[PATCH] hwmon: Add PEC support to the lm90 driver
[wandboard.git] / kernel / sys.c
blob2fa1ed18123cb8c84f241d4a19e1ed9b2727574e
1 /*
2 * linux/kernel/sys.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/config.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/smp_lock.h>
13 #include <linux/notifier.h>
14 #include <linux/reboot.h>
15 #include <linux/prctl.h>
16 #include <linux/init.h>
17 #include <linux/highuid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kexec.h>
21 #include <linux/workqueue.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
32 #include <linux/compat.h>
33 #include <linux/syscalls.h>
35 #include <asm/uaccess.h>
36 #include <asm/io.h>
37 #include <asm/unistd.h>
39 #ifndef SET_UNALIGN_CTL
40 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
41 #endif
42 #ifndef GET_UNALIGN_CTL
43 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
44 #endif
45 #ifndef SET_FPEMU_CTL
46 # define SET_FPEMU_CTL(a,b) (-EINVAL)
47 #endif
48 #ifndef GET_FPEMU_CTL
49 # define GET_FPEMU_CTL(a,b) (-EINVAL)
50 #endif
51 #ifndef SET_FPEXC_CTL
52 # define SET_FPEXC_CTL(a,b) (-EINVAL)
53 #endif
54 #ifndef GET_FPEXC_CTL
55 # define GET_FPEXC_CTL(a,b) (-EINVAL)
56 #endif
59 * this is where the system-wide overflow UID and GID are defined, for
60 * architectures that now have 32-bit UID/GID but didn't in the past
63 int overflowuid = DEFAULT_OVERFLOWUID;
64 int overflowgid = DEFAULT_OVERFLOWGID;
66 #ifdef CONFIG_UID16
67 EXPORT_SYMBOL(overflowuid);
68 EXPORT_SYMBOL(overflowgid);
69 #endif
72 * the same as above, but for filesystems which can only store a 16-bit
73 * UID and GID. as such, this is needed on all architectures
76 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
77 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
79 EXPORT_SYMBOL(fs_overflowuid);
80 EXPORT_SYMBOL(fs_overflowgid);
83 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
86 int C_A_D = 1;
87 int cad_pid = 1;
90 * Notifier list for kernel code which wants to be called
91 * at shutdown. This is used to stop any idling DMA operations
92 * and the like.
95 static struct notifier_block *reboot_notifier_list;
96 static DEFINE_RWLOCK(notifier_lock);
98 /**
99 * notifier_chain_register - Add notifier to a notifier chain
100 * @list: Pointer to root list pointer
101 * @n: New entry in notifier chain
103 * Adds a notifier to a notifier chain.
105 * Currently always returns zero.
108 int notifier_chain_register(struct notifier_block **list, struct notifier_block *n)
110 write_lock(&notifier_lock);
111 while(*list)
113 if(n->priority > (*list)->priority)
114 break;
115 list= &((*list)->next);
117 n->next = *list;
118 *list=n;
119 write_unlock(&notifier_lock);
120 return 0;
123 EXPORT_SYMBOL(notifier_chain_register);
126 * notifier_chain_unregister - Remove notifier from a notifier chain
127 * @nl: Pointer to root list pointer
128 * @n: New entry in notifier chain
130 * Removes a notifier from a notifier chain.
132 * Returns zero on success, or %-ENOENT on failure.
135 int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n)
137 write_lock(&notifier_lock);
138 while((*nl)!=NULL)
140 if((*nl)==n)
142 *nl=n->next;
143 write_unlock(&notifier_lock);
144 return 0;
146 nl=&((*nl)->next);
148 write_unlock(&notifier_lock);
149 return -ENOENT;
152 EXPORT_SYMBOL(notifier_chain_unregister);
155 * notifier_call_chain - Call functions in a notifier chain
156 * @n: Pointer to root pointer of notifier chain
157 * @val: Value passed unmodified to notifier function
158 * @v: Pointer passed unmodified to notifier function
160 * Calls each function in a notifier chain in turn.
162 * If the return value of the notifier can be and'd
163 * with %NOTIFY_STOP_MASK, then notifier_call_chain
164 * will return immediately, with the return value of
165 * the notifier function which halted execution.
166 * Otherwise, the return value is the return value
167 * of the last notifier function called.
170 int notifier_call_chain(struct notifier_block **n, unsigned long val, void *v)
172 int ret=NOTIFY_DONE;
173 struct notifier_block *nb = *n;
175 while(nb)
177 ret=nb->notifier_call(nb,val,v);
178 if(ret&NOTIFY_STOP_MASK)
180 return ret;
182 nb=nb->next;
184 return ret;
187 EXPORT_SYMBOL(notifier_call_chain);
190 * register_reboot_notifier - Register function to be called at reboot time
191 * @nb: Info about notifier function to be called
193 * Registers a function with the list of functions
194 * to be called at reboot time.
196 * Currently always returns zero, as notifier_chain_register
197 * always returns zero.
200 int register_reboot_notifier(struct notifier_block * nb)
202 return notifier_chain_register(&reboot_notifier_list, nb);
205 EXPORT_SYMBOL(register_reboot_notifier);
208 * unregister_reboot_notifier - Unregister previously registered reboot notifier
209 * @nb: Hook to be unregistered
211 * Unregisters a previously registered reboot
212 * notifier function.
214 * Returns zero on success, or %-ENOENT on failure.
217 int unregister_reboot_notifier(struct notifier_block * nb)
219 return notifier_chain_unregister(&reboot_notifier_list, nb);
222 EXPORT_SYMBOL(unregister_reboot_notifier);
224 static int set_one_prio(struct task_struct *p, int niceval, int error)
226 int no_nice;
228 if (p->uid != current->euid &&
229 p->euid != current->euid && !capable(CAP_SYS_NICE)) {
230 error = -EPERM;
231 goto out;
233 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
234 error = -EACCES;
235 goto out;
237 no_nice = security_task_setnice(p, niceval);
238 if (no_nice) {
239 error = no_nice;
240 goto out;
242 if (error == -ESRCH)
243 error = 0;
244 set_user_nice(p, niceval);
245 out:
246 return error;
249 asmlinkage long sys_setpriority(int which, int who, int niceval)
251 struct task_struct *g, *p;
252 struct user_struct *user;
253 int error = -EINVAL;
255 if (which > 2 || which < 0)
256 goto out;
258 /* normalize: avoid signed division (rounding problems) */
259 error = -ESRCH;
260 if (niceval < -20)
261 niceval = -20;
262 if (niceval > 19)
263 niceval = 19;
265 read_lock(&tasklist_lock);
266 switch (which) {
267 case PRIO_PROCESS:
268 if (!who)
269 who = current->pid;
270 p = find_task_by_pid(who);
271 if (p)
272 error = set_one_prio(p, niceval, error);
273 break;
274 case PRIO_PGRP:
275 if (!who)
276 who = process_group(current);
277 do_each_task_pid(who, PIDTYPE_PGID, p) {
278 error = set_one_prio(p, niceval, error);
279 } while_each_task_pid(who, PIDTYPE_PGID, p);
280 break;
281 case PRIO_USER:
282 user = current->user;
283 if (!who)
284 who = current->uid;
285 else
286 if ((who != current->uid) && !(user = find_user(who)))
287 goto out_unlock; /* No processes for this user */
289 do_each_thread(g, p)
290 if (p->uid == who)
291 error = set_one_prio(p, niceval, error);
292 while_each_thread(g, p);
293 if (who != current->uid)
294 free_uid(user); /* For find_user() */
295 break;
297 out_unlock:
298 read_unlock(&tasklist_lock);
299 out:
300 return error;
304 * Ugh. To avoid negative return values, "getpriority()" will
305 * not return the normal nice-value, but a negated value that
306 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
307 * to stay compatible.
309 asmlinkage long sys_getpriority(int which, int who)
311 struct task_struct *g, *p;
312 struct user_struct *user;
313 long niceval, retval = -ESRCH;
315 if (which > 2 || which < 0)
316 return -EINVAL;
318 read_lock(&tasklist_lock);
319 switch (which) {
320 case PRIO_PROCESS:
321 if (!who)
322 who = current->pid;
323 p = find_task_by_pid(who);
324 if (p) {
325 niceval = 20 - task_nice(p);
326 if (niceval > retval)
327 retval = niceval;
329 break;
330 case PRIO_PGRP:
331 if (!who)
332 who = process_group(current);
333 do_each_task_pid(who, PIDTYPE_PGID, p) {
334 niceval = 20 - task_nice(p);
335 if (niceval > retval)
336 retval = niceval;
337 } while_each_task_pid(who, PIDTYPE_PGID, p);
338 break;
339 case PRIO_USER:
340 user = current->user;
341 if (!who)
342 who = current->uid;
343 else
344 if ((who != current->uid) && !(user = find_user(who)))
345 goto out_unlock; /* No processes for this user */
347 do_each_thread(g, p)
348 if (p->uid == who) {
349 niceval = 20 - task_nice(p);
350 if (niceval > retval)
351 retval = niceval;
353 while_each_thread(g, p);
354 if (who != current->uid)
355 free_uid(user); /* for find_user() */
356 break;
358 out_unlock:
359 read_unlock(&tasklist_lock);
361 return retval;
365 * emergency_restart - reboot the system
367 * Without shutting down any hardware or taking any locks
368 * reboot the system. This is called when we know we are in
369 * trouble so this is our best effort to reboot. This is
370 * safe to call in interrupt context.
372 void emergency_restart(void)
374 machine_emergency_restart();
376 EXPORT_SYMBOL_GPL(emergency_restart);
379 * kernel_restart - reboot the system
381 * Shutdown everything and perform a clean reboot.
382 * This is not safe to call in interrupt context.
384 void kernel_restart_prepare(char *cmd)
386 notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
387 system_state = SYSTEM_RESTART;
388 device_shutdown();
390 void kernel_restart(char *cmd)
392 kernel_restart_prepare(cmd);
393 if (!cmd) {
394 printk(KERN_EMERG "Restarting system.\n");
395 } else {
396 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
398 printk(".\n");
399 machine_restart(cmd);
401 EXPORT_SYMBOL_GPL(kernel_restart);
404 * kernel_kexec - reboot the system
406 * Move into place and start executing a preloaded standalone
407 * executable. If nothing was preloaded return an error.
409 void kernel_kexec(void)
411 #ifdef CONFIG_KEXEC
412 struct kimage *image;
413 image = xchg(&kexec_image, 0);
414 if (!image) {
415 return;
417 kernel_restart_prepare(NULL);
418 printk(KERN_EMERG "Starting new kernel\n");
419 machine_shutdown();
420 machine_kexec(image);
421 #endif
423 EXPORT_SYMBOL_GPL(kernel_kexec);
426 * kernel_halt - halt the system
428 * Shutdown everything and perform a clean system halt.
430 void kernel_halt_prepare(void)
432 notifier_call_chain(&reboot_notifier_list, SYS_HALT, NULL);
433 system_state = SYSTEM_HALT;
434 device_shutdown();
436 void kernel_halt(void)
438 kernel_halt_prepare();
439 printk(KERN_EMERG "System halted.\n");
440 machine_halt();
442 EXPORT_SYMBOL_GPL(kernel_halt);
445 * kernel_power_off - power_off the system
447 * Shutdown everything and perform a clean system power_off.
449 void kernel_power_off_prepare(void)
451 notifier_call_chain(&reboot_notifier_list, SYS_POWER_OFF, NULL);
452 system_state = SYSTEM_POWER_OFF;
453 device_shutdown();
455 void kernel_power_off(void)
457 kernel_power_off_prepare();
458 printk(KERN_EMERG "Power down.\n");
459 machine_power_off();
461 EXPORT_SYMBOL_GPL(kernel_power_off);
464 * Reboot system call: for obvious reasons only root may call it,
465 * and even root needs to set up some magic numbers in the registers
466 * so that some mistake won't make this reboot the whole machine.
467 * You can also set the meaning of the ctrl-alt-del-key here.
469 * reboot doesn't sync: do that yourself before calling this.
471 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
473 char buffer[256];
475 /* We only trust the superuser with rebooting the system. */
476 if (!capable(CAP_SYS_BOOT))
477 return -EPERM;
479 /* For safety, we require "magic" arguments. */
480 if (magic1 != LINUX_REBOOT_MAGIC1 ||
481 (magic2 != LINUX_REBOOT_MAGIC2 &&
482 magic2 != LINUX_REBOOT_MAGIC2A &&
483 magic2 != LINUX_REBOOT_MAGIC2B &&
484 magic2 != LINUX_REBOOT_MAGIC2C))
485 return -EINVAL;
487 lock_kernel();
488 switch (cmd) {
489 case LINUX_REBOOT_CMD_RESTART:
490 kernel_restart(NULL);
491 break;
493 case LINUX_REBOOT_CMD_CAD_ON:
494 C_A_D = 1;
495 break;
497 case LINUX_REBOOT_CMD_CAD_OFF:
498 C_A_D = 0;
499 break;
501 case LINUX_REBOOT_CMD_HALT:
502 kernel_halt();
503 unlock_kernel();
504 do_exit(0);
505 break;
507 case LINUX_REBOOT_CMD_POWER_OFF:
508 kernel_power_off();
509 unlock_kernel();
510 do_exit(0);
511 break;
513 case LINUX_REBOOT_CMD_RESTART2:
514 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
515 unlock_kernel();
516 return -EFAULT;
518 buffer[sizeof(buffer) - 1] = '\0';
520 kernel_restart(buffer);
521 break;
523 case LINUX_REBOOT_CMD_KEXEC:
524 kernel_kexec();
525 unlock_kernel();
526 return -EINVAL;
528 #ifdef CONFIG_SOFTWARE_SUSPEND
529 case LINUX_REBOOT_CMD_SW_SUSPEND:
531 int ret = software_suspend();
532 unlock_kernel();
533 return ret;
535 #endif
537 default:
538 unlock_kernel();
539 return -EINVAL;
541 unlock_kernel();
542 return 0;
545 static void deferred_cad(void *dummy)
547 kernel_restart(NULL);
551 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
552 * As it's called within an interrupt, it may NOT sync: the only choice
553 * is whether to reboot at once, or just ignore the ctrl-alt-del.
555 void ctrl_alt_del(void)
557 static DECLARE_WORK(cad_work, deferred_cad, NULL);
559 if (C_A_D)
560 schedule_work(&cad_work);
561 else
562 kill_proc(cad_pid, SIGINT, 1);
567 * Unprivileged users may change the real gid to the effective gid
568 * or vice versa. (BSD-style)
570 * If you set the real gid at all, or set the effective gid to a value not
571 * equal to the real gid, then the saved gid is set to the new effective gid.
573 * This makes it possible for a setgid program to completely drop its
574 * privileges, which is often a useful assertion to make when you are doing
575 * a security audit over a program.
577 * The general idea is that a program which uses just setregid() will be
578 * 100% compatible with BSD. A program which uses just setgid() will be
579 * 100% compatible with POSIX with saved IDs.
581 * SMP: There are not races, the GIDs are checked only by filesystem
582 * operations (as far as semantic preservation is concerned).
584 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
586 int old_rgid = current->gid;
587 int old_egid = current->egid;
588 int new_rgid = old_rgid;
589 int new_egid = old_egid;
590 int retval;
592 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
593 if (retval)
594 return retval;
596 if (rgid != (gid_t) -1) {
597 if ((old_rgid == rgid) ||
598 (current->egid==rgid) ||
599 capable(CAP_SETGID))
600 new_rgid = rgid;
601 else
602 return -EPERM;
604 if (egid != (gid_t) -1) {
605 if ((old_rgid == egid) ||
606 (current->egid == egid) ||
607 (current->sgid == egid) ||
608 capable(CAP_SETGID))
609 new_egid = egid;
610 else {
611 return -EPERM;
614 if (new_egid != old_egid)
616 current->mm->dumpable = suid_dumpable;
617 smp_wmb();
619 if (rgid != (gid_t) -1 ||
620 (egid != (gid_t) -1 && egid != old_rgid))
621 current->sgid = new_egid;
622 current->fsgid = new_egid;
623 current->egid = new_egid;
624 current->gid = new_rgid;
625 key_fsgid_changed(current);
626 return 0;
630 * setgid() is implemented like SysV w/ SAVED_IDS
632 * SMP: Same implicit races as above.
634 asmlinkage long sys_setgid(gid_t gid)
636 int old_egid = current->egid;
637 int retval;
639 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
640 if (retval)
641 return retval;
643 if (capable(CAP_SETGID))
645 if(old_egid != gid)
647 current->mm->dumpable = suid_dumpable;
648 smp_wmb();
650 current->gid = current->egid = current->sgid = current->fsgid = gid;
652 else if ((gid == current->gid) || (gid == current->sgid))
654 if(old_egid != gid)
656 current->mm->dumpable = suid_dumpable;
657 smp_wmb();
659 current->egid = current->fsgid = gid;
661 else
662 return -EPERM;
664 key_fsgid_changed(current);
665 return 0;
668 static int set_user(uid_t new_ruid, int dumpclear)
670 struct user_struct *new_user;
672 new_user = alloc_uid(new_ruid);
673 if (!new_user)
674 return -EAGAIN;
676 if (atomic_read(&new_user->processes) >=
677 current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
678 new_user != &root_user) {
679 free_uid(new_user);
680 return -EAGAIN;
683 switch_uid(new_user);
685 if(dumpclear)
687 current->mm->dumpable = suid_dumpable;
688 smp_wmb();
690 current->uid = new_ruid;
691 return 0;
695 * Unprivileged users may change the real uid to the effective uid
696 * or vice versa. (BSD-style)
698 * If you set the real uid at all, or set the effective uid to a value not
699 * equal to the real uid, then the saved uid is set to the new effective uid.
701 * This makes it possible for a setuid program to completely drop its
702 * privileges, which is often a useful assertion to make when you are doing
703 * a security audit over a program.
705 * The general idea is that a program which uses just setreuid() will be
706 * 100% compatible with BSD. A program which uses just setuid() will be
707 * 100% compatible with POSIX with saved IDs.
709 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
711 int old_ruid, old_euid, old_suid, new_ruid, new_euid;
712 int retval;
714 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
715 if (retval)
716 return retval;
718 new_ruid = old_ruid = current->uid;
719 new_euid = old_euid = current->euid;
720 old_suid = current->suid;
722 if (ruid != (uid_t) -1) {
723 new_ruid = ruid;
724 if ((old_ruid != ruid) &&
725 (current->euid != ruid) &&
726 !capable(CAP_SETUID))
727 return -EPERM;
730 if (euid != (uid_t) -1) {
731 new_euid = euid;
732 if ((old_ruid != euid) &&
733 (current->euid != euid) &&
734 (current->suid != euid) &&
735 !capable(CAP_SETUID))
736 return -EPERM;
739 if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
740 return -EAGAIN;
742 if (new_euid != old_euid)
744 current->mm->dumpable = suid_dumpable;
745 smp_wmb();
747 current->fsuid = current->euid = new_euid;
748 if (ruid != (uid_t) -1 ||
749 (euid != (uid_t) -1 && euid != old_ruid))
750 current->suid = current->euid;
751 current->fsuid = current->euid;
753 key_fsuid_changed(current);
755 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
761 * setuid() is implemented like SysV with SAVED_IDS
763 * Note that SAVED_ID's is deficient in that a setuid root program
764 * like sendmail, for example, cannot set its uid to be a normal
765 * user and then switch back, because if you're root, setuid() sets
766 * the saved uid too. If you don't like this, blame the bright people
767 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
768 * will allow a root program to temporarily drop privileges and be able to
769 * regain them by swapping the real and effective uid.
771 asmlinkage long sys_setuid(uid_t uid)
773 int old_euid = current->euid;
774 int old_ruid, old_suid, new_ruid, new_suid;
775 int retval;
777 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
778 if (retval)
779 return retval;
781 old_ruid = new_ruid = current->uid;
782 old_suid = current->suid;
783 new_suid = old_suid;
785 if (capable(CAP_SETUID)) {
786 if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
787 return -EAGAIN;
788 new_suid = uid;
789 } else if ((uid != current->uid) && (uid != new_suid))
790 return -EPERM;
792 if (old_euid != uid)
794 current->mm->dumpable = suid_dumpable;
795 smp_wmb();
797 current->fsuid = current->euid = uid;
798 current->suid = new_suid;
800 key_fsuid_changed(current);
802 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
807 * This function implements a generic ability to update ruid, euid,
808 * and suid. This allows you to implement the 4.4 compatible seteuid().
810 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
812 int old_ruid = current->uid;
813 int old_euid = current->euid;
814 int old_suid = current->suid;
815 int retval;
817 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
818 if (retval)
819 return retval;
821 if (!capable(CAP_SETUID)) {
822 if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
823 (ruid != current->euid) && (ruid != current->suid))
824 return -EPERM;
825 if ((euid != (uid_t) -1) && (euid != current->uid) &&
826 (euid != current->euid) && (euid != current->suid))
827 return -EPERM;
828 if ((suid != (uid_t) -1) && (suid != current->uid) &&
829 (suid != current->euid) && (suid != current->suid))
830 return -EPERM;
832 if (ruid != (uid_t) -1) {
833 if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
834 return -EAGAIN;
836 if (euid != (uid_t) -1) {
837 if (euid != current->euid)
839 current->mm->dumpable = suid_dumpable;
840 smp_wmb();
842 current->euid = euid;
844 current->fsuid = current->euid;
845 if (suid != (uid_t) -1)
846 current->suid = suid;
848 key_fsuid_changed(current);
850 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
853 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
855 int retval;
857 if (!(retval = put_user(current->uid, ruid)) &&
858 !(retval = put_user(current->euid, euid)))
859 retval = put_user(current->suid, suid);
861 return retval;
865 * Same as above, but for rgid, egid, sgid.
867 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
869 int retval;
871 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
872 if (retval)
873 return retval;
875 if (!capable(CAP_SETGID)) {
876 if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
877 (rgid != current->egid) && (rgid != current->sgid))
878 return -EPERM;
879 if ((egid != (gid_t) -1) && (egid != current->gid) &&
880 (egid != current->egid) && (egid != current->sgid))
881 return -EPERM;
882 if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
883 (sgid != current->egid) && (sgid != current->sgid))
884 return -EPERM;
886 if (egid != (gid_t) -1) {
887 if (egid != current->egid)
889 current->mm->dumpable = suid_dumpable;
890 smp_wmb();
892 current->egid = egid;
894 current->fsgid = current->egid;
895 if (rgid != (gid_t) -1)
896 current->gid = rgid;
897 if (sgid != (gid_t) -1)
898 current->sgid = sgid;
900 key_fsgid_changed(current);
901 return 0;
904 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
906 int retval;
908 if (!(retval = put_user(current->gid, rgid)) &&
909 !(retval = put_user(current->egid, egid)))
910 retval = put_user(current->sgid, sgid);
912 return retval;
917 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
918 * is used for "access()" and for the NFS daemon (letting nfsd stay at
919 * whatever uid it wants to). It normally shadows "euid", except when
920 * explicitly set by setfsuid() or for access..
922 asmlinkage long sys_setfsuid(uid_t uid)
924 int old_fsuid;
926 old_fsuid = current->fsuid;
927 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
928 return old_fsuid;
930 if (uid == current->uid || uid == current->euid ||
931 uid == current->suid || uid == current->fsuid ||
932 capable(CAP_SETUID))
934 if (uid != old_fsuid)
936 current->mm->dumpable = suid_dumpable;
937 smp_wmb();
939 current->fsuid = uid;
942 key_fsuid_changed(current);
944 security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
946 return old_fsuid;
950 * Samma på svenska..
952 asmlinkage long sys_setfsgid(gid_t gid)
954 int old_fsgid;
956 old_fsgid = current->fsgid;
957 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
958 return old_fsgid;
960 if (gid == current->gid || gid == current->egid ||
961 gid == current->sgid || gid == current->fsgid ||
962 capable(CAP_SETGID))
964 if (gid != old_fsgid)
966 current->mm->dumpable = suid_dumpable;
967 smp_wmb();
969 current->fsgid = gid;
970 key_fsgid_changed(current);
972 return old_fsgid;
975 asmlinkage long sys_times(struct tms __user * tbuf)
978 * In the SMP world we might just be unlucky and have one of
979 * the times increment as we use it. Since the value is an
980 * atomically safe type this is just fine. Conceptually its
981 * as if the syscall took an instant longer to occur.
983 if (tbuf) {
984 struct tms tmp;
985 cputime_t utime, stime, cutime, cstime;
987 #ifdef CONFIG_SMP
988 if (thread_group_empty(current)) {
990 * Single thread case without the use of any locks.
992 * We may race with release_task if two threads are
993 * executing. However, release task first adds up the
994 * counters (__exit_signal) before removing the task
995 * from the process tasklist (__unhash_process).
996 * __exit_signal also acquires and releases the
997 * siglock which results in the proper memory ordering
998 * so that the list modifications are always visible
999 * after the counters have been updated.
1001 * If the counters have been updated by the second thread
1002 * but the thread has not yet been removed from the list
1003 * then the other branch will be executing which will
1004 * block on tasklist_lock until the exit handling of the
1005 * other task is finished.
1007 * This also implies that the sighand->siglock cannot
1008 * be held by another processor. So we can also
1009 * skip acquiring that lock.
1011 utime = cputime_add(current->signal->utime, current->utime);
1012 stime = cputime_add(current->signal->utime, current->stime);
1013 cutime = current->signal->cutime;
1014 cstime = current->signal->cstime;
1015 } else
1016 #endif
1019 /* Process with multiple threads */
1020 struct task_struct *tsk = current;
1021 struct task_struct *t;
1023 read_lock(&tasklist_lock);
1024 utime = tsk->signal->utime;
1025 stime = tsk->signal->stime;
1026 t = tsk;
1027 do {
1028 utime = cputime_add(utime, t->utime);
1029 stime = cputime_add(stime, t->stime);
1030 t = next_thread(t);
1031 } while (t != tsk);
1034 * While we have tasklist_lock read-locked, no dying thread
1035 * can be updating current->signal->[us]time. Instead,
1036 * we got their counts included in the live thread loop.
1037 * However, another thread can come in right now and
1038 * do a wait call that updates current->signal->c[us]time.
1039 * To make sure we always see that pair updated atomically,
1040 * we take the siglock around fetching them.
1042 spin_lock_irq(&tsk->sighand->siglock);
1043 cutime = tsk->signal->cutime;
1044 cstime = tsk->signal->cstime;
1045 spin_unlock_irq(&tsk->sighand->siglock);
1046 read_unlock(&tasklist_lock);
1048 tmp.tms_utime = cputime_to_clock_t(utime);
1049 tmp.tms_stime = cputime_to_clock_t(stime);
1050 tmp.tms_cutime = cputime_to_clock_t(cutime);
1051 tmp.tms_cstime = cputime_to_clock_t(cstime);
1052 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1053 return -EFAULT;
1055 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1059 * This needs some heavy checking ...
1060 * I just haven't the stomach for it. I also don't fully
1061 * understand sessions/pgrp etc. Let somebody who does explain it.
1063 * OK, I think I have the protection semantics right.... this is really
1064 * only important on a multi-user system anyway, to make sure one user
1065 * can't send a signal to a process owned by another. -TYT, 12/12/91
1067 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1068 * LBT 04.03.94
1071 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
1073 struct task_struct *p;
1074 int err = -EINVAL;
1076 if (!pid)
1077 pid = current->pid;
1078 if (!pgid)
1079 pgid = pid;
1080 if (pgid < 0)
1081 return -EINVAL;
1083 /* From this point forward we keep holding onto the tasklist lock
1084 * so that our parent does not change from under us. -DaveM
1086 write_lock_irq(&tasklist_lock);
1088 err = -ESRCH;
1089 p = find_task_by_pid(pid);
1090 if (!p)
1091 goto out;
1093 err = -EINVAL;
1094 if (!thread_group_leader(p))
1095 goto out;
1097 if (p->parent == current || p->real_parent == current) {
1098 err = -EPERM;
1099 if (p->signal->session != current->signal->session)
1100 goto out;
1101 err = -EACCES;
1102 if (p->did_exec)
1103 goto out;
1104 } else {
1105 err = -ESRCH;
1106 if (p != current)
1107 goto out;
1110 err = -EPERM;
1111 if (p->signal->leader)
1112 goto out;
1114 if (pgid != pid) {
1115 struct task_struct *p;
1117 do_each_task_pid(pgid, PIDTYPE_PGID, p) {
1118 if (p->signal->session == current->signal->session)
1119 goto ok_pgid;
1120 } while_each_task_pid(pgid, PIDTYPE_PGID, p);
1121 goto out;
1124 ok_pgid:
1125 err = security_task_setpgid(p, pgid);
1126 if (err)
1127 goto out;
1129 if (process_group(p) != pgid) {
1130 detach_pid(p, PIDTYPE_PGID);
1131 p->signal->pgrp = pgid;
1132 attach_pid(p, PIDTYPE_PGID, pgid);
1135 err = 0;
1136 out:
1137 /* All paths lead to here, thus we are safe. -DaveM */
1138 write_unlock_irq(&tasklist_lock);
1139 return err;
1142 asmlinkage long sys_getpgid(pid_t pid)
1144 if (!pid) {
1145 return process_group(current);
1146 } else {
1147 int retval;
1148 struct task_struct *p;
1150 read_lock(&tasklist_lock);
1151 p = find_task_by_pid(pid);
1153 retval = -ESRCH;
1154 if (p) {
1155 retval = security_task_getpgid(p);
1156 if (!retval)
1157 retval = process_group(p);
1159 read_unlock(&tasklist_lock);
1160 return retval;
1164 #ifdef __ARCH_WANT_SYS_GETPGRP
1166 asmlinkage long sys_getpgrp(void)
1168 /* SMP - assuming writes are word atomic this is fine */
1169 return process_group(current);
1172 #endif
1174 asmlinkage long sys_getsid(pid_t pid)
1176 if (!pid) {
1177 return current->signal->session;
1178 } else {
1179 int retval;
1180 struct task_struct *p;
1182 read_lock(&tasklist_lock);
1183 p = find_task_by_pid(pid);
1185 retval = -ESRCH;
1186 if(p) {
1187 retval = security_task_getsid(p);
1188 if (!retval)
1189 retval = p->signal->session;
1191 read_unlock(&tasklist_lock);
1192 return retval;
1196 asmlinkage long sys_setsid(void)
1198 struct pid *pid;
1199 int err = -EPERM;
1201 if (!thread_group_leader(current))
1202 return -EINVAL;
1204 down(&tty_sem);
1205 write_lock_irq(&tasklist_lock);
1207 pid = find_pid(PIDTYPE_PGID, current->pid);
1208 if (pid)
1209 goto out;
1211 current->signal->leader = 1;
1212 __set_special_pids(current->pid, current->pid);
1213 current->signal->tty = NULL;
1214 current->signal->tty_old_pgrp = 0;
1215 err = process_group(current);
1216 out:
1217 write_unlock_irq(&tasklist_lock);
1218 up(&tty_sem);
1219 return err;
1223 * Supplementary group IDs
1226 /* init to 2 - one for init_task, one to ensure it is never freed */
1227 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1229 struct group_info *groups_alloc(int gidsetsize)
1231 struct group_info *group_info;
1232 int nblocks;
1233 int i;
1235 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1236 /* Make sure we always allocate at least one indirect block pointer */
1237 nblocks = nblocks ? : 1;
1238 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1239 if (!group_info)
1240 return NULL;
1241 group_info->ngroups = gidsetsize;
1242 group_info->nblocks = nblocks;
1243 atomic_set(&group_info->usage, 1);
1245 if (gidsetsize <= NGROUPS_SMALL) {
1246 group_info->blocks[0] = group_info->small_block;
1247 } else {
1248 for (i = 0; i < nblocks; i++) {
1249 gid_t *b;
1250 b = (void *)__get_free_page(GFP_USER);
1251 if (!b)
1252 goto out_undo_partial_alloc;
1253 group_info->blocks[i] = b;
1256 return group_info;
1258 out_undo_partial_alloc:
1259 while (--i >= 0) {
1260 free_page((unsigned long)group_info->blocks[i]);
1262 kfree(group_info);
1263 return NULL;
1266 EXPORT_SYMBOL(groups_alloc);
1268 void groups_free(struct group_info *group_info)
1270 if (group_info->blocks[0] != group_info->small_block) {
1271 int i;
1272 for (i = 0; i < group_info->nblocks; i++)
1273 free_page((unsigned long)group_info->blocks[i]);
1275 kfree(group_info);
1278 EXPORT_SYMBOL(groups_free);
1280 /* export the group_info to a user-space array */
1281 static int groups_to_user(gid_t __user *grouplist,
1282 struct group_info *group_info)
1284 int i;
1285 int count = group_info->ngroups;
1287 for (i = 0; i < group_info->nblocks; i++) {
1288 int cp_count = min(NGROUPS_PER_BLOCK, count);
1289 int off = i * NGROUPS_PER_BLOCK;
1290 int len = cp_count * sizeof(*grouplist);
1292 if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1293 return -EFAULT;
1295 count -= cp_count;
1297 return 0;
1300 /* fill a group_info from a user-space array - it must be allocated already */
1301 static int groups_from_user(struct group_info *group_info,
1302 gid_t __user *grouplist)
1304 int i;
1305 int count = group_info->ngroups;
1307 for (i = 0; i < group_info->nblocks; i++) {
1308 int cp_count = min(NGROUPS_PER_BLOCK, count);
1309 int off = i * NGROUPS_PER_BLOCK;
1310 int len = cp_count * sizeof(*grouplist);
1312 if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1313 return -EFAULT;
1315 count -= cp_count;
1317 return 0;
1320 /* a simple Shell sort */
1321 static void groups_sort(struct group_info *group_info)
1323 int base, max, stride;
1324 int gidsetsize = group_info->ngroups;
1326 for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1327 ; /* nothing */
1328 stride /= 3;
1330 while (stride) {
1331 max = gidsetsize - stride;
1332 for (base = 0; base < max; base++) {
1333 int left = base;
1334 int right = left + stride;
1335 gid_t tmp = GROUP_AT(group_info, right);
1337 while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1338 GROUP_AT(group_info, right) =
1339 GROUP_AT(group_info, left);
1340 right = left;
1341 left -= stride;
1343 GROUP_AT(group_info, right) = tmp;
1345 stride /= 3;
1349 /* a simple bsearch */
1350 int groups_search(struct group_info *group_info, gid_t grp)
1352 int left, right;
1354 if (!group_info)
1355 return 0;
1357 left = 0;
1358 right = group_info->ngroups;
1359 while (left < right) {
1360 int mid = (left+right)/2;
1361 int cmp = grp - GROUP_AT(group_info, mid);
1362 if (cmp > 0)
1363 left = mid + 1;
1364 else if (cmp < 0)
1365 right = mid;
1366 else
1367 return 1;
1369 return 0;
1372 /* validate and set current->group_info */
1373 int set_current_groups(struct group_info *group_info)
1375 int retval;
1376 struct group_info *old_info;
1378 retval = security_task_setgroups(group_info);
1379 if (retval)
1380 return retval;
1382 groups_sort(group_info);
1383 get_group_info(group_info);
1385 task_lock(current);
1386 old_info = current->group_info;
1387 current->group_info = group_info;
1388 task_unlock(current);
1390 put_group_info(old_info);
1392 return 0;
1395 EXPORT_SYMBOL(set_current_groups);
1397 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1399 int i = 0;
1402 * SMP: Nobody else can change our grouplist. Thus we are
1403 * safe.
1406 if (gidsetsize < 0)
1407 return -EINVAL;
1409 /* no need to grab task_lock here; it cannot change */
1410 get_group_info(current->group_info);
1411 i = current->group_info->ngroups;
1412 if (gidsetsize) {
1413 if (i > gidsetsize) {
1414 i = -EINVAL;
1415 goto out;
1417 if (groups_to_user(grouplist, current->group_info)) {
1418 i = -EFAULT;
1419 goto out;
1422 out:
1423 put_group_info(current->group_info);
1424 return i;
1428 * SMP: Our groups are copy-on-write. We can set them safely
1429 * without another task interfering.
1432 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1434 struct group_info *group_info;
1435 int retval;
1437 if (!capable(CAP_SETGID))
1438 return -EPERM;
1439 if ((unsigned)gidsetsize > NGROUPS_MAX)
1440 return -EINVAL;
1442 group_info = groups_alloc(gidsetsize);
1443 if (!group_info)
1444 return -ENOMEM;
1445 retval = groups_from_user(group_info, grouplist);
1446 if (retval) {
1447 put_group_info(group_info);
1448 return retval;
1451 retval = set_current_groups(group_info);
1452 put_group_info(group_info);
1454 return retval;
1458 * Check whether we're fsgid/egid or in the supplemental group..
1460 int in_group_p(gid_t grp)
1462 int retval = 1;
1463 if (grp != current->fsgid) {
1464 get_group_info(current->group_info);
1465 retval = groups_search(current->group_info, grp);
1466 put_group_info(current->group_info);
1468 return retval;
1471 EXPORT_SYMBOL(in_group_p);
1473 int in_egroup_p(gid_t grp)
1475 int retval = 1;
1476 if (grp != current->egid) {
1477 get_group_info(current->group_info);
1478 retval = groups_search(current->group_info, grp);
1479 put_group_info(current->group_info);
1481 return retval;
1484 EXPORT_SYMBOL(in_egroup_p);
1486 DECLARE_RWSEM(uts_sem);
1488 EXPORT_SYMBOL(uts_sem);
1490 asmlinkage long sys_newuname(struct new_utsname __user * name)
1492 int errno = 0;
1494 down_read(&uts_sem);
1495 if (copy_to_user(name,&system_utsname,sizeof *name))
1496 errno = -EFAULT;
1497 up_read(&uts_sem);
1498 return errno;
1501 asmlinkage long sys_sethostname(char __user *name, int len)
1503 int errno;
1504 char tmp[__NEW_UTS_LEN];
1506 if (!capable(CAP_SYS_ADMIN))
1507 return -EPERM;
1508 if (len < 0 || len > __NEW_UTS_LEN)
1509 return -EINVAL;
1510 down_write(&uts_sem);
1511 errno = -EFAULT;
1512 if (!copy_from_user(tmp, name, len)) {
1513 memcpy(system_utsname.nodename, tmp, len);
1514 system_utsname.nodename[len] = 0;
1515 errno = 0;
1517 up_write(&uts_sem);
1518 return errno;
1521 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1523 asmlinkage long sys_gethostname(char __user *name, int len)
1525 int i, errno;
1527 if (len < 0)
1528 return -EINVAL;
1529 down_read(&uts_sem);
1530 i = 1 + strlen(system_utsname.nodename);
1531 if (i > len)
1532 i = len;
1533 errno = 0;
1534 if (copy_to_user(name, system_utsname.nodename, i))
1535 errno = -EFAULT;
1536 up_read(&uts_sem);
1537 return errno;
1540 #endif
1543 * Only setdomainname; getdomainname can be implemented by calling
1544 * uname()
1546 asmlinkage long sys_setdomainname(char __user *name, int len)
1548 int errno;
1549 char tmp[__NEW_UTS_LEN];
1551 if (!capable(CAP_SYS_ADMIN))
1552 return -EPERM;
1553 if (len < 0 || len > __NEW_UTS_LEN)
1554 return -EINVAL;
1556 down_write(&uts_sem);
1557 errno = -EFAULT;
1558 if (!copy_from_user(tmp, name, len)) {
1559 memcpy(system_utsname.domainname, tmp, len);
1560 system_utsname.domainname[len] = 0;
1561 errno = 0;
1563 up_write(&uts_sem);
1564 return errno;
1567 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1569 if (resource >= RLIM_NLIMITS)
1570 return -EINVAL;
1571 else {
1572 struct rlimit value;
1573 task_lock(current->group_leader);
1574 value = current->signal->rlim[resource];
1575 task_unlock(current->group_leader);
1576 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1580 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1583 * Back compatibility for getrlimit. Needed for some apps.
1586 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1588 struct rlimit x;
1589 if (resource >= RLIM_NLIMITS)
1590 return -EINVAL;
1592 task_lock(current->group_leader);
1593 x = current->signal->rlim[resource];
1594 task_unlock(current->group_leader);
1595 if(x.rlim_cur > 0x7FFFFFFF)
1596 x.rlim_cur = 0x7FFFFFFF;
1597 if(x.rlim_max > 0x7FFFFFFF)
1598 x.rlim_max = 0x7FFFFFFF;
1599 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1602 #endif
1604 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1606 struct rlimit new_rlim, *old_rlim;
1607 int retval;
1609 if (resource >= RLIM_NLIMITS)
1610 return -EINVAL;
1611 if(copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1612 return -EFAULT;
1613 if (new_rlim.rlim_cur > new_rlim.rlim_max)
1614 return -EINVAL;
1615 old_rlim = current->signal->rlim + resource;
1616 if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1617 !capable(CAP_SYS_RESOURCE))
1618 return -EPERM;
1619 if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
1620 return -EPERM;
1622 retval = security_task_setrlimit(resource, &new_rlim);
1623 if (retval)
1624 return retval;
1626 task_lock(current->group_leader);
1627 *old_rlim = new_rlim;
1628 task_unlock(current->group_leader);
1630 if (resource == RLIMIT_CPU && new_rlim.rlim_cur != RLIM_INFINITY &&
1631 (cputime_eq(current->signal->it_prof_expires, cputime_zero) ||
1632 new_rlim.rlim_cur <= cputime_to_secs(
1633 current->signal->it_prof_expires))) {
1634 cputime_t cputime = secs_to_cputime(new_rlim.rlim_cur);
1635 read_lock(&tasklist_lock);
1636 spin_lock_irq(&current->sighand->siglock);
1637 set_process_cpu_timer(current, CPUCLOCK_PROF,
1638 &cputime, NULL);
1639 spin_unlock_irq(&current->sighand->siglock);
1640 read_unlock(&tasklist_lock);
1643 return 0;
1647 * It would make sense to put struct rusage in the task_struct,
1648 * except that would make the task_struct be *really big*. After
1649 * task_struct gets moved into malloc'ed memory, it would
1650 * make sense to do this. It will make moving the rest of the information
1651 * a lot simpler! (Which we're not doing right now because we're not
1652 * measuring them yet).
1654 * This expects to be called with tasklist_lock read-locked or better,
1655 * and the siglock not locked. It may momentarily take the siglock.
1657 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1658 * races with threads incrementing their own counters. But since word
1659 * reads are atomic, we either get new values or old values and we don't
1660 * care which for the sums. We always take the siglock to protect reading
1661 * the c* fields from p->signal from races with exit.c updating those
1662 * fields when reaping, so a sample either gets all the additions of a
1663 * given child after it's reaped, or none so this sample is before reaping.
1666 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1668 struct task_struct *t;
1669 unsigned long flags;
1670 cputime_t utime, stime;
1672 memset((char *) r, 0, sizeof *r);
1674 if (unlikely(!p->signal))
1675 return;
1677 switch (who) {
1678 case RUSAGE_CHILDREN:
1679 spin_lock_irqsave(&p->sighand->siglock, flags);
1680 utime = p->signal->cutime;
1681 stime = p->signal->cstime;
1682 r->ru_nvcsw = p->signal->cnvcsw;
1683 r->ru_nivcsw = p->signal->cnivcsw;
1684 r->ru_minflt = p->signal->cmin_flt;
1685 r->ru_majflt = p->signal->cmaj_flt;
1686 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1687 cputime_to_timeval(utime, &r->ru_utime);
1688 cputime_to_timeval(stime, &r->ru_stime);
1689 break;
1690 case RUSAGE_SELF:
1691 spin_lock_irqsave(&p->sighand->siglock, flags);
1692 utime = stime = cputime_zero;
1693 goto sum_group;
1694 case RUSAGE_BOTH:
1695 spin_lock_irqsave(&p->sighand->siglock, flags);
1696 utime = p->signal->cutime;
1697 stime = p->signal->cstime;
1698 r->ru_nvcsw = p->signal->cnvcsw;
1699 r->ru_nivcsw = p->signal->cnivcsw;
1700 r->ru_minflt = p->signal->cmin_flt;
1701 r->ru_majflt = p->signal->cmaj_flt;
1702 sum_group:
1703 utime = cputime_add(utime, p->signal->utime);
1704 stime = cputime_add(stime, p->signal->stime);
1705 r->ru_nvcsw += p->signal->nvcsw;
1706 r->ru_nivcsw += p->signal->nivcsw;
1707 r->ru_minflt += p->signal->min_flt;
1708 r->ru_majflt += p->signal->maj_flt;
1709 t = p;
1710 do {
1711 utime = cputime_add(utime, t->utime);
1712 stime = cputime_add(stime, t->stime);
1713 r->ru_nvcsw += t->nvcsw;
1714 r->ru_nivcsw += t->nivcsw;
1715 r->ru_minflt += t->min_flt;
1716 r->ru_majflt += t->maj_flt;
1717 t = next_thread(t);
1718 } while (t != p);
1719 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1720 cputime_to_timeval(utime, &r->ru_utime);
1721 cputime_to_timeval(stime, &r->ru_stime);
1722 break;
1723 default:
1724 BUG();
1728 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1730 struct rusage r;
1731 read_lock(&tasklist_lock);
1732 k_getrusage(p, who, &r);
1733 read_unlock(&tasklist_lock);
1734 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1737 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1739 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
1740 return -EINVAL;
1741 return getrusage(current, who, ru);
1744 asmlinkage long sys_umask(int mask)
1746 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1747 return mask;
1750 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1751 unsigned long arg4, unsigned long arg5)
1753 long error;
1755 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1756 if (error)
1757 return error;
1759 switch (option) {
1760 case PR_SET_PDEATHSIG:
1761 if (!valid_signal(arg2)) {
1762 error = -EINVAL;
1763 break;
1765 current->pdeath_signal = arg2;
1766 break;
1767 case PR_GET_PDEATHSIG:
1768 error = put_user(current->pdeath_signal, (int __user *)arg2);
1769 break;
1770 case PR_GET_DUMPABLE:
1771 error = current->mm->dumpable;
1772 break;
1773 case PR_SET_DUMPABLE:
1774 if (arg2 < 0 || arg2 > 2) {
1775 error = -EINVAL;
1776 break;
1778 current->mm->dumpable = arg2;
1779 break;
1781 case PR_SET_UNALIGN:
1782 error = SET_UNALIGN_CTL(current, arg2);
1783 break;
1784 case PR_GET_UNALIGN:
1785 error = GET_UNALIGN_CTL(current, arg2);
1786 break;
1787 case PR_SET_FPEMU:
1788 error = SET_FPEMU_CTL(current, arg2);
1789 break;
1790 case PR_GET_FPEMU:
1791 error = GET_FPEMU_CTL(current, arg2);
1792 break;
1793 case PR_SET_FPEXC:
1794 error = SET_FPEXC_CTL(current, arg2);
1795 break;
1796 case PR_GET_FPEXC:
1797 error = GET_FPEXC_CTL(current, arg2);
1798 break;
1799 case PR_GET_TIMING:
1800 error = PR_TIMING_STATISTICAL;
1801 break;
1802 case PR_SET_TIMING:
1803 if (arg2 == PR_TIMING_STATISTICAL)
1804 error = 0;
1805 else
1806 error = -EINVAL;
1807 break;
1809 case PR_GET_KEEPCAPS:
1810 if (current->keep_capabilities)
1811 error = 1;
1812 break;
1813 case PR_SET_KEEPCAPS:
1814 if (arg2 != 0 && arg2 != 1) {
1815 error = -EINVAL;
1816 break;
1818 current->keep_capabilities = arg2;
1819 break;
1820 case PR_SET_NAME: {
1821 struct task_struct *me = current;
1822 unsigned char ncomm[sizeof(me->comm)];
1824 ncomm[sizeof(me->comm)-1] = 0;
1825 if (strncpy_from_user(ncomm, (char __user *)arg2,
1826 sizeof(me->comm)-1) < 0)
1827 return -EFAULT;
1828 set_task_comm(me, ncomm);
1829 return 0;
1831 case PR_GET_NAME: {
1832 struct task_struct *me = current;
1833 unsigned char tcomm[sizeof(me->comm)];
1835 get_task_comm(tcomm, me);
1836 if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
1837 return -EFAULT;
1838 return 0;
1840 default:
1841 error = -EINVAL;
1842 break;
1844 return error;