USB: xhci: Control transfer support.
[wandboard.git] / drivers / usb / host / xhci-mem.c
blob6ff2e298bff8e9aff3d16d44d1d5814379b2147f
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/usb.h>
24 #include <linux/pci.h>
26 #include "xhci.h"
29 * Allocates a generic ring segment from the ring pool, sets the dma address,
30 * initializes the segment to zero, and sets the private next pointer to NULL.
32 * Section 4.11.1.1:
33 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
35 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
37 struct xhci_segment *seg;
38 dma_addr_t dma;
40 seg = kzalloc(sizeof *seg, flags);
41 if (!seg)
42 return 0;
43 xhci_dbg(xhci, "Allocating priv segment structure at 0x%x\n",
44 (unsigned int) seg);
46 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
47 if (!seg->trbs) {
48 kfree(seg);
49 return 0;
51 xhci_dbg(xhci, "// Allocating segment at 0x%x (virtual) 0x%x (DMA)\n",
52 (unsigned int) seg->trbs, (u32) dma);
54 memset(seg->trbs, 0, SEGMENT_SIZE);
55 seg->dma = dma;
56 seg->next = NULL;
58 return seg;
61 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
63 if (!seg)
64 return;
65 if (seg->trbs) {
66 xhci_dbg(xhci, "Freeing DMA segment at 0x%x"
67 " (virtual) 0x%x (DMA)\n",
68 (unsigned int) seg->trbs, (u32) seg->dma);
69 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 seg->trbs = NULL;
72 xhci_dbg(xhci, "Freeing priv segment structure at 0x%x\n",
73 (unsigned int) seg);
74 kfree(seg);
78 * Make the prev segment point to the next segment.
80 * Change the last TRB in the prev segment to be a Link TRB which points to the
81 * DMA address of the next segment. The caller needs to set any Link TRB
82 * related flags, such as End TRB, Toggle Cycle, and no snoop.
84 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
85 struct xhci_segment *next, bool link_trbs)
87 u32 val;
89 if (!prev || !next)
90 return;
91 prev->next = next;
92 if (link_trbs) {
93 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr[0] = next->dma;
95 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
96 val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
97 val &= ~TRB_TYPE_BITMASK;
98 val |= TRB_TYPE(TRB_LINK);
99 prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
101 xhci_dbg(xhci, "Linking segment 0x%x to segment 0x%x (DMA)\n",
102 prev->dma, next->dma);
105 /* XXX: Do we need the hcd structure in all these functions? */
106 static void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
108 struct xhci_segment *seg;
109 struct xhci_segment *first_seg;
111 if (!ring || !ring->first_seg)
112 return;
113 first_seg = ring->first_seg;
114 seg = first_seg->next;
115 xhci_dbg(xhci, "Freeing ring at 0x%x\n", (unsigned int) ring);
116 while (seg != first_seg) {
117 struct xhci_segment *next = seg->next;
118 xhci_segment_free(xhci, seg);
119 seg = next;
121 xhci_segment_free(xhci, first_seg);
122 ring->first_seg = NULL;
123 kfree(ring);
127 * Create a new ring with zero or more segments.
129 * Link each segment together into a ring.
130 * Set the end flag and the cycle toggle bit on the last segment.
131 * See section 4.9.1 and figures 15 and 16.
133 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
134 unsigned int num_segs, bool link_trbs, gfp_t flags)
136 struct xhci_ring *ring;
137 struct xhci_segment *prev;
139 ring = kzalloc(sizeof *(ring), flags);
140 xhci_dbg(xhci, "Allocating ring at 0x%x\n", (unsigned int) ring);
141 if (!ring)
142 return 0;
144 INIT_LIST_HEAD(&ring->td_list);
145 if (num_segs == 0)
146 return ring;
148 ring->first_seg = xhci_segment_alloc(xhci, flags);
149 if (!ring->first_seg)
150 goto fail;
151 num_segs--;
153 prev = ring->first_seg;
154 while (num_segs > 0) {
155 struct xhci_segment *next;
157 next = xhci_segment_alloc(xhci, flags);
158 if (!next)
159 goto fail;
160 xhci_link_segments(xhci, prev, next, link_trbs);
162 prev = next;
163 num_segs--;
165 xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
167 if (link_trbs) {
168 /* See section 4.9.2.1 and 6.4.4.1 */
169 prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
170 xhci_dbg(xhci, "Wrote link toggle flag to"
171 " segment 0x%x (virtual), 0x%x (DMA)\n",
172 (unsigned int) prev, (u32) prev->dma);
174 /* The ring is empty, so the enqueue pointer == dequeue pointer */
175 ring->enqueue = ring->first_seg->trbs;
176 ring->enq_seg = ring->first_seg;
177 ring->dequeue = ring->enqueue;
178 ring->deq_seg = ring->first_seg;
179 /* The ring is initialized to 0. The producer must write 1 to the cycle
180 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
181 * compare CCS to the cycle bit to check ownership, so CCS = 1.
183 ring->cycle_state = 1;
185 return ring;
187 fail:
188 xhci_ring_free(xhci, ring);
189 return 0;
192 /* All the xhci_tds in the ring's TD list should be freed at this point */
193 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
195 struct xhci_virt_device *dev;
196 int i;
198 /* Slot ID 0 is reserved */
199 if (slot_id == 0 || !xhci->devs[slot_id])
200 return;
202 dev = xhci->devs[slot_id];
203 xhci->dcbaa->dev_context_ptrs[2*slot_id] = 0;
204 xhci->dcbaa->dev_context_ptrs[2*slot_id + 1] = 0;
205 if (!dev)
206 return;
208 for (i = 0; i < 31; ++i)
209 if (dev->ep_rings[i])
210 xhci_ring_free(xhci, dev->ep_rings[i]);
212 if (dev->in_ctx)
213 dma_pool_free(xhci->device_pool,
214 dev->in_ctx, dev->in_ctx_dma);
215 if (dev->out_ctx)
216 dma_pool_free(xhci->device_pool,
217 dev->out_ctx, dev->out_ctx_dma);
218 kfree(xhci->devs[slot_id]);
219 xhci->devs[slot_id] = 0;
222 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
223 struct usb_device *udev, gfp_t flags)
225 dma_addr_t dma;
226 struct xhci_virt_device *dev;
228 /* Slot ID 0 is reserved */
229 if (slot_id == 0 || xhci->devs[slot_id]) {
230 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
231 return 0;
234 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
235 if (!xhci->devs[slot_id])
236 return 0;
237 dev = xhci->devs[slot_id];
239 /* Allocate the (output) device context that will be used in the HC */
240 dev->out_ctx = dma_pool_alloc(xhci->device_pool, flags, &dma);
241 if (!dev->out_ctx)
242 goto fail;
243 dev->out_ctx_dma = dma;
244 xhci_dbg(xhci, "Slot %d output ctx = 0x%x (dma)\n", slot_id, dma);
245 memset(dev->out_ctx, 0, sizeof(*dev->out_ctx));
247 /* Allocate the (input) device context for address device command */
248 dev->in_ctx = dma_pool_alloc(xhci->device_pool, flags, &dma);
249 if (!dev->in_ctx)
250 goto fail;
251 dev->in_ctx_dma = dma;
252 xhci_dbg(xhci, "Slot %d input ctx = 0x%x (dma)\n", slot_id, dma);
253 memset(dev->in_ctx, 0, sizeof(*dev->in_ctx));
255 /* Allocate endpoint 0 ring */
256 dev->ep_rings[0] = xhci_ring_alloc(xhci, 1, true, flags);
257 if (!dev->ep_rings[0])
258 goto fail;
261 * Point to output device context in dcbaa; skip the output control
262 * context, which is eight 32 bit fields (or 32 bytes long)
264 xhci->dcbaa->dev_context_ptrs[2*slot_id] =
265 (u32) dev->out_ctx_dma + (32);
266 xhci_dbg(xhci, "Set slot id %d dcbaa entry 0x%x to 0x%x\n",
267 slot_id,
268 (unsigned int) &xhci->dcbaa->dev_context_ptrs[2*slot_id],
269 dev->out_ctx_dma);
270 xhci->dcbaa->dev_context_ptrs[2*slot_id + 1] = 0;
272 return 1;
273 fail:
274 xhci_free_virt_device(xhci, slot_id);
275 return 0;
278 /* Setup an xHCI virtual device for a Set Address command */
279 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
281 struct xhci_virt_device *dev;
282 struct xhci_ep_ctx *ep0_ctx;
283 struct usb_device *top_dev;
285 dev = xhci->devs[udev->slot_id];
286 /* Slot ID 0 is reserved */
287 if (udev->slot_id == 0 || !dev) {
288 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
289 udev->slot_id);
290 return -EINVAL;
292 ep0_ctx = &dev->in_ctx->ep[0];
294 /* 2) New slot context and endpoint 0 context are valid*/
295 dev->in_ctx->add_flags = SLOT_FLAG | EP0_FLAG;
297 /* 3) Only the control endpoint is valid - one endpoint context */
298 dev->in_ctx->slot.dev_info |= LAST_CTX(1);
300 switch (udev->speed) {
301 case USB_SPEED_SUPER:
302 dev->in_ctx->slot.dev_info |= (u32) udev->route;
303 dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_SS;
304 break;
305 case USB_SPEED_HIGH:
306 dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_HS;
307 break;
308 case USB_SPEED_FULL:
309 dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_FS;
310 break;
311 case USB_SPEED_LOW:
312 dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_LS;
313 break;
314 case USB_SPEED_VARIABLE:
315 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
316 return -EINVAL;
317 break;
318 default:
319 /* Speed was set earlier, this shouldn't happen. */
320 BUG();
322 /* Find the root hub port this device is under */
323 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
324 top_dev = top_dev->parent)
325 /* Found device below root hub */;
326 dev->in_ctx->slot.dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum);
327 xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum);
329 /* Is this a LS/FS device under a HS hub? */
331 * FIXME: I don't think this is right, where does the TT info for the
332 * roothub or parent hub come from?
334 if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) &&
335 udev->tt) {
336 dev->in_ctx->slot.tt_info = udev->tt->hub->slot_id;
337 dev->in_ctx->slot.tt_info |= udev->ttport << 8;
339 xhci_dbg(xhci, "udev->tt = 0x%x\n", (unsigned int) udev->tt);
340 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
342 /* Step 4 - ring already allocated */
343 /* Step 5 */
344 ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
346 * See section 4.3 bullet 6:
347 * The default Max Packet size for ep0 is "8 bytes for a USB2
348 * LS/FS/HS device or 512 bytes for a USB3 SS device"
349 * XXX: Not sure about wireless USB devices.
351 if (udev->speed == USB_SPEED_SUPER)
352 ep0_ctx->ep_info2 |= MAX_PACKET(512);
353 else
354 ep0_ctx->ep_info2 |= MAX_PACKET(8);
355 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
356 ep0_ctx->ep_info2 |= MAX_BURST(0);
357 ep0_ctx->ep_info2 |= ERROR_COUNT(3);
359 ep0_ctx->deq[0] =
360 dev->ep_rings[0]->first_seg->dma;
361 ep0_ctx->deq[0] |= dev->ep_rings[0]->cycle_state;
362 ep0_ctx->deq[1] = 0;
364 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
366 return 0;
369 void xhci_mem_cleanup(struct xhci_hcd *xhci)
371 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
372 int size;
373 int i;
375 /* Free the Event Ring Segment Table and the actual Event Ring */
376 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
377 xhci_writel(xhci, 0, &xhci->ir_set->erst_base[1]);
378 xhci_writel(xhci, 0, &xhci->ir_set->erst_base[0]);
379 xhci_writel(xhci, 0, &xhci->ir_set->erst_dequeue[1]);
380 xhci_writel(xhci, 0, &xhci->ir_set->erst_dequeue[0]);
381 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
382 if (xhci->erst.entries)
383 pci_free_consistent(pdev, size,
384 xhci->erst.entries, xhci->erst.erst_dma_addr);
385 xhci->erst.entries = NULL;
386 xhci_dbg(xhci, "Freed ERST\n");
387 if (xhci->event_ring)
388 xhci_ring_free(xhci, xhci->event_ring);
389 xhci->event_ring = NULL;
390 xhci_dbg(xhci, "Freed event ring\n");
392 xhci_writel(xhci, 0, &xhci->op_regs->cmd_ring[1]);
393 xhci_writel(xhci, 0, &xhci->op_regs->cmd_ring[0]);
394 if (xhci->cmd_ring)
395 xhci_ring_free(xhci, xhci->cmd_ring);
396 xhci->cmd_ring = NULL;
397 xhci_dbg(xhci, "Freed command ring\n");
399 for (i = 1; i < MAX_HC_SLOTS; ++i)
400 xhci_free_virt_device(xhci, i);
402 if (xhci->segment_pool)
403 dma_pool_destroy(xhci->segment_pool);
404 xhci->segment_pool = NULL;
405 xhci_dbg(xhci, "Freed segment pool\n");
407 if (xhci->device_pool)
408 dma_pool_destroy(xhci->device_pool);
409 xhci->device_pool = NULL;
410 xhci_dbg(xhci, "Freed device context pool\n");
412 xhci_writel(xhci, 0, &xhci->op_regs->dcbaa_ptr[1]);
413 xhci_writel(xhci, 0, &xhci->op_regs->dcbaa_ptr[0]);
414 if (xhci->dcbaa)
415 pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
416 xhci->dcbaa, xhci->dcbaa->dma);
417 xhci->dcbaa = NULL;
419 xhci->page_size = 0;
420 xhci->page_shift = 0;
423 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
425 dma_addr_t dma;
426 struct device *dev = xhci_to_hcd(xhci)->self.controller;
427 unsigned int val, val2;
428 struct xhci_segment *seg;
429 u32 page_size;
430 int i;
432 page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
433 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
434 for (i = 0; i < 16; i++) {
435 if ((0x1 & page_size) != 0)
436 break;
437 page_size = page_size >> 1;
439 if (i < 16)
440 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
441 else
442 xhci_warn(xhci, "WARN: no supported page size\n");
443 /* Use 4K pages, since that's common and the minimum the HC supports */
444 xhci->page_shift = 12;
445 xhci->page_size = 1 << xhci->page_shift;
446 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
449 * Program the Number of Device Slots Enabled field in the CONFIG
450 * register with the max value of slots the HC can handle.
452 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
453 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
454 (unsigned int) val);
455 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
456 val |= (val2 & ~HCS_SLOTS_MASK);
457 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
458 (unsigned int) val);
459 xhci_writel(xhci, val, &xhci->op_regs->config_reg);
462 * Section 5.4.8 - doorbell array must be
463 * "physically contiguous and 64-byte (cache line) aligned".
465 xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
466 sizeof(*xhci->dcbaa), &dma);
467 if (!xhci->dcbaa)
468 goto fail;
469 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
470 xhci->dcbaa->dma = dma;
471 xhci_dbg(xhci, "// Device context base array address = 0x%x (DMA), 0x%x (virt)\n",
472 xhci->dcbaa->dma, (unsigned int) xhci->dcbaa);
473 xhci_writel(xhci, (u32) 0, &xhci->op_regs->dcbaa_ptr[1]);
474 xhci_writel(xhci, dma, &xhci->op_regs->dcbaa_ptr[0]);
477 * Initialize the ring segment pool. The ring must be a contiguous
478 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
479 * however, the command ring segment needs 64-byte aligned segments,
480 * so we pick the greater alignment need.
482 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
483 SEGMENT_SIZE, 64, xhci->page_size);
484 /* See Table 46 and Note on Figure 55 */
485 /* FIXME support 64-byte contexts */
486 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
487 sizeof(struct xhci_device_control),
488 64, xhci->page_size);
489 if (!xhci->segment_pool || !xhci->device_pool)
490 goto fail;
492 /* Set up the command ring to have one segments for now. */
493 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
494 if (!xhci->cmd_ring)
495 goto fail;
496 xhci_dbg(xhci, "Allocated command ring at 0x%x\n", (unsigned int) xhci->cmd_ring);
497 xhci_dbg(xhci, "First segment DMA is 0x%x\n", (unsigned int) xhci->cmd_ring->first_seg->dma);
499 /* Set the address in the Command Ring Control register */
500 val = xhci_readl(xhci, &xhci->op_regs->cmd_ring[0]);
501 val = (val & ~CMD_RING_ADDR_MASK) |
502 (xhci->cmd_ring->first_seg->dma & CMD_RING_ADDR_MASK) |
503 xhci->cmd_ring->cycle_state;
504 xhci_dbg(xhci, "// Setting command ring address high bits to 0x0\n");
505 xhci_writel(xhci, (u32) 0, &xhci->op_regs->cmd_ring[1]);
506 xhci_dbg(xhci, "// Setting command ring address low bits to 0x%x\n", val);
507 xhci_writel(xhci, val, &xhci->op_regs->cmd_ring[0]);
508 xhci_dbg_cmd_ptrs(xhci);
510 val = xhci_readl(xhci, &xhci->cap_regs->db_off);
511 val &= DBOFF_MASK;
512 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
513 " from cap regs base addr\n", val);
514 xhci->dba = (void *) xhci->cap_regs + val;
515 xhci_dbg_regs(xhci);
516 xhci_print_run_regs(xhci);
517 /* Set ir_set to interrupt register set 0 */
518 xhci->ir_set = (void *) xhci->run_regs->ir_set;
521 * Event ring setup: Allocate a normal ring, but also setup
522 * the event ring segment table (ERST). Section 4.9.3.
524 xhci_dbg(xhci, "// Allocating event ring\n");
525 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
526 if (!xhci->event_ring)
527 goto fail;
529 xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
530 sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
531 if (!xhci->erst.entries)
532 goto fail;
533 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%x\n", dma);
535 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
536 xhci->erst.num_entries = ERST_NUM_SEGS;
537 xhci->erst.erst_dma_addr = dma;
538 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = 0x%x, dma addr = 0x%x\n",
539 xhci->erst.num_entries,
540 (unsigned int) xhci->erst.entries,
541 xhci->erst.erst_dma_addr);
543 /* set ring base address and size for each segment table entry */
544 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
545 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
546 entry->seg_addr[1] = 0;
547 entry->seg_addr[0] = seg->dma;
548 entry->seg_size = TRBS_PER_SEGMENT;
549 entry->rsvd = 0;
550 seg = seg->next;
553 /* set ERST count with the number of entries in the segment table */
554 val = xhci_readl(xhci, &xhci->ir_set->erst_size);
555 val &= ERST_SIZE_MASK;
556 val |= ERST_NUM_SEGS;
557 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
558 val);
559 xhci_writel(xhci, val, &xhci->ir_set->erst_size);
561 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
562 /* set the segment table base address */
563 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%x\n",
564 xhci->erst.erst_dma_addr);
565 xhci_writel(xhci, 0, &xhci->ir_set->erst_base[1]);
566 val = xhci_readl(xhci, &xhci->ir_set->erst_base[0]);
567 val &= ERST_PTR_MASK;
568 val |= (xhci->erst.erst_dma_addr & ~ERST_PTR_MASK);
569 xhci_writel(xhci, val, &xhci->ir_set->erst_base[0]);
571 /* Set the event ring dequeue address */
572 set_hc_event_deq(xhci);
573 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
574 xhci_print_ir_set(xhci, xhci->ir_set, 0);
577 * XXX: Might need to set the Interrupter Moderation Register to
578 * something other than the default (~1ms minimum between interrupts).
579 * See section 5.5.1.2.
581 init_completion(&xhci->addr_dev);
582 for (i = 0; i < MAX_HC_SLOTS; ++i)
583 xhci->devs[i] = 0;
585 return 0;
586 fail:
587 xhci_warn(xhci, "Couldn't initialize memory\n");
588 xhci_mem_cleanup(xhci);
589 return -ENOMEM;