Merge branch 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[wandboard.git] / arch / x86 / kernel / kprobes.c
blob1f3186ce213cd4606534decf5a96cff21e4d993b
1 /*
2 * Kernel Probes (KProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2002, 2004
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
27 * 2005-Mar Roland McGrath <roland@redhat.com>
28 * Fixed to handle %rip-relative addressing mode correctly.
29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31 * <prasanna@in.ibm.com> added function-return probes.
32 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
33 * Added function return probes functionality
34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35 * kprobe-booster and kretprobe-booster for i386.
36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37 * and kretprobe-booster for x86-64
38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40 * unified x86 kprobes code.
43 #include <linux/kprobes.h>
44 #include <linux/ptrace.h>
45 #include <linux/string.h>
46 #include <linux/slab.h>
47 #include <linux/hardirq.h>
48 #include <linux/preempt.h>
49 #include <linux/module.h>
50 #include <linux/kdebug.h>
51 #include <linux/kallsyms.h>
53 #include <asm/cacheflush.h>
54 #include <asm/desc.h>
55 #include <asm/pgtable.h>
56 #include <asm/uaccess.h>
57 #include <asm/alternative.h>
58 #include <asm/insn.h>
59 #include <asm/debugreg.h>
61 void jprobe_return_end(void);
63 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
64 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
66 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
68 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
69 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
70 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
71 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
72 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
73 << (row % 32))
75 * Undefined/reserved opcodes, conditional jump, Opcode Extension
76 * Groups, and some special opcodes can not boost.
78 static const u32 twobyte_is_boostable[256 / 32] = {
79 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
80 /* ---------------------------------------------- */
81 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
82 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 10 */
83 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
84 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
85 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
86 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
87 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
88 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
89 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
90 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
91 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
92 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
93 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
94 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
95 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
96 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
97 /* ----------------------------------------------- */
98 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
100 #undef W
102 struct kretprobe_blackpoint kretprobe_blacklist[] = {
103 {"__switch_to", }, /* This function switches only current task, but
104 doesn't switch kernel stack.*/
105 {NULL, NULL} /* Terminator */
107 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
109 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
110 static void __kprobes set_jmp_op(void *from, void *to)
112 struct __arch_jmp_op {
113 char op;
114 s32 raddr;
115 } __attribute__((packed)) * jop;
116 jop = (struct __arch_jmp_op *)from;
117 jop->raddr = (s32)((long)(to) - ((long)(from) + 5));
118 jop->op = RELATIVEJUMP_INSTRUCTION;
122 * Check for the REX prefix which can only exist on X86_64
123 * X86_32 always returns 0
125 static int __kprobes is_REX_prefix(kprobe_opcode_t *insn)
127 #ifdef CONFIG_X86_64
128 if ((*insn & 0xf0) == 0x40)
129 return 1;
130 #endif
131 return 0;
135 * Returns non-zero if opcode is boostable.
136 * RIP relative instructions are adjusted at copying time in 64 bits mode
138 static int __kprobes can_boost(kprobe_opcode_t *opcodes)
140 kprobe_opcode_t opcode;
141 kprobe_opcode_t *orig_opcodes = opcodes;
143 if (search_exception_tables((unsigned long)opcodes))
144 return 0; /* Page fault may occur on this address. */
146 retry:
147 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
148 return 0;
149 opcode = *(opcodes++);
151 /* 2nd-byte opcode */
152 if (opcode == 0x0f) {
153 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
154 return 0;
155 return test_bit(*opcodes,
156 (unsigned long *)twobyte_is_boostable);
159 switch (opcode & 0xf0) {
160 #ifdef CONFIG_X86_64
161 case 0x40:
162 goto retry; /* REX prefix is boostable */
163 #endif
164 case 0x60:
165 if (0x63 < opcode && opcode < 0x67)
166 goto retry; /* prefixes */
167 /* can't boost Address-size override and bound */
168 return (opcode != 0x62 && opcode != 0x67);
169 case 0x70:
170 return 0; /* can't boost conditional jump */
171 case 0xc0:
172 /* can't boost software-interruptions */
173 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
174 case 0xd0:
175 /* can boost AA* and XLAT */
176 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
177 case 0xe0:
178 /* can boost in/out and absolute jmps */
179 return ((opcode & 0x04) || opcode == 0xea);
180 case 0xf0:
181 if ((opcode & 0x0c) == 0 && opcode != 0xf1)
182 goto retry; /* lock/rep(ne) prefix */
183 /* clear and set flags are boostable */
184 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
185 default:
186 /* segment override prefixes are boostable */
187 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
188 goto retry; /* prefixes */
189 /* CS override prefix and call are not boostable */
190 return (opcode != 0x2e && opcode != 0x9a);
194 /* Recover the probed instruction at addr for further analysis. */
195 static int recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
197 struct kprobe *kp;
198 kp = get_kprobe((void *)addr);
199 if (!kp)
200 return -EINVAL;
203 * Basically, kp->ainsn.insn has an original instruction.
204 * However, RIP-relative instruction can not do single-stepping
205 * at different place, fix_riprel() tweaks the displacement of
206 * that instruction. In that case, we can't recover the instruction
207 * from the kp->ainsn.insn.
209 * On the other hand, kp->opcode has a copy of the first byte of
210 * the probed instruction, which is overwritten by int3. And
211 * the instruction at kp->addr is not modified by kprobes except
212 * for the first byte, we can recover the original instruction
213 * from it and kp->opcode.
215 memcpy(buf, kp->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
216 buf[0] = kp->opcode;
217 return 0;
220 /* Dummy buffers for kallsyms_lookup */
221 static char __dummy_buf[KSYM_NAME_LEN];
223 /* Check if paddr is at an instruction boundary */
224 static int __kprobes can_probe(unsigned long paddr)
226 int ret;
227 unsigned long addr, offset = 0;
228 struct insn insn;
229 kprobe_opcode_t buf[MAX_INSN_SIZE];
231 if (!kallsyms_lookup(paddr, NULL, &offset, NULL, __dummy_buf))
232 return 0;
234 /* Decode instructions */
235 addr = paddr - offset;
236 while (addr < paddr) {
237 kernel_insn_init(&insn, (void *)addr);
238 insn_get_opcode(&insn);
241 * Check if the instruction has been modified by another
242 * kprobe, in which case we replace the breakpoint by the
243 * original instruction in our buffer.
245 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) {
246 ret = recover_probed_instruction(buf, addr);
247 if (ret)
249 * Another debugging subsystem might insert
250 * this breakpoint. In that case, we can't
251 * recover it.
253 return 0;
254 kernel_insn_init(&insn, buf);
256 insn_get_length(&insn);
257 addr += insn.length;
260 return (addr == paddr);
264 * Returns non-zero if opcode modifies the interrupt flag.
266 static int __kprobes is_IF_modifier(kprobe_opcode_t *insn)
268 switch (*insn) {
269 case 0xfa: /* cli */
270 case 0xfb: /* sti */
271 case 0xcf: /* iret/iretd */
272 case 0x9d: /* popf/popfd */
273 return 1;
277 * on X86_64, 0x40-0x4f are REX prefixes so we need to look
278 * at the next byte instead.. but of course not recurse infinitely
280 if (is_REX_prefix(insn))
281 return is_IF_modifier(++insn);
283 return 0;
287 * Adjust the displacement if the instruction uses the %rip-relative
288 * addressing mode.
289 * If it does, Return the address of the 32-bit displacement word.
290 * If not, return null.
291 * Only applicable to 64-bit x86.
293 static void __kprobes fix_riprel(struct kprobe *p)
295 #ifdef CONFIG_X86_64
296 struct insn insn;
297 kernel_insn_init(&insn, p->ainsn.insn);
299 if (insn_rip_relative(&insn)) {
300 s64 newdisp;
301 u8 *disp;
302 insn_get_displacement(&insn);
304 * The copied instruction uses the %rip-relative addressing
305 * mode. Adjust the displacement for the difference between
306 * the original location of this instruction and the location
307 * of the copy that will actually be run. The tricky bit here
308 * is making sure that the sign extension happens correctly in
309 * this calculation, since we need a signed 32-bit result to
310 * be sign-extended to 64 bits when it's added to the %rip
311 * value and yield the same 64-bit result that the sign-
312 * extension of the original signed 32-bit displacement would
313 * have given.
315 newdisp = (u8 *) p->addr + (s64) insn.displacement.value -
316 (u8 *) p->ainsn.insn;
317 BUG_ON((s64) (s32) newdisp != newdisp); /* Sanity check. */
318 disp = (u8 *) p->ainsn.insn + insn_offset_displacement(&insn);
319 *(s32 *) disp = (s32) newdisp;
321 #endif
324 static void __kprobes arch_copy_kprobe(struct kprobe *p)
326 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
328 fix_riprel(p);
330 if (can_boost(p->addr))
331 p->ainsn.boostable = 0;
332 else
333 p->ainsn.boostable = -1;
335 p->opcode = *p->addr;
338 int __kprobes arch_prepare_kprobe(struct kprobe *p)
340 if (!can_probe((unsigned long)p->addr))
341 return -EILSEQ;
342 /* insn: must be on special executable page on x86. */
343 p->ainsn.insn = get_insn_slot();
344 if (!p->ainsn.insn)
345 return -ENOMEM;
346 arch_copy_kprobe(p);
347 return 0;
350 void __kprobes arch_arm_kprobe(struct kprobe *p)
352 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
355 void __kprobes arch_disarm_kprobe(struct kprobe *p)
357 text_poke(p->addr, &p->opcode, 1);
360 void __kprobes arch_remove_kprobe(struct kprobe *p)
362 if (p->ainsn.insn) {
363 free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
364 p->ainsn.insn = NULL;
368 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
370 kcb->prev_kprobe.kp = kprobe_running();
371 kcb->prev_kprobe.status = kcb->kprobe_status;
372 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
373 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
376 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
378 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
379 kcb->kprobe_status = kcb->prev_kprobe.status;
380 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
381 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
384 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
385 struct kprobe_ctlblk *kcb)
387 __get_cpu_var(current_kprobe) = p;
388 kcb->kprobe_saved_flags = kcb->kprobe_old_flags
389 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
390 if (is_IF_modifier(p->ainsn.insn))
391 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
394 static void __kprobes clear_btf(void)
396 if (test_thread_flag(TIF_DEBUGCTLMSR))
397 update_debugctlmsr(0);
400 static void __kprobes restore_btf(void)
402 if (test_thread_flag(TIF_DEBUGCTLMSR))
403 update_debugctlmsr(current->thread.debugctlmsr);
406 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
408 clear_btf();
409 regs->flags |= X86_EFLAGS_TF;
410 regs->flags &= ~X86_EFLAGS_IF;
411 /* single step inline if the instruction is an int3 */
412 if (p->opcode == BREAKPOINT_INSTRUCTION)
413 regs->ip = (unsigned long)p->addr;
414 else
415 regs->ip = (unsigned long)p->ainsn.insn;
418 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
419 struct pt_regs *regs)
421 unsigned long *sara = stack_addr(regs);
423 ri->ret_addr = (kprobe_opcode_t *) *sara;
425 /* Replace the return addr with trampoline addr */
426 *sara = (unsigned long) &kretprobe_trampoline;
429 static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs,
430 struct kprobe_ctlblk *kcb)
432 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_FREEZER)
433 if (p->ainsn.boostable == 1 && !p->post_handler) {
434 /* Boost up -- we can execute copied instructions directly */
435 reset_current_kprobe();
436 regs->ip = (unsigned long)p->ainsn.insn;
437 preempt_enable_no_resched();
438 return;
440 #endif
441 prepare_singlestep(p, regs);
442 kcb->kprobe_status = KPROBE_HIT_SS;
446 * We have reentered the kprobe_handler(), since another probe was hit while
447 * within the handler. We save the original kprobes variables and just single
448 * step on the instruction of the new probe without calling any user handlers.
450 static int __kprobes reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
451 struct kprobe_ctlblk *kcb)
453 switch (kcb->kprobe_status) {
454 case KPROBE_HIT_SSDONE:
455 case KPROBE_HIT_ACTIVE:
456 save_previous_kprobe(kcb);
457 set_current_kprobe(p, regs, kcb);
458 kprobes_inc_nmissed_count(p);
459 prepare_singlestep(p, regs);
460 kcb->kprobe_status = KPROBE_REENTER;
461 break;
462 case KPROBE_HIT_SS:
463 /* A probe has been hit in the codepath leading up to, or just
464 * after, single-stepping of a probed instruction. This entire
465 * codepath should strictly reside in .kprobes.text section.
466 * Raise a BUG or we'll continue in an endless reentering loop
467 * and eventually a stack overflow.
469 printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
470 p->addr);
471 dump_kprobe(p);
472 BUG();
473 default:
474 /* impossible cases */
475 WARN_ON(1);
476 return 0;
479 return 1;
483 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
484 * remain disabled thorough out this function.
486 static int __kprobes kprobe_handler(struct pt_regs *regs)
488 kprobe_opcode_t *addr;
489 struct kprobe *p;
490 struct kprobe_ctlblk *kcb;
492 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
493 if (*addr != BREAKPOINT_INSTRUCTION) {
495 * The breakpoint instruction was removed right
496 * after we hit it. Another cpu has removed
497 * either a probepoint or a debugger breakpoint
498 * at this address. In either case, no further
499 * handling of this interrupt is appropriate.
500 * Back up over the (now missing) int3 and run
501 * the original instruction.
503 regs->ip = (unsigned long)addr;
504 return 1;
508 * We don't want to be preempted for the entire
509 * duration of kprobe processing. We conditionally
510 * re-enable preemption at the end of this function,
511 * and also in reenter_kprobe() and setup_singlestep().
513 preempt_disable();
515 kcb = get_kprobe_ctlblk();
516 p = get_kprobe(addr);
518 if (p) {
519 if (kprobe_running()) {
520 if (reenter_kprobe(p, regs, kcb))
521 return 1;
522 } else {
523 set_current_kprobe(p, regs, kcb);
524 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
527 * If we have no pre-handler or it returned 0, we
528 * continue with normal processing. If we have a
529 * pre-handler and it returned non-zero, it prepped
530 * for calling the break_handler below on re-entry
531 * for jprobe processing, so get out doing nothing
532 * more here.
534 if (!p->pre_handler || !p->pre_handler(p, regs))
535 setup_singlestep(p, regs, kcb);
536 return 1;
538 } else if (kprobe_running()) {
539 p = __get_cpu_var(current_kprobe);
540 if (p->break_handler && p->break_handler(p, regs)) {
541 setup_singlestep(p, regs, kcb);
542 return 1;
544 } /* else: not a kprobe fault; let the kernel handle it */
546 preempt_enable_no_resched();
547 return 0;
551 * When a retprobed function returns, this code saves registers and
552 * calls trampoline_handler() runs, which calls the kretprobe's handler.
554 static void __used __kprobes kretprobe_trampoline_holder(void)
556 asm volatile (
557 ".global kretprobe_trampoline\n"
558 "kretprobe_trampoline: \n"
559 #ifdef CONFIG_X86_64
560 /* We don't bother saving the ss register */
561 " pushq %rsp\n"
562 " pushfq\n"
564 * Skip cs, ip, orig_ax.
565 * trampoline_handler() will plug in these values
567 " subq $24, %rsp\n"
568 " pushq %rdi\n"
569 " pushq %rsi\n"
570 " pushq %rdx\n"
571 " pushq %rcx\n"
572 " pushq %rax\n"
573 " pushq %r8\n"
574 " pushq %r9\n"
575 " pushq %r10\n"
576 " pushq %r11\n"
577 " pushq %rbx\n"
578 " pushq %rbp\n"
579 " pushq %r12\n"
580 " pushq %r13\n"
581 " pushq %r14\n"
582 " pushq %r15\n"
583 " movq %rsp, %rdi\n"
584 " call trampoline_handler\n"
585 /* Replace saved sp with true return address. */
586 " movq %rax, 152(%rsp)\n"
587 " popq %r15\n"
588 " popq %r14\n"
589 " popq %r13\n"
590 " popq %r12\n"
591 " popq %rbp\n"
592 " popq %rbx\n"
593 " popq %r11\n"
594 " popq %r10\n"
595 " popq %r9\n"
596 " popq %r8\n"
597 " popq %rax\n"
598 " popq %rcx\n"
599 " popq %rdx\n"
600 " popq %rsi\n"
601 " popq %rdi\n"
602 /* Skip orig_ax, ip, cs */
603 " addq $24, %rsp\n"
604 " popfq\n"
605 #else
606 " pushf\n"
608 * Skip cs, ip, orig_ax and gs.
609 * trampoline_handler() will plug in these values
611 " subl $16, %esp\n"
612 " pushl %fs\n"
613 " pushl %es\n"
614 " pushl %ds\n"
615 " pushl %eax\n"
616 " pushl %ebp\n"
617 " pushl %edi\n"
618 " pushl %esi\n"
619 " pushl %edx\n"
620 " pushl %ecx\n"
621 " pushl %ebx\n"
622 " movl %esp, %eax\n"
623 " call trampoline_handler\n"
624 /* Move flags to cs */
625 " movl 56(%esp), %edx\n"
626 " movl %edx, 52(%esp)\n"
627 /* Replace saved flags with true return address. */
628 " movl %eax, 56(%esp)\n"
629 " popl %ebx\n"
630 " popl %ecx\n"
631 " popl %edx\n"
632 " popl %esi\n"
633 " popl %edi\n"
634 " popl %ebp\n"
635 " popl %eax\n"
636 /* Skip ds, es, fs, gs, orig_ax and ip */
637 " addl $24, %esp\n"
638 " popf\n"
639 #endif
640 " ret\n");
644 * Called from kretprobe_trampoline
646 static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
648 struct kretprobe_instance *ri = NULL;
649 struct hlist_head *head, empty_rp;
650 struct hlist_node *node, *tmp;
651 unsigned long flags, orig_ret_address = 0;
652 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
654 INIT_HLIST_HEAD(&empty_rp);
655 kretprobe_hash_lock(current, &head, &flags);
656 /* fixup registers */
657 #ifdef CONFIG_X86_64
658 regs->cs = __KERNEL_CS;
659 #else
660 regs->cs = __KERNEL_CS | get_kernel_rpl();
661 regs->gs = 0;
662 #endif
663 regs->ip = trampoline_address;
664 regs->orig_ax = ~0UL;
667 * It is possible to have multiple instances associated with a given
668 * task either because multiple functions in the call path have
669 * return probes installed on them, and/or more than one
670 * return probe was registered for a target function.
672 * We can handle this because:
673 * - instances are always pushed into the head of the list
674 * - when multiple return probes are registered for the same
675 * function, the (chronologically) first instance's ret_addr
676 * will be the real return address, and all the rest will
677 * point to kretprobe_trampoline.
679 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
680 if (ri->task != current)
681 /* another task is sharing our hash bucket */
682 continue;
684 if (ri->rp && ri->rp->handler) {
685 __get_cpu_var(current_kprobe) = &ri->rp->kp;
686 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
687 ri->rp->handler(ri, regs);
688 __get_cpu_var(current_kprobe) = NULL;
691 orig_ret_address = (unsigned long)ri->ret_addr;
692 recycle_rp_inst(ri, &empty_rp);
694 if (orig_ret_address != trampoline_address)
696 * This is the real return address. Any other
697 * instances associated with this task are for
698 * other calls deeper on the call stack
700 break;
703 kretprobe_assert(ri, orig_ret_address, trampoline_address);
705 kretprobe_hash_unlock(current, &flags);
707 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
708 hlist_del(&ri->hlist);
709 kfree(ri);
711 return (void *)orig_ret_address;
715 * Called after single-stepping. p->addr is the address of the
716 * instruction whose first byte has been replaced by the "int 3"
717 * instruction. To avoid the SMP problems that can occur when we
718 * temporarily put back the original opcode to single-step, we
719 * single-stepped a copy of the instruction. The address of this
720 * copy is p->ainsn.insn.
722 * This function prepares to return from the post-single-step
723 * interrupt. We have to fix up the stack as follows:
725 * 0) Except in the case of absolute or indirect jump or call instructions,
726 * the new ip is relative to the copied instruction. We need to make
727 * it relative to the original instruction.
729 * 1) If the single-stepped instruction was pushfl, then the TF and IF
730 * flags are set in the just-pushed flags, and may need to be cleared.
732 * 2) If the single-stepped instruction was a call, the return address
733 * that is atop the stack is the address following the copied instruction.
734 * We need to make it the address following the original instruction.
736 * If this is the first time we've single-stepped the instruction at
737 * this probepoint, and the instruction is boostable, boost it: add a
738 * jump instruction after the copied instruction, that jumps to the next
739 * instruction after the probepoint.
741 static void __kprobes resume_execution(struct kprobe *p,
742 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
744 unsigned long *tos = stack_addr(regs);
745 unsigned long copy_ip = (unsigned long)p->ainsn.insn;
746 unsigned long orig_ip = (unsigned long)p->addr;
747 kprobe_opcode_t *insn = p->ainsn.insn;
749 /*skip the REX prefix*/
750 if (is_REX_prefix(insn))
751 insn++;
753 regs->flags &= ~X86_EFLAGS_TF;
754 switch (*insn) {
755 case 0x9c: /* pushfl */
756 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
757 *tos |= kcb->kprobe_old_flags;
758 break;
759 case 0xc2: /* iret/ret/lret */
760 case 0xc3:
761 case 0xca:
762 case 0xcb:
763 case 0xcf:
764 case 0xea: /* jmp absolute -- ip is correct */
765 /* ip is already adjusted, no more changes required */
766 p->ainsn.boostable = 1;
767 goto no_change;
768 case 0xe8: /* call relative - Fix return addr */
769 *tos = orig_ip + (*tos - copy_ip);
770 break;
771 #ifdef CONFIG_X86_32
772 case 0x9a: /* call absolute -- same as call absolute, indirect */
773 *tos = orig_ip + (*tos - copy_ip);
774 goto no_change;
775 #endif
776 case 0xff:
777 if ((insn[1] & 0x30) == 0x10) {
779 * call absolute, indirect
780 * Fix return addr; ip is correct.
781 * But this is not boostable
783 *tos = orig_ip + (*tos - copy_ip);
784 goto no_change;
785 } else if (((insn[1] & 0x31) == 0x20) ||
786 ((insn[1] & 0x31) == 0x21)) {
788 * jmp near and far, absolute indirect
789 * ip is correct. And this is boostable
791 p->ainsn.boostable = 1;
792 goto no_change;
794 default:
795 break;
798 if (p->ainsn.boostable == 0) {
799 if ((regs->ip > copy_ip) &&
800 (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
802 * These instructions can be executed directly if it
803 * jumps back to correct address.
805 set_jmp_op((void *)regs->ip,
806 (void *)orig_ip + (regs->ip - copy_ip));
807 p->ainsn.boostable = 1;
808 } else {
809 p->ainsn.boostable = -1;
813 regs->ip += orig_ip - copy_ip;
815 no_change:
816 restore_btf();
820 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
821 * remain disabled thoroughout this function.
823 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
825 struct kprobe *cur = kprobe_running();
826 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
828 if (!cur)
829 return 0;
831 resume_execution(cur, regs, kcb);
832 regs->flags |= kcb->kprobe_saved_flags;
834 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
835 kcb->kprobe_status = KPROBE_HIT_SSDONE;
836 cur->post_handler(cur, regs, 0);
839 /* Restore back the original saved kprobes variables and continue. */
840 if (kcb->kprobe_status == KPROBE_REENTER) {
841 restore_previous_kprobe(kcb);
842 goto out;
844 reset_current_kprobe();
845 out:
846 preempt_enable_no_resched();
849 * if somebody else is singlestepping across a probe point, flags
850 * will have TF set, in which case, continue the remaining processing
851 * of do_debug, as if this is not a probe hit.
853 if (regs->flags & X86_EFLAGS_TF)
854 return 0;
856 return 1;
859 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
861 struct kprobe *cur = kprobe_running();
862 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
864 switch (kcb->kprobe_status) {
865 case KPROBE_HIT_SS:
866 case KPROBE_REENTER:
868 * We are here because the instruction being single
869 * stepped caused a page fault. We reset the current
870 * kprobe and the ip points back to the probe address
871 * and allow the page fault handler to continue as a
872 * normal page fault.
874 regs->ip = (unsigned long)cur->addr;
875 regs->flags |= kcb->kprobe_old_flags;
876 if (kcb->kprobe_status == KPROBE_REENTER)
877 restore_previous_kprobe(kcb);
878 else
879 reset_current_kprobe();
880 preempt_enable_no_resched();
881 break;
882 case KPROBE_HIT_ACTIVE:
883 case KPROBE_HIT_SSDONE:
885 * We increment the nmissed count for accounting,
886 * we can also use npre/npostfault count for accounting
887 * these specific fault cases.
889 kprobes_inc_nmissed_count(cur);
892 * We come here because instructions in the pre/post
893 * handler caused the page_fault, this could happen
894 * if handler tries to access user space by
895 * copy_from_user(), get_user() etc. Let the
896 * user-specified handler try to fix it first.
898 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
899 return 1;
902 * In case the user-specified fault handler returned
903 * zero, try to fix up.
905 if (fixup_exception(regs))
906 return 1;
909 * fixup routine could not handle it,
910 * Let do_page_fault() fix it.
912 break;
913 default:
914 break;
916 return 0;
920 * Wrapper routine for handling exceptions.
922 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
923 unsigned long val, void *data)
925 struct die_args *args = data;
926 int ret = NOTIFY_DONE;
928 if (args->regs && user_mode_vm(args->regs))
929 return ret;
931 switch (val) {
932 case DIE_INT3:
933 if (kprobe_handler(args->regs))
934 ret = NOTIFY_STOP;
935 break;
936 case DIE_DEBUG:
937 if (post_kprobe_handler(args->regs)) {
939 * Reset the BS bit in dr6 (pointed by args->err) to
940 * denote completion of processing
942 (*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
943 ret = NOTIFY_STOP;
945 break;
946 case DIE_GPF:
948 * To be potentially processing a kprobe fault and to
949 * trust the result from kprobe_running(), we have
950 * be non-preemptible.
952 if (!preemptible() && kprobe_running() &&
953 kprobe_fault_handler(args->regs, args->trapnr))
954 ret = NOTIFY_STOP;
955 break;
956 default:
957 break;
959 return ret;
962 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
964 struct jprobe *jp = container_of(p, struct jprobe, kp);
965 unsigned long addr;
966 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
968 kcb->jprobe_saved_regs = *regs;
969 kcb->jprobe_saved_sp = stack_addr(regs);
970 addr = (unsigned long)(kcb->jprobe_saved_sp);
973 * As Linus pointed out, gcc assumes that the callee
974 * owns the argument space and could overwrite it, e.g.
975 * tailcall optimization. So, to be absolutely safe
976 * we also save and restore enough stack bytes to cover
977 * the argument area.
979 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
980 MIN_STACK_SIZE(addr));
981 regs->flags &= ~X86_EFLAGS_IF;
982 trace_hardirqs_off();
983 regs->ip = (unsigned long)(jp->entry);
984 return 1;
987 void __kprobes jprobe_return(void)
989 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
991 asm volatile (
992 #ifdef CONFIG_X86_64
993 " xchg %%rbx,%%rsp \n"
994 #else
995 " xchgl %%ebx,%%esp \n"
996 #endif
997 " int3 \n"
998 " .globl jprobe_return_end\n"
999 " jprobe_return_end: \n"
1000 " nop \n"::"b"
1001 (kcb->jprobe_saved_sp):"memory");
1004 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1006 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1007 u8 *addr = (u8 *) (regs->ip - 1);
1008 struct jprobe *jp = container_of(p, struct jprobe, kp);
1010 if ((addr > (u8 *) jprobe_return) &&
1011 (addr < (u8 *) jprobe_return_end)) {
1012 if (stack_addr(regs) != kcb->jprobe_saved_sp) {
1013 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1014 printk(KERN_ERR
1015 "current sp %p does not match saved sp %p\n",
1016 stack_addr(regs), kcb->jprobe_saved_sp);
1017 printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1018 show_registers(saved_regs);
1019 printk(KERN_ERR "Current registers\n");
1020 show_registers(regs);
1021 BUG();
1023 *regs = kcb->jprobe_saved_regs;
1024 memcpy((kprobe_opcode_t *)(kcb->jprobe_saved_sp),
1025 kcb->jprobes_stack,
1026 MIN_STACK_SIZE(kcb->jprobe_saved_sp));
1027 preempt_enable_no_resched();
1028 return 1;
1030 return 0;
1033 int __init arch_init_kprobes(void)
1035 return 0;
1038 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
1040 return 0;