x86, cpu: Clean up AMD erratum 400 workaround
[wandboard.git] / kernel / perf_event.c
blobc6b9c9560f7ad9e3293e8fd72e6b93f607db9f8f
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/hw_breakpoint.h>
34 #include <asm/irq_regs.h>
37 * Each CPU has a list of per CPU events:
39 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
41 int perf_max_events __read_mostly = 1;
42 static int perf_reserved_percpu __read_mostly;
43 static int perf_overcommit __read_mostly = 1;
45 static atomic_t nr_events __read_mostly;
46 static atomic_t nr_mmap_events __read_mostly;
47 static atomic_t nr_comm_events __read_mostly;
48 static atomic_t nr_task_events __read_mostly;
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
57 int sysctl_perf_event_paranoid __read_mostly = 1;
59 static inline bool perf_paranoid_tracepoint_raw(void)
61 return sysctl_perf_event_paranoid > -1;
64 static inline bool perf_paranoid_cpu(void)
66 return sysctl_perf_event_paranoid > 0;
69 static inline bool perf_paranoid_kernel(void)
71 return sysctl_perf_event_paranoid > 1;
74 /* Minimum for 128 pages + 1 for the user control page */
75 int sysctl_perf_event_mlock __read_mostly = 516; /* 'free' kb per user */
78 * max perf event sample rate
80 int sysctl_perf_event_sample_rate __read_mostly = 100000;
82 static atomic64_t perf_event_id;
85 * Lock for (sysadmin-configurable) event reservations:
87 static DEFINE_SPINLOCK(perf_resource_lock);
90 * Architecture provided APIs - weak aliases:
92 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
94 return NULL;
97 void __weak hw_perf_disable(void) { barrier(); }
98 void __weak hw_perf_enable(void) { barrier(); }
100 void __weak hw_perf_event_setup(int cpu) { barrier(); }
101 void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
103 int __weak
104 hw_perf_group_sched_in(struct perf_event *group_leader,
105 struct perf_cpu_context *cpuctx,
106 struct perf_event_context *ctx, int cpu)
108 return 0;
111 void __weak perf_event_print_debug(void) { }
113 static DEFINE_PER_CPU(int, perf_disable_count);
115 void __perf_disable(void)
117 __get_cpu_var(perf_disable_count)++;
120 bool __perf_enable(void)
122 return !--__get_cpu_var(perf_disable_count);
125 void perf_disable(void)
127 __perf_disable();
128 hw_perf_disable();
131 void perf_enable(void)
133 if (__perf_enable())
134 hw_perf_enable();
137 static void get_ctx(struct perf_event_context *ctx)
139 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
142 static void free_ctx(struct rcu_head *head)
144 struct perf_event_context *ctx;
146 ctx = container_of(head, struct perf_event_context, rcu_head);
147 kfree(ctx);
150 static void put_ctx(struct perf_event_context *ctx)
152 if (atomic_dec_and_test(&ctx->refcount)) {
153 if (ctx->parent_ctx)
154 put_ctx(ctx->parent_ctx);
155 if (ctx->task)
156 put_task_struct(ctx->task);
157 call_rcu(&ctx->rcu_head, free_ctx);
161 static void unclone_ctx(struct perf_event_context *ctx)
163 if (ctx->parent_ctx) {
164 put_ctx(ctx->parent_ctx);
165 ctx->parent_ctx = NULL;
170 * If we inherit events we want to return the parent event id
171 * to userspace.
173 static u64 primary_event_id(struct perf_event *event)
175 u64 id = event->id;
177 if (event->parent)
178 id = event->parent->id;
180 return id;
184 * Get the perf_event_context for a task and lock it.
185 * This has to cope with with the fact that until it is locked,
186 * the context could get moved to another task.
188 static struct perf_event_context *
189 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
191 struct perf_event_context *ctx;
193 rcu_read_lock();
194 retry:
195 ctx = rcu_dereference(task->perf_event_ctxp);
196 if (ctx) {
198 * If this context is a clone of another, it might
199 * get swapped for another underneath us by
200 * perf_event_task_sched_out, though the
201 * rcu_read_lock() protects us from any context
202 * getting freed. Lock the context and check if it
203 * got swapped before we could get the lock, and retry
204 * if so. If we locked the right context, then it
205 * can't get swapped on us any more.
207 raw_spin_lock_irqsave(&ctx->lock, *flags);
208 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
209 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
210 goto retry;
213 if (!atomic_inc_not_zero(&ctx->refcount)) {
214 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
215 ctx = NULL;
218 rcu_read_unlock();
219 return ctx;
223 * Get the context for a task and increment its pin_count so it
224 * can't get swapped to another task. This also increments its
225 * reference count so that the context can't get freed.
227 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
229 struct perf_event_context *ctx;
230 unsigned long flags;
232 ctx = perf_lock_task_context(task, &flags);
233 if (ctx) {
234 ++ctx->pin_count;
235 raw_spin_unlock_irqrestore(&ctx->lock, flags);
237 return ctx;
240 static void perf_unpin_context(struct perf_event_context *ctx)
242 unsigned long flags;
244 raw_spin_lock_irqsave(&ctx->lock, flags);
245 --ctx->pin_count;
246 raw_spin_unlock_irqrestore(&ctx->lock, flags);
247 put_ctx(ctx);
250 static inline u64 perf_clock(void)
252 return cpu_clock(raw_smp_processor_id());
256 * Update the record of the current time in a context.
258 static void update_context_time(struct perf_event_context *ctx)
260 u64 now = perf_clock();
262 ctx->time += now - ctx->timestamp;
263 ctx->timestamp = now;
267 * Update the total_time_enabled and total_time_running fields for a event.
269 static void update_event_times(struct perf_event *event)
271 struct perf_event_context *ctx = event->ctx;
272 u64 run_end;
274 if (event->state < PERF_EVENT_STATE_INACTIVE ||
275 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
276 return;
278 if (ctx->is_active)
279 run_end = ctx->time;
280 else
281 run_end = event->tstamp_stopped;
283 event->total_time_enabled = run_end - event->tstamp_enabled;
285 if (event->state == PERF_EVENT_STATE_INACTIVE)
286 run_end = event->tstamp_stopped;
287 else
288 run_end = ctx->time;
290 event->total_time_running = run_end - event->tstamp_running;
294 * Add a event from the lists for its context.
295 * Must be called with ctx->mutex and ctx->lock held.
297 static void
298 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
300 struct perf_event *group_leader = event->group_leader;
303 * Depending on whether it is a standalone or sibling event,
304 * add it straight to the context's event list, or to the group
305 * leader's sibling list:
307 if (group_leader == event)
308 list_add_tail(&event->group_entry, &ctx->group_list);
309 else {
310 list_add_tail(&event->group_entry, &group_leader->sibling_list);
311 group_leader->nr_siblings++;
314 list_add_rcu(&event->event_entry, &ctx->event_list);
315 ctx->nr_events++;
316 if (event->attr.inherit_stat)
317 ctx->nr_stat++;
321 * Remove a event from the lists for its context.
322 * Must be called with ctx->mutex and ctx->lock held.
324 static void
325 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
327 struct perf_event *sibling, *tmp;
329 if (list_empty(&event->group_entry))
330 return;
331 ctx->nr_events--;
332 if (event->attr.inherit_stat)
333 ctx->nr_stat--;
335 list_del_init(&event->group_entry);
336 list_del_rcu(&event->event_entry);
338 if (event->group_leader != event)
339 event->group_leader->nr_siblings--;
341 update_event_times(event);
344 * If event was in error state, then keep it
345 * that way, otherwise bogus counts will be
346 * returned on read(). The only way to get out
347 * of error state is by explicit re-enabling
348 * of the event
350 if (event->state > PERF_EVENT_STATE_OFF)
351 event->state = PERF_EVENT_STATE_OFF;
354 * If this was a group event with sibling events then
355 * upgrade the siblings to singleton events by adding them
356 * to the context list directly:
358 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
360 list_move_tail(&sibling->group_entry, &ctx->group_list);
361 sibling->group_leader = sibling;
365 static void
366 event_sched_out(struct perf_event *event,
367 struct perf_cpu_context *cpuctx,
368 struct perf_event_context *ctx)
370 if (event->state != PERF_EVENT_STATE_ACTIVE)
371 return;
373 event->state = PERF_EVENT_STATE_INACTIVE;
374 if (event->pending_disable) {
375 event->pending_disable = 0;
376 event->state = PERF_EVENT_STATE_OFF;
378 event->tstamp_stopped = ctx->time;
379 event->pmu->disable(event);
380 event->oncpu = -1;
382 if (!is_software_event(event))
383 cpuctx->active_oncpu--;
384 ctx->nr_active--;
385 if (event->attr.exclusive || !cpuctx->active_oncpu)
386 cpuctx->exclusive = 0;
389 static void
390 group_sched_out(struct perf_event *group_event,
391 struct perf_cpu_context *cpuctx,
392 struct perf_event_context *ctx)
394 struct perf_event *event;
396 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
397 return;
399 event_sched_out(group_event, cpuctx, ctx);
402 * Schedule out siblings (if any):
404 list_for_each_entry(event, &group_event->sibling_list, group_entry)
405 event_sched_out(event, cpuctx, ctx);
407 if (group_event->attr.exclusive)
408 cpuctx->exclusive = 0;
412 * Cross CPU call to remove a performance event
414 * We disable the event on the hardware level first. After that we
415 * remove it from the context list.
417 static void __perf_event_remove_from_context(void *info)
419 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
420 struct perf_event *event = info;
421 struct perf_event_context *ctx = event->ctx;
424 * If this is a task context, we need to check whether it is
425 * the current task context of this cpu. If not it has been
426 * scheduled out before the smp call arrived.
428 if (ctx->task && cpuctx->task_ctx != ctx)
429 return;
431 raw_spin_lock(&ctx->lock);
433 * Protect the list operation against NMI by disabling the
434 * events on a global level.
436 perf_disable();
438 event_sched_out(event, cpuctx, ctx);
440 list_del_event(event, ctx);
442 if (!ctx->task) {
444 * Allow more per task events with respect to the
445 * reservation:
447 cpuctx->max_pertask =
448 min(perf_max_events - ctx->nr_events,
449 perf_max_events - perf_reserved_percpu);
452 perf_enable();
453 raw_spin_unlock(&ctx->lock);
458 * Remove the event from a task's (or a CPU's) list of events.
460 * Must be called with ctx->mutex held.
462 * CPU events are removed with a smp call. For task events we only
463 * call when the task is on a CPU.
465 * If event->ctx is a cloned context, callers must make sure that
466 * every task struct that event->ctx->task could possibly point to
467 * remains valid. This is OK when called from perf_release since
468 * that only calls us on the top-level context, which can't be a clone.
469 * When called from perf_event_exit_task, it's OK because the
470 * context has been detached from its task.
472 static void perf_event_remove_from_context(struct perf_event *event)
474 struct perf_event_context *ctx = event->ctx;
475 struct task_struct *task = ctx->task;
477 if (!task) {
479 * Per cpu events are removed via an smp call and
480 * the removal is always successful.
482 smp_call_function_single(event->cpu,
483 __perf_event_remove_from_context,
484 event, 1);
485 return;
488 retry:
489 task_oncpu_function_call(task, __perf_event_remove_from_context,
490 event);
492 raw_spin_lock_irq(&ctx->lock);
494 * If the context is active we need to retry the smp call.
496 if (ctx->nr_active && !list_empty(&event->group_entry)) {
497 raw_spin_unlock_irq(&ctx->lock);
498 goto retry;
502 * The lock prevents that this context is scheduled in so we
503 * can remove the event safely, if the call above did not
504 * succeed.
506 if (!list_empty(&event->group_entry))
507 list_del_event(event, ctx);
508 raw_spin_unlock_irq(&ctx->lock);
512 * Update total_time_enabled and total_time_running for all events in a group.
514 static void update_group_times(struct perf_event *leader)
516 struct perf_event *event;
518 update_event_times(leader);
519 list_for_each_entry(event, &leader->sibling_list, group_entry)
520 update_event_times(event);
524 * Cross CPU call to disable a performance event
526 static void __perf_event_disable(void *info)
528 struct perf_event *event = info;
529 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
530 struct perf_event_context *ctx = event->ctx;
533 * If this is a per-task event, need to check whether this
534 * event's task is the current task on this cpu.
536 if (ctx->task && cpuctx->task_ctx != ctx)
537 return;
539 raw_spin_lock(&ctx->lock);
542 * If the event is on, turn it off.
543 * If it is in error state, leave it in error state.
545 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
546 update_context_time(ctx);
547 update_group_times(event);
548 if (event == event->group_leader)
549 group_sched_out(event, cpuctx, ctx);
550 else
551 event_sched_out(event, cpuctx, ctx);
552 event->state = PERF_EVENT_STATE_OFF;
555 raw_spin_unlock(&ctx->lock);
559 * Disable a event.
561 * If event->ctx is a cloned context, callers must make sure that
562 * every task struct that event->ctx->task could possibly point to
563 * remains valid. This condition is satisifed when called through
564 * perf_event_for_each_child or perf_event_for_each because they
565 * hold the top-level event's child_mutex, so any descendant that
566 * goes to exit will block in sync_child_event.
567 * When called from perf_pending_event it's OK because event->ctx
568 * is the current context on this CPU and preemption is disabled,
569 * hence we can't get into perf_event_task_sched_out for this context.
571 void perf_event_disable(struct perf_event *event)
573 struct perf_event_context *ctx = event->ctx;
574 struct task_struct *task = ctx->task;
576 if (!task) {
578 * Disable the event on the cpu that it's on
580 smp_call_function_single(event->cpu, __perf_event_disable,
581 event, 1);
582 return;
585 retry:
586 task_oncpu_function_call(task, __perf_event_disable, event);
588 raw_spin_lock_irq(&ctx->lock);
590 * If the event is still active, we need to retry the cross-call.
592 if (event->state == PERF_EVENT_STATE_ACTIVE) {
593 raw_spin_unlock_irq(&ctx->lock);
594 goto retry;
598 * Since we have the lock this context can't be scheduled
599 * in, so we can change the state safely.
601 if (event->state == PERF_EVENT_STATE_INACTIVE) {
602 update_group_times(event);
603 event->state = PERF_EVENT_STATE_OFF;
606 raw_spin_unlock_irq(&ctx->lock);
609 static int
610 event_sched_in(struct perf_event *event,
611 struct perf_cpu_context *cpuctx,
612 struct perf_event_context *ctx,
613 int cpu)
615 if (event->state <= PERF_EVENT_STATE_OFF)
616 return 0;
618 event->state = PERF_EVENT_STATE_ACTIVE;
619 event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
621 * The new state must be visible before we turn it on in the hardware:
623 smp_wmb();
625 if (event->pmu->enable(event)) {
626 event->state = PERF_EVENT_STATE_INACTIVE;
627 event->oncpu = -1;
628 return -EAGAIN;
631 event->tstamp_running += ctx->time - event->tstamp_stopped;
633 if (!is_software_event(event))
634 cpuctx->active_oncpu++;
635 ctx->nr_active++;
637 if (event->attr.exclusive)
638 cpuctx->exclusive = 1;
640 return 0;
643 static int
644 group_sched_in(struct perf_event *group_event,
645 struct perf_cpu_context *cpuctx,
646 struct perf_event_context *ctx,
647 int cpu)
649 struct perf_event *event, *partial_group;
650 int ret;
652 if (group_event->state == PERF_EVENT_STATE_OFF)
653 return 0;
655 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
656 if (ret)
657 return ret < 0 ? ret : 0;
659 if (event_sched_in(group_event, cpuctx, ctx, cpu))
660 return -EAGAIN;
663 * Schedule in siblings as one group (if any):
665 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
666 if (event_sched_in(event, cpuctx, ctx, cpu)) {
667 partial_group = event;
668 goto group_error;
672 return 0;
674 group_error:
676 * Groups can be scheduled in as one unit only, so undo any
677 * partial group before returning:
679 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
680 if (event == partial_group)
681 break;
682 event_sched_out(event, cpuctx, ctx);
684 event_sched_out(group_event, cpuctx, ctx);
686 return -EAGAIN;
690 * Return 1 for a group consisting entirely of software events,
691 * 0 if the group contains any hardware events.
693 static int is_software_only_group(struct perf_event *leader)
695 struct perf_event *event;
697 if (!is_software_event(leader))
698 return 0;
700 list_for_each_entry(event, &leader->sibling_list, group_entry)
701 if (!is_software_event(event))
702 return 0;
704 return 1;
708 * Work out whether we can put this event group on the CPU now.
710 static int group_can_go_on(struct perf_event *event,
711 struct perf_cpu_context *cpuctx,
712 int can_add_hw)
715 * Groups consisting entirely of software events can always go on.
717 if (is_software_only_group(event))
718 return 1;
720 * If an exclusive group is already on, no other hardware
721 * events can go on.
723 if (cpuctx->exclusive)
724 return 0;
726 * If this group is exclusive and there are already
727 * events on the CPU, it can't go on.
729 if (event->attr.exclusive && cpuctx->active_oncpu)
730 return 0;
732 * Otherwise, try to add it if all previous groups were able
733 * to go on.
735 return can_add_hw;
738 static void add_event_to_ctx(struct perf_event *event,
739 struct perf_event_context *ctx)
741 list_add_event(event, ctx);
742 event->tstamp_enabled = ctx->time;
743 event->tstamp_running = ctx->time;
744 event->tstamp_stopped = ctx->time;
748 * Cross CPU call to install and enable a performance event
750 * Must be called with ctx->mutex held
752 static void __perf_install_in_context(void *info)
754 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
755 struct perf_event *event = info;
756 struct perf_event_context *ctx = event->ctx;
757 struct perf_event *leader = event->group_leader;
758 int cpu = smp_processor_id();
759 int err;
762 * If this is a task context, we need to check whether it is
763 * the current task context of this cpu. If not it has been
764 * scheduled out before the smp call arrived.
765 * Or possibly this is the right context but it isn't
766 * on this cpu because it had no events.
768 if (ctx->task && cpuctx->task_ctx != ctx) {
769 if (cpuctx->task_ctx || ctx->task != current)
770 return;
771 cpuctx->task_ctx = ctx;
774 raw_spin_lock(&ctx->lock);
775 ctx->is_active = 1;
776 update_context_time(ctx);
779 * Protect the list operation against NMI by disabling the
780 * events on a global level. NOP for non NMI based events.
782 perf_disable();
784 add_event_to_ctx(event, ctx);
786 if (event->cpu != -1 && event->cpu != smp_processor_id())
787 goto unlock;
790 * Don't put the event on if it is disabled or if
791 * it is in a group and the group isn't on.
793 if (event->state != PERF_EVENT_STATE_INACTIVE ||
794 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
795 goto unlock;
798 * An exclusive event can't go on if there are already active
799 * hardware events, and no hardware event can go on if there
800 * is already an exclusive event on.
802 if (!group_can_go_on(event, cpuctx, 1))
803 err = -EEXIST;
804 else
805 err = event_sched_in(event, cpuctx, ctx, cpu);
807 if (err) {
809 * This event couldn't go on. If it is in a group
810 * then we have to pull the whole group off.
811 * If the event group is pinned then put it in error state.
813 if (leader != event)
814 group_sched_out(leader, cpuctx, ctx);
815 if (leader->attr.pinned) {
816 update_group_times(leader);
817 leader->state = PERF_EVENT_STATE_ERROR;
821 if (!err && !ctx->task && cpuctx->max_pertask)
822 cpuctx->max_pertask--;
824 unlock:
825 perf_enable();
827 raw_spin_unlock(&ctx->lock);
831 * Attach a performance event to a context
833 * First we add the event to the list with the hardware enable bit
834 * in event->hw_config cleared.
836 * If the event is attached to a task which is on a CPU we use a smp
837 * call to enable it in the task context. The task might have been
838 * scheduled away, but we check this in the smp call again.
840 * Must be called with ctx->mutex held.
842 static void
843 perf_install_in_context(struct perf_event_context *ctx,
844 struct perf_event *event,
845 int cpu)
847 struct task_struct *task = ctx->task;
849 if (!task) {
851 * Per cpu events are installed via an smp call and
852 * the install is always successful.
854 smp_call_function_single(cpu, __perf_install_in_context,
855 event, 1);
856 return;
859 retry:
860 task_oncpu_function_call(task, __perf_install_in_context,
861 event);
863 raw_spin_lock_irq(&ctx->lock);
865 * we need to retry the smp call.
867 if (ctx->is_active && list_empty(&event->group_entry)) {
868 raw_spin_unlock_irq(&ctx->lock);
869 goto retry;
873 * The lock prevents that this context is scheduled in so we
874 * can add the event safely, if it the call above did not
875 * succeed.
877 if (list_empty(&event->group_entry))
878 add_event_to_ctx(event, ctx);
879 raw_spin_unlock_irq(&ctx->lock);
883 * Put a event into inactive state and update time fields.
884 * Enabling the leader of a group effectively enables all
885 * the group members that aren't explicitly disabled, so we
886 * have to update their ->tstamp_enabled also.
887 * Note: this works for group members as well as group leaders
888 * since the non-leader members' sibling_lists will be empty.
890 static void __perf_event_mark_enabled(struct perf_event *event,
891 struct perf_event_context *ctx)
893 struct perf_event *sub;
895 event->state = PERF_EVENT_STATE_INACTIVE;
896 event->tstamp_enabled = ctx->time - event->total_time_enabled;
897 list_for_each_entry(sub, &event->sibling_list, group_entry)
898 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
899 sub->tstamp_enabled =
900 ctx->time - sub->total_time_enabled;
904 * Cross CPU call to enable a performance event
906 static void __perf_event_enable(void *info)
908 struct perf_event *event = info;
909 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
910 struct perf_event_context *ctx = event->ctx;
911 struct perf_event *leader = event->group_leader;
912 int err;
915 * If this is a per-task event, need to check whether this
916 * event's task is the current task on this cpu.
918 if (ctx->task && cpuctx->task_ctx != ctx) {
919 if (cpuctx->task_ctx || ctx->task != current)
920 return;
921 cpuctx->task_ctx = ctx;
924 raw_spin_lock(&ctx->lock);
925 ctx->is_active = 1;
926 update_context_time(ctx);
928 if (event->state >= PERF_EVENT_STATE_INACTIVE)
929 goto unlock;
930 __perf_event_mark_enabled(event, ctx);
932 if (event->cpu != -1 && event->cpu != smp_processor_id())
933 goto unlock;
936 * If the event is in a group and isn't the group leader,
937 * then don't put it on unless the group is on.
939 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
940 goto unlock;
942 if (!group_can_go_on(event, cpuctx, 1)) {
943 err = -EEXIST;
944 } else {
945 perf_disable();
946 if (event == leader)
947 err = group_sched_in(event, cpuctx, ctx,
948 smp_processor_id());
949 else
950 err = event_sched_in(event, cpuctx, ctx,
951 smp_processor_id());
952 perf_enable();
955 if (err) {
957 * If this event can't go on and it's part of a
958 * group, then the whole group has to come off.
960 if (leader != event)
961 group_sched_out(leader, cpuctx, ctx);
962 if (leader->attr.pinned) {
963 update_group_times(leader);
964 leader->state = PERF_EVENT_STATE_ERROR;
968 unlock:
969 raw_spin_unlock(&ctx->lock);
973 * Enable a event.
975 * If event->ctx is a cloned context, callers must make sure that
976 * every task struct that event->ctx->task could possibly point to
977 * remains valid. This condition is satisfied when called through
978 * perf_event_for_each_child or perf_event_for_each as described
979 * for perf_event_disable.
981 void perf_event_enable(struct perf_event *event)
983 struct perf_event_context *ctx = event->ctx;
984 struct task_struct *task = ctx->task;
986 if (!task) {
988 * Enable the event on the cpu that it's on
990 smp_call_function_single(event->cpu, __perf_event_enable,
991 event, 1);
992 return;
995 raw_spin_lock_irq(&ctx->lock);
996 if (event->state >= PERF_EVENT_STATE_INACTIVE)
997 goto out;
1000 * If the event is in error state, clear that first.
1001 * That way, if we see the event in error state below, we
1002 * know that it has gone back into error state, as distinct
1003 * from the task having been scheduled away before the
1004 * cross-call arrived.
1006 if (event->state == PERF_EVENT_STATE_ERROR)
1007 event->state = PERF_EVENT_STATE_OFF;
1009 retry:
1010 raw_spin_unlock_irq(&ctx->lock);
1011 task_oncpu_function_call(task, __perf_event_enable, event);
1013 raw_spin_lock_irq(&ctx->lock);
1016 * If the context is active and the event is still off,
1017 * we need to retry the cross-call.
1019 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1020 goto retry;
1023 * Since we have the lock this context can't be scheduled
1024 * in, so we can change the state safely.
1026 if (event->state == PERF_EVENT_STATE_OFF)
1027 __perf_event_mark_enabled(event, ctx);
1029 out:
1030 raw_spin_unlock_irq(&ctx->lock);
1033 static int perf_event_refresh(struct perf_event *event, int refresh)
1036 * not supported on inherited events
1038 if (event->attr.inherit)
1039 return -EINVAL;
1041 atomic_add(refresh, &event->event_limit);
1042 perf_event_enable(event);
1044 return 0;
1047 void __perf_event_sched_out(struct perf_event_context *ctx,
1048 struct perf_cpu_context *cpuctx)
1050 struct perf_event *event;
1052 raw_spin_lock(&ctx->lock);
1053 ctx->is_active = 0;
1054 if (likely(!ctx->nr_events))
1055 goto out;
1056 update_context_time(ctx);
1058 perf_disable();
1059 if (ctx->nr_active) {
1060 list_for_each_entry(event, &ctx->group_list, group_entry)
1061 group_sched_out(event, cpuctx, ctx);
1063 perf_enable();
1064 out:
1065 raw_spin_unlock(&ctx->lock);
1069 * Test whether two contexts are equivalent, i.e. whether they
1070 * have both been cloned from the same version of the same context
1071 * and they both have the same number of enabled events.
1072 * If the number of enabled events is the same, then the set
1073 * of enabled events should be the same, because these are both
1074 * inherited contexts, therefore we can't access individual events
1075 * in them directly with an fd; we can only enable/disable all
1076 * events via prctl, or enable/disable all events in a family
1077 * via ioctl, which will have the same effect on both contexts.
1079 static int context_equiv(struct perf_event_context *ctx1,
1080 struct perf_event_context *ctx2)
1082 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1083 && ctx1->parent_gen == ctx2->parent_gen
1084 && !ctx1->pin_count && !ctx2->pin_count;
1087 static void __perf_event_sync_stat(struct perf_event *event,
1088 struct perf_event *next_event)
1090 u64 value;
1092 if (!event->attr.inherit_stat)
1093 return;
1096 * Update the event value, we cannot use perf_event_read()
1097 * because we're in the middle of a context switch and have IRQs
1098 * disabled, which upsets smp_call_function_single(), however
1099 * we know the event must be on the current CPU, therefore we
1100 * don't need to use it.
1102 switch (event->state) {
1103 case PERF_EVENT_STATE_ACTIVE:
1104 event->pmu->read(event);
1105 /* fall-through */
1107 case PERF_EVENT_STATE_INACTIVE:
1108 update_event_times(event);
1109 break;
1111 default:
1112 break;
1116 * In order to keep per-task stats reliable we need to flip the event
1117 * values when we flip the contexts.
1119 value = atomic64_read(&next_event->count);
1120 value = atomic64_xchg(&event->count, value);
1121 atomic64_set(&next_event->count, value);
1123 swap(event->total_time_enabled, next_event->total_time_enabled);
1124 swap(event->total_time_running, next_event->total_time_running);
1127 * Since we swizzled the values, update the user visible data too.
1129 perf_event_update_userpage(event);
1130 perf_event_update_userpage(next_event);
1133 #define list_next_entry(pos, member) \
1134 list_entry(pos->member.next, typeof(*pos), member)
1136 static void perf_event_sync_stat(struct perf_event_context *ctx,
1137 struct perf_event_context *next_ctx)
1139 struct perf_event *event, *next_event;
1141 if (!ctx->nr_stat)
1142 return;
1144 update_context_time(ctx);
1146 event = list_first_entry(&ctx->event_list,
1147 struct perf_event, event_entry);
1149 next_event = list_first_entry(&next_ctx->event_list,
1150 struct perf_event, event_entry);
1152 while (&event->event_entry != &ctx->event_list &&
1153 &next_event->event_entry != &next_ctx->event_list) {
1155 __perf_event_sync_stat(event, next_event);
1157 event = list_next_entry(event, event_entry);
1158 next_event = list_next_entry(next_event, event_entry);
1163 * Called from scheduler to remove the events of the current task,
1164 * with interrupts disabled.
1166 * We stop each event and update the event value in event->count.
1168 * This does not protect us against NMI, but disable()
1169 * sets the disabled bit in the control field of event _before_
1170 * accessing the event control register. If a NMI hits, then it will
1171 * not restart the event.
1173 void perf_event_task_sched_out(struct task_struct *task,
1174 struct task_struct *next, int cpu)
1176 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1177 struct perf_event_context *ctx = task->perf_event_ctxp;
1178 struct perf_event_context *next_ctx;
1179 struct perf_event_context *parent;
1180 struct pt_regs *regs;
1181 int do_switch = 1;
1183 regs = task_pt_regs(task);
1184 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1186 if (likely(!ctx || !cpuctx->task_ctx))
1187 return;
1189 rcu_read_lock();
1190 parent = rcu_dereference(ctx->parent_ctx);
1191 next_ctx = next->perf_event_ctxp;
1192 if (parent && next_ctx &&
1193 rcu_dereference(next_ctx->parent_ctx) == parent) {
1195 * Looks like the two contexts are clones, so we might be
1196 * able to optimize the context switch. We lock both
1197 * contexts and check that they are clones under the
1198 * lock (including re-checking that neither has been
1199 * uncloned in the meantime). It doesn't matter which
1200 * order we take the locks because no other cpu could
1201 * be trying to lock both of these tasks.
1203 raw_spin_lock(&ctx->lock);
1204 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1205 if (context_equiv(ctx, next_ctx)) {
1207 * XXX do we need a memory barrier of sorts
1208 * wrt to rcu_dereference() of perf_event_ctxp
1210 task->perf_event_ctxp = next_ctx;
1211 next->perf_event_ctxp = ctx;
1212 ctx->task = next;
1213 next_ctx->task = task;
1214 do_switch = 0;
1216 perf_event_sync_stat(ctx, next_ctx);
1218 raw_spin_unlock(&next_ctx->lock);
1219 raw_spin_unlock(&ctx->lock);
1221 rcu_read_unlock();
1223 if (do_switch) {
1224 __perf_event_sched_out(ctx, cpuctx);
1225 cpuctx->task_ctx = NULL;
1230 * Called with IRQs disabled
1232 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1234 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1236 if (!cpuctx->task_ctx)
1237 return;
1239 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1240 return;
1242 __perf_event_sched_out(ctx, cpuctx);
1243 cpuctx->task_ctx = NULL;
1247 * Called with IRQs disabled
1249 static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1251 __perf_event_sched_out(&cpuctx->ctx, cpuctx);
1254 static void
1255 __perf_event_sched_in(struct perf_event_context *ctx,
1256 struct perf_cpu_context *cpuctx, int cpu)
1258 struct perf_event *event;
1259 int can_add_hw = 1;
1261 raw_spin_lock(&ctx->lock);
1262 ctx->is_active = 1;
1263 if (likely(!ctx->nr_events))
1264 goto out;
1266 ctx->timestamp = perf_clock();
1268 perf_disable();
1271 * First go through the list and put on any pinned groups
1272 * in order to give them the best chance of going on.
1274 list_for_each_entry(event, &ctx->group_list, group_entry) {
1275 if (event->state <= PERF_EVENT_STATE_OFF ||
1276 !event->attr.pinned)
1277 continue;
1278 if (event->cpu != -1 && event->cpu != cpu)
1279 continue;
1281 if (group_can_go_on(event, cpuctx, 1))
1282 group_sched_in(event, cpuctx, ctx, cpu);
1285 * If this pinned group hasn't been scheduled,
1286 * put it in error state.
1288 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1289 update_group_times(event);
1290 event->state = PERF_EVENT_STATE_ERROR;
1294 list_for_each_entry(event, &ctx->group_list, group_entry) {
1296 * Ignore events in OFF or ERROR state, and
1297 * ignore pinned events since we did them already.
1299 if (event->state <= PERF_EVENT_STATE_OFF ||
1300 event->attr.pinned)
1301 continue;
1304 * Listen to the 'cpu' scheduling filter constraint
1305 * of events:
1307 if (event->cpu != -1 && event->cpu != cpu)
1308 continue;
1310 if (group_can_go_on(event, cpuctx, can_add_hw))
1311 if (group_sched_in(event, cpuctx, ctx, cpu))
1312 can_add_hw = 0;
1314 perf_enable();
1315 out:
1316 raw_spin_unlock(&ctx->lock);
1320 * Called from scheduler to add the events of the current task
1321 * with interrupts disabled.
1323 * We restore the event value and then enable it.
1325 * This does not protect us against NMI, but enable()
1326 * sets the enabled bit in the control field of event _before_
1327 * accessing the event control register. If a NMI hits, then it will
1328 * keep the event running.
1330 void perf_event_task_sched_in(struct task_struct *task, int cpu)
1332 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1333 struct perf_event_context *ctx = task->perf_event_ctxp;
1335 if (likely(!ctx))
1336 return;
1337 if (cpuctx->task_ctx == ctx)
1338 return;
1339 __perf_event_sched_in(ctx, cpuctx, cpu);
1340 cpuctx->task_ctx = ctx;
1343 static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1345 struct perf_event_context *ctx = &cpuctx->ctx;
1347 __perf_event_sched_in(ctx, cpuctx, cpu);
1350 #define MAX_INTERRUPTS (~0ULL)
1352 static void perf_log_throttle(struct perf_event *event, int enable);
1354 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1356 u64 frequency = event->attr.sample_freq;
1357 u64 sec = NSEC_PER_SEC;
1358 u64 divisor, dividend;
1360 int count_fls, nsec_fls, frequency_fls, sec_fls;
1362 count_fls = fls64(count);
1363 nsec_fls = fls64(nsec);
1364 frequency_fls = fls64(frequency);
1365 sec_fls = 30;
1368 * We got @count in @nsec, with a target of sample_freq HZ
1369 * the target period becomes:
1371 * @count * 10^9
1372 * period = -------------------
1373 * @nsec * sample_freq
1378 * Reduce accuracy by one bit such that @a and @b converge
1379 * to a similar magnitude.
1381 #define REDUCE_FLS(a, b) \
1382 do { \
1383 if (a##_fls > b##_fls) { \
1384 a >>= 1; \
1385 a##_fls--; \
1386 } else { \
1387 b >>= 1; \
1388 b##_fls--; \
1390 } while (0)
1393 * Reduce accuracy until either term fits in a u64, then proceed with
1394 * the other, so that finally we can do a u64/u64 division.
1396 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1397 REDUCE_FLS(nsec, frequency);
1398 REDUCE_FLS(sec, count);
1401 if (count_fls + sec_fls > 64) {
1402 divisor = nsec * frequency;
1404 while (count_fls + sec_fls > 64) {
1405 REDUCE_FLS(count, sec);
1406 divisor >>= 1;
1409 dividend = count * sec;
1410 } else {
1411 dividend = count * sec;
1413 while (nsec_fls + frequency_fls > 64) {
1414 REDUCE_FLS(nsec, frequency);
1415 dividend >>= 1;
1418 divisor = nsec * frequency;
1421 if (!divisor)
1422 return dividend;
1424 return div64_u64(dividend, divisor);
1427 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1429 struct hw_perf_event *hwc = &event->hw;
1430 s64 period, sample_period;
1431 s64 delta;
1433 period = perf_calculate_period(event, nsec, count);
1435 delta = (s64)(period - hwc->sample_period);
1436 delta = (delta + 7) / 8; /* low pass filter */
1438 sample_period = hwc->sample_period + delta;
1440 if (!sample_period)
1441 sample_period = 1;
1443 hwc->sample_period = sample_period;
1445 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1446 perf_disable();
1447 event->pmu->disable(event);
1448 atomic64_set(&hwc->period_left, 0);
1449 event->pmu->enable(event);
1450 perf_enable();
1454 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1456 struct perf_event *event;
1457 struct hw_perf_event *hwc;
1458 u64 interrupts, now;
1459 s64 delta;
1461 raw_spin_lock(&ctx->lock);
1462 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1463 if (event->state != PERF_EVENT_STATE_ACTIVE)
1464 continue;
1466 if (event->cpu != -1 && event->cpu != smp_processor_id())
1467 continue;
1469 hwc = &event->hw;
1471 interrupts = hwc->interrupts;
1472 hwc->interrupts = 0;
1475 * unthrottle events on the tick
1477 if (interrupts == MAX_INTERRUPTS) {
1478 perf_log_throttle(event, 1);
1479 event->pmu->unthrottle(event);
1482 if (!event->attr.freq || !event->attr.sample_freq)
1483 continue;
1485 event->pmu->read(event);
1486 now = atomic64_read(&event->count);
1487 delta = now - hwc->freq_count_stamp;
1488 hwc->freq_count_stamp = now;
1490 if (delta > 0)
1491 perf_adjust_period(event, TICK_NSEC, delta);
1493 raw_spin_unlock(&ctx->lock);
1497 * Round-robin a context's events:
1499 static void rotate_ctx(struct perf_event_context *ctx)
1501 struct perf_event *event;
1503 if (!ctx->nr_events)
1504 return;
1506 raw_spin_lock(&ctx->lock);
1508 * Rotate the first entry last (works just fine for group events too):
1510 perf_disable();
1511 list_for_each_entry(event, &ctx->group_list, group_entry) {
1512 list_move_tail(&event->group_entry, &ctx->group_list);
1513 break;
1515 perf_enable();
1517 raw_spin_unlock(&ctx->lock);
1520 void perf_event_task_tick(struct task_struct *curr, int cpu)
1522 struct perf_cpu_context *cpuctx;
1523 struct perf_event_context *ctx;
1525 if (!atomic_read(&nr_events))
1526 return;
1528 cpuctx = &per_cpu(perf_cpu_context, cpu);
1529 ctx = curr->perf_event_ctxp;
1531 perf_ctx_adjust_freq(&cpuctx->ctx);
1532 if (ctx)
1533 perf_ctx_adjust_freq(ctx);
1535 perf_event_cpu_sched_out(cpuctx);
1536 if (ctx)
1537 __perf_event_task_sched_out(ctx);
1539 rotate_ctx(&cpuctx->ctx);
1540 if (ctx)
1541 rotate_ctx(ctx);
1543 perf_event_cpu_sched_in(cpuctx, cpu);
1544 if (ctx)
1545 perf_event_task_sched_in(curr, cpu);
1549 * Enable all of a task's events that have been marked enable-on-exec.
1550 * This expects task == current.
1552 static void perf_event_enable_on_exec(struct task_struct *task)
1554 struct perf_event_context *ctx;
1555 struct perf_event *event;
1556 unsigned long flags;
1557 int enabled = 0;
1559 local_irq_save(flags);
1560 ctx = task->perf_event_ctxp;
1561 if (!ctx || !ctx->nr_events)
1562 goto out;
1564 __perf_event_task_sched_out(ctx);
1566 raw_spin_lock(&ctx->lock);
1568 list_for_each_entry(event, &ctx->group_list, group_entry) {
1569 if (!event->attr.enable_on_exec)
1570 continue;
1571 event->attr.enable_on_exec = 0;
1572 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1573 continue;
1574 __perf_event_mark_enabled(event, ctx);
1575 enabled = 1;
1579 * Unclone this context if we enabled any event.
1581 if (enabled)
1582 unclone_ctx(ctx);
1584 raw_spin_unlock(&ctx->lock);
1586 perf_event_task_sched_in(task, smp_processor_id());
1587 out:
1588 local_irq_restore(flags);
1592 * Cross CPU call to read the hardware event
1594 static void __perf_event_read(void *info)
1596 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1597 struct perf_event *event = info;
1598 struct perf_event_context *ctx = event->ctx;
1601 * If this is a task context, we need to check whether it is
1602 * the current task context of this cpu. If not it has been
1603 * scheduled out before the smp call arrived. In that case
1604 * event->count would have been updated to a recent sample
1605 * when the event was scheduled out.
1607 if (ctx->task && cpuctx->task_ctx != ctx)
1608 return;
1610 raw_spin_lock(&ctx->lock);
1611 update_context_time(ctx);
1612 update_event_times(event);
1613 raw_spin_unlock(&ctx->lock);
1615 event->pmu->read(event);
1618 static u64 perf_event_read(struct perf_event *event)
1621 * If event is enabled and currently active on a CPU, update the
1622 * value in the event structure:
1624 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1625 smp_call_function_single(event->oncpu,
1626 __perf_event_read, event, 1);
1627 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1628 struct perf_event_context *ctx = event->ctx;
1629 unsigned long flags;
1631 raw_spin_lock_irqsave(&ctx->lock, flags);
1632 update_context_time(ctx);
1633 update_event_times(event);
1634 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1637 return atomic64_read(&event->count);
1641 * Initialize the perf_event context in a task_struct:
1643 static void
1644 __perf_event_init_context(struct perf_event_context *ctx,
1645 struct task_struct *task)
1647 raw_spin_lock_init(&ctx->lock);
1648 mutex_init(&ctx->mutex);
1649 INIT_LIST_HEAD(&ctx->group_list);
1650 INIT_LIST_HEAD(&ctx->event_list);
1651 atomic_set(&ctx->refcount, 1);
1652 ctx->task = task;
1655 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1657 struct perf_event_context *ctx;
1658 struct perf_cpu_context *cpuctx;
1659 struct task_struct *task;
1660 unsigned long flags;
1661 int err;
1663 if (pid == -1 && cpu != -1) {
1664 /* Must be root to operate on a CPU event: */
1665 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1666 return ERR_PTR(-EACCES);
1668 if (cpu < 0 || cpu >= nr_cpumask_bits)
1669 return ERR_PTR(-EINVAL);
1672 * We could be clever and allow to attach a event to an
1673 * offline CPU and activate it when the CPU comes up, but
1674 * that's for later.
1676 if (!cpu_online(cpu))
1677 return ERR_PTR(-ENODEV);
1679 cpuctx = &per_cpu(perf_cpu_context, cpu);
1680 ctx = &cpuctx->ctx;
1681 get_ctx(ctx);
1683 return ctx;
1686 rcu_read_lock();
1687 if (!pid)
1688 task = current;
1689 else
1690 task = find_task_by_vpid(pid);
1691 if (task)
1692 get_task_struct(task);
1693 rcu_read_unlock();
1695 if (!task)
1696 return ERR_PTR(-ESRCH);
1699 * Can't attach events to a dying task.
1701 err = -ESRCH;
1702 if (task->flags & PF_EXITING)
1703 goto errout;
1705 /* Reuse ptrace permission checks for now. */
1706 err = -EACCES;
1707 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1708 goto errout;
1710 retry:
1711 ctx = perf_lock_task_context(task, &flags);
1712 if (ctx) {
1713 unclone_ctx(ctx);
1714 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1717 if (!ctx) {
1718 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1719 err = -ENOMEM;
1720 if (!ctx)
1721 goto errout;
1722 __perf_event_init_context(ctx, task);
1723 get_ctx(ctx);
1724 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1726 * We raced with some other task; use
1727 * the context they set.
1729 kfree(ctx);
1730 goto retry;
1732 get_task_struct(task);
1735 put_task_struct(task);
1736 return ctx;
1738 errout:
1739 put_task_struct(task);
1740 return ERR_PTR(err);
1743 static void perf_event_free_filter(struct perf_event *event);
1745 static void free_event_rcu(struct rcu_head *head)
1747 struct perf_event *event;
1749 event = container_of(head, struct perf_event, rcu_head);
1750 if (event->ns)
1751 put_pid_ns(event->ns);
1752 perf_event_free_filter(event);
1753 kfree(event);
1756 static void perf_pending_sync(struct perf_event *event);
1758 static void free_event(struct perf_event *event)
1760 perf_pending_sync(event);
1762 if (!event->parent) {
1763 atomic_dec(&nr_events);
1764 if (event->attr.mmap)
1765 atomic_dec(&nr_mmap_events);
1766 if (event->attr.comm)
1767 atomic_dec(&nr_comm_events);
1768 if (event->attr.task)
1769 atomic_dec(&nr_task_events);
1772 if (event->output) {
1773 fput(event->output->filp);
1774 event->output = NULL;
1777 if (event->destroy)
1778 event->destroy(event);
1780 put_ctx(event->ctx);
1781 call_rcu(&event->rcu_head, free_event_rcu);
1784 int perf_event_release_kernel(struct perf_event *event)
1786 struct perf_event_context *ctx = event->ctx;
1788 WARN_ON_ONCE(ctx->parent_ctx);
1789 mutex_lock(&ctx->mutex);
1790 perf_event_remove_from_context(event);
1791 mutex_unlock(&ctx->mutex);
1793 mutex_lock(&event->owner->perf_event_mutex);
1794 list_del_init(&event->owner_entry);
1795 mutex_unlock(&event->owner->perf_event_mutex);
1796 put_task_struct(event->owner);
1798 free_event(event);
1800 return 0;
1802 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1805 * Called when the last reference to the file is gone.
1807 static int perf_release(struct inode *inode, struct file *file)
1809 struct perf_event *event = file->private_data;
1811 file->private_data = NULL;
1813 return perf_event_release_kernel(event);
1816 static int perf_event_read_size(struct perf_event *event)
1818 int entry = sizeof(u64); /* value */
1819 int size = 0;
1820 int nr = 1;
1822 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1823 size += sizeof(u64);
1825 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1826 size += sizeof(u64);
1828 if (event->attr.read_format & PERF_FORMAT_ID)
1829 entry += sizeof(u64);
1831 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1832 nr += event->group_leader->nr_siblings;
1833 size += sizeof(u64);
1836 size += entry * nr;
1838 return size;
1841 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1843 struct perf_event *child;
1844 u64 total = 0;
1846 *enabled = 0;
1847 *running = 0;
1849 mutex_lock(&event->child_mutex);
1850 total += perf_event_read(event);
1851 *enabled += event->total_time_enabled +
1852 atomic64_read(&event->child_total_time_enabled);
1853 *running += event->total_time_running +
1854 atomic64_read(&event->child_total_time_running);
1856 list_for_each_entry(child, &event->child_list, child_list) {
1857 total += perf_event_read(child);
1858 *enabled += child->total_time_enabled;
1859 *running += child->total_time_running;
1861 mutex_unlock(&event->child_mutex);
1863 return total;
1865 EXPORT_SYMBOL_GPL(perf_event_read_value);
1867 static int perf_event_read_group(struct perf_event *event,
1868 u64 read_format, char __user *buf)
1870 struct perf_event *leader = event->group_leader, *sub;
1871 int n = 0, size = 0, ret = -EFAULT;
1872 struct perf_event_context *ctx = leader->ctx;
1873 u64 values[5];
1874 u64 count, enabled, running;
1876 mutex_lock(&ctx->mutex);
1877 count = perf_event_read_value(leader, &enabled, &running);
1879 values[n++] = 1 + leader->nr_siblings;
1880 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1881 values[n++] = enabled;
1882 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1883 values[n++] = running;
1884 values[n++] = count;
1885 if (read_format & PERF_FORMAT_ID)
1886 values[n++] = primary_event_id(leader);
1888 size = n * sizeof(u64);
1890 if (copy_to_user(buf, values, size))
1891 goto unlock;
1893 ret = size;
1895 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1896 n = 0;
1898 values[n++] = perf_event_read_value(sub, &enabled, &running);
1899 if (read_format & PERF_FORMAT_ID)
1900 values[n++] = primary_event_id(sub);
1902 size = n * sizeof(u64);
1904 if (copy_to_user(buf + ret, values, size)) {
1905 ret = -EFAULT;
1906 goto unlock;
1909 ret += size;
1911 unlock:
1912 mutex_unlock(&ctx->mutex);
1914 return ret;
1917 static int perf_event_read_one(struct perf_event *event,
1918 u64 read_format, char __user *buf)
1920 u64 enabled, running;
1921 u64 values[4];
1922 int n = 0;
1924 values[n++] = perf_event_read_value(event, &enabled, &running);
1925 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1926 values[n++] = enabled;
1927 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1928 values[n++] = running;
1929 if (read_format & PERF_FORMAT_ID)
1930 values[n++] = primary_event_id(event);
1932 if (copy_to_user(buf, values, n * sizeof(u64)))
1933 return -EFAULT;
1935 return n * sizeof(u64);
1939 * Read the performance event - simple non blocking version for now
1941 static ssize_t
1942 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
1944 u64 read_format = event->attr.read_format;
1945 int ret;
1948 * Return end-of-file for a read on a event that is in
1949 * error state (i.e. because it was pinned but it couldn't be
1950 * scheduled on to the CPU at some point).
1952 if (event->state == PERF_EVENT_STATE_ERROR)
1953 return 0;
1955 if (count < perf_event_read_size(event))
1956 return -ENOSPC;
1958 WARN_ON_ONCE(event->ctx->parent_ctx);
1959 if (read_format & PERF_FORMAT_GROUP)
1960 ret = perf_event_read_group(event, read_format, buf);
1961 else
1962 ret = perf_event_read_one(event, read_format, buf);
1964 return ret;
1967 static ssize_t
1968 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1970 struct perf_event *event = file->private_data;
1972 return perf_read_hw(event, buf, count);
1975 static unsigned int perf_poll(struct file *file, poll_table *wait)
1977 struct perf_event *event = file->private_data;
1978 struct perf_mmap_data *data;
1979 unsigned int events = POLL_HUP;
1981 rcu_read_lock();
1982 data = rcu_dereference(event->data);
1983 if (data)
1984 events = atomic_xchg(&data->poll, 0);
1985 rcu_read_unlock();
1987 poll_wait(file, &event->waitq, wait);
1989 return events;
1992 static void perf_event_reset(struct perf_event *event)
1994 (void)perf_event_read(event);
1995 atomic64_set(&event->count, 0);
1996 perf_event_update_userpage(event);
2000 * Holding the top-level event's child_mutex means that any
2001 * descendant process that has inherited this event will block
2002 * in sync_child_event if it goes to exit, thus satisfying the
2003 * task existence requirements of perf_event_enable/disable.
2005 static void perf_event_for_each_child(struct perf_event *event,
2006 void (*func)(struct perf_event *))
2008 struct perf_event *child;
2010 WARN_ON_ONCE(event->ctx->parent_ctx);
2011 mutex_lock(&event->child_mutex);
2012 func(event);
2013 list_for_each_entry(child, &event->child_list, child_list)
2014 func(child);
2015 mutex_unlock(&event->child_mutex);
2018 static void perf_event_for_each(struct perf_event *event,
2019 void (*func)(struct perf_event *))
2021 struct perf_event_context *ctx = event->ctx;
2022 struct perf_event *sibling;
2024 WARN_ON_ONCE(ctx->parent_ctx);
2025 mutex_lock(&ctx->mutex);
2026 event = event->group_leader;
2028 perf_event_for_each_child(event, func);
2029 func(event);
2030 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2031 perf_event_for_each_child(event, func);
2032 mutex_unlock(&ctx->mutex);
2035 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2037 struct perf_event_context *ctx = event->ctx;
2038 unsigned long size;
2039 int ret = 0;
2040 u64 value;
2042 if (!event->attr.sample_period)
2043 return -EINVAL;
2045 size = copy_from_user(&value, arg, sizeof(value));
2046 if (size != sizeof(value))
2047 return -EFAULT;
2049 if (!value)
2050 return -EINVAL;
2052 raw_spin_lock_irq(&ctx->lock);
2053 if (event->attr.freq) {
2054 if (value > sysctl_perf_event_sample_rate) {
2055 ret = -EINVAL;
2056 goto unlock;
2059 event->attr.sample_freq = value;
2060 } else {
2061 event->attr.sample_period = value;
2062 event->hw.sample_period = value;
2064 unlock:
2065 raw_spin_unlock_irq(&ctx->lock);
2067 return ret;
2070 static int perf_event_set_output(struct perf_event *event, int output_fd);
2071 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2073 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2075 struct perf_event *event = file->private_data;
2076 void (*func)(struct perf_event *);
2077 u32 flags = arg;
2079 switch (cmd) {
2080 case PERF_EVENT_IOC_ENABLE:
2081 func = perf_event_enable;
2082 break;
2083 case PERF_EVENT_IOC_DISABLE:
2084 func = perf_event_disable;
2085 break;
2086 case PERF_EVENT_IOC_RESET:
2087 func = perf_event_reset;
2088 break;
2090 case PERF_EVENT_IOC_REFRESH:
2091 return perf_event_refresh(event, arg);
2093 case PERF_EVENT_IOC_PERIOD:
2094 return perf_event_period(event, (u64 __user *)arg);
2096 case PERF_EVENT_IOC_SET_OUTPUT:
2097 return perf_event_set_output(event, arg);
2099 case PERF_EVENT_IOC_SET_FILTER:
2100 return perf_event_set_filter(event, (void __user *)arg);
2102 default:
2103 return -ENOTTY;
2106 if (flags & PERF_IOC_FLAG_GROUP)
2107 perf_event_for_each(event, func);
2108 else
2109 perf_event_for_each_child(event, func);
2111 return 0;
2114 int perf_event_task_enable(void)
2116 struct perf_event *event;
2118 mutex_lock(&current->perf_event_mutex);
2119 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2120 perf_event_for_each_child(event, perf_event_enable);
2121 mutex_unlock(&current->perf_event_mutex);
2123 return 0;
2126 int perf_event_task_disable(void)
2128 struct perf_event *event;
2130 mutex_lock(&current->perf_event_mutex);
2131 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2132 perf_event_for_each_child(event, perf_event_disable);
2133 mutex_unlock(&current->perf_event_mutex);
2135 return 0;
2138 #ifndef PERF_EVENT_INDEX_OFFSET
2139 # define PERF_EVENT_INDEX_OFFSET 0
2140 #endif
2142 static int perf_event_index(struct perf_event *event)
2144 if (event->state != PERF_EVENT_STATE_ACTIVE)
2145 return 0;
2147 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2151 * Callers need to ensure there can be no nesting of this function, otherwise
2152 * the seqlock logic goes bad. We can not serialize this because the arch
2153 * code calls this from NMI context.
2155 void perf_event_update_userpage(struct perf_event *event)
2157 struct perf_event_mmap_page *userpg;
2158 struct perf_mmap_data *data;
2160 rcu_read_lock();
2161 data = rcu_dereference(event->data);
2162 if (!data)
2163 goto unlock;
2165 userpg = data->user_page;
2168 * Disable preemption so as to not let the corresponding user-space
2169 * spin too long if we get preempted.
2171 preempt_disable();
2172 ++userpg->lock;
2173 barrier();
2174 userpg->index = perf_event_index(event);
2175 userpg->offset = atomic64_read(&event->count);
2176 if (event->state == PERF_EVENT_STATE_ACTIVE)
2177 userpg->offset -= atomic64_read(&event->hw.prev_count);
2179 userpg->time_enabled = event->total_time_enabled +
2180 atomic64_read(&event->child_total_time_enabled);
2182 userpg->time_running = event->total_time_running +
2183 atomic64_read(&event->child_total_time_running);
2185 barrier();
2186 ++userpg->lock;
2187 preempt_enable();
2188 unlock:
2189 rcu_read_unlock();
2192 static unsigned long perf_data_size(struct perf_mmap_data *data)
2194 return data->nr_pages << (PAGE_SHIFT + data->data_order);
2197 #ifndef CONFIG_PERF_USE_VMALLOC
2200 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2203 static struct page *
2204 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2206 if (pgoff > data->nr_pages)
2207 return NULL;
2209 if (pgoff == 0)
2210 return virt_to_page(data->user_page);
2212 return virt_to_page(data->data_pages[pgoff - 1]);
2215 static struct perf_mmap_data *
2216 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2218 struct perf_mmap_data *data;
2219 unsigned long size;
2220 int i;
2222 WARN_ON(atomic_read(&event->mmap_count));
2224 size = sizeof(struct perf_mmap_data);
2225 size += nr_pages * sizeof(void *);
2227 data = kzalloc(size, GFP_KERNEL);
2228 if (!data)
2229 goto fail;
2231 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2232 if (!data->user_page)
2233 goto fail_user_page;
2235 for (i = 0; i < nr_pages; i++) {
2236 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2237 if (!data->data_pages[i])
2238 goto fail_data_pages;
2241 data->data_order = 0;
2242 data->nr_pages = nr_pages;
2244 return data;
2246 fail_data_pages:
2247 for (i--; i >= 0; i--)
2248 free_page((unsigned long)data->data_pages[i]);
2250 free_page((unsigned long)data->user_page);
2252 fail_user_page:
2253 kfree(data);
2255 fail:
2256 return NULL;
2259 static void perf_mmap_free_page(unsigned long addr)
2261 struct page *page = virt_to_page((void *)addr);
2263 page->mapping = NULL;
2264 __free_page(page);
2267 static void perf_mmap_data_free(struct perf_mmap_data *data)
2269 int i;
2271 perf_mmap_free_page((unsigned long)data->user_page);
2272 for (i = 0; i < data->nr_pages; i++)
2273 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2274 kfree(data);
2277 #else
2280 * Back perf_mmap() with vmalloc memory.
2282 * Required for architectures that have d-cache aliasing issues.
2285 static struct page *
2286 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2288 if (pgoff > (1UL << data->data_order))
2289 return NULL;
2291 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2294 static void perf_mmap_unmark_page(void *addr)
2296 struct page *page = vmalloc_to_page(addr);
2298 page->mapping = NULL;
2301 static void perf_mmap_data_free_work(struct work_struct *work)
2303 struct perf_mmap_data *data;
2304 void *base;
2305 int i, nr;
2307 data = container_of(work, struct perf_mmap_data, work);
2308 nr = 1 << data->data_order;
2310 base = data->user_page;
2311 for (i = 0; i < nr + 1; i++)
2312 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2314 vfree(base);
2315 kfree(data);
2318 static void perf_mmap_data_free(struct perf_mmap_data *data)
2320 schedule_work(&data->work);
2323 static struct perf_mmap_data *
2324 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2326 struct perf_mmap_data *data;
2327 unsigned long size;
2328 void *all_buf;
2330 WARN_ON(atomic_read(&event->mmap_count));
2332 size = sizeof(struct perf_mmap_data);
2333 size += sizeof(void *);
2335 data = kzalloc(size, GFP_KERNEL);
2336 if (!data)
2337 goto fail;
2339 INIT_WORK(&data->work, perf_mmap_data_free_work);
2341 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2342 if (!all_buf)
2343 goto fail_all_buf;
2345 data->user_page = all_buf;
2346 data->data_pages[0] = all_buf + PAGE_SIZE;
2347 data->data_order = ilog2(nr_pages);
2348 data->nr_pages = 1;
2350 return data;
2352 fail_all_buf:
2353 kfree(data);
2355 fail:
2356 return NULL;
2359 #endif
2361 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2363 struct perf_event *event = vma->vm_file->private_data;
2364 struct perf_mmap_data *data;
2365 int ret = VM_FAULT_SIGBUS;
2367 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2368 if (vmf->pgoff == 0)
2369 ret = 0;
2370 return ret;
2373 rcu_read_lock();
2374 data = rcu_dereference(event->data);
2375 if (!data)
2376 goto unlock;
2378 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2379 goto unlock;
2381 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2382 if (!vmf->page)
2383 goto unlock;
2385 get_page(vmf->page);
2386 vmf->page->mapping = vma->vm_file->f_mapping;
2387 vmf->page->index = vmf->pgoff;
2389 ret = 0;
2390 unlock:
2391 rcu_read_unlock();
2393 return ret;
2396 static void
2397 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2399 long max_size = perf_data_size(data);
2401 atomic_set(&data->lock, -1);
2403 if (event->attr.watermark) {
2404 data->watermark = min_t(long, max_size,
2405 event->attr.wakeup_watermark);
2408 if (!data->watermark)
2409 data->watermark = max_size / 2;
2412 rcu_assign_pointer(event->data, data);
2415 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2417 struct perf_mmap_data *data;
2419 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2420 perf_mmap_data_free(data);
2423 static void perf_mmap_data_release(struct perf_event *event)
2425 struct perf_mmap_data *data = event->data;
2427 WARN_ON(atomic_read(&event->mmap_count));
2429 rcu_assign_pointer(event->data, NULL);
2430 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2433 static void perf_mmap_open(struct vm_area_struct *vma)
2435 struct perf_event *event = vma->vm_file->private_data;
2437 atomic_inc(&event->mmap_count);
2440 static void perf_mmap_close(struct vm_area_struct *vma)
2442 struct perf_event *event = vma->vm_file->private_data;
2444 WARN_ON_ONCE(event->ctx->parent_ctx);
2445 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2446 unsigned long size = perf_data_size(event->data);
2447 struct user_struct *user = current_user();
2449 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2450 vma->vm_mm->locked_vm -= event->data->nr_locked;
2451 perf_mmap_data_release(event);
2452 mutex_unlock(&event->mmap_mutex);
2456 static const struct vm_operations_struct perf_mmap_vmops = {
2457 .open = perf_mmap_open,
2458 .close = perf_mmap_close,
2459 .fault = perf_mmap_fault,
2460 .page_mkwrite = perf_mmap_fault,
2463 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2465 struct perf_event *event = file->private_data;
2466 unsigned long user_locked, user_lock_limit;
2467 struct user_struct *user = current_user();
2468 unsigned long locked, lock_limit;
2469 struct perf_mmap_data *data;
2470 unsigned long vma_size;
2471 unsigned long nr_pages;
2472 long user_extra, extra;
2473 int ret = 0;
2475 if (!(vma->vm_flags & VM_SHARED))
2476 return -EINVAL;
2478 vma_size = vma->vm_end - vma->vm_start;
2479 nr_pages = (vma_size / PAGE_SIZE) - 1;
2482 * If we have data pages ensure they're a power-of-two number, so we
2483 * can do bitmasks instead of modulo.
2485 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2486 return -EINVAL;
2488 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2489 return -EINVAL;
2491 if (vma->vm_pgoff != 0)
2492 return -EINVAL;
2494 WARN_ON_ONCE(event->ctx->parent_ctx);
2495 mutex_lock(&event->mmap_mutex);
2496 if (event->output) {
2497 ret = -EINVAL;
2498 goto unlock;
2501 if (atomic_inc_not_zero(&event->mmap_count)) {
2502 if (nr_pages != event->data->nr_pages)
2503 ret = -EINVAL;
2504 goto unlock;
2507 user_extra = nr_pages + 1;
2508 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2511 * Increase the limit linearly with more CPUs:
2513 user_lock_limit *= num_online_cpus();
2515 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2517 extra = 0;
2518 if (user_locked > user_lock_limit)
2519 extra = user_locked - user_lock_limit;
2521 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2522 lock_limit >>= PAGE_SHIFT;
2523 locked = vma->vm_mm->locked_vm + extra;
2525 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2526 !capable(CAP_IPC_LOCK)) {
2527 ret = -EPERM;
2528 goto unlock;
2531 WARN_ON(event->data);
2533 data = perf_mmap_data_alloc(event, nr_pages);
2534 ret = -ENOMEM;
2535 if (!data)
2536 goto unlock;
2538 ret = 0;
2539 perf_mmap_data_init(event, data);
2541 atomic_set(&event->mmap_count, 1);
2542 atomic_long_add(user_extra, &user->locked_vm);
2543 vma->vm_mm->locked_vm += extra;
2544 event->data->nr_locked = extra;
2545 if (vma->vm_flags & VM_WRITE)
2546 event->data->writable = 1;
2548 unlock:
2549 mutex_unlock(&event->mmap_mutex);
2551 vma->vm_flags |= VM_RESERVED;
2552 vma->vm_ops = &perf_mmap_vmops;
2554 return ret;
2557 static int perf_fasync(int fd, struct file *filp, int on)
2559 struct inode *inode = filp->f_path.dentry->d_inode;
2560 struct perf_event *event = filp->private_data;
2561 int retval;
2563 mutex_lock(&inode->i_mutex);
2564 retval = fasync_helper(fd, filp, on, &event->fasync);
2565 mutex_unlock(&inode->i_mutex);
2567 if (retval < 0)
2568 return retval;
2570 return 0;
2573 static const struct file_operations perf_fops = {
2574 .release = perf_release,
2575 .read = perf_read,
2576 .poll = perf_poll,
2577 .unlocked_ioctl = perf_ioctl,
2578 .compat_ioctl = perf_ioctl,
2579 .mmap = perf_mmap,
2580 .fasync = perf_fasync,
2584 * Perf event wakeup
2586 * If there's data, ensure we set the poll() state and publish everything
2587 * to user-space before waking everybody up.
2590 void perf_event_wakeup(struct perf_event *event)
2592 wake_up_all(&event->waitq);
2594 if (event->pending_kill) {
2595 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2596 event->pending_kill = 0;
2601 * Pending wakeups
2603 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2605 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2606 * single linked list and use cmpxchg() to add entries lockless.
2609 static void perf_pending_event(struct perf_pending_entry *entry)
2611 struct perf_event *event = container_of(entry,
2612 struct perf_event, pending);
2614 if (event->pending_disable) {
2615 event->pending_disable = 0;
2616 __perf_event_disable(event);
2619 if (event->pending_wakeup) {
2620 event->pending_wakeup = 0;
2621 perf_event_wakeup(event);
2625 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2627 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2628 PENDING_TAIL,
2631 static void perf_pending_queue(struct perf_pending_entry *entry,
2632 void (*func)(struct perf_pending_entry *))
2634 struct perf_pending_entry **head;
2636 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2637 return;
2639 entry->func = func;
2641 head = &get_cpu_var(perf_pending_head);
2643 do {
2644 entry->next = *head;
2645 } while (cmpxchg(head, entry->next, entry) != entry->next);
2647 set_perf_event_pending();
2649 put_cpu_var(perf_pending_head);
2652 static int __perf_pending_run(void)
2654 struct perf_pending_entry *list;
2655 int nr = 0;
2657 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2658 while (list != PENDING_TAIL) {
2659 void (*func)(struct perf_pending_entry *);
2660 struct perf_pending_entry *entry = list;
2662 list = list->next;
2664 func = entry->func;
2665 entry->next = NULL;
2667 * Ensure we observe the unqueue before we issue the wakeup,
2668 * so that we won't be waiting forever.
2669 * -- see perf_not_pending().
2671 smp_wmb();
2673 func(entry);
2674 nr++;
2677 return nr;
2680 static inline int perf_not_pending(struct perf_event *event)
2683 * If we flush on whatever cpu we run, there is a chance we don't
2684 * need to wait.
2686 get_cpu();
2687 __perf_pending_run();
2688 put_cpu();
2691 * Ensure we see the proper queue state before going to sleep
2692 * so that we do not miss the wakeup. -- see perf_pending_handle()
2694 smp_rmb();
2695 return event->pending.next == NULL;
2698 static void perf_pending_sync(struct perf_event *event)
2700 wait_event(event->waitq, perf_not_pending(event));
2703 void perf_event_do_pending(void)
2705 __perf_pending_run();
2709 * Callchain support -- arch specific
2712 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2714 return NULL;
2718 * Output
2720 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2721 unsigned long offset, unsigned long head)
2723 unsigned long mask;
2725 if (!data->writable)
2726 return true;
2728 mask = perf_data_size(data) - 1;
2730 offset = (offset - tail) & mask;
2731 head = (head - tail) & mask;
2733 if ((int)(head - offset) < 0)
2734 return false;
2736 return true;
2739 static void perf_output_wakeup(struct perf_output_handle *handle)
2741 atomic_set(&handle->data->poll, POLL_IN);
2743 if (handle->nmi) {
2744 handle->event->pending_wakeup = 1;
2745 perf_pending_queue(&handle->event->pending,
2746 perf_pending_event);
2747 } else
2748 perf_event_wakeup(handle->event);
2752 * Curious locking construct.
2754 * We need to ensure a later event_id doesn't publish a head when a former
2755 * event_id isn't done writing. However since we need to deal with NMIs we
2756 * cannot fully serialize things.
2758 * What we do is serialize between CPUs so we only have to deal with NMI
2759 * nesting on a single CPU.
2761 * We only publish the head (and generate a wakeup) when the outer-most
2762 * event_id completes.
2764 static void perf_output_lock(struct perf_output_handle *handle)
2766 struct perf_mmap_data *data = handle->data;
2767 int cur, cpu = get_cpu();
2769 handle->locked = 0;
2771 for (;;) {
2772 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2773 if (cur == -1) {
2774 handle->locked = 1;
2775 break;
2777 if (cur == cpu)
2778 break;
2780 cpu_relax();
2784 static void perf_output_unlock(struct perf_output_handle *handle)
2786 struct perf_mmap_data *data = handle->data;
2787 unsigned long head;
2788 int cpu;
2790 data->done_head = data->head;
2792 if (!handle->locked)
2793 goto out;
2795 again:
2797 * The xchg implies a full barrier that ensures all writes are done
2798 * before we publish the new head, matched by a rmb() in userspace when
2799 * reading this position.
2801 while ((head = atomic_long_xchg(&data->done_head, 0)))
2802 data->user_page->data_head = head;
2805 * NMI can happen here, which means we can miss a done_head update.
2808 cpu = atomic_xchg(&data->lock, -1);
2809 WARN_ON_ONCE(cpu != smp_processor_id());
2812 * Therefore we have to validate we did not indeed do so.
2814 if (unlikely(atomic_long_read(&data->done_head))) {
2816 * Since we had it locked, we can lock it again.
2818 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2819 cpu_relax();
2821 goto again;
2824 if (atomic_xchg(&data->wakeup, 0))
2825 perf_output_wakeup(handle);
2826 out:
2827 put_cpu();
2830 void perf_output_copy(struct perf_output_handle *handle,
2831 const void *buf, unsigned int len)
2833 unsigned int pages_mask;
2834 unsigned long offset;
2835 unsigned int size;
2836 void **pages;
2838 offset = handle->offset;
2839 pages_mask = handle->data->nr_pages - 1;
2840 pages = handle->data->data_pages;
2842 do {
2843 unsigned long page_offset;
2844 unsigned long page_size;
2845 int nr;
2847 nr = (offset >> PAGE_SHIFT) & pages_mask;
2848 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2849 page_offset = offset & (page_size - 1);
2850 size = min_t(unsigned int, page_size - page_offset, len);
2852 memcpy(pages[nr] + page_offset, buf, size);
2854 len -= size;
2855 buf += size;
2856 offset += size;
2857 } while (len);
2859 handle->offset = offset;
2862 * Check we didn't copy past our reservation window, taking the
2863 * possible unsigned int wrap into account.
2865 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2868 int perf_output_begin(struct perf_output_handle *handle,
2869 struct perf_event *event, unsigned int size,
2870 int nmi, int sample)
2872 struct perf_event *output_event;
2873 struct perf_mmap_data *data;
2874 unsigned long tail, offset, head;
2875 int have_lost;
2876 struct {
2877 struct perf_event_header header;
2878 u64 id;
2879 u64 lost;
2880 } lost_event;
2882 rcu_read_lock();
2884 * For inherited events we send all the output towards the parent.
2886 if (event->parent)
2887 event = event->parent;
2889 output_event = rcu_dereference(event->output);
2890 if (output_event)
2891 event = output_event;
2893 data = rcu_dereference(event->data);
2894 if (!data)
2895 goto out;
2897 handle->data = data;
2898 handle->event = event;
2899 handle->nmi = nmi;
2900 handle->sample = sample;
2902 if (!data->nr_pages)
2903 goto fail;
2905 have_lost = atomic_read(&data->lost);
2906 if (have_lost)
2907 size += sizeof(lost_event);
2909 perf_output_lock(handle);
2911 do {
2913 * Userspace could choose to issue a mb() before updating the
2914 * tail pointer. So that all reads will be completed before the
2915 * write is issued.
2917 tail = ACCESS_ONCE(data->user_page->data_tail);
2918 smp_rmb();
2919 offset = head = atomic_long_read(&data->head);
2920 head += size;
2921 if (unlikely(!perf_output_space(data, tail, offset, head)))
2922 goto fail;
2923 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2925 handle->offset = offset;
2926 handle->head = head;
2928 if (head - tail > data->watermark)
2929 atomic_set(&data->wakeup, 1);
2931 if (have_lost) {
2932 lost_event.header.type = PERF_RECORD_LOST;
2933 lost_event.header.misc = 0;
2934 lost_event.header.size = sizeof(lost_event);
2935 lost_event.id = event->id;
2936 lost_event.lost = atomic_xchg(&data->lost, 0);
2938 perf_output_put(handle, lost_event);
2941 return 0;
2943 fail:
2944 atomic_inc(&data->lost);
2945 perf_output_unlock(handle);
2946 out:
2947 rcu_read_unlock();
2949 return -ENOSPC;
2952 void perf_output_end(struct perf_output_handle *handle)
2954 struct perf_event *event = handle->event;
2955 struct perf_mmap_data *data = handle->data;
2957 int wakeup_events = event->attr.wakeup_events;
2959 if (handle->sample && wakeup_events) {
2960 int events = atomic_inc_return(&data->events);
2961 if (events >= wakeup_events) {
2962 atomic_sub(wakeup_events, &data->events);
2963 atomic_set(&data->wakeup, 1);
2967 perf_output_unlock(handle);
2968 rcu_read_unlock();
2971 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2974 * only top level events have the pid namespace they were created in
2976 if (event->parent)
2977 event = event->parent;
2979 return task_tgid_nr_ns(p, event->ns);
2982 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2985 * only top level events have the pid namespace they were created in
2987 if (event->parent)
2988 event = event->parent;
2990 return task_pid_nr_ns(p, event->ns);
2993 static void perf_output_read_one(struct perf_output_handle *handle,
2994 struct perf_event *event)
2996 u64 read_format = event->attr.read_format;
2997 u64 values[4];
2998 int n = 0;
3000 values[n++] = atomic64_read(&event->count);
3001 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3002 values[n++] = event->total_time_enabled +
3003 atomic64_read(&event->child_total_time_enabled);
3005 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3006 values[n++] = event->total_time_running +
3007 atomic64_read(&event->child_total_time_running);
3009 if (read_format & PERF_FORMAT_ID)
3010 values[n++] = primary_event_id(event);
3012 perf_output_copy(handle, values, n * sizeof(u64));
3016 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3018 static void perf_output_read_group(struct perf_output_handle *handle,
3019 struct perf_event *event)
3021 struct perf_event *leader = event->group_leader, *sub;
3022 u64 read_format = event->attr.read_format;
3023 u64 values[5];
3024 int n = 0;
3026 values[n++] = 1 + leader->nr_siblings;
3028 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3029 values[n++] = leader->total_time_enabled;
3031 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3032 values[n++] = leader->total_time_running;
3034 if (leader != event)
3035 leader->pmu->read(leader);
3037 values[n++] = atomic64_read(&leader->count);
3038 if (read_format & PERF_FORMAT_ID)
3039 values[n++] = primary_event_id(leader);
3041 perf_output_copy(handle, values, n * sizeof(u64));
3043 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3044 n = 0;
3046 if (sub != event)
3047 sub->pmu->read(sub);
3049 values[n++] = atomic64_read(&sub->count);
3050 if (read_format & PERF_FORMAT_ID)
3051 values[n++] = primary_event_id(sub);
3053 perf_output_copy(handle, values, n * sizeof(u64));
3057 static void perf_output_read(struct perf_output_handle *handle,
3058 struct perf_event *event)
3060 if (event->attr.read_format & PERF_FORMAT_GROUP)
3061 perf_output_read_group(handle, event);
3062 else
3063 perf_output_read_one(handle, event);
3066 void perf_output_sample(struct perf_output_handle *handle,
3067 struct perf_event_header *header,
3068 struct perf_sample_data *data,
3069 struct perf_event *event)
3071 u64 sample_type = data->type;
3073 perf_output_put(handle, *header);
3075 if (sample_type & PERF_SAMPLE_IP)
3076 perf_output_put(handle, data->ip);
3078 if (sample_type & PERF_SAMPLE_TID)
3079 perf_output_put(handle, data->tid_entry);
3081 if (sample_type & PERF_SAMPLE_TIME)
3082 perf_output_put(handle, data->time);
3084 if (sample_type & PERF_SAMPLE_ADDR)
3085 perf_output_put(handle, data->addr);
3087 if (sample_type & PERF_SAMPLE_ID)
3088 perf_output_put(handle, data->id);
3090 if (sample_type & PERF_SAMPLE_STREAM_ID)
3091 perf_output_put(handle, data->stream_id);
3093 if (sample_type & PERF_SAMPLE_CPU)
3094 perf_output_put(handle, data->cpu_entry);
3096 if (sample_type & PERF_SAMPLE_PERIOD)
3097 perf_output_put(handle, data->period);
3099 if (sample_type & PERF_SAMPLE_READ)
3100 perf_output_read(handle, event);
3102 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3103 if (data->callchain) {
3104 int size = 1;
3106 if (data->callchain)
3107 size += data->callchain->nr;
3109 size *= sizeof(u64);
3111 perf_output_copy(handle, data->callchain, size);
3112 } else {
3113 u64 nr = 0;
3114 perf_output_put(handle, nr);
3118 if (sample_type & PERF_SAMPLE_RAW) {
3119 if (data->raw) {
3120 perf_output_put(handle, data->raw->size);
3121 perf_output_copy(handle, data->raw->data,
3122 data->raw->size);
3123 } else {
3124 struct {
3125 u32 size;
3126 u32 data;
3127 } raw = {
3128 .size = sizeof(u32),
3129 .data = 0,
3131 perf_output_put(handle, raw);
3136 void perf_prepare_sample(struct perf_event_header *header,
3137 struct perf_sample_data *data,
3138 struct perf_event *event,
3139 struct pt_regs *regs)
3141 u64 sample_type = event->attr.sample_type;
3143 data->type = sample_type;
3145 header->type = PERF_RECORD_SAMPLE;
3146 header->size = sizeof(*header);
3148 header->misc = 0;
3149 header->misc |= perf_misc_flags(regs);
3151 if (sample_type & PERF_SAMPLE_IP) {
3152 data->ip = perf_instruction_pointer(regs);
3154 header->size += sizeof(data->ip);
3157 if (sample_type & PERF_SAMPLE_TID) {
3158 /* namespace issues */
3159 data->tid_entry.pid = perf_event_pid(event, current);
3160 data->tid_entry.tid = perf_event_tid(event, current);
3162 header->size += sizeof(data->tid_entry);
3165 if (sample_type & PERF_SAMPLE_TIME) {
3166 data->time = perf_clock();
3168 header->size += sizeof(data->time);
3171 if (sample_type & PERF_SAMPLE_ADDR)
3172 header->size += sizeof(data->addr);
3174 if (sample_type & PERF_SAMPLE_ID) {
3175 data->id = primary_event_id(event);
3177 header->size += sizeof(data->id);
3180 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3181 data->stream_id = event->id;
3183 header->size += sizeof(data->stream_id);
3186 if (sample_type & PERF_SAMPLE_CPU) {
3187 data->cpu_entry.cpu = raw_smp_processor_id();
3188 data->cpu_entry.reserved = 0;
3190 header->size += sizeof(data->cpu_entry);
3193 if (sample_type & PERF_SAMPLE_PERIOD)
3194 header->size += sizeof(data->period);
3196 if (sample_type & PERF_SAMPLE_READ)
3197 header->size += perf_event_read_size(event);
3199 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3200 int size = 1;
3202 data->callchain = perf_callchain(regs);
3204 if (data->callchain)
3205 size += data->callchain->nr;
3207 header->size += size * sizeof(u64);
3210 if (sample_type & PERF_SAMPLE_RAW) {
3211 int size = sizeof(u32);
3213 if (data->raw)
3214 size += data->raw->size;
3215 else
3216 size += sizeof(u32);
3218 WARN_ON_ONCE(size & (sizeof(u64)-1));
3219 header->size += size;
3223 static void perf_event_output(struct perf_event *event, int nmi,
3224 struct perf_sample_data *data,
3225 struct pt_regs *regs)
3227 struct perf_output_handle handle;
3228 struct perf_event_header header;
3230 perf_prepare_sample(&header, data, event, regs);
3232 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3233 return;
3235 perf_output_sample(&handle, &header, data, event);
3237 perf_output_end(&handle);
3241 * read event_id
3244 struct perf_read_event {
3245 struct perf_event_header header;
3247 u32 pid;
3248 u32 tid;
3251 static void
3252 perf_event_read_event(struct perf_event *event,
3253 struct task_struct *task)
3255 struct perf_output_handle handle;
3256 struct perf_read_event read_event = {
3257 .header = {
3258 .type = PERF_RECORD_READ,
3259 .misc = 0,
3260 .size = sizeof(read_event) + perf_event_read_size(event),
3262 .pid = perf_event_pid(event, task),
3263 .tid = perf_event_tid(event, task),
3265 int ret;
3267 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3268 if (ret)
3269 return;
3271 perf_output_put(&handle, read_event);
3272 perf_output_read(&handle, event);
3274 perf_output_end(&handle);
3278 * task tracking -- fork/exit
3280 * enabled by: attr.comm | attr.mmap | attr.task
3283 struct perf_task_event {
3284 struct task_struct *task;
3285 struct perf_event_context *task_ctx;
3287 struct {
3288 struct perf_event_header header;
3290 u32 pid;
3291 u32 ppid;
3292 u32 tid;
3293 u32 ptid;
3294 u64 time;
3295 } event_id;
3298 static void perf_event_task_output(struct perf_event *event,
3299 struct perf_task_event *task_event)
3301 struct perf_output_handle handle;
3302 int size;
3303 struct task_struct *task = task_event->task;
3304 int ret;
3306 size = task_event->event_id.header.size;
3307 ret = perf_output_begin(&handle, event, size, 0, 0);
3309 if (ret)
3310 return;
3312 task_event->event_id.pid = perf_event_pid(event, task);
3313 task_event->event_id.ppid = perf_event_pid(event, current);
3315 task_event->event_id.tid = perf_event_tid(event, task);
3316 task_event->event_id.ptid = perf_event_tid(event, current);
3318 perf_output_put(&handle, task_event->event_id);
3320 perf_output_end(&handle);
3323 static int perf_event_task_match(struct perf_event *event)
3325 if (event->state < PERF_EVENT_STATE_INACTIVE)
3326 return 0;
3328 if (event->cpu != -1 && event->cpu != smp_processor_id())
3329 return 0;
3331 if (event->attr.comm || event->attr.mmap || event->attr.task)
3332 return 1;
3334 return 0;
3337 static void perf_event_task_ctx(struct perf_event_context *ctx,
3338 struct perf_task_event *task_event)
3340 struct perf_event *event;
3342 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3343 if (perf_event_task_match(event))
3344 perf_event_task_output(event, task_event);
3348 static void perf_event_task_event(struct perf_task_event *task_event)
3350 struct perf_cpu_context *cpuctx;
3351 struct perf_event_context *ctx = task_event->task_ctx;
3353 rcu_read_lock();
3354 cpuctx = &get_cpu_var(perf_cpu_context);
3355 perf_event_task_ctx(&cpuctx->ctx, task_event);
3356 if (!ctx)
3357 ctx = rcu_dereference(current->perf_event_ctxp);
3358 if (ctx)
3359 perf_event_task_ctx(ctx, task_event);
3360 put_cpu_var(perf_cpu_context);
3361 rcu_read_unlock();
3364 static void perf_event_task(struct task_struct *task,
3365 struct perf_event_context *task_ctx,
3366 int new)
3368 struct perf_task_event task_event;
3370 if (!atomic_read(&nr_comm_events) &&
3371 !atomic_read(&nr_mmap_events) &&
3372 !atomic_read(&nr_task_events))
3373 return;
3375 task_event = (struct perf_task_event){
3376 .task = task,
3377 .task_ctx = task_ctx,
3378 .event_id = {
3379 .header = {
3380 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3381 .misc = 0,
3382 .size = sizeof(task_event.event_id),
3384 /* .pid */
3385 /* .ppid */
3386 /* .tid */
3387 /* .ptid */
3388 .time = perf_clock(),
3392 perf_event_task_event(&task_event);
3395 void perf_event_fork(struct task_struct *task)
3397 perf_event_task(task, NULL, 1);
3401 * comm tracking
3404 struct perf_comm_event {
3405 struct task_struct *task;
3406 char *comm;
3407 int comm_size;
3409 struct {
3410 struct perf_event_header header;
3412 u32 pid;
3413 u32 tid;
3414 } event_id;
3417 static void perf_event_comm_output(struct perf_event *event,
3418 struct perf_comm_event *comm_event)
3420 struct perf_output_handle handle;
3421 int size = comm_event->event_id.header.size;
3422 int ret = perf_output_begin(&handle, event, size, 0, 0);
3424 if (ret)
3425 return;
3427 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3428 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3430 perf_output_put(&handle, comm_event->event_id);
3431 perf_output_copy(&handle, comm_event->comm,
3432 comm_event->comm_size);
3433 perf_output_end(&handle);
3436 static int perf_event_comm_match(struct perf_event *event)
3438 if (event->state < PERF_EVENT_STATE_INACTIVE)
3439 return 0;
3441 if (event->cpu != -1 && event->cpu != smp_processor_id())
3442 return 0;
3444 if (event->attr.comm)
3445 return 1;
3447 return 0;
3450 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3451 struct perf_comm_event *comm_event)
3453 struct perf_event *event;
3455 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3456 if (perf_event_comm_match(event))
3457 perf_event_comm_output(event, comm_event);
3461 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3463 struct perf_cpu_context *cpuctx;
3464 struct perf_event_context *ctx;
3465 unsigned int size;
3466 char comm[TASK_COMM_LEN];
3468 memset(comm, 0, sizeof(comm));
3469 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3470 size = ALIGN(strlen(comm)+1, sizeof(u64));
3472 comm_event->comm = comm;
3473 comm_event->comm_size = size;
3475 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3477 rcu_read_lock();
3478 cpuctx = &get_cpu_var(perf_cpu_context);
3479 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3480 ctx = rcu_dereference(current->perf_event_ctxp);
3481 if (ctx)
3482 perf_event_comm_ctx(ctx, comm_event);
3483 put_cpu_var(perf_cpu_context);
3484 rcu_read_unlock();
3487 void perf_event_comm(struct task_struct *task)
3489 struct perf_comm_event comm_event;
3491 if (task->perf_event_ctxp)
3492 perf_event_enable_on_exec(task);
3494 if (!atomic_read(&nr_comm_events))
3495 return;
3497 comm_event = (struct perf_comm_event){
3498 .task = task,
3499 /* .comm */
3500 /* .comm_size */
3501 .event_id = {
3502 .header = {
3503 .type = PERF_RECORD_COMM,
3504 .misc = 0,
3505 /* .size */
3507 /* .pid */
3508 /* .tid */
3512 perf_event_comm_event(&comm_event);
3516 * mmap tracking
3519 struct perf_mmap_event {
3520 struct vm_area_struct *vma;
3522 const char *file_name;
3523 int file_size;
3525 struct {
3526 struct perf_event_header header;
3528 u32 pid;
3529 u32 tid;
3530 u64 start;
3531 u64 len;
3532 u64 pgoff;
3533 } event_id;
3536 static void perf_event_mmap_output(struct perf_event *event,
3537 struct perf_mmap_event *mmap_event)
3539 struct perf_output_handle handle;
3540 int size = mmap_event->event_id.header.size;
3541 int ret = perf_output_begin(&handle, event, size, 0, 0);
3543 if (ret)
3544 return;
3546 mmap_event->event_id.pid = perf_event_pid(event, current);
3547 mmap_event->event_id.tid = perf_event_tid(event, current);
3549 perf_output_put(&handle, mmap_event->event_id);
3550 perf_output_copy(&handle, mmap_event->file_name,
3551 mmap_event->file_size);
3552 perf_output_end(&handle);
3555 static int perf_event_mmap_match(struct perf_event *event,
3556 struct perf_mmap_event *mmap_event)
3558 if (event->state < PERF_EVENT_STATE_INACTIVE)
3559 return 0;
3561 if (event->cpu != -1 && event->cpu != smp_processor_id())
3562 return 0;
3564 if (event->attr.mmap)
3565 return 1;
3567 return 0;
3570 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3571 struct perf_mmap_event *mmap_event)
3573 struct perf_event *event;
3575 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3576 if (perf_event_mmap_match(event, mmap_event))
3577 perf_event_mmap_output(event, mmap_event);
3581 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3583 struct perf_cpu_context *cpuctx;
3584 struct perf_event_context *ctx;
3585 struct vm_area_struct *vma = mmap_event->vma;
3586 struct file *file = vma->vm_file;
3587 unsigned int size;
3588 char tmp[16];
3589 char *buf = NULL;
3590 const char *name;
3592 memset(tmp, 0, sizeof(tmp));
3594 if (file) {
3596 * d_path works from the end of the buffer backwards, so we
3597 * need to add enough zero bytes after the string to handle
3598 * the 64bit alignment we do later.
3600 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3601 if (!buf) {
3602 name = strncpy(tmp, "//enomem", sizeof(tmp));
3603 goto got_name;
3605 name = d_path(&file->f_path, buf, PATH_MAX);
3606 if (IS_ERR(name)) {
3607 name = strncpy(tmp, "//toolong", sizeof(tmp));
3608 goto got_name;
3610 } else {
3611 if (arch_vma_name(mmap_event->vma)) {
3612 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3613 sizeof(tmp));
3614 goto got_name;
3617 if (!vma->vm_mm) {
3618 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3619 goto got_name;
3622 name = strncpy(tmp, "//anon", sizeof(tmp));
3623 goto got_name;
3626 got_name:
3627 size = ALIGN(strlen(name)+1, sizeof(u64));
3629 mmap_event->file_name = name;
3630 mmap_event->file_size = size;
3632 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3634 rcu_read_lock();
3635 cpuctx = &get_cpu_var(perf_cpu_context);
3636 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3637 ctx = rcu_dereference(current->perf_event_ctxp);
3638 if (ctx)
3639 perf_event_mmap_ctx(ctx, mmap_event);
3640 put_cpu_var(perf_cpu_context);
3641 rcu_read_unlock();
3643 kfree(buf);
3646 void __perf_event_mmap(struct vm_area_struct *vma)
3648 struct perf_mmap_event mmap_event;
3650 if (!atomic_read(&nr_mmap_events))
3651 return;
3653 mmap_event = (struct perf_mmap_event){
3654 .vma = vma,
3655 /* .file_name */
3656 /* .file_size */
3657 .event_id = {
3658 .header = {
3659 .type = PERF_RECORD_MMAP,
3660 .misc = 0,
3661 /* .size */
3663 /* .pid */
3664 /* .tid */
3665 .start = vma->vm_start,
3666 .len = vma->vm_end - vma->vm_start,
3667 .pgoff = vma->vm_pgoff,
3671 perf_event_mmap_event(&mmap_event);
3675 * IRQ throttle logging
3678 static void perf_log_throttle(struct perf_event *event, int enable)
3680 struct perf_output_handle handle;
3681 int ret;
3683 struct {
3684 struct perf_event_header header;
3685 u64 time;
3686 u64 id;
3687 u64 stream_id;
3688 } throttle_event = {
3689 .header = {
3690 .type = PERF_RECORD_THROTTLE,
3691 .misc = 0,
3692 .size = sizeof(throttle_event),
3694 .time = perf_clock(),
3695 .id = primary_event_id(event),
3696 .stream_id = event->id,
3699 if (enable)
3700 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3702 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3703 if (ret)
3704 return;
3706 perf_output_put(&handle, throttle_event);
3707 perf_output_end(&handle);
3711 * Generic event overflow handling, sampling.
3714 static int __perf_event_overflow(struct perf_event *event, int nmi,
3715 int throttle, struct perf_sample_data *data,
3716 struct pt_regs *regs)
3718 int events = atomic_read(&event->event_limit);
3719 struct hw_perf_event *hwc = &event->hw;
3720 int ret = 0;
3722 throttle = (throttle && event->pmu->unthrottle != NULL);
3724 if (!throttle) {
3725 hwc->interrupts++;
3726 } else {
3727 if (hwc->interrupts != MAX_INTERRUPTS) {
3728 hwc->interrupts++;
3729 if (HZ * hwc->interrupts >
3730 (u64)sysctl_perf_event_sample_rate) {
3731 hwc->interrupts = MAX_INTERRUPTS;
3732 perf_log_throttle(event, 0);
3733 ret = 1;
3735 } else {
3737 * Keep re-disabling events even though on the previous
3738 * pass we disabled it - just in case we raced with a
3739 * sched-in and the event got enabled again:
3741 ret = 1;
3745 if (event->attr.freq) {
3746 u64 now = perf_clock();
3747 s64 delta = now - hwc->freq_time_stamp;
3749 hwc->freq_time_stamp = now;
3751 if (delta > 0 && delta < 2*TICK_NSEC)
3752 perf_adjust_period(event, delta, hwc->last_period);
3756 * XXX event_limit might not quite work as expected on inherited
3757 * events
3760 event->pending_kill = POLL_IN;
3761 if (events && atomic_dec_and_test(&event->event_limit)) {
3762 ret = 1;
3763 event->pending_kill = POLL_HUP;
3764 if (nmi) {
3765 event->pending_disable = 1;
3766 perf_pending_queue(&event->pending,
3767 perf_pending_event);
3768 } else
3769 perf_event_disable(event);
3772 if (event->overflow_handler)
3773 event->overflow_handler(event, nmi, data, regs);
3774 else
3775 perf_event_output(event, nmi, data, regs);
3777 return ret;
3780 int perf_event_overflow(struct perf_event *event, int nmi,
3781 struct perf_sample_data *data,
3782 struct pt_regs *regs)
3784 return __perf_event_overflow(event, nmi, 1, data, regs);
3788 * Generic software event infrastructure
3792 * We directly increment event->count and keep a second value in
3793 * event->hw.period_left to count intervals. This period event
3794 * is kept in the range [-sample_period, 0] so that we can use the
3795 * sign as trigger.
3798 static u64 perf_swevent_set_period(struct perf_event *event)
3800 struct hw_perf_event *hwc = &event->hw;
3801 u64 period = hwc->last_period;
3802 u64 nr, offset;
3803 s64 old, val;
3805 hwc->last_period = hwc->sample_period;
3807 again:
3808 old = val = atomic64_read(&hwc->period_left);
3809 if (val < 0)
3810 return 0;
3812 nr = div64_u64(period + val, period);
3813 offset = nr * period;
3814 val -= offset;
3815 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3816 goto again;
3818 return nr;
3821 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3822 int nmi, struct perf_sample_data *data,
3823 struct pt_regs *regs)
3825 struct hw_perf_event *hwc = &event->hw;
3826 int throttle = 0;
3828 data->period = event->hw.last_period;
3829 if (!overflow)
3830 overflow = perf_swevent_set_period(event);
3832 if (hwc->interrupts == MAX_INTERRUPTS)
3833 return;
3835 for (; overflow; overflow--) {
3836 if (__perf_event_overflow(event, nmi, throttle,
3837 data, regs)) {
3839 * We inhibit the overflow from happening when
3840 * hwc->interrupts == MAX_INTERRUPTS.
3842 break;
3844 throttle = 1;
3848 static void perf_swevent_unthrottle(struct perf_event *event)
3851 * Nothing to do, we already reset hwc->interrupts.
3855 static void perf_swevent_add(struct perf_event *event, u64 nr,
3856 int nmi, struct perf_sample_data *data,
3857 struct pt_regs *regs)
3859 struct hw_perf_event *hwc = &event->hw;
3861 atomic64_add(nr, &event->count);
3863 if (!regs)
3864 return;
3866 if (!hwc->sample_period)
3867 return;
3869 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3870 return perf_swevent_overflow(event, 1, nmi, data, regs);
3872 if (atomic64_add_negative(nr, &hwc->period_left))
3873 return;
3875 perf_swevent_overflow(event, 0, nmi, data, regs);
3878 static int perf_swevent_is_counting(struct perf_event *event)
3881 * The event is active, we're good!
3883 if (event->state == PERF_EVENT_STATE_ACTIVE)
3884 return 1;
3887 * The event is off/error, not counting.
3889 if (event->state != PERF_EVENT_STATE_INACTIVE)
3890 return 0;
3893 * The event is inactive, if the context is active
3894 * we're part of a group that didn't make it on the 'pmu',
3895 * not counting.
3897 if (event->ctx->is_active)
3898 return 0;
3901 * We're inactive and the context is too, this means the
3902 * task is scheduled out, we're counting events that happen
3903 * to us, like migration events.
3905 return 1;
3908 static int perf_tp_event_match(struct perf_event *event,
3909 struct perf_sample_data *data);
3911 static int perf_exclude_event(struct perf_event *event,
3912 struct pt_regs *regs)
3914 if (regs) {
3915 if (event->attr.exclude_user && user_mode(regs))
3916 return 1;
3918 if (event->attr.exclude_kernel && !user_mode(regs))
3919 return 1;
3922 return 0;
3925 static int perf_swevent_match(struct perf_event *event,
3926 enum perf_type_id type,
3927 u32 event_id,
3928 struct perf_sample_data *data,
3929 struct pt_regs *regs)
3931 if (event->cpu != -1 && event->cpu != smp_processor_id())
3932 return 0;
3934 if (!perf_swevent_is_counting(event))
3935 return 0;
3937 if (event->attr.type != type)
3938 return 0;
3940 if (event->attr.config != event_id)
3941 return 0;
3943 if (perf_exclude_event(event, regs))
3944 return 0;
3946 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
3947 !perf_tp_event_match(event, data))
3948 return 0;
3950 return 1;
3953 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3954 enum perf_type_id type,
3955 u32 event_id, u64 nr, int nmi,
3956 struct perf_sample_data *data,
3957 struct pt_regs *regs)
3959 struct perf_event *event;
3961 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3962 if (perf_swevent_match(event, type, event_id, data, regs))
3963 perf_swevent_add(event, nr, nmi, data, regs);
3967 int perf_swevent_get_recursion_context(void)
3969 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3970 int rctx;
3972 if (in_nmi())
3973 rctx = 3;
3974 else if (in_irq())
3975 rctx = 2;
3976 else if (in_softirq())
3977 rctx = 1;
3978 else
3979 rctx = 0;
3981 if (cpuctx->recursion[rctx]) {
3982 put_cpu_var(perf_cpu_context);
3983 return -1;
3986 cpuctx->recursion[rctx]++;
3987 barrier();
3989 return rctx;
3991 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
3993 void perf_swevent_put_recursion_context(int rctx)
3995 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3996 barrier();
3997 cpuctx->recursion[rctx]--;
3998 put_cpu_var(perf_cpu_context);
4000 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
4002 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4003 u64 nr, int nmi,
4004 struct perf_sample_data *data,
4005 struct pt_regs *regs)
4007 struct perf_cpu_context *cpuctx;
4008 struct perf_event_context *ctx;
4010 cpuctx = &__get_cpu_var(perf_cpu_context);
4011 rcu_read_lock();
4012 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
4013 nr, nmi, data, regs);
4015 * doesn't really matter which of the child contexts the
4016 * events ends up in.
4018 ctx = rcu_dereference(current->perf_event_ctxp);
4019 if (ctx)
4020 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
4021 rcu_read_unlock();
4024 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4025 struct pt_regs *regs, u64 addr)
4027 struct perf_sample_data data;
4028 int rctx;
4030 rctx = perf_swevent_get_recursion_context();
4031 if (rctx < 0)
4032 return;
4034 perf_sample_data_init(&data, addr);
4036 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4038 perf_swevent_put_recursion_context(rctx);
4041 static void perf_swevent_read(struct perf_event *event)
4045 static int perf_swevent_enable(struct perf_event *event)
4047 struct hw_perf_event *hwc = &event->hw;
4049 if (hwc->sample_period) {
4050 hwc->last_period = hwc->sample_period;
4051 perf_swevent_set_period(event);
4053 return 0;
4056 static void perf_swevent_disable(struct perf_event *event)
4060 static const struct pmu perf_ops_generic = {
4061 .enable = perf_swevent_enable,
4062 .disable = perf_swevent_disable,
4063 .read = perf_swevent_read,
4064 .unthrottle = perf_swevent_unthrottle,
4068 * hrtimer based swevent callback
4071 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4073 enum hrtimer_restart ret = HRTIMER_RESTART;
4074 struct perf_sample_data data;
4075 struct pt_regs *regs;
4076 struct perf_event *event;
4077 u64 period;
4079 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4080 event->pmu->read(event);
4082 perf_sample_data_init(&data, 0);
4083 data.period = event->hw.last_period;
4084 regs = get_irq_regs();
4086 * In case we exclude kernel IPs or are somehow not in interrupt
4087 * context, provide the next best thing, the user IP.
4089 if ((event->attr.exclude_kernel || !regs) &&
4090 !event->attr.exclude_user)
4091 regs = task_pt_regs(current);
4093 if (regs) {
4094 if (!(event->attr.exclude_idle && current->pid == 0))
4095 if (perf_event_overflow(event, 0, &data, regs))
4096 ret = HRTIMER_NORESTART;
4099 period = max_t(u64, 10000, event->hw.sample_period);
4100 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4102 return ret;
4105 static void perf_swevent_start_hrtimer(struct perf_event *event)
4107 struct hw_perf_event *hwc = &event->hw;
4109 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4110 hwc->hrtimer.function = perf_swevent_hrtimer;
4111 if (hwc->sample_period) {
4112 u64 period;
4114 if (hwc->remaining) {
4115 if (hwc->remaining < 0)
4116 period = 10000;
4117 else
4118 period = hwc->remaining;
4119 hwc->remaining = 0;
4120 } else {
4121 period = max_t(u64, 10000, hwc->sample_period);
4123 __hrtimer_start_range_ns(&hwc->hrtimer,
4124 ns_to_ktime(period), 0,
4125 HRTIMER_MODE_REL, 0);
4129 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4131 struct hw_perf_event *hwc = &event->hw;
4133 if (hwc->sample_period) {
4134 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4135 hwc->remaining = ktime_to_ns(remaining);
4137 hrtimer_cancel(&hwc->hrtimer);
4142 * Software event: cpu wall time clock
4145 static void cpu_clock_perf_event_update(struct perf_event *event)
4147 int cpu = raw_smp_processor_id();
4148 s64 prev;
4149 u64 now;
4151 now = cpu_clock(cpu);
4152 prev = atomic64_xchg(&event->hw.prev_count, now);
4153 atomic64_add(now - prev, &event->count);
4156 static int cpu_clock_perf_event_enable(struct perf_event *event)
4158 struct hw_perf_event *hwc = &event->hw;
4159 int cpu = raw_smp_processor_id();
4161 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4162 perf_swevent_start_hrtimer(event);
4164 return 0;
4167 static void cpu_clock_perf_event_disable(struct perf_event *event)
4169 perf_swevent_cancel_hrtimer(event);
4170 cpu_clock_perf_event_update(event);
4173 static void cpu_clock_perf_event_read(struct perf_event *event)
4175 cpu_clock_perf_event_update(event);
4178 static const struct pmu perf_ops_cpu_clock = {
4179 .enable = cpu_clock_perf_event_enable,
4180 .disable = cpu_clock_perf_event_disable,
4181 .read = cpu_clock_perf_event_read,
4185 * Software event: task time clock
4188 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4190 u64 prev;
4191 s64 delta;
4193 prev = atomic64_xchg(&event->hw.prev_count, now);
4194 delta = now - prev;
4195 atomic64_add(delta, &event->count);
4198 static int task_clock_perf_event_enable(struct perf_event *event)
4200 struct hw_perf_event *hwc = &event->hw;
4201 u64 now;
4203 now = event->ctx->time;
4205 atomic64_set(&hwc->prev_count, now);
4207 perf_swevent_start_hrtimer(event);
4209 return 0;
4212 static void task_clock_perf_event_disable(struct perf_event *event)
4214 perf_swevent_cancel_hrtimer(event);
4215 task_clock_perf_event_update(event, event->ctx->time);
4219 static void task_clock_perf_event_read(struct perf_event *event)
4221 u64 time;
4223 if (!in_nmi()) {
4224 update_context_time(event->ctx);
4225 time = event->ctx->time;
4226 } else {
4227 u64 now = perf_clock();
4228 u64 delta = now - event->ctx->timestamp;
4229 time = event->ctx->time + delta;
4232 task_clock_perf_event_update(event, time);
4235 static const struct pmu perf_ops_task_clock = {
4236 .enable = task_clock_perf_event_enable,
4237 .disable = task_clock_perf_event_disable,
4238 .read = task_clock_perf_event_read,
4241 #ifdef CONFIG_EVENT_PROFILE
4243 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4244 int entry_size)
4246 struct pt_regs *regs = get_irq_regs();
4247 struct perf_sample_data data;
4248 struct perf_raw_record raw = {
4249 .size = entry_size,
4250 .data = record,
4253 perf_sample_data_init(&data, addr);
4254 data.raw = &raw;
4256 if (!regs)
4257 regs = task_pt_regs(current);
4259 /* Trace events already protected against recursion */
4260 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4261 &data, regs);
4263 EXPORT_SYMBOL_GPL(perf_tp_event);
4265 static int perf_tp_event_match(struct perf_event *event,
4266 struct perf_sample_data *data)
4268 void *record = data->raw->data;
4270 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4271 return 1;
4272 return 0;
4275 static void tp_perf_event_destroy(struct perf_event *event)
4277 ftrace_profile_disable(event->attr.config);
4280 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4283 * Raw tracepoint data is a severe data leak, only allow root to
4284 * have these.
4286 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4287 perf_paranoid_tracepoint_raw() &&
4288 !capable(CAP_SYS_ADMIN))
4289 return ERR_PTR(-EPERM);
4291 if (ftrace_profile_enable(event->attr.config))
4292 return NULL;
4294 event->destroy = tp_perf_event_destroy;
4296 return &perf_ops_generic;
4299 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4301 char *filter_str;
4302 int ret;
4304 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4305 return -EINVAL;
4307 filter_str = strndup_user(arg, PAGE_SIZE);
4308 if (IS_ERR(filter_str))
4309 return PTR_ERR(filter_str);
4311 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4313 kfree(filter_str);
4314 return ret;
4317 static void perf_event_free_filter(struct perf_event *event)
4319 ftrace_profile_free_filter(event);
4322 #else
4324 static int perf_tp_event_match(struct perf_event *event,
4325 struct perf_sample_data *data)
4327 return 1;
4330 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4332 return NULL;
4335 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4337 return -ENOENT;
4340 static void perf_event_free_filter(struct perf_event *event)
4344 #endif /* CONFIG_EVENT_PROFILE */
4346 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4347 static void bp_perf_event_destroy(struct perf_event *event)
4349 release_bp_slot(event);
4352 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4354 int err;
4356 err = register_perf_hw_breakpoint(bp);
4357 if (err)
4358 return ERR_PTR(err);
4360 bp->destroy = bp_perf_event_destroy;
4362 return &perf_ops_bp;
4365 void perf_bp_event(struct perf_event *bp, void *data)
4367 struct perf_sample_data sample;
4368 struct pt_regs *regs = data;
4370 perf_sample_data_init(&sample, bp->attr.bp_addr);
4372 if (!perf_exclude_event(bp, regs))
4373 perf_swevent_add(bp, 1, 1, &sample, regs);
4375 #else
4376 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4378 return NULL;
4381 void perf_bp_event(struct perf_event *bp, void *regs)
4384 #endif
4386 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4388 static void sw_perf_event_destroy(struct perf_event *event)
4390 u64 event_id = event->attr.config;
4392 WARN_ON(event->parent);
4394 atomic_dec(&perf_swevent_enabled[event_id]);
4397 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4399 const struct pmu *pmu = NULL;
4400 u64 event_id = event->attr.config;
4403 * Software events (currently) can't in general distinguish
4404 * between user, kernel and hypervisor events.
4405 * However, context switches and cpu migrations are considered
4406 * to be kernel events, and page faults are never hypervisor
4407 * events.
4409 switch (event_id) {
4410 case PERF_COUNT_SW_CPU_CLOCK:
4411 pmu = &perf_ops_cpu_clock;
4413 break;
4414 case PERF_COUNT_SW_TASK_CLOCK:
4416 * If the user instantiates this as a per-cpu event,
4417 * use the cpu_clock event instead.
4419 if (event->ctx->task)
4420 pmu = &perf_ops_task_clock;
4421 else
4422 pmu = &perf_ops_cpu_clock;
4424 break;
4425 case PERF_COUNT_SW_PAGE_FAULTS:
4426 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4427 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4428 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4429 case PERF_COUNT_SW_CPU_MIGRATIONS:
4430 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4431 case PERF_COUNT_SW_EMULATION_FAULTS:
4432 if (!event->parent) {
4433 atomic_inc(&perf_swevent_enabled[event_id]);
4434 event->destroy = sw_perf_event_destroy;
4436 pmu = &perf_ops_generic;
4437 break;
4440 return pmu;
4444 * Allocate and initialize a event structure
4446 static struct perf_event *
4447 perf_event_alloc(struct perf_event_attr *attr,
4448 int cpu,
4449 struct perf_event_context *ctx,
4450 struct perf_event *group_leader,
4451 struct perf_event *parent_event,
4452 perf_overflow_handler_t overflow_handler,
4453 gfp_t gfpflags)
4455 const struct pmu *pmu;
4456 struct perf_event *event;
4457 struct hw_perf_event *hwc;
4458 long err;
4460 event = kzalloc(sizeof(*event), gfpflags);
4461 if (!event)
4462 return ERR_PTR(-ENOMEM);
4465 * Single events are their own group leaders, with an
4466 * empty sibling list:
4468 if (!group_leader)
4469 group_leader = event;
4471 mutex_init(&event->child_mutex);
4472 INIT_LIST_HEAD(&event->child_list);
4474 INIT_LIST_HEAD(&event->group_entry);
4475 INIT_LIST_HEAD(&event->event_entry);
4476 INIT_LIST_HEAD(&event->sibling_list);
4477 init_waitqueue_head(&event->waitq);
4479 mutex_init(&event->mmap_mutex);
4481 event->cpu = cpu;
4482 event->attr = *attr;
4483 event->group_leader = group_leader;
4484 event->pmu = NULL;
4485 event->ctx = ctx;
4486 event->oncpu = -1;
4488 event->parent = parent_event;
4490 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4491 event->id = atomic64_inc_return(&perf_event_id);
4493 event->state = PERF_EVENT_STATE_INACTIVE;
4495 if (!overflow_handler && parent_event)
4496 overflow_handler = parent_event->overflow_handler;
4498 event->overflow_handler = overflow_handler;
4500 if (attr->disabled)
4501 event->state = PERF_EVENT_STATE_OFF;
4503 pmu = NULL;
4505 hwc = &event->hw;
4506 hwc->sample_period = attr->sample_period;
4507 if (attr->freq && attr->sample_freq)
4508 hwc->sample_period = 1;
4509 hwc->last_period = hwc->sample_period;
4511 atomic64_set(&hwc->period_left, hwc->sample_period);
4514 * we currently do not support PERF_FORMAT_GROUP on inherited events
4516 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4517 goto done;
4519 switch (attr->type) {
4520 case PERF_TYPE_RAW:
4521 case PERF_TYPE_HARDWARE:
4522 case PERF_TYPE_HW_CACHE:
4523 pmu = hw_perf_event_init(event);
4524 break;
4526 case PERF_TYPE_SOFTWARE:
4527 pmu = sw_perf_event_init(event);
4528 break;
4530 case PERF_TYPE_TRACEPOINT:
4531 pmu = tp_perf_event_init(event);
4532 break;
4534 case PERF_TYPE_BREAKPOINT:
4535 pmu = bp_perf_event_init(event);
4536 break;
4539 default:
4540 break;
4542 done:
4543 err = 0;
4544 if (!pmu)
4545 err = -EINVAL;
4546 else if (IS_ERR(pmu))
4547 err = PTR_ERR(pmu);
4549 if (err) {
4550 if (event->ns)
4551 put_pid_ns(event->ns);
4552 kfree(event);
4553 return ERR_PTR(err);
4556 event->pmu = pmu;
4558 if (!event->parent) {
4559 atomic_inc(&nr_events);
4560 if (event->attr.mmap)
4561 atomic_inc(&nr_mmap_events);
4562 if (event->attr.comm)
4563 atomic_inc(&nr_comm_events);
4564 if (event->attr.task)
4565 atomic_inc(&nr_task_events);
4568 return event;
4571 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4572 struct perf_event_attr *attr)
4574 u32 size;
4575 int ret;
4577 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4578 return -EFAULT;
4581 * zero the full structure, so that a short copy will be nice.
4583 memset(attr, 0, sizeof(*attr));
4585 ret = get_user(size, &uattr->size);
4586 if (ret)
4587 return ret;
4589 if (size > PAGE_SIZE) /* silly large */
4590 goto err_size;
4592 if (!size) /* abi compat */
4593 size = PERF_ATTR_SIZE_VER0;
4595 if (size < PERF_ATTR_SIZE_VER0)
4596 goto err_size;
4599 * If we're handed a bigger struct than we know of,
4600 * ensure all the unknown bits are 0 - i.e. new
4601 * user-space does not rely on any kernel feature
4602 * extensions we dont know about yet.
4604 if (size > sizeof(*attr)) {
4605 unsigned char __user *addr;
4606 unsigned char __user *end;
4607 unsigned char val;
4609 addr = (void __user *)uattr + sizeof(*attr);
4610 end = (void __user *)uattr + size;
4612 for (; addr < end; addr++) {
4613 ret = get_user(val, addr);
4614 if (ret)
4615 return ret;
4616 if (val)
4617 goto err_size;
4619 size = sizeof(*attr);
4622 ret = copy_from_user(attr, uattr, size);
4623 if (ret)
4624 return -EFAULT;
4627 * If the type exists, the corresponding creation will verify
4628 * the attr->config.
4630 if (attr->type >= PERF_TYPE_MAX)
4631 return -EINVAL;
4633 if (attr->__reserved_1)
4634 return -EINVAL;
4636 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4637 return -EINVAL;
4639 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4640 return -EINVAL;
4642 out:
4643 return ret;
4645 err_size:
4646 put_user(sizeof(*attr), &uattr->size);
4647 ret = -E2BIG;
4648 goto out;
4651 static int perf_event_set_output(struct perf_event *event, int output_fd)
4653 struct perf_event *output_event = NULL;
4654 struct file *output_file = NULL;
4655 struct perf_event *old_output;
4656 int fput_needed = 0;
4657 int ret = -EINVAL;
4659 if (!output_fd)
4660 goto set;
4662 output_file = fget_light(output_fd, &fput_needed);
4663 if (!output_file)
4664 return -EBADF;
4666 if (output_file->f_op != &perf_fops)
4667 goto out;
4669 output_event = output_file->private_data;
4671 /* Don't chain output fds */
4672 if (output_event->output)
4673 goto out;
4675 /* Don't set an output fd when we already have an output channel */
4676 if (event->data)
4677 goto out;
4679 atomic_long_inc(&output_file->f_count);
4681 set:
4682 mutex_lock(&event->mmap_mutex);
4683 old_output = event->output;
4684 rcu_assign_pointer(event->output, output_event);
4685 mutex_unlock(&event->mmap_mutex);
4687 if (old_output) {
4689 * we need to make sure no existing perf_output_*()
4690 * is still referencing this event.
4692 synchronize_rcu();
4693 fput(old_output->filp);
4696 ret = 0;
4697 out:
4698 fput_light(output_file, fput_needed);
4699 return ret;
4703 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4705 * @attr_uptr: event_id type attributes for monitoring/sampling
4706 * @pid: target pid
4707 * @cpu: target cpu
4708 * @group_fd: group leader event fd
4710 SYSCALL_DEFINE5(perf_event_open,
4711 struct perf_event_attr __user *, attr_uptr,
4712 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4714 struct perf_event *event, *group_leader;
4715 struct perf_event_attr attr;
4716 struct perf_event_context *ctx;
4717 struct file *event_file = NULL;
4718 struct file *group_file = NULL;
4719 int event_fd;
4720 int fput_needed = 0;
4721 int err;
4723 /* for future expandability... */
4724 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4725 return -EINVAL;
4727 err = perf_copy_attr(attr_uptr, &attr);
4728 if (err)
4729 return err;
4731 if (!attr.exclude_kernel) {
4732 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4733 return -EACCES;
4736 if (attr.freq) {
4737 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4738 return -EINVAL;
4741 event_fd = get_unused_fd_flags(O_RDWR);
4742 if (event_fd < 0)
4743 return event_fd;
4746 * Get the target context (task or percpu):
4748 ctx = find_get_context(pid, cpu);
4749 if (IS_ERR(ctx)) {
4750 err = PTR_ERR(ctx);
4751 goto err_fd;
4755 * Look up the group leader (we will attach this event to it):
4757 group_leader = NULL;
4758 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4759 err = -EINVAL;
4760 group_file = fget_light(group_fd, &fput_needed);
4761 if (!group_file)
4762 goto err_put_context;
4763 if (group_file->f_op != &perf_fops)
4764 goto err_put_context;
4766 group_leader = group_file->private_data;
4768 * Do not allow a recursive hierarchy (this new sibling
4769 * becoming part of another group-sibling):
4771 if (group_leader->group_leader != group_leader)
4772 goto err_put_context;
4774 * Do not allow to attach to a group in a different
4775 * task or CPU context:
4777 if (group_leader->ctx != ctx)
4778 goto err_put_context;
4780 * Only a group leader can be exclusive or pinned
4782 if (attr.exclusive || attr.pinned)
4783 goto err_put_context;
4786 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4787 NULL, NULL, GFP_KERNEL);
4788 err = PTR_ERR(event);
4789 if (IS_ERR(event))
4790 goto err_put_context;
4792 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
4793 if (IS_ERR(event_file)) {
4794 err = PTR_ERR(event_file);
4795 goto err_free_put_context;
4798 if (flags & PERF_FLAG_FD_OUTPUT) {
4799 err = perf_event_set_output(event, group_fd);
4800 if (err)
4801 goto err_fput_free_put_context;
4804 event->filp = event_file;
4805 WARN_ON_ONCE(ctx->parent_ctx);
4806 mutex_lock(&ctx->mutex);
4807 perf_install_in_context(ctx, event, cpu);
4808 ++ctx->generation;
4809 mutex_unlock(&ctx->mutex);
4811 event->owner = current;
4812 get_task_struct(current);
4813 mutex_lock(&current->perf_event_mutex);
4814 list_add_tail(&event->owner_entry, &current->perf_event_list);
4815 mutex_unlock(&current->perf_event_mutex);
4817 fput_light(group_file, fput_needed);
4818 fd_install(event_fd, event_file);
4819 return event_fd;
4821 err_fput_free_put_context:
4822 fput(event_file);
4823 err_free_put_context:
4824 free_event(event);
4825 err_put_context:
4826 fput_light(group_file, fput_needed);
4827 put_ctx(ctx);
4828 err_fd:
4829 put_unused_fd(event_fd);
4830 return err;
4834 * perf_event_create_kernel_counter
4836 * @attr: attributes of the counter to create
4837 * @cpu: cpu in which the counter is bound
4838 * @pid: task to profile
4840 struct perf_event *
4841 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4842 pid_t pid,
4843 perf_overflow_handler_t overflow_handler)
4845 struct perf_event *event;
4846 struct perf_event_context *ctx;
4847 int err;
4850 * Get the target context (task or percpu):
4853 ctx = find_get_context(pid, cpu);
4854 if (IS_ERR(ctx)) {
4855 err = PTR_ERR(ctx);
4856 goto err_exit;
4859 event = perf_event_alloc(attr, cpu, ctx, NULL,
4860 NULL, overflow_handler, GFP_KERNEL);
4861 if (IS_ERR(event)) {
4862 err = PTR_ERR(event);
4863 goto err_put_context;
4866 event->filp = NULL;
4867 WARN_ON_ONCE(ctx->parent_ctx);
4868 mutex_lock(&ctx->mutex);
4869 perf_install_in_context(ctx, event, cpu);
4870 ++ctx->generation;
4871 mutex_unlock(&ctx->mutex);
4873 event->owner = current;
4874 get_task_struct(current);
4875 mutex_lock(&current->perf_event_mutex);
4876 list_add_tail(&event->owner_entry, &current->perf_event_list);
4877 mutex_unlock(&current->perf_event_mutex);
4879 return event;
4881 err_put_context:
4882 put_ctx(ctx);
4883 err_exit:
4884 return ERR_PTR(err);
4886 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4889 * inherit a event from parent task to child task:
4891 static struct perf_event *
4892 inherit_event(struct perf_event *parent_event,
4893 struct task_struct *parent,
4894 struct perf_event_context *parent_ctx,
4895 struct task_struct *child,
4896 struct perf_event *group_leader,
4897 struct perf_event_context *child_ctx)
4899 struct perf_event *child_event;
4902 * Instead of creating recursive hierarchies of events,
4903 * we link inherited events back to the original parent,
4904 * which has a filp for sure, which we use as the reference
4905 * count:
4907 if (parent_event->parent)
4908 parent_event = parent_event->parent;
4910 child_event = perf_event_alloc(&parent_event->attr,
4911 parent_event->cpu, child_ctx,
4912 group_leader, parent_event,
4913 NULL, GFP_KERNEL);
4914 if (IS_ERR(child_event))
4915 return child_event;
4916 get_ctx(child_ctx);
4919 * Make the child state follow the state of the parent event,
4920 * not its attr.disabled bit. We hold the parent's mutex,
4921 * so we won't race with perf_event_{en, dis}able_family.
4923 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4924 child_event->state = PERF_EVENT_STATE_INACTIVE;
4925 else
4926 child_event->state = PERF_EVENT_STATE_OFF;
4928 if (parent_event->attr.freq)
4929 child_event->hw.sample_period = parent_event->hw.sample_period;
4931 child_event->overflow_handler = parent_event->overflow_handler;
4934 * Link it up in the child's context:
4936 add_event_to_ctx(child_event, child_ctx);
4939 * Get a reference to the parent filp - we will fput it
4940 * when the child event exits. This is safe to do because
4941 * we are in the parent and we know that the filp still
4942 * exists and has a nonzero count:
4944 atomic_long_inc(&parent_event->filp->f_count);
4947 * Link this into the parent event's child list
4949 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4950 mutex_lock(&parent_event->child_mutex);
4951 list_add_tail(&child_event->child_list, &parent_event->child_list);
4952 mutex_unlock(&parent_event->child_mutex);
4954 return child_event;
4957 static int inherit_group(struct perf_event *parent_event,
4958 struct task_struct *parent,
4959 struct perf_event_context *parent_ctx,
4960 struct task_struct *child,
4961 struct perf_event_context *child_ctx)
4963 struct perf_event *leader;
4964 struct perf_event *sub;
4965 struct perf_event *child_ctr;
4967 leader = inherit_event(parent_event, parent, parent_ctx,
4968 child, NULL, child_ctx);
4969 if (IS_ERR(leader))
4970 return PTR_ERR(leader);
4971 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
4972 child_ctr = inherit_event(sub, parent, parent_ctx,
4973 child, leader, child_ctx);
4974 if (IS_ERR(child_ctr))
4975 return PTR_ERR(child_ctr);
4977 return 0;
4980 static void sync_child_event(struct perf_event *child_event,
4981 struct task_struct *child)
4983 struct perf_event *parent_event = child_event->parent;
4984 u64 child_val;
4986 if (child_event->attr.inherit_stat)
4987 perf_event_read_event(child_event, child);
4989 child_val = atomic64_read(&child_event->count);
4992 * Add back the child's count to the parent's count:
4994 atomic64_add(child_val, &parent_event->count);
4995 atomic64_add(child_event->total_time_enabled,
4996 &parent_event->child_total_time_enabled);
4997 atomic64_add(child_event->total_time_running,
4998 &parent_event->child_total_time_running);
5001 * Remove this event from the parent's list
5003 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5004 mutex_lock(&parent_event->child_mutex);
5005 list_del_init(&child_event->child_list);
5006 mutex_unlock(&parent_event->child_mutex);
5009 * Release the parent event, if this was the last
5010 * reference to it.
5012 fput(parent_event->filp);
5015 static void
5016 __perf_event_exit_task(struct perf_event *child_event,
5017 struct perf_event_context *child_ctx,
5018 struct task_struct *child)
5020 struct perf_event *parent_event;
5022 perf_event_remove_from_context(child_event);
5024 parent_event = child_event->parent;
5026 * It can happen that parent exits first, and has events
5027 * that are still around due to the child reference. These
5028 * events need to be zapped - but otherwise linger.
5030 if (parent_event) {
5031 sync_child_event(child_event, child);
5032 free_event(child_event);
5037 * When a child task exits, feed back event values to parent events.
5039 void perf_event_exit_task(struct task_struct *child)
5041 struct perf_event *child_event, *tmp;
5042 struct perf_event_context *child_ctx;
5043 unsigned long flags;
5045 if (likely(!child->perf_event_ctxp)) {
5046 perf_event_task(child, NULL, 0);
5047 return;
5050 local_irq_save(flags);
5052 * We can't reschedule here because interrupts are disabled,
5053 * and either child is current or it is a task that can't be
5054 * scheduled, so we are now safe from rescheduling changing
5055 * our context.
5057 child_ctx = child->perf_event_ctxp;
5058 __perf_event_task_sched_out(child_ctx);
5061 * Take the context lock here so that if find_get_context is
5062 * reading child->perf_event_ctxp, we wait until it has
5063 * incremented the context's refcount before we do put_ctx below.
5065 raw_spin_lock(&child_ctx->lock);
5066 child->perf_event_ctxp = NULL;
5068 * If this context is a clone; unclone it so it can't get
5069 * swapped to another process while we're removing all
5070 * the events from it.
5072 unclone_ctx(child_ctx);
5073 update_context_time(child_ctx);
5074 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5077 * Report the task dead after unscheduling the events so that we
5078 * won't get any samples after PERF_RECORD_EXIT. We can however still
5079 * get a few PERF_RECORD_READ events.
5081 perf_event_task(child, child_ctx, 0);
5084 * We can recurse on the same lock type through:
5086 * __perf_event_exit_task()
5087 * sync_child_event()
5088 * fput(parent_event->filp)
5089 * perf_release()
5090 * mutex_lock(&ctx->mutex)
5092 * But since its the parent context it won't be the same instance.
5094 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5096 again:
5097 list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
5098 group_entry)
5099 __perf_event_exit_task(child_event, child_ctx, child);
5102 * If the last event was a group event, it will have appended all
5103 * its siblings to the list, but we obtained 'tmp' before that which
5104 * will still point to the list head terminating the iteration.
5106 if (!list_empty(&child_ctx->group_list))
5107 goto again;
5109 mutex_unlock(&child_ctx->mutex);
5111 put_ctx(child_ctx);
5115 * free an unexposed, unused context as created by inheritance by
5116 * init_task below, used by fork() in case of fail.
5118 void perf_event_free_task(struct task_struct *task)
5120 struct perf_event_context *ctx = task->perf_event_ctxp;
5121 struct perf_event *event, *tmp;
5123 if (!ctx)
5124 return;
5126 mutex_lock(&ctx->mutex);
5127 again:
5128 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
5129 struct perf_event *parent = event->parent;
5131 if (WARN_ON_ONCE(!parent))
5132 continue;
5134 mutex_lock(&parent->child_mutex);
5135 list_del_init(&event->child_list);
5136 mutex_unlock(&parent->child_mutex);
5138 fput(parent->filp);
5140 list_del_event(event, ctx);
5141 free_event(event);
5144 if (!list_empty(&ctx->group_list))
5145 goto again;
5147 mutex_unlock(&ctx->mutex);
5149 put_ctx(ctx);
5153 * Initialize the perf_event context in task_struct
5155 int perf_event_init_task(struct task_struct *child)
5157 struct perf_event_context *child_ctx = NULL, *parent_ctx;
5158 struct perf_event_context *cloned_ctx;
5159 struct perf_event *event;
5160 struct task_struct *parent = current;
5161 int inherited_all = 1;
5162 int ret = 0;
5164 child->perf_event_ctxp = NULL;
5166 mutex_init(&child->perf_event_mutex);
5167 INIT_LIST_HEAD(&child->perf_event_list);
5169 if (likely(!parent->perf_event_ctxp))
5170 return 0;
5173 * If the parent's context is a clone, pin it so it won't get
5174 * swapped under us.
5176 parent_ctx = perf_pin_task_context(parent);
5179 * No need to check if parent_ctx != NULL here; since we saw
5180 * it non-NULL earlier, the only reason for it to become NULL
5181 * is if we exit, and since we're currently in the middle of
5182 * a fork we can't be exiting at the same time.
5186 * Lock the parent list. No need to lock the child - not PID
5187 * hashed yet and not running, so nobody can access it.
5189 mutex_lock(&parent_ctx->mutex);
5192 * We dont have to disable NMIs - we are only looking at
5193 * the list, not manipulating it:
5195 list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
5197 if (!event->attr.inherit) {
5198 inherited_all = 0;
5199 continue;
5202 if (!child->perf_event_ctxp) {
5204 * This is executed from the parent task context, so
5205 * inherit events that have been marked for cloning.
5206 * First allocate and initialize a context for the
5207 * child.
5210 child_ctx = kzalloc(sizeof(struct perf_event_context),
5211 GFP_KERNEL);
5212 if (!child_ctx) {
5213 ret = -ENOMEM;
5214 break;
5217 __perf_event_init_context(child_ctx, child);
5218 child->perf_event_ctxp = child_ctx;
5219 get_task_struct(child);
5222 ret = inherit_group(event, parent, parent_ctx,
5223 child, child_ctx);
5224 if (ret) {
5225 inherited_all = 0;
5226 break;
5230 if (child_ctx && inherited_all) {
5232 * Mark the child context as a clone of the parent
5233 * context, or of whatever the parent is a clone of.
5234 * Note that if the parent is a clone, it could get
5235 * uncloned at any point, but that doesn't matter
5236 * because the list of events and the generation
5237 * count can't have changed since we took the mutex.
5239 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5240 if (cloned_ctx) {
5241 child_ctx->parent_ctx = cloned_ctx;
5242 child_ctx->parent_gen = parent_ctx->parent_gen;
5243 } else {
5244 child_ctx->parent_ctx = parent_ctx;
5245 child_ctx->parent_gen = parent_ctx->generation;
5247 get_ctx(child_ctx->parent_ctx);
5250 mutex_unlock(&parent_ctx->mutex);
5252 perf_unpin_context(parent_ctx);
5254 return ret;
5257 static void __init perf_event_init_all_cpus(void)
5259 int cpu;
5260 struct perf_cpu_context *cpuctx;
5262 for_each_possible_cpu(cpu) {
5263 cpuctx = &per_cpu(perf_cpu_context, cpu);
5264 __perf_event_init_context(&cpuctx->ctx, NULL);
5268 static void __cpuinit perf_event_init_cpu(int cpu)
5270 struct perf_cpu_context *cpuctx;
5272 cpuctx = &per_cpu(perf_cpu_context, cpu);
5274 spin_lock(&perf_resource_lock);
5275 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5276 spin_unlock(&perf_resource_lock);
5278 hw_perf_event_setup(cpu);
5281 #ifdef CONFIG_HOTPLUG_CPU
5282 static void __perf_event_exit_cpu(void *info)
5284 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5285 struct perf_event_context *ctx = &cpuctx->ctx;
5286 struct perf_event *event, *tmp;
5288 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
5289 __perf_event_remove_from_context(event);
5291 static void perf_event_exit_cpu(int cpu)
5293 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5294 struct perf_event_context *ctx = &cpuctx->ctx;
5296 mutex_lock(&ctx->mutex);
5297 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5298 mutex_unlock(&ctx->mutex);
5300 #else
5301 static inline void perf_event_exit_cpu(int cpu) { }
5302 #endif
5304 static int __cpuinit
5305 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5307 unsigned int cpu = (long)hcpu;
5309 switch (action) {
5311 case CPU_UP_PREPARE:
5312 case CPU_UP_PREPARE_FROZEN:
5313 perf_event_init_cpu(cpu);
5314 break;
5316 case CPU_ONLINE:
5317 case CPU_ONLINE_FROZEN:
5318 hw_perf_event_setup_online(cpu);
5319 break;
5321 case CPU_DOWN_PREPARE:
5322 case CPU_DOWN_PREPARE_FROZEN:
5323 perf_event_exit_cpu(cpu);
5324 break;
5326 default:
5327 break;
5330 return NOTIFY_OK;
5334 * This has to have a higher priority than migration_notifier in sched.c.
5336 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5337 .notifier_call = perf_cpu_notify,
5338 .priority = 20,
5341 void __init perf_event_init(void)
5343 perf_event_init_all_cpus();
5344 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5345 (void *)(long)smp_processor_id());
5346 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5347 (void *)(long)smp_processor_id());
5348 register_cpu_notifier(&perf_cpu_nb);
5351 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
5353 return sprintf(buf, "%d\n", perf_reserved_percpu);
5356 static ssize_t
5357 perf_set_reserve_percpu(struct sysdev_class *class,
5358 const char *buf,
5359 size_t count)
5361 struct perf_cpu_context *cpuctx;
5362 unsigned long val;
5363 int err, cpu, mpt;
5365 err = strict_strtoul(buf, 10, &val);
5366 if (err)
5367 return err;
5368 if (val > perf_max_events)
5369 return -EINVAL;
5371 spin_lock(&perf_resource_lock);
5372 perf_reserved_percpu = val;
5373 for_each_online_cpu(cpu) {
5374 cpuctx = &per_cpu(perf_cpu_context, cpu);
5375 raw_spin_lock_irq(&cpuctx->ctx.lock);
5376 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5377 perf_max_events - perf_reserved_percpu);
5378 cpuctx->max_pertask = mpt;
5379 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5381 spin_unlock(&perf_resource_lock);
5383 return count;
5386 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
5388 return sprintf(buf, "%d\n", perf_overcommit);
5391 static ssize_t
5392 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
5394 unsigned long val;
5395 int err;
5397 err = strict_strtoul(buf, 10, &val);
5398 if (err)
5399 return err;
5400 if (val > 1)
5401 return -EINVAL;
5403 spin_lock(&perf_resource_lock);
5404 perf_overcommit = val;
5405 spin_unlock(&perf_resource_lock);
5407 return count;
5410 static SYSDEV_CLASS_ATTR(
5411 reserve_percpu,
5412 0644,
5413 perf_show_reserve_percpu,
5414 perf_set_reserve_percpu
5417 static SYSDEV_CLASS_ATTR(
5418 overcommit,
5419 0644,
5420 perf_show_overcommit,
5421 perf_set_overcommit
5424 static struct attribute *perfclass_attrs[] = {
5425 &attr_reserve_percpu.attr,
5426 &attr_overcommit.attr,
5427 NULL
5430 static struct attribute_group perfclass_attr_group = {
5431 .attrs = perfclass_attrs,
5432 .name = "perf_events",
5435 static int __init perf_event_sysfs_init(void)
5437 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5438 &perfclass_attr_group);
5440 device_initcall(perf_event_sysfs_init);