x86: create tlb files
[wandboard.git] / arch / x86 / kernel / tlb_64.c
blob615d84817758f755dfd05d945fe9f1a0ef6671ba
1 #include <linux/init.h>
3 #include <linux/mm.h>
4 #include <linux/delay.h>
5 #include <linux/spinlock.h>
6 #include <linux/smp.h>
7 #include <linux/kernel_stat.h>
8 #include <linux/mc146818rtc.h>
9 #include <linux/interrupt.h>
11 #include <asm/mtrr.h>
12 #include <asm/pgalloc.h>
13 #include <asm/tlbflush.h>
14 #include <asm/mach_apic.h>
15 #include <asm/mmu_context.h>
16 #include <asm/proto.h>
17 #include <asm/apicdef.h>
18 #include <asm/idle.h>
20 * Smarter SMP flushing macros.
21 * c/o Linus Torvalds.
23 * These mean you can really definitely utterly forget about
24 * writing to user space from interrupts. (Its not allowed anyway).
26 * Optimizations Manfred Spraul <manfred@colorfullife.com>
28 * More scalable flush, from Andi Kleen
30 * To avoid global state use 8 different call vectors.
31 * Each CPU uses a specific vector to trigger flushes on other
32 * CPUs. Depending on the received vector the target CPUs look into
33 * the right per cpu variable for the flush data.
35 * With more than 8 CPUs they are hashed to the 8 available
36 * vectors. The limited global vector space forces us to this right now.
37 * In future when interrupts are split into per CPU domains this could be
38 * fixed, at the cost of triggering multiple IPIs in some cases.
41 union smp_flush_state {
42 struct {
43 cpumask_t flush_cpumask;
44 struct mm_struct *flush_mm;
45 unsigned long flush_va;
46 spinlock_t tlbstate_lock;
48 char pad[SMP_CACHE_BYTES];
49 } ____cacheline_aligned;
51 /* State is put into the per CPU data section, but padded
52 to a full cache line because other CPUs can access it and we don't
53 want false sharing in the per cpu data segment. */
54 static DEFINE_PER_CPU(union smp_flush_state, flush_state);
57 * We cannot call mmdrop() because we are in interrupt context,
58 * instead update mm->cpu_vm_mask.
60 void leave_mm(int cpu)
62 if (read_pda(mmu_state) == TLBSTATE_OK)
63 BUG();
64 cpu_clear(cpu, read_pda(active_mm)->cpu_vm_mask);
65 load_cr3(swapper_pg_dir);
67 EXPORT_SYMBOL_GPL(leave_mm);
71 * The flush IPI assumes that a thread switch happens in this order:
72 * [cpu0: the cpu that switches]
73 * 1) switch_mm() either 1a) or 1b)
74 * 1a) thread switch to a different mm
75 * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
76 * Stop ipi delivery for the old mm. This is not synchronized with
77 * the other cpus, but smp_invalidate_interrupt ignore flush ipis
78 * for the wrong mm, and in the worst case we perform a superfluous
79 * tlb flush.
80 * 1a2) set cpu mmu_state to TLBSTATE_OK
81 * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
82 * was in lazy tlb mode.
83 * 1a3) update cpu active_mm
84 * Now cpu0 accepts tlb flushes for the new mm.
85 * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
86 * Now the other cpus will send tlb flush ipis.
87 * 1a4) change cr3.
88 * 1b) thread switch without mm change
89 * cpu active_mm is correct, cpu0 already handles
90 * flush ipis.
91 * 1b1) set cpu mmu_state to TLBSTATE_OK
92 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
93 * Atomically set the bit [other cpus will start sending flush ipis],
94 * and test the bit.
95 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
96 * 2) switch %%esp, ie current
98 * The interrupt must handle 2 special cases:
99 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
100 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
101 * runs in kernel space, the cpu could load tlb entries for user space
102 * pages.
104 * The good news is that cpu mmu_state is local to each cpu, no
105 * write/read ordering problems.
109 * TLB flush IPI:
111 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
112 * 2) Leave the mm if we are in the lazy tlb mode.
114 * Interrupts are disabled.
117 asmlinkage void smp_invalidate_interrupt(struct pt_regs *regs)
119 int cpu;
120 int sender;
121 union smp_flush_state *f;
123 cpu = smp_processor_id();
125 * orig_rax contains the negated interrupt vector.
126 * Use that to determine where the sender put the data.
128 sender = ~regs->orig_ax - INVALIDATE_TLB_VECTOR_START;
129 f = &per_cpu(flush_state, sender);
131 if (!cpu_isset(cpu, f->flush_cpumask))
132 goto out;
134 * This was a BUG() but until someone can quote me the
135 * line from the intel manual that guarantees an IPI to
136 * multiple CPUs is retried _only_ on the erroring CPUs
137 * its staying as a return
139 * BUG();
142 if (f->flush_mm == read_pda(active_mm)) {
143 if (read_pda(mmu_state) == TLBSTATE_OK) {
144 if (f->flush_va == TLB_FLUSH_ALL)
145 local_flush_tlb();
146 else
147 __flush_tlb_one(f->flush_va);
148 } else
149 leave_mm(cpu);
151 out:
152 ack_APIC_irq();
153 cpu_clear(cpu, f->flush_cpumask);
154 add_pda(irq_tlb_count, 1);
157 void native_flush_tlb_others(const cpumask_t *cpumaskp, struct mm_struct *mm,
158 unsigned long va)
160 int sender;
161 union smp_flush_state *f;
162 cpumask_t cpumask = *cpumaskp;
164 /* Caller has disabled preemption */
165 sender = smp_processor_id() % NUM_INVALIDATE_TLB_VECTORS;
166 f = &per_cpu(flush_state, sender);
169 * Could avoid this lock when
170 * num_online_cpus() <= NUM_INVALIDATE_TLB_VECTORS, but it is
171 * probably not worth checking this for a cache-hot lock.
173 spin_lock(&f->tlbstate_lock);
175 f->flush_mm = mm;
176 f->flush_va = va;
177 cpus_or(f->flush_cpumask, cpumask, f->flush_cpumask);
180 * We have to send the IPI only to
181 * CPUs affected.
183 send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR_START + sender);
185 while (!cpus_empty(f->flush_cpumask))
186 cpu_relax();
188 f->flush_mm = NULL;
189 f->flush_va = 0;
190 spin_unlock(&f->tlbstate_lock);
193 int __cpuinit init_smp_flush(void)
195 int i;
197 for_each_cpu_mask(i, cpu_possible_map) {
198 spin_lock_init(&per_cpu(flush_state, i).tlbstate_lock);
200 return 0;
202 core_initcall(init_smp_flush);
204 void flush_tlb_current_task(void)
206 struct mm_struct *mm = current->mm;
207 cpumask_t cpu_mask;
209 preempt_disable();
210 cpu_mask = mm->cpu_vm_mask;
211 cpu_clear(smp_processor_id(), cpu_mask);
213 local_flush_tlb();
214 if (!cpus_empty(cpu_mask))
215 flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
216 preempt_enable();
219 void flush_tlb_mm(struct mm_struct *mm)
221 cpumask_t cpu_mask;
223 preempt_disable();
224 cpu_mask = mm->cpu_vm_mask;
225 cpu_clear(smp_processor_id(), cpu_mask);
227 if (current->active_mm == mm) {
228 if (current->mm)
229 local_flush_tlb();
230 else
231 leave_mm(smp_processor_id());
233 if (!cpus_empty(cpu_mask))
234 flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
236 preempt_enable();
239 void flush_tlb_page(struct vm_area_struct *vma, unsigned long va)
241 struct mm_struct *mm = vma->vm_mm;
242 cpumask_t cpu_mask;
244 preempt_disable();
245 cpu_mask = mm->cpu_vm_mask;
246 cpu_clear(smp_processor_id(), cpu_mask);
248 if (current->active_mm == mm) {
249 if (current->mm)
250 __flush_tlb_one(va);
251 else
252 leave_mm(smp_processor_id());
255 if (!cpus_empty(cpu_mask))
256 flush_tlb_others(cpu_mask, mm, va);
258 preempt_enable();
261 static void do_flush_tlb_all(void *info)
263 unsigned long cpu = smp_processor_id();
265 __flush_tlb_all();
266 if (read_pda(mmu_state) == TLBSTATE_LAZY)
267 leave_mm(cpu);
270 void flush_tlb_all(void)
272 on_each_cpu(do_flush_tlb_all, NULL, 1, 1);