1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
49 #include <linux/namei.h>
51 #include <linux/module.h>
52 #include <linux/mount.h>
53 #include <linux/socket.h>
54 #include <linux/mqueue.h>
55 #include <linux/audit.h>
56 #include <linux/personality.h>
57 #include <linux/time.h>
58 #include <linux/netlink.h>
59 #include <linux/compiler.h>
60 #include <asm/unistd.h>
61 #include <linux/security.h>
62 #include <linux/list.h>
63 #include <linux/tty.h>
64 #include <linux/selinux.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/inotify.h>
72 extern struct list_head audit_filter_list
[];
74 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
75 * for saving names from getname(). */
76 #define AUDIT_NAMES 20
78 /* Indicates that audit should log the full pathname. */
79 #define AUDIT_NAME_FULL -1
81 /* number of audit rules */
84 /* determines whether we collect data for signals sent */
87 /* When fs/namei.c:getname() is called, we store the pointer in name and
88 * we don't let putname() free it (instead we free all of the saved
89 * pointers at syscall exit time).
91 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
94 int name_len
; /* number of name's characters to log */
95 unsigned name_put
; /* call __putname() for this name */
105 struct audit_aux_data
{
106 struct audit_aux_data
*next
;
110 #define AUDIT_AUX_IPCPERM 0
112 /* Number of target pids per aux struct. */
113 #define AUDIT_AUX_PIDS 16
115 struct audit_aux_data_mq_open
{
116 struct audit_aux_data d
;
122 struct audit_aux_data_mq_sendrecv
{
123 struct audit_aux_data d
;
126 unsigned int msg_prio
;
127 struct timespec abs_timeout
;
130 struct audit_aux_data_mq_notify
{
131 struct audit_aux_data d
;
133 struct sigevent notification
;
136 struct audit_aux_data_mq_getsetattr
{
137 struct audit_aux_data d
;
139 struct mq_attr mqstat
;
142 struct audit_aux_data_ipcctl
{
143 struct audit_aux_data d
;
145 unsigned long qbytes
;
152 struct audit_aux_data_execve
{
153 struct audit_aux_data d
;
156 struct mm_struct
*mm
;
159 struct audit_aux_data_socketcall
{
160 struct audit_aux_data d
;
162 unsigned long args
[0];
165 struct audit_aux_data_sockaddr
{
166 struct audit_aux_data d
;
171 struct audit_aux_data_fd_pair
{
172 struct audit_aux_data d
;
176 struct audit_aux_data_pids
{
177 struct audit_aux_data d
;
178 pid_t target_pid
[AUDIT_AUX_PIDS
];
179 u32 target_sid
[AUDIT_AUX_PIDS
];
183 struct audit_tree_refs
{
184 struct audit_tree_refs
*next
;
185 struct audit_chunk
*c
[31];
188 /* The per-task audit context. */
189 struct audit_context
{
190 int dummy
; /* must be the first element */
191 int in_syscall
; /* 1 if task is in a syscall */
192 enum audit_state state
;
193 unsigned int serial
; /* serial number for record */
194 struct timespec ctime
; /* time of syscall entry */
195 uid_t loginuid
; /* login uid (identity) */
196 int major
; /* syscall number */
197 unsigned long argv
[4]; /* syscall arguments */
198 int return_valid
; /* return code is valid */
199 long return_code
;/* syscall return code */
200 int auditable
; /* 1 if record should be written */
202 struct audit_names names
[AUDIT_NAMES
];
203 char * filterkey
; /* key for rule that triggered record */
205 struct vfsmount
* pwdmnt
;
206 struct audit_context
*previous
; /* For nested syscalls */
207 struct audit_aux_data
*aux
;
208 struct audit_aux_data
*aux_pids
;
210 /* Save things to print about task_struct */
212 uid_t uid
, euid
, suid
, fsuid
;
213 gid_t gid
, egid
, sgid
, fsgid
;
214 unsigned long personality
;
220 struct audit_tree_refs
*trees
, *first_trees
;
229 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
230 static inline int open_arg(int flags
, int mask
)
232 int n
= ACC_MODE(flags
);
233 if (flags
& (O_TRUNC
| O_CREAT
))
234 n
|= AUDIT_PERM_WRITE
;
238 static int audit_match_perm(struct audit_context
*ctx
, int mask
)
240 unsigned n
= ctx
->major
;
241 switch (audit_classify_syscall(ctx
->arch
, n
)) {
243 if ((mask
& AUDIT_PERM_WRITE
) &&
244 audit_match_class(AUDIT_CLASS_WRITE
, n
))
246 if ((mask
& AUDIT_PERM_READ
) &&
247 audit_match_class(AUDIT_CLASS_READ
, n
))
249 if ((mask
& AUDIT_PERM_ATTR
) &&
250 audit_match_class(AUDIT_CLASS_CHATTR
, n
))
253 case 1: /* 32bit on biarch */
254 if ((mask
& AUDIT_PERM_WRITE
) &&
255 audit_match_class(AUDIT_CLASS_WRITE_32
, n
))
257 if ((mask
& AUDIT_PERM_READ
) &&
258 audit_match_class(AUDIT_CLASS_READ_32
, n
))
260 if ((mask
& AUDIT_PERM_ATTR
) &&
261 audit_match_class(AUDIT_CLASS_CHATTR_32
, n
))
265 return mask
& ACC_MODE(ctx
->argv
[1]);
267 return mask
& ACC_MODE(ctx
->argv
[2]);
268 case 4: /* socketcall */
269 return ((mask
& AUDIT_PERM_WRITE
) && ctx
->argv
[0] == SYS_BIND
);
271 return mask
& AUDIT_PERM_EXEC
;
278 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
279 * ->first_trees points to its beginning, ->trees - to the current end of data.
280 * ->tree_count is the number of free entries in array pointed to by ->trees.
281 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
282 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
283 * it's going to remain 1-element for almost any setup) until we free context itself.
284 * References in it _are_ dropped - at the same time we free/drop aux stuff.
287 #ifdef CONFIG_AUDIT_TREE
288 static int put_tree_ref(struct audit_context
*ctx
, struct audit_chunk
*chunk
)
290 struct audit_tree_refs
*p
= ctx
->trees
;
291 int left
= ctx
->tree_count
;
293 p
->c
[--left
] = chunk
;
294 ctx
->tree_count
= left
;
303 ctx
->tree_count
= 30;
309 static int grow_tree_refs(struct audit_context
*ctx
)
311 struct audit_tree_refs
*p
= ctx
->trees
;
312 ctx
->trees
= kzalloc(sizeof(struct audit_tree_refs
), GFP_KERNEL
);
318 p
->next
= ctx
->trees
;
320 ctx
->first_trees
= ctx
->trees
;
321 ctx
->tree_count
= 31;
326 static void unroll_tree_refs(struct audit_context
*ctx
,
327 struct audit_tree_refs
*p
, int count
)
329 #ifdef CONFIG_AUDIT_TREE
330 struct audit_tree_refs
*q
;
333 /* we started with empty chain */
334 p
= ctx
->first_trees
;
336 /* if the very first allocation has failed, nothing to do */
341 for (q
= p
; q
!= ctx
->trees
; q
= q
->next
, n
= 31) {
343 audit_put_chunk(q
->c
[n
]);
347 while (n
-- > ctx
->tree_count
) {
348 audit_put_chunk(q
->c
[n
]);
352 ctx
->tree_count
= count
;
356 static void free_tree_refs(struct audit_context
*ctx
)
358 struct audit_tree_refs
*p
, *q
;
359 for (p
= ctx
->first_trees
; p
; p
= q
) {
365 static int match_tree_refs(struct audit_context
*ctx
, struct audit_tree
*tree
)
367 #ifdef CONFIG_AUDIT_TREE
368 struct audit_tree_refs
*p
;
373 for (p
= ctx
->first_trees
; p
!= ctx
->trees
; p
= p
->next
) {
374 for (n
= 0; n
< 31; n
++)
375 if (audit_tree_match(p
->c
[n
], tree
))
380 for (n
= ctx
->tree_count
; n
< 31; n
++)
381 if (audit_tree_match(p
->c
[n
], tree
))
388 /* Determine if any context name data matches a rule's watch data */
389 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
391 static int audit_filter_rules(struct task_struct
*tsk
,
392 struct audit_krule
*rule
,
393 struct audit_context
*ctx
,
394 struct audit_names
*name
,
395 enum audit_state
*state
)
397 int i
, j
, need_sid
= 1;
400 for (i
= 0; i
< rule
->field_count
; i
++) {
401 struct audit_field
*f
= &rule
->fields
[i
];
406 result
= audit_comparator(tsk
->pid
, f
->op
, f
->val
);
411 ctx
->ppid
= sys_getppid();
412 result
= audit_comparator(ctx
->ppid
, f
->op
, f
->val
);
416 result
= audit_comparator(tsk
->uid
, f
->op
, f
->val
);
419 result
= audit_comparator(tsk
->euid
, f
->op
, f
->val
);
422 result
= audit_comparator(tsk
->suid
, f
->op
, f
->val
);
425 result
= audit_comparator(tsk
->fsuid
, f
->op
, f
->val
);
428 result
= audit_comparator(tsk
->gid
, f
->op
, f
->val
);
431 result
= audit_comparator(tsk
->egid
, f
->op
, f
->val
);
434 result
= audit_comparator(tsk
->sgid
, f
->op
, f
->val
);
437 result
= audit_comparator(tsk
->fsgid
, f
->op
, f
->val
);
440 result
= audit_comparator(tsk
->personality
, f
->op
, f
->val
);
444 result
= audit_comparator(ctx
->arch
, f
->op
, f
->val
);
448 if (ctx
&& ctx
->return_valid
)
449 result
= audit_comparator(ctx
->return_code
, f
->op
, f
->val
);
452 if (ctx
&& ctx
->return_valid
) {
454 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_SUCCESS
);
456 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_FAILURE
);
461 result
= audit_comparator(MAJOR(name
->dev
),
464 for (j
= 0; j
< ctx
->name_count
; j
++) {
465 if (audit_comparator(MAJOR(ctx
->names
[j
].dev
), f
->op
, f
->val
)) {
474 result
= audit_comparator(MINOR(name
->dev
),
477 for (j
= 0; j
< ctx
->name_count
; j
++) {
478 if (audit_comparator(MINOR(ctx
->names
[j
].dev
), f
->op
, f
->val
)) {
487 result
= (name
->ino
== f
->val
);
489 for (j
= 0; j
< ctx
->name_count
; j
++) {
490 if (audit_comparator(ctx
->names
[j
].ino
, f
->op
, f
->val
)) {
498 if (name
&& rule
->watch
->ino
!= (unsigned long)-1)
499 result
= (name
->dev
== rule
->watch
->dev
&&
500 name
->ino
== rule
->watch
->ino
);
504 result
= match_tree_refs(ctx
, rule
->tree
);
509 result
= audit_comparator(ctx
->loginuid
, f
->op
, f
->val
);
511 case AUDIT_SUBJ_USER
:
512 case AUDIT_SUBJ_ROLE
:
513 case AUDIT_SUBJ_TYPE
:
516 /* NOTE: this may return negative values indicating
517 a temporary error. We simply treat this as a
518 match for now to avoid losing information that
519 may be wanted. An error message will also be
523 selinux_get_task_sid(tsk
, &sid
);
526 result
= selinux_audit_rule_match(sid
, f
->type
,
535 case AUDIT_OBJ_LEV_LOW
:
536 case AUDIT_OBJ_LEV_HIGH
:
537 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
540 /* Find files that match */
542 result
= selinux_audit_rule_match(
543 name
->osid
, f
->type
, f
->op
,
546 for (j
= 0; j
< ctx
->name_count
; j
++) {
547 if (selinux_audit_rule_match(
556 /* Find ipc objects that match */
558 struct audit_aux_data
*aux
;
559 for (aux
= ctx
->aux
; aux
;
561 if (aux
->type
== AUDIT_IPC
) {
562 struct audit_aux_data_ipcctl
*axi
= (void *)aux
;
563 if (selinux_audit_rule_match(axi
->osid
, f
->type
, f
->op
, f
->se_rule
, ctx
)) {
577 result
= audit_comparator(ctx
->argv
[f
->type
-AUDIT_ARG0
], f
->op
, f
->val
);
579 case AUDIT_FILTERKEY
:
580 /* ignore this field for filtering */
584 result
= audit_match_perm(ctx
, f
->val
);
592 ctx
->filterkey
= kstrdup(rule
->filterkey
, GFP_ATOMIC
);
593 switch (rule
->action
) {
594 case AUDIT_NEVER
: *state
= AUDIT_DISABLED
; break;
595 case AUDIT_ALWAYS
: *state
= AUDIT_RECORD_CONTEXT
; break;
600 /* At process creation time, we can determine if system-call auditing is
601 * completely disabled for this task. Since we only have the task
602 * structure at this point, we can only check uid and gid.
604 static enum audit_state
audit_filter_task(struct task_struct
*tsk
)
606 struct audit_entry
*e
;
607 enum audit_state state
;
610 list_for_each_entry_rcu(e
, &audit_filter_list
[AUDIT_FILTER_TASK
], list
) {
611 if (audit_filter_rules(tsk
, &e
->rule
, NULL
, NULL
, &state
)) {
617 return AUDIT_BUILD_CONTEXT
;
620 /* At syscall entry and exit time, this filter is called if the
621 * audit_state is not low enough that auditing cannot take place, but is
622 * also not high enough that we already know we have to write an audit
623 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
625 static enum audit_state
audit_filter_syscall(struct task_struct
*tsk
,
626 struct audit_context
*ctx
,
627 struct list_head
*list
)
629 struct audit_entry
*e
;
630 enum audit_state state
;
632 if (audit_pid
&& tsk
->tgid
== audit_pid
)
633 return AUDIT_DISABLED
;
636 if (!list_empty(list
)) {
637 int word
= AUDIT_WORD(ctx
->major
);
638 int bit
= AUDIT_BIT(ctx
->major
);
640 list_for_each_entry_rcu(e
, list
, list
) {
641 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
642 audit_filter_rules(tsk
, &e
->rule
, ctx
, NULL
,
650 return AUDIT_BUILD_CONTEXT
;
653 /* At syscall exit time, this filter is called if any audit_names[] have been
654 * collected during syscall processing. We only check rules in sublists at hash
655 * buckets applicable to the inode numbers in audit_names[].
656 * Regarding audit_state, same rules apply as for audit_filter_syscall().
658 enum audit_state
audit_filter_inodes(struct task_struct
*tsk
,
659 struct audit_context
*ctx
)
662 struct audit_entry
*e
;
663 enum audit_state state
;
665 if (audit_pid
&& tsk
->tgid
== audit_pid
)
666 return AUDIT_DISABLED
;
669 for (i
= 0; i
< ctx
->name_count
; i
++) {
670 int word
= AUDIT_WORD(ctx
->major
);
671 int bit
= AUDIT_BIT(ctx
->major
);
672 struct audit_names
*n
= &ctx
->names
[i
];
673 int h
= audit_hash_ino((u32
)n
->ino
);
674 struct list_head
*list
= &audit_inode_hash
[h
];
676 if (list_empty(list
))
679 list_for_each_entry_rcu(e
, list
, list
) {
680 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
681 audit_filter_rules(tsk
, &e
->rule
, ctx
, n
, &state
)) {
688 return AUDIT_BUILD_CONTEXT
;
691 void audit_set_auditable(struct audit_context
*ctx
)
696 static inline struct audit_context
*audit_get_context(struct task_struct
*tsk
,
700 struct audit_context
*context
= tsk
->audit_context
;
702 if (likely(!context
))
704 context
->return_valid
= return_valid
;
705 context
->return_code
= return_code
;
707 if (context
->in_syscall
&& !context
->dummy
&& !context
->auditable
) {
708 enum audit_state state
;
710 state
= audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_EXIT
]);
711 if (state
== AUDIT_RECORD_CONTEXT
) {
712 context
->auditable
= 1;
716 state
= audit_filter_inodes(tsk
, context
);
717 if (state
== AUDIT_RECORD_CONTEXT
)
718 context
->auditable
= 1;
724 tsk
->audit_context
= NULL
;
728 static inline void audit_free_names(struct audit_context
*context
)
733 if (context
->auditable
734 ||context
->put_count
+ context
->ino_count
!= context
->name_count
) {
735 printk(KERN_ERR
"%s:%d(:%d): major=%d in_syscall=%d"
736 " name_count=%d put_count=%d"
737 " ino_count=%d [NOT freeing]\n",
739 context
->serial
, context
->major
, context
->in_syscall
,
740 context
->name_count
, context
->put_count
,
742 for (i
= 0; i
< context
->name_count
; i
++) {
743 printk(KERN_ERR
"names[%d] = %p = %s\n", i
,
744 context
->names
[i
].name
,
745 context
->names
[i
].name
?: "(null)");
752 context
->put_count
= 0;
753 context
->ino_count
= 0;
756 for (i
= 0; i
< context
->name_count
; i
++) {
757 if (context
->names
[i
].name
&& context
->names
[i
].name_put
)
758 __putname(context
->names
[i
].name
);
760 context
->name_count
= 0;
764 mntput(context
->pwdmnt
);
766 context
->pwdmnt
= NULL
;
769 static inline void audit_free_aux(struct audit_context
*context
)
771 struct audit_aux_data
*aux
;
773 while ((aux
= context
->aux
)) {
774 context
->aux
= aux
->next
;
777 while ((aux
= context
->aux_pids
)) {
778 context
->aux_pids
= aux
->next
;
783 static inline void audit_zero_context(struct audit_context
*context
,
784 enum audit_state state
)
786 uid_t loginuid
= context
->loginuid
;
788 memset(context
, 0, sizeof(*context
));
789 context
->state
= state
;
790 context
->loginuid
= loginuid
;
793 static inline struct audit_context
*audit_alloc_context(enum audit_state state
)
795 struct audit_context
*context
;
797 if (!(context
= kmalloc(sizeof(*context
), GFP_KERNEL
)))
799 audit_zero_context(context
, state
);
804 * audit_alloc - allocate an audit context block for a task
807 * Filter on the task information and allocate a per-task audit context
808 * if necessary. Doing so turns on system call auditing for the
809 * specified task. This is called from copy_process, so no lock is
812 int audit_alloc(struct task_struct
*tsk
)
814 struct audit_context
*context
;
815 enum audit_state state
;
817 if (likely(!audit_enabled
))
818 return 0; /* Return if not auditing. */
820 state
= audit_filter_task(tsk
);
821 if (likely(state
== AUDIT_DISABLED
))
824 if (!(context
= audit_alloc_context(state
))) {
825 audit_log_lost("out of memory in audit_alloc");
829 /* Preserve login uid */
830 context
->loginuid
= -1;
831 if (current
->audit_context
)
832 context
->loginuid
= current
->audit_context
->loginuid
;
834 tsk
->audit_context
= context
;
835 set_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
839 static inline void audit_free_context(struct audit_context
*context
)
841 struct audit_context
*previous
;
845 previous
= context
->previous
;
846 if (previous
|| (count
&& count
< 10)) {
848 printk(KERN_ERR
"audit(:%d): major=%d name_count=%d:"
849 " freeing multiple contexts (%d)\n",
850 context
->serial
, context
->major
,
851 context
->name_count
, count
);
853 audit_free_names(context
);
854 unroll_tree_refs(context
, NULL
, 0);
855 free_tree_refs(context
);
856 audit_free_aux(context
);
857 kfree(context
->filterkey
);
862 printk(KERN_ERR
"audit: freed %d contexts\n", count
);
865 void audit_log_task_context(struct audit_buffer
*ab
)
872 selinux_get_task_sid(current
, &sid
);
876 error
= selinux_sid_to_string(sid
, &ctx
, &len
);
878 if (error
!= -EINVAL
)
883 audit_log_format(ab
, " subj=%s", ctx
);
888 audit_panic("error in audit_log_task_context");
892 EXPORT_SYMBOL(audit_log_task_context
);
894 static void audit_log_task_info(struct audit_buffer
*ab
, struct task_struct
*tsk
)
896 char name
[sizeof(tsk
->comm
)];
897 struct mm_struct
*mm
= tsk
->mm
;
898 struct vm_area_struct
*vma
;
902 get_task_comm(name
, tsk
);
903 audit_log_format(ab
, " comm=");
904 audit_log_untrustedstring(ab
, name
);
907 down_read(&mm
->mmap_sem
);
910 if ((vma
->vm_flags
& VM_EXECUTABLE
) &&
912 audit_log_d_path(ab
, "exe=",
913 vma
->vm_file
->f_path
.dentry
,
914 vma
->vm_file
->f_path
.mnt
);
919 up_read(&mm
->mmap_sem
);
921 audit_log_task_context(ab
);
924 static int audit_log_pid_context(struct audit_context
*context
, pid_t pid
,
927 struct audit_buffer
*ab
;
932 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_OBJ_PID
);
936 if (selinux_sid_to_string(sid
, &s
, &len
)) {
937 audit_log_format(ab
, "opid=%d obj=(none)", pid
);
940 audit_log_format(ab
, "opid=%d obj=%s", pid
, s
);
947 static void audit_log_execve_info(struct audit_buffer
*ab
,
948 struct audit_aux_data_execve
*axi
)
952 const char __user
*p
;
955 if (axi
->mm
!= current
->mm
)
956 return; /* execve failed, no additional info */
958 p
= (const char __user
*)axi
->mm
->arg_start
;
960 for (i
= 0; i
< axi
->argc
; i
++, p
+= len
) {
961 len
= strnlen_user(p
, MAX_ARG_STRLEN
);
963 * We just created this mm, if we can't find the strings
964 * we just copied into it something is _very_ wrong. Similar
965 * for strings that are too long, we should not have created
968 if (!len
|| len
> MAX_ARG_STRLEN
) {
970 send_sig(SIGKILL
, current
, 0);
973 buf
= kmalloc(len
, GFP_KERNEL
);
975 audit_panic("out of memory for argv string\n");
979 ret
= copy_from_user(buf
, p
, len
);
981 * There is no reason for this copy to be short. We just
982 * copied them here, and the mm hasn't been exposed to user-
987 send_sig(SIGKILL
, current
, 0);
990 audit_log_format(ab
, "a%d=", i
);
991 audit_log_untrustedstring(ab
, buf
);
992 audit_log_format(ab
, "\n");
998 static void audit_log_exit(struct audit_context
*context
, struct task_struct
*tsk
)
1000 int i
, call_panic
= 0;
1001 struct audit_buffer
*ab
;
1002 struct audit_aux_data
*aux
;
1005 /* tsk == current */
1006 context
->pid
= tsk
->pid
;
1008 context
->ppid
= sys_getppid();
1009 context
->uid
= tsk
->uid
;
1010 context
->gid
= tsk
->gid
;
1011 context
->euid
= tsk
->euid
;
1012 context
->suid
= tsk
->suid
;
1013 context
->fsuid
= tsk
->fsuid
;
1014 context
->egid
= tsk
->egid
;
1015 context
->sgid
= tsk
->sgid
;
1016 context
->fsgid
= tsk
->fsgid
;
1017 context
->personality
= tsk
->personality
;
1019 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SYSCALL
);
1021 return; /* audit_panic has been called */
1022 audit_log_format(ab
, "arch=%x syscall=%d",
1023 context
->arch
, context
->major
);
1024 if (context
->personality
!= PER_LINUX
)
1025 audit_log_format(ab
, " per=%lx", context
->personality
);
1026 if (context
->return_valid
)
1027 audit_log_format(ab
, " success=%s exit=%ld",
1028 (context
->return_valid
==AUDITSC_SUCCESS
)?"yes":"no",
1029 context
->return_code
);
1031 mutex_lock(&tty_mutex
);
1032 read_lock(&tasklist_lock
);
1033 if (tsk
->signal
&& tsk
->signal
->tty
&& tsk
->signal
->tty
->name
)
1034 tty
= tsk
->signal
->tty
->name
;
1037 read_unlock(&tasklist_lock
);
1038 audit_log_format(ab
,
1039 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1040 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1041 " euid=%u suid=%u fsuid=%u"
1042 " egid=%u sgid=%u fsgid=%u tty=%s",
1047 context
->name_count
,
1053 context
->euid
, context
->suid
, context
->fsuid
,
1054 context
->egid
, context
->sgid
, context
->fsgid
, tty
);
1056 mutex_unlock(&tty_mutex
);
1058 audit_log_task_info(ab
, tsk
);
1059 if (context
->filterkey
) {
1060 audit_log_format(ab
, " key=");
1061 audit_log_untrustedstring(ab
, context
->filterkey
);
1063 audit_log_format(ab
, " key=(null)");
1066 for (aux
= context
->aux
; aux
; aux
= aux
->next
) {
1068 ab
= audit_log_start(context
, GFP_KERNEL
, aux
->type
);
1070 continue; /* audit_panic has been called */
1072 switch (aux
->type
) {
1073 case AUDIT_MQ_OPEN
: {
1074 struct audit_aux_data_mq_open
*axi
= (void *)aux
;
1075 audit_log_format(ab
,
1076 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1077 "mq_msgsize=%ld mq_curmsgs=%ld",
1078 axi
->oflag
, axi
->mode
, axi
->attr
.mq_flags
,
1079 axi
->attr
.mq_maxmsg
, axi
->attr
.mq_msgsize
,
1080 axi
->attr
.mq_curmsgs
);
1083 case AUDIT_MQ_SENDRECV
: {
1084 struct audit_aux_data_mq_sendrecv
*axi
= (void *)aux
;
1085 audit_log_format(ab
,
1086 "mqdes=%d msg_len=%zd msg_prio=%u "
1087 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1088 axi
->mqdes
, axi
->msg_len
, axi
->msg_prio
,
1089 axi
->abs_timeout
.tv_sec
, axi
->abs_timeout
.tv_nsec
);
1092 case AUDIT_MQ_NOTIFY
: {
1093 struct audit_aux_data_mq_notify
*axi
= (void *)aux
;
1094 audit_log_format(ab
,
1095 "mqdes=%d sigev_signo=%d",
1097 axi
->notification
.sigev_signo
);
1100 case AUDIT_MQ_GETSETATTR
: {
1101 struct audit_aux_data_mq_getsetattr
*axi
= (void *)aux
;
1102 audit_log_format(ab
,
1103 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1106 axi
->mqstat
.mq_flags
, axi
->mqstat
.mq_maxmsg
,
1107 axi
->mqstat
.mq_msgsize
, axi
->mqstat
.mq_curmsgs
);
1111 struct audit_aux_data_ipcctl
*axi
= (void *)aux
;
1112 audit_log_format(ab
,
1113 "ouid=%u ogid=%u mode=%#o",
1114 axi
->uid
, axi
->gid
, axi
->mode
);
1115 if (axi
->osid
!= 0) {
1118 if (selinux_sid_to_string(
1119 axi
->osid
, &ctx
, &len
)) {
1120 audit_log_format(ab
, " osid=%u",
1124 audit_log_format(ab
, " obj=%s", ctx
);
1129 case AUDIT_IPC_SET_PERM
: {
1130 struct audit_aux_data_ipcctl
*axi
= (void *)aux
;
1131 audit_log_format(ab
,
1132 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1133 axi
->qbytes
, axi
->uid
, axi
->gid
, axi
->mode
);
1136 case AUDIT_EXECVE
: {
1137 struct audit_aux_data_execve
*axi
= (void *)aux
;
1138 audit_log_execve_info(ab
, axi
);
1141 case AUDIT_SOCKETCALL
: {
1143 struct audit_aux_data_socketcall
*axs
= (void *)aux
;
1144 audit_log_format(ab
, "nargs=%d", axs
->nargs
);
1145 for (i
=0; i
<axs
->nargs
; i
++)
1146 audit_log_format(ab
, " a%d=%lx", i
, axs
->args
[i
]);
1149 case AUDIT_SOCKADDR
: {
1150 struct audit_aux_data_sockaddr
*axs
= (void *)aux
;
1152 audit_log_format(ab
, "saddr=");
1153 audit_log_hex(ab
, axs
->a
, axs
->len
);
1156 case AUDIT_FD_PAIR
: {
1157 struct audit_aux_data_fd_pair
*axs
= (void *)aux
;
1158 audit_log_format(ab
, "fd0=%d fd1=%d", axs
->fd
[0], axs
->fd
[1]);
1165 for (aux
= context
->aux_pids
; aux
; aux
= aux
->next
) {
1166 struct audit_aux_data_pids
*axs
= (void *)aux
;
1169 for (i
= 0; i
< axs
->pid_count
; i
++)
1170 if (audit_log_pid_context(context
, axs
->target_pid
[i
],
1171 axs
->target_sid
[i
]))
1175 if (context
->target_pid
&&
1176 audit_log_pid_context(context
, context
->target_pid
,
1177 context
->target_sid
))
1180 if (context
->pwd
&& context
->pwdmnt
) {
1181 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_CWD
);
1183 audit_log_d_path(ab
, "cwd=", context
->pwd
, context
->pwdmnt
);
1187 for (i
= 0; i
< context
->name_count
; i
++) {
1188 struct audit_names
*n
= &context
->names
[i
];
1190 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_PATH
);
1192 continue; /* audit_panic has been called */
1194 audit_log_format(ab
, "item=%d", i
);
1197 switch(n
->name_len
) {
1198 case AUDIT_NAME_FULL
:
1199 /* log the full path */
1200 audit_log_format(ab
, " name=");
1201 audit_log_untrustedstring(ab
, n
->name
);
1204 /* name was specified as a relative path and the
1205 * directory component is the cwd */
1206 audit_log_d_path(ab
, " name=", context
->pwd
,
1210 /* log the name's directory component */
1211 audit_log_format(ab
, " name=");
1212 audit_log_n_untrustedstring(ab
, n
->name_len
,
1216 audit_log_format(ab
, " name=(null)");
1218 if (n
->ino
!= (unsigned long)-1) {
1219 audit_log_format(ab
, " inode=%lu"
1220 " dev=%02x:%02x mode=%#o"
1221 " ouid=%u ogid=%u rdev=%02x:%02x",
1234 if (selinux_sid_to_string(
1235 n
->osid
, &ctx
, &len
)) {
1236 audit_log_format(ab
, " osid=%u", n
->osid
);
1239 audit_log_format(ab
, " obj=%s", ctx
);
1246 audit_panic("error converting sid to string");
1250 * audit_free - free a per-task audit context
1251 * @tsk: task whose audit context block to free
1253 * Called from copy_process and do_exit
1255 void audit_free(struct task_struct
*tsk
)
1257 struct audit_context
*context
;
1259 context
= audit_get_context(tsk
, 0, 0);
1260 if (likely(!context
))
1263 /* Check for system calls that do not go through the exit
1264 * function (e.g., exit_group), then free context block.
1265 * We use GFP_ATOMIC here because we might be doing this
1266 * in the context of the idle thread */
1267 /* that can happen only if we are called from do_exit() */
1268 if (context
->in_syscall
&& context
->auditable
)
1269 audit_log_exit(context
, tsk
);
1271 audit_free_context(context
);
1275 * audit_syscall_entry - fill in an audit record at syscall entry
1276 * @tsk: task being audited
1277 * @arch: architecture type
1278 * @major: major syscall type (function)
1279 * @a1: additional syscall register 1
1280 * @a2: additional syscall register 2
1281 * @a3: additional syscall register 3
1282 * @a4: additional syscall register 4
1284 * Fill in audit context at syscall entry. This only happens if the
1285 * audit context was created when the task was created and the state or
1286 * filters demand the audit context be built. If the state from the
1287 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1288 * then the record will be written at syscall exit time (otherwise, it
1289 * will only be written if another part of the kernel requests that it
1292 void audit_syscall_entry(int arch
, int major
,
1293 unsigned long a1
, unsigned long a2
,
1294 unsigned long a3
, unsigned long a4
)
1296 struct task_struct
*tsk
= current
;
1297 struct audit_context
*context
= tsk
->audit_context
;
1298 enum audit_state state
;
1303 * This happens only on certain architectures that make system
1304 * calls in kernel_thread via the entry.S interface, instead of
1305 * with direct calls. (If you are porting to a new
1306 * architecture, hitting this condition can indicate that you
1307 * got the _exit/_leave calls backward in entry.S.)
1311 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1313 * This also happens with vm86 emulation in a non-nested manner
1314 * (entries without exits), so this case must be caught.
1316 if (context
->in_syscall
) {
1317 struct audit_context
*newctx
;
1321 "audit(:%d) pid=%d in syscall=%d;"
1322 " entering syscall=%d\n",
1323 context
->serial
, tsk
->pid
, context
->major
, major
);
1325 newctx
= audit_alloc_context(context
->state
);
1327 newctx
->previous
= context
;
1329 tsk
->audit_context
= newctx
;
1331 /* If we can't alloc a new context, the best we
1332 * can do is to leak memory (any pending putname
1333 * will be lost). The only other alternative is
1334 * to abandon auditing. */
1335 audit_zero_context(context
, context
->state
);
1338 BUG_ON(context
->in_syscall
|| context
->name_count
);
1343 context
->arch
= arch
;
1344 context
->major
= major
;
1345 context
->argv
[0] = a1
;
1346 context
->argv
[1] = a2
;
1347 context
->argv
[2] = a3
;
1348 context
->argv
[3] = a4
;
1350 state
= context
->state
;
1351 context
->dummy
= !audit_n_rules
;
1352 if (!context
->dummy
&& (state
== AUDIT_SETUP_CONTEXT
|| state
== AUDIT_BUILD_CONTEXT
))
1353 state
= audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_ENTRY
]);
1354 if (likely(state
== AUDIT_DISABLED
))
1357 context
->serial
= 0;
1358 context
->ctime
= CURRENT_TIME
;
1359 context
->in_syscall
= 1;
1360 context
->auditable
= !!(state
== AUDIT_RECORD_CONTEXT
);
1365 * audit_syscall_exit - deallocate audit context after a system call
1366 * @tsk: task being audited
1367 * @valid: success/failure flag
1368 * @return_code: syscall return value
1370 * Tear down after system call. If the audit context has been marked as
1371 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1372 * filtering, or because some other part of the kernel write an audit
1373 * message), then write out the syscall information. In call cases,
1374 * free the names stored from getname().
1376 void audit_syscall_exit(int valid
, long return_code
)
1378 struct task_struct
*tsk
= current
;
1379 struct audit_context
*context
;
1381 context
= audit_get_context(tsk
, valid
, return_code
);
1383 if (likely(!context
))
1386 if (context
->in_syscall
&& context
->auditable
)
1387 audit_log_exit(context
, tsk
);
1389 context
->in_syscall
= 0;
1390 context
->auditable
= 0;
1392 if (context
->previous
) {
1393 struct audit_context
*new_context
= context
->previous
;
1394 context
->previous
= NULL
;
1395 audit_free_context(context
);
1396 tsk
->audit_context
= new_context
;
1398 audit_free_names(context
);
1399 unroll_tree_refs(context
, NULL
, 0);
1400 audit_free_aux(context
);
1401 context
->aux
= NULL
;
1402 context
->aux_pids
= NULL
;
1403 context
->target_pid
= 0;
1404 context
->target_sid
= 0;
1405 kfree(context
->filterkey
);
1406 context
->filterkey
= NULL
;
1407 tsk
->audit_context
= context
;
1411 static inline void handle_one(const struct inode
*inode
)
1413 #ifdef CONFIG_AUDIT_TREE
1414 struct audit_context
*context
;
1415 struct audit_tree_refs
*p
;
1416 struct audit_chunk
*chunk
;
1418 if (likely(list_empty(&inode
->inotify_watches
)))
1420 context
= current
->audit_context
;
1422 count
= context
->tree_count
;
1424 chunk
= audit_tree_lookup(inode
);
1428 if (likely(put_tree_ref(context
, chunk
)))
1430 if (unlikely(!grow_tree_refs(context
))) {
1431 printk(KERN_WARNING
"out of memory, audit has lost a tree reference");
1432 audit_set_auditable(context
);
1433 audit_put_chunk(chunk
);
1434 unroll_tree_refs(context
, p
, count
);
1437 put_tree_ref(context
, chunk
);
1441 static void handle_path(const struct dentry
*dentry
)
1443 #ifdef CONFIG_AUDIT_TREE
1444 struct audit_context
*context
;
1445 struct audit_tree_refs
*p
;
1446 const struct dentry
*d
, *parent
;
1447 struct audit_chunk
*drop
;
1451 context
= current
->audit_context
;
1453 count
= context
->tree_count
;
1458 seq
= read_seqbegin(&rename_lock
);
1460 struct inode
*inode
= d
->d_inode
;
1461 if (inode
&& unlikely(!list_empty(&inode
->inotify_watches
))) {
1462 struct audit_chunk
*chunk
;
1463 chunk
= audit_tree_lookup(inode
);
1465 if (unlikely(!put_tree_ref(context
, chunk
))) {
1471 parent
= d
->d_parent
;
1476 if (unlikely(read_seqretry(&rename_lock
, seq
) || drop
)) { /* in this order */
1479 /* just a race with rename */
1480 unroll_tree_refs(context
, p
, count
);
1483 audit_put_chunk(drop
);
1484 if (grow_tree_refs(context
)) {
1485 /* OK, got more space */
1486 unroll_tree_refs(context
, p
, count
);
1491 "out of memory, audit has lost a tree reference");
1492 unroll_tree_refs(context
, p
, count
);
1493 audit_set_auditable(context
);
1501 * audit_getname - add a name to the list
1502 * @name: name to add
1504 * Add a name to the list of audit names for this context.
1505 * Called from fs/namei.c:getname().
1507 void __audit_getname(const char *name
)
1509 struct audit_context
*context
= current
->audit_context
;
1511 if (IS_ERR(name
) || !name
)
1514 if (!context
->in_syscall
) {
1515 #if AUDIT_DEBUG == 2
1516 printk(KERN_ERR
"%s:%d(:%d): ignoring getname(%p)\n",
1517 __FILE__
, __LINE__
, context
->serial
, name
);
1522 BUG_ON(context
->name_count
>= AUDIT_NAMES
);
1523 context
->names
[context
->name_count
].name
= name
;
1524 context
->names
[context
->name_count
].name_len
= AUDIT_NAME_FULL
;
1525 context
->names
[context
->name_count
].name_put
= 1;
1526 context
->names
[context
->name_count
].ino
= (unsigned long)-1;
1527 context
->names
[context
->name_count
].osid
= 0;
1528 ++context
->name_count
;
1529 if (!context
->pwd
) {
1530 read_lock(¤t
->fs
->lock
);
1531 context
->pwd
= dget(current
->fs
->pwd
);
1532 context
->pwdmnt
= mntget(current
->fs
->pwdmnt
);
1533 read_unlock(¤t
->fs
->lock
);
1538 /* audit_putname - intercept a putname request
1539 * @name: name to intercept and delay for putname
1541 * If we have stored the name from getname in the audit context,
1542 * then we delay the putname until syscall exit.
1543 * Called from include/linux/fs.h:putname().
1545 void audit_putname(const char *name
)
1547 struct audit_context
*context
= current
->audit_context
;
1550 if (!context
->in_syscall
) {
1551 #if AUDIT_DEBUG == 2
1552 printk(KERN_ERR
"%s:%d(:%d): __putname(%p)\n",
1553 __FILE__
, __LINE__
, context
->serial
, name
);
1554 if (context
->name_count
) {
1556 for (i
= 0; i
< context
->name_count
; i
++)
1557 printk(KERN_ERR
"name[%d] = %p = %s\n", i
,
1558 context
->names
[i
].name
,
1559 context
->names
[i
].name
?: "(null)");
1566 ++context
->put_count
;
1567 if (context
->put_count
> context
->name_count
) {
1568 printk(KERN_ERR
"%s:%d(:%d): major=%d"
1569 " in_syscall=%d putname(%p) name_count=%d"
1572 context
->serial
, context
->major
,
1573 context
->in_syscall
, name
, context
->name_count
,
1574 context
->put_count
);
1581 static int audit_inc_name_count(struct audit_context
*context
,
1582 const struct inode
*inode
)
1584 if (context
->name_count
>= AUDIT_NAMES
) {
1586 printk(KERN_DEBUG
"name_count maxed, losing inode data: "
1587 "dev=%02x:%02x, inode=%lu",
1588 MAJOR(inode
->i_sb
->s_dev
),
1589 MINOR(inode
->i_sb
->s_dev
),
1593 printk(KERN_DEBUG
"name_count maxed, losing inode data");
1596 context
->name_count
++;
1598 context
->ino_count
++;
1603 /* Copy inode data into an audit_names. */
1604 static void audit_copy_inode(struct audit_names
*name
, const struct inode
*inode
)
1606 name
->ino
= inode
->i_ino
;
1607 name
->dev
= inode
->i_sb
->s_dev
;
1608 name
->mode
= inode
->i_mode
;
1609 name
->uid
= inode
->i_uid
;
1610 name
->gid
= inode
->i_gid
;
1611 name
->rdev
= inode
->i_rdev
;
1612 selinux_get_inode_sid(inode
, &name
->osid
);
1616 * audit_inode - store the inode and device from a lookup
1617 * @name: name being audited
1618 * @dentry: dentry being audited
1620 * Called from fs/namei.c:path_lookup().
1622 void __audit_inode(const char *name
, const struct dentry
*dentry
)
1625 struct audit_context
*context
= current
->audit_context
;
1626 const struct inode
*inode
= dentry
->d_inode
;
1628 if (!context
->in_syscall
)
1630 if (context
->name_count
1631 && context
->names
[context
->name_count
-1].name
1632 && context
->names
[context
->name_count
-1].name
== name
)
1633 idx
= context
->name_count
- 1;
1634 else if (context
->name_count
> 1
1635 && context
->names
[context
->name_count
-2].name
1636 && context
->names
[context
->name_count
-2].name
== name
)
1637 idx
= context
->name_count
- 2;
1639 /* FIXME: how much do we care about inodes that have no
1640 * associated name? */
1641 if (audit_inc_name_count(context
, inode
))
1643 idx
= context
->name_count
- 1;
1644 context
->names
[idx
].name
= NULL
;
1646 handle_path(dentry
);
1647 audit_copy_inode(&context
->names
[idx
], inode
);
1651 * audit_inode_child - collect inode info for created/removed objects
1652 * @dname: inode's dentry name
1653 * @dentry: dentry being audited
1654 * @parent: inode of dentry parent
1656 * For syscalls that create or remove filesystem objects, audit_inode
1657 * can only collect information for the filesystem object's parent.
1658 * This call updates the audit context with the child's information.
1659 * Syscalls that create a new filesystem object must be hooked after
1660 * the object is created. Syscalls that remove a filesystem object
1661 * must be hooked prior, in order to capture the target inode during
1662 * unsuccessful attempts.
1664 void __audit_inode_child(const char *dname
, const struct dentry
*dentry
,
1665 const struct inode
*parent
)
1668 struct audit_context
*context
= current
->audit_context
;
1669 const char *found_parent
= NULL
, *found_child
= NULL
;
1670 const struct inode
*inode
= dentry
->d_inode
;
1673 if (!context
->in_syscall
)
1678 /* determine matching parent */
1682 /* parent is more likely, look for it first */
1683 for (idx
= 0; idx
< context
->name_count
; idx
++) {
1684 struct audit_names
*n
= &context
->names
[idx
];
1689 if (n
->ino
== parent
->i_ino
&&
1690 !audit_compare_dname_path(dname
, n
->name
, &dirlen
)) {
1691 n
->name_len
= dirlen
; /* update parent data in place */
1692 found_parent
= n
->name
;
1697 /* no matching parent, look for matching child */
1698 for (idx
= 0; idx
< context
->name_count
; idx
++) {
1699 struct audit_names
*n
= &context
->names
[idx
];
1704 /* strcmp() is the more likely scenario */
1705 if (!strcmp(dname
, n
->name
) ||
1706 !audit_compare_dname_path(dname
, n
->name
, &dirlen
)) {
1708 audit_copy_inode(n
, inode
);
1710 n
->ino
= (unsigned long)-1;
1711 found_child
= n
->name
;
1717 if (!found_parent
) {
1718 if (audit_inc_name_count(context
, parent
))
1720 idx
= context
->name_count
- 1;
1721 context
->names
[idx
].name
= NULL
;
1722 audit_copy_inode(&context
->names
[idx
], parent
);
1726 if (audit_inc_name_count(context
, inode
))
1728 idx
= context
->name_count
- 1;
1730 /* Re-use the name belonging to the slot for a matching parent
1731 * directory. All names for this context are relinquished in
1732 * audit_free_names() */
1734 context
->names
[idx
].name
= found_parent
;
1735 context
->names
[idx
].name_len
= AUDIT_NAME_FULL
;
1736 /* don't call __putname() */
1737 context
->names
[idx
].name_put
= 0;
1739 context
->names
[idx
].name
= NULL
;
1743 audit_copy_inode(&context
->names
[idx
], inode
);
1745 context
->names
[idx
].ino
= (unsigned long)-1;
1748 EXPORT_SYMBOL_GPL(__audit_inode_child
);
1751 * auditsc_get_stamp - get local copies of audit_context values
1752 * @ctx: audit_context for the task
1753 * @t: timespec to store time recorded in the audit_context
1754 * @serial: serial value that is recorded in the audit_context
1756 * Also sets the context as auditable.
1758 void auditsc_get_stamp(struct audit_context
*ctx
,
1759 struct timespec
*t
, unsigned int *serial
)
1762 ctx
->serial
= audit_serial();
1763 t
->tv_sec
= ctx
->ctime
.tv_sec
;
1764 t
->tv_nsec
= ctx
->ctime
.tv_nsec
;
1765 *serial
= ctx
->serial
;
1770 * audit_set_loginuid - set a task's audit_context loginuid
1771 * @task: task whose audit context is being modified
1772 * @loginuid: loginuid value
1776 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1778 int audit_set_loginuid(struct task_struct
*task
, uid_t loginuid
)
1780 struct audit_context
*context
= task
->audit_context
;
1783 /* Only log if audit is enabled */
1784 if (context
->in_syscall
) {
1785 struct audit_buffer
*ab
;
1787 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_LOGIN
);
1789 audit_log_format(ab
, "login pid=%d uid=%u "
1790 "old auid=%u new auid=%u",
1791 task
->pid
, task
->uid
,
1792 context
->loginuid
, loginuid
);
1796 context
->loginuid
= loginuid
;
1802 * audit_get_loginuid - get the loginuid for an audit_context
1803 * @ctx: the audit_context
1805 * Returns the context's loginuid or -1 if @ctx is NULL.
1807 uid_t
audit_get_loginuid(struct audit_context
*ctx
)
1809 return ctx
? ctx
->loginuid
: -1;
1812 EXPORT_SYMBOL(audit_get_loginuid
);
1815 * __audit_mq_open - record audit data for a POSIX MQ open
1818 * @u_attr: queue attributes
1820 * Returns 0 for success or NULL context or < 0 on error.
1822 int __audit_mq_open(int oflag
, mode_t mode
, struct mq_attr __user
*u_attr
)
1824 struct audit_aux_data_mq_open
*ax
;
1825 struct audit_context
*context
= current
->audit_context
;
1830 if (likely(!context
))
1833 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
1837 if (u_attr
!= NULL
) {
1838 if (copy_from_user(&ax
->attr
, u_attr
, sizeof(ax
->attr
))) {
1843 memset(&ax
->attr
, 0, sizeof(ax
->attr
));
1848 ax
->d
.type
= AUDIT_MQ_OPEN
;
1849 ax
->d
.next
= context
->aux
;
1850 context
->aux
= (void *)ax
;
1855 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
1856 * @mqdes: MQ descriptor
1857 * @msg_len: Message length
1858 * @msg_prio: Message priority
1859 * @u_abs_timeout: Message timeout in absolute time
1861 * Returns 0 for success or NULL context or < 0 on error.
1863 int __audit_mq_timedsend(mqd_t mqdes
, size_t msg_len
, unsigned int msg_prio
,
1864 const struct timespec __user
*u_abs_timeout
)
1866 struct audit_aux_data_mq_sendrecv
*ax
;
1867 struct audit_context
*context
= current
->audit_context
;
1872 if (likely(!context
))
1875 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
1879 if (u_abs_timeout
!= NULL
) {
1880 if (copy_from_user(&ax
->abs_timeout
, u_abs_timeout
, sizeof(ax
->abs_timeout
))) {
1885 memset(&ax
->abs_timeout
, 0, sizeof(ax
->abs_timeout
));
1888 ax
->msg_len
= msg_len
;
1889 ax
->msg_prio
= msg_prio
;
1891 ax
->d
.type
= AUDIT_MQ_SENDRECV
;
1892 ax
->d
.next
= context
->aux
;
1893 context
->aux
= (void *)ax
;
1898 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
1899 * @mqdes: MQ descriptor
1900 * @msg_len: Message length
1901 * @u_msg_prio: Message priority
1902 * @u_abs_timeout: Message timeout in absolute time
1904 * Returns 0 for success or NULL context or < 0 on error.
1906 int __audit_mq_timedreceive(mqd_t mqdes
, size_t msg_len
,
1907 unsigned int __user
*u_msg_prio
,
1908 const struct timespec __user
*u_abs_timeout
)
1910 struct audit_aux_data_mq_sendrecv
*ax
;
1911 struct audit_context
*context
= current
->audit_context
;
1916 if (likely(!context
))
1919 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
1923 if (u_msg_prio
!= NULL
) {
1924 if (get_user(ax
->msg_prio
, u_msg_prio
)) {
1931 if (u_abs_timeout
!= NULL
) {
1932 if (copy_from_user(&ax
->abs_timeout
, u_abs_timeout
, sizeof(ax
->abs_timeout
))) {
1937 memset(&ax
->abs_timeout
, 0, sizeof(ax
->abs_timeout
));
1940 ax
->msg_len
= msg_len
;
1942 ax
->d
.type
= AUDIT_MQ_SENDRECV
;
1943 ax
->d
.next
= context
->aux
;
1944 context
->aux
= (void *)ax
;
1949 * __audit_mq_notify - record audit data for a POSIX MQ notify
1950 * @mqdes: MQ descriptor
1951 * @u_notification: Notification event
1953 * Returns 0 for success or NULL context or < 0 on error.
1956 int __audit_mq_notify(mqd_t mqdes
, const struct sigevent __user
*u_notification
)
1958 struct audit_aux_data_mq_notify
*ax
;
1959 struct audit_context
*context
= current
->audit_context
;
1964 if (likely(!context
))
1967 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
1971 if (u_notification
!= NULL
) {
1972 if (copy_from_user(&ax
->notification
, u_notification
, sizeof(ax
->notification
))) {
1977 memset(&ax
->notification
, 0, sizeof(ax
->notification
));
1981 ax
->d
.type
= AUDIT_MQ_NOTIFY
;
1982 ax
->d
.next
= context
->aux
;
1983 context
->aux
= (void *)ax
;
1988 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
1989 * @mqdes: MQ descriptor
1992 * Returns 0 for success or NULL context or < 0 on error.
1994 int __audit_mq_getsetattr(mqd_t mqdes
, struct mq_attr
*mqstat
)
1996 struct audit_aux_data_mq_getsetattr
*ax
;
1997 struct audit_context
*context
= current
->audit_context
;
2002 if (likely(!context
))
2005 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2010 ax
->mqstat
= *mqstat
;
2012 ax
->d
.type
= AUDIT_MQ_GETSETATTR
;
2013 ax
->d
.next
= context
->aux
;
2014 context
->aux
= (void *)ax
;
2019 * audit_ipc_obj - record audit data for ipc object
2020 * @ipcp: ipc permissions
2022 * Returns 0 for success or NULL context or < 0 on error.
2024 int __audit_ipc_obj(struct kern_ipc_perm
*ipcp
)
2026 struct audit_aux_data_ipcctl
*ax
;
2027 struct audit_context
*context
= current
->audit_context
;
2029 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2033 ax
->uid
= ipcp
->uid
;
2034 ax
->gid
= ipcp
->gid
;
2035 ax
->mode
= ipcp
->mode
;
2036 selinux_get_ipc_sid(ipcp
, &ax
->osid
);
2038 ax
->d
.type
= AUDIT_IPC
;
2039 ax
->d
.next
= context
->aux
;
2040 context
->aux
= (void *)ax
;
2045 * audit_ipc_set_perm - record audit data for new ipc permissions
2046 * @qbytes: msgq bytes
2047 * @uid: msgq user id
2048 * @gid: msgq group id
2049 * @mode: msgq mode (permissions)
2051 * Returns 0 for success or NULL context or < 0 on error.
2053 int __audit_ipc_set_perm(unsigned long qbytes
, uid_t uid
, gid_t gid
, mode_t mode
)
2055 struct audit_aux_data_ipcctl
*ax
;
2056 struct audit_context
*context
= current
->audit_context
;
2058 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2062 ax
->qbytes
= qbytes
;
2067 ax
->d
.type
= AUDIT_IPC_SET_PERM
;
2068 ax
->d
.next
= context
->aux
;
2069 context
->aux
= (void *)ax
;
2073 int audit_argv_kb
= 32;
2075 int audit_bprm(struct linux_binprm
*bprm
)
2077 struct audit_aux_data_execve
*ax
;
2078 struct audit_context
*context
= current
->audit_context
;
2080 if (likely(!audit_enabled
|| !context
|| context
->dummy
))
2084 * Even though the stack code doesn't limit the arg+env size any more,
2085 * the audit code requires that _all_ arguments be logged in a single
2086 * netlink skb. Hence cap it :-(
2088 if (bprm
->argv_len
> (audit_argv_kb
<< 10))
2091 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2095 ax
->argc
= bprm
->argc
;
2096 ax
->envc
= bprm
->envc
;
2098 ax
->d
.type
= AUDIT_EXECVE
;
2099 ax
->d
.next
= context
->aux
;
2100 context
->aux
= (void *)ax
;
2106 * audit_socketcall - record audit data for sys_socketcall
2107 * @nargs: number of args
2110 * Returns 0 for success or NULL context or < 0 on error.
2112 int audit_socketcall(int nargs
, unsigned long *args
)
2114 struct audit_aux_data_socketcall
*ax
;
2115 struct audit_context
*context
= current
->audit_context
;
2117 if (likely(!context
|| context
->dummy
))
2120 ax
= kmalloc(sizeof(*ax
) + nargs
* sizeof(unsigned long), GFP_KERNEL
);
2125 memcpy(ax
->args
, args
, nargs
* sizeof(unsigned long));
2127 ax
->d
.type
= AUDIT_SOCKETCALL
;
2128 ax
->d
.next
= context
->aux
;
2129 context
->aux
= (void *)ax
;
2134 * __audit_fd_pair - record audit data for pipe and socketpair
2135 * @fd1: the first file descriptor
2136 * @fd2: the second file descriptor
2138 * Returns 0 for success or NULL context or < 0 on error.
2140 int __audit_fd_pair(int fd1
, int fd2
)
2142 struct audit_context
*context
= current
->audit_context
;
2143 struct audit_aux_data_fd_pair
*ax
;
2145 if (likely(!context
)) {
2149 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2157 ax
->d
.type
= AUDIT_FD_PAIR
;
2158 ax
->d
.next
= context
->aux
;
2159 context
->aux
= (void *)ax
;
2164 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2165 * @len: data length in user space
2166 * @a: data address in kernel space
2168 * Returns 0 for success or NULL context or < 0 on error.
2170 int audit_sockaddr(int len
, void *a
)
2172 struct audit_aux_data_sockaddr
*ax
;
2173 struct audit_context
*context
= current
->audit_context
;
2175 if (likely(!context
|| context
->dummy
))
2178 ax
= kmalloc(sizeof(*ax
) + len
, GFP_KERNEL
);
2183 memcpy(ax
->a
, a
, len
);
2185 ax
->d
.type
= AUDIT_SOCKADDR
;
2186 ax
->d
.next
= context
->aux
;
2187 context
->aux
= (void *)ax
;
2191 void __audit_ptrace(struct task_struct
*t
)
2193 struct audit_context
*context
= current
->audit_context
;
2195 context
->target_pid
= t
->pid
;
2196 selinux_get_task_sid(t
, &context
->target_sid
);
2200 * audit_signal_info - record signal info for shutting down audit subsystem
2201 * @sig: signal value
2202 * @t: task being signaled
2204 * If the audit subsystem is being terminated, record the task (pid)
2205 * and uid that is doing that.
2207 int __audit_signal_info(int sig
, struct task_struct
*t
)
2209 struct audit_aux_data_pids
*axp
;
2210 struct task_struct
*tsk
= current
;
2211 struct audit_context
*ctx
= tsk
->audit_context
;
2212 extern pid_t audit_sig_pid
;
2213 extern uid_t audit_sig_uid
;
2214 extern u32 audit_sig_sid
;
2216 if (audit_pid
&& t
->tgid
== audit_pid
) {
2217 if (sig
== SIGTERM
|| sig
== SIGHUP
|| sig
== SIGUSR1
) {
2218 audit_sig_pid
= tsk
->pid
;
2220 audit_sig_uid
= ctx
->loginuid
;
2222 audit_sig_uid
= tsk
->uid
;
2223 selinux_get_task_sid(tsk
, &audit_sig_sid
);
2225 if (!audit_signals
|| audit_dummy_context())
2229 /* optimize the common case by putting first signal recipient directly
2230 * in audit_context */
2231 if (!ctx
->target_pid
) {
2232 ctx
->target_pid
= t
->tgid
;
2233 selinux_get_task_sid(t
, &ctx
->target_sid
);
2237 axp
= (void *)ctx
->aux_pids
;
2238 if (!axp
|| axp
->pid_count
== AUDIT_AUX_PIDS
) {
2239 axp
= kzalloc(sizeof(*axp
), GFP_ATOMIC
);
2243 axp
->d
.type
= AUDIT_OBJ_PID
;
2244 axp
->d
.next
= ctx
->aux_pids
;
2245 ctx
->aux_pids
= (void *)axp
;
2247 BUG_ON(axp
->pid_count
>= AUDIT_AUX_PIDS
);
2249 axp
->target_pid
[axp
->pid_count
] = t
->tgid
;
2250 selinux_get_task_sid(t
, &axp
->target_sid
[axp
->pid_count
]);
2257 * audit_core_dumps - record information about processes that end abnormally
2258 * @signr: signal value
2260 * If a process ends with a core dump, something fishy is going on and we
2261 * should record the event for investigation.
2263 void audit_core_dumps(long signr
)
2265 struct audit_buffer
*ab
;
2271 if (signr
== SIGQUIT
) /* don't care for those */
2274 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_ANOM_ABEND
);
2275 audit_log_format(ab
, "auid=%u uid=%u gid=%u",
2276 audit_get_loginuid(current
->audit_context
),
2277 current
->uid
, current
->gid
);
2278 selinux_get_task_sid(current
, &sid
);
2283 if (selinux_sid_to_string(sid
, &ctx
, &len
))
2284 audit_log_format(ab
, " ssid=%u", sid
);
2286 audit_log_format(ab
, " subj=%s", ctx
);
2289 audit_log_format(ab
, " pid=%d comm=", current
->pid
);
2290 audit_log_untrustedstring(ab
, current
->comm
);
2291 audit_log_format(ab
, " sig=%ld", signr
);