1 /* bnx2.c: Broadcom NX2 network driver.
3 * Copyright (c) 2004, 2005 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Written by: Michael Chan (mchan@broadcom.com)
15 #define DRV_MODULE_NAME "bnx2"
16 #define PFX DRV_MODULE_NAME ": "
17 #define DRV_MODULE_VERSION "1.2.19"
18 #define DRV_MODULE_RELDATE "May 23, 2005"
20 #define RUN_AT(x) (jiffies + (x))
22 /* Time in jiffies before concluding the transmitter is hung. */
23 #define TX_TIMEOUT (5*HZ)
25 static char version
[] __devinitdata
=
26 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME
" v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
28 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
29 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706 Driver");
30 MODULE_LICENSE("GPL");
31 MODULE_VERSION(DRV_MODULE_VERSION
);
33 static int disable_msi
= 0;
35 module_param(disable_msi
, int, 0);
36 MODULE_PARM_DESC(disable_msi
, "Disable Message Signaled Interrupt (MSI)");
46 /* indexed by board_t, above */
49 } board_info
[] __devinitdata
= {
50 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
51 { "HP NC370T Multifunction Gigabit Server Adapter" },
52 { "HP NC370i Multifunction Gigabit Server Adapter" },
53 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
54 { "HP NC370F Multifunction Gigabit Server Adapter" },
58 static struct pci_device_id bnx2_pci_tbl
[] = {
59 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
60 PCI_VENDOR_ID_HP
, 0x3101, 0, 0, NC370T
},
61 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
62 PCI_VENDOR_ID_HP
, 0x3106, 0, 0, NC370I
},
63 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
64 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706
},
65 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
66 PCI_VENDOR_ID_HP
, 0x3102, 0, 0, NC370F
},
67 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
68 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706S
},
72 static struct flash_spec flash_table
[] =
75 {0x00000000, 0x40030380, 0x009f0081, 0xa184a053, 0xaf000400,
76 1, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
77 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
80 {0x02000000, 0x62008380, 0x009f0081, 0xa184a053, 0xaf000400,
81 1, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
82 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
84 /* ATMEL AT45DB011B (buffered flash) */
85 {0x02000003, 0x6e008173, 0x00570081, 0x68848353, 0xaf000400,
86 1, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
87 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
,
89 /* Saifun SA25F005 (non-buffered flash) */
90 /* strap, cfg1, & write1 need updates */
91 {0x01000003, 0x5f008081, 0x00050081, 0x03840253, 0xaf020406,
92 0, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
93 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
,
94 "Non-buffered flash (64kB)"},
95 /* Saifun SA25F010 (non-buffered flash) */
96 /* strap, cfg1, & write1 need updates */
97 {0x00000001, 0x47008081, 0x00050081, 0x03840253, 0xaf020406,
98 0, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
99 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*2,
100 "Non-buffered flash (128kB)"},
101 /* Saifun SA25F020 (non-buffered flash) */
102 /* strap, cfg1, & write1 need updates */
103 {0x00000003, 0x4f008081, 0x00050081, 0x03840253, 0xaf020406,
104 0, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
105 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*4,
106 "Non-buffered flash (256kB)"},
109 MODULE_DEVICE_TABLE(pci
, bnx2_pci_tbl
);
112 bnx2_reg_rd_ind(struct bnx2
*bp
, u32 offset
)
114 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
115 return (REG_RD(bp
, BNX2_PCICFG_REG_WINDOW
));
119 bnx2_reg_wr_ind(struct bnx2
*bp
, u32 offset
, u32 val
)
121 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
122 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, val
);
126 bnx2_ctx_wr(struct bnx2
*bp
, u32 cid_addr
, u32 offset
, u32 val
)
129 REG_WR(bp
, BNX2_CTX_DATA_ADR
, offset
);
130 REG_WR(bp
, BNX2_CTX_DATA
, val
);
134 bnx2_read_phy(struct bnx2
*bp
, u32 reg
, u32
*val
)
139 if (bp
->phy_flags
& PHY_INT_MODE_AUTO_POLLING_FLAG
) {
140 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
141 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
143 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
144 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
149 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) |
150 BNX2_EMAC_MDIO_COMM_COMMAND_READ
| BNX2_EMAC_MDIO_COMM_DISEXT
|
151 BNX2_EMAC_MDIO_COMM_START_BUSY
;
152 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
154 for (i
= 0; i
< 50; i
++) {
157 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
158 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
161 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
162 val1
&= BNX2_EMAC_MDIO_COMM_DATA
;
168 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
) {
177 if (bp
->phy_flags
& PHY_INT_MODE_AUTO_POLLING_FLAG
) {
178 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
179 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
181 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
182 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
191 bnx2_write_phy(struct bnx2
*bp
, u32 reg
, u32 val
)
196 if (bp
->phy_flags
& PHY_INT_MODE_AUTO_POLLING_FLAG
) {
197 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
198 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
200 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
201 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
206 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) | val
|
207 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE
|
208 BNX2_EMAC_MDIO_COMM_START_BUSY
| BNX2_EMAC_MDIO_COMM_DISEXT
;
209 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
211 for (i
= 0; i
< 50; i
++) {
214 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
215 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
221 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)
226 if (bp
->phy_flags
& PHY_INT_MODE_AUTO_POLLING_FLAG
) {
227 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
228 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
230 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
231 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
240 bnx2_disable_int(struct bnx2
*bp
)
242 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
243 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
244 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
248 bnx2_enable_int(struct bnx2
*bp
)
252 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
253 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
| bp
->last_status_idx
);
255 val
= REG_RD(bp
, BNX2_HC_COMMAND
);
256 REG_WR(bp
, BNX2_HC_COMMAND
, val
| BNX2_HC_COMMAND_COAL_NOW
);
260 bnx2_disable_int_sync(struct bnx2
*bp
)
262 atomic_inc(&bp
->intr_sem
);
263 bnx2_disable_int(bp
);
264 synchronize_irq(bp
->pdev
->irq
);
268 bnx2_netif_stop(struct bnx2
*bp
)
270 bnx2_disable_int_sync(bp
);
271 if (netif_running(bp
->dev
)) {
272 netif_poll_disable(bp
->dev
);
273 netif_tx_disable(bp
->dev
);
274 bp
->dev
->trans_start
= jiffies
; /* prevent tx timeout */
279 bnx2_netif_start(struct bnx2
*bp
)
281 if (atomic_dec_and_test(&bp
->intr_sem
)) {
282 if (netif_running(bp
->dev
)) {
283 netif_wake_queue(bp
->dev
);
284 netif_poll_enable(bp
->dev
);
291 bnx2_free_mem(struct bnx2
*bp
)
294 pci_free_consistent(bp
->pdev
, sizeof(struct statistics_block
),
295 bp
->stats_blk
, bp
->stats_blk_mapping
);
296 bp
->stats_blk
= NULL
;
298 if (bp
->status_blk
) {
299 pci_free_consistent(bp
->pdev
, sizeof(struct status_block
),
300 bp
->status_blk
, bp
->status_blk_mapping
);
301 bp
->status_blk
= NULL
;
303 if (bp
->tx_desc_ring
) {
304 pci_free_consistent(bp
->pdev
,
305 sizeof(struct tx_bd
) * TX_DESC_CNT
,
306 bp
->tx_desc_ring
, bp
->tx_desc_mapping
);
307 bp
->tx_desc_ring
= NULL
;
309 if (bp
->tx_buf_ring
) {
310 kfree(bp
->tx_buf_ring
);
311 bp
->tx_buf_ring
= NULL
;
313 if (bp
->rx_desc_ring
) {
314 pci_free_consistent(bp
->pdev
,
315 sizeof(struct rx_bd
) * RX_DESC_CNT
,
316 bp
->rx_desc_ring
, bp
->rx_desc_mapping
);
317 bp
->rx_desc_ring
= NULL
;
319 if (bp
->rx_buf_ring
) {
320 kfree(bp
->rx_buf_ring
);
321 bp
->rx_buf_ring
= NULL
;
326 bnx2_alloc_mem(struct bnx2
*bp
)
328 bp
->tx_buf_ring
= kmalloc(sizeof(struct sw_bd
) * TX_DESC_CNT
,
330 if (bp
->tx_buf_ring
== NULL
)
333 memset(bp
->tx_buf_ring
, 0, sizeof(struct sw_bd
) * TX_DESC_CNT
);
334 bp
->tx_desc_ring
= pci_alloc_consistent(bp
->pdev
,
335 sizeof(struct tx_bd
) *
337 &bp
->tx_desc_mapping
);
338 if (bp
->tx_desc_ring
== NULL
)
341 bp
->rx_buf_ring
= kmalloc(sizeof(struct sw_bd
) * RX_DESC_CNT
,
343 if (bp
->rx_buf_ring
== NULL
)
346 memset(bp
->rx_buf_ring
, 0, sizeof(struct sw_bd
) * RX_DESC_CNT
);
347 bp
->rx_desc_ring
= pci_alloc_consistent(bp
->pdev
,
348 sizeof(struct rx_bd
) *
350 &bp
->rx_desc_mapping
);
351 if (bp
->rx_desc_ring
== NULL
)
354 bp
->status_blk
= pci_alloc_consistent(bp
->pdev
,
355 sizeof(struct status_block
),
356 &bp
->status_blk_mapping
);
357 if (bp
->status_blk
== NULL
)
360 memset(bp
->status_blk
, 0, sizeof(struct status_block
));
362 bp
->stats_blk
= pci_alloc_consistent(bp
->pdev
,
363 sizeof(struct statistics_block
),
364 &bp
->stats_blk_mapping
);
365 if (bp
->stats_blk
== NULL
)
368 memset(bp
->stats_blk
, 0, sizeof(struct statistics_block
));
378 bnx2_report_link(struct bnx2
*bp
)
381 netif_carrier_on(bp
->dev
);
382 printk(KERN_INFO PFX
"%s NIC Link is Up, ", bp
->dev
->name
);
384 printk("%d Mbps ", bp
->line_speed
);
386 if (bp
->duplex
== DUPLEX_FULL
)
387 printk("full duplex");
389 printk("half duplex");
392 if (bp
->flow_ctrl
& FLOW_CTRL_RX
) {
393 printk(", receive ");
394 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
395 printk("& transmit ");
398 printk(", transmit ");
400 printk("flow control ON");
405 netif_carrier_off(bp
->dev
);
406 printk(KERN_ERR PFX
"%s NIC Link is Down\n", bp
->dev
->name
);
411 bnx2_resolve_flow_ctrl(struct bnx2
*bp
)
413 u32 local_adv
, remote_adv
;
416 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
417 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
419 if (bp
->duplex
== DUPLEX_FULL
) {
420 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
425 if (bp
->duplex
!= DUPLEX_FULL
) {
429 bnx2_read_phy(bp
, MII_ADVERTISE
, &local_adv
);
430 bnx2_read_phy(bp
, MII_LPA
, &remote_adv
);
432 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
433 u32 new_local_adv
= 0;
434 u32 new_remote_adv
= 0;
436 if (local_adv
& ADVERTISE_1000XPAUSE
)
437 new_local_adv
|= ADVERTISE_PAUSE_CAP
;
438 if (local_adv
& ADVERTISE_1000XPSE_ASYM
)
439 new_local_adv
|= ADVERTISE_PAUSE_ASYM
;
440 if (remote_adv
& ADVERTISE_1000XPAUSE
)
441 new_remote_adv
|= ADVERTISE_PAUSE_CAP
;
442 if (remote_adv
& ADVERTISE_1000XPSE_ASYM
)
443 new_remote_adv
|= ADVERTISE_PAUSE_ASYM
;
445 local_adv
= new_local_adv
;
446 remote_adv
= new_remote_adv
;
449 /* See Table 28B-3 of 802.3ab-1999 spec. */
450 if (local_adv
& ADVERTISE_PAUSE_CAP
) {
451 if(local_adv
& ADVERTISE_PAUSE_ASYM
) {
452 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
453 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
455 else if (remote_adv
& ADVERTISE_PAUSE_ASYM
) {
456 bp
->flow_ctrl
= FLOW_CTRL_RX
;
460 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
461 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
465 else if (local_adv
& ADVERTISE_PAUSE_ASYM
) {
466 if ((remote_adv
& ADVERTISE_PAUSE_CAP
) &&
467 (remote_adv
& ADVERTISE_PAUSE_ASYM
)) {
469 bp
->flow_ctrl
= FLOW_CTRL_TX
;
475 bnx2_serdes_linkup(struct bnx2
*bp
)
477 u32 bmcr
, local_adv
, remote_adv
, common
;
480 bp
->line_speed
= SPEED_1000
;
482 bnx2_read_phy(bp
, MII_BMCR
, &bmcr
);
483 if (bmcr
& BMCR_FULLDPLX
) {
484 bp
->duplex
= DUPLEX_FULL
;
487 bp
->duplex
= DUPLEX_HALF
;
490 if (!(bmcr
& BMCR_ANENABLE
)) {
494 bnx2_read_phy(bp
, MII_ADVERTISE
, &local_adv
);
495 bnx2_read_phy(bp
, MII_LPA
, &remote_adv
);
497 common
= local_adv
& remote_adv
;
498 if (common
& (ADVERTISE_1000XHALF
| ADVERTISE_1000XFULL
)) {
500 if (common
& ADVERTISE_1000XFULL
) {
501 bp
->duplex
= DUPLEX_FULL
;
504 bp
->duplex
= DUPLEX_HALF
;
512 bnx2_copper_linkup(struct bnx2
*bp
)
516 bnx2_read_phy(bp
, MII_BMCR
, &bmcr
);
517 if (bmcr
& BMCR_ANENABLE
) {
518 u32 local_adv
, remote_adv
, common
;
520 bnx2_read_phy(bp
, MII_CTRL1000
, &local_adv
);
521 bnx2_read_phy(bp
, MII_STAT1000
, &remote_adv
);
523 common
= local_adv
& (remote_adv
>> 2);
524 if (common
& ADVERTISE_1000FULL
) {
525 bp
->line_speed
= SPEED_1000
;
526 bp
->duplex
= DUPLEX_FULL
;
528 else if (common
& ADVERTISE_1000HALF
) {
529 bp
->line_speed
= SPEED_1000
;
530 bp
->duplex
= DUPLEX_HALF
;
533 bnx2_read_phy(bp
, MII_ADVERTISE
, &local_adv
);
534 bnx2_read_phy(bp
, MII_LPA
, &remote_adv
);
536 common
= local_adv
& remote_adv
;
537 if (common
& ADVERTISE_100FULL
) {
538 bp
->line_speed
= SPEED_100
;
539 bp
->duplex
= DUPLEX_FULL
;
541 else if (common
& ADVERTISE_100HALF
) {
542 bp
->line_speed
= SPEED_100
;
543 bp
->duplex
= DUPLEX_HALF
;
545 else if (common
& ADVERTISE_10FULL
) {
546 bp
->line_speed
= SPEED_10
;
547 bp
->duplex
= DUPLEX_FULL
;
549 else if (common
& ADVERTISE_10HALF
) {
550 bp
->line_speed
= SPEED_10
;
551 bp
->duplex
= DUPLEX_HALF
;
560 if (bmcr
& BMCR_SPEED100
) {
561 bp
->line_speed
= SPEED_100
;
564 bp
->line_speed
= SPEED_10
;
566 if (bmcr
& BMCR_FULLDPLX
) {
567 bp
->duplex
= DUPLEX_FULL
;
570 bp
->duplex
= DUPLEX_HALF
;
578 bnx2_set_mac_link(struct bnx2
*bp
)
582 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x2620);
583 if (bp
->link_up
&& (bp
->line_speed
== SPEED_1000
) &&
584 (bp
->duplex
== DUPLEX_HALF
)) {
585 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x26ff);
588 /* Configure the EMAC mode register. */
589 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
591 val
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
592 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
);
595 if (bp
->line_speed
!= SPEED_1000
)
596 val
|= BNX2_EMAC_MODE_PORT_MII
;
598 val
|= BNX2_EMAC_MODE_PORT_GMII
;
601 val
|= BNX2_EMAC_MODE_PORT_GMII
;
604 /* Set the MAC to operate in the appropriate duplex mode. */
605 if (bp
->duplex
== DUPLEX_HALF
)
606 val
|= BNX2_EMAC_MODE_HALF_DUPLEX
;
607 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
609 /* Enable/disable rx PAUSE. */
610 bp
->rx_mode
&= ~BNX2_EMAC_RX_MODE_FLOW_EN
;
612 if (bp
->flow_ctrl
& FLOW_CTRL_RX
)
613 bp
->rx_mode
|= BNX2_EMAC_RX_MODE_FLOW_EN
;
614 REG_WR(bp
, BNX2_EMAC_RX_MODE
, bp
->rx_mode
);
616 /* Enable/disable tx PAUSE. */
617 val
= REG_RD(bp
, BNX2_EMAC_TX_MODE
);
618 val
&= ~BNX2_EMAC_TX_MODE_FLOW_EN
;
620 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
621 val
|= BNX2_EMAC_TX_MODE_FLOW_EN
;
622 REG_WR(bp
, BNX2_EMAC_TX_MODE
, val
);
624 /* Acknowledge the interrupt. */
625 REG_WR(bp
, BNX2_EMAC_STATUS
, BNX2_EMAC_STATUS_LINK_CHANGE
);
631 bnx2_set_link(struct bnx2
*bp
)
636 if (bp
->loopback
== MAC_LOOPBACK
) {
641 link_up
= bp
->link_up
;
643 bnx2_read_phy(bp
, MII_BMSR
, &bmsr
);
644 bnx2_read_phy(bp
, MII_BMSR
, &bmsr
);
646 if ((bp
->phy_flags
& PHY_SERDES_FLAG
) &&
647 (CHIP_NUM(bp
) == CHIP_NUM_5706
)) {
650 val
= REG_RD(bp
, BNX2_EMAC_STATUS
);
651 if (val
& BNX2_EMAC_STATUS_LINK
)
652 bmsr
|= BMSR_LSTATUS
;
654 bmsr
&= ~BMSR_LSTATUS
;
657 if (bmsr
& BMSR_LSTATUS
) {
660 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
661 bnx2_serdes_linkup(bp
);
664 bnx2_copper_linkup(bp
);
666 bnx2_resolve_flow_ctrl(bp
);
669 if ((bp
->phy_flags
& PHY_SERDES_FLAG
) &&
670 (bp
->autoneg
& AUTONEG_SPEED
)) {
674 bnx2_read_phy(bp
, MII_BMCR
, &bmcr
);
675 if (!(bmcr
& BMCR_ANENABLE
)) {
676 bnx2_write_phy(bp
, MII_BMCR
, bmcr
|
680 bp
->phy_flags
&= ~PHY_PARALLEL_DETECT_FLAG
;
684 if (bp
->link_up
!= link_up
) {
685 bnx2_report_link(bp
);
688 bnx2_set_mac_link(bp
);
694 bnx2_reset_phy(struct bnx2
*bp
)
699 bnx2_write_phy(bp
, MII_BMCR
, BMCR_RESET
);
701 #define PHY_RESET_MAX_WAIT 100
702 for (i
= 0; i
< PHY_RESET_MAX_WAIT
; i
++) {
705 bnx2_read_phy(bp
, MII_BMCR
, ®
);
706 if (!(reg
& BMCR_RESET
)) {
711 if (i
== PHY_RESET_MAX_WAIT
) {
718 bnx2_phy_get_pause_adv(struct bnx2
*bp
)
722 if ((bp
->req_flow_ctrl
& (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) ==
723 (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) {
725 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
726 adv
= ADVERTISE_1000XPAUSE
;
729 adv
= ADVERTISE_PAUSE_CAP
;
732 else if (bp
->req_flow_ctrl
& FLOW_CTRL_TX
) {
733 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
734 adv
= ADVERTISE_1000XPSE_ASYM
;
737 adv
= ADVERTISE_PAUSE_ASYM
;
740 else if (bp
->req_flow_ctrl
& FLOW_CTRL_RX
) {
741 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
742 adv
= ADVERTISE_1000XPAUSE
| ADVERTISE_1000XPSE_ASYM
;
745 adv
= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
752 bnx2_setup_serdes_phy(struct bnx2
*bp
)
757 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
760 bnx2_read_phy(bp
, MII_BMCR
, &bmcr
);
761 new_bmcr
= bmcr
& ~BMCR_ANENABLE
;
762 new_bmcr
|= BMCR_SPEED1000
;
763 if (bp
->req_duplex
== DUPLEX_FULL
) {
764 new_bmcr
|= BMCR_FULLDPLX
;
767 new_bmcr
&= ~BMCR_FULLDPLX
;
769 if (new_bmcr
!= bmcr
) {
770 /* Force a link down visible on the other side */
772 bnx2_read_phy(bp
, MII_ADVERTISE
, &adv
);
773 adv
&= ~(ADVERTISE_1000XFULL
|
774 ADVERTISE_1000XHALF
);
775 bnx2_write_phy(bp
, MII_ADVERTISE
, adv
);
776 bnx2_write_phy(bp
, MII_BMCR
, bmcr
|
777 BMCR_ANRESTART
| BMCR_ANENABLE
);
780 netif_carrier_off(bp
->dev
);
782 bnx2_write_phy(bp
, MII_BMCR
, new_bmcr
);
787 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
788 new_adv
|= ADVERTISE_1000XFULL
;
790 new_adv
|= bnx2_phy_get_pause_adv(bp
);
792 bnx2_read_phy(bp
, MII_ADVERTISE
, &adv
);
793 bnx2_read_phy(bp
, MII_BMCR
, &bmcr
);
795 bp
->serdes_an_pending
= 0;
796 if ((adv
!= new_adv
) || ((bmcr
& BMCR_ANENABLE
) == 0)) {
797 /* Force a link down visible on the other side */
801 bnx2_write_phy(bp
, MII_BMCR
, BMCR_LOOPBACK
);
802 for (i
= 0; i
< 110; i
++) {
807 bnx2_write_phy(bp
, MII_ADVERTISE
, new_adv
);
808 bnx2_write_phy(bp
, MII_BMCR
, bmcr
| BMCR_ANRESTART
|
810 bp
->serdes_an_pending
= SERDES_AN_TIMEOUT
/ bp
->timer_interval
;
816 #define ETHTOOL_ALL_FIBRE_SPEED \
817 (ADVERTISED_1000baseT_Full)
819 #define ETHTOOL_ALL_COPPER_SPEED \
820 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
821 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
822 ADVERTISED_1000baseT_Full)
824 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
825 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
827 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
830 bnx2_setup_copper_phy(struct bnx2
*bp
)
835 bnx2_read_phy(bp
, MII_BMCR
, &bmcr
);
837 if (bp
->autoneg
& AUTONEG_SPEED
) {
838 u32 adv_reg
, adv1000_reg
;
840 u32 new_adv1000_reg
= 0;
842 bnx2_read_phy(bp
, MII_ADVERTISE
, &adv_reg
);
843 adv_reg
&= (PHY_ALL_10_100_SPEED
| ADVERTISE_PAUSE_CAP
|
844 ADVERTISE_PAUSE_ASYM
);
846 bnx2_read_phy(bp
, MII_CTRL1000
, &adv1000_reg
);
847 adv1000_reg
&= PHY_ALL_1000_SPEED
;
849 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
850 new_adv_reg
|= ADVERTISE_10HALF
;
851 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
852 new_adv_reg
|= ADVERTISE_10FULL
;
853 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
854 new_adv_reg
|= ADVERTISE_100HALF
;
855 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
856 new_adv_reg
|= ADVERTISE_100FULL
;
857 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
858 new_adv1000_reg
|= ADVERTISE_1000FULL
;
860 new_adv_reg
|= ADVERTISE_CSMA
;
862 new_adv_reg
|= bnx2_phy_get_pause_adv(bp
);
864 if ((adv1000_reg
!= new_adv1000_reg
) ||
865 (adv_reg
!= new_adv_reg
) ||
866 ((bmcr
& BMCR_ANENABLE
) == 0)) {
868 bnx2_write_phy(bp
, MII_ADVERTISE
, new_adv_reg
);
869 bnx2_write_phy(bp
, MII_CTRL1000
, new_adv1000_reg
);
870 bnx2_write_phy(bp
, MII_BMCR
, BMCR_ANRESTART
|
873 else if (bp
->link_up
) {
874 /* Flow ctrl may have changed from auto to forced */
877 bnx2_resolve_flow_ctrl(bp
);
878 bnx2_set_mac_link(bp
);
884 if (bp
->req_line_speed
== SPEED_100
) {
885 new_bmcr
|= BMCR_SPEED100
;
887 if (bp
->req_duplex
== DUPLEX_FULL
) {
888 new_bmcr
|= BMCR_FULLDPLX
;
890 if (new_bmcr
!= bmcr
) {
894 bnx2_read_phy(bp
, MII_BMSR
, &bmsr
);
895 bnx2_read_phy(bp
, MII_BMSR
, &bmsr
);
897 if (bmsr
& BMSR_LSTATUS
) {
898 /* Force link down */
899 bnx2_write_phy(bp
, MII_BMCR
, BMCR_LOOPBACK
);
902 bnx2_read_phy(bp
, MII_BMSR
, &bmsr
);
903 bnx2_read_phy(bp
, MII_BMSR
, &bmsr
);
905 } while ((bmsr
& BMSR_LSTATUS
) && (i
< 620));
908 bnx2_write_phy(bp
, MII_BMCR
, new_bmcr
);
910 /* Normally, the new speed is setup after the link has
911 * gone down and up again. In some cases, link will not go
912 * down so we need to set up the new speed here.
914 if (bmsr
& BMSR_LSTATUS
) {
915 bp
->line_speed
= bp
->req_line_speed
;
916 bp
->duplex
= bp
->req_duplex
;
917 bnx2_resolve_flow_ctrl(bp
);
918 bnx2_set_mac_link(bp
);
925 bnx2_setup_phy(struct bnx2
*bp
)
927 if (bp
->loopback
== MAC_LOOPBACK
)
930 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
931 return (bnx2_setup_serdes_phy(bp
));
934 return (bnx2_setup_copper_phy(bp
));
939 bnx2_init_serdes_phy(struct bnx2
*bp
)
941 bp
->phy_flags
&= ~PHY_PARALLEL_DETECT_FLAG
;
943 if (CHIP_NUM(bp
) == CHIP_NUM_5706
) {
944 REG_WR(bp
, BNX2_MISC_UNUSED0
, 0x300);
947 if (bp
->dev
->mtu
> 1500) {
950 /* Set extended packet length bit */
951 bnx2_write_phy(bp
, 0x18, 0x7);
952 bnx2_read_phy(bp
, 0x18, &val
);
953 bnx2_write_phy(bp
, 0x18, (val
& 0xfff8) | 0x4000);
955 bnx2_write_phy(bp
, 0x1c, 0x6c00);
956 bnx2_read_phy(bp
, 0x1c, &val
);
957 bnx2_write_phy(bp
, 0x1c, (val
& 0x3ff) | 0xec02);
962 bnx2_write_phy(bp
, 0x18, 0x7);
963 bnx2_read_phy(bp
, 0x18, &val
);
964 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
966 bnx2_write_phy(bp
, 0x1c, 0x6c00);
967 bnx2_read_phy(bp
, 0x1c, &val
);
968 bnx2_write_phy(bp
, 0x1c, (val
& 0x3fd) | 0xec00);
975 bnx2_init_copper_phy(struct bnx2
*bp
)
977 bp
->phy_flags
|= PHY_CRC_FIX_FLAG
;
979 if (bp
->phy_flags
& PHY_CRC_FIX_FLAG
) {
980 bnx2_write_phy(bp
, 0x18, 0x0c00);
981 bnx2_write_phy(bp
, 0x17, 0x000a);
982 bnx2_write_phy(bp
, 0x15, 0x310b);
983 bnx2_write_phy(bp
, 0x17, 0x201f);
984 bnx2_write_phy(bp
, 0x15, 0x9506);
985 bnx2_write_phy(bp
, 0x17, 0x401f);
986 bnx2_write_phy(bp
, 0x15, 0x14e2);
987 bnx2_write_phy(bp
, 0x18, 0x0400);
990 if (bp
->dev
->mtu
> 1500) {
993 /* Set extended packet length bit */
994 bnx2_write_phy(bp
, 0x18, 0x7);
995 bnx2_read_phy(bp
, 0x18, &val
);
996 bnx2_write_phy(bp
, 0x18, val
| 0x4000);
998 bnx2_read_phy(bp
, 0x10, &val
);
999 bnx2_write_phy(bp
, 0x10, val
| 0x1);
1004 bnx2_write_phy(bp
, 0x18, 0x7);
1005 bnx2_read_phy(bp
, 0x18, &val
);
1006 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
1008 bnx2_read_phy(bp
, 0x10, &val
);
1009 bnx2_write_phy(bp
, 0x10, val
& ~0x1);
1017 bnx2_init_phy(struct bnx2
*bp
)
1022 bp
->phy_flags
&= ~PHY_INT_MODE_MASK_FLAG
;
1023 bp
->phy_flags
|= PHY_INT_MODE_LINK_READY_FLAG
;
1025 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
1029 bnx2_read_phy(bp
, MII_PHYSID1
, &val
);
1030 bp
->phy_id
= val
<< 16;
1031 bnx2_read_phy(bp
, MII_PHYSID2
, &val
);
1032 bp
->phy_id
|= val
& 0xffff;
1034 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
1035 rc
= bnx2_init_serdes_phy(bp
);
1038 rc
= bnx2_init_copper_phy(bp
);
1047 bnx2_set_mac_loopback(struct bnx2
*bp
)
1051 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
1052 mac_mode
&= ~BNX2_EMAC_MODE_PORT
;
1053 mac_mode
|= BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
;
1054 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
1060 bnx2_fw_sync(struct bnx2
*bp
, u32 msg_data
)
1065 if (bp
->fw_timed_out
)
1069 msg_data
|= bp
->fw_wr_seq
;
1071 REG_WR_IND(bp
, HOST_VIEW_SHMEM_BASE
+ BNX2_DRV_MB
, msg_data
);
1073 /* wait for an acknowledgement. */
1074 for (i
= 0; i
< (FW_ACK_TIME_OUT_MS
* 1000)/5; i
++) {
1077 val
= REG_RD_IND(bp
, HOST_VIEW_SHMEM_BASE
+ BNX2_FW_MB
);
1079 if ((val
& BNX2_FW_MSG_ACK
) == (msg_data
& BNX2_DRV_MSG_SEQ
))
1083 /* If we timed out, inform the firmware that this is the case. */
1084 if (((val
& BNX2_FW_MSG_ACK
) != (msg_data
& BNX2_DRV_MSG_SEQ
)) &&
1085 ((msg_data
& BNX2_DRV_MSG_DATA
) != BNX2_DRV_MSG_DATA_WAIT0
)) {
1087 msg_data
&= ~BNX2_DRV_MSG_CODE
;
1088 msg_data
|= BNX2_DRV_MSG_CODE_FW_TIMEOUT
;
1090 REG_WR_IND(bp
, HOST_VIEW_SHMEM_BASE
+ BNX2_DRV_MB
, msg_data
);
1092 bp
->fw_timed_out
= 1;
1101 bnx2_init_context(struct bnx2
*bp
)
1107 u32 vcid_addr
, pcid_addr
, offset
;
1111 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
1114 vcid_addr
= GET_PCID_ADDR(vcid
);
1116 new_vcid
= 0x60 + (vcid
& 0xf0) + (vcid
& 0x7);
1121 pcid_addr
= GET_PCID_ADDR(new_vcid
);
1124 vcid_addr
= GET_CID_ADDR(vcid
);
1125 pcid_addr
= vcid_addr
;
1128 REG_WR(bp
, BNX2_CTX_VIRT_ADDR
, 0x00);
1129 REG_WR(bp
, BNX2_CTX_PAGE_TBL
, pcid_addr
);
1131 /* Zero out the context. */
1132 for (offset
= 0; offset
< PHY_CTX_SIZE
; offset
+= 4) {
1133 CTX_WR(bp
, 0x00, offset
, 0);
1136 REG_WR(bp
, BNX2_CTX_VIRT_ADDR
, vcid_addr
);
1137 REG_WR(bp
, BNX2_CTX_PAGE_TBL
, pcid_addr
);
1142 bnx2_alloc_bad_rbuf(struct bnx2
*bp
)
1148 good_mbuf
= kmalloc(512 * sizeof(u16
), GFP_KERNEL
);
1149 if (good_mbuf
== NULL
) {
1150 printk(KERN_ERR PFX
"Failed to allocate memory in "
1151 "bnx2_alloc_bad_rbuf\n");
1155 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
1156 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE
);
1160 /* Allocate a bunch of mbufs and save the good ones in an array. */
1161 val
= REG_RD_IND(bp
, BNX2_RBUF_STATUS1
);
1162 while (val
& BNX2_RBUF_STATUS1_FREE_COUNT
) {
1163 REG_WR_IND(bp
, BNX2_RBUF_COMMAND
, BNX2_RBUF_COMMAND_ALLOC_REQ
);
1165 val
= REG_RD_IND(bp
, BNX2_RBUF_FW_BUF_ALLOC
);
1167 val
&= BNX2_RBUF_FW_BUF_ALLOC_VALUE
;
1169 /* The addresses with Bit 9 set are bad memory blocks. */
1170 if (!(val
& (1 << 9))) {
1171 good_mbuf
[good_mbuf_cnt
] = (u16
) val
;
1175 val
= REG_RD_IND(bp
, BNX2_RBUF_STATUS1
);
1178 /* Free the good ones back to the mbuf pool thus discarding
1179 * all the bad ones. */
1180 while (good_mbuf_cnt
) {
1183 val
= good_mbuf
[good_mbuf_cnt
];
1184 val
= (val
<< 9) | val
| 1;
1186 REG_WR_IND(bp
, BNX2_RBUF_FW_BUF_FREE
, val
);
1193 bnx2_set_mac_addr(struct bnx2
*bp
)
1196 u8
*mac_addr
= bp
->dev
->dev_addr
;
1198 val
= (mac_addr
[0] << 8) | mac_addr
[1];
1200 REG_WR(bp
, BNX2_EMAC_MAC_MATCH0
, val
);
1202 val
= (mac_addr
[2] << 24) | (mac_addr
[3] << 16) |
1203 (mac_addr
[4] << 8) | mac_addr
[5];
1205 REG_WR(bp
, BNX2_EMAC_MAC_MATCH1
, val
);
1209 bnx2_alloc_rx_skb(struct bnx2
*bp
, u16 index
)
1211 struct sk_buff
*skb
;
1212 struct sw_bd
*rx_buf
= &bp
->rx_buf_ring
[index
];
1214 struct rx_bd
*rxbd
= &bp
->rx_desc_ring
[index
];
1215 unsigned long align
;
1217 skb
= dev_alloc_skb(bp
->rx_buf_size
);
1222 if (unlikely((align
= (unsigned long) skb
->data
& 0x7))) {
1223 skb_reserve(skb
, 8 - align
);
1227 mapping
= pci_map_single(bp
->pdev
, skb
->data
, bp
->rx_buf_use_size
,
1228 PCI_DMA_FROMDEVICE
);
1231 pci_unmap_addr_set(rx_buf
, mapping
, mapping
);
1233 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
1234 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
1236 bp
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
1242 bnx2_phy_int(struct bnx2
*bp
)
1244 u32 new_link_state
, old_link_state
;
1246 new_link_state
= bp
->status_blk
->status_attn_bits
&
1247 STATUS_ATTN_BITS_LINK_STATE
;
1248 old_link_state
= bp
->status_blk
->status_attn_bits_ack
&
1249 STATUS_ATTN_BITS_LINK_STATE
;
1250 if (new_link_state
!= old_link_state
) {
1251 if (new_link_state
) {
1252 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_SET_CMD
,
1253 STATUS_ATTN_BITS_LINK_STATE
);
1256 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD
,
1257 STATUS_ATTN_BITS_LINK_STATE
);
1264 bnx2_tx_int(struct bnx2
*bp
)
1266 u16 hw_cons
, sw_cons
, sw_ring_cons
;
1269 hw_cons
= bp
->status_blk
->status_tx_quick_consumer_index0
;
1270 if ((hw_cons
& MAX_TX_DESC_CNT
) == MAX_TX_DESC_CNT
) {
1273 sw_cons
= bp
->tx_cons
;
1275 while (sw_cons
!= hw_cons
) {
1276 struct sw_bd
*tx_buf
;
1277 struct sk_buff
*skb
;
1280 sw_ring_cons
= TX_RING_IDX(sw_cons
);
1282 tx_buf
= &bp
->tx_buf_ring
[sw_ring_cons
];
1285 /* partial BD completions possible with TSO packets */
1286 if (skb_shinfo(skb
)->tso_size
) {
1287 u16 last_idx
, last_ring_idx
;
1289 last_idx
= sw_cons
+
1290 skb_shinfo(skb
)->nr_frags
+ 1;
1291 last_ring_idx
= sw_ring_cons
+
1292 skb_shinfo(skb
)->nr_frags
+ 1;
1293 if (unlikely(last_ring_idx
>= MAX_TX_DESC_CNT
)) {
1296 if (((s16
) ((s16
) last_idx
- (s16
) hw_cons
)) > 0) {
1301 pci_unmap_single(bp
->pdev
, pci_unmap_addr(tx_buf
, mapping
),
1302 skb_headlen(skb
), PCI_DMA_TODEVICE
);
1305 last
= skb_shinfo(skb
)->nr_frags
;
1307 for (i
= 0; i
< last
; i
++) {
1308 sw_cons
= NEXT_TX_BD(sw_cons
);
1310 pci_unmap_page(bp
->pdev
,
1312 &bp
->tx_buf_ring
[TX_RING_IDX(sw_cons
)],
1314 skb_shinfo(skb
)->frags
[i
].size
,
1318 sw_cons
= NEXT_TX_BD(sw_cons
);
1320 tx_free_bd
+= last
+ 1;
1322 dev_kfree_skb_irq(skb
);
1324 hw_cons
= bp
->status_blk
->status_tx_quick_consumer_index0
;
1325 if ((hw_cons
& MAX_TX_DESC_CNT
) == MAX_TX_DESC_CNT
) {
1330 atomic_add(tx_free_bd
, &bp
->tx_avail_bd
);
1332 if (unlikely(netif_queue_stopped(bp
->dev
))) {
1333 unsigned long flags
;
1335 spin_lock_irqsave(&bp
->tx_lock
, flags
);
1336 if ((netif_queue_stopped(bp
->dev
)) &&
1337 (atomic_read(&bp
->tx_avail_bd
) > MAX_SKB_FRAGS
)) {
1339 netif_wake_queue(bp
->dev
);
1341 spin_unlock_irqrestore(&bp
->tx_lock
, flags
);
1344 bp
->tx_cons
= sw_cons
;
1349 bnx2_reuse_rx_skb(struct bnx2
*bp
, struct sk_buff
*skb
,
1352 struct sw_bd
*cons_rx_buf
= &bp
->rx_buf_ring
[cons
];
1353 struct sw_bd
*prod_rx_buf
= &bp
->rx_buf_ring
[prod
];
1354 struct rx_bd
*cons_bd
= &bp
->rx_desc_ring
[cons
];
1355 struct rx_bd
*prod_bd
= &bp
->rx_desc_ring
[prod
];
1357 pci_dma_sync_single_for_device(bp
->pdev
,
1358 pci_unmap_addr(cons_rx_buf
, mapping
),
1359 bp
->rx_offset
+ RX_COPY_THRESH
, PCI_DMA_FROMDEVICE
);
1361 prod_rx_buf
->skb
= cons_rx_buf
->skb
;
1362 pci_unmap_addr_set(prod_rx_buf
, mapping
,
1363 pci_unmap_addr(cons_rx_buf
, mapping
));
1365 memcpy(prod_bd
, cons_bd
, 8);
1367 bp
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
1372 bnx2_rx_int(struct bnx2
*bp
, int budget
)
1374 u16 hw_cons
, sw_cons
, sw_ring_cons
, sw_prod
, sw_ring_prod
;
1375 struct l2_fhdr
*rx_hdr
;
1378 hw_cons
= bp
->status_blk
->status_rx_quick_consumer_index0
;
1379 if ((hw_cons
& MAX_RX_DESC_CNT
) == MAX_RX_DESC_CNT
) {
1382 sw_cons
= bp
->rx_cons
;
1383 sw_prod
= bp
->rx_prod
;
1385 /* Memory barrier necessary as speculative reads of the rx
1386 * buffer can be ahead of the index in the status block
1389 while (sw_cons
!= hw_cons
) {
1392 struct sw_bd
*rx_buf
;
1393 struct sk_buff
*skb
;
1395 sw_ring_cons
= RX_RING_IDX(sw_cons
);
1396 sw_ring_prod
= RX_RING_IDX(sw_prod
);
1398 rx_buf
= &bp
->rx_buf_ring
[sw_ring_cons
];
1400 pci_dma_sync_single_for_cpu(bp
->pdev
,
1401 pci_unmap_addr(rx_buf
, mapping
),
1402 bp
->rx_offset
+ RX_COPY_THRESH
, PCI_DMA_FROMDEVICE
);
1404 rx_hdr
= (struct l2_fhdr
*) skb
->data
;
1405 len
= rx_hdr
->l2_fhdr_pkt_len
- 4;
1407 if (rx_hdr
->l2_fhdr_errors
&
1408 (L2_FHDR_ERRORS_BAD_CRC
|
1409 L2_FHDR_ERRORS_PHY_DECODE
|
1410 L2_FHDR_ERRORS_ALIGNMENT
|
1411 L2_FHDR_ERRORS_TOO_SHORT
|
1412 L2_FHDR_ERRORS_GIANT_FRAME
)) {
1417 /* Since we don't have a jumbo ring, copy small packets
1420 if ((bp
->dev
->mtu
> 1500) && (len
<= RX_COPY_THRESH
)) {
1421 struct sk_buff
*new_skb
;
1423 new_skb
= dev_alloc_skb(len
+ 2);
1424 if (new_skb
== NULL
)
1428 memcpy(new_skb
->data
,
1429 skb
->data
+ bp
->rx_offset
- 2,
1432 skb_reserve(new_skb
, 2);
1433 skb_put(new_skb
, len
);
1434 new_skb
->dev
= bp
->dev
;
1436 bnx2_reuse_rx_skb(bp
, skb
,
1437 sw_ring_cons
, sw_ring_prod
);
1441 else if (bnx2_alloc_rx_skb(bp
, sw_ring_prod
) == 0) {
1442 pci_unmap_single(bp
->pdev
,
1443 pci_unmap_addr(rx_buf
, mapping
),
1444 bp
->rx_buf_use_size
, PCI_DMA_FROMDEVICE
);
1446 skb_reserve(skb
, bp
->rx_offset
);
1451 bnx2_reuse_rx_skb(bp
, skb
,
1452 sw_ring_cons
, sw_ring_prod
);
1456 skb
->protocol
= eth_type_trans(skb
, bp
->dev
);
1458 if ((len
> (bp
->dev
->mtu
+ ETH_HLEN
)) &&
1459 (htons(skb
->protocol
) != 0x8100)) {
1461 dev_kfree_skb_irq(skb
);
1466 status
= rx_hdr
->l2_fhdr_status
;
1467 skb
->ip_summed
= CHECKSUM_NONE
;
1469 (status
& (L2_FHDR_STATUS_TCP_SEGMENT
|
1470 L2_FHDR_STATUS_UDP_DATAGRAM
))) {
1472 u16 cksum
= rx_hdr
->l2_fhdr_tcp_udp_xsum
;
1474 if (cksum
== 0xffff)
1475 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1479 if ((status
& L2_FHDR_STATUS_L2_VLAN_TAG
) && (bp
->vlgrp
!= 0)) {
1480 vlan_hwaccel_receive_skb(skb
, bp
->vlgrp
,
1481 rx_hdr
->l2_fhdr_vlan_tag
);
1485 netif_receive_skb(skb
);
1487 bp
->dev
->last_rx
= jiffies
;
1493 sw_cons
= NEXT_RX_BD(sw_cons
);
1494 sw_prod
= NEXT_RX_BD(sw_prod
);
1496 if ((rx_pkt
== budget
))
1499 bp
->rx_cons
= sw_cons
;
1500 bp
->rx_prod
= sw_prod
;
1502 REG_WR16(bp
, MB_RX_CID_ADDR
+ BNX2_L2CTX_HOST_BDIDX
, sw_prod
);
1504 REG_WR(bp
, MB_RX_CID_ADDR
+ BNX2_L2CTX_HOST_BSEQ
, bp
->rx_prod_bseq
);
1512 /* MSI ISR - The only difference between this and the INTx ISR
1513 * is that the MSI interrupt is always serviced.
1516 bnx2_msi(int irq
, void *dev_instance
, struct pt_regs
*regs
)
1518 struct net_device
*dev
= dev_instance
;
1519 struct bnx2
*bp
= dev
->priv
;
1521 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
1522 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
1523 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
1525 /* Return here if interrupt is disabled. */
1526 if (unlikely(atomic_read(&bp
->intr_sem
) != 0)) {
1527 return IRQ_RETVAL(1);
1530 if (netif_rx_schedule_prep(dev
)) {
1531 __netif_rx_schedule(dev
);
1534 return IRQ_RETVAL(1);
1538 bnx2_interrupt(int irq
, void *dev_instance
, struct pt_regs
*regs
)
1540 struct net_device
*dev
= dev_instance
;
1541 struct bnx2
*bp
= dev
->priv
;
1543 /* When using INTx, it is possible for the interrupt to arrive
1544 * at the CPU before the status block posted prior to the
1545 * interrupt. Reading a register will flush the status block.
1546 * When using MSI, the MSI message will always complete after
1547 * the status block write.
1549 if ((bp
->status_blk
->status_idx
== bp
->last_status_idx
) ||
1550 (REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
) &
1551 BNX2_PCICFG_MISC_STATUS_INTA_VALUE
))
1552 return IRQ_RETVAL(0);
1554 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
1555 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
1556 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
1558 /* Return here if interrupt is shared and is disabled. */
1559 if (unlikely(atomic_read(&bp
->intr_sem
) != 0)) {
1560 return IRQ_RETVAL(1);
1563 if (netif_rx_schedule_prep(dev
)) {
1564 __netif_rx_schedule(dev
);
1567 return IRQ_RETVAL(1);
1571 bnx2_poll(struct net_device
*dev
, int *budget
)
1573 struct bnx2
*bp
= dev
->priv
;
1576 bp
->last_status_idx
= bp
->status_blk
->status_idx
;
1579 if ((bp
->status_blk
->status_attn_bits
&
1580 STATUS_ATTN_BITS_LINK_STATE
) !=
1581 (bp
->status_blk
->status_attn_bits_ack
&
1582 STATUS_ATTN_BITS_LINK_STATE
)) {
1584 unsigned long flags
;
1586 spin_lock_irqsave(&bp
->phy_lock
, flags
);
1588 spin_unlock_irqrestore(&bp
->phy_lock
, flags
);
1591 if (bp
->status_blk
->status_tx_quick_consumer_index0
!= bp
->tx_cons
) {
1595 if (bp
->status_blk
->status_rx_quick_consumer_index0
!= bp
->rx_cons
) {
1596 int orig_budget
= *budget
;
1599 if (orig_budget
> dev
->quota
)
1600 orig_budget
= dev
->quota
;
1602 work_done
= bnx2_rx_int(bp
, orig_budget
);
1603 *budget
-= work_done
;
1604 dev
->quota
-= work_done
;
1606 if (work_done
>= orig_budget
) {
1612 netif_rx_complete(dev
);
1613 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
1614 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
1615 bp
->last_status_idx
);
1622 /* Called with rtnl_lock from vlan functions and also dev->xmit_lock
1623 * from set_multicast.
1626 bnx2_set_rx_mode(struct net_device
*dev
)
1628 struct bnx2
*bp
= dev
->priv
;
1629 u32 rx_mode
, sort_mode
;
1631 unsigned long flags
;
1633 spin_lock_irqsave(&bp
->phy_lock
, flags
);
1635 rx_mode
= bp
->rx_mode
& ~(BNX2_EMAC_RX_MODE_PROMISCUOUS
|
1636 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
);
1637 sort_mode
= 1 | BNX2_RPM_SORT_USER0_BC_EN
;
1640 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
1643 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
1645 if (dev
->flags
& IFF_PROMISC
) {
1646 /* Promiscuous mode. */
1647 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
1648 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
;
1650 else if (dev
->flags
& IFF_ALLMULTI
) {
1651 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
1652 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
1655 sort_mode
|= BNX2_RPM_SORT_USER0_MC_EN
;
1658 /* Accept one or more multicast(s). */
1659 struct dev_mc_list
*mclist
;
1660 u32 mc_filter
[NUM_MC_HASH_REGISTERS
];
1665 memset(mc_filter
, 0, 4 * NUM_MC_HASH_REGISTERS
);
1667 for (i
= 0, mclist
= dev
->mc_list
; mclist
&& i
< dev
->mc_count
;
1668 i
++, mclist
= mclist
->next
) {
1670 crc
= ether_crc_le(ETH_ALEN
, mclist
->dmi_addr
);
1672 regidx
= (bit
& 0xe0) >> 5;
1674 mc_filter
[regidx
] |= (1 << bit
);
1677 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
1678 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
1682 sort_mode
|= BNX2_RPM_SORT_USER0_MC_HSH_EN
;
1685 if (rx_mode
!= bp
->rx_mode
) {
1686 bp
->rx_mode
= rx_mode
;
1687 REG_WR(bp
, BNX2_EMAC_RX_MODE
, rx_mode
);
1690 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
1691 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
);
1692 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
| BNX2_RPM_SORT_USER0_ENA
);
1694 spin_unlock_irqrestore(&bp
->phy_lock
, flags
);
1698 load_rv2p_fw(struct bnx2
*bp
, u32
*rv2p_code
, u32 rv2p_code_len
,
1705 for (i
= 0; i
< rv2p_code_len
; i
+= 8) {
1706 REG_WR(bp
, BNX2_RV2P_INSTR_HIGH
, *rv2p_code
);
1708 REG_WR(bp
, BNX2_RV2P_INSTR_LOW
, *rv2p_code
);
1711 if (rv2p_proc
== RV2P_PROC1
) {
1712 val
= (i
/ 8) | BNX2_RV2P_PROC1_ADDR_CMD_RDWR
;
1713 REG_WR(bp
, BNX2_RV2P_PROC1_ADDR_CMD
, val
);
1716 val
= (i
/ 8) | BNX2_RV2P_PROC2_ADDR_CMD_RDWR
;
1717 REG_WR(bp
, BNX2_RV2P_PROC2_ADDR_CMD
, val
);
1721 /* Reset the processor, un-stall is done later. */
1722 if (rv2p_proc
== RV2P_PROC1
) {
1723 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC1_RESET
);
1726 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC2_RESET
);
1731 load_cpu_fw(struct bnx2
*bp
, struct cpu_reg
*cpu_reg
, struct fw_info
*fw
)
1737 val
= REG_RD_IND(bp
, cpu_reg
->mode
);
1738 val
|= cpu_reg
->mode_value_halt
;
1739 REG_WR_IND(bp
, cpu_reg
->mode
, val
);
1740 REG_WR_IND(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
1742 /* Load the Text area. */
1743 offset
= cpu_reg
->spad_base
+ (fw
->text_addr
- cpu_reg
->mips_view_base
);
1747 for (j
= 0; j
< (fw
->text_len
/ 4); j
++, offset
+= 4) {
1748 REG_WR_IND(bp
, offset
, fw
->text
[j
]);
1752 /* Load the Data area. */
1753 offset
= cpu_reg
->spad_base
+ (fw
->data_addr
- cpu_reg
->mips_view_base
);
1757 for (j
= 0; j
< (fw
->data_len
/ 4); j
++, offset
+= 4) {
1758 REG_WR_IND(bp
, offset
, fw
->data
[j
]);
1762 /* Load the SBSS area. */
1763 offset
= cpu_reg
->spad_base
+ (fw
->sbss_addr
- cpu_reg
->mips_view_base
);
1767 for (j
= 0; j
< (fw
->sbss_len
/ 4); j
++, offset
+= 4) {
1768 REG_WR_IND(bp
, offset
, fw
->sbss
[j
]);
1772 /* Load the BSS area. */
1773 offset
= cpu_reg
->spad_base
+ (fw
->bss_addr
- cpu_reg
->mips_view_base
);
1777 for (j
= 0; j
< (fw
->bss_len
/4); j
++, offset
+= 4) {
1778 REG_WR_IND(bp
, offset
, fw
->bss
[j
]);
1782 /* Load the Read-Only area. */
1783 offset
= cpu_reg
->spad_base
+
1784 (fw
->rodata_addr
- cpu_reg
->mips_view_base
);
1788 for (j
= 0; j
< (fw
->rodata_len
/ 4); j
++, offset
+= 4) {
1789 REG_WR_IND(bp
, offset
, fw
->rodata
[j
]);
1793 /* Clear the pre-fetch instruction. */
1794 REG_WR_IND(bp
, cpu_reg
->inst
, 0);
1795 REG_WR_IND(bp
, cpu_reg
->pc
, fw
->start_addr
);
1797 /* Start the CPU. */
1798 val
= REG_RD_IND(bp
, cpu_reg
->mode
);
1799 val
&= ~cpu_reg
->mode_value_halt
;
1800 REG_WR_IND(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
1801 REG_WR_IND(bp
, cpu_reg
->mode
, val
);
1805 bnx2_init_cpus(struct bnx2
*bp
)
1807 struct cpu_reg cpu_reg
;
1810 /* Initialize the RV2P processor. */
1811 load_rv2p_fw(bp
, bnx2_rv2p_proc1
, sizeof(bnx2_rv2p_proc1
), RV2P_PROC1
);
1812 load_rv2p_fw(bp
, bnx2_rv2p_proc2
, sizeof(bnx2_rv2p_proc2
), RV2P_PROC2
);
1814 /* Initialize the RX Processor. */
1815 cpu_reg
.mode
= BNX2_RXP_CPU_MODE
;
1816 cpu_reg
.mode_value_halt
= BNX2_RXP_CPU_MODE_SOFT_HALT
;
1817 cpu_reg
.mode_value_sstep
= BNX2_RXP_CPU_MODE_STEP_ENA
;
1818 cpu_reg
.state
= BNX2_RXP_CPU_STATE
;
1819 cpu_reg
.state_value_clear
= 0xffffff;
1820 cpu_reg
.gpr0
= BNX2_RXP_CPU_REG_FILE
;
1821 cpu_reg
.evmask
= BNX2_RXP_CPU_EVENT_MASK
;
1822 cpu_reg
.pc
= BNX2_RXP_CPU_PROGRAM_COUNTER
;
1823 cpu_reg
.inst
= BNX2_RXP_CPU_INSTRUCTION
;
1824 cpu_reg
.bp
= BNX2_RXP_CPU_HW_BREAKPOINT
;
1825 cpu_reg
.spad_base
= BNX2_RXP_SCRATCH
;
1826 cpu_reg
.mips_view_base
= 0x8000000;
1828 fw
.ver_major
= bnx2_RXP_b06FwReleaseMajor
;
1829 fw
.ver_minor
= bnx2_RXP_b06FwReleaseMinor
;
1830 fw
.ver_fix
= bnx2_RXP_b06FwReleaseFix
;
1831 fw
.start_addr
= bnx2_RXP_b06FwStartAddr
;
1833 fw
.text_addr
= bnx2_RXP_b06FwTextAddr
;
1834 fw
.text_len
= bnx2_RXP_b06FwTextLen
;
1836 fw
.text
= bnx2_RXP_b06FwText
;
1838 fw
.data_addr
= bnx2_RXP_b06FwDataAddr
;
1839 fw
.data_len
= bnx2_RXP_b06FwDataLen
;
1841 fw
.data
= bnx2_RXP_b06FwData
;
1843 fw
.sbss_addr
= bnx2_RXP_b06FwSbssAddr
;
1844 fw
.sbss_len
= bnx2_RXP_b06FwSbssLen
;
1846 fw
.sbss
= bnx2_RXP_b06FwSbss
;
1848 fw
.bss_addr
= bnx2_RXP_b06FwBssAddr
;
1849 fw
.bss_len
= bnx2_RXP_b06FwBssLen
;
1851 fw
.bss
= bnx2_RXP_b06FwBss
;
1853 fw
.rodata_addr
= bnx2_RXP_b06FwRodataAddr
;
1854 fw
.rodata_len
= bnx2_RXP_b06FwRodataLen
;
1855 fw
.rodata_index
= 0;
1856 fw
.rodata
= bnx2_RXP_b06FwRodata
;
1858 load_cpu_fw(bp
, &cpu_reg
, &fw
);
1860 /* Initialize the TX Processor. */
1861 cpu_reg
.mode
= BNX2_TXP_CPU_MODE
;
1862 cpu_reg
.mode_value_halt
= BNX2_TXP_CPU_MODE_SOFT_HALT
;
1863 cpu_reg
.mode_value_sstep
= BNX2_TXP_CPU_MODE_STEP_ENA
;
1864 cpu_reg
.state
= BNX2_TXP_CPU_STATE
;
1865 cpu_reg
.state_value_clear
= 0xffffff;
1866 cpu_reg
.gpr0
= BNX2_TXP_CPU_REG_FILE
;
1867 cpu_reg
.evmask
= BNX2_TXP_CPU_EVENT_MASK
;
1868 cpu_reg
.pc
= BNX2_TXP_CPU_PROGRAM_COUNTER
;
1869 cpu_reg
.inst
= BNX2_TXP_CPU_INSTRUCTION
;
1870 cpu_reg
.bp
= BNX2_TXP_CPU_HW_BREAKPOINT
;
1871 cpu_reg
.spad_base
= BNX2_TXP_SCRATCH
;
1872 cpu_reg
.mips_view_base
= 0x8000000;
1874 fw
.ver_major
= bnx2_TXP_b06FwReleaseMajor
;
1875 fw
.ver_minor
= bnx2_TXP_b06FwReleaseMinor
;
1876 fw
.ver_fix
= bnx2_TXP_b06FwReleaseFix
;
1877 fw
.start_addr
= bnx2_TXP_b06FwStartAddr
;
1879 fw
.text_addr
= bnx2_TXP_b06FwTextAddr
;
1880 fw
.text_len
= bnx2_TXP_b06FwTextLen
;
1882 fw
.text
= bnx2_TXP_b06FwText
;
1884 fw
.data_addr
= bnx2_TXP_b06FwDataAddr
;
1885 fw
.data_len
= bnx2_TXP_b06FwDataLen
;
1887 fw
.data
= bnx2_TXP_b06FwData
;
1889 fw
.sbss_addr
= bnx2_TXP_b06FwSbssAddr
;
1890 fw
.sbss_len
= bnx2_TXP_b06FwSbssLen
;
1892 fw
.sbss
= bnx2_TXP_b06FwSbss
;
1894 fw
.bss_addr
= bnx2_TXP_b06FwBssAddr
;
1895 fw
.bss_len
= bnx2_TXP_b06FwBssLen
;
1897 fw
.bss
= bnx2_TXP_b06FwBss
;
1899 fw
.rodata_addr
= bnx2_TXP_b06FwRodataAddr
;
1900 fw
.rodata_len
= bnx2_TXP_b06FwRodataLen
;
1901 fw
.rodata_index
= 0;
1902 fw
.rodata
= bnx2_TXP_b06FwRodata
;
1904 load_cpu_fw(bp
, &cpu_reg
, &fw
);
1906 /* Initialize the TX Patch-up Processor. */
1907 cpu_reg
.mode
= BNX2_TPAT_CPU_MODE
;
1908 cpu_reg
.mode_value_halt
= BNX2_TPAT_CPU_MODE_SOFT_HALT
;
1909 cpu_reg
.mode_value_sstep
= BNX2_TPAT_CPU_MODE_STEP_ENA
;
1910 cpu_reg
.state
= BNX2_TPAT_CPU_STATE
;
1911 cpu_reg
.state_value_clear
= 0xffffff;
1912 cpu_reg
.gpr0
= BNX2_TPAT_CPU_REG_FILE
;
1913 cpu_reg
.evmask
= BNX2_TPAT_CPU_EVENT_MASK
;
1914 cpu_reg
.pc
= BNX2_TPAT_CPU_PROGRAM_COUNTER
;
1915 cpu_reg
.inst
= BNX2_TPAT_CPU_INSTRUCTION
;
1916 cpu_reg
.bp
= BNX2_TPAT_CPU_HW_BREAKPOINT
;
1917 cpu_reg
.spad_base
= BNX2_TPAT_SCRATCH
;
1918 cpu_reg
.mips_view_base
= 0x8000000;
1920 fw
.ver_major
= bnx2_TPAT_b06FwReleaseMajor
;
1921 fw
.ver_minor
= bnx2_TPAT_b06FwReleaseMinor
;
1922 fw
.ver_fix
= bnx2_TPAT_b06FwReleaseFix
;
1923 fw
.start_addr
= bnx2_TPAT_b06FwStartAddr
;
1925 fw
.text_addr
= bnx2_TPAT_b06FwTextAddr
;
1926 fw
.text_len
= bnx2_TPAT_b06FwTextLen
;
1928 fw
.text
= bnx2_TPAT_b06FwText
;
1930 fw
.data_addr
= bnx2_TPAT_b06FwDataAddr
;
1931 fw
.data_len
= bnx2_TPAT_b06FwDataLen
;
1933 fw
.data
= bnx2_TPAT_b06FwData
;
1935 fw
.sbss_addr
= bnx2_TPAT_b06FwSbssAddr
;
1936 fw
.sbss_len
= bnx2_TPAT_b06FwSbssLen
;
1938 fw
.sbss
= bnx2_TPAT_b06FwSbss
;
1940 fw
.bss_addr
= bnx2_TPAT_b06FwBssAddr
;
1941 fw
.bss_len
= bnx2_TPAT_b06FwBssLen
;
1943 fw
.bss
= bnx2_TPAT_b06FwBss
;
1945 fw
.rodata_addr
= bnx2_TPAT_b06FwRodataAddr
;
1946 fw
.rodata_len
= bnx2_TPAT_b06FwRodataLen
;
1947 fw
.rodata_index
= 0;
1948 fw
.rodata
= bnx2_TPAT_b06FwRodata
;
1950 load_cpu_fw(bp
, &cpu_reg
, &fw
);
1952 /* Initialize the Completion Processor. */
1953 cpu_reg
.mode
= BNX2_COM_CPU_MODE
;
1954 cpu_reg
.mode_value_halt
= BNX2_COM_CPU_MODE_SOFT_HALT
;
1955 cpu_reg
.mode_value_sstep
= BNX2_COM_CPU_MODE_STEP_ENA
;
1956 cpu_reg
.state
= BNX2_COM_CPU_STATE
;
1957 cpu_reg
.state_value_clear
= 0xffffff;
1958 cpu_reg
.gpr0
= BNX2_COM_CPU_REG_FILE
;
1959 cpu_reg
.evmask
= BNX2_COM_CPU_EVENT_MASK
;
1960 cpu_reg
.pc
= BNX2_COM_CPU_PROGRAM_COUNTER
;
1961 cpu_reg
.inst
= BNX2_COM_CPU_INSTRUCTION
;
1962 cpu_reg
.bp
= BNX2_COM_CPU_HW_BREAKPOINT
;
1963 cpu_reg
.spad_base
= BNX2_COM_SCRATCH
;
1964 cpu_reg
.mips_view_base
= 0x8000000;
1966 fw
.ver_major
= bnx2_COM_b06FwReleaseMajor
;
1967 fw
.ver_minor
= bnx2_COM_b06FwReleaseMinor
;
1968 fw
.ver_fix
= bnx2_COM_b06FwReleaseFix
;
1969 fw
.start_addr
= bnx2_COM_b06FwStartAddr
;
1971 fw
.text_addr
= bnx2_COM_b06FwTextAddr
;
1972 fw
.text_len
= bnx2_COM_b06FwTextLen
;
1974 fw
.text
= bnx2_COM_b06FwText
;
1976 fw
.data_addr
= bnx2_COM_b06FwDataAddr
;
1977 fw
.data_len
= bnx2_COM_b06FwDataLen
;
1979 fw
.data
= bnx2_COM_b06FwData
;
1981 fw
.sbss_addr
= bnx2_COM_b06FwSbssAddr
;
1982 fw
.sbss_len
= bnx2_COM_b06FwSbssLen
;
1984 fw
.sbss
= bnx2_COM_b06FwSbss
;
1986 fw
.bss_addr
= bnx2_COM_b06FwBssAddr
;
1987 fw
.bss_len
= bnx2_COM_b06FwBssLen
;
1989 fw
.bss
= bnx2_COM_b06FwBss
;
1991 fw
.rodata_addr
= bnx2_COM_b06FwRodataAddr
;
1992 fw
.rodata_len
= bnx2_COM_b06FwRodataLen
;
1993 fw
.rodata_index
= 0;
1994 fw
.rodata
= bnx2_COM_b06FwRodata
;
1996 load_cpu_fw(bp
, &cpu_reg
, &fw
);
2001 bnx2_set_power_state(struct bnx2
*bp
, int state
)
2005 pci_read_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
2011 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
2012 (pmcsr
& ~PCI_PM_CTRL_STATE_MASK
) |
2013 PCI_PM_CTRL_PME_STATUS
);
2015 if (pmcsr
& PCI_PM_CTRL_STATE_MASK
)
2016 /* delay required during transition out of D3hot */
2019 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
2020 val
|= BNX2_EMAC_MODE_MPKT_RCVD
| BNX2_EMAC_MODE_ACPI_RCVD
;
2021 val
&= ~BNX2_EMAC_MODE_MPKT
;
2022 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
2024 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
2025 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
2026 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
2037 autoneg
= bp
->autoneg
;
2038 advertising
= bp
->advertising
;
2040 bp
->autoneg
= AUTONEG_SPEED
;
2041 bp
->advertising
= ADVERTISED_10baseT_Half
|
2042 ADVERTISED_10baseT_Full
|
2043 ADVERTISED_100baseT_Half
|
2044 ADVERTISED_100baseT_Full
|
2047 bnx2_setup_copper_phy(bp
);
2049 bp
->autoneg
= autoneg
;
2050 bp
->advertising
= advertising
;
2052 bnx2_set_mac_addr(bp
);
2054 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
2056 /* Enable port mode. */
2057 val
&= ~BNX2_EMAC_MODE_PORT
;
2058 val
|= BNX2_EMAC_MODE_PORT_MII
|
2059 BNX2_EMAC_MODE_MPKT_RCVD
|
2060 BNX2_EMAC_MODE_ACPI_RCVD
|
2061 BNX2_EMAC_MODE_FORCE_LINK
|
2062 BNX2_EMAC_MODE_MPKT
;
2064 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
2066 /* receive all multicast */
2067 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
2068 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
2071 REG_WR(bp
, BNX2_EMAC_RX_MODE
,
2072 BNX2_EMAC_RX_MODE_SORT_MODE
);
2074 val
= 1 | BNX2_RPM_SORT_USER0_BC_EN
|
2075 BNX2_RPM_SORT_USER0_MC_EN
;
2076 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
2077 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
);
2078 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
|
2079 BNX2_RPM_SORT_USER0_ENA
);
2081 /* Need to enable EMAC and RPM for WOL. */
2082 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
2083 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE
|
2084 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE
|
2085 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE
);
2087 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
2088 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
2089 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
2091 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
2094 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
2097 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT3
| wol_msg
);
2099 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
2100 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
2101 (CHIP_ID(bp
) == CHIP_ID_5706_A1
)) {
2110 pmcsr
|= PCI_PM_CTRL_PME_ENABLE
;
2112 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
2115 /* No more memory access after this point until
2116 * device is brought back to D0.
2128 bnx2_acquire_nvram_lock(struct bnx2
*bp
)
2133 /* Request access to the flash interface. */
2134 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_SET2
);
2135 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
2136 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
2137 if (val
& BNX2_NVM_SW_ARB_ARB_ARB2
)
2143 if (j
>= NVRAM_TIMEOUT_COUNT
)
2150 bnx2_release_nvram_lock(struct bnx2
*bp
)
2155 /* Relinquish nvram interface. */
2156 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_CLR2
);
2158 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
2159 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
2160 if (!(val
& BNX2_NVM_SW_ARB_ARB_ARB2
))
2166 if (j
>= NVRAM_TIMEOUT_COUNT
)
2174 bnx2_enable_nvram_write(struct bnx2
*bp
)
2178 val
= REG_RD(bp
, BNX2_MISC_CFG
);
2179 REG_WR(bp
, BNX2_MISC_CFG
, val
| BNX2_MISC_CFG_NVM_WR_EN_PCI
);
2181 if (!bp
->flash_info
->buffered
) {
2184 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
2185 REG_WR(bp
, BNX2_NVM_COMMAND
,
2186 BNX2_NVM_COMMAND_WREN
| BNX2_NVM_COMMAND_DOIT
);
2188 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
2191 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
2192 if (val
& BNX2_NVM_COMMAND_DONE
)
2196 if (j
>= NVRAM_TIMEOUT_COUNT
)
2203 bnx2_disable_nvram_write(struct bnx2
*bp
)
2207 val
= REG_RD(bp
, BNX2_MISC_CFG
);
2208 REG_WR(bp
, BNX2_MISC_CFG
, val
& ~BNX2_MISC_CFG_NVM_WR_EN
);
2213 bnx2_enable_nvram_access(struct bnx2
*bp
)
2217 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
2218 /* Enable both bits, even on read. */
2219 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
2220 val
| BNX2_NVM_ACCESS_ENABLE_EN
| BNX2_NVM_ACCESS_ENABLE_WR_EN
);
2224 bnx2_disable_nvram_access(struct bnx2
*bp
)
2228 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
2229 /* Disable both bits, even after read. */
2230 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
2231 val
& ~(BNX2_NVM_ACCESS_ENABLE_EN
|
2232 BNX2_NVM_ACCESS_ENABLE_WR_EN
));
2236 bnx2_nvram_erase_page(struct bnx2
*bp
, u32 offset
)
2241 if (bp
->flash_info
->buffered
)
2242 /* Buffered flash, no erase needed */
2245 /* Build an erase command */
2246 cmd
= BNX2_NVM_COMMAND_ERASE
| BNX2_NVM_COMMAND_WR
|
2247 BNX2_NVM_COMMAND_DOIT
;
2249 /* Need to clear DONE bit separately. */
2250 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
2252 /* Address of the NVRAM to read from. */
2253 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
2255 /* Issue an erase command. */
2256 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
2258 /* Wait for completion. */
2259 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
2264 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
2265 if (val
& BNX2_NVM_COMMAND_DONE
)
2269 if (j
>= NVRAM_TIMEOUT_COUNT
)
2276 bnx2_nvram_read_dword(struct bnx2
*bp
, u32 offset
, u8
*ret_val
, u32 cmd_flags
)
2281 /* Build the command word. */
2282 cmd
= BNX2_NVM_COMMAND_DOIT
| cmd_flags
;
2284 /* Calculate an offset of a buffered flash. */
2285 if (bp
->flash_info
->buffered
) {
2286 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
2287 bp
->flash_info
->page_bits
) +
2288 (offset
% bp
->flash_info
->page_size
);
2291 /* Need to clear DONE bit separately. */
2292 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
2294 /* Address of the NVRAM to read from. */
2295 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
2297 /* Issue a read command. */
2298 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
2300 /* Wait for completion. */
2301 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
2306 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
2307 if (val
& BNX2_NVM_COMMAND_DONE
) {
2308 val
= REG_RD(bp
, BNX2_NVM_READ
);
2310 val
= be32_to_cpu(val
);
2311 memcpy(ret_val
, &val
, 4);
2315 if (j
>= NVRAM_TIMEOUT_COUNT
)
2323 bnx2_nvram_write_dword(struct bnx2
*bp
, u32 offset
, u8
*val
, u32 cmd_flags
)
2328 /* Build the command word. */
2329 cmd
= BNX2_NVM_COMMAND_DOIT
| BNX2_NVM_COMMAND_WR
| cmd_flags
;
2331 /* Calculate an offset of a buffered flash. */
2332 if (bp
->flash_info
->buffered
) {
2333 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
2334 bp
->flash_info
->page_bits
) +
2335 (offset
% bp
->flash_info
->page_size
);
2338 /* Need to clear DONE bit separately. */
2339 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
2341 memcpy(&val32
, val
, 4);
2342 val32
= cpu_to_be32(val32
);
2344 /* Write the data. */
2345 REG_WR(bp
, BNX2_NVM_WRITE
, val32
);
2347 /* Address of the NVRAM to write to. */
2348 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
2350 /* Issue the write command. */
2351 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
2353 /* Wait for completion. */
2354 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
2357 if (REG_RD(bp
, BNX2_NVM_COMMAND
) & BNX2_NVM_COMMAND_DONE
)
2360 if (j
>= NVRAM_TIMEOUT_COUNT
)
2367 bnx2_init_nvram(struct bnx2
*bp
)
2370 int j
, entry_count
, rc
;
2371 struct flash_spec
*flash
;
2373 /* Determine the selected interface. */
2374 val
= REG_RD(bp
, BNX2_NVM_CFG1
);
2376 entry_count
= sizeof(flash_table
) / sizeof(struct flash_spec
);
2379 if (val
& 0x40000000) {
2381 /* Flash interface has been reconfigured */
2382 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
2385 if (val
== flash
->config1
) {
2386 bp
->flash_info
= flash
;
2392 /* Not yet been reconfigured */
2394 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
2397 if ((val
& FLASH_STRAP_MASK
) == flash
->strapping
) {
2398 bp
->flash_info
= flash
;
2400 /* Request access to the flash interface. */
2401 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
2404 /* Enable access to flash interface */
2405 bnx2_enable_nvram_access(bp
);
2407 /* Reconfigure the flash interface */
2408 REG_WR(bp
, BNX2_NVM_CFG1
, flash
->config1
);
2409 REG_WR(bp
, BNX2_NVM_CFG2
, flash
->config2
);
2410 REG_WR(bp
, BNX2_NVM_CFG3
, flash
->config3
);
2411 REG_WR(bp
, BNX2_NVM_WRITE1
, flash
->write1
);
2413 /* Disable access to flash interface */
2414 bnx2_disable_nvram_access(bp
);
2415 bnx2_release_nvram_lock(bp
);
2420 } /* if (val & 0x40000000) */
2422 if (j
== entry_count
) {
2423 bp
->flash_info
= NULL
;
2424 printk(KERN_ALERT
"Unknown flash/EEPROM type.\n");
2432 bnx2_nvram_read(struct bnx2
*bp
, u32 offset
, u8
*ret_buf
,
2436 u32 cmd_flags
, offset32
, len32
, extra
;
2441 /* Request access to the flash interface. */
2442 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
2445 /* Enable access to flash interface */
2446 bnx2_enable_nvram_access(bp
);
2459 pre_len
= 4 - (offset
& 3);
2461 if (pre_len
>= len32
) {
2463 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
2464 BNX2_NVM_COMMAND_LAST
;
2467 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
2470 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
2475 memcpy(ret_buf
, buf
+ (offset
& 3), pre_len
);
2482 extra
= 4 - (len32
& 3);
2483 len32
= (len32
+ 4) & ~3;
2490 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
2492 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
2493 BNX2_NVM_COMMAND_LAST
;
2495 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
2497 memcpy(ret_buf
, buf
, 4 - extra
);
2499 else if (len32
> 0) {
2502 /* Read the first word. */
2506 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
2508 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, cmd_flags
);
2510 /* Advance to the next dword. */
2515 while (len32
> 4 && rc
== 0) {
2516 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, 0);
2518 /* Advance to the next dword. */
2527 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
2528 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
2530 memcpy(ret_buf
, buf
, 4 - extra
);
2533 /* Disable access to flash interface */
2534 bnx2_disable_nvram_access(bp
);
2536 bnx2_release_nvram_lock(bp
);
2542 bnx2_nvram_write(struct bnx2
*bp
, u32 offset
, u8
*data_buf
,
2545 u32 written
, offset32
, len32
;
2546 u8
*buf
, start
[4], end
[4];
2548 int align_start
, align_end
;
2553 align_start
= align_end
= 0;
2555 if ((align_start
= (offset32
& 3))) {
2557 len32
+= align_start
;
2558 if ((rc
= bnx2_nvram_read(bp
, offset32
, start
, 4)))
2563 if ((len32
> 4) || !align_start
) {
2564 align_end
= 4 - (len32
& 3);
2566 if ((rc
= bnx2_nvram_read(bp
, offset32
+ len32
- 4,
2573 if (align_start
|| align_end
) {
2574 buf
= kmalloc(len32
, GFP_KERNEL
);
2578 memcpy(buf
, start
, 4);
2581 memcpy(buf
+ len32
- 4, end
, 4);
2583 memcpy(buf
+ align_start
, data_buf
, buf_size
);
2587 while ((written
< len32
) && (rc
== 0)) {
2588 u32 page_start
, page_end
, data_start
, data_end
;
2589 u32 addr
, cmd_flags
;
2591 u8 flash_buffer
[264];
2593 /* Find the page_start addr */
2594 page_start
= offset32
+ written
;
2595 page_start
-= (page_start
% bp
->flash_info
->page_size
);
2596 /* Find the page_end addr */
2597 page_end
= page_start
+ bp
->flash_info
->page_size
;
2598 /* Find the data_start addr */
2599 data_start
= (written
== 0) ? offset32
: page_start
;
2600 /* Find the data_end addr */
2601 data_end
= (page_end
> offset32
+ len32
) ?
2602 (offset32
+ len32
) : page_end
;
2604 /* Request access to the flash interface. */
2605 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
2606 goto nvram_write_end
;
2608 /* Enable access to flash interface */
2609 bnx2_enable_nvram_access(bp
);
2611 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
2612 if (bp
->flash_info
->buffered
== 0) {
2615 /* Read the whole page into the buffer
2616 * (non-buffer flash only) */
2617 for (j
= 0; j
< bp
->flash_info
->page_size
; j
+= 4) {
2618 if (j
== (bp
->flash_info
->page_size
- 4)) {
2619 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
2621 rc
= bnx2_nvram_read_dword(bp
,
2627 goto nvram_write_end
;
2633 /* Enable writes to flash interface (unlock write-protect) */
2634 if ((rc
= bnx2_enable_nvram_write(bp
)) != 0)
2635 goto nvram_write_end
;
2637 /* Erase the page */
2638 if ((rc
= bnx2_nvram_erase_page(bp
, page_start
)) != 0)
2639 goto nvram_write_end
;
2641 /* Re-enable the write again for the actual write */
2642 bnx2_enable_nvram_write(bp
);
2644 /* Loop to write back the buffer data from page_start to
2647 if (bp
->flash_info
->buffered
== 0) {
2648 for (addr
= page_start
; addr
< data_start
;
2649 addr
+= 4, i
+= 4) {
2651 rc
= bnx2_nvram_write_dword(bp
, addr
,
2652 &flash_buffer
[i
], cmd_flags
);
2655 goto nvram_write_end
;
2661 /* Loop to write the new data from data_start to data_end */
2662 for (addr
= data_start
; addr
< data_end
; addr
+= 4, i
++) {
2663 if ((addr
== page_end
- 4) ||
2664 ((bp
->flash_info
->buffered
) &&
2665 (addr
== data_end
- 4))) {
2667 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
2669 rc
= bnx2_nvram_write_dword(bp
, addr
, buf
,
2673 goto nvram_write_end
;
2679 /* Loop to write back the buffer data from data_end
2681 if (bp
->flash_info
->buffered
== 0) {
2682 for (addr
= data_end
; addr
< page_end
;
2683 addr
+= 4, i
+= 4) {
2685 if (addr
== page_end
-4) {
2686 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
2688 rc
= bnx2_nvram_write_dword(bp
, addr
,
2689 &flash_buffer
[i
], cmd_flags
);
2692 goto nvram_write_end
;
2698 /* Disable writes to flash interface (lock write-protect) */
2699 bnx2_disable_nvram_write(bp
);
2701 /* Disable access to flash interface */
2702 bnx2_disable_nvram_access(bp
);
2703 bnx2_release_nvram_lock(bp
);
2705 /* Increment written */
2706 written
+= data_end
- data_start
;
2710 if (align_start
|| align_end
)
2716 bnx2_reset_chip(struct bnx2
*bp
, u32 reset_code
)
2721 /* Wait for the current PCI transaction to complete before
2722 * issuing a reset. */
2723 REG_WR(bp
, BNX2_MISC_ENABLE_CLR_BITS
,
2724 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE
|
2725 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE
|
2726 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE
|
2727 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE
);
2728 val
= REG_RD(bp
, BNX2_MISC_ENABLE_CLR_BITS
);
2731 /* Deposit a driver reset signature so the firmware knows that
2732 * this is a soft reset. */
2733 REG_WR_IND(bp
, HOST_VIEW_SHMEM_BASE
+ BNX2_DRV_RESET_SIGNATURE
,
2734 BNX2_DRV_RESET_SIGNATURE_MAGIC
);
2736 bp
->fw_timed_out
= 0;
2738 /* Wait for the firmware to tell us it is ok to issue a reset. */
2739 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT0
| reset_code
);
2741 /* Do a dummy read to force the chip to complete all current transaction
2742 * before we issue a reset. */
2743 val
= REG_RD(bp
, BNX2_MISC_ID
);
2745 val
= BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
2746 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
2747 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
2750 REG_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
2752 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
2753 (CHIP_ID(bp
) == CHIP_ID_5706_A1
))
2756 /* Reset takes approximate 30 usec */
2757 for (i
= 0; i
< 10; i
++) {
2758 val
= REG_RD(bp
, BNX2_PCICFG_MISC_CONFIG
);
2759 if ((val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
2760 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) == 0) {
2766 if (val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
2767 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) {
2768 printk(KERN_ERR PFX
"Chip reset did not complete\n");
2772 /* Make sure byte swapping is properly configured. */
2773 val
= REG_RD(bp
, BNX2_PCI_SWAP_DIAG0
);
2774 if (val
!= 0x01020304) {
2775 printk(KERN_ERR PFX
"Chip not in correct endian mode\n");
2779 bp
->fw_timed_out
= 0;
2781 /* Wait for the firmware to finish its initialization. */
2782 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT1
| reset_code
);
2784 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
2785 /* Adjust the voltage regular to two steps lower. The default
2786 * of this register is 0x0000000e. */
2787 REG_WR(bp
, BNX2_MISC_VREG_CONTROL
, 0x000000fa);
2789 /* Remove bad rbuf memory from the free pool. */
2790 rc
= bnx2_alloc_bad_rbuf(bp
);
2797 bnx2_init_chip(struct bnx2
*bp
)
2801 /* Make sure the interrupt is not active. */
2802 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
2804 val
= BNX2_DMA_CONFIG_DATA_BYTE_SWAP
|
2805 BNX2_DMA_CONFIG_DATA_WORD_SWAP
|
2807 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP
|
2809 BNX2_DMA_CONFIG_CNTL_WORD_SWAP
|
2810 DMA_READ_CHANS
<< 12 |
2811 DMA_WRITE_CHANS
<< 16;
2813 val
|= (0x2 << 20) | (1 << 11);
2815 if ((bp
->flags
& PCIX_FLAG
) && (bp
->bus_speed_mhz
= 133))
2818 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) &&
2819 (CHIP_ID(bp
) != CHIP_ID_5706_A0
) && !(bp
->flags
& PCIX_FLAG
))
2820 val
|= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA
;
2822 REG_WR(bp
, BNX2_DMA_CONFIG
, val
);
2824 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
2825 val
= REG_RD(bp
, BNX2_TDMA_CONFIG
);
2826 val
|= BNX2_TDMA_CONFIG_ONE_DMA
;
2827 REG_WR(bp
, BNX2_TDMA_CONFIG
, val
);
2830 if (bp
->flags
& PCIX_FLAG
) {
2833 pci_read_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
2835 pci_write_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
2836 val16
& ~PCI_X_CMD_ERO
);
2839 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
2840 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE
|
2841 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE
|
2842 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE
);
2844 /* Initialize context mapping and zero out the quick contexts. The
2845 * context block must have already been enabled. */
2846 bnx2_init_context(bp
);
2849 bnx2_init_nvram(bp
);
2851 bnx2_set_mac_addr(bp
);
2853 val
= REG_RD(bp
, BNX2_MQ_CONFIG
);
2854 val
&= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE
;
2855 val
|= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256
;
2856 REG_WR(bp
, BNX2_MQ_CONFIG
, val
);
2858 val
= 0x10000 + (MAX_CID_CNT
* MB_KERNEL_CTX_SIZE
);
2859 REG_WR(bp
, BNX2_MQ_KNL_BYP_WIND_START
, val
);
2860 REG_WR(bp
, BNX2_MQ_KNL_WIND_END
, val
);
2862 val
= (BCM_PAGE_BITS
- 8) << 24;
2863 REG_WR(bp
, BNX2_RV2P_CONFIG
, val
);
2865 /* Configure page size. */
2866 val
= REG_RD(bp
, BNX2_TBDR_CONFIG
);
2867 val
&= ~BNX2_TBDR_CONFIG_PAGE_SIZE
;
2868 val
|= (BCM_PAGE_BITS
- 8) << 24 | 0x40;
2869 REG_WR(bp
, BNX2_TBDR_CONFIG
, val
);
2871 val
= bp
->mac_addr
[0] +
2872 (bp
->mac_addr
[1] << 8) +
2873 (bp
->mac_addr
[2] << 16) +
2875 (bp
->mac_addr
[4] << 8) +
2876 (bp
->mac_addr
[5] << 16);
2877 REG_WR(bp
, BNX2_EMAC_BACKOFF_SEED
, val
);
2879 /* Program the MTU. Also include 4 bytes for CRC32. */
2880 val
= bp
->dev
->mtu
+ ETH_HLEN
+ 4;
2881 if (val
> (MAX_ETHERNET_PACKET_SIZE
+ 4))
2882 val
|= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA
;
2883 REG_WR(bp
, BNX2_EMAC_RX_MTU_SIZE
, val
);
2885 bp
->last_status_idx
= 0;
2886 bp
->rx_mode
= BNX2_EMAC_RX_MODE_SORT_MODE
;
2888 /* Set up how to generate a link change interrupt. */
2889 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
2891 REG_WR(bp
, BNX2_HC_STATUS_ADDR_L
,
2892 (u64
) bp
->status_blk_mapping
& 0xffffffff);
2893 REG_WR(bp
, BNX2_HC_STATUS_ADDR_H
, (u64
) bp
->status_blk_mapping
>> 32);
2895 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_L
,
2896 (u64
) bp
->stats_blk_mapping
& 0xffffffff);
2897 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_H
,
2898 (u64
) bp
->stats_blk_mapping
>> 32);
2900 REG_WR(bp
, BNX2_HC_TX_QUICK_CONS_TRIP
,
2901 (bp
->tx_quick_cons_trip_int
<< 16) | bp
->tx_quick_cons_trip
);
2903 REG_WR(bp
, BNX2_HC_RX_QUICK_CONS_TRIP
,
2904 (bp
->rx_quick_cons_trip_int
<< 16) | bp
->rx_quick_cons_trip
);
2906 REG_WR(bp
, BNX2_HC_COMP_PROD_TRIP
,
2907 (bp
->comp_prod_trip_int
<< 16) | bp
->comp_prod_trip
);
2909 REG_WR(bp
, BNX2_HC_TX_TICKS
, (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
2911 REG_WR(bp
, BNX2_HC_RX_TICKS
, (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
2913 REG_WR(bp
, BNX2_HC_COM_TICKS
,
2914 (bp
->com_ticks_int
<< 16) | bp
->com_ticks
);
2916 REG_WR(bp
, BNX2_HC_CMD_TICKS
,
2917 (bp
->cmd_ticks_int
<< 16) | bp
->cmd_ticks
);
2919 REG_WR(bp
, BNX2_HC_STATS_TICKS
, bp
->stats_ticks
& 0xffff00);
2920 REG_WR(bp
, BNX2_HC_STAT_COLLECT_TICKS
, 0xbb8); /* 3ms */
2922 if (CHIP_ID(bp
) == CHIP_ID_5706_A1
)
2923 REG_WR(bp
, BNX2_HC_CONFIG
, BNX2_HC_CONFIG_COLLECT_STATS
);
2925 REG_WR(bp
, BNX2_HC_CONFIG
, BNX2_HC_CONFIG_RX_TMR_MODE
|
2926 BNX2_HC_CONFIG_TX_TMR_MODE
|
2927 BNX2_HC_CONFIG_COLLECT_STATS
);
2930 /* Clear internal stats counters. */
2931 REG_WR(bp
, BNX2_HC_COMMAND
, BNX2_HC_COMMAND_CLR_STAT_NOW
);
2933 REG_WR(bp
, BNX2_HC_ATTN_BITS_ENABLE
, STATUS_ATTN_BITS_LINK_STATE
);
2935 /* Initialize the receive filter. */
2936 bnx2_set_rx_mode(bp
->dev
);
2938 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT2
| BNX2_DRV_MSG_CODE_RESET
);
2940 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
, 0x5ffffff);
2941 REG_RD(bp
, BNX2_MISC_ENABLE_SET_BITS
);
2950 bnx2_init_tx_ring(struct bnx2
*bp
)
2955 txbd
= &bp
->tx_desc_ring
[MAX_TX_DESC_CNT
];
2957 txbd
->tx_bd_haddr_hi
= (u64
) bp
->tx_desc_mapping
>> 32;
2958 txbd
->tx_bd_haddr_lo
= (u64
) bp
->tx_desc_mapping
& 0xffffffff;
2962 bp
->tx_prod_bseq
= 0;
2963 atomic_set(&bp
->tx_avail_bd
, bp
->tx_ring_size
);
2965 val
= BNX2_L2CTX_TYPE_TYPE_L2
;
2966 val
|= BNX2_L2CTX_TYPE_SIZE_L2
;
2967 CTX_WR(bp
, GET_CID_ADDR(TX_CID
), BNX2_L2CTX_TYPE
, val
);
2969 val
= BNX2_L2CTX_CMD_TYPE_TYPE_L2
;
2971 CTX_WR(bp
, GET_CID_ADDR(TX_CID
), BNX2_L2CTX_CMD_TYPE
, val
);
2973 val
= (u64
) bp
->tx_desc_mapping
>> 32;
2974 CTX_WR(bp
, GET_CID_ADDR(TX_CID
), BNX2_L2CTX_TBDR_BHADDR_HI
, val
);
2976 val
= (u64
) bp
->tx_desc_mapping
& 0xffffffff;
2977 CTX_WR(bp
, GET_CID_ADDR(TX_CID
), BNX2_L2CTX_TBDR_BHADDR_LO
, val
);
2981 bnx2_init_rx_ring(struct bnx2
*bp
)
2985 u16 prod
, ring_prod
;
2988 /* 8 for CRC and VLAN */
2989 bp
->rx_buf_use_size
= bp
->dev
->mtu
+ ETH_HLEN
+ bp
->rx_offset
+ 8;
2990 /* 8 for alignment */
2991 bp
->rx_buf_size
= bp
->rx_buf_use_size
+ 8;
2993 ring_prod
= prod
= bp
->rx_prod
= 0;
2995 bp
->rx_prod_bseq
= 0;
2997 rxbd
= &bp
->rx_desc_ring
[0];
2998 for (i
= 0; i
< MAX_RX_DESC_CNT
; i
++, rxbd
++) {
2999 rxbd
->rx_bd_len
= bp
->rx_buf_use_size
;
3000 rxbd
->rx_bd_flags
= RX_BD_FLAGS_START
| RX_BD_FLAGS_END
;
3003 rxbd
->rx_bd_haddr_hi
= (u64
) bp
->rx_desc_mapping
>> 32;
3004 rxbd
->rx_bd_haddr_lo
= (u64
) bp
->rx_desc_mapping
& 0xffffffff;
3006 val
= BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE
;
3007 val
|= BNX2_L2CTX_CTX_TYPE_SIZE_L2
;
3009 CTX_WR(bp
, GET_CID_ADDR(RX_CID
), BNX2_L2CTX_CTX_TYPE
, val
);
3011 val
= (u64
) bp
->rx_desc_mapping
>> 32;
3012 CTX_WR(bp
, GET_CID_ADDR(RX_CID
), BNX2_L2CTX_NX_BDHADDR_HI
, val
);
3014 val
= (u64
) bp
->rx_desc_mapping
& 0xffffffff;
3015 CTX_WR(bp
, GET_CID_ADDR(RX_CID
), BNX2_L2CTX_NX_BDHADDR_LO
, val
);
3017 for ( ;ring_prod
< bp
->rx_ring_size
; ) {
3018 if (bnx2_alloc_rx_skb(bp
, ring_prod
) < 0) {
3021 prod
= NEXT_RX_BD(prod
);
3022 ring_prod
= RX_RING_IDX(prod
);
3026 REG_WR16(bp
, MB_RX_CID_ADDR
+ BNX2_L2CTX_HOST_BDIDX
, prod
);
3028 REG_WR(bp
, MB_RX_CID_ADDR
+ BNX2_L2CTX_HOST_BSEQ
, bp
->rx_prod_bseq
);
3032 bnx2_free_tx_skbs(struct bnx2
*bp
)
3036 if (bp
->tx_buf_ring
== NULL
)
3039 for (i
= 0; i
< TX_DESC_CNT
; ) {
3040 struct sw_bd
*tx_buf
= &bp
->tx_buf_ring
[i
];
3041 struct sk_buff
*skb
= tx_buf
->skb
;
3049 pci_unmap_single(bp
->pdev
, pci_unmap_addr(tx_buf
, mapping
),
3050 skb_headlen(skb
), PCI_DMA_TODEVICE
);
3054 last
= skb_shinfo(skb
)->nr_frags
;
3055 for (j
= 0; j
< last
; j
++) {
3056 tx_buf
= &bp
->tx_buf_ring
[i
+ j
+ 1];
3057 pci_unmap_page(bp
->pdev
,
3058 pci_unmap_addr(tx_buf
, mapping
),
3059 skb_shinfo(skb
)->frags
[j
].size
,
3062 dev_kfree_skb_any(skb
);
3069 bnx2_free_rx_skbs(struct bnx2
*bp
)
3073 if (bp
->rx_buf_ring
== NULL
)
3076 for (i
= 0; i
< RX_DESC_CNT
; i
++) {
3077 struct sw_bd
*rx_buf
= &bp
->rx_buf_ring
[i
];
3078 struct sk_buff
*skb
= rx_buf
->skb
;
3083 pci_unmap_single(bp
->pdev
, pci_unmap_addr(rx_buf
, mapping
),
3084 bp
->rx_buf_use_size
, PCI_DMA_FROMDEVICE
);
3088 dev_kfree_skb_any(skb
);
3093 bnx2_free_skbs(struct bnx2
*bp
)
3095 bnx2_free_tx_skbs(bp
);
3096 bnx2_free_rx_skbs(bp
);
3100 bnx2_reset_nic(struct bnx2
*bp
, u32 reset_code
)
3104 rc
= bnx2_reset_chip(bp
, reset_code
);
3110 bnx2_init_tx_ring(bp
);
3111 bnx2_init_rx_ring(bp
);
3116 bnx2_init_nic(struct bnx2
*bp
)
3120 if ((rc
= bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
)) != 0)
3129 bnx2_test_registers(struct bnx2
*bp
)
3139 { 0x006c, 0, 0x00000000, 0x0000003f },
3140 { 0x0090, 0, 0xffffffff, 0x00000000 },
3141 { 0x0094, 0, 0x00000000, 0x00000000 },
3143 { 0x0404, 0, 0x00003f00, 0x00000000 },
3144 { 0x0418, 0, 0x00000000, 0xffffffff },
3145 { 0x041c, 0, 0x00000000, 0xffffffff },
3146 { 0x0420, 0, 0x00000000, 0x80ffffff },
3147 { 0x0424, 0, 0x00000000, 0x00000000 },
3148 { 0x0428, 0, 0x00000000, 0x00000001 },
3149 { 0x0450, 0, 0x00000000, 0x0000ffff },
3150 { 0x0454, 0, 0x00000000, 0xffffffff },
3151 { 0x0458, 0, 0x00000000, 0xffffffff },
3153 { 0x0808, 0, 0x00000000, 0xffffffff },
3154 { 0x0854, 0, 0x00000000, 0xffffffff },
3155 { 0x0868, 0, 0x00000000, 0x77777777 },
3156 { 0x086c, 0, 0x00000000, 0x77777777 },
3157 { 0x0870, 0, 0x00000000, 0x77777777 },
3158 { 0x0874, 0, 0x00000000, 0x77777777 },
3160 { 0x0c00, 0, 0x00000000, 0x00000001 },
3161 { 0x0c04, 0, 0x00000000, 0x03ff0001 },
3162 { 0x0c08, 0, 0x0f0ff073, 0x00000000 },
3163 { 0x0c0c, 0, 0x00ffffff, 0x00000000 },
3164 { 0x0c30, 0, 0x00000000, 0xffffffff },
3165 { 0x0c34, 0, 0x00000000, 0xffffffff },
3166 { 0x0c38, 0, 0x00000000, 0xffffffff },
3167 { 0x0c3c, 0, 0x00000000, 0xffffffff },
3168 { 0x0c40, 0, 0x00000000, 0xffffffff },
3169 { 0x0c44, 0, 0x00000000, 0xffffffff },
3170 { 0x0c48, 0, 0x00000000, 0x0007ffff },
3171 { 0x0c4c, 0, 0x00000000, 0xffffffff },
3172 { 0x0c50, 0, 0x00000000, 0xffffffff },
3173 { 0x0c54, 0, 0x00000000, 0xffffffff },
3174 { 0x0c58, 0, 0x00000000, 0xffffffff },
3175 { 0x0c5c, 0, 0x00000000, 0xffffffff },
3176 { 0x0c60, 0, 0x00000000, 0xffffffff },
3177 { 0x0c64, 0, 0x00000000, 0xffffffff },
3178 { 0x0c68, 0, 0x00000000, 0xffffffff },
3179 { 0x0c6c, 0, 0x00000000, 0xffffffff },
3180 { 0x0c70, 0, 0x00000000, 0xffffffff },
3181 { 0x0c74, 0, 0x00000000, 0xffffffff },
3182 { 0x0c78, 0, 0x00000000, 0xffffffff },
3183 { 0x0c7c, 0, 0x00000000, 0xffffffff },
3184 { 0x0c80, 0, 0x00000000, 0xffffffff },
3185 { 0x0c84, 0, 0x00000000, 0xffffffff },
3186 { 0x0c88, 0, 0x00000000, 0xffffffff },
3187 { 0x0c8c, 0, 0x00000000, 0xffffffff },
3188 { 0x0c90, 0, 0x00000000, 0xffffffff },
3189 { 0x0c94, 0, 0x00000000, 0xffffffff },
3190 { 0x0c98, 0, 0x00000000, 0xffffffff },
3191 { 0x0c9c, 0, 0x00000000, 0xffffffff },
3192 { 0x0ca0, 0, 0x00000000, 0xffffffff },
3193 { 0x0ca4, 0, 0x00000000, 0xffffffff },
3194 { 0x0ca8, 0, 0x00000000, 0x0007ffff },
3195 { 0x0cac, 0, 0x00000000, 0xffffffff },
3196 { 0x0cb0, 0, 0x00000000, 0xffffffff },
3197 { 0x0cb4, 0, 0x00000000, 0xffffffff },
3198 { 0x0cb8, 0, 0x00000000, 0xffffffff },
3199 { 0x0cbc, 0, 0x00000000, 0xffffffff },
3200 { 0x0cc0, 0, 0x00000000, 0xffffffff },
3201 { 0x0cc4, 0, 0x00000000, 0xffffffff },
3202 { 0x0cc8, 0, 0x00000000, 0xffffffff },
3203 { 0x0ccc, 0, 0x00000000, 0xffffffff },
3204 { 0x0cd0, 0, 0x00000000, 0xffffffff },
3205 { 0x0cd4, 0, 0x00000000, 0xffffffff },
3206 { 0x0cd8, 0, 0x00000000, 0xffffffff },
3207 { 0x0cdc, 0, 0x00000000, 0xffffffff },
3208 { 0x0ce0, 0, 0x00000000, 0xffffffff },
3209 { 0x0ce4, 0, 0x00000000, 0xffffffff },
3210 { 0x0ce8, 0, 0x00000000, 0xffffffff },
3211 { 0x0cec, 0, 0x00000000, 0xffffffff },
3212 { 0x0cf0, 0, 0x00000000, 0xffffffff },
3213 { 0x0cf4, 0, 0x00000000, 0xffffffff },
3214 { 0x0cf8, 0, 0x00000000, 0xffffffff },
3215 { 0x0cfc, 0, 0x00000000, 0xffffffff },
3216 { 0x0d00, 0, 0x00000000, 0xffffffff },
3217 { 0x0d04, 0, 0x00000000, 0xffffffff },
3219 { 0x1000, 0, 0x00000000, 0x00000001 },
3220 { 0x1004, 0, 0x00000000, 0x000f0001 },
3221 { 0x1044, 0, 0x00000000, 0xffc003ff },
3222 { 0x1080, 0, 0x00000000, 0x0001ffff },
3223 { 0x1084, 0, 0x00000000, 0xffffffff },
3224 { 0x1088, 0, 0x00000000, 0xffffffff },
3225 { 0x108c, 0, 0x00000000, 0xffffffff },
3226 { 0x1090, 0, 0x00000000, 0xffffffff },
3227 { 0x1094, 0, 0x00000000, 0xffffffff },
3228 { 0x1098, 0, 0x00000000, 0xffffffff },
3229 { 0x109c, 0, 0x00000000, 0xffffffff },
3230 { 0x10a0, 0, 0x00000000, 0xffffffff },
3232 { 0x1408, 0, 0x01c00800, 0x00000000 },
3233 { 0x149c, 0, 0x8000ffff, 0x00000000 },
3234 { 0x14a8, 0, 0x00000000, 0x000001ff },
3235 { 0x14ac, 0, 0x4fffffff, 0x10000000 },
3236 { 0x14b0, 0, 0x00000002, 0x00000001 },
3237 { 0x14b8, 0, 0x00000000, 0x00000000 },
3238 { 0x14c0, 0, 0x00000000, 0x00000009 },
3239 { 0x14c4, 0, 0x00003fff, 0x00000000 },
3240 { 0x14cc, 0, 0x00000000, 0x00000001 },
3241 { 0x14d0, 0, 0xffffffff, 0x00000000 },
3242 { 0x1500, 0, 0x00000000, 0xffffffff },
3243 { 0x1504, 0, 0x00000000, 0xffffffff },
3244 { 0x1508, 0, 0x00000000, 0xffffffff },
3245 { 0x150c, 0, 0x00000000, 0xffffffff },
3246 { 0x1510, 0, 0x00000000, 0xffffffff },
3247 { 0x1514, 0, 0x00000000, 0xffffffff },
3248 { 0x1518, 0, 0x00000000, 0xffffffff },
3249 { 0x151c, 0, 0x00000000, 0xffffffff },
3250 { 0x1520, 0, 0x00000000, 0xffffffff },
3251 { 0x1524, 0, 0x00000000, 0xffffffff },
3252 { 0x1528, 0, 0x00000000, 0xffffffff },
3253 { 0x152c, 0, 0x00000000, 0xffffffff },
3254 { 0x1530, 0, 0x00000000, 0xffffffff },
3255 { 0x1534, 0, 0x00000000, 0xffffffff },
3256 { 0x1538, 0, 0x00000000, 0xffffffff },
3257 { 0x153c, 0, 0x00000000, 0xffffffff },
3258 { 0x1540, 0, 0x00000000, 0xffffffff },
3259 { 0x1544, 0, 0x00000000, 0xffffffff },
3260 { 0x1548, 0, 0x00000000, 0xffffffff },
3261 { 0x154c, 0, 0x00000000, 0xffffffff },
3262 { 0x1550, 0, 0x00000000, 0xffffffff },
3263 { 0x1554, 0, 0x00000000, 0xffffffff },
3264 { 0x1558, 0, 0x00000000, 0xffffffff },
3265 { 0x1600, 0, 0x00000000, 0xffffffff },
3266 { 0x1604, 0, 0x00000000, 0xffffffff },
3267 { 0x1608, 0, 0x00000000, 0xffffffff },
3268 { 0x160c, 0, 0x00000000, 0xffffffff },
3269 { 0x1610, 0, 0x00000000, 0xffffffff },
3270 { 0x1614, 0, 0x00000000, 0xffffffff },
3271 { 0x1618, 0, 0x00000000, 0xffffffff },
3272 { 0x161c, 0, 0x00000000, 0xffffffff },
3273 { 0x1620, 0, 0x00000000, 0xffffffff },
3274 { 0x1624, 0, 0x00000000, 0xffffffff },
3275 { 0x1628, 0, 0x00000000, 0xffffffff },
3276 { 0x162c, 0, 0x00000000, 0xffffffff },
3277 { 0x1630, 0, 0x00000000, 0xffffffff },
3278 { 0x1634, 0, 0x00000000, 0xffffffff },
3279 { 0x1638, 0, 0x00000000, 0xffffffff },
3280 { 0x163c, 0, 0x00000000, 0xffffffff },
3281 { 0x1640, 0, 0x00000000, 0xffffffff },
3282 { 0x1644, 0, 0x00000000, 0xffffffff },
3283 { 0x1648, 0, 0x00000000, 0xffffffff },
3284 { 0x164c, 0, 0x00000000, 0xffffffff },
3285 { 0x1650, 0, 0x00000000, 0xffffffff },
3286 { 0x1654, 0, 0x00000000, 0xffffffff },
3288 { 0x1800, 0, 0x00000000, 0x00000001 },
3289 { 0x1804, 0, 0x00000000, 0x00000003 },
3290 { 0x1840, 0, 0x00000000, 0xffffffff },
3291 { 0x1844, 0, 0x00000000, 0xffffffff },
3292 { 0x1848, 0, 0x00000000, 0xffffffff },
3293 { 0x184c, 0, 0x00000000, 0xffffffff },
3294 { 0x1850, 0, 0x00000000, 0xffffffff },
3295 { 0x1900, 0, 0x7ffbffff, 0x00000000 },
3296 { 0x1904, 0, 0xffffffff, 0x00000000 },
3297 { 0x190c, 0, 0xffffffff, 0x00000000 },
3298 { 0x1914, 0, 0xffffffff, 0x00000000 },
3299 { 0x191c, 0, 0xffffffff, 0x00000000 },
3300 { 0x1924, 0, 0xffffffff, 0x00000000 },
3301 { 0x192c, 0, 0xffffffff, 0x00000000 },
3302 { 0x1934, 0, 0xffffffff, 0x00000000 },
3303 { 0x193c, 0, 0xffffffff, 0x00000000 },
3304 { 0x1944, 0, 0xffffffff, 0x00000000 },
3305 { 0x194c, 0, 0xffffffff, 0x00000000 },
3306 { 0x1954, 0, 0xffffffff, 0x00000000 },
3307 { 0x195c, 0, 0xffffffff, 0x00000000 },
3308 { 0x1964, 0, 0xffffffff, 0x00000000 },
3309 { 0x196c, 0, 0xffffffff, 0x00000000 },
3310 { 0x1974, 0, 0xffffffff, 0x00000000 },
3311 { 0x197c, 0, 0xffffffff, 0x00000000 },
3312 { 0x1980, 0, 0x0700ffff, 0x00000000 },
3314 { 0x1c00, 0, 0x00000000, 0x00000001 },
3315 { 0x1c04, 0, 0x00000000, 0x00000003 },
3316 { 0x1c08, 0, 0x0000000f, 0x00000000 },
3317 { 0x1c40, 0, 0x00000000, 0xffffffff },
3318 { 0x1c44, 0, 0x00000000, 0xffffffff },
3319 { 0x1c48, 0, 0x00000000, 0xffffffff },
3320 { 0x1c4c, 0, 0x00000000, 0xffffffff },
3321 { 0x1c50, 0, 0x00000000, 0xffffffff },
3322 { 0x1d00, 0, 0x7ffbffff, 0x00000000 },
3323 { 0x1d04, 0, 0xffffffff, 0x00000000 },
3324 { 0x1d0c, 0, 0xffffffff, 0x00000000 },
3325 { 0x1d14, 0, 0xffffffff, 0x00000000 },
3326 { 0x1d1c, 0, 0xffffffff, 0x00000000 },
3327 { 0x1d24, 0, 0xffffffff, 0x00000000 },
3328 { 0x1d2c, 0, 0xffffffff, 0x00000000 },
3329 { 0x1d34, 0, 0xffffffff, 0x00000000 },
3330 { 0x1d3c, 0, 0xffffffff, 0x00000000 },
3331 { 0x1d44, 0, 0xffffffff, 0x00000000 },
3332 { 0x1d4c, 0, 0xffffffff, 0x00000000 },
3333 { 0x1d54, 0, 0xffffffff, 0x00000000 },
3334 { 0x1d5c, 0, 0xffffffff, 0x00000000 },
3335 { 0x1d64, 0, 0xffffffff, 0x00000000 },
3336 { 0x1d6c, 0, 0xffffffff, 0x00000000 },
3337 { 0x1d74, 0, 0xffffffff, 0x00000000 },
3338 { 0x1d7c, 0, 0xffffffff, 0x00000000 },
3339 { 0x1d80, 0, 0x0700ffff, 0x00000000 },
3341 { 0x2004, 0, 0x00000000, 0x0337000f },
3342 { 0x2008, 0, 0xffffffff, 0x00000000 },
3343 { 0x200c, 0, 0xffffffff, 0x00000000 },
3344 { 0x2010, 0, 0xffffffff, 0x00000000 },
3345 { 0x2014, 0, 0x801fff80, 0x00000000 },
3346 { 0x2018, 0, 0x000003ff, 0x00000000 },
3348 { 0x2800, 0, 0x00000000, 0x00000001 },
3349 { 0x2804, 0, 0x00000000, 0x00003f01 },
3350 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
3351 { 0x2810, 0, 0xffff0000, 0x00000000 },
3352 { 0x2814, 0, 0xffff0000, 0x00000000 },
3353 { 0x2818, 0, 0xffff0000, 0x00000000 },
3354 { 0x281c, 0, 0xffff0000, 0x00000000 },
3355 { 0x2834, 0, 0xffffffff, 0x00000000 },
3356 { 0x2840, 0, 0x00000000, 0xffffffff },
3357 { 0x2844, 0, 0x00000000, 0xffffffff },
3358 { 0x2848, 0, 0xffffffff, 0x00000000 },
3359 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
3361 { 0x2c00, 0, 0x00000000, 0x00000011 },
3362 { 0x2c04, 0, 0x00000000, 0x00030007 },
3364 { 0x3000, 0, 0x00000000, 0x00000001 },
3365 { 0x3004, 0, 0x00000000, 0x007007ff },
3366 { 0x3008, 0, 0x00000003, 0x00000000 },
3367 { 0x300c, 0, 0xffffffff, 0x00000000 },
3368 { 0x3010, 0, 0xffffffff, 0x00000000 },
3369 { 0x3014, 0, 0xffffffff, 0x00000000 },
3370 { 0x3034, 0, 0xffffffff, 0x00000000 },
3371 { 0x3038, 0, 0xffffffff, 0x00000000 },
3372 { 0x3050, 0, 0x00000001, 0x00000000 },
3374 { 0x3c00, 0, 0x00000000, 0x00000001 },
3375 { 0x3c04, 0, 0x00000000, 0x00070000 },
3376 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
3377 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
3378 { 0x3c10, 0, 0xffffffff, 0x00000000 },
3379 { 0x3c14, 0, 0x00000000, 0xffffffff },
3380 { 0x3c18, 0, 0x00000000, 0xffffffff },
3381 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
3382 { 0x3c20, 0, 0xffffff00, 0x00000000 },
3383 { 0x3c24, 0, 0xffffffff, 0x00000000 },
3384 { 0x3c28, 0, 0xffffffff, 0x00000000 },
3385 { 0x3c2c, 0, 0xffffffff, 0x00000000 },
3386 { 0x3c30, 0, 0xffffffff, 0x00000000 },
3387 { 0x3c34, 0, 0xffffffff, 0x00000000 },
3388 { 0x3c38, 0, 0xffffffff, 0x00000000 },
3389 { 0x3c3c, 0, 0xffffffff, 0x00000000 },
3390 { 0x3c40, 0, 0xffffffff, 0x00000000 },
3391 { 0x3c44, 0, 0xffffffff, 0x00000000 },
3392 { 0x3c48, 0, 0xffffffff, 0x00000000 },
3393 { 0x3c4c, 0, 0xffffffff, 0x00000000 },
3394 { 0x3c50, 0, 0xffffffff, 0x00000000 },
3395 { 0x3c54, 0, 0xffffffff, 0x00000000 },
3396 { 0x3c58, 0, 0xffffffff, 0x00000000 },
3397 { 0x3c5c, 0, 0xffffffff, 0x00000000 },
3398 { 0x3c60, 0, 0xffffffff, 0x00000000 },
3399 { 0x3c64, 0, 0xffffffff, 0x00000000 },
3400 { 0x3c68, 0, 0xffffffff, 0x00000000 },
3401 { 0x3c6c, 0, 0xffffffff, 0x00000000 },
3402 { 0x3c70, 0, 0xffffffff, 0x00000000 },
3403 { 0x3c74, 0, 0x0000003f, 0x00000000 },
3404 { 0x3c78, 0, 0x00000000, 0x00000000 },
3405 { 0x3c7c, 0, 0x00000000, 0x00000000 },
3406 { 0x3c80, 0, 0x3fffffff, 0x00000000 },
3407 { 0x3c84, 0, 0x0000003f, 0x00000000 },
3408 { 0x3c88, 0, 0x00000000, 0xffffffff },
3409 { 0x3c8c, 0, 0x00000000, 0xffffffff },
3411 { 0x4000, 0, 0x00000000, 0x00000001 },
3412 { 0x4004, 0, 0x00000000, 0x00030000 },
3413 { 0x4008, 0, 0x00000ff0, 0x00000000 },
3414 { 0x400c, 0, 0xffffffff, 0x00000000 },
3415 { 0x4088, 0, 0x00000000, 0x00070303 },
3417 { 0x4400, 0, 0x00000000, 0x00000001 },
3418 { 0x4404, 0, 0x00000000, 0x00003f01 },
3419 { 0x4408, 0, 0x7fff00ff, 0x00000000 },
3420 { 0x440c, 0, 0xffffffff, 0x00000000 },
3421 { 0x4410, 0, 0xffff, 0x0000 },
3422 { 0x4414, 0, 0xffff, 0x0000 },
3423 { 0x4418, 0, 0xffff, 0x0000 },
3424 { 0x441c, 0, 0xffff, 0x0000 },
3425 { 0x4428, 0, 0xffffffff, 0x00000000 },
3426 { 0x442c, 0, 0xffffffff, 0x00000000 },
3427 { 0x4430, 0, 0xffffffff, 0x00000000 },
3428 { 0x4434, 0, 0xffffffff, 0x00000000 },
3429 { 0x4438, 0, 0xffffffff, 0x00000000 },
3430 { 0x443c, 0, 0xffffffff, 0x00000000 },
3431 { 0x4440, 0, 0xffffffff, 0x00000000 },
3432 { 0x4444, 0, 0xffffffff, 0x00000000 },
3434 { 0x4c00, 0, 0x00000000, 0x00000001 },
3435 { 0x4c04, 0, 0x00000000, 0x0000003f },
3436 { 0x4c08, 0, 0xffffffff, 0x00000000 },
3437 { 0x4c0c, 0, 0x0007fc00, 0x00000000 },
3438 { 0x4c10, 0, 0x80003fe0, 0x00000000 },
3439 { 0x4c14, 0, 0xffffffff, 0x00000000 },
3440 { 0x4c44, 0, 0x00000000, 0x9fff9fff },
3441 { 0x4c48, 0, 0x00000000, 0xb3009fff },
3442 { 0x4c4c, 0, 0x00000000, 0x77f33b30 },
3443 { 0x4c50, 0, 0x00000000, 0xffffffff },
3445 { 0x5004, 0, 0x00000000, 0x0000007f },
3446 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
3447 { 0x500c, 0, 0xf800f800, 0x07ff07ff },
3449 { 0x5400, 0, 0x00000008, 0x00000001 },
3450 { 0x5404, 0, 0x00000000, 0x0000003f },
3451 { 0x5408, 0, 0x0000001f, 0x00000000 },
3452 { 0x540c, 0, 0xffffffff, 0x00000000 },
3453 { 0x5410, 0, 0xffffffff, 0x00000000 },
3454 { 0x5414, 0, 0x0000ffff, 0x00000000 },
3455 { 0x5418, 0, 0x0000ffff, 0x00000000 },
3456 { 0x541c, 0, 0x0000ffff, 0x00000000 },
3457 { 0x5420, 0, 0x0000ffff, 0x00000000 },
3458 { 0x5428, 0, 0x000000ff, 0x00000000 },
3459 { 0x542c, 0, 0xff00ffff, 0x00000000 },
3460 { 0x5430, 0, 0x001fff80, 0x00000000 },
3461 { 0x5438, 0, 0xffffffff, 0x00000000 },
3462 { 0x543c, 0, 0xffffffff, 0x00000000 },
3463 { 0x5440, 0, 0xf800f800, 0x07ff07ff },
3465 { 0x5c00, 0, 0x00000000, 0x00000001 },
3466 { 0x5c04, 0, 0x00000000, 0x0003000f },
3467 { 0x5c08, 0, 0x00000003, 0x00000000 },
3468 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
3469 { 0x5c10, 0, 0x00000000, 0xffffffff },
3470 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
3471 { 0x5c84, 0, 0x00000000, 0x0000f333 },
3472 { 0x5c88, 0, 0x00000000, 0x00077373 },
3473 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
3475 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
3476 { 0x680c, 0, 0xffffffff, 0x00000000 },
3477 { 0x6810, 0, 0xffffffff, 0x00000000 },
3478 { 0x6814, 0, 0xffffffff, 0x00000000 },
3479 { 0x6818, 0, 0xffffffff, 0x00000000 },
3480 { 0x681c, 0, 0xffffffff, 0x00000000 },
3481 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
3482 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
3483 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
3484 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
3485 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
3486 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
3487 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
3488 { 0x683c, 0, 0x0000ffff, 0x00000000 },
3489 { 0x6840, 0, 0x00000ff0, 0x00000000 },
3490 { 0x6844, 0, 0x00ffff00, 0x00000000 },
3491 { 0x684c, 0, 0xffffffff, 0x00000000 },
3492 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
3493 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
3494 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
3495 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
3496 { 0x6908, 0, 0x00000000, 0x0001ff0f },
3497 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
3499 { 0xffff, 0, 0x00000000, 0x00000000 },
3503 for (i
= 0; reg_tbl
[i
].offset
!= 0xffff; i
++) {
3504 u32 offset
, rw_mask
, ro_mask
, save_val
, val
;
3506 offset
= (u32
) reg_tbl
[i
].offset
;
3507 rw_mask
= reg_tbl
[i
].rw_mask
;
3508 ro_mask
= reg_tbl
[i
].ro_mask
;
3510 save_val
= readl((u8
*) bp
->regview
+ offset
);
3512 writel(0, (u8
*) bp
->regview
+ offset
);
3514 val
= readl((u8
*) bp
->regview
+ offset
);
3515 if ((val
& rw_mask
) != 0) {
3519 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
3523 writel(0xffffffff, (u8
*) bp
->regview
+ offset
);
3525 val
= readl((u8
*) bp
->regview
+ offset
);
3526 if ((val
& rw_mask
) != rw_mask
) {
3530 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
3534 writel(save_val
, (u8
*) bp
->regview
+ offset
);
3538 writel(save_val
, (u8
*) bp
->regview
+ offset
);
3546 bnx2_do_mem_test(struct bnx2
*bp
, u32 start
, u32 size
)
3548 static u32 test_pattern
[] = { 0x00000000, 0xffffffff, 0x55555555,
3549 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
3552 for (i
= 0; i
< sizeof(test_pattern
) / 4; i
++) {
3555 for (offset
= 0; offset
< size
; offset
+= 4) {
3557 REG_WR_IND(bp
, start
+ offset
, test_pattern
[i
]);
3559 if (REG_RD_IND(bp
, start
+ offset
) !=
3569 bnx2_test_memory(struct bnx2
*bp
)
3577 { 0x60000, 0x4000 },
3578 { 0xa0000, 0x4000 },
3579 { 0xe0000, 0x4000 },
3580 { 0x120000, 0x4000 },
3581 { 0x1a0000, 0x4000 },
3582 { 0x160000, 0x4000 },
3586 for (i
= 0; mem_tbl
[i
].offset
!= 0xffffffff; i
++) {
3587 if ((ret
= bnx2_do_mem_test(bp
, mem_tbl
[i
].offset
,
3588 mem_tbl
[i
].len
)) != 0) {
3597 bnx2_test_loopback(struct bnx2
*bp
)
3599 unsigned int pkt_size
, num_pkts
, i
;
3600 struct sk_buff
*skb
, *rx_skb
;
3601 unsigned char *packet
;
3602 u16 rx_start_idx
, rx_idx
, send_idx
;
3606 struct sw_bd
*rx_buf
;
3607 struct l2_fhdr
*rx_hdr
;
3610 if (!netif_running(bp
->dev
))
3613 bp
->loopback
= MAC_LOOPBACK
;
3614 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_DIAG
);
3615 bnx2_set_mac_loopback(bp
);
3618 skb
= dev_alloc_skb(pkt_size
);
3619 packet
= skb_put(skb
, pkt_size
);
3620 memcpy(packet
, bp
->mac_addr
, 6);
3621 memset(packet
+ 6, 0x0, 8);
3622 for (i
= 14; i
< pkt_size
; i
++)
3623 packet
[i
] = (unsigned char) (i
& 0xff);
3625 map
= pci_map_single(bp
->pdev
, skb
->data
, pkt_size
,
3628 val
= REG_RD(bp
, BNX2_HC_COMMAND
);
3629 REG_WR(bp
, BNX2_HC_COMMAND
, val
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
3630 REG_RD(bp
, BNX2_HC_COMMAND
);
3633 rx_start_idx
= bp
->status_blk
->status_rx_quick_consumer_index0
;
3639 txbd
= &bp
->tx_desc_ring
[send_idx
];
3641 txbd
->tx_bd_haddr_hi
= (u64
) map
>> 32;
3642 txbd
->tx_bd_haddr_lo
= (u64
) map
& 0xffffffff;
3643 txbd
->tx_bd_mss_nbytes
= pkt_size
;
3644 txbd
->tx_bd_vlan_tag_flags
= TX_BD_FLAGS_START
| TX_BD_FLAGS_END
;
3647 send_idx
= NEXT_TX_BD(send_idx
);
3649 send_bseq
+= pkt_size
;
3651 REG_WR16(bp
, MB_TX_CID_ADDR
+ BNX2_L2CTX_TX_HOST_BIDX
, send_idx
);
3652 REG_WR(bp
, MB_TX_CID_ADDR
+ BNX2_L2CTX_TX_HOST_BSEQ
, send_bseq
);
3657 val
= REG_RD(bp
, BNX2_HC_COMMAND
);
3658 REG_WR(bp
, BNX2_HC_COMMAND
, val
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
3659 REG_RD(bp
, BNX2_HC_COMMAND
);
3663 pci_unmap_single(bp
->pdev
, map
, pkt_size
, PCI_DMA_TODEVICE
);
3664 dev_kfree_skb_irq(skb
);
3666 if (bp
->status_blk
->status_tx_quick_consumer_index0
!= send_idx
) {
3667 goto loopback_test_done
;
3670 rx_idx
= bp
->status_blk
->status_rx_quick_consumer_index0
;
3671 if (rx_idx
!= rx_start_idx
+ num_pkts
) {
3672 goto loopback_test_done
;
3675 rx_buf
= &bp
->rx_buf_ring
[rx_start_idx
];
3676 rx_skb
= rx_buf
->skb
;
3678 rx_hdr
= (struct l2_fhdr
*) rx_skb
->data
;
3679 skb_reserve(rx_skb
, bp
->rx_offset
);
3681 pci_dma_sync_single_for_cpu(bp
->pdev
,
3682 pci_unmap_addr(rx_buf
, mapping
),
3683 bp
->rx_buf_size
, PCI_DMA_FROMDEVICE
);
3685 if (rx_hdr
->l2_fhdr_errors
&
3686 (L2_FHDR_ERRORS_BAD_CRC
|
3687 L2_FHDR_ERRORS_PHY_DECODE
|
3688 L2_FHDR_ERRORS_ALIGNMENT
|
3689 L2_FHDR_ERRORS_TOO_SHORT
|
3690 L2_FHDR_ERRORS_GIANT_FRAME
)) {
3692 goto loopback_test_done
;
3695 if ((rx_hdr
->l2_fhdr_pkt_len
- 4) != pkt_size
) {
3696 goto loopback_test_done
;
3699 for (i
= 14; i
< pkt_size
; i
++) {
3700 if (*(rx_skb
->data
+ i
) != (unsigned char) (i
& 0xff)) {
3701 goto loopback_test_done
;
3712 #define NVRAM_SIZE 0x200
3713 #define CRC32_RESIDUAL 0xdebb20e3
3716 bnx2_test_nvram(struct bnx2
*bp
)
3718 u32 buf
[NVRAM_SIZE
/ 4];
3719 u8
*data
= (u8
*) buf
;
3723 if ((rc
= bnx2_nvram_read(bp
, 0, data
, 4)) != 0)
3724 goto test_nvram_done
;
3726 magic
= be32_to_cpu(buf
[0]);
3727 if (magic
!= 0x669955aa) {
3729 goto test_nvram_done
;
3732 if ((rc
= bnx2_nvram_read(bp
, 0x100, data
, NVRAM_SIZE
)) != 0)
3733 goto test_nvram_done
;
3735 csum
= ether_crc_le(0x100, data
);
3736 if (csum
!= CRC32_RESIDUAL
) {
3738 goto test_nvram_done
;
3741 csum
= ether_crc_le(0x100, data
+ 0x100);
3742 if (csum
!= CRC32_RESIDUAL
) {
3751 bnx2_test_link(struct bnx2
*bp
)
3755 spin_lock_irq(&bp
->phy_lock
);
3756 bnx2_read_phy(bp
, MII_BMSR
, &bmsr
);
3757 bnx2_read_phy(bp
, MII_BMSR
, &bmsr
);
3758 spin_unlock_irq(&bp
->phy_lock
);
3760 if (bmsr
& BMSR_LSTATUS
) {
3767 bnx2_test_intr(struct bnx2
*bp
)
3773 if (!netif_running(bp
->dev
))
3776 status_idx
= REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff;
3778 /* This register is not touched during run-time. */
3779 val
= REG_RD(bp
, BNX2_HC_COMMAND
);
3780 REG_WR(bp
, BNX2_HC_COMMAND
, val
| BNX2_HC_COMMAND_COAL_NOW
);
3781 REG_RD(bp
, BNX2_HC_COMMAND
);
3783 for (i
= 0; i
< 10; i
++) {
3784 if ((REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff) !=
3790 msleep_interruptible(10);
3799 bnx2_timer(unsigned long data
)
3801 struct bnx2
*bp
= (struct bnx2
*) data
;
3804 if (atomic_read(&bp
->intr_sem
) != 0)
3805 goto bnx2_restart_timer
;
3807 msg
= (u32
) ++bp
->fw_drv_pulse_wr_seq
;
3808 REG_WR_IND(bp
, HOST_VIEW_SHMEM_BASE
+ BNX2_DRV_PULSE_MB
, msg
);
3810 if ((bp
->phy_flags
& PHY_SERDES_FLAG
) &&
3811 (CHIP_NUM(bp
) == CHIP_NUM_5706
)) {
3812 unsigned long flags
;
3814 spin_lock_irqsave(&bp
->phy_lock
, flags
);
3815 if (bp
->serdes_an_pending
) {
3816 bp
->serdes_an_pending
--;
3818 else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
3821 bnx2_read_phy(bp
, MII_BMCR
, &bmcr
);
3823 if (bmcr
& BMCR_ANENABLE
) {
3826 bnx2_write_phy(bp
, 0x1c, 0x7c00);
3827 bnx2_read_phy(bp
, 0x1c, &phy1
);
3829 bnx2_write_phy(bp
, 0x17, 0x0f01);
3830 bnx2_read_phy(bp
, 0x15, &phy2
);
3831 bnx2_write_phy(bp
, 0x17, 0x0f01);
3832 bnx2_read_phy(bp
, 0x15, &phy2
);
3834 if ((phy1
& 0x10) && /* SIGNAL DETECT */
3835 !(phy2
& 0x20)) { /* no CONFIG */
3837 bmcr
&= ~BMCR_ANENABLE
;
3838 bmcr
|= BMCR_SPEED1000
|
3840 bnx2_write_phy(bp
, MII_BMCR
, bmcr
);
3842 PHY_PARALLEL_DETECT_FLAG
;
3846 else if ((bp
->link_up
) && (bp
->autoneg
& AUTONEG_SPEED
) &&
3847 (bp
->phy_flags
& PHY_PARALLEL_DETECT_FLAG
)) {
3850 bnx2_write_phy(bp
, 0x17, 0x0f01);
3851 bnx2_read_phy(bp
, 0x15, &phy2
);
3855 bnx2_read_phy(bp
, MII_BMCR
, &bmcr
);
3856 bmcr
|= BMCR_ANENABLE
;
3857 bnx2_write_phy(bp
, MII_BMCR
, bmcr
);
3859 bp
->phy_flags
&= ~PHY_PARALLEL_DETECT_FLAG
;
3864 spin_unlock_irqrestore(&bp
->phy_lock
, flags
);
3868 bp
->timer
.expires
= RUN_AT(bp
->timer_interval
);
3870 add_timer(&bp
->timer
);
3873 /* Called with rtnl_lock */
3875 bnx2_open(struct net_device
*dev
)
3877 struct bnx2
*bp
= dev
->priv
;
3880 bnx2_set_power_state(bp
, 0);
3881 bnx2_disable_int(bp
);
3883 rc
= bnx2_alloc_mem(bp
);
3887 if ((CHIP_ID(bp
) != CHIP_ID_5706_A0
) &&
3888 (CHIP_ID(bp
) != CHIP_ID_5706_A1
) &&
3891 if (pci_enable_msi(bp
->pdev
) == 0) {
3892 bp
->flags
|= USING_MSI_FLAG
;
3893 rc
= request_irq(bp
->pdev
->irq
, bnx2_msi
, 0, dev
->name
,
3897 rc
= request_irq(bp
->pdev
->irq
, bnx2_interrupt
,
3898 SA_SHIRQ
, dev
->name
, dev
);
3902 rc
= request_irq(bp
->pdev
->irq
, bnx2_interrupt
, SA_SHIRQ
,
3910 rc
= bnx2_init_nic(bp
);
3913 free_irq(bp
->pdev
->irq
, dev
);
3914 if (bp
->flags
& USING_MSI_FLAG
) {
3915 pci_disable_msi(bp
->pdev
);
3916 bp
->flags
&= ~USING_MSI_FLAG
;
3923 init_timer(&bp
->timer
);
3925 bp
->timer
.expires
= RUN_AT(bp
->timer_interval
);
3926 bp
->timer
.data
= (unsigned long) bp
;
3927 bp
->timer
.function
= bnx2_timer
;
3928 add_timer(&bp
->timer
);
3930 atomic_set(&bp
->intr_sem
, 0);
3932 bnx2_enable_int(bp
);
3934 if (bp
->flags
& USING_MSI_FLAG
) {
3935 /* Test MSI to make sure it is working
3936 * If MSI test fails, go back to INTx mode
3938 if (bnx2_test_intr(bp
) != 0) {
3939 printk(KERN_WARNING PFX
"%s: No interrupt was generated"
3940 " using MSI, switching to INTx mode. Please"
3941 " report this failure to the PCI maintainer"
3942 " and include system chipset information.\n",
3945 bnx2_disable_int(bp
);
3946 free_irq(bp
->pdev
->irq
, dev
);
3947 pci_disable_msi(bp
->pdev
);
3948 bp
->flags
&= ~USING_MSI_FLAG
;
3950 rc
= bnx2_init_nic(bp
);
3953 rc
= request_irq(bp
->pdev
->irq
, bnx2_interrupt
,
3954 SA_SHIRQ
, dev
->name
, dev
);
3959 del_timer_sync(&bp
->timer
);
3962 bnx2_enable_int(bp
);
3965 if (bp
->flags
& USING_MSI_FLAG
) {
3966 printk(KERN_INFO PFX
"%s: using MSI\n", dev
->name
);
3969 netif_start_queue(dev
);
3975 bnx2_reset_task(void *data
)
3977 struct bnx2
*bp
= data
;
3979 bnx2_netif_stop(bp
);
3983 atomic_set(&bp
->intr_sem
, 1);
3984 bnx2_netif_start(bp
);
3988 bnx2_tx_timeout(struct net_device
*dev
)
3990 struct bnx2
*bp
= dev
->priv
;
3992 /* This allows the netif to be shutdown gracefully before resetting */
3993 schedule_work(&bp
->reset_task
);
3997 /* Called with rtnl_lock */
3999 bnx2_vlan_rx_register(struct net_device
*dev
, struct vlan_group
*vlgrp
)
4001 struct bnx2
*bp
= dev
->priv
;
4003 bnx2_netif_stop(bp
);
4006 bnx2_set_rx_mode(dev
);
4008 bnx2_netif_start(bp
);
4011 /* Called with rtnl_lock */
4013 bnx2_vlan_rx_kill_vid(struct net_device
*dev
, uint16_t vid
)
4015 struct bnx2
*bp
= dev
->priv
;
4017 bnx2_netif_stop(bp
);
4020 bp
->vlgrp
->vlan_devices
[vid
] = NULL
;
4021 bnx2_set_rx_mode(dev
);
4023 bnx2_netif_start(bp
);
4027 /* Called with dev->xmit_lock.
4028 * hard_start_xmit is pseudo-lockless - a lock is only required when
4029 * the tx queue is full. This way, we get the benefit of lockless
4030 * operations most of the time without the complexities to handle
4031 * netif_stop_queue/wake_queue race conditions.
4034 bnx2_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
4036 struct bnx2
*bp
= dev
->priv
;
4039 struct sw_bd
*tx_buf
;
4040 u32 len
, vlan_tag_flags
, last_frag
, mss
;
4041 u16 prod
, ring_prod
;
4044 if (unlikely(atomic_read(&bp
->tx_avail_bd
) <
4045 (skb_shinfo(skb
)->nr_frags
+ 1))) {
4047 netif_stop_queue(dev
);
4048 printk(KERN_ERR PFX
"%s: BUG! Tx ring full when queue awake!\n",
4051 return NETDEV_TX_BUSY
;
4053 len
= skb_headlen(skb
);
4055 ring_prod
= TX_RING_IDX(prod
);
4058 if (skb
->ip_summed
== CHECKSUM_HW
) {
4059 vlan_tag_flags
|= TX_BD_FLAGS_TCP_UDP_CKSUM
;
4062 if (bp
->vlgrp
!= 0 && vlan_tx_tag_present(skb
)) {
4064 (TX_BD_FLAGS_VLAN_TAG
| (vlan_tx_tag_get(skb
) << 16));
4067 if ((mss
= skb_shinfo(skb
)->tso_size
) &&
4068 (skb
->len
> (bp
->dev
->mtu
+ ETH_HLEN
))) {
4069 u32 tcp_opt_len
, ip_tcp_len
;
4071 if (skb_header_cloned(skb
) &&
4072 pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
)) {
4074 return NETDEV_TX_OK
;
4077 tcp_opt_len
= ((skb
->h
.th
->doff
- 5) * 4);
4078 vlan_tag_flags
|= TX_BD_FLAGS_SW_LSO
;
4081 if (skb
->h
.th
->doff
> 5) {
4082 tcp_opt_len
= (skb
->h
.th
->doff
- 5) << 2;
4084 ip_tcp_len
= (skb
->nh
.iph
->ihl
<< 2) + sizeof(struct tcphdr
);
4086 skb
->nh
.iph
->check
= 0;
4087 skb
->nh
.iph
->tot_len
= ntohs(mss
+ ip_tcp_len
+ tcp_opt_len
);
4089 ~csum_tcpudp_magic(skb
->nh
.iph
->saddr
,
4093 if (tcp_opt_len
|| (skb
->nh
.iph
->ihl
> 5)) {
4094 vlan_tag_flags
|= ((skb
->nh
.iph
->ihl
- 5) +
4095 (tcp_opt_len
>> 2)) << 8;
4104 mapping
= pci_map_single(bp
->pdev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
4106 tx_buf
= &bp
->tx_buf_ring
[ring_prod
];
4108 pci_unmap_addr_set(tx_buf
, mapping
, mapping
);
4110 txbd
= &bp
->tx_desc_ring
[ring_prod
];
4112 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
4113 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
4114 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
4115 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
| TX_BD_FLAGS_START
;
4117 last_frag
= skb_shinfo(skb
)->nr_frags
;
4119 for (i
= 0; i
< last_frag
; i
++) {
4120 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
4122 prod
= NEXT_TX_BD(prod
);
4123 ring_prod
= TX_RING_IDX(prod
);
4124 txbd
= &bp
->tx_desc_ring
[ring_prod
];
4127 mapping
= pci_map_page(bp
->pdev
, frag
->page
, frag
->page_offset
,
4128 len
, PCI_DMA_TODEVICE
);
4129 pci_unmap_addr_set(&bp
->tx_buf_ring
[ring_prod
],
4132 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
4133 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
4134 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
4135 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
;
4138 txbd
->tx_bd_vlan_tag_flags
|= TX_BD_FLAGS_END
;
4140 prod
= NEXT_TX_BD(prod
);
4141 bp
->tx_prod_bseq
+= skb
->len
;
4143 atomic_sub(last_frag
+ 1, &bp
->tx_avail_bd
);
4145 REG_WR16(bp
, MB_TX_CID_ADDR
+ BNX2_L2CTX_TX_HOST_BIDX
, prod
);
4146 REG_WR(bp
, MB_TX_CID_ADDR
+ BNX2_L2CTX_TX_HOST_BSEQ
, bp
->tx_prod_bseq
);
4151 dev
->trans_start
= jiffies
;
4153 if (unlikely(atomic_read(&bp
->tx_avail_bd
) <= MAX_SKB_FRAGS
)) {
4154 unsigned long flags
;
4156 spin_lock_irqsave(&bp
->tx_lock
, flags
);
4157 if (atomic_read(&bp
->tx_avail_bd
) <= MAX_SKB_FRAGS
) {
4158 netif_stop_queue(dev
);
4160 if (atomic_read(&bp
->tx_avail_bd
) > MAX_SKB_FRAGS
)
4161 netif_wake_queue(dev
);
4163 spin_unlock_irqrestore(&bp
->tx_lock
, flags
);
4166 return NETDEV_TX_OK
;
4169 /* Called with rtnl_lock */
4171 bnx2_close(struct net_device
*dev
)
4173 struct bnx2
*bp
= dev
->priv
;
4176 flush_scheduled_work();
4177 bnx2_netif_stop(bp
);
4178 del_timer_sync(&bp
->timer
);
4180 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
4182 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
4183 bnx2_reset_chip(bp
, reset_code
);
4184 free_irq(bp
->pdev
->irq
, dev
);
4185 if (bp
->flags
& USING_MSI_FLAG
) {
4186 pci_disable_msi(bp
->pdev
);
4187 bp
->flags
&= ~USING_MSI_FLAG
;
4192 netif_carrier_off(bp
->dev
);
4193 bnx2_set_power_state(bp
, 3);
4197 #define GET_NET_STATS64(ctr) \
4198 (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
4199 (unsigned long) (ctr##_lo)
4201 #define GET_NET_STATS32(ctr) \
4204 #if (BITS_PER_LONG == 64)
4205 #define GET_NET_STATS GET_NET_STATS64
4207 #define GET_NET_STATS GET_NET_STATS32
4210 static struct net_device_stats
*
4211 bnx2_get_stats(struct net_device
*dev
)
4213 struct bnx2
*bp
= dev
->priv
;
4214 struct statistics_block
*stats_blk
= bp
->stats_blk
;
4215 struct net_device_stats
*net_stats
= &bp
->net_stats
;
4217 if (bp
->stats_blk
== NULL
) {
4220 net_stats
->rx_packets
=
4221 GET_NET_STATS(stats_blk
->stat_IfHCInUcastPkts
) +
4222 GET_NET_STATS(stats_blk
->stat_IfHCInMulticastPkts
) +
4223 GET_NET_STATS(stats_blk
->stat_IfHCInBroadcastPkts
);
4225 net_stats
->tx_packets
=
4226 GET_NET_STATS(stats_blk
->stat_IfHCOutUcastPkts
) +
4227 GET_NET_STATS(stats_blk
->stat_IfHCOutMulticastPkts
) +
4228 GET_NET_STATS(stats_blk
->stat_IfHCOutBroadcastPkts
);
4230 net_stats
->rx_bytes
=
4231 GET_NET_STATS(stats_blk
->stat_IfHCInOctets
);
4233 net_stats
->tx_bytes
=
4234 GET_NET_STATS(stats_blk
->stat_IfHCOutOctets
);
4236 net_stats
->multicast
=
4237 GET_NET_STATS(stats_blk
->stat_IfHCOutMulticastPkts
);
4239 net_stats
->collisions
=
4240 (unsigned long) stats_blk
->stat_EtherStatsCollisions
;
4242 net_stats
->rx_length_errors
=
4243 (unsigned long) (stats_blk
->stat_EtherStatsUndersizePkts
+
4244 stats_blk
->stat_EtherStatsOverrsizePkts
);
4246 net_stats
->rx_over_errors
=
4247 (unsigned long) stats_blk
->stat_IfInMBUFDiscards
;
4249 net_stats
->rx_frame_errors
=
4250 (unsigned long) stats_blk
->stat_Dot3StatsAlignmentErrors
;
4252 net_stats
->rx_crc_errors
=
4253 (unsigned long) stats_blk
->stat_Dot3StatsFCSErrors
;
4255 net_stats
->rx_errors
= net_stats
->rx_length_errors
+
4256 net_stats
->rx_over_errors
+ net_stats
->rx_frame_errors
+
4257 net_stats
->rx_crc_errors
;
4259 net_stats
->tx_aborted_errors
=
4260 (unsigned long) (stats_blk
->stat_Dot3StatsExcessiveCollisions
+
4261 stats_blk
->stat_Dot3StatsLateCollisions
);
4263 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
4264 net_stats
->tx_carrier_errors
= 0;
4266 net_stats
->tx_carrier_errors
=
4268 stats_blk
->stat_Dot3StatsCarrierSenseErrors
;
4271 net_stats
->tx_errors
=
4273 stats_blk
->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
4275 net_stats
->tx_aborted_errors
+
4276 net_stats
->tx_carrier_errors
;
4281 /* All ethtool functions called with rtnl_lock */
4284 bnx2_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
4286 struct bnx2
*bp
= dev
->priv
;
4288 cmd
->supported
= SUPPORTED_Autoneg
;
4289 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
4290 cmd
->supported
|= SUPPORTED_1000baseT_Full
|
4293 cmd
->port
= PORT_FIBRE
;
4296 cmd
->supported
|= SUPPORTED_10baseT_Half
|
4297 SUPPORTED_10baseT_Full
|
4298 SUPPORTED_100baseT_Half
|
4299 SUPPORTED_100baseT_Full
|
4300 SUPPORTED_1000baseT_Full
|
4303 cmd
->port
= PORT_TP
;
4306 cmd
->advertising
= bp
->advertising
;
4308 if (bp
->autoneg
& AUTONEG_SPEED
) {
4309 cmd
->autoneg
= AUTONEG_ENABLE
;
4312 cmd
->autoneg
= AUTONEG_DISABLE
;
4315 if (netif_carrier_ok(dev
)) {
4316 cmd
->speed
= bp
->line_speed
;
4317 cmd
->duplex
= bp
->duplex
;
4324 cmd
->transceiver
= XCVR_INTERNAL
;
4325 cmd
->phy_address
= bp
->phy_addr
;
4331 bnx2_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
4333 struct bnx2
*bp
= dev
->priv
;
4334 u8 autoneg
= bp
->autoneg
;
4335 u8 req_duplex
= bp
->req_duplex
;
4336 u16 req_line_speed
= bp
->req_line_speed
;
4337 u32 advertising
= bp
->advertising
;
4339 if (cmd
->autoneg
== AUTONEG_ENABLE
) {
4340 autoneg
|= AUTONEG_SPEED
;
4342 cmd
->advertising
&= ETHTOOL_ALL_COPPER_SPEED
;
4344 /* allow advertising 1 speed */
4345 if ((cmd
->advertising
== ADVERTISED_10baseT_Half
) ||
4346 (cmd
->advertising
== ADVERTISED_10baseT_Full
) ||
4347 (cmd
->advertising
== ADVERTISED_100baseT_Half
) ||
4348 (cmd
->advertising
== ADVERTISED_100baseT_Full
)) {
4350 if (bp
->phy_flags
& PHY_SERDES_FLAG
)
4353 advertising
= cmd
->advertising
;
4356 else if (cmd
->advertising
== ADVERTISED_1000baseT_Full
) {
4357 advertising
= cmd
->advertising
;
4359 else if (cmd
->advertising
== ADVERTISED_1000baseT_Half
) {
4363 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
4364 advertising
= ETHTOOL_ALL_FIBRE_SPEED
;
4367 advertising
= ETHTOOL_ALL_COPPER_SPEED
;
4370 advertising
|= ADVERTISED_Autoneg
;
4373 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
4374 if ((cmd
->speed
!= SPEED_1000
) ||
4375 (cmd
->duplex
!= DUPLEX_FULL
)) {
4379 else if (cmd
->speed
== SPEED_1000
) {
4382 autoneg
&= ~AUTONEG_SPEED
;
4383 req_line_speed
= cmd
->speed
;
4384 req_duplex
= cmd
->duplex
;
4388 bp
->autoneg
= autoneg
;
4389 bp
->advertising
= advertising
;
4390 bp
->req_line_speed
= req_line_speed
;
4391 bp
->req_duplex
= req_duplex
;
4393 spin_lock_irq(&bp
->phy_lock
);
4397 spin_unlock_irq(&bp
->phy_lock
);
4403 bnx2_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
4405 struct bnx2
*bp
= dev
->priv
;
4407 strcpy(info
->driver
, DRV_MODULE_NAME
);
4408 strcpy(info
->version
, DRV_MODULE_VERSION
);
4409 strcpy(info
->bus_info
, pci_name(bp
->pdev
));
4410 info
->fw_version
[0] = ((bp
->fw_ver
& 0xff000000) >> 24) + '0';
4411 info
->fw_version
[2] = ((bp
->fw_ver
& 0xff0000) >> 16) + '0';
4412 info
->fw_version
[4] = ((bp
->fw_ver
& 0xff00) >> 8) + '0';
4413 info
->fw_version
[6] = (bp
->fw_ver
& 0xff) + '0';
4414 info
->fw_version
[1] = info
->fw_version
[3] = info
->fw_version
[5] = '.';
4415 info
->fw_version
[7] = 0;
4419 bnx2_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
4421 struct bnx2
*bp
= dev
->priv
;
4423 if (bp
->flags
& NO_WOL_FLAG
) {
4428 wol
->supported
= WAKE_MAGIC
;
4430 wol
->wolopts
= WAKE_MAGIC
;
4434 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
4438 bnx2_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
4440 struct bnx2
*bp
= dev
->priv
;
4442 if (wol
->wolopts
& ~WAKE_MAGIC
)
4445 if (wol
->wolopts
& WAKE_MAGIC
) {
4446 if (bp
->flags
& NO_WOL_FLAG
)
4458 bnx2_nway_reset(struct net_device
*dev
)
4460 struct bnx2
*bp
= dev
->priv
;
4463 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
4467 spin_lock_irq(&bp
->phy_lock
);
4469 /* Force a link down visible on the other side */
4470 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
4471 bnx2_write_phy(bp
, MII_BMCR
, BMCR_LOOPBACK
);
4472 spin_unlock_irq(&bp
->phy_lock
);
4476 spin_lock_irq(&bp
->phy_lock
);
4477 if (CHIP_NUM(bp
) == CHIP_NUM_5706
) {
4478 bp
->serdes_an_pending
= SERDES_AN_TIMEOUT
/
4483 bnx2_read_phy(bp
, MII_BMCR
, &bmcr
);
4484 bmcr
&= ~BMCR_LOOPBACK
;
4485 bnx2_write_phy(bp
, MII_BMCR
, bmcr
| BMCR_ANRESTART
| BMCR_ANENABLE
);
4487 spin_unlock_irq(&bp
->phy_lock
);
4493 bnx2_get_eeprom_len(struct net_device
*dev
)
4495 struct bnx2
*bp
= dev
->priv
;
4497 if (bp
->flash_info
== 0)
4500 return (int) bp
->flash_info
->total_size
;
4504 bnx2_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
4507 struct bnx2
*bp
= dev
->priv
;
4510 if (eeprom
->offset
> bp
->flash_info
->total_size
)
4513 if ((eeprom
->offset
+ eeprom
->len
) > bp
->flash_info
->total_size
)
4514 eeprom
->len
= bp
->flash_info
->total_size
- eeprom
->offset
;
4516 rc
= bnx2_nvram_read(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
4522 bnx2_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
4525 struct bnx2
*bp
= dev
->priv
;
4528 if (eeprom
->offset
> bp
->flash_info
->total_size
)
4531 if ((eeprom
->offset
+ eeprom
->len
) > bp
->flash_info
->total_size
)
4532 eeprom
->len
= bp
->flash_info
->total_size
- eeprom
->offset
;
4534 rc
= bnx2_nvram_write(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
4540 bnx2_get_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
4542 struct bnx2
*bp
= dev
->priv
;
4544 memset(coal
, 0, sizeof(struct ethtool_coalesce
));
4546 coal
->rx_coalesce_usecs
= bp
->rx_ticks
;
4547 coal
->rx_max_coalesced_frames
= bp
->rx_quick_cons_trip
;
4548 coal
->rx_coalesce_usecs_irq
= bp
->rx_ticks_int
;
4549 coal
->rx_max_coalesced_frames_irq
= bp
->rx_quick_cons_trip_int
;
4551 coal
->tx_coalesce_usecs
= bp
->tx_ticks
;
4552 coal
->tx_max_coalesced_frames
= bp
->tx_quick_cons_trip
;
4553 coal
->tx_coalesce_usecs_irq
= bp
->tx_ticks_int
;
4554 coal
->tx_max_coalesced_frames_irq
= bp
->tx_quick_cons_trip_int
;
4556 coal
->stats_block_coalesce_usecs
= bp
->stats_ticks
;
4562 bnx2_set_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
4564 struct bnx2
*bp
= dev
->priv
;
4566 bp
->rx_ticks
= (u16
) coal
->rx_coalesce_usecs
;
4567 if (bp
->rx_ticks
> 0x3ff) bp
->rx_ticks
= 0x3ff;
4569 bp
->rx_quick_cons_trip
= (u16
) coal
->rx_max_coalesced_frames
;
4570 if (bp
->rx_quick_cons_trip
> 0xff) bp
->rx_quick_cons_trip
= 0xff;
4572 bp
->rx_ticks_int
= (u16
) coal
->rx_coalesce_usecs_irq
;
4573 if (bp
->rx_ticks_int
> 0x3ff) bp
->rx_ticks_int
= 0x3ff;
4575 bp
->rx_quick_cons_trip_int
= (u16
) coal
->rx_max_coalesced_frames_irq
;
4576 if (bp
->rx_quick_cons_trip_int
> 0xff)
4577 bp
->rx_quick_cons_trip_int
= 0xff;
4579 bp
->tx_ticks
= (u16
) coal
->tx_coalesce_usecs
;
4580 if (bp
->tx_ticks
> 0x3ff) bp
->tx_ticks
= 0x3ff;
4582 bp
->tx_quick_cons_trip
= (u16
) coal
->tx_max_coalesced_frames
;
4583 if (bp
->tx_quick_cons_trip
> 0xff) bp
->tx_quick_cons_trip
= 0xff;
4585 bp
->tx_ticks_int
= (u16
) coal
->tx_coalesce_usecs_irq
;
4586 if (bp
->tx_ticks_int
> 0x3ff) bp
->tx_ticks_int
= 0x3ff;
4588 bp
->tx_quick_cons_trip_int
= (u16
) coal
->tx_max_coalesced_frames_irq
;
4589 if (bp
->tx_quick_cons_trip_int
> 0xff) bp
->tx_quick_cons_trip_int
=
4592 bp
->stats_ticks
= coal
->stats_block_coalesce_usecs
;
4593 if (bp
->stats_ticks
> 0xffff00) bp
->stats_ticks
= 0xffff00;
4594 bp
->stats_ticks
&= 0xffff00;
4596 if (netif_running(bp
->dev
)) {
4597 bnx2_netif_stop(bp
);
4599 bnx2_netif_start(bp
);
4606 bnx2_get_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
4608 struct bnx2
*bp
= dev
->priv
;
4610 ering
->rx_max_pending
= MAX_RX_DESC_CNT
;
4611 ering
->rx_mini_max_pending
= 0;
4612 ering
->rx_jumbo_max_pending
= 0;
4614 ering
->rx_pending
= bp
->rx_ring_size
;
4615 ering
->rx_mini_pending
= 0;
4616 ering
->rx_jumbo_pending
= 0;
4618 ering
->tx_max_pending
= MAX_TX_DESC_CNT
;
4619 ering
->tx_pending
= bp
->tx_ring_size
;
4623 bnx2_set_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
4625 struct bnx2
*bp
= dev
->priv
;
4627 if ((ering
->rx_pending
> MAX_RX_DESC_CNT
) ||
4628 (ering
->tx_pending
> MAX_TX_DESC_CNT
) ||
4629 (ering
->tx_pending
<= MAX_SKB_FRAGS
)) {
4633 bp
->rx_ring_size
= ering
->rx_pending
;
4634 bp
->tx_ring_size
= ering
->tx_pending
;
4636 if (netif_running(bp
->dev
)) {
4637 bnx2_netif_stop(bp
);
4639 bnx2_netif_start(bp
);
4646 bnx2_get_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
4648 struct bnx2
*bp
= dev
->priv
;
4650 epause
->autoneg
= ((bp
->autoneg
& AUTONEG_FLOW_CTRL
) != 0);
4651 epause
->rx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_RX
) != 0);
4652 epause
->tx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_TX
) != 0);
4656 bnx2_set_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
4658 struct bnx2
*bp
= dev
->priv
;
4660 bp
->req_flow_ctrl
= 0;
4661 if (epause
->rx_pause
)
4662 bp
->req_flow_ctrl
|= FLOW_CTRL_RX
;
4663 if (epause
->tx_pause
)
4664 bp
->req_flow_ctrl
|= FLOW_CTRL_TX
;
4666 if (epause
->autoneg
) {
4667 bp
->autoneg
|= AUTONEG_FLOW_CTRL
;
4670 bp
->autoneg
&= ~AUTONEG_FLOW_CTRL
;
4673 spin_lock_irq(&bp
->phy_lock
);
4677 spin_unlock_irq(&bp
->phy_lock
);
4683 bnx2_get_rx_csum(struct net_device
*dev
)
4685 struct bnx2
*bp
= dev
->priv
;
4691 bnx2_set_rx_csum(struct net_device
*dev
, u32 data
)
4693 struct bnx2
*bp
= dev
->priv
;
4699 #define BNX2_NUM_STATS 45
4702 char string
[ETH_GSTRING_LEN
];
4703 } bnx2_stats_str_arr
[BNX2_NUM_STATS
] = {
4705 { "rx_error_bytes" },
4707 { "tx_error_bytes" },
4708 { "rx_ucast_packets" },
4709 { "rx_mcast_packets" },
4710 { "rx_bcast_packets" },
4711 { "tx_ucast_packets" },
4712 { "tx_mcast_packets" },
4713 { "tx_bcast_packets" },
4714 { "tx_mac_errors" },
4715 { "tx_carrier_errors" },
4716 { "rx_crc_errors" },
4717 { "rx_align_errors" },
4718 { "tx_single_collisions" },
4719 { "tx_multi_collisions" },
4721 { "tx_excess_collisions" },
4722 { "tx_late_collisions" },
4723 { "tx_total_collisions" },
4726 { "rx_undersize_packets" },
4727 { "rx_oversize_packets" },
4728 { "rx_64_byte_packets" },
4729 { "rx_65_to_127_byte_packets" },
4730 { "rx_128_to_255_byte_packets" },
4731 { "rx_256_to_511_byte_packets" },
4732 { "rx_512_to_1023_byte_packets" },
4733 { "rx_1024_to_1522_byte_packets" },
4734 { "rx_1523_to_9022_byte_packets" },
4735 { "tx_64_byte_packets" },
4736 { "tx_65_to_127_byte_packets" },
4737 { "tx_128_to_255_byte_packets" },
4738 { "tx_256_to_511_byte_packets" },
4739 { "tx_512_to_1023_byte_packets" },
4740 { "tx_1024_to_1522_byte_packets" },
4741 { "tx_1523_to_9022_byte_packets" },
4742 { "rx_xon_frames" },
4743 { "rx_xoff_frames" },
4744 { "tx_xon_frames" },
4745 { "tx_xoff_frames" },
4746 { "rx_mac_ctrl_frames" },
4747 { "rx_filtered_packets" },
4751 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
4753 unsigned long bnx2_stats_offset_arr
[BNX2_NUM_STATS
] = {
4754 STATS_OFFSET32(stat_IfHCInOctets_hi
),
4755 STATS_OFFSET32(stat_IfHCInBadOctets_hi
),
4756 STATS_OFFSET32(stat_IfHCOutOctets_hi
),
4757 STATS_OFFSET32(stat_IfHCOutBadOctets_hi
),
4758 STATS_OFFSET32(stat_IfHCInUcastPkts_hi
),
4759 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi
),
4760 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi
),
4761 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi
),
4762 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi
),
4763 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi
),
4764 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
),
4765 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors
),
4766 STATS_OFFSET32(stat_Dot3StatsFCSErrors
),
4767 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors
),
4768 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames
),
4769 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames
),
4770 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions
),
4771 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions
),
4772 STATS_OFFSET32(stat_Dot3StatsLateCollisions
),
4773 STATS_OFFSET32(stat_EtherStatsCollisions
),
4774 STATS_OFFSET32(stat_EtherStatsFragments
),
4775 STATS_OFFSET32(stat_EtherStatsJabbers
),
4776 STATS_OFFSET32(stat_EtherStatsUndersizePkts
),
4777 STATS_OFFSET32(stat_EtherStatsOverrsizePkts
),
4778 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets
),
4779 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets
),
4780 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets
),
4781 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets
),
4782 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets
),
4783 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets
),
4784 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets
),
4785 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets
),
4786 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets
),
4787 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets
),
4788 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets
),
4789 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets
),
4790 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets
),
4791 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets
),
4792 STATS_OFFSET32(stat_XonPauseFramesReceived
),
4793 STATS_OFFSET32(stat_XoffPauseFramesReceived
),
4794 STATS_OFFSET32(stat_OutXonSent
),
4795 STATS_OFFSET32(stat_OutXoffSent
),
4796 STATS_OFFSET32(stat_MacControlFramesReceived
),
4797 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards
),
4798 STATS_OFFSET32(stat_IfInMBUFDiscards
),
4801 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
4802 * skipped because of errata.
4804 u8 bnx2_5706_stats_len_arr
[BNX2_NUM_STATS
] = {
4805 8,0,8,8,8,8,8,8,8,8,
4806 4,0,4,4,4,4,4,4,4,4,
4807 4,4,4,4,4,4,4,4,4,4,
4808 4,4,4,4,4,4,4,4,4,4,
4812 #define BNX2_NUM_TESTS 6
4815 char string
[ETH_GSTRING_LEN
];
4816 } bnx2_tests_str_arr
[BNX2_NUM_TESTS
] = {
4817 { "register_test (offline)" },
4818 { "memory_test (offline)" },
4819 { "loopback_test (offline)" },
4820 { "nvram_test (online)" },
4821 { "interrupt_test (online)" },
4822 { "link_test (online)" },
4826 bnx2_self_test_count(struct net_device
*dev
)
4828 return BNX2_NUM_TESTS
;
4832 bnx2_self_test(struct net_device
*dev
, struct ethtool_test
*etest
, u64
*buf
)
4834 struct bnx2
*bp
= dev
->priv
;
4836 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_TESTS
);
4837 if (etest
->flags
& ETH_TEST_FL_OFFLINE
) {
4838 bnx2_netif_stop(bp
);
4839 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_DIAG
);
4842 if (bnx2_test_registers(bp
) != 0) {
4844 etest
->flags
|= ETH_TEST_FL_FAILED
;
4846 if (bnx2_test_memory(bp
) != 0) {
4848 etest
->flags
|= ETH_TEST_FL_FAILED
;
4850 if (bnx2_test_loopback(bp
) != 0) {
4852 etest
->flags
|= ETH_TEST_FL_FAILED
;
4855 if (!netif_running(bp
->dev
)) {
4856 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_RESET
);
4860 bnx2_netif_start(bp
);
4863 /* wait for link up */
4864 msleep_interruptible(3000);
4865 if ((!bp
->link_up
) && !(bp
->phy_flags
& PHY_SERDES_FLAG
))
4866 msleep_interruptible(4000);
4869 if (bnx2_test_nvram(bp
) != 0) {
4871 etest
->flags
|= ETH_TEST_FL_FAILED
;
4873 if (bnx2_test_intr(bp
) != 0) {
4875 etest
->flags
|= ETH_TEST_FL_FAILED
;
4878 if (bnx2_test_link(bp
) != 0) {
4880 etest
->flags
|= ETH_TEST_FL_FAILED
;
4886 bnx2_get_strings(struct net_device
*dev
, u32 stringset
, u8
*buf
)
4888 switch (stringset
) {
4890 memcpy(buf
, bnx2_stats_str_arr
,
4891 sizeof(bnx2_stats_str_arr
));
4894 memcpy(buf
, bnx2_tests_str_arr
,
4895 sizeof(bnx2_tests_str_arr
));
4901 bnx2_get_stats_count(struct net_device
*dev
)
4903 return BNX2_NUM_STATS
;
4907 bnx2_get_ethtool_stats(struct net_device
*dev
,
4908 struct ethtool_stats
*stats
, u64
*buf
)
4910 struct bnx2
*bp
= dev
->priv
;
4912 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
4913 u8
*stats_len_arr
= 0;
4915 if (hw_stats
== NULL
) {
4916 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_STATS
);
4920 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
4921 stats_len_arr
= bnx2_5706_stats_len_arr
;
4923 for (i
= 0; i
< BNX2_NUM_STATS
; i
++) {
4924 if (stats_len_arr
[i
] == 0) {
4925 /* skip this counter */
4929 if (stats_len_arr
[i
] == 4) {
4930 /* 4-byte counter */
4932 *(hw_stats
+ bnx2_stats_offset_arr
[i
]);
4935 /* 8-byte counter */
4936 buf
[i
] = (((u64
) *(hw_stats
+
4937 bnx2_stats_offset_arr
[i
])) << 32) +
4938 *(hw_stats
+ bnx2_stats_offset_arr
[i
] + 1);
4943 bnx2_phys_id(struct net_device
*dev
, u32 data
)
4945 struct bnx2
*bp
= dev
->priv
;
4952 save
= REG_RD(bp
, BNX2_MISC_CFG
);
4953 REG_WR(bp
, BNX2_MISC_CFG
, BNX2_MISC_CFG_LEDMODE_MAC
);
4955 for (i
= 0; i
< (data
* 2); i
++) {
4957 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
);
4960 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
|
4961 BNX2_EMAC_LED_1000MB_OVERRIDE
|
4962 BNX2_EMAC_LED_100MB_OVERRIDE
|
4963 BNX2_EMAC_LED_10MB_OVERRIDE
|
4964 BNX2_EMAC_LED_TRAFFIC_OVERRIDE
|
4965 BNX2_EMAC_LED_TRAFFIC
);
4967 msleep_interruptible(500);
4968 if (signal_pending(current
))
4971 REG_WR(bp
, BNX2_EMAC_LED
, 0);
4972 REG_WR(bp
, BNX2_MISC_CFG
, save
);
4976 static struct ethtool_ops bnx2_ethtool_ops
= {
4977 .get_settings
= bnx2_get_settings
,
4978 .set_settings
= bnx2_set_settings
,
4979 .get_drvinfo
= bnx2_get_drvinfo
,
4980 .get_wol
= bnx2_get_wol
,
4981 .set_wol
= bnx2_set_wol
,
4982 .nway_reset
= bnx2_nway_reset
,
4983 .get_link
= ethtool_op_get_link
,
4984 .get_eeprom_len
= bnx2_get_eeprom_len
,
4985 .get_eeprom
= bnx2_get_eeprom
,
4986 .set_eeprom
= bnx2_set_eeprom
,
4987 .get_coalesce
= bnx2_get_coalesce
,
4988 .set_coalesce
= bnx2_set_coalesce
,
4989 .get_ringparam
= bnx2_get_ringparam
,
4990 .set_ringparam
= bnx2_set_ringparam
,
4991 .get_pauseparam
= bnx2_get_pauseparam
,
4992 .set_pauseparam
= bnx2_set_pauseparam
,
4993 .get_rx_csum
= bnx2_get_rx_csum
,
4994 .set_rx_csum
= bnx2_set_rx_csum
,
4995 .get_tx_csum
= ethtool_op_get_tx_csum
,
4996 .set_tx_csum
= ethtool_op_set_tx_csum
,
4997 .get_sg
= ethtool_op_get_sg
,
4998 .set_sg
= ethtool_op_set_sg
,
5000 .get_tso
= ethtool_op_get_tso
,
5001 .set_tso
= ethtool_op_set_tso
,
5003 .self_test_count
= bnx2_self_test_count
,
5004 .self_test
= bnx2_self_test
,
5005 .get_strings
= bnx2_get_strings
,
5006 .phys_id
= bnx2_phys_id
,
5007 .get_stats_count
= bnx2_get_stats_count
,
5008 .get_ethtool_stats
= bnx2_get_ethtool_stats
,
5011 /* Called with rtnl_lock */
5013 bnx2_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
5015 struct mii_ioctl_data
*data
= (struct mii_ioctl_data
*)&ifr
->ifr_data
;
5016 struct bnx2
*bp
= dev
->priv
;
5021 data
->phy_id
= bp
->phy_addr
;
5027 spin_lock_irq(&bp
->phy_lock
);
5028 err
= bnx2_read_phy(bp
, data
->reg_num
& 0x1f, &mii_regval
);
5029 spin_unlock_irq(&bp
->phy_lock
);
5031 data
->val_out
= mii_regval
;
5037 if (!capable(CAP_NET_ADMIN
))
5040 spin_lock_irq(&bp
->phy_lock
);
5041 err
= bnx2_write_phy(bp
, data
->reg_num
& 0x1f, data
->val_in
);
5042 spin_unlock_irq(&bp
->phy_lock
);
5053 /* Called with rtnl_lock */
5055 bnx2_change_mac_addr(struct net_device
*dev
, void *p
)
5057 struct sockaddr
*addr
= p
;
5058 struct bnx2
*bp
= dev
->priv
;
5060 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
5061 if (netif_running(dev
))
5062 bnx2_set_mac_addr(bp
);
5067 /* Called with rtnl_lock */
5069 bnx2_change_mtu(struct net_device
*dev
, int new_mtu
)
5071 struct bnx2
*bp
= dev
->priv
;
5073 if (((new_mtu
+ ETH_HLEN
) > MAX_ETHERNET_JUMBO_PACKET_SIZE
) ||
5074 ((new_mtu
+ ETH_HLEN
) < MIN_ETHERNET_PACKET_SIZE
))
5078 if (netif_running(dev
)) {
5079 bnx2_netif_stop(bp
);
5083 bnx2_netif_start(bp
);
5088 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
5090 poll_bnx2(struct net_device
*dev
)
5092 struct bnx2
*bp
= dev
->priv
;
5094 disable_irq(bp
->pdev
->irq
);
5095 bnx2_interrupt(bp
->pdev
->irq
, dev
, NULL
);
5096 enable_irq(bp
->pdev
->irq
);
5100 static int __devinit
5101 bnx2_init_board(struct pci_dev
*pdev
, struct net_device
*dev
)
5104 unsigned long mem_len
;
5108 SET_MODULE_OWNER(dev
);
5109 SET_NETDEV_DEV(dev
, &pdev
->dev
);
5115 /* enable device (incl. PCI PM wakeup), and bus-mastering */
5116 rc
= pci_enable_device(pdev
);
5118 printk(KERN_ERR PFX
"Cannot enable PCI device, aborting.");
5122 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
5123 printk(KERN_ERR PFX
"Cannot find PCI device base address, "
5126 goto err_out_disable
;
5129 rc
= pci_request_regions(pdev
, DRV_MODULE_NAME
);
5131 printk(KERN_ERR PFX
"Cannot obtain PCI resources, aborting.\n");
5132 goto err_out_disable
;
5135 pci_set_master(pdev
);
5137 bp
->pm_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
5138 if (bp
->pm_cap
== 0) {
5139 printk(KERN_ERR PFX
"Cannot find power management capability, "
5142 goto err_out_release
;
5145 bp
->pcix_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PCIX
);
5146 if (bp
->pcix_cap
== 0) {
5147 printk(KERN_ERR PFX
"Cannot find PCIX capability, aborting.\n");
5149 goto err_out_release
;
5152 if (pci_set_dma_mask(pdev
, DMA_64BIT_MASK
) == 0) {
5153 bp
->flags
|= USING_DAC_FLAG
;
5154 if (pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
) != 0) {
5155 printk(KERN_ERR PFX
"pci_set_consistent_dma_mask "
5156 "failed, aborting.\n");
5158 goto err_out_release
;
5161 else if (pci_set_dma_mask(pdev
, DMA_32BIT_MASK
) != 0) {
5162 printk(KERN_ERR PFX
"System does not support DMA, aborting.\n");
5164 goto err_out_release
;
5170 spin_lock_init(&bp
->phy_lock
);
5171 spin_lock_init(&bp
->tx_lock
);
5172 INIT_WORK(&bp
->reset_task
, bnx2_reset_task
, bp
);
5174 dev
->base_addr
= dev
->mem_start
= pci_resource_start(pdev
, 0);
5175 mem_len
= MB_GET_CID_ADDR(17);
5176 dev
->mem_end
= dev
->mem_start
+ mem_len
;
5177 dev
->irq
= pdev
->irq
;
5179 bp
->regview
= ioremap_nocache(dev
->base_addr
, mem_len
);
5182 printk(KERN_ERR PFX
"Cannot map register space, aborting.\n");
5184 goto err_out_release
;
5187 /* Configure byte swap and enable write to the reg_window registers.
5188 * Rely on CPU to do target byte swapping on big endian systems
5189 * The chip's target access swapping will not swap all accesses
5191 pci_write_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
,
5192 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
5193 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
);
5195 bnx2_set_power_state(bp
, 0);
5197 bp
->chip_id
= REG_RD(bp
, BNX2_MISC_ID
);
5201 /* Get bus information. */
5202 reg
= REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
);
5203 if (reg
& BNX2_PCICFG_MISC_STATUS_PCIX_DET
) {
5206 bp
->flags
|= PCIX_FLAG
;
5208 clkreg
= REG_RD(bp
, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS
);
5210 clkreg
&= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET
;
5212 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ
:
5213 bp
->bus_speed_mhz
= 133;
5216 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ
:
5217 bp
->bus_speed_mhz
= 100;
5220 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ
:
5221 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ
:
5222 bp
->bus_speed_mhz
= 66;
5225 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ
:
5226 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ
:
5227 bp
->bus_speed_mhz
= 50;
5230 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW
:
5231 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ
:
5232 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ
:
5233 bp
->bus_speed_mhz
= 33;
5238 if (reg
& BNX2_PCICFG_MISC_STATUS_M66EN
)
5239 bp
->bus_speed_mhz
= 66;
5241 bp
->bus_speed_mhz
= 33;
5244 if (reg
& BNX2_PCICFG_MISC_STATUS_32BIT_DET
)
5245 bp
->flags
|= PCI_32BIT_FLAG
;
5247 /* 5706A0 may falsely detect SERR and PERR. */
5248 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
5249 reg
= REG_RD(bp
, PCI_COMMAND
);
5250 reg
&= ~(PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
5251 REG_WR(bp
, PCI_COMMAND
, reg
);
5253 else if ((CHIP_ID(bp
) == CHIP_ID_5706_A1
) &&
5254 !(bp
->flags
& PCIX_FLAG
)) {
5256 printk(KERN_ERR PFX
"5706 A1 can only be used in a PCIX bus, "
5261 bnx2_init_nvram(bp
);
5263 /* Get the permanent MAC address. First we need to make sure the
5264 * firmware is actually running.
5266 reg
= REG_RD_IND(bp
, HOST_VIEW_SHMEM_BASE
+ BNX2_DEV_INFO_SIGNATURE
);
5268 if ((reg
& BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK
) !=
5269 BNX2_DEV_INFO_SIGNATURE_MAGIC
) {
5270 printk(KERN_ERR PFX
"Firmware not running, aborting.\n");
5275 bp
->fw_ver
= REG_RD_IND(bp
, HOST_VIEW_SHMEM_BASE
+
5276 BNX2_DEV_INFO_BC_REV
);
5278 reg
= REG_RD_IND(bp
, HOST_VIEW_SHMEM_BASE
+ BNX2_PORT_HW_CFG_MAC_UPPER
);
5279 bp
->mac_addr
[0] = (u8
) (reg
>> 8);
5280 bp
->mac_addr
[1] = (u8
) reg
;
5282 reg
= REG_RD_IND(bp
, HOST_VIEW_SHMEM_BASE
+ BNX2_PORT_HW_CFG_MAC_LOWER
);
5283 bp
->mac_addr
[2] = (u8
) (reg
>> 24);
5284 bp
->mac_addr
[3] = (u8
) (reg
>> 16);
5285 bp
->mac_addr
[4] = (u8
) (reg
>> 8);
5286 bp
->mac_addr
[5] = (u8
) reg
;
5288 bp
->tx_ring_size
= MAX_TX_DESC_CNT
;
5289 bp
->rx_ring_size
= 100;
5293 bp
->rx_offset
= sizeof(struct l2_fhdr
) + 2;
5295 bp
->tx_quick_cons_trip_int
= 20;
5296 bp
->tx_quick_cons_trip
= 20;
5297 bp
->tx_ticks_int
= 80;
5300 bp
->rx_quick_cons_trip_int
= 6;
5301 bp
->rx_quick_cons_trip
= 6;
5302 bp
->rx_ticks_int
= 18;
5305 bp
->stats_ticks
= 1000000 & 0xffff00;
5307 bp
->timer_interval
= HZ
;
5309 /* Disable WOL support if we are running on a SERDES chip. */
5310 if (CHIP_BOND_ID(bp
) & CHIP_BOND_ID_SERDES_BIT
) {
5311 bp
->phy_flags
|= PHY_SERDES_FLAG
;
5312 bp
->flags
|= NO_WOL_FLAG
;
5315 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
5316 bp
->tx_quick_cons_trip_int
=
5317 bp
->tx_quick_cons_trip
;
5318 bp
->tx_ticks_int
= bp
->tx_ticks
;
5319 bp
->rx_quick_cons_trip_int
=
5320 bp
->rx_quick_cons_trip
;
5321 bp
->rx_ticks_int
= bp
->rx_ticks
;
5322 bp
->comp_prod_trip_int
= bp
->comp_prod_trip
;
5323 bp
->com_ticks_int
= bp
->com_ticks
;
5324 bp
->cmd_ticks_int
= bp
->cmd_ticks
;
5327 bp
->autoneg
= AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
;
5328 bp
->req_line_speed
= 0;
5329 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
5330 bp
->advertising
= ETHTOOL_ALL_FIBRE_SPEED
| ADVERTISED_Autoneg
;
5333 bp
->advertising
= ETHTOOL_ALL_COPPER_SPEED
| ADVERTISED_Autoneg
;
5336 bp
->req_flow_ctrl
= FLOW_CTRL_RX
| FLOW_CTRL_TX
;
5342 iounmap(bp
->regview
);
5346 pci_release_regions(pdev
);
5349 pci_disable_device(pdev
);
5350 pci_set_drvdata(pdev
, NULL
);
5356 static int __devinit
5357 bnx2_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
5359 static int version_printed
= 0;
5360 struct net_device
*dev
= NULL
;
5364 if (version_printed
++ == 0)
5365 printk(KERN_INFO
"%s", version
);
5367 /* dev zeroed in init_etherdev */
5368 dev
= alloc_etherdev(sizeof(*bp
));
5373 rc
= bnx2_init_board(pdev
, dev
);
5379 dev
->open
= bnx2_open
;
5380 dev
->hard_start_xmit
= bnx2_start_xmit
;
5381 dev
->stop
= bnx2_close
;
5382 dev
->get_stats
= bnx2_get_stats
;
5383 dev
->set_multicast_list
= bnx2_set_rx_mode
;
5384 dev
->do_ioctl
= bnx2_ioctl
;
5385 dev
->set_mac_address
= bnx2_change_mac_addr
;
5386 dev
->change_mtu
= bnx2_change_mtu
;
5387 dev
->tx_timeout
= bnx2_tx_timeout
;
5388 dev
->watchdog_timeo
= TX_TIMEOUT
;
5390 dev
->vlan_rx_register
= bnx2_vlan_rx_register
;
5391 dev
->vlan_rx_kill_vid
= bnx2_vlan_rx_kill_vid
;
5393 dev
->poll
= bnx2_poll
;
5394 dev
->ethtool_ops
= &bnx2_ethtool_ops
;
5399 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
5400 dev
->poll_controller
= poll_bnx2
;
5403 if ((rc
= register_netdev(dev
))) {
5404 printk(KERN_ERR PFX
"Cannot register net device\n");
5406 iounmap(bp
->regview
);
5407 pci_release_regions(pdev
);
5408 pci_disable_device(pdev
);
5409 pci_set_drvdata(pdev
, NULL
);
5414 pci_set_drvdata(pdev
, dev
);
5416 memcpy(dev
->dev_addr
, bp
->mac_addr
, 6);
5417 bp
->name
= board_info
[ent
->driver_data
].name
,
5418 printk(KERN_INFO
"%s: %s (%c%d) PCI%s %s %dMHz found at mem %lx, "
5422 ((CHIP_ID(bp
) & 0xf000) >> 12) + 'A',
5423 ((CHIP_ID(bp
) & 0x0ff0) >> 4),
5424 ((bp
->flags
& PCIX_FLAG
) ? "-X" : ""),
5425 ((bp
->flags
& PCI_32BIT_FLAG
) ? "32-bit" : "64-bit"),
5430 printk("node addr ");
5431 for (i
= 0; i
< 6; i
++)
5432 printk("%2.2x", dev
->dev_addr
[i
]);
5435 dev
->features
|= NETIF_F_SG
;
5436 if (bp
->flags
& USING_DAC_FLAG
)
5437 dev
->features
|= NETIF_F_HIGHDMA
;
5438 dev
->features
|= NETIF_F_IP_CSUM
;
5440 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
5443 dev
->features
|= NETIF_F_TSO
;
5446 netif_carrier_off(bp
->dev
);
5451 static void __devexit
5452 bnx2_remove_one(struct pci_dev
*pdev
)
5454 struct net_device
*dev
= pci_get_drvdata(pdev
);
5455 struct bnx2
*bp
= dev
->priv
;
5457 unregister_netdev(dev
);
5460 iounmap(bp
->regview
);
5463 pci_release_regions(pdev
);
5464 pci_disable_device(pdev
);
5465 pci_set_drvdata(pdev
, NULL
);
5469 bnx2_suspend(struct pci_dev
*pdev
, u32 state
)
5471 struct net_device
*dev
= pci_get_drvdata(pdev
);
5472 struct bnx2
*bp
= dev
->priv
;
5475 if (!netif_running(dev
))
5478 bnx2_netif_stop(bp
);
5479 netif_device_detach(dev
);
5480 del_timer_sync(&bp
->timer
);
5482 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
5484 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
5485 bnx2_reset_chip(bp
, reset_code
);
5487 bnx2_set_power_state(bp
, state
);
5492 bnx2_resume(struct pci_dev
*pdev
)
5494 struct net_device
*dev
= pci_get_drvdata(pdev
);
5495 struct bnx2
*bp
= dev
->priv
;
5497 if (!netif_running(dev
))
5500 bnx2_set_power_state(bp
, 0);
5501 netif_device_attach(dev
);
5503 bnx2_netif_start(bp
);
5507 static struct pci_driver bnx2_pci_driver
= {
5508 name
: DRV_MODULE_NAME
,
5509 id_table
: bnx2_pci_tbl
,
5510 probe
: bnx2_init_one
,
5511 remove
: __devexit_p(bnx2_remove_one
),
5512 suspend
: bnx2_suspend
,
5513 resume
: bnx2_resume
,
5516 static int __init
bnx2_init(void)
5518 return pci_module_init(&bnx2_pci_driver
);
5521 static void __exit
bnx2_cleanup(void)
5523 pci_unregister_driver(&bnx2_pci_driver
);
5526 module_init(bnx2_init
);
5527 module_exit(bnx2_cleanup
);