1 #ifndef _LINUX_SIGNAL_H
2 #define _LINUX_SIGNAL_H
4 #include <asm/signal.h>
5 #include <asm/siginfo.h>
8 #include <linux/list.h>
11 * Real Time signals may be queued.
15 struct list_head list
;
18 struct user_struct
*user
;
22 #define SIGQUEUE_PREALLOC 1
25 struct list_head list
;
30 * Define some primitives to manipulate sigset_t.
33 #ifndef __HAVE_ARCH_SIG_BITOPS
34 #include <linux/bitops.h>
36 /* We don't use <linux/bitops.h> for these because there is no need to
38 static inline void sigaddset(sigset_t
*set
, int _sig
)
40 unsigned long sig
= _sig
- 1;
42 set
->sig
[0] |= 1UL << sig
;
44 set
->sig
[sig
/ _NSIG_BPW
] |= 1UL << (sig
% _NSIG_BPW
);
47 static inline void sigdelset(sigset_t
*set
, int _sig
)
49 unsigned long sig
= _sig
- 1;
51 set
->sig
[0] &= ~(1UL << sig
);
53 set
->sig
[sig
/ _NSIG_BPW
] &= ~(1UL << (sig
% _NSIG_BPW
));
56 static inline int sigismember(sigset_t
*set
, int _sig
)
58 unsigned long sig
= _sig
- 1;
60 return 1 & (set
->sig
[0] >> sig
);
62 return 1 & (set
->sig
[sig
/ _NSIG_BPW
] >> (sig
% _NSIG_BPW
));
65 static inline int sigfindinword(unsigned long word
)
70 #endif /* __HAVE_ARCH_SIG_BITOPS */
72 static inline int sigisemptyset(sigset_t
*set
)
74 extern void _NSIG_WORDS_is_unsupported_size(void);
75 switch (_NSIG_WORDS
) {
77 return (set
->sig
[3] | set
->sig
[2] |
78 set
->sig
[1] | set
->sig
[0]) == 0;
80 return (set
->sig
[1] | set
->sig
[0]) == 0;
82 return set
->sig
[0] == 0;
84 _NSIG_WORDS_is_unsupported_size();
89 #define sigmask(sig) (1UL << ((sig) - 1))
91 #ifndef __HAVE_ARCH_SIG_SETOPS
92 #include <linux/string.h>
94 #define _SIG_SET_BINOP(name, op) \
95 static inline void name(sigset_t *r, const sigset_t *a, const sigset_t *b) \
97 extern void _NSIG_WORDS_is_unsupported_size(void); \
98 unsigned long a0, a1, a2, a3, b0, b1, b2, b3; \
100 switch (_NSIG_WORDS) { \
102 a3 = a->sig[3]; a2 = a->sig[2]; \
103 b3 = b->sig[3]; b2 = b->sig[2]; \
104 r->sig[3] = op(a3, b3); \
105 r->sig[2] = op(a2, b2); \
107 a1 = a->sig[1]; b1 = b->sig[1]; \
108 r->sig[1] = op(a1, b1); \
110 a0 = a->sig[0]; b0 = b->sig[0]; \
111 r->sig[0] = op(a0, b0); \
114 _NSIG_WORDS_is_unsupported_size(); \
118 #define _sig_or(x,y) ((x) | (y))
119 _SIG_SET_BINOP(sigorsets
, _sig_or
)
121 #define _sig_and(x,y) ((x) & (y))
122 _SIG_SET_BINOP(sigandsets
, _sig_and
)
124 #define _sig_nand(x,y) ((x) & ~(y))
125 _SIG_SET_BINOP(signandsets
, _sig_nand
)
127 #undef _SIG_SET_BINOP
132 #define _SIG_SET_OP(name, op) \
133 static inline void name(sigset_t *set) \
135 extern void _NSIG_WORDS_is_unsupported_size(void); \
137 switch (_NSIG_WORDS) { \
138 case 4: set->sig[3] = op(set->sig[3]); \
139 set->sig[2] = op(set->sig[2]); \
140 case 2: set->sig[1] = op(set->sig[1]); \
141 case 1: set->sig[0] = op(set->sig[0]); \
144 _NSIG_WORDS_is_unsupported_size(); \
148 #define _sig_not(x) (~(x))
149 _SIG_SET_OP(signotset
, _sig_not
)
154 static inline void sigemptyset(sigset_t
*set
)
156 switch (_NSIG_WORDS
) {
158 memset(set
, 0, sizeof(sigset_t
));
160 case 2: set
->sig
[1] = 0;
161 case 1: set
->sig
[0] = 0;
166 static inline void sigfillset(sigset_t
*set
)
168 switch (_NSIG_WORDS
) {
170 memset(set
, -1, sizeof(sigset_t
));
172 case 2: set
->sig
[1] = -1;
173 case 1: set
->sig
[0] = -1;
178 /* Some extensions for manipulating the low 32 signals in particular. */
180 static inline void sigaddsetmask(sigset_t
*set
, unsigned long mask
)
185 static inline void sigdelsetmask(sigset_t
*set
, unsigned long mask
)
187 set
->sig
[0] &= ~mask
;
190 static inline int sigtestsetmask(sigset_t
*set
, unsigned long mask
)
192 return (set
->sig
[0] & mask
) != 0;
195 static inline void siginitset(sigset_t
*set
, unsigned long mask
)
198 switch (_NSIG_WORDS
) {
200 memset(&set
->sig
[1], 0, sizeof(long)*(_NSIG_WORDS
-1));
202 case 2: set
->sig
[1] = 0;
207 static inline void siginitsetinv(sigset_t
*set
, unsigned long mask
)
210 switch (_NSIG_WORDS
) {
212 memset(&set
->sig
[1], -1, sizeof(long)*(_NSIG_WORDS
-1));
214 case 2: set
->sig
[1] = -1;
219 #endif /* __HAVE_ARCH_SIG_SETOPS */
221 static inline void init_sigpending(struct sigpending
*sig
)
223 sigemptyset(&sig
->signal
);
224 INIT_LIST_HEAD(&sig
->list
);
227 extern void flush_sigqueue(struct sigpending
*queue
);
229 /* Test if 'sig' is valid signal. Use this instead of testing _NSIG directly */
230 static inline int valid_signal(unsigned long sig
)
232 return sig
<= _NSIG
? 1 : 0;
235 extern int next_signal(struct sigpending
*pending
, sigset_t
*mask
);
236 extern int do_send_sig_info(int sig
, struct siginfo
*info
,
237 struct task_struct
*p
, bool group
);
238 extern int group_send_sig_info(int sig
, struct siginfo
*info
, struct task_struct
*p
);
239 extern int __group_send_sig_info(int, struct siginfo
*, struct task_struct
*);
240 extern long do_rt_tgsigqueueinfo(pid_t tgid
, pid_t pid
, int sig
,
242 extern long do_sigpending(void __user
*, unsigned long);
243 extern int sigprocmask(int, sigset_t
*, sigset_t
*);
244 extern int show_unhandled_signals
;
247 extern int get_signal_to_deliver(siginfo_t
*info
, struct k_sigaction
*return_ka
, struct pt_regs
*regs
, void *cookie
);
248 extern void exit_signals(struct task_struct
*tsk
);
250 extern struct kmem_cache
*sighand_cachep
;
252 int unhandled_signal(struct task_struct
*tsk
, int sig
);
255 * In POSIX a signal is sent either to a specific thread (Linux task)
256 * or to the process as a whole (Linux thread group). How the signal
257 * is sent determines whether it's to one thread or the whole group,
258 * which determines which signal mask(s) are involved in blocking it
259 * from being delivered until later. When the signal is delivered,
260 * either it's caught or ignored by a user handler or it has a default
261 * effect that applies to the whole thread group (POSIX process).
263 * The possible effects an unblocked signal set to SIG_DFL can have are:
264 * ignore - Nothing Happens
265 * terminate - kill the process, i.e. all threads in the group,
266 * similar to exit_group. The group leader (only) reports
267 * WIFSIGNALED status to its parent.
268 * coredump - write a core dump file describing all threads using
269 * the same mm and then kill all those threads
270 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
272 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
273 * Other signals when not blocked and set to SIG_DFL behaves as follows.
274 * The job control signals also have other special effects.
276 * +--------------------+------------------+
277 * | POSIX signal | default action |
278 * +--------------------+------------------+
279 * | SIGHUP | terminate |
280 * | SIGINT | terminate |
281 * | SIGQUIT | coredump |
282 * | SIGILL | coredump |
283 * | SIGTRAP | coredump |
284 * | SIGABRT/SIGIOT | coredump |
285 * | SIGBUS | coredump |
286 * | SIGFPE | coredump |
287 * | SIGKILL | terminate(+) |
288 * | SIGUSR1 | terminate |
289 * | SIGSEGV | coredump |
290 * | SIGUSR2 | terminate |
291 * | SIGPIPE | terminate |
292 * | SIGALRM | terminate |
293 * | SIGTERM | terminate |
294 * | SIGCHLD | ignore |
295 * | SIGCONT | ignore(*) |
296 * | SIGSTOP | stop(*)(+) |
297 * | SIGTSTP | stop(*) |
298 * | SIGTTIN | stop(*) |
299 * | SIGTTOU | stop(*) |
300 * | SIGURG | ignore |
301 * | SIGXCPU | coredump |
302 * | SIGXFSZ | coredump |
303 * | SIGVTALRM | terminate |
304 * | SIGPROF | terminate |
305 * | SIGPOLL/SIGIO | terminate |
306 * | SIGSYS/SIGUNUSED | coredump |
307 * | SIGSTKFLT | terminate |
308 * | SIGWINCH | ignore |
309 * | SIGPWR | terminate |
310 * | SIGRTMIN-SIGRTMAX | terminate |
311 * +--------------------+------------------+
312 * | non-POSIX signal | default action |
313 * +--------------------+------------------+
314 * | SIGEMT | coredump |
315 * +--------------------+------------------+
317 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
318 * (*) Special job control effects:
319 * When SIGCONT is sent, it resumes the process (all threads in the group)
320 * from TASK_STOPPED state and also clears any pending/queued stop signals
321 * (any of those marked with "stop(*)"). This happens regardless of blocking,
322 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
323 * any pending/queued SIGCONT signals; this happens regardless of blocking,
324 * catching, or ignored the stop signal, though (except for SIGSTOP) the
325 * default action of stopping the process may happen later or never.
329 #define SIGEMT_MASK rt_sigmask(SIGEMT)
331 #define SIGEMT_MASK 0
334 #if SIGRTMIN > BITS_PER_LONG
335 #define rt_sigmask(sig) (1ULL << ((sig)-1))
337 #define rt_sigmask(sig) sigmask(sig)
339 #define siginmask(sig, mask) (rt_sigmask(sig) & (mask))
341 #define SIG_KERNEL_ONLY_MASK (\
342 rt_sigmask(SIGKILL) | rt_sigmask(SIGSTOP))
344 #define SIG_KERNEL_STOP_MASK (\
345 rt_sigmask(SIGSTOP) | rt_sigmask(SIGTSTP) | \
346 rt_sigmask(SIGTTIN) | rt_sigmask(SIGTTOU) )
348 #define SIG_KERNEL_COREDUMP_MASK (\
349 rt_sigmask(SIGQUIT) | rt_sigmask(SIGILL) | \
350 rt_sigmask(SIGTRAP) | rt_sigmask(SIGABRT) | \
351 rt_sigmask(SIGFPE) | rt_sigmask(SIGSEGV) | \
352 rt_sigmask(SIGBUS) | rt_sigmask(SIGSYS) | \
353 rt_sigmask(SIGXCPU) | rt_sigmask(SIGXFSZ) | \
356 #define SIG_KERNEL_IGNORE_MASK (\
357 rt_sigmask(SIGCONT) | rt_sigmask(SIGCHLD) | \
358 rt_sigmask(SIGWINCH) | rt_sigmask(SIGURG) )
360 #define sig_kernel_only(sig) \
361 (((sig) < SIGRTMIN) && siginmask(sig, SIG_KERNEL_ONLY_MASK))
362 #define sig_kernel_coredump(sig) \
363 (((sig) < SIGRTMIN) && siginmask(sig, SIG_KERNEL_COREDUMP_MASK))
364 #define sig_kernel_ignore(sig) \
365 (((sig) < SIGRTMIN) && siginmask(sig, SIG_KERNEL_IGNORE_MASK))
366 #define sig_kernel_stop(sig) \
367 (((sig) < SIGRTMIN) && siginmask(sig, SIG_KERNEL_STOP_MASK))
369 #define sig_user_defined(t, signr) \
370 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
371 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
373 #define sig_fatal(t, signr) \
374 (!siginmask(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
375 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
377 void signals_init(void);
379 #endif /* __KERNEL__ */
381 #endif /* _LINUX_SIGNAL_H */