
->mii
.phy_id
, i
);
1940 memset(nic
->mem
->dump_buf
, 0, sizeof(nic
->mem
->dump_buf
));
1941 e100_exec_cb(nic
, NULL
, e100_dump
);
1943 memcpy(&buff
[2 + E100_PHY_REGS
], nic
->mem
->dump_buf
,
1944 sizeof(nic
->mem
->dump_buf
));
1947 static void e100_get_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
1949 struct nic
*nic
= netdev_priv(netdev
);
1950 wol
->supported
= (nic
->mac
>= mac_82558_D101_A4
) ? WAKE_MAGIC
: 0;
1951 wol
->wolopts
= (nic
->flags
& wol_magic
) ? WAKE_MAGIC
: 0;
1954 static int e100_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
1956 struct nic
*nic
= netdev_priv(netdev
);
1958 if(wol
->wolopts
!= WAKE_MAGIC
&& wol
->wolopts
!= 0)
1962 nic
->flags
|= wol_magic
;
1964 nic
->flags
&= ~wol_magic
;
1966 e100_exec_cb(nic
, NULL
, e100_configure
);
1971 static u32
e100_get_msglevel(struct net_device
*netdev
)
1973 struct nic
*nic
= netdev_priv(netdev
);
1974 return nic
->msg_enable
;
1977 static void e100_set_msglevel(struct net_device
*netdev
, u32 value
)
1979 struct nic
*nic
= netdev_priv(netdev
);
1980 nic
->msg_enable
= value
;
1983 static int e100_nway_reset(struct net_device
*netdev
)
1985 struct nic
*nic
= netdev_priv(netdev
);
1986 return mii_nway_restart(&nic
->mii
);
1989 static u32
e100_get_link(struct net_device
*netdev
)
1991 struct nic
*nic
= netdev_priv(netdev
);
1992 return mii_link_ok(&nic
->mii
);
1995 static int e100_get_eeprom_len(struct net_device
*netdev
)
1997 struct nic
*nic
= netdev_priv(netdev
);
1998 return nic
->eeprom_wc
<< 1;
2001 #define E100_EEPROM_MAGIC 0x1234
2002 static int e100_get_eeprom(struct net_device
*netdev
,
2003 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
2005 struct nic
*nic
= netdev_priv(netdev
);
2007 eeprom
->magic
= E100_EEPROM_MAGIC
;
2008 memcpy(bytes
, &((u8
*)nic
->eeprom
)[eeprom
->offset
], eeprom
->len
);
2013 static int e100_set_eeprom(struct net_device
*netdev
,
2014 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
2016 struct nic
*nic
= netdev_priv(netdev
);
2018 if(eeprom
->magic
!= E100_EEPROM_MAGIC
)
2021 memcpy(&((u8
*)nic
->eeprom
)[eeprom
->offset
], bytes
, eeprom
->len
);
2023 return e100_eeprom_save(nic
, eeprom
->offset
>> 1,
2024 (eeprom
->len
>> 1) + 1);
2027 static void e100_get_ringparam(struct net_device
*netdev
,
2028 struct ethtool_ringparam
*ring
)
2030 struct nic
*nic
= netdev_priv(netdev
);
2031 struct param_range
*rfds
= &nic
->params
.rfds
;
2032 struct param_range
*cbs
= &nic
->params
.cbs
;
2034 ring
->rx_max_pending
= rfds
->max
;
2035 ring
->tx_max_pending
= cbs
->max
;
2036 ring
->rx_mini_max_pending
= 0;
2037 ring
->rx_jumbo_max_pending
= 0;
2038 ring
->rx_pending
= rfds
->count
;
2039 ring
->tx_pending
= cbs
->count
;
2040 ring
->rx_mini_pending
= 0;
2041 ring
->rx_jumbo_pending
= 0;
2044 static int e100_set_ringparam(struct net_device
*netdev
,
2045 struct ethtool_ringparam
*ring
)
2047 struct nic
*nic
= netdev_priv(netdev
);
2048 struct param_range
*rfds
= &nic
->params
.rfds
;
2049 struct param_range
*cbs
= &nic
->params
.cbs
;
2051 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
2054 if(netif_running(netdev
))
2056 rfds
->count
= max(ring
->rx_pending
, rfds
->min
);
2057 rfds
->count
= min(rfds
->count
, rfds
->max
);
2058 cbs
->count
= max(ring
->tx_pending
, cbs
->min
);
2059 cbs
->count
= min(cbs
->count
, cbs
->max
);
2060 DPRINTK(DRV
, INFO
, "Ring Param settings: rx: %d, tx %d\n",
2061 rfds
->count
, cbs
->count
);
2062 if(netif_running(netdev
))
2068 static const char e100_gstrings_test
[][ETH_GSTRING_LEN
] = {
2069 "Link test (on/offline)",
2070 "Eeprom test (on/offline)",
2071 "Self test (offline)",
2072 "Mac loopback (offline)",
2073 "Phy loopback (offline)",
2075 #define E100_TEST_LEN sizeof(e100_gstrings_test) / ETH_GSTRING_LEN
2077 static int e100_diag_test_count(struct net_device
*netdev
)
2079 return E100_TEST_LEN
;
2082 static void e100_diag_test(struct net_device
*netdev
,
2083 struct ethtool_test
*test
, u64
*data
)
2085 struct ethtool_cmd cmd
;
2086 struct nic
*nic
= netdev_priv(netdev
);
2089 memset(data
, 0, E100_TEST_LEN
* sizeof(u64
));
2090 data
[0] = !mii_link_ok(&nic
->mii
);
2091 data
[1] = e100_eeprom_load(nic
);
2092 if(test
->flags
& ETH_TEST_FL_OFFLINE
) {
2094 /* save speed, duplex & autoneg settings */
2095 err
= mii_ethtool_gset(&nic
->mii
, &cmd
);
2097 if(netif_running(netdev
))
2099 data
[2] = e100_self_test(nic
);
2100 data
[3] = e100_loopback_test(nic
, lb_mac
);
2101 data
[4] = e100_loopback_test(nic
, lb_phy
);
2103 /* restore speed, duplex & autoneg settings */
2104 err
= mii_ethtool_sset(&nic
->mii
, &cmd
);
2106 if(netif_running(netdev
))
2109 for(i
= 0; i
< E100_TEST_LEN
; i
++)
2110 test
->flags
|= data
[i
] ? ETH_TEST_FL_FAILED
: 0;
2113 static int e100_phys_id(struct net_device
*netdev
, u32 data
)
2115 struct nic
*nic
= netdev_priv(netdev
);
2117 if(!data
|| data
> (u32
)(MAX_SCHEDULE_TIMEOUT
/ HZ
))
2118 data
= (u32
)(MAX_SCHEDULE_TIMEOUT
/ HZ
);
2119 mod_timer(&nic
->blink_timer
, jiffies
);
2120 msleep_interruptible(data
* 1000);
2121 del_timer_sync(&nic
->blink_timer
);
2122 mdio_write(netdev
, nic
->mii
.phy_id
, MII_LED_CONTROL
, 0);
2127 static const char e100_gstrings_stats
[][ETH_GSTRING_LEN
] = {
2128 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2129 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2130 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2131 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2132 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2133 "tx_heartbeat_errors", "tx_window_errors",
2134 /* device-specific stats */
2135 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2136 "tx_flow_control_pause", "rx_flow_control_pause",
2137 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2139 #define E100_NET_STATS_LEN 21
2140 #define E100_STATS_LEN sizeof(e100_gstrings_stats) / ETH_GSTRING_LEN
2142 static int e100_get_stats_count(struct net_device
*netdev
)
2144 return E100_STATS_LEN
;
2147 static void e100_get_ethtool_stats(struct net_device
*netdev
,
2148 struct ethtool_stats
*stats
, u64
*data
)
2150 struct nic
*nic
= netdev_priv(netdev
);
2153 for(i
= 0; i
< E100_NET_STATS_LEN
; i
++)
2154 data
[i
] = ((unsigned long *)&nic
->net_stats
)[i
];
2156 data
[i
++] = nic
->tx_deferred
;
2157 data
[i
++] = nic
->tx_single_collisions
;
2158 data
[i
++] = nic
->tx_multiple_collisions
;
2159 data
[i
++] = nic
->tx_fc_pause
;
2160 data
[i
++] = nic
->rx_fc_pause
;
2161 data
[i
++] = nic
->rx_fc_unsupported
;
2162 data
[i
++] = nic
->tx_tco_frames
;
2163 data
[i
++] = nic
->rx_tco_frames
;
2166 static void e100_get_strings(struct net_device
*netdev
, u32 stringset
, u8
*data
)
2170 memcpy(data
, *e100_gstrings_test
, sizeof(e100_gstrings_test
));
2173 memcpy(data
, *e100_gstrings_stats
, sizeof(e100_gstrings_stats
));
2178 static struct ethtool_ops e100_ethtool_ops
= {
2179 .get_settings
= e100_get_settings
,
2180 .set_settings
= e100_set_settings
,
2181 .get_drvinfo
= e100_get_drvinfo
,
2182 .get_regs_len
= e100_get_regs_len
,
2183 .get_regs
= e100_get_regs
,
2184 .get_wol
= e100_get_wol
,
2185 .set_wol
= e100_set_wol
,
2186 .get_msglevel
= e100_get_msglevel
,
2187 .set_msglevel
= e100_set_msglevel
,
2188 .nway_reset
= e100_nway_reset
,
2189 .get_link
= e100_get_link
,
2190 .get_eeprom_len
= e100_get_eeprom_len
,
2191 .get_eeprom
= e100_get_eeprom
,
2192 .set_eeprom
= e100_set_eeprom
,
2193 .get_ringparam
= e100_get_ringparam
,
2194 .set_ringparam
= e100_set_ringparam
,
2195 .self_test_count
= e100_diag_test_count
,
2196 .self_test
= e100_diag_test
,
2197 .get_strings
= e100_get_strings
,
2198 .phys_id
= e100_phys_id
,
2199 .get_stats_count
= e100_get_stats_count
,
2200 .get_ethtool_stats
= e100_get_ethtool_stats
,
2203 static int e100_do_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
2205 struct nic
*nic
= netdev_priv(netdev
);
2207 return generic_mii_ioctl(&nic
->mii
, if_mii(ifr
), cmd
, NULL
);
2210 static int e100_alloc(struct nic
*nic
)
2212 nic
->mem
= pci_alloc_consistent(nic
->pdev
, sizeof(struct mem
),
2214 return nic
->mem
? 0 : -ENOMEM
;
2217 static void e100_free(struct nic
*nic
)
2220 pci_free_consistent(nic
->pdev
, sizeof(struct mem
),
2221 nic
->mem
, nic
->dma_addr
);
2226 static int e100_open(struct net_device
*netdev
)
2228 struct nic
*nic
= netdev_priv(netdev
);
2231 netif_carrier_off(netdev
);
2232 if((err
= e100_up(nic
)))
2233 DPRINTK(IFUP
, ERR
, "Cannot open interface, aborting.\n");
2237 static int e100_close(struct net_device
*netdev
)
2239 e100_down(netdev_priv(netdev
));
2243 static int __devinit
e100_probe(struct pci_dev
*pdev
,
2244 const struct pci_device_id
*ent
)
2246 struct net_device
*netdev
;
2250 if(!(netdev
= alloc_etherdev(sizeof(struct nic
)))) {
2251 if(((1 << debug
) - 1) & NETIF_MSG_PROBE
)
2252 printk(KERN_ERR PFX
"Etherdev alloc failed, abort.\n");
2256 netdev
->open
= e100_open
;
2257 netdev
->stop
= e100_close
;
2258 netdev
->hard_start_xmit
= e100_xmit_frame
;
2259 netdev
->get_stats
= e100_get_stats
;
2260 netdev
->set_multicast_list
= e100_set_multicast_list
;
2261 netdev
->set_mac_address
= e100_set_mac_address
;
2262 netdev
->change_mtu
= e100_change_mtu
;
2263 netdev
->do_ioctl
= e100_do_ioctl
;
2264 SET_ETHTOOL_OPS(netdev
, &e100_ethtool_ops
);
2265 netdev
->tx_timeout
= e100_tx_timeout
;
2266 netdev
->watchdog_timeo
= E100_WATCHDOG_PERIOD
;
2267 netdev
->poll
= e100_poll
;
2268 netdev
->weight
= E100_NAPI_WEIGHT
;
2269 #ifdef CONFIG_NET_POLL_CONTROLLER
2270 netdev
->poll_controller
= e100_netpoll
;
2272 strcpy(netdev
->name
, pci_name(pdev
));
2274 nic
= netdev_priv(netdev
);
2275 nic
->netdev
= netdev
;
2277 nic
->msg_enable
= (1 << debug
) - 1;
2278 pci_set_drvdata(pdev
, netdev
);
2280 if((err
= pci_enable_device(pdev
))) {
2281 DPRINTK(PROBE
, ERR
, "Cannot enable PCI device, aborting.\n");
2282 goto err_out_free_dev
;
2285 if(!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
2286 DPRINTK(PROBE
, ERR
, "Cannot find proper PCI device "
2287 "base address, aborting.\n");
2289 goto err_out_disable_pdev
;
2292 if((err
= pci_request_regions(pdev
, DRV_NAME
))) {
2293 DPRINTK(PROBE
, ERR
, "Cannot obtain PCI resources, aborting.\n");
2294 goto err_out_disable_pdev
;
2297 if((err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
))) {
2298 DPRINTK(PROBE
, ERR
, "No usable DMA configuration, aborting.\n");
2299 goto err_out_free_res
;
2302 SET_MODULE_OWNER(netdev
);
2303 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
2305 nic
->csr
= ioremap(pci_resource_start(pdev
, 0), sizeof(struct csr
));
2307 DPRINTK(PROBE
, ERR
, "Cannot map device registers, aborting.\n");
2309 goto err_out_free_res
;
2312 if(ent
->driver_data
)
2317 e100_get_defaults(nic
);
2319 /* locks must be initialized before calling hw_reset */
2320 spin_lock_init(&nic
->cb_lock
);
2321 spin_lock_init(&nic
->cmd_lock
);
2323 /* Reset the device before pci_set_master() in case device is in some
2324 * funky state and has an interrupt pending - hint: we don't have the
2325 * interrupt handler registered yet. */
2328 pci_set_master(pdev
);
2330 init_timer(&nic
->watchdog
);
2331 nic
->watchdog
.function
= e100_watchdog
;
2332 nic
->watchdog
.data
= (unsigned long)nic
;
2333 init_timer(&nic
->blink_timer
);
2334 nic
->blink_timer
.function
= e100_blink_led
;
2335 nic
->blink_timer
.data
= (unsigned long)nic
;
2337 INIT_WORK(&nic
->tx_timeout_task
,
2338 (void (*)(void *))e100_tx_timeout_task
, netdev
);
2340 if((err
= e100_alloc(nic
))) {
2341 DPRINTK(PROBE
, ERR
, "Cannot alloc driver memory, aborting.\n");
2342 goto err_out_iounmap
;
2345 if((err
= e100_eeprom_load(nic
)))
2350 memcpy(netdev
->dev_addr
, nic
->eeprom
, ETH_ALEN
);
2351 if(!is_valid_ether_addr(netdev
->dev_addr
)) {
2352 DPRINTK(PROBE
, ERR
, "Invalid MAC address from "
2353 "EEPROM, aborting.\n");
2358 /* Wol magic packet can be enabled from eeprom */
2359 if((nic
->mac
>= mac_82558_D101_A4
) &&
2360 (nic
->eeprom
[eeprom_id
] & eeprom_id_wol
))
2361 nic
->flags
|= wol_magic
;
2363 /* ack any pending wake events, disable PME */
2364 pci_enable_wake(pdev
, 0, 0);
2366 strcpy(netdev
->name
, "eth%d");
2367 if((err
= register_netdev(netdev
))) {
2368 DPRINTK(PROBE
, ERR
, "Cannot register net device, aborting.\n");
2372 DPRINTK(PROBE
, INFO
, "addr 0x%lx, irq %d, "
2373 "MAC addr %02X:%02X:%02X:%02X:%02X:%02X\n",
2374 pci_resource_start(pdev
, 0), pdev
->irq
,
2375 netdev
->dev_addr
[0], netdev
->dev_addr
[1], netdev
->dev_addr
[2],
2376 netdev
->dev_addr
[3], netdev
->dev_addr
[4], netdev
->dev_addr
[5]);
2385 pci_release_regions(pdev
);
2386 err_out_disable_pdev
:
2387 pci_disable_device(pdev
);
2389 pci_set_drvdata(pdev
, NULL
);
2390 free_netdev(netdev
);
2394 static void __devexit
e100_remove(struct pci_dev
*pdev
)
2396 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2399 struct nic
*nic
= netdev_priv(netdev
);
2400 unregister_netdev(netdev
);
2403 free_netdev(netdev
);
2404 pci_release_regions(pdev
);
2405 pci_disable_device(pdev
);
2406 pci_set_drvdata(pdev
, NULL
);
2411 static int e100_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2413 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2414 struct nic
*nic
= netdev_priv(netdev
);
2416 if(netif_running(netdev
))
2419 netif_device_detach(netdev
);
2421 pci_save_state(pdev
);
2422 pci_enable_wake(pdev
, pci_choose_state(pdev
, state
), nic
->flags
& (wol_magic
| e100_asf(nic
)));
2423 pci_disable_device(pdev
);
2424 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
2429 static int e100_resume(struct pci_dev
*pdev
)
2431 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2432 struct nic
*nic
= netdev_priv(netdev
);
2434 pci_set_power_state(pdev
, PCI_D0
);
2435 pci_restore_state(pdev
);
2436 /* ack any pending wake events, disable PME */
2437 pci_enable_wake(pdev
, 0, 0);
2438 if(e100_hw_init(nic
))
2439 DPRINTK(HW
, ERR
, "e100_hw_init failed\n");
2441 netif_device_attach(netdev
);
2442 if(netif_running(netdev
))
2450 static void e100_shutdown(struct pci_dev
*pdev
)
2452 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2453 struct nic
*nic
= netdev_priv(netdev
);
2456 pci_enable_wake(pdev
, 0, nic
->flags
& (wol_magic
| e100_asf(nic
)));
2458 pci_enable_wake(pdev
, 0, nic
->flags
& (wol_magic
));
2463 static struct pci_driver e100_driver
= {
2465 .id_table
= e100_id_table
,
2466 .probe
= e100_probe
,
2467 .remove
= __devexit_p(e100_remove
),
2469 .suspend
= e100_suspend
,
2470 .resume
= e100_resume
,
2472 .shutdown
= e100_shutdown
,
2475 static int __init
e100_init_module(void)
2477 if(((1 << debug
) - 1) & NETIF_MSG_DRV
) {
2478 printk(KERN_INFO PFX
"%s, %s\n", DRV_DESCRIPTION
, DRV_VERSION
);
2479 printk(KERN_INFO PFX
"%s\n", DRV_COPYRIGHT
);
2481 return pci_module_init(&e100_driver
);
2484 static void __exit
e100_cleanup_module(void)
2486 pci_unregister_driver(&e100_driver
);
2489 module_init(e100_init_module
);
2490 module_exit(e100_cleanup_module
);