staging: rtl8192e: Convert cck_txbbgain_ch14_table to a table
[wandboard.git] / mm / compaction.c
blob6d592a021072a89048b6edd0ec79c8f965b83d49
1 /*
2 * linux/mm/compaction.c
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include "internal.h"
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/compaction.h>
23 * compact_control is used to track pages being migrated and the free pages
24 * they are being migrated to during memory compaction. The free_pfn starts
25 * at the end of a zone and migrate_pfn begins at the start. Movable pages
26 * are moved to the end of a zone during a compaction run and the run
27 * completes when free_pfn <= migrate_pfn
29 struct compact_control {
30 struct list_head freepages; /* List of free pages to migrate to */
31 struct list_head migratepages; /* List of pages being migrated */
32 unsigned long nr_freepages; /* Number of isolated free pages */
33 unsigned long nr_migratepages; /* Number of pages to migrate */
34 unsigned long free_pfn; /* isolate_freepages search base */
35 unsigned long migrate_pfn; /* isolate_migratepages search base */
36 bool sync; /* Synchronous migration */
38 /* Account for isolated anon and file pages */
39 unsigned long nr_anon;
40 unsigned long nr_file;
42 unsigned int order; /* order a direct compactor needs */
43 int migratetype; /* MOVABLE, RECLAIMABLE etc */
44 struct zone *zone;
46 int compact_mode;
49 static unsigned long release_freepages(struct list_head *freelist)
51 struct page *page, *next;
52 unsigned long count = 0;
54 list_for_each_entry_safe(page, next, freelist, lru) {
55 list_del(&page->lru);
56 __free_page(page);
57 count++;
60 return count;
63 /* Isolate free pages onto a private freelist. Must hold zone->lock */
64 static unsigned long isolate_freepages_block(struct zone *zone,
65 unsigned long blockpfn,
66 struct list_head *freelist)
68 unsigned long zone_end_pfn, end_pfn;
69 int nr_scanned = 0, total_isolated = 0;
70 struct page *cursor;
72 /* Get the last PFN we should scan for free pages at */
73 zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
74 end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn);
76 /* Find the first usable PFN in the block to initialse page cursor */
77 for (; blockpfn < end_pfn; blockpfn++) {
78 if (pfn_valid_within(blockpfn))
79 break;
81 cursor = pfn_to_page(blockpfn);
83 /* Isolate free pages. This assumes the block is valid */
84 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
85 int isolated, i;
86 struct page *page = cursor;
88 if (!pfn_valid_within(blockpfn))
89 continue;
90 nr_scanned++;
92 if (!PageBuddy(page))
93 continue;
95 /* Found a free page, break it into order-0 pages */
96 isolated = split_free_page(page);
97 total_isolated += isolated;
98 for (i = 0; i < isolated; i++) {
99 list_add(&page->lru, freelist);
100 page++;
103 /* If a page was split, advance to the end of it */
104 if (isolated) {
105 blockpfn += isolated - 1;
106 cursor += isolated - 1;
110 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
111 return total_isolated;
114 /* Returns true if the page is within a block suitable for migration to */
115 static bool suitable_migration_target(struct page *page)
118 int migratetype = get_pageblock_migratetype(page);
120 /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
121 if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
122 return false;
124 /* If the page is a large free page, then allow migration */
125 if (PageBuddy(page) && page_order(page) >= pageblock_order)
126 return true;
128 /* If the block is MIGRATE_MOVABLE, allow migration */
129 if (migratetype == MIGRATE_MOVABLE)
130 return true;
132 /* Otherwise skip the block */
133 return false;
137 * Based on information in the current compact_control, find blocks
138 * suitable for isolating free pages from and then isolate them.
140 static void isolate_freepages(struct zone *zone,
141 struct compact_control *cc)
143 struct page *page;
144 unsigned long high_pfn, low_pfn, pfn;
145 unsigned long flags;
146 int nr_freepages = cc->nr_freepages;
147 struct list_head *freelist = &cc->freepages;
149 pfn = cc->free_pfn;
150 low_pfn = cc->migrate_pfn + pageblock_nr_pages;
151 high_pfn = low_pfn;
154 * Isolate free pages until enough are available to migrate the
155 * pages on cc->migratepages. We stop searching if the migrate
156 * and free page scanners meet or enough free pages are isolated.
158 spin_lock_irqsave(&zone->lock, flags);
159 for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
160 pfn -= pageblock_nr_pages) {
161 unsigned long isolated;
163 if (!pfn_valid(pfn))
164 continue;
167 * Check for overlapping nodes/zones. It's possible on some
168 * configurations to have a setup like
169 * node0 node1 node0
170 * i.e. it's possible that all pages within a zones range of
171 * pages do not belong to a single zone.
173 page = pfn_to_page(pfn);
174 if (page_zone(page) != zone)
175 continue;
177 /* Check the block is suitable for migration */
178 if (!suitable_migration_target(page))
179 continue;
181 /* Found a block suitable for isolating free pages from */
182 isolated = isolate_freepages_block(zone, pfn, freelist);
183 nr_freepages += isolated;
186 * Record the highest PFN we isolated pages from. When next
187 * looking for free pages, the search will restart here as
188 * page migration may have returned some pages to the allocator
190 if (isolated)
191 high_pfn = max(high_pfn, pfn);
193 spin_unlock_irqrestore(&zone->lock, flags);
195 /* split_free_page does not map the pages */
196 list_for_each_entry(page, freelist, lru) {
197 arch_alloc_page(page, 0);
198 kernel_map_pages(page, 1, 1);
201 cc->free_pfn = high_pfn;
202 cc->nr_freepages = nr_freepages;
205 /* Update the number of anon and file isolated pages in the zone */
206 static void acct_isolated(struct zone *zone, struct compact_control *cc)
208 struct page *page;
209 unsigned int count[NR_LRU_LISTS] = { 0, };
211 list_for_each_entry(page, &cc->migratepages, lru) {
212 int lru = page_lru_base_type(page);
213 count[lru]++;
216 cc->nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
217 cc->nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
218 __mod_zone_page_state(zone, NR_ISOLATED_ANON, cc->nr_anon);
219 __mod_zone_page_state(zone, NR_ISOLATED_FILE, cc->nr_file);
222 /* Similar to reclaim, but different enough that they don't share logic */
223 static bool too_many_isolated(struct zone *zone)
225 unsigned long active, inactive, isolated;
227 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
228 zone_page_state(zone, NR_INACTIVE_ANON);
229 active = zone_page_state(zone, NR_ACTIVE_FILE) +
230 zone_page_state(zone, NR_ACTIVE_ANON);
231 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
232 zone_page_state(zone, NR_ISOLATED_ANON);
234 return isolated > (inactive + active) / 2;
238 * Isolate all pages that can be migrated from the block pointed to by
239 * the migrate scanner within compact_control.
241 static unsigned long isolate_migratepages(struct zone *zone,
242 struct compact_control *cc)
244 unsigned long low_pfn, end_pfn;
245 unsigned long last_pageblock_nr = 0, pageblock_nr;
246 unsigned long nr_scanned = 0, nr_isolated = 0;
247 struct list_head *migratelist = &cc->migratepages;
249 /* Do not scan outside zone boundaries */
250 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
252 /* Only scan within a pageblock boundary */
253 end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
255 /* Do not cross the free scanner or scan within a memory hole */
256 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
257 cc->migrate_pfn = end_pfn;
258 return 0;
262 * Ensure that there are not too many pages isolated from the LRU
263 * list by either parallel reclaimers or compaction. If there are,
264 * delay for some time until fewer pages are isolated
266 while (unlikely(too_many_isolated(zone))) {
267 congestion_wait(BLK_RW_ASYNC, HZ/10);
269 if (fatal_signal_pending(current))
270 return 0;
273 /* Time to isolate some pages for migration */
274 spin_lock_irq(&zone->lru_lock);
275 for (; low_pfn < end_pfn; low_pfn++) {
276 struct page *page;
277 if (!pfn_valid_within(low_pfn))
278 continue;
279 nr_scanned++;
281 /* Get the page and skip if free */
282 page = pfn_to_page(low_pfn);
283 if (PageBuddy(page))
284 continue;
287 * For async migration, also only scan in MOVABLE blocks. Async
288 * migration is optimistic to see if the minimum amount of work
289 * satisfies the allocation
291 pageblock_nr = low_pfn >> pageblock_order;
292 if (!cc->sync && last_pageblock_nr != pageblock_nr &&
293 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) {
294 low_pfn += pageblock_nr_pages;
295 low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
296 last_pageblock_nr = pageblock_nr;
297 continue;
300 if (!PageLRU(page))
301 continue;
304 * PageLRU is set, and lru_lock excludes isolation,
305 * splitting and collapsing (collapsing has already
306 * happened if PageLRU is set).
308 if (PageTransHuge(page)) {
309 low_pfn += (1 << compound_order(page)) - 1;
310 continue;
313 /* Try isolate the page */
314 if (__isolate_lru_page(page, ISOLATE_BOTH, 0) != 0)
315 continue;
317 VM_BUG_ON(PageTransCompound(page));
319 /* Successfully isolated */
320 del_page_from_lru_list(zone, page, page_lru(page));
321 list_add(&page->lru, migratelist);
322 cc->nr_migratepages++;
323 nr_isolated++;
325 /* Avoid isolating too much */
326 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
327 break;
330 acct_isolated(zone, cc);
332 spin_unlock_irq(&zone->lru_lock);
333 cc->migrate_pfn = low_pfn;
335 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
337 return cc->nr_migratepages;
341 * This is a migrate-callback that "allocates" freepages by taking pages
342 * from the isolated freelists in the block we are migrating to.
344 static struct page *compaction_alloc(struct page *migratepage,
345 unsigned long data,
346 int **result)
348 struct compact_control *cc = (struct compact_control *)data;
349 struct page *freepage;
351 /* Isolate free pages if necessary */
352 if (list_empty(&cc->freepages)) {
353 isolate_freepages(cc->zone, cc);
355 if (list_empty(&cc->freepages))
356 return NULL;
359 freepage = list_entry(cc->freepages.next, struct page, lru);
360 list_del(&freepage->lru);
361 cc->nr_freepages--;
363 return freepage;
367 * We cannot control nr_migratepages and nr_freepages fully when migration is
368 * running as migrate_pages() has no knowledge of compact_control. When
369 * migration is complete, we count the number of pages on the lists by hand.
371 static void update_nr_listpages(struct compact_control *cc)
373 int nr_migratepages = 0;
374 int nr_freepages = 0;
375 struct page *page;
377 list_for_each_entry(page, &cc->migratepages, lru)
378 nr_migratepages++;
379 list_for_each_entry(page, &cc->freepages, lru)
380 nr_freepages++;
382 cc->nr_migratepages = nr_migratepages;
383 cc->nr_freepages = nr_freepages;
386 static int compact_finished(struct zone *zone,
387 struct compact_control *cc)
389 unsigned int order;
390 unsigned long watermark;
392 if (fatal_signal_pending(current))
393 return COMPACT_PARTIAL;
395 /* Compaction run completes if the migrate and free scanner meet */
396 if (cc->free_pfn <= cc->migrate_pfn)
397 return COMPACT_COMPLETE;
399 /* Compaction run is not finished if the watermark is not met */
400 if (cc->compact_mode != COMPACT_MODE_KSWAPD)
401 watermark = low_wmark_pages(zone);
402 else
403 watermark = high_wmark_pages(zone);
404 watermark += (1 << cc->order);
406 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
407 return COMPACT_CONTINUE;
409 if (cc->order == -1)
410 return COMPACT_CONTINUE;
413 * Generating only one page of the right order is not enough
414 * for kswapd, we must continue until we're above the high
415 * watermark as a pool for high order GFP_ATOMIC allocations
416 * too.
418 if (cc->compact_mode == COMPACT_MODE_KSWAPD)
419 return COMPACT_CONTINUE;
421 /* Direct compactor: Is a suitable page free? */
422 for (order = cc->order; order < MAX_ORDER; order++) {
423 /* Job done if page is free of the right migratetype */
424 if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
425 return COMPACT_PARTIAL;
427 /* Job done if allocation would set block type */
428 if (order >= pageblock_order && zone->free_area[order].nr_free)
429 return COMPACT_PARTIAL;
432 return COMPACT_CONTINUE;
436 * compaction_suitable: Is this suitable to run compaction on this zone now?
437 * Returns
438 * COMPACT_SKIPPED - If there are too few free pages for compaction
439 * COMPACT_PARTIAL - If the allocation would succeed without compaction
440 * COMPACT_CONTINUE - If compaction should run now
442 unsigned long compaction_suitable(struct zone *zone, int order)
444 int fragindex;
445 unsigned long watermark;
448 * Watermarks for order-0 must be met for compaction. Note the 2UL.
449 * This is because during migration, copies of pages need to be
450 * allocated and for a short time, the footprint is higher
452 watermark = low_wmark_pages(zone) + (2UL << order);
453 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
454 return COMPACT_SKIPPED;
457 * fragmentation index determines if allocation failures are due to
458 * low memory or external fragmentation
460 * index of -1 implies allocations might succeed dependingon watermarks
461 * index towards 0 implies failure is due to lack of memory
462 * index towards 1000 implies failure is due to fragmentation
464 * Only compact if a failure would be due to fragmentation.
466 fragindex = fragmentation_index(zone, order);
467 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
468 return COMPACT_SKIPPED;
470 if (fragindex == -1 && zone_watermark_ok(zone, order, watermark, 0, 0))
471 return COMPACT_PARTIAL;
473 return COMPACT_CONTINUE;
476 static int compact_zone(struct zone *zone, struct compact_control *cc)
478 int ret;
480 ret = compaction_suitable(zone, cc->order);
481 switch (ret) {
482 case COMPACT_PARTIAL:
483 case COMPACT_SKIPPED:
484 /* Compaction is likely to fail */
485 return ret;
486 case COMPACT_CONTINUE:
487 /* Fall through to compaction */
491 /* Setup to move all movable pages to the end of the zone */
492 cc->migrate_pfn = zone->zone_start_pfn;
493 cc->free_pfn = cc->migrate_pfn + zone->spanned_pages;
494 cc->free_pfn &= ~(pageblock_nr_pages-1);
496 migrate_prep_local();
498 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
499 unsigned long nr_migrate, nr_remaining;
501 if (!isolate_migratepages(zone, cc))
502 continue;
504 nr_migrate = cc->nr_migratepages;
505 migrate_pages(&cc->migratepages, compaction_alloc,
506 (unsigned long)cc, false,
507 cc->sync);
508 update_nr_listpages(cc);
509 nr_remaining = cc->nr_migratepages;
511 count_vm_event(COMPACTBLOCKS);
512 count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
513 if (nr_remaining)
514 count_vm_events(COMPACTPAGEFAILED, nr_remaining);
515 trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
516 nr_remaining);
518 /* Release LRU pages not migrated */
519 if (!list_empty(&cc->migratepages)) {
520 putback_lru_pages(&cc->migratepages);
521 cc->nr_migratepages = 0;
526 /* Release free pages and check accounting */
527 cc->nr_freepages -= release_freepages(&cc->freepages);
528 VM_BUG_ON(cc->nr_freepages != 0);
530 return ret;
533 unsigned long compact_zone_order(struct zone *zone,
534 int order, gfp_t gfp_mask,
535 bool sync,
536 int compact_mode)
538 struct compact_control cc = {
539 .nr_freepages = 0,
540 .nr_migratepages = 0,
541 .order = order,
542 .migratetype = allocflags_to_migratetype(gfp_mask),
543 .zone = zone,
544 .sync = sync,
545 .compact_mode = compact_mode,
547 INIT_LIST_HEAD(&cc.freepages);
548 INIT_LIST_HEAD(&cc.migratepages);
550 return compact_zone(zone, &cc);
553 int sysctl_extfrag_threshold = 500;
556 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
557 * @zonelist: The zonelist used for the current allocation
558 * @order: The order of the current allocation
559 * @gfp_mask: The GFP mask of the current allocation
560 * @nodemask: The allowed nodes to allocate from
561 * @sync: Whether migration is synchronous or not
563 * This is the main entry point for direct page compaction.
565 unsigned long try_to_compact_pages(struct zonelist *zonelist,
566 int order, gfp_t gfp_mask, nodemask_t *nodemask,
567 bool sync)
569 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
570 int may_enter_fs = gfp_mask & __GFP_FS;
571 int may_perform_io = gfp_mask & __GFP_IO;
572 struct zoneref *z;
573 struct zone *zone;
574 int rc = COMPACT_SKIPPED;
577 * Check whether it is worth even starting compaction. The order check is
578 * made because an assumption is made that the page allocator can satisfy
579 * the "cheaper" orders without taking special steps
581 if (!order || !may_enter_fs || !may_perform_io)
582 return rc;
584 count_vm_event(COMPACTSTALL);
586 /* Compact each zone in the list */
587 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
588 nodemask) {
589 int status;
591 status = compact_zone_order(zone, order, gfp_mask, sync,
592 COMPACT_MODE_DIRECT_RECLAIM);
593 rc = max(status, rc);
595 /* If a normal allocation would succeed, stop compacting */
596 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
597 break;
600 return rc;
604 /* Compact all zones within a node */
605 static int compact_node(int nid)
607 int zoneid;
608 pg_data_t *pgdat;
609 struct zone *zone;
611 if (nid < 0 || nid >= nr_node_ids || !node_online(nid))
612 return -EINVAL;
613 pgdat = NODE_DATA(nid);
615 /* Flush pending updates to the LRU lists */
616 lru_add_drain_all();
618 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
619 struct compact_control cc = {
620 .nr_freepages = 0,
621 .nr_migratepages = 0,
622 .order = -1,
623 .compact_mode = COMPACT_MODE_DIRECT_RECLAIM,
626 zone = &pgdat->node_zones[zoneid];
627 if (!populated_zone(zone))
628 continue;
630 cc.zone = zone;
631 INIT_LIST_HEAD(&cc.freepages);
632 INIT_LIST_HEAD(&cc.migratepages);
634 compact_zone(zone, &cc);
636 VM_BUG_ON(!list_empty(&cc.freepages));
637 VM_BUG_ON(!list_empty(&cc.migratepages));
640 return 0;
643 /* Compact all nodes in the system */
644 static int compact_nodes(void)
646 int nid;
648 for_each_online_node(nid)
649 compact_node(nid);
651 return COMPACT_COMPLETE;
654 /* The written value is actually unused, all memory is compacted */
655 int sysctl_compact_memory;
657 /* This is the entry point for compacting all nodes via /proc/sys/vm */
658 int sysctl_compaction_handler(struct ctl_table *table, int write,
659 void __user *buffer, size_t *length, loff_t *ppos)
661 if (write)
662 return compact_nodes();
664 return 0;
667 int sysctl_extfrag_handler(struct ctl_table *table, int write,
668 void __user *buffer, size_t *length, loff_t *ppos)
670 proc_dointvec_minmax(table, write, buffer, length, ppos);
672 return 0;
675 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
676 ssize_t sysfs_compact_node(struct sys_device *dev,
677 struct sysdev_attribute *attr,
678 const char *buf, size_t count)
680 compact_node(dev->id);
682 return count;
684 static SYSDEV_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
686 int compaction_register_node(struct node *node)
688 return sysdev_create_file(&node->sysdev, &attr_compact);
691 void compaction_unregister_node(struct node *node)
693 return sysdev_remove_file(&node->sysdev, &attr_compact);
695 #endif /* CONFIG_SYSFS && CONFIG_NUMA */