[PATCH] MIPS: R2 build fixes for gcc < 3.4.
[wandboard.git] / include / asm-mips / bitops.h
blob849155aa7e8cb132494b8c1e7a72f8ee01c525cb
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (c) 1994 - 1997, 1999, 2000 Ralf Baechle (ralf@gnu.org)
7 * Copyright (c) 1999, 2000 Silicon Graphics, Inc.
8 */
9 #ifndef _ASM_BITOPS_H
10 #define _ASM_BITOPS_H
12 #include <linux/config.h>
13 #include <linux/compiler.h>
14 #include <linux/types.h>
15 #include <asm/bug.h>
16 #include <asm/byteorder.h> /* sigh ... */
17 #include <asm/cpu-features.h>
19 #if (_MIPS_SZLONG == 32)
20 #define SZLONG_LOG 5
21 #define SZLONG_MASK 31UL
22 #define __LL "ll "
23 #define __SC "sc "
24 #define cpu_to_lelongp(x) cpu_to_le32p((__u32 *) (x))
25 #elif (_MIPS_SZLONG == 64)
26 #define SZLONG_LOG 6
27 #define SZLONG_MASK 63UL
28 #define __LL "lld "
29 #define __SC "scd "
30 #define cpu_to_lelongp(x) cpu_to_le64p((__u64 *) (x))
31 #endif
33 #ifdef __KERNEL__
35 #include <asm/interrupt.h>
36 #include <asm/sgidefs.h>
37 #include <asm/war.h>
40 * clear_bit() doesn't provide any barrier for the compiler.
42 #define smp_mb__before_clear_bit() smp_mb()
43 #define smp_mb__after_clear_bit() smp_mb()
46 * Only disable interrupt for kernel mode stuff to keep usermode stuff
47 * that dares to use kernel include files alive.
50 #define __bi_flags unsigned long flags
51 #define __bi_local_irq_save(x) local_irq_save(x)
52 #define __bi_local_irq_restore(x) local_irq_restore(x)
53 #else
54 #define __bi_flags
55 #define __bi_local_irq_save(x)
56 #define __bi_local_irq_restore(x)
57 #endif /* __KERNEL__ */
60 * set_bit - Atomically set a bit in memory
61 * @nr: the bit to set
62 * @addr: the address to start counting from
64 * This function is atomic and may not be reordered. See __set_bit()
65 * if you do not require the atomic guarantees.
66 * Note that @nr may be almost arbitrarily large; this function is not
67 * restricted to acting on a single-word quantity.
69 static inline void set_bit(unsigned long nr, volatile unsigned long *addr)
71 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
72 unsigned long temp;
74 if (cpu_has_llsc && R10000_LLSC_WAR) {
75 __asm__ __volatile__(
76 " .set mips3 \n"
77 "1: " __LL "%0, %1 # set_bit \n"
78 " or %0, %2 \n"
79 " " __SC "%0, %1 \n"
80 " beqzl %0, 1b \n"
81 " .set mips0 \n"
82 : "=&r" (temp), "=m" (*m)
83 : "ir" (1UL << (nr & SZLONG_MASK)), "m" (*m));
84 } else if (cpu_has_llsc) {
85 __asm__ __volatile__(
86 " .set mips3 \n"
87 "1: " __LL "%0, %1 # set_bit \n"
88 " or %0, %2 \n"
89 " " __SC "%0, %1 \n"
90 " beqz %0, 1b \n"
91 " .set mips0 \n"
92 : "=&r" (temp), "=m" (*m)
93 : "ir" (1UL << (nr & SZLONG_MASK)), "m" (*m));
94 } else {
95 volatile unsigned long *a = addr;
96 unsigned long mask;
97 __bi_flags;
99 a += nr >> SZLONG_LOG;
100 mask = 1UL << (nr & SZLONG_MASK);
101 __bi_local_irq_save(flags);
102 *a |= mask;
103 __bi_local_irq_restore(flags);
108 * __set_bit - Set a bit in memory
109 * @nr: the bit to set
110 * @addr: the address to start counting from
112 * Unlike set_bit(), this function is non-atomic and may be reordered.
113 * If it's called on the same region of memory simultaneously, the effect
114 * may be that only one operation succeeds.
116 static inline void __set_bit(unsigned long nr, volatile unsigned long * addr)
118 unsigned long * m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
120 *m |= 1UL << (nr & SZLONG_MASK);
124 * clear_bit - Clears a bit in memory
125 * @nr: Bit to clear
126 * @addr: Address to start counting from
128 * clear_bit() is atomic and may not be reordered. However, it does
129 * not contain a memory barrier, so if it is used for locking purposes,
130 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
131 * in order to ensure changes are visible on other processors.
133 static inline void clear_bit(unsigned long nr, volatile unsigned long *addr)
135 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
136 unsigned long temp;
138 if (cpu_has_llsc && R10000_LLSC_WAR) {
139 __asm__ __volatile__(
140 " .set mips3 \n"
141 "1: " __LL "%0, %1 # clear_bit \n"
142 " and %0, %2 \n"
143 " " __SC "%0, %1 \n"
144 " beqzl %0, 1b \n"
145 " .set mips0 \n"
146 : "=&r" (temp), "=m" (*m)
147 : "ir" (~(1UL << (nr & SZLONG_MASK))), "m" (*m));
148 } else if (cpu_has_llsc) {
149 __asm__ __volatile__(
150 " .set mips3 \n"
151 "1: " __LL "%0, %1 # clear_bit \n"
152 " and %0, %2 \n"
153 " " __SC "%0, %1 \n"
154 " beqz %0, 1b \n"
155 " .set mips0 \n"
156 : "=&r" (temp), "=m" (*m)
157 : "ir" (~(1UL << (nr & SZLONG_MASK))), "m" (*m));
158 } else {
159 volatile unsigned long *a = addr;
160 unsigned long mask;
161 __bi_flags;
163 a += nr >> SZLONG_LOG;
164 mask = 1UL << (nr & SZLONG_MASK);
165 __bi_local_irq_save(flags);
166 *a &= ~mask;
167 __bi_local_irq_restore(flags);
172 * __clear_bit - Clears a bit in memory
173 * @nr: Bit to clear
174 * @addr: Address to start counting from
176 * Unlike clear_bit(), this function is non-atomic and may be reordered.
177 * If it's called on the same region of memory simultaneously, the effect
178 * may be that only one operation succeeds.
180 static inline void __clear_bit(unsigned long nr, volatile unsigned long * addr)
182 unsigned long * m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
184 *m &= ~(1UL << (nr & SZLONG_MASK));
188 * change_bit - Toggle a bit in memory
189 * @nr: Bit to change
190 * @addr: Address to start counting from
192 * change_bit() is atomic and may not be reordered.
193 * Note that @nr may be almost arbitrarily large; this function is not
194 * restricted to acting on a single-word quantity.
196 static inline void change_bit(unsigned long nr, volatile unsigned long *addr)
198 if (cpu_has_llsc && R10000_LLSC_WAR) {
199 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
200 unsigned long temp;
202 __asm__ __volatile__(
203 " .set mips3 \n"
204 "1: " __LL "%0, %1 # change_bit \n"
205 " xor %0, %2 \n"
206 " " __SC "%0, %1 \n"
207 " beqzl %0, 1b \n"
208 " .set mips0 \n"
209 : "=&r" (temp), "=m" (*m)
210 : "ir" (1UL << (nr & SZLONG_MASK)), "m" (*m));
211 } else if (cpu_has_llsc) {
212 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
213 unsigned long temp;
215 __asm__ __volatile__(
216 " .set mips3 \n"
217 "1: " __LL "%0, %1 # change_bit \n"
218 " xor %0, %2 \n"
219 " " __SC "%0, %1 \n"
220 " beqz %0, 1b \n"
221 " .set mips0 \n"
222 : "=&r" (temp), "=m" (*m)
223 : "ir" (1UL << (nr & SZLONG_MASK)), "m" (*m));
224 } else {
225 volatile unsigned long *a = addr;
226 unsigned long mask;
227 __bi_flags;
229 a += nr >> SZLONG_LOG;
230 mask = 1UL << (nr & SZLONG_MASK);
231 __bi_local_irq_save(flags);
232 *a ^= mask;
233 __bi_local_irq_restore(flags);
238 * __change_bit - Toggle a bit in memory
239 * @nr: the bit to change
240 * @addr: the address to start counting from
242 * Unlike change_bit(), this function is non-atomic and may be reordered.
243 * If it's called on the same region of memory simultaneously, the effect
244 * may be that only one operation succeeds.
246 static inline void __change_bit(unsigned long nr, volatile unsigned long * addr)
248 unsigned long * m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
250 *m ^= 1UL << (nr & SZLONG_MASK);
254 * test_and_set_bit - Set a bit and return its old value
255 * @nr: Bit to set
256 * @addr: Address to count from
258 * This operation is atomic and cannot be reordered.
259 * It also implies a memory barrier.
261 static inline int test_and_set_bit(unsigned long nr,
262 volatile unsigned long *addr)
264 if (cpu_has_llsc && R10000_LLSC_WAR) {
265 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
266 unsigned long temp, res;
268 __asm__ __volatile__(
269 " .set mips3 \n"
270 "1: " __LL "%0, %1 # test_and_set_bit \n"
271 " or %2, %0, %3 \n"
272 " " __SC "%2, %1 \n"
273 " beqzl %2, 1b \n"
274 " and %2, %0, %3 \n"
275 #ifdef CONFIG_SMP
276 " sync \n"
277 #endif
278 " .set mips0 \n"
279 : "=&r" (temp), "=m" (*m), "=&r" (res)
280 : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m)
281 : "memory");
283 return res != 0;
284 } else if (cpu_has_llsc) {
285 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
286 unsigned long temp, res;
288 __asm__ __volatile__(
289 " .set push \n"
290 " .set noreorder \n"
291 " .set mips3 \n"
292 "1: " __LL "%0, %1 # test_and_set_bit \n"
293 " or %2, %0, %3 \n"
294 " " __SC "%2, %1 \n"
295 " beqz %2, 1b \n"
296 " and %2, %0, %3 \n"
297 #ifdef CONFIG_SMP
298 " sync \n"
299 #endif
300 " .set pop \n"
301 : "=&r" (temp), "=m" (*m), "=&r" (res)
302 : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m)
303 : "memory");
305 return res != 0;
306 } else {
307 volatile unsigned long *a = addr;
308 unsigned long mask;
309 int retval;
310 __bi_flags;
312 a += nr >> SZLONG_LOG;
313 mask = 1UL << (nr & SZLONG_MASK);
314 __bi_local_irq_save(flags);
315 retval = (mask & *a) != 0;
316 *a |= mask;
317 __bi_local_irq_restore(flags);
319 return retval;
324 * __test_and_set_bit - Set a bit and return its old value
325 * @nr: Bit to set
326 * @addr: Address to count from
328 * This operation is non-atomic and can be reordered.
329 * If two examples of this operation race, one can appear to succeed
330 * but actually fail. You must protect multiple accesses with a lock.
332 static inline int __test_and_set_bit(unsigned long nr,
333 volatile unsigned long *addr)
335 volatile unsigned long *a = addr;
336 unsigned long mask;
337 int retval;
339 a += nr >> SZLONG_LOG;
340 mask = 1UL << (nr & SZLONG_MASK);
341 retval = (mask & *a) != 0;
342 *a |= mask;
344 return retval;
348 * test_and_clear_bit - Clear a bit and return its old value
349 * @nr: Bit to clear
350 * @addr: Address to count from
352 * This operation is atomic and cannot be reordered.
353 * It also implies a memory barrier.
355 static inline int test_and_clear_bit(unsigned long nr,
356 volatile unsigned long *addr)
358 if (cpu_has_llsc && R10000_LLSC_WAR) {
359 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
360 unsigned long temp, res;
362 __asm__ __volatile__(
363 " .set mips3 \n"
364 "1: " __LL "%0, %1 # test_and_clear_bit \n"
365 " or %2, %0, %3 \n"
366 " xor %2, %3 \n"
367 " " __SC "%2, %1 \n"
368 " beqzl %2, 1b \n"
369 " and %2, %0, %3 \n"
370 #ifdef CONFIG_SMP
371 " sync \n"
372 #endif
373 " .set mips0 \n"
374 : "=&r" (temp), "=m" (*m), "=&r" (res)
375 : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m)
376 : "memory");
378 return res != 0;
379 } else if (cpu_has_llsc) {
380 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
381 unsigned long temp, res;
383 __asm__ __volatile__(
384 " .set push \n"
385 " .set noreorder \n"
386 " .set mips3 \n"
387 "1: " __LL "%0, %1 # test_and_clear_bit \n"
388 " or %2, %0, %3 \n"
389 " xor %2, %3 \n"
390 " " __SC "%2, %1 \n"
391 " beqz %2, 1b \n"
392 " and %2, %0, %3 \n"
393 #ifdef CONFIG_SMP
394 " sync \n"
395 #endif
396 " .set pop \n"
397 : "=&r" (temp), "=m" (*m), "=&r" (res)
398 : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m)
399 : "memory");
401 return res != 0;
402 } else {
403 volatile unsigned long *a = addr;
404 unsigned long mask;
405 int retval;
406 __bi_flags;
408 a += nr >> SZLONG_LOG;
409 mask = 1UL << (nr & SZLONG_MASK);
410 __bi_local_irq_save(flags);
411 retval = (mask & *a) != 0;
412 *a &= ~mask;
413 __bi_local_irq_restore(flags);
415 return retval;
420 * __test_and_clear_bit - Clear a bit and return its old value
421 * @nr: Bit to clear
422 * @addr: Address to count from
424 * This operation is non-atomic and can be reordered.
425 * If two examples of this operation race, one can appear to succeed
426 * but actually fail. You must protect multiple accesses with a lock.
428 static inline int __test_and_clear_bit(unsigned long nr,
429 volatile unsigned long * addr)
431 volatile unsigned long *a = addr;
432 unsigned long mask;
433 int retval;
435 a += (nr >> SZLONG_LOG);
436 mask = 1UL << (nr & SZLONG_MASK);
437 retval = ((mask & *a) != 0);
438 *a &= ~mask;
440 return retval;
444 * test_and_change_bit - Change a bit and return its old value
445 * @nr: Bit to change
446 * @addr: Address to count from
448 * This operation is atomic and cannot be reordered.
449 * It also implies a memory barrier.
451 static inline int test_and_change_bit(unsigned long nr,
452 volatile unsigned long *addr)
454 if (cpu_has_llsc && R10000_LLSC_WAR) {
455 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
456 unsigned long temp, res;
458 __asm__ __volatile__(
459 " .set mips3 \n"
460 "1: " __LL "%0, %1 # test_and_change_bit \n"
461 " xor %2, %0, %3 \n"
462 " " __SC "%2, %1 \n"
463 " beqzl %2, 1b \n"
464 " and %2, %0, %3 \n"
465 #ifdef CONFIG_SMP
466 " sync \n"
467 #endif
468 " .set mips0 \n"
469 : "=&r" (temp), "=m" (*m), "=&r" (res)
470 : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m)
471 : "memory");
473 return res != 0;
474 } else if (cpu_has_llsc) {
475 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
476 unsigned long temp, res;
478 __asm__ __volatile__(
479 " .set push \n"
480 " .set noreorder \n"
481 " .set mips3 \n"
482 "1: " __LL "%0, %1 # test_and_change_bit \n"
483 " xor %2, %0, %3 \n"
484 " " __SC "\t%2, %1 \n"
485 " beqz %2, 1b \n"
486 " and %2, %0, %3 \n"
487 #ifdef CONFIG_SMP
488 " sync \n"
489 #endif
490 " .set pop \n"
491 : "=&r" (temp), "=m" (*m), "=&r" (res)
492 : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m)
493 : "memory");
495 return res != 0;
496 } else {
497 volatile unsigned long *a = addr;
498 unsigned long mask, retval;
499 __bi_flags;
501 a += nr >> SZLONG_LOG;
502 mask = 1UL << (nr & SZLONG_MASK);
503 __bi_local_irq_save(flags);
504 retval = (mask & *a) != 0;
505 *a ^= mask;
506 __bi_local_irq_restore(flags);
508 return retval;
513 * __test_and_change_bit - Change a bit and return its old value
514 * @nr: Bit to change
515 * @addr: Address to count from
517 * This operation is non-atomic and can be reordered.
518 * If two examples of this operation race, one can appear to succeed
519 * but actually fail. You must protect multiple accesses with a lock.
521 static inline int __test_and_change_bit(unsigned long nr,
522 volatile unsigned long *addr)
524 volatile unsigned long *a = addr;
525 unsigned long mask;
526 int retval;
528 a += (nr >> SZLONG_LOG);
529 mask = 1UL << (nr & SZLONG_MASK);
530 retval = ((mask & *a) != 0);
531 *a ^= mask;
533 return retval;
536 #undef __bi_flags
537 #undef __bi_local_irq_save
538 #undef __bi_local_irq_restore
541 * test_bit - Determine whether a bit is set
542 * @nr: bit number to test
543 * @addr: Address to start counting from
545 static inline int test_bit(unsigned long nr, const volatile unsigned long *addr)
547 return 1UL & (addr[nr >> SZLONG_LOG] >> (nr & SZLONG_MASK));
551 * Return the bit position (0..63) of the most significant 1 bit in a word
552 * Returns -1 if no 1 bit exists
554 static inline int __ilog2(unsigned long x)
556 int lz;
558 if (sizeof(x) == 4) {
559 __asm__ (
560 " .set push \n"
561 " .set mips32 \n"
562 " clz %0, %1 \n"
563 " .set pop \n"
564 : "=r" (lz)
565 : "r" (x));
567 return 31 - lz;
570 BUG_ON(sizeof(x) != 8);
572 __asm__ (
573 " .set push \n"
574 " .set mips64 \n"
575 " dclz %0, %1 \n"
576 " .set pop \n"
577 : "=r" (lz)
578 : "r" (x));
580 return 63 - lz;
584 * __ffs - find first bit in word.
585 * @word: The word to search
587 * Returns 0..SZLONG-1
588 * Undefined if no bit exists, so code should check against 0 first.
590 static inline unsigned long __ffs(unsigned long word)
592 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
593 return __ilog2(word & -word);
594 #else
595 int b = 0, s;
597 #ifdef CONFIG_32BIT
598 s = 16; if (word << 16 != 0) s = 0; b += s; word >>= s;
599 s = 8; if (word << 24 != 0) s = 0; b += s; word >>= s;
600 s = 4; if (word << 28 != 0) s = 0; b += s; word >>= s;
601 s = 2; if (word << 30 != 0) s = 0; b += s; word >>= s;
602 s = 1; if (word << 31 != 0) s = 0; b += s;
604 return b;
605 #endif
606 #ifdef CONFIG_64BIT
607 s = 32; if (word << 32 != 0) s = 0; b += s; word >>= s;
608 s = 16; if (word << 48 != 0) s = 0; b += s; word >>= s;
609 s = 8; if (word << 56 != 0) s = 0; b += s; word >>= s;
610 s = 4; if (word << 60 != 0) s = 0; b += s; word >>= s;
611 s = 2; if (word << 62 != 0) s = 0; b += s; word >>= s;
612 s = 1; if (word << 63 != 0) s = 0; b += s;
614 return b;
615 #endif
616 #endif
620 * ffs - find first bit set.
621 * @word: The word to search
623 * Returns 1..SZLONG
624 * Returns 0 if no bit exists
627 static inline unsigned long ffs(unsigned long word)
629 if (!word)
630 return 0;
632 return __ffs(word) + 1;
636 * ffz - find first zero in word.
637 * @word: The word to search
639 * Undefined if no zero exists, so code should check against ~0UL first.
641 static inline unsigned long ffz(unsigned long word)
643 return __ffs (~word);
647 * fls - find last bit set.
648 * @word: The word to search
650 * Returns 1..SZLONG
651 * Returns 0 if no bit exists
653 static inline unsigned long fls(unsigned long word)
655 #ifdef CONFIG_32BIT
656 #ifdef CONFIG_CPU_MIPS32
657 __asm__ (
658 " .set mips32 \n"
659 " clz %0, %1 \n"
660 " .set mips0 \n"
661 : "=r" (word)
662 : "r" (word));
664 return 32 - word;
665 #else
667 int r = 32, s;
669 if (word == 0)
670 return 0;
672 s = 16; if ((word & 0xffff0000)) s = 0; r -= s; word <<= s;
673 s = 8; if ((word & 0xff000000)) s = 0; r -= s; word <<= s;
674 s = 4; if ((word & 0xf0000000)) s = 0; r -= s; word <<= s;
675 s = 2; if ((word & 0xc0000000)) s = 0; r -= s; word <<= s;
676 s = 1; if ((word & 0x80000000)) s = 0; r -= s;
678 return r;
680 #endif
681 #endif /* CONFIG_32BIT */
683 #ifdef CONFIG_64BIT
684 #ifdef CONFIG_CPU_MIPS64
686 __asm__ (
687 " .set mips64 \n"
688 " dclz %0, %1 \n"
689 " .set mips0 \n"
690 : "=r" (word)
691 : "r" (word));
693 return 64 - word;
694 #else
696 int r = 64, s;
698 if (word == 0)
699 return 0;
701 s = 32; if ((word & 0xffffffff00000000UL)) s = 0; r -= s; word <<= s;
702 s = 16; if ((word & 0xffff000000000000UL)) s = 0; r -= s; word <<= s;
703 s = 8; if ((word & 0xff00000000000000UL)) s = 0; r -= s; word <<= s;
704 s = 4; if ((word & 0xf000000000000000UL)) s = 0; r -= s; word <<= s;
705 s = 2; if ((word & 0xc000000000000000UL)) s = 0; r -= s; word <<= s;
706 s = 1; if ((word & 0x8000000000000000UL)) s = 0; r -= s;
708 return r;
710 #endif
711 #endif /* CONFIG_64BIT */
714 #define fls64(x) generic_fls64(x)
717 * find_next_zero_bit - find the first zero bit in a memory region
718 * @addr: The address to base the search on
719 * @offset: The bitnumber to start searching at
720 * @size: The maximum size to search
722 static inline unsigned long find_next_zero_bit(const unsigned long *addr,
723 unsigned long size, unsigned long offset)
725 const unsigned long *p = addr + (offset >> SZLONG_LOG);
726 unsigned long result = offset & ~SZLONG_MASK;
727 unsigned long tmp;
729 if (offset >= size)
730 return size;
731 size -= result;
732 offset &= SZLONG_MASK;
733 if (offset) {
734 tmp = *(p++);
735 tmp |= ~0UL >> (_MIPS_SZLONG-offset);
736 if (size < _MIPS_SZLONG)
737 goto found_first;
738 if (~tmp)
739 goto found_middle;
740 size -= _MIPS_SZLONG;
741 result += _MIPS_SZLONG;
743 while (size & ~SZLONG_MASK) {
744 if (~(tmp = *(p++)))
745 goto found_middle;
746 result += _MIPS_SZLONG;
747 size -= _MIPS_SZLONG;
749 if (!size)
750 return result;
751 tmp = *p;
753 found_first:
754 tmp |= ~0UL << size;
755 if (tmp == ~0UL) /* Are any bits zero? */
756 return result + size; /* Nope. */
757 found_middle:
758 return result + ffz(tmp);
761 #define find_first_zero_bit(addr, size) \
762 find_next_zero_bit((addr), (size), 0)
765 * find_next_bit - find the next set bit in a memory region
766 * @addr: The address to base the search on
767 * @offset: The bitnumber to start searching at
768 * @size: The maximum size to search
770 static inline unsigned long find_next_bit(const unsigned long *addr,
771 unsigned long size, unsigned long offset)
773 const unsigned long *p = addr + (offset >> SZLONG_LOG);
774 unsigned long result = offset & ~SZLONG_MASK;
775 unsigned long tmp;
777 if (offset >= size)
778 return size;
779 size -= result;
780 offset &= SZLONG_MASK;
781 if (offset) {
782 tmp = *(p++);
783 tmp &= ~0UL << offset;
784 if (size < _MIPS_SZLONG)
785 goto found_first;
786 if (tmp)
787 goto found_middle;
788 size -= _MIPS_SZLONG;
789 result += _MIPS_SZLONG;
791 while (size & ~SZLONG_MASK) {
792 if ((tmp = *(p++)))
793 goto found_middle;
794 result += _MIPS_SZLONG;
795 size -= _MIPS_SZLONG;
797 if (!size)
798 return result;
799 tmp = *p;
801 found_first:
802 tmp &= ~0UL >> (_MIPS_SZLONG - size);
803 if (tmp == 0UL) /* Are any bits set? */
804 return result + size; /* Nope. */
805 found_middle:
806 return result + __ffs(tmp);
810 * find_first_bit - find the first set bit in a memory region
811 * @addr: The address to start the search at
812 * @size: The maximum size to search
814 * Returns the bit-number of the first set bit, not the number of the byte
815 * containing a bit.
817 #define find_first_bit(addr, size) \
818 find_next_bit((addr), (size), 0)
820 #ifdef __KERNEL__
823 * Every architecture must define this function. It's the fastest
824 * way of searching a 140-bit bitmap where the first 100 bits are
825 * unlikely to be set. It's guaranteed that at least one of the 140
826 * bits is cleared.
828 static inline int sched_find_first_bit(const unsigned long *b)
830 #ifdef CONFIG_32BIT
831 if (unlikely(b[0]))
832 return __ffs(b[0]);
833 if (unlikely(b[1]))
834 return __ffs(b[1]) + 32;
835 if (unlikely(b[2]))
836 return __ffs(b[2]) + 64;
837 if (b[3])
838 return __ffs(b[3]) + 96;
839 return __ffs(b[4]) + 128;
840 #endif
841 #ifdef CONFIG_64BIT
842 if (unlikely(b[0]))
843 return __ffs(b[0]);
844 if (unlikely(b[1]))
845 return __ffs(b[1]) + 64;
846 return __ffs(b[2]) + 128;
847 #endif
851 * hweightN - returns the hamming weight of a N-bit word
852 * @x: the word to weigh
854 * The Hamming Weight of a number is the total number of bits set in it.
857 #define hweight64(x) generic_hweight64(x)
858 #define hweight32(x) generic_hweight32(x)
859 #define hweight16(x) generic_hweight16(x)
860 #define hweight8(x) generic_hweight8(x)
862 static inline int __test_and_set_le_bit(unsigned long nr, unsigned long *addr)
864 unsigned char *ADDR = (unsigned char *) addr;
865 int mask, retval;
867 ADDR += nr >> 3;
868 mask = 1 << (nr & 0x07);
869 retval = (mask & *ADDR) != 0;
870 *ADDR |= mask;
872 return retval;
875 static inline int __test_and_clear_le_bit(unsigned long nr, unsigned long *addr)
877 unsigned char *ADDR = (unsigned char *) addr;
878 int mask, retval;
880 ADDR += nr >> 3;
881 mask = 1 << (nr & 0x07);
882 retval = (mask & *ADDR) != 0;
883 *ADDR &= ~mask;
885 return retval;
888 static inline int test_le_bit(unsigned long nr, const unsigned long * addr)
890 const unsigned char *ADDR = (const unsigned char *) addr;
891 int mask;
893 ADDR += nr >> 3;
894 mask = 1 << (nr & 0x07);
896 return ((mask & *ADDR) != 0);
899 static inline unsigned long find_next_zero_le_bit(unsigned long *addr,
900 unsigned long size, unsigned long offset)
902 unsigned long *p = ((unsigned long *) addr) + (offset >> SZLONG_LOG);
903 unsigned long result = offset & ~SZLONG_MASK;
904 unsigned long tmp;
906 if (offset >= size)
907 return size;
908 size -= result;
909 offset &= SZLONG_MASK;
910 if (offset) {
911 tmp = cpu_to_lelongp(p++);
912 tmp |= ~0UL >> (_MIPS_SZLONG-offset); /* bug or feature ? */
913 if (size < _MIPS_SZLONG)
914 goto found_first;
915 if (~tmp)
916 goto found_middle;
917 size -= _MIPS_SZLONG;
918 result += _MIPS_SZLONG;
920 while (size & ~SZLONG_MASK) {
921 if (~(tmp = cpu_to_lelongp(p++)))
922 goto found_middle;
923 result += _MIPS_SZLONG;
924 size -= _MIPS_SZLONG;
926 if (!size)
927 return result;
928 tmp = cpu_to_lelongp(p);
930 found_first:
931 tmp |= ~0UL << size;
932 if (tmp == ~0UL) /* Are any bits zero? */
933 return result + size; /* Nope. */
935 found_middle:
936 return result + ffz(tmp);
939 #define find_first_zero_le_bit(addr, size) \
940 find_next_zero_le_bit((addr), (size), 0)
942 #define ext2_set_bit(nr,addr) \
943 __test_and_set_le_bit((nr),(unsigned long*)addr)
944 #define ext2_clear_bit(nr, addr) \
945 __test_and_clear_le_bit((nr),(unsigned long*)addr)
946 #define ext2_set_bit_atomic(lock, nr, addr) \
947 ({ \
948 int ret; \
949 spin_lock(lock); \
950 ret = ext2_set_bit((nr), (addr)); \
951 spin_unlock(lock); \
952 ret; \
955 #define ext2_clear_bit_atomic(lock, nr, addr) \
956 ({ \
957 int ret; \
958 spin_lock(lock); \
959 ret = ext2_clear_bit((nr), (addr)); \
960 spin_unlock(lock); \
961 ret; \
963 #define ext2_test_bit(nr, addr) test_le_bit((nr),(unsigned long*)addr)
964 #define ext2_find_first_zero_bit(addr, size) \
965 find_first_zero_le_bit((unsigned long*)addr, size)
966 #define ext2_find_next_zero_bit(addr, size, off) \
967 find_next_zero_le_bit((unsigned long*)addr, size, off)
970 * Bitmap functions for the minix filesystem.
972 * FIXME: These assume that Minix uses the native byte/bitorder.
973 * This limits the Minix filesystem's value for data exchange very much.
975 #define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)
976 #define minix_set_bit(nr,addr) set_bit(nr,addr)
977 #define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
978 #define minix_test_bit(nr,addr) test_bit(nr,addr)
979 #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
981 #endif /* __KERNEL__ */
983 #endif /* _ASM_BITOPS_H */