2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 * This file is released under the GPL.
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
26 #include <linux/config.h>
27 #include <linux/module.h>
28 #include <linux/init.h>
29 #include <linux/devfs_fs_kernel.h>
32 #include <linux/mman.h>
33 #include <linux/file.h>
34 #include <linux/swap.h>
35 #include <linux/pagemap.h>
36 #include <linux/string.h>
37 #include <linux/slab.h>
38 #include <linux/backing-dev.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/mount.h>
41 #include <linux/writeback.h>
42 #include <linux/vfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/security.h>
45 #include <linux/swapops.h>
46 #include <linux/mempolicy.h>
47 #include <linux/namei.h>
48 #include <asm/uaccess.h>
49 #include <asm/div64.h>
50 #include <asm/pgtable.h>
52 /* This magic number is used in glibc for posix shared memory */
53 #define TMPFS_MAGIC 0x01021994
55 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
56 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
57 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
59 #define SHMEM_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
60 #define SHMEM_MAX_BYTES ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
62 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
64 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
65 #define SHMEM_PAGEIN VM_READ
66 #define SHMEM_TRUNCATE VM_WRITE
68 /* Definition to limit shmem_truncate's steps between cond_rescheds */
69 #define LATENCY_LIMIT 64
71 /* Pretend that each entry is of this size in directory's i_size */
72 #define BOGO_DIRENT_SIZE 20
74 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
76 SGP_QUICK
, /* don't try more than file page cache lookup */
77 SGP_READ
, /* don't exceed i_size, don't allocate page */
78 SGP_CACHE
, /* don't exceed i_size, may allocate page */
79 SGP_WRITE
, /* may exceed i_size, may allocate page */
82 static int shmem_getpage(struct inode
*inode
, unsigned long idx
,
83 struct page
**pagep
, enum sgp_type sgp
, int *type
);
85 static inline struct page
*shmem_dir_alloc(gfp_t gfp_mask
)
88 * The above definition of ENTRIES_PER_PAGE, and the use of
89 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
90 * might be reconsidered if it ever diverges from PAGE_SIZE.
92 return alloc_pages(gfp_mask
, PAGE_CACHE_SHIFT
-PAGE_SHIFT
);
95 static inline void shmem_dir_free(struct page
*page
)
97 __free_pages(page
, PAGE_CACHE_SHIFT
-PAGE_SHIFT
);
100 static struct page
**shmem_dir_map(struct page
*page
)
102 return (struct page
**)kmap_atomic(page
, KM_USER0
);
105 static inline void shmem_dir_unmap(struct page
**dir
)
107 kunmap_atomic(dir
, KM_USER0
);
110 static swp_entry_t
*shmem_swp_map(struct page
*page
)
112 return (swp_entry_t
*)kmap_atomic(page
, KM_USER1
);
115 static inline void shmem_swp_balance_unmap(void)
118 * When passing a pointer to an i_direct entry, to code which
119 * also handles indirect entries and so will shmem_swp_unmap,
120 * we must arrange for the preempt count to remain in balance.
121 * What kmap_atomic of a lowmem page does depends on config
122 * and architecture, so pretend to kmap_atomic some lowmem page.
124 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1
);
127 static inline void shmem_swp_unmap(swp_entry_t
*entry
)
129 kunmap_atomic(entry
, KM_USER1
);
132 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
134 return sb
->s_fs_info
;
138 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
139 * for shared memory and for shared anonymous (/dev/zero) mappings
140 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
141 * consistent with the pre-accounting of private mappings ...
143 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
145 return (flags
& VM_ACCOUNT
)?
146 security_vm_enough_memory(VM_ACCT(size
)): 0;
149 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
151 if (flags
& VM_ACCOUNT
)
152 vm_unacct_memory(VM_ACCT(size
));
156 * ... whereas tmpfs objects are accounted incrementally as
157 * pages are allocated, in order to allow huge sparse files.
158 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
159 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
161 static inline int shmem_acct_block(unsigned long flags
)
163 return (flags
& VM_ACCOUNT
)?
164 0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE
));
167 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
169 if (!(flags
& VM_ACCOUNT
))
170 vm_unacct_memory(pages
* VM_ACCT(PAGE_CACHE_SIZE
));
173 static struct super_operations shmem_ops
;
174 static struct address_space_operations shmem_aops
;
175 static struct file_operations shmem_file_operations
;
176 static struct inode_operations shmem_inode_operations
;
177 static struct inode_operations shmem_dir_inode_operations
;
178 static struct vm_operations_struct shmem_vm_ops
;
180 static struct backing_dev_info shmem_backing_dev_info __read_mostly
= {
181 .ra_pages
= 0, /* No readahead */
182 .capabilities
= BDI_CAP_NO_ACCT_DIRTY
| BDI_CAP_NO_WRITEBACK
,
183 .unplug_io_fn
= default_unplug_io_fn
,
186 static LIST_HEAD(shmem_swaplist
);
187 static DEFINE_SPINLOCK(shmem_swaplist_lock
);
189 static void shmem_free_blocks(struct inode
*inode
, long pages
)
191 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
192 if (sbinfo
->max_blocks
) {
193 spin_lock(&sbinfo
->stat_lock
);
194 sbinfo
->free_blocks
+= pages
;
195 inode
->i_blocks
-= pages
*BLOCKS_PER_PAGE
;
196 spin_unlock(&sbinfo
->stat_lock
);
201 * shmem_recalc_inode - recalculate the size of an inode
203 * @inode: inode to recalc
205 * We have to calculate the free blocks since the mm can drop
206 * undirtied hole pages behind our back.
208 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
209 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
211 * It has to be called with the spinlock held.
213 static void shmem_recalc_inode(struct inode
*inode
)
215 struct shmem_inode_info
*info
= SHMEM_I(inode
);
218 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
220 info
->alloced
-= freed
;
221 shmem_unacct_blocks(info
->flags
, freed
);
222 shmem_free_blocks(inode
, freed
);
227 * shmem_swp_entry - find the swap vector position in the info structure
229 * @info: info structure for the inode
230 * @index: index of the page to find
231 * @page: optional page to add to the structure. Has to be preset to
234 * If there is no space allocated yet it will return NULL when
235 * page is NULL, else it will use the page for the needed block,
236 * setting it to NULL on return to indicate that it has been used.
238 * The swap vector is organized the following way:
240 * There are SHMEM_NR_DIRECT entries directly stored in the
241 * shmem_inode_info structure. So small files do not need an addional
244 * For pages with index > SHMEM_NR_DIRECT there is the pointer
245 * i_indirect which points to a page which holds in the first half
246 * doubly indirect blocks, in the second half triple indirect blocks:
248 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
249 * following layout (for SHMEM_NR_DIRECT == 16):
251 * i_indirect -> dir --> 16-19
264 static swp_entry_t
*shmem_swp_entry(struct shmem_inode_info
*info
, unsigned long index
, struct page
**page
)
266 unsigned long offset
;
270 if (index
< SHMEM_NR_DIRECT
) {
271 shmem_swp_balance_unmap();
272 return info
->i_direct
+index
;
274 if (!info
->i_indirect
) {
276 info
->i_indirect
= *page
;
279 return NULL
; /* need another page */
282 index
-= SHMEM_NR_DIRECT
;
283 offset
= index
% ENTRIES_PER_PAGE
;
284 index
/= ENTRIES_PER_PAGE
;
285 dir
= shmem_dir_map(info
->i_indirect
);
287 if (index
>= ENTRIES_PER_PAGE
/2) {
288 index
-= ENTRIES_PER_PAGE
/2;
289 dir
+= ENTRIES_PER_PAGE
/2 + index
/ENTRIES_PER_PAGE
;
290 index
%= ENTRIES_PER_PAGE
;
297 shmem_dir_unmap(dir
);
298 return NULL
; /* need another page */
300 shmem_dir_unmap(dir
);
301 dir
= shmem_dir_map(subdir
);
307 if (!page
|| !(subdir
= *page
)) {
308 shmem_dir_unmap(dir
);
309 return NULL
; /* need a page */
314 shmem_dir_unmap(dir
);
315 return shmem_swp_map(subdir
) + offset
;
318 static void shmem_swp_set(struct shmem_inode_info
*info
, swp_entry_t
*entry
, unsigned long value
)
320 long incdec
= value
? 1: -1;
323 info
->swapped
+= incdec
;
324 if ((unsigned long)(entry
- info
->i_direct
) >= SHMEM_NR_DIRECT
) {
325 struct page
*page
= kmap_atomic_to_page(entry
);
326 set_page_private(page
, page_private(page
) + incdec
);
331 * shmem_swp_alloc - get the position of the swap entry for the page.
332 * If it does not exist allocate the entry.
334 * @info: info structure for the inode
335 * @index: index of the page to find
336 * @sgp: check and recheck i_size? skip allocation?
338 static swp_entry_t
*shmem_swp_alloc(struct shmem_inode_info
*info
, unsigned long index
, enum sgp_type sgp
)
340 struct inode
*inode
= &info
->vfs_inode
;
341 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
342 struct page
*page
= NULL
;
345 if (sgp
!= SGP_WRITE
&&
346 ((loff_t
) index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
347 return ERR_PTR(-EINVAL
);
349 while (!(entry
= shmem_swp_entry(info
, index
, &page
))) {
351 return shmem_swp_map(ZERO_PAGE(0));
353 * Test free_blocks against 1 not 0, since we have 1 data
354 * page (and perhaps indirect index pages) yet to allocate:
355 * a waste to allocate index if we cannot allocate data.
357 if (sbinfo
->max_blocks
) {
358 spin_lock(&sbinfo
->stat_lock
);
359 if (sbinfo
->free_blocks
<= 1) {
360 spin_unlock(&sbinfo
->stat_lock
);
361 return ERR_PTR(-ENOSPC
);
363 sbinfo
->free_blocks
--;
364 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
365 spin_unlock(&sbinfo
->stat_lock
);
368 spin_unlock(&info
->lock
);
369 page
= shmem_dir_alloc(mapping_gfp_mask(inode
->i_mapping
) | __GFP_ZERO
);
371 set_page_private(page
, 0);
372 spin_lock(&info
->lock
);
375 shmem_free_blocks(inode
, 1);
376 return ERR_PTR(-ENOMEM
);
378 if (sgp
!= SGP_WRITE
&&
379 ((loff_t
) index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
380 entry
= ERR_PTR(-EINVAL
);
383 if (info
->next_index
<= index
)
384 info
->next_index
= index
+ 1;
387 /* another task gave its page, or truncated the file */
388 shmem_free_blocks(inode
, 1);
389 shmem_dir_free(page
);
391 if (info
->next_index
<= index
&& !IS_ERR(entry
))
392 info
->next_index
= index
+ 1;
397 * shmem_free_swp - free some swap entries in a directory
399 * @dir: pointer to the directory
400 * @edir: pointer after last entry of the directory
402 static int shmem_free_swp(swp_entry_t
*dir
, swp_entry_t
*edir
)
407 for (ptr
= dir
; ptr
< edir
; ptr
++) {
409 free_swap_and_cache(*ptr
);
410 *ptr
= (swp_entry_t
){0};
417 static int shmem_map_and_free_swp(struct page
*subdir
,
418 int offset
, int limit
, struct page
***dir
)
423 ptr
= shmem_swp_map(subdir
);
424 for (; offset
< limit
; offset
+= LATENCY_LIMIT
) {
425 int size
= limit
- offset
;
426 if (size
> LATENCY_LIMIT
)
427 size
= LATENCY_LIMIT
;
428 freed
+= shmem_free_swp(ptr
+offset
, ptr
+offset
+size
);
429 if (need_resched()) {
430 shmem_swp_unmap(ptr
);
432 shmem_dir_unmap(*dir
);
436 ptr
= shmem_swp_map(subdir
);
439 shmem_swp_unmap(ptr
);
443 static void shmem_free_pages(struct list_head
*next
)
449 page
= container_of(next
, struct page
, lru
);
451 shmem_dir_free(page
);
453 if (freed
>= LATENCY_LIMIT
) {
460 static void shmem_truncate(struct inode
*inode
)
462 struct shmem_inode_info
*info
= SHMEM_I(inode
);
467 unsigned long diroff
;
473 LIST_HEAD(pages_to_free
);
474 long nr_pages_to_free
= 0;
475 long nr_swaps_freed
= 0;
479 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
480 idx
= (inode
->i_size
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
481 if (idx
>= info
->next_index
)
484 spin_lock(&info
->lock
);
485 info
->flags
|= SHMEM_TRUNCATE
;
486 limit
= info
->next_index
;
487 info
->next_index
= idx
;
488 topdir
= info
->i_indirect
;
489 if (topdir
&& idx
<= SHMEM_NR_DIRECT
) {
490 info
->i_indirect
= NULL
;
492 list_add(&topdir
->lru
, &pages_to_free
);
494 spin_unlock(&info
->lock
);
496 if (info
->swapped
&& idx
< SHMEM_NR_DIRECT
) {
497 ptr
= info
->i_direct
;
499 if (size
> SHMEM_NR_DIRECT
)
500 size
= SHMEM_NR_DIRECT
;
501 nr_swaps_freed
= shmem_free_swp(ptr
+idx
, ptr
+size
);
506 BUG_ON(limit
<= SHMEM_NR_DIRECT
);
507 limit
-= SHMEM_NR_DIRECT
;
508 idx
= (idx
> SHMEM_NR_DIRECT
)? (idx
- SHMEM_NR_DIRECT
): 0;
509 offset
= idx
% ENTRIES_PER_PAGE
;
512 dir
= shmem_dir_map(topdir
);
513 stage
= ENTRIES_PER_PAGEPAGE
/2;
514 if (idx
< ENTRIES_PER_PAGEPAGE
/2) {
516 diroff
= idx
/ENTRIES_PER_PAGE
;
518 dir
+= ENTRIES_PER_PAGE
/2;
519 dir
+= (idx
- ENTRIES_PER_PAGEPAGE
/2)/ENTRIES_PER_PAGEPAGE
;
521 stage
+= ENTRIES_PER_PAGEPAGE
;
524 diroff
= ((idx
- ENTRIES_PER_PAGEPAGE
/2) %
525 ENTRIES_PER_PAGEPAGE
) / ENTRIES_PER_PAGE
;
526 if (!diroff
&& !offset
) {
529 list_add(&middir
->lru
, &pages_to_free
);
531 shmem_dir_unmap(dir
);
532 dir
= shmem_dir_map(middir
);
540 for (; idx
< limit
; idx
+= ENTRIES_PER_PAGE
, diroff
++) {
541 if (unlikely(idx
== stage
)) {
542 shmem_dir_unmap(dir
);
543 dir
= shmem_dir_map(topdir
) +
544 ENTRIES_PER_PAGE
/2 + idx
/ENTRIES_PER_PAGEPAGE
;
547 idx
+= ENTRIES_PER_PAGEPAGE
;
551 stage
= idx
+ ENTRIES_PER_PAGEPAGE
;
555 list_add(&middir
->lru
, &pages_to_free
);
556 shmem_dir_unmap(dir
);
558 dir
= shmem_dir_map(middir
);
561 subdir
= dir
[diroff
];
562 if (subdir
&& page_private(subdir
)) {
564 if (size
> ENTRIES_PER_PAGE
)
565 size
= ENTRIES_PER_PAGE
;
566 freed
= shmem_map_and_free_swp(subdir
,
569 dir
= shmem_dir_map(middir
);
570 nr_swaps_freed
+= freed
;
572 spin_lock(&info
->lock
);
573 set_page_private(subdir
, page_private(subdir
) - freed
);
575 spin_unlock(&info
->lock
);
576 BUG_ON(page_private(subdir
) > offset
);
583 list_add(&subdir
->lru
, &pages_to_free
);
587 shmem_dir_unmap(dir
);
589 if (inode
->i_mapping
->nrpages
&& (info
->flags
& SHMEM_PAGEIN
)) {
591 * Call truncate_inode_pages again: racing shmem_unuse_inode
592 * may have swizzled a page in from swap since vmtruncate or
593 * generic_delete_inode did it, before we lowered next_index.
594 * Also, though shmem_getpage checks i_size before adding to
595 * cache, no recheck after: so fix the narrow window there too.
597 truncate_inode_pages(inode
->i_mapping
, inode
->i_size
);
600 spin_lock(&info
->lock
);
601 info
->flags
&= ~SHMEM_TRUNCATE
;
602 info
->swapped
-= nr_swaps_freed
;
603 if (nr_pages_to_free
)
604 shmem_free_blocks(inode
, nr_pages_to_free
);
605 shmem_recalc_inode(inode
);
606 spin_unlock(&info
->lock
);
609 * Empty swap vector directory pages to be freed?
611 if (!list_empty(&pages_to_free
)) {
612 pages_to_free
.prev
->next
= NULL
;
613 shmem_free_pages(pages_to_free
.next
);
617 static int shmem_notify_change(struct dentry
*dentry
, struct iattr
*attr
)
619 struct inode
*inode
= dentry
->d_inode
;
620 struct page
*page
= NULL
;
623 if (attr
->ia_valid
& ATTR_SIZE
) {
624 if (attr
->ia_size
< inode
->i_size
) {
626 * If truncating down to a partial page, then
627 * if that page is already allocated, hold it
628 * in memory until the truncation is over, so
629 * truncate_partial_page cannnot miss it were
630 * it assigned to swap.
632 if (attr
->ia_size
& (PAGE_CACHE_SIZE
-1)) {
633 (void) shmem_getpage(inode
,
634 attr
->ia_size
>>PAGE_CACHE_SHIFT
,
635 &page
, SGP_READ
, NULL
);
638 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
639 * detect if any pages might have been added to cache
640 * after truncate_inode_pages. But we needn't bother
641 * if it's being fully truncated to zero-length: the
642 * nrpages check is efficient enough in that case.
645 struct shmem_inode_info
*info
= SHMEM_I(inode
);
646 spin_lock(&info
->lock
);
647 info
->flags
&= ~SHMEM_PAGEIN
;
648 spin_unlock(&info
->lock
);
653 error
= inode_change_ok(inode
, attr
);
655 error
= inode_setattr(inode
, attr
);
657 page_cache_release(page
);
661 static void shmem_delete_inode(struct inode
*inode
)
663 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
664 struct shmem_inode_info
*info
= SHMEM_I(inode
);
666 if (inode
->i_op
->truncate
== shmem_truncate
) {
667 truncate_inode_pages(inode
->i_mapping
, 0);
668 shmem_unacct_size(info
->flags
, inode
->i_size
);
670 shmem_truncate(inode
);
671 if (!list_empty(&info
->swaplist
)) {
672 spin_lock(&shmem_swaplist_lock
);
673 list_del_init(&info
->swaplist
);
674 spin_unlock(&shmem_swaplist_lock
);
677 BUG_ON(inode
->i_blocks
);
678 if (sbinfo
->max_inodes
) {
679 spin_lock(&sbinfo
->stat_lock
);
680 sbinfo
->free_inodes
++;
681 spin_unlock(&sbinfo
->stat_lock
);
686 static inline int shmem_find_swp(swp_entry_t entry
, swp_entry_t
*dir
, swp_entry_t
*edir
)
690 for (ptr
= dir
; ptr
< edir
; ptr
++) {
691 if (ptr
->val
== entry
.val
)
697 static int shmem_unuse_inode(struct shmem_inode_info
*info
, swp_entry_t entry
, struct page
*page
)
710 ptr
= info
->i_direct
;
711 spin_lock(&info
->lock
);
712 limit
= info
->next_index
;
714 if (size
> SHMEM_NR_DIRECT
)
715 size
= SHMEM_NR_DIRECT
;
716 offset
= shmem_find_swp(entry
, ptr
, ptr
+size
);
718 shmem_swp_balance_unmap();
721 if (!info
->i_indirect
)
724 dir
= shmem_dir_map(info
->i_indirect
);
725 stage
= SHMEM_NR_DIRECT
+ ENTRIES_PER_PAGEPAGE
/2;
727 for (idx
= SHMEM_NR_DIRECT
; idx
< limit
; idx
+= ENTRIES_PER_PAGE
, dir
++) {
728 if (unlikely(idx
== stage
)) {
729 shmem_dir_unmap(dir
-1);
730 dir
= shmem_dir_map(info
->i_indirect
) +
731 ENTRIES_PER_PAGE
/2 + idx
/ENTRIES_PER_PAGEPAGE
;
734 idx
+= ENTRIES_PER_PAGEPAGE
;
738 stage
= idx
+ ENTRIES_PER_PAGEPAGE
;
740 shmem_dir_unmap(dir
);
741 dir
= shmem_dir_map(subdir
);
744 if (subdir
&& page_private(subdir
)) {
745 ptr
= shmem_swp_map(subdir
);
747 if (size
> ENTRIES_PER_PAGE
)
748 size
= ENTRIES_PER_PAGE
;
749 offset
= shmem_find_swp(entry
, ptr
, ptr
+size
);
751 shmem_dir_unmap(dir
);
754 shmem_swp_unmap(ptr
);
758 shmem_dir_unmap(dir
-1);
760 spin_unlock(&info
->lock
);
764 inode
= &info
->vfs_inode
;
765 if (move_from_swap_cache(page
, idx
, inode
->i_mapping
) == 0) {
766 info
->flags
|= SHMEM_PAGEIN
;
767 shmem_swp_set(info
, ptr
+ offset
, 0);
769 shmem_swp_unmap(ptr
);
770 spin_unlock(&info
->lock
);
772 * Decrement swap count even when the entry is left behind:
773 * try_to_unuse will skip over mms, then reincrement count.
780 * shmem_unuse() search for an eventually swapped out shmem page.
782 int shmem_unuse(swp_entry_t entry
, struct page
*page
)
784 struct list_head
*p
, *next
;
785 struct shmem_inode_info
*info
;
788 spin_lock(&shmem_swaplist_lock
);
789 list_for_each_safe(p
, next
, &shmem_swaplist
) {
790 info
= list_entry(p
, struct shmem_inode_info
, swaplist
);
792 list_del_init(&info
->swaplist
);
793 else if (shmem_unuse_inode(info
, entry
, page
)) {
794 /* move head to start search for next from here */
795 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
800 spin_unlock(&shmem_swaplist_lock
);
805 * Move the page from the page cache to the swap cache.
807 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
809 struct shmem_inode_info
*info
;
810 swp_entry_t
*entry
, swap
;
811 struct address_space
*mapping
;
815 BUG_ON(!PageLocked(page
));
816 BUG_ON(page_mapped(page
));
818 mapping
= page
->mapping
;
820 inode
= mapping
->host
;
821 info
= SHMEM_I(inode
);
822 if (info
->flags
& VM_LOCKED
)
824 swap
= get_swap_page();
828 spin_lock(&info
->lock
);
829 shmem_recalc_inode(inode
);
830 if (index
>= info
->next_index
) {
831 BUG_ON(!(info
->flags
& SHMEM_TRUNCATE
));
834 entry
= shmem_swp_entry(info
, index
, NULL
);
838 if (move_to_swap_cache(page
, swap
) == 0) {
839 shmem_swp_set(info
, entry
, swap
.val
);
840 shmem_swp_unmap(entry
);
841 spin_unlock(&info
->lock
);
842 if (list_empty(&info
->swaplist
)) {
843 spin_lock(&shmem_swaplist_lock
);
844 /* move instead of add in case we're racing */
845 list_move_tail(&info
->swaplist
, &shmem_swaplist
);
846 spin_unlock(&shmem_swaplist_lock
);
852 shmem_swp_unmap(entry
);
854 spin_unlock(&info
->lock
);
857 set_page_dirty(page
);
858 return WRITEPAGE_ACTIVATE
; /* Return with the page locked */
862 static struct page
*shmem_swapin_async(struct shared_policy
*p
,
863 swp_entry_t entry
, unsigned long idx
)
866 struct vm_area_struct pvma
;
868 /* Create a pseudo vma that just contains the policy */
869 memset(&pvma
, 0, sizeof(struct vm_area_struct
));
870 pvma
.vm_end
= PAGE_SIZE
;
872 pvma
.vm_policy
= mpol_shared_policy_lookup(p
, idx
);
873 page
= read_swap_cache_async(entry
, &pvma
, 0);
874 mpol_free(pvma
.vm_policy
);
878 struct page
*shmem_swapin(struct shmem_inode_info
*info
, swp_entry_t entry
,
881 struct shared_policy
*p
= &info
->policy
;
884 unsigned long offset
;
886 num
= valid_swaphandles(entry
, &offset
);
887 for (i
= 0; i
< num
; offset
++, i
++) {
888 page
= shmem_swapin_async(p
,
889 swp_entry(swp_type(entry
), offset
), idx
);
892 page_cache_release(page
);
894 lru_add_drain(); /* Push any new pages onto the LRU now */
895 return shmem_swapin_async(p
, entry
, idx
);
899 shmem_alloc_page(gfp_t gfp
, struct shmem_inode_info
*info
,
902 struct vm_area_struct pvma
;
905 memset(&pvma
, 0, sizeof(struct vm_area_struct
));
906 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, idx
);
908 pvma
.vm_end
= PAGE_SIZE
;
909 page
= alloc_page_vma(gfp
| __GFP_ZERO
, &pvma
, 0);
910 mpol_free(pvma
.vm_policy
);
914 static inline struct page
*
915 shmem_swapin(struct shmem_inode_info
*info
,swp_entry_t entry
,unsigned long idx
)
917 swapin_readahead(entry
, 0, NULL
);
918 return read_swap_cache_async(entry
, NULL
, 0);
921 static inline struct page
*
922 shmem_alloc_page(gfp_t gfp
,struct shmem_inode_info
*info
, unsigned long idx
)
924 return alloc_page(gfp
| __GFP_ZERO
);
929 * shmem_getpage - either get the page from swap or allocate a new one
931 * If we allocate a new one we do not mark it dirty. That's up to the
932 * vm. If we swap it in we mark it dirty since we also free the swap
933 * entry since a page cannot live in both the swap and page cache
935 static int shmem_getpage(struct inode
*inode
, unsigned long idx
,
936 struct page
**pagep
, enum sgp_type sgp
, int *type
)
938 struct address_space
*mapping
= inode
->i_mapping
;
939 struct shmem_inode_info
*info
= SHMEM_I(inode
);
940 struct shmem_sb_info
*sbinfo
;
941 struct page
*filepage
= *pagep
;
942 struct page
*swappage
;
947 if (idx
>= SHMEM_MAX_INDEX
)
950 * Normally, filepage is NULL on entry, and either found
951 * uptodate immediately, or allocated and zeroed, or read
952 * in under swappage, which is then assigned to filepage.
953 * But shmem_prepare_write passes in a locked filepage,
954 * which may be found not uptodate by other callers too,
955 * and may need to be copied from the swappage read in.
959 filepage
= find_lock_page(mapping
, idx
);
960 if (filepage
&& PageUptodate(filepage
))
963 if (sgp
== SGP_QUICK
)
966 spin_lock(&info
->lock
);
967 shmem_recalc_inode(inode
);
968 entry
= shmem_swp_alloc(info
, idx
, sgp
);
970 spin_unlock(&info
->lock
);
971 error
= PTR_ERR(entry
);
977 /* Look it up and read it in.. */
978 swappage
= lookup_swap_cache(swap
);
980 shmem_swp_unmap(entry
);
981 spin_unlock(&info
->lock
);
982 /* here we actually do the io */
983 if (type
&& *type
== VM_FAULT_MINOR
) {
984 inc_page_state(pgmajfault
);
985 *type
= VM_FAULT_MAJOR
;
987 swappage
= shmem_swapin(info
, swap
, idx
);
989 spin_lock(&info
->lock
);
990 entry
= shmem_swp_alloc(info
, idx
, sgp
);
992 error
= PTR_ERR(entry
);
994 if (entry
->val
== swap
.val
)
996 shmem_swp_unmap(entry
);
998 spin_unlock(&info
->lock
);
1003 wait_on_page_locked(swappage
);
1004 page_cache_release(swappage
);
1008 /* We have to do this with page locked to prevent races */
1009 if (TestSetPageLocked(swappage
)) {
1010 shmem_swp_unmap(entry
);
1011 spin_unlock(&info
->lock
);
1012 wait_on_page_locked(swappage
);
1013 page_cache_release(swappage
);
1016 if (PageWriteback(swappage
)) {
1017 shmem_swp_unmap(entry
);
1018 spin_unlock(&info
->lock
);
1019 wait_on_page_writeback(swappage
);
1020 unlock_page(swappage
);
1021 page_cache_release(swappage
);
1024 if (!PageUptodate(swappage
)) {
1025 shmem_swp_unmap(entry
);
1026 spin_unlock(&info
->lock
);
1027 unlock_page(swappage
);
1028 page_cache_release(swappage
);
1034 shmem_swp_set(info
, entry
, 0);
1035 shmem_swp_unmap(entry
);
1036 delete_from_swap_cache(swappage
);
1037 spin_unlock(&info
->lock
);
1038 copy_highpage(filepage
, swappage
);
1039 unlock_page(swappage
);
1040 page_cache_release(swappage
);
1041 flush_dcache_page(filepage
);
1042 SetPageUptodate(filepage
);
1043 set_page_dirty(filepage
);
1045 } else if (!(error
= move_from_swap_cache(
1046 swappage
, idx
, mapping
))) {
1047 info
->flags
|= SHMEM_PAGEIN
;
1048 shmem_swp_set(info
, entry
, 0);
1049 shmem_swp_unmap(entry
);
1050 spin_unlock(&info
->lock
);
1051 filepage
= swappage
;
1054 shmem_swp_unmap(entry
);
1055 spin_unlock(&info
->lock
);
1056 unlock_page(swappage
);
1057 page_cache_release(swappage
);
1058 if (error
== -ENOMEM
) {
1059 /* let kswapd refresh zone for GFP_ATOMICs */
1060 blk_congestion_wait(WRITE
, HZ
/50);
1064 } else if (sgp
== SGP_READ
&& !filepage
) {
1065 shmem_swp_unmap(entry
);
1066 filepage
= find_get_page(mapping
, idx
);
1068 (!PageUptodate(filepage
) || TestSetPageLocked(filepage
))) {
1069 spin_unlock(&info
->lock
);
1070 wait_on_page_locked(filepage
);
1071 page_cache_release(filepage
);
1075 spin_unlock(&info
->lock
);
1077 shmem_swp_unmap(entry
);
1078 sbinfo
= SHMEM_SB(inode
->i_sb
);
1079 if (sbinfo
->max_blocks
) {
1080 spin_lock(&sbinfo
->stat_lock
);
1081 if (sbinfo
->free_blocks
== 0 ||
1082 shmem_acct_block(info
->flags
)) {
1083 spin_unlock(&sbinfo
->stat_lock
);
1084 spin_unlock(&info
->lock
);
1088 sbinfo
->free_blocks
--;
1089 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
1090 spin_unlock(&sbinfo
->stat_lock
);
1091 } else if (shmem_acct_block(info
->flags
)) {
1092 spin_unlock(&info
->lock
);
1098 spin_unlock(&info
->lock
);
1099 filepage
= shmem_alloc_page(mapping_gfp_mask(mapping
),
1103 shmem_unacct_blocks(info
->flags
, 1);
1104 shmem_free_blocks(inode
, 1);
1109 spin_lock(&info
->lock
);
1110 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1112 error
= PTR_ERR(entry
);
1115 shmem_swp_unmap(entry
);
1117 if (error
|| swap
.val
|| 0 != add_to_page_cache_lru(
1118 filepage
, mapping
, idx
, GFP_ATOMIC
)) {
1119 spin_unlock(&info
->lock
);
1120 page_cache_release(filepage
);
1121 shmem_unacct_blocks(info
->flags
, 1);
1122 shmem_free_blocks(inode
, 1);
1128 info
->flags
|= SHMEM_PAGEIN
;
1132 spin_unlock(&info
->lock
);
1133 flush_dcache_page(filepage
);
1134 SetPageUptodate(filepage
);
1137 if (*pagep
!= filepage
) {
1138 unlock_page(filepage
);
1144 if (*pagep
!= filepage
) {
1145 unlock_page(filepage
);
1146 page_cache_release(filepage
);
1151 struct page
*shmem_nopage(struct vm_area_struct
*vma
, unsigned long address
, int *type
)
1153 struct inode
*inode
= vma
->vm_file
->f_dentry
->d_inode
;
1154 struct page
*page
= NULL
;
1158 idx
= (address
- vma
->vm_start
) >> PAGE_SHIFT
;
1159 idx
+= vma
->vm_pgoff
;
1160 idx
>>= PAGE_CACHE_SHIFT
- PAGE_SHIFT
;
1161 if (((loff_t
) idx
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
1162 return NOPAGE_SIGBUS
;
1164 error
= shmem_getpage(inode
, idx
, &page
, SGP_CACHE
, type
);
1166 return (error
== -ENOMEM
)? NOPAGE_OOM
: NOPAGE_SIGBUS
;
1168 mark_page_accessed(page
);
1172 static int shmem_populate(struct vm_area_struct
*vma
,
1173 unsigned long addr
, unsigned long len
,
1174 pgprot_t prot
, unsigned long pgoff
, int nonblock
)
1176 struct inode
*inode
= vma
->vm_file
->f_dentry
->d_inode
;
1177 struct mm_struct
*mm
= vma
->vm_mm
;
1178 enum sgp_type sgp
= nonblock
? SGP_QUICK
: SGP_CACHE
;
1181 size
= (i_size_read(inode
) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1182 if (pgoff
>= size
|| pgoff
+ (len
>> PAGE_SHIFT
) > size
)
1185 while ((long) len
> 0) {
1186 struct page
*page
= NULL
;
1189 * Will need changing if PAGE_CACHE_SIZE != PAGE_SIZE
1191 err
= shmem_getpage(inode
, pgoff
, &page
, sgp
, NULL
);
1194 /* Page may still be null, but only if nonblock was set. */
1196 mark_page_accessed(page
);
1197 err
= install_page(mm
, vma
, addr
, page
, prot
);
1199 page_cache_release(page
);
1202 } else if (vma
->vm_flags
& VM_NONLINEAR
) {
1203 /* No page was found just because we can't read it in
1204 * now (being here implies nonblock != 0), but the page
1205 * may exist, so set the PTE to fault it in later. */
1206 err
= install_file_pte(mm
, vma
, addr
, pgoff
, prot
);
1219 int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*new)
1221 struct inode
*i
= vma
->vm_file
->f_dentry
->d_inode
;
1222 return mpol_set_shared_policy(&SHMEM_I(i
)->policy
, vma
, new);
1226 shmem_get_policy(struct vm_area_struct
*vma
, unsigned long addr
)
1228 struct inode
*i
= vma
->vm_file
->f_dentry
->d_inode
;
1231 idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
1232 return mpol_shared_policy_lookup(&SHMEM_I(i
)->policy
, idx
);
1236 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
1238 struct inode
*inode
= file
->f_dentry
->d_inode
;
1239 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1240 int retval
= -ENOMEM
;
1242 spin_lock(&info
->lock
);
1243 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
1244 if (!user_shm_lock(inode
->i_size
, user
))
1246 info
->flags
|= VM_LOCKED
;
1248 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
1249 user_shm_unlock(inode
->i_size
, user
);
1250 info
->flags
&= ~VM_LOCKED
;
1254 spin_unlock(&info
->lock
);
1258 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1260 file_accessed(file
);
1261 vma
->vm_ops
= &shmem_vm_ops
;
1265 static struct inode
*
1266 shmem_get_inode(struct super_block
*sb
, int mode
, dev_t dev
)
1268 struct inode
*inode
;
1269 struct shmem_inode_info
*info
;
1270 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
1272 if (sbinfo
->max_inodes
) {
1273 spin_lock(&sbinfo
->stat_lock
);
1274 if (!sbinfo
->free_inodes
) {
1275 spin_unlock(&sbinfo
->stat_lock
);
1278 sbinfo
->free_inodes
--;
1279 spin_unlock(&sbinfo
->stat_lock
);
1282 inode
= new_inode(sb
);
1284 inode
->i_mode
= mode
;
1285 inode
->i_uid
= current
->fsuid
;
1286 inode
->i_gid
= current
->fsgid
;
1287 inode
->i_blksize
= PAGE_CACHE_SIZE
;
1288 inode
->i_blocks
= 0;
1289 inode
->i_mapping
->a_ops
= &shmem_aops
;
1290 inode
->i_mapping
->backing_dev_info
= &shmem_backing_dev_info
;
1291 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1292 info
= SHMEM_I(inode
);
1293 memset(info
, 0, (char *)inode
- (char *)info
);
1294 spin_lock_init(&info
->lock
);
1295 INIT_LIST_HEAD(&info
->swaplist
);
1297 switch (mode
& S_IFMT
) {
1299 init_special_inode(inode
, mode
, dev
);
1302 inode
->i_op
= &shmem_inode_operations
;
1303 inode
->i_fop
= &shmem_file_operations
;
1304 mpol_shared_policy_init(&info
->policy
);
1308 /* Some things misbehave if size == 0 on a directory */
1309 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
1310 inode
->i_op
= &shmem_dir_inode_operations
;
1311 inode
->i_fop
= &simple_dir_operations
;
1315 * Must not load anything in the rbtree,
1316 * mpol_free_shared_policy will not be called.
1318 mpol_shared_policy_init(&info
->policy
);
1321 } else if (sbinfo
->max_inodes
) {
1322 spin_lock(&sbinfo
->stat_lock
);
1323 sbinfo
->free_inodes
++;
1324 spin_unlock(&sbinfo
->stat_lock
);
1330 static struct inode_operations shmem_symlink_inode_operations
;
1331 static struct inode_operations shmem_symlink_inline_operations
;
1334 * Normally tmpfs makes no use of shmem_prepare_write, but it
1335 * lets a tmpfs file be used read-write below the loop driver.
1338 shmem_prepare_write(struct file
*file
, struct page
*page
, unsigned offset
, unsigned to
)
1340 struct inode
*inode
= page
->mapping
->host
;
1341 return shmem_getpage(inode
, page
->index
, &page
, SGP_WRITE
, NULL
);
1345 shmem_file_write(struct file
*file
, const char __user
*buf
, size_t count
, loff_t
*ppos
)
1347 struct inode
*inode
= file
->f_dentry
->d_inode
;
1349 unsigned long written
;
1352 if ((ssize_t
) count
< 0)
1355 if (!access_ok(VERIFY_READ
, buf
, count
))
1358 down(&inode
->i_sem
);
1363 err
= generic_write_checks(file
, &pos
, &count
, 0);
1367 err
= remove_suid(file
->f_dentry
);
1371 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
1374 struct page
*page
= NULL
;
1375 unsigned long bytes
, index
, offset
;
1379 offset
= (pos
& (PAGE_CACHE_SIZE
-1)); /* Within page */
1380 index
= pos
>> PAGE_CACHE_SHIFT
;
1381 bytes
= PAGE_CACHE_SIZE
- offset
;
1386 * We don't hold page lock across copy from user -
1387 * what would it guard against? - so no deadlock here.
1388 * But it still may be a good idea to prefault below.
1391 err
= shmem_getpage(inode
, index
, &page
, SGP_WRITE
, NULL
);
1396 if (PageHighMem(page
)) {
1397 volatile unsigned char dummy
;
1398 __get_user(dummy
, buf
);
1399 __get_user(dummy
, buf
+ bytes
- 1);
1401 kaddr
= kmap_atomic(page
, KM_USER0
);
1402 left
= __copy_from_user_inatomic(kaddr
+ offset
,
1404 kunmap_atomic(kaddr
, KM_USER0
);
1408 left
= __copy_from_user(kaddr
+ offset
, buf
, bytes
);
1416 if (pos
> inode
->i_size
)
1417 i_size_write(inode
, pos
);
1419 flush_dcache_page(page
);
1420 set_page_dirty(page
);
1421 mark_page_accessed(page
);
1422 page_cache_release(page
);
1432 * Our dirty pages are not counted in nr_dirty,
1433 * and we do not attempt to balance dirty pages.
1447 static void do_shmem_file_read(struct file
*filp
, loff_t
*ppos
, read_descriptor_t
*desc
, read_actor_t actor
)
1449 struct inode
*inode
= filp
->f_dentry
->d_inode
;
1450 struct address_space
*mapping
= inode
->i_mapping
;
1451 unsigned long index
, offset
;
1453 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1454 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1457 struct page
*page
= NULL
;
1458 unsigned long end_index
, nr
, ret
;
1459 loff_t i_size
= i_size_read(inode
);
1461 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1462 if (index
> end_index
)
1464 if (index
== end_index
) {
1465 nr
= i_size
& ~PAGE_CACHE_MASK
;
1470 desc
->error
= shmem_getpage(inode
, index
, &page
, SGP_READ
, NULL
);
1472 if (desc
->error
== -EINVAL
)
1478 * We must evaluate after, since reads (unlike writes)
1479 * are called without i_sem protection against truncate
1481 nr
= PAGE_CACHE_SIZE
;
1482 i_size
= i_size_read(inode
);
1483 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1484 if (index
== end_index
) {
1485 nr
= i_size
& ~PAGE_CACHE_MASK
;
1488 page_cache_release(page
);
1496 * If users can be writing to this page using arbitrary
1497 * virtual addresses, take care about potential aliasing
1498 * before reading the page on the kernel side.
1500 if (mapping_writably_mapped(mapping
))
1501 flush_dcache_page(page
);
1503 * Mark the page accessed if we read the beginning.
1506 mark_page_accessed(page
);
1508 page
= ZERO_PAGE(0);
1509 page_cache_get(page
);
1513 * Ok, we have the page, and it's up-to-date, so
1514 * now we can copy it to user space...
1516 * The actor routine returns how many bytes were actually used..
1517 * NOTE! This may not be the same as how much of a user buffer
1518 * we filled up (we may be padding etc), so we can only update
1519 * "pos" here (the actor routine has to update the user buffer
1520 * pointers and the remaining count).
1522 ret
= actor(desc
, page
, offset
, nr
);
1524 index
+= offset
>> PAGE_CACHE_SHIFT
;
1525 offset
&= ~PAGE_CACHE_MASK
;
1527 page_cache_release(page
);
1528 if (ret
!= nr
|| !desc
->count
)
1534 *ppos
= ((loff_t
) index
<< PAGE_CACHE_SHIFT
) + offset
;
1535 file_accessed(filp
);
1538 static ssize_t
shmem_file_read(struct file
*filp
, char __user
*buf
, size_t count
, loff_t
*ppos
)
1540 read_descriptor_t desc
;
1542 if ((ssize_t
) count
< 0)
1544 if (!access_ok(VERIFY_WRITE
, buf
, count
))
1554 do_shmem_file_read(filp
, ppos
, &desc
, file_read_actor
);
1556 return desc
.written
;
1560 static ssize_t
shmem_file_sendfile(struct file
*in_file
, loff_t
*ppos
,
1561 size_t count
, read_actor_t actor
, void *target
)
1563 read_descriptor_t desc
;
1570 desc
.arg
.data
= target
;
1573 do_shmem_file_read(in_file
, ppos
, &desc
, actor
);
1575 return desc
.written
;
1579 static int shmem_statfs(struct super_block
*sb
, struct kstatfs
*buf
)
1581 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
1583 buf
->f_type
= TMPFS_MAGIC
;
1584 buf
->f_bsize
= PAGE_CACHE_SIZE
;
1585 buf
->f_namelen
= NAME_MAX
;
1586 spin_lock(&sbinfo
->stat_lock
);
1587 if (sbinfo
->max_blocks
) {
1588 buf
->f_blocks
= sbinfo
->max_blocks
;
1589 buf
->f_bavail
= buf
->f_bfree
= sbinfo
->free_blocks
;
1591 if (sbinfo
->max_inodes
) {
1592 buf
->f_files
= sbinfo
->max_inodes
;
1593 buf
->f_ffree
= sbinfo
->free_inodes
;
1595 /* else leave those fields 0 like simple_statfs */
1596 spin_unlock(&sbinfo
->stat_lock
);
1601 * File creation. Allocate an inode, and we're done..
1604 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, int mode
, dev_t dev
)
1606 struct inode
*inode
= shmem_get_inode(dir
->i_sb
, mode
, dev
);
1607 int error
= -ENOSPC
;
1610 error
= security_inode_init_security(inode
, dir
, NULL
, NULL
,
1613 if (error
!= -EOPNOTSUPP
) {
1619 if (dir
->i_mode
& S_ISGID
) {
1620 inode
->i_gid
= dir
->i_gid
;
1622 inode
->i_mode
|= S_ISGID
;
1624 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1625 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1626 d_instantiate(dentry
, inode
);
1627 dget(dentry
); /* Extra count - pin the dentry in core */
1632 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
1636 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
1642 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, int mode
,
1643 struct nameidata
*nd
)
1645 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
1651 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
1653 struct inode
*inode
= old_dentry
->d_inode
;
1654 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1657 * No ordinary (disk based) filesystem counts links as inodes;
1658 * but each new link needs a new dentry, pinning lowmem, and
1659 * tmpfs dentries cannot be pruned until they are unlinked.
1661 if (sbinfo
->max_inodes
) {
1662 spin_lock(&sbinfo
->stat_lock
);
1663 if (!sbinfo
->free_inodes
) {
1664 spin_unlock(&sbinfo
->stat_lock
);
1667 sbinfo
->free_inodes
--;
1668 spin_unlock(&sbinfo
->stat_lock
);
1671 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1672 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1674 atomic_inc(&inode
->i_count
); /* New dentry reference */
1675 dget(dentry
); /* Extra pinning count for the created dentry */
1676 d_instantiate(dentry
, inode
);
1680 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
1682 struct inode
*inode
= dentry
->d_inode
;
1684 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
)) {
1685 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1686 if (sbinfo
->max_inodes
) {
1687 spin_lock(&sbinfo
->stat_lock
);
1688 sbinfo
->free_inodes
++;
1689 spin_unlock(&sbinfo
->stat_lock
);
1693 dir
->i_size
-= BOGO_DIRENT_SIZE
;
1694 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1696 dput(dentry
); /* Undo the count from "create" - this does all the work */
1700 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1702 if (!simple_empty(dentry
))
1706 return shmem_unlink(dir
, dentry
);
1710 * The VFS layer already does all the dentry stuff for rename,
1711 * we just have to decrement the usage count for the target if
1712 * it exists so that the VFS layer correctly free's it when it
1715 static int shmem_rename(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
1717 struct inode
*inode
= old_dentry
->d_inode
;
1718 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
1720 if (!simple_empty(new_dentry
))
1723 if (new_dentry
->d_inode
) {
1724 (void) shmem_unlink(new_dir
, new_dentry
);
1727 } else if (they_are_dirs
) {
1732 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
1733 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
1734 old_dir
->i_ctime
= old_dir
->i_mtime
=
1735 new_dir
->i_ctime
= new_dir
->i_mtime
=
1736 inode
->i_ctime
= CURRENT_TIME
;
1740 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
1744 struct inode
*inode
;
1745 struct page
*page
= NULL
;
1747 struct shmem_inode_info
*info
;
1749 len
= strlen(symname
) + 1;
1750 if (len
> PAGE_CACHE_SIZE
)
1751 return -ENAMETOOLONG
;
1753 inode
= shmem_get_inode(dir
->i_sb
, S_IFLNK
|S_IRWXUGO
, 0);
1757 error
= security_inode_init_security(inode
, dir
, NULL
, NULL
,
1760 if (error
!= -EOPNOTSUPP
) {
1767 info
= SHMEM_I(inode
);
1768 inode
->i_size
= len
-1;
1769 if (len
<= (char *)inode
- (char *)info
) {
1771 memcpy(info
, symname
, len
);
1772 inode
->i_op
= &shmem_symlink_inline_operations
;
1774 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
, NULL
);
1779 inode
->i_op
= &shmem_symlink_inode_operations
;
1780 kaddr
= kmap_atomic(page
, KM_USER0
);
1781 memcpy(kaddr
, symname
, len
);
1782 kunmap_atomic(kaddr
, KM_USER0
);
1783 set_page_dirty(page
);
1784 page_cache_release(page
);
1786 if (dir
->i_mode
& S_ISGID
)
1787 inode
->i_gid
= dir
->i_gid
;
1788 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1789 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1790 d_instantiate(dentry
, inode
);
1795 static void *shmem_follow_link_inline(struct dentry
*dentry
, struct nameidata
*nd
)
1797 nd_set_link(nd
, (char *)SHMEM_I(dentry
->d_inode
));
1801 static void *shmem_follow_link(struct dentry
*dentry
, struct nameidata
*nd
)
1803 struct page
*page
= NULL
;
1804 int res
= shmem_getpage(dentry
->d_inode
, 0, &page
, SGP_READ
, NULL
);
1805 nd_set_link(nd
, res
? ERR_PTR(res
) : kmap(page
));
1809 static void shmem_put_link(struct dentry
*dentry
, struct nameidata
*nd
, void *cookie
)
1811 if (!IS_ERR(nd_get_link(nd
))) {
1812 struct page
*page
= cookie
;
1814 mark_page_accessed(page
);
1815 page_cache_release(page
);
1819 static struct inode_operations shmem_symlink_inline_operations
= {
1820 .readlink
= generic_readlink
,
1821 .follow_link
= shmem_follow_link_inline
,
1824 static struct inode_operations shmem_symlink_inode_operations
= {
1825 .truncate
= shmem_truncate
,
1826 .readlink
= generic_readlink
,
1827 .follow_link
= shmem_follow_link
,
1828 .put_link
= shmem_put_link
,
1831 static int shmem_parse_options(char *options
, int *mode
, uid_t
*uid
, gid_t
*gid
, unsigned long *blocks
, unsigned long *inodes
)
1833 char *this_char
, *value
, *rest
;
1835 while ((this_char
= strsep(&options
, ",")) != NULL
) {
1838 if ((value
= strchr(this_char
,'=')) != NULL
) {
1842 "tmpfs: No value for mount option '%s'\n",
1847 if (!strcmp(this_char
,"size")) {
1848 unsigned long long size
;
1849 size
= memparse(value
,&rest
);
1851 size
<<= PAGE_SHIFT
;
1852 size
*= totalram_pages
;
1858 *blocks
= size
>> PAGE_CACHE_SHIFT
;
1859 } else if (!strcmp(this_char
,"nr_blocks")) {
1860 *blocks
= memparse(value
,&rest
);
1863 } else if (!strcmp(this_char
,"nr_inodes")) {
1864 *inodes
= memparse(value
,&rest
);
1867 } else if (!strcmp(this_char
,"mode")) {
1870 *mode
= simple_strtoul(value
,&rest
,8);
1873 } else if (!strcmp(this_char
,"uid")) {
1876 *uid
= simple_strtoul(value
,&rest
,0);
1879 } else if (!strcmp(this_char
,"gid")) {
1882 *gid
= simple_strtoul(value
,&rest
,0);
1886 printk(KERN_ERR
"tmpfs: Bad mount option %s\n",
1894 printk(KERN_ERR
"tmpfs: Bad value '%s' for mount option '%s'\n",
1900 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
1902 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
1903 unsigned long max_blocks
= sbinfo
->max_blocks
;
1904 unsigned long max_inodes
= sbinfo
->max_inodes
;
1905 unsigned long blocks
;
1906 unsigned long inodes
;
1907 int error
= -EINVAL
;
1909 if (shmem_parse_options(data
, NULL
, NULL
, NULL
,
1910 &max_blocks
, &max_inodes
))
1913 spin_lock(&sbinfo
->stat_lock
);
1914 blocks
= sbinfo
->max_blocks
- sbinfo
->free_blocks
;
1915 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
1916 if (max_blocks
< blocks
)
1918 if (max_inodes
< inodes
)
1921 * Those tests also disallow limited->unlimited while any are in
1922 * use, so i_blocks will always be zero when max_blocks is zero;
1923 * but we must separately disallow unlimited->limited, because
1924 * in that case we have no record of how much is already in use.
1926 if (max_blocks
&& !sbinfo
->max_blocks
)
1928 if (max_inodes
&& !sbinfo
->max_inodes
)
1932 sbinfo
->max_blocks
= max_blocks
;
1933 sbinfo
->free_blocks
= max_blocks
- blocks
;
1934 sbinfo
->max_inodes
= max_inodes
;
1935 sbinfo
->free_inodes
= max_inodes
- inodes
;
1937 spin_unlock(&sbinfo
->stat_lock
);
1942 static void shmem_put_super(struct super_block
*sb
)
1944 kfree(sb
->s_fs_info
);
1945 sb
->s_fs_info
= NULL
;
1948 static int shmem_fill_super(struct super_block
*sb
,
1949 void *data
, int silent
)
1951 struct inode
*inode
;
1952 struct dentry
*root
;
1953 int mode
= S_IRWXUGO
| S_ISVTX
;
1954 uid_t uid
= current
->fsuid
;
1955 gid_t gid
= current
->fsgid
;
1957 struct shmem_sb_info
*sbinfo
;
1958 unsigned long blocks
= 0;
1959 unsigned long inodes
= 0;
1963 * Per default we only allow half of the physical ram per
1964 * tmpfs instance, limiting inodes to one per page of lowmem;
1965 * but the internal instance is left unlimited.
1967 if (!(sb
->s_flags
& MS_NOUSER
)) {
1968 blocks
= totalram_pages
/ 2;
1969 inodes
= totalram_pages
- totalhigh_pages
;
1970 if (inodes
> blocks
)
1972 if (shmem_parse_options(data
, &mode
, &uid
, &gid
,
1977 sb
->s_flags
|= MS_NOUSER
;
1980 /* Round up to L1_CACHE_BYTES to resist false sharing */
1981 sbinfo
= kmalloc(max((int)sizeof(struct shmem_sb_info
),
1982 L1_CACHE_BYTES
), GFP_KERNEL
);
1986 spin_lock_init(&sbinfo
->stat_lock
);
1987 sbinfo
->max_blocks
= blocks
;
1988 sbinfo
->free_blocks
= blocks
;
1989 sbinfo
->max_inodes
= inodes
;
1990 sbinfo
->free_inodes
= inodes
;
1992 sb
->s_fs_info
= sbinfo
;
1993 sb
->s_maxbytes
= SHMEM_MAX_BYTES
;
1994 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
1995 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
1996 sb
->s_magic
= TMPFS_MAGIC
;
1997 sb
->s_op
= &shmem_ops
;
1999 inode
= shmem_get_inode(sb
, S_IFDIR
| mode
, 0);
2004 root
= d_alloc_root(inode
);
2013 shmem_put_super(sb
);
2017 static kmem_cache_t
*shmem_inode_cachep
;
2019 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
2021 struct shmem_inode_info
*p
;
2022 p
= (struct shmem_inode_info
*)kmem_cache_alloc(shmem_inode_cachep
, SLAB_KERNEL
);
2025 return &p
->vfs_inode
;
2028 static void shmem_destroy_inode(struct inode
*inode
)
2030 if ((inode
->i_mode
& S_IFMT
) == S_IFREG
) {
2031 /* only struct inode is valid if it's an inline symlink */
2032 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
2034 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
2037 static void init_once(void *foo
, kmem_cache_t
*cachep
, unsigned long flags
)
2039 struct shmem_inode_info
*p
= (struct shmem_inode_info
*) foo
;
2041 if ((flags
& (SLAB_CTOR_VERIFY
|SLAB_CTOR_CONSTRUCTOR
)) ==
2042 SLAB_CTOR_CONSTRUCTOR
) {
2043 inode_init_once(&p
->vfs_inode
);
2047 static int init_inodecache(void)
2049 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
2050 sizeof(struct shmem_inode_info
),
2051 0, 0, init_once
, NULL
);
2052 if (shmem_inode_cachep
== NULL
)
2057 static void destroy_inodecache(void)
2059 if (kmem_cache_destroy(shmem_inode_cachep
))
2060 printk(KERN_INFO
"shmem_inode_cache: not all structures were freed\n");
2063 static struct address_space_operations shmem_aops
= {
2064 .writepage
= shmem_writepage
,
2065 .set_page_dirty
= __set_page_dirty_nobuffers
,
2067 .prepare_write
= shmem_prepare_write
,
2068 .commit_write
= simple_commit_write
,
2072 static struct file_operations shmem_file_operations
= {
2075 .llseek
= generic_file_llseek
,
2076 .read
= shmem_file_read
,
2077 .write
= shmem_file_write
,
2078 .fsync
= simple_sync_file
,
2079 .sendfile
= shmem_file_sendfile
,
2083 static struct inode_operations shmem_inode_operations
= {
2084 .truncate
= shmem_truncate
,
2085 .setattr
= shmem_notify_change
,
2088 static struct inode_operations shmem_dir_inode_operations
= {
2090 .create
= shmem_create
,
2091 .lookup
= simple_lookup
,
2093 .unlink
= shmem_unlink
,
2094 .symlink
= shmem_symlink
,
2095 .mkdir
= shmem_mkdir
,
2096 .rmdir
= shmem_rmdir
,
2097 .mknod
= shmem_mknod
,
2098 .rename
= shmem_rename
,
2102 static struct super_operations shmem_ops
= {
2103 .alloc_inode
= shmem_alloc_inode
,
2104 .destroy_inode
= shmem_destroy_inode
,
2106 .statfs
= shmem_statfs
,
2107 .remount_fs
= shmem_remount_fs
,
2109 .delete_inode
= shmem_delete_inode
,
2110 .drop_inode
= generic_delete_inode
,
2111 .put_super
= shmem_put_super
,
2114 static struct vm_operations_struct shmem_vm_ops
= {
2115 .nopage
= shmem_nopage
,
2116 .populate
= shmem_populate
,
2118 .set_policy
= shmem_set_policy
,
2119 .get_policy
= shmem_get_policy
,
2124 static struct super_block
*shmem_get_sb(struct file_system_type
*fs_type
,
2125 int flags
, const char *dev_name
, void *data
)
2127 return get_sb_nodev(fs_type
, flags
, data
, shmem_fill_super
);
2130 static struct file_system_type tmpfs_fs_type
= {
2131 .owner
= THIS_MODULE
,
2133 .get_sb
= shmem_get_sb
,
2134 .kill_sb
= kill_litter_super
,
2136 static struct vfsmount
*shm_mnt
;
2138 static int __init
init_tmpfs(void)
2142 error
= init_inodecache();
2146 error
= register_filesystem(&tmpfs_fs_type
);
2148 printk(KERN_ERR
"Could not register tmpfs\n");
2152 devfs_mk_dir("shm");
2154 shm_mnt
= do_kern_mount(tmpfs_fs_type
.name
, MS_NOUSER
,
2155 tmpfs_fs_type
.name
, NULL
);
2156 if (IS_ERR(shm_mnt
)) {
2157 error
= PTR_ERR(shm_mnt
);
2158 printk(KERN_ERR
"Could not kern_mount tmpfs\n");
2164 unregister_filesystem(&tmpfs_fs_type
);
2166 destroy_inodecache();
2168 shm_mnt
= ERR_PTR(error
);
2171 module_init(init_tmpfs
)
2174 * shmem_file_setup - get an unlinked file living in tmpfs
2176 * @name: name for dentry (to be seen in /proc/<pid>/maps
2177 * @size: size to be set for the file
2180 struct file
*shmem_file_setup(char *name
, loff_t size
, unsigned long flags
)
2184 struct inode
*inode
;
2185 struct dentry
*dentry
, *root
;
2188 if (IS_ERR(shm_mnt
))
2189 return (void *)shm_mnt
;
2191 if (size
< 0 || size
> SHMEM_MAX_BYTES
)
2192 return ERR_PTR(-EINVAL
);
2194 if (shmem_acct_size(flags
, size
))
2195 return ERR_PTR(-ENOMEM
);
2199 this.len
= strlen(name
);
2200 this.hash
= 0; /* will go */
2201 root
= shm_mnt
->mnt_root
;
2202 dentry
= d_alloc(root
, &this);
2207 file
= get_empty_filp();
2212 inode
= shmem_get_inode(root
->d_sb
, S_IFREG
| S_IRWXUGO
, 0);
2216 SHMEM_I(inode
)->flags
= flags
& VM_ACCOUNT
;
2217 d_instantiate(dentry
, inode
);
2218 inode
->i_size
= size
;
2219 inode
->i_nlink
= 0; /* It is unlinked */
2220 file
->f_vfsmnt
= mntget(shm_mnt
);
2221 file
->f_dentry
= dentry
;
2222 file
->f_mapping
= inode
->i_mapping
;
2223 file
->f_op
= &shmem_file_operations
;
2224 file
->f_mode
= FMODE_WRITE
| FMODE_READ
;
2232 shmem_unacct_size(flags
, size
);
2233 return ERR_PTR(error
);
2237 * shmem_zero_setup - setup a shared anonymous mapping
2239 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2241 int shmem_zero_setup(struct vm_area_struct
*vma
)
2244 loff_t size
= vma
->vm_end
- vma
->vm_start
;
2246 file
= shmem_file_setup("dev/zero", size
, vma
->vm_flags
);
2248 return PTR_ERR(file
);
2252 vma
->vm_file
= file
;
2253 vma
->vm_ops
= &shmem_vm_ops
;