2 * Device driver for the thermostats & fan controller of the
3 * Apple G5 "PowerMac7,2" desktop machines.
5 * (c) Copyright IBM Corp. 2003-2004
7 * Maintained by: Benjamin Herrenschmidt
8 * <benh@kernel.crashing.org>
11 * The algorithm used is the PID control algorithm, used the same
12 * way the published Darwin code does, using the same values that
13 * are present in the Darwin 7.0 snapshot property lists.
15 * As far as the CPUs control loops are concerned, I use the
16 * calibration & PID constants provided by the EEPROM,
17 * I do _not_ embed any value from the property lists, as the ones
18 * provided by Darwin 7.0 seem to always have an older version that
19 * what I've seen on the actual computers.
20 * It would be interesting to verify that though. Darwin has a
21 * version code of 1.0.0d11 for all control loops it seems, while
22 * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
24 * Darwin doesn't provide source to all parts, some missing
25 * bits like the AppleFCU driver or the actual scale of some
26 * of the values returned by sensors had to be "guessed" some
27 * way... or based on what Open Firmware does.
29 * I didn't yet figure out how to get the slots power consumption
30 * out of the FCU, so that part has not been implemented yet and
31 * the slots fan is set to a fixed 50% PWM, hoping this value is
34 * Note: I have observed strange oscillations of the CPU control
35 * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
36 * oscillates slowly (over several minutes) between the minimum
37 * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
38 * this, it could be some incorrect constant or an error in the
39 * way I ported the algorithm, or it could be just normal. I
40 * don't have full understanding on the way Apple tweaked the PID
41 * algorithm for the CPU control, it is definitely not a standard
44 * TODO: - Check MPU structure version/signature
45 * - Add things like /sbin/overtemp for non-critical
46 * overtemp conditions so userland can take some policy
47 * decisions, like slewing down CPUs
48 * - Deal with fan and i2c failures in a better way
49 * - Maybe do a generic PID based on params used for
50 * U3 and Drives ? Definitely need to factor code a bit
51 * bettter... also make sensor detection more robust using
52 * the device-tree to probe for them
53 * - Figure out how to get the slots consumption and set the
54 * slots fan accordingly
62 * - Read fan speed from FCU, low level fan routines now deal
63 * with errors & check fan status, though higher level don't
65 * - Move a bunch of definitions to .h file
68 * - Fix build on ppc64 kernel
69 * - Move back statics definitions to .c file
70 * - Avoid calling schedule_timeout with a negative number
73 * - Fix typo when reading back fan speed on 2 CPU machines
76 * - Rework code accessing the ADC chips, make it more robust and
77 * closer to the chip spec. Also make sure it is configured properly,
78 * I've seen yet unexplained cases where on startup, I would have stale
79 * values in the configuration register
80 * - Switch back to use of target fan speed for PID, thus lowering
84 * - Add device-tree lookup for fan IDs, should detect liquid cooling
86 * - Enable driver for PowerMac7,3 machines
87 * - Split the U3/Backside cooling on U3 & U3H versions as Darwin does
88 * - Add new CPU cooling algorithm for machines with liquid cooling
89 * - Workaround for some PowerMac7,3 with empty "fan" node in the devtree
90 * - Fix a signed/unsigned compare issue in some PID loops
93 * - Add basic support for Xserve G5
94 * - Retreive pumps min/max from EEPROM image in device-tree (broken)
95 * - Use min/max macros here or there
96 * - Latest darwin updated U3H min fan speed to 20% PWM
100 #include <linux/config.h>
101 #include <linux/types.h>
102 #include <linux/module.h>
103 #include <linux/errno.h>
104 #include <linux/kernel.h>
105 #include <linux/delay.h>
106 #include <linux/sched.h>
107 #include <linux/i2c.h>
108 #include <linux/slab.h>
109 #include <linux/init.h>
110 #include <linux/spinlock.h>
111 #include <linux/smp_lock.h>
112 #include <linux/wait.h>
113 #include <linux/reboot.h>
114 #include <linux/kmod.h>
115 #include <linux/i2c.h>
116 #include <linux/i2c-dev.h>
117 #include <asm/prom.h>
118 #include <asm/machdep.h>
120 #include <asm/system.h>
121 #include <asm/sections.h>
122 #include <asm/of_device.h>
123 #include <asm/macio.h>
125 #include "therm_pm72.h"
127 #define VERSION "1.2b2"
132 #define DBG(args...) printk(args)
134 #define DBG(args...) do { } while(0)
142 static struct of_device
* of_dev
;
143 static struct i2c_adapter
* u3_0
;
144 static struct i2c_adapter
* u3_1
;
145 static struct i2c_adapter
* k2
;
146 static struct i2c_client
* fcu
;
147 static struct cpu_pid_state cpu_state
[2];
148 static struct basckside_pid_params backside_params
;
149 static struct backside_pid_state backside_state
;
150 static struct drives_pid_state drives_state
;
151 static struct dimm_pid_state dimms_state
;
153 static int cpu_count
;
154 static int cpu_pid_type
;
155 static pid_t ctrl_task
;
156 static struct completion ctrl_complete
;
157 static int critical_state
;
159 static s32 dimm_output_clamp
;
161 static DECLARE_MUTEX(driver_lock
);
164 * We have 3 types of CPU PID control. One is "split" old style control
165 * for intake & exhaust fans, the other is "combined" control for both
166 * CPUs that also deals with the pumps when present. To be "compatible"
167 * with OS X at this point, we only use "COMBINED" on the machines that
168 * are identified as having the pumps (though that identification is at
169 * least dodgy). Ultimately, we could probably switch completely to this
170 * algorithm provided we hack it to deal with the UP case
172 #define CPU_PID_TYPE_SPLIT 0
173 #define CPU_PID_TYPE_COMBINED 1
174 #define CPU_PID_TYPE_RACKMAC 2
177 * This table describes all fans in the FCU. The "id" and "type" values
178 * are defaults valid for all earlier machines. Newer machines will
179 * eventually override the table content based on the device-tree
183 char* loc
; /* location code */
184 int type
; /* 0 = rpm, 1 = pwm, 2 = pump */
185 int id
; /* id or -1 */
188 #define FCU_FAN_RPM 0
189 #define FCU_FAN_PWM 1
191 #define FCU_FAN_ABSENT_ID -1
193 #define FCU_FAN_COUNT ARRAY_SIZE(fcu_fans)
195 struct fcu_fan_table fcu_fans
[] = {
196 [BACKSIDE_FAN_PWM_INDEX
] = {
197 .loc
= "BACKSIDE,SYS CTRLR FAN",
199 .id
= BACKSIDE_FAN_PWM_DEFAULT_ID
,
201 [DRIVES_FAN_RPM_INDEX
] = {
204 .id
= DRIVES_FAN_RPM_DEFAULT_ID
,
206 [SLOTS_FAN_PWM_INDEX
] = {
207 .loc
= "SLOT,PCI FAN",
209 .id
= SLOTS_FAN_PWM_DEFAULT_ID
,
211 [CPUA_INTAKE_FAN_RPM_INDEX
] = {
212 .loc
= "CPU A INTAKE",
214 .id
= CPUA_INTAKE_FAN_RPM_DEFAULT_ID
,
216 [CPUA_EXHAUST_FAN_RPM_INDEX
] = {
217 .loc
= "CPU A EXHAUST",
219 .id
= CPUA_EXHAUST_FAN_RPM_DEFAULT_ID
,
221 [CPUB_INTAKE_FAN_RPM_INDEX
] = {
222 .loc
= "CPU B INTAKE",
224 .id
= CPUB_INTAKE_FAN_RPM_DEFAULT_ID
,
226 [CPUB_EXHAUST_FAN_RPM_INDEX
] = {
227 .loc
= "CPU B EXHAUST",
229 .id
= CPUB_EXHAUST_FAN_RPM_DEFAULT_ID
,
231 /* pumps aren't present by default, have to be looked up in the
234 [CPUA_PUMP_RPM_INDEX
] = {
237 .id
= FCU_FAN_ABSENT_ID
,
239 [CPUB_PUMP_RPM_INDEX
] = {
242 .id
= FCU_FAN_ABSENT_ID
,
245 [CPU_A1_FAN_RPM_INDEX
] = {
248 .id
= FCU_FAN_ABSENT_ID
,
250 [CPU_A2_FAN_RPM_INDEX
] = {
253 .id
= FCU_FAN_ABSENT_ID
,
255 [CPU_A3_FAN_RPM_INDEX
] = {
258 .id
= FCU_FAN_ABSENT_ID
,
260 [CPU_B1_FAN_RPM_INDEX
] = {
263 .id
= FCU_FAN_ABSENT_ID
,
265 [CPU_B2_FAN_RPM_INDEX
] = {
268 .id
= FCU_FAN_ABSENT_ID
,
270 [CPU_B3_FAN_RPM_INDEX
] = {
273 .id
= FCU_FAN_ABSENT_ID
,
278 * i2c_driver structure to attach to the host i2c controller
281 static int therm_pm72_attach(struct i2c_adapter
*adapter
);
282 static int therm_pm72_detach(struct i2c_adapter
*adapter
);
284 static struct i2c_driver therm_pm72_driver
=
287 .name
= "therm_pm72",
289 .attach_adapter
= therm_pm72_attach
,
290 .detach_adapter
= therm_pm72_detach
,
294 * Utility function to create an i2c_client structure and
295 * attach it to one of u3 adapters
297 static struct i2c_client
*attach_i2c_chip(int id
, const char *name
)
299 struct i2c_client
*clt
;
300 struct i2c_adapter
*adap
;
311 clt
= kmalloc(sizeof(struct i2c_client
), GFP_KERNEL
);
314 memset(clt
, 0, sizeof(struct i2c_client
));
316 clt
->addr
= (id
>> 1) & 0x7f;
318 clt
->driver
= &therm_pm72_driver
;
319 strncpy(clt
->name
, name
, I2C_NAME_SIZE
-1);
321 if (i2c_attach_client(clt
)) {
322 printk(KERN_ERR
"therm_pm72: Failed to attach to i2c ID 0x%x\n", id
);
330 * Utility function to get rid of the i2c_client structure
331 * (will also detach from the adapter hopepfully)
333 static void detach_i2c_chip(struct i2c_client
*clt
)
335 i2c_detach_client(clt
);
340 * Here are the i2c chip access wrappers
343 static void initialize_adc(struct cpu_pid_state
*state
)
348 /* Read ADC the configuration register and cache it. We
349 * also make sure Config2 contains proper values, I've seen
350 * cases where we got stale grabage in there, thus preventing
351 * proper reading of conv. values
357 i2c_master_send(state
->monitor
, buf
, 2);
359 /* Read & cache Config1 */
361 rc
= i2c_master_send(state
->monitor
, buf
, 1);
363 rc
= i2c_master_recv(state
->monitor
, buf
, 1);
365 state
->adc_config
= buf
[0];
366 DBG("ADC config reg: %02x\n", state
->adc_config
);
367 /* Disable shutdown mode */
368 state
->adc_config
&= 0xfe;
370 buf
[1] = state
->adc_config
;
371 rc
= i2c_master_send(state
->monitor
, buf
, 2);
375 printk(KERN_ERR
"therm_pm72: Error reading ADC config"
379 static int read_smon_adc(struct cpu_pid_state
*state
, int chan
)
381 int rc
, data
, tries
= 0;
387 buf
[1] = (state
->adc_config
& 0x1f) | (chan
<< 5);
388 rc
= i2c_master_send(state
->monitor
, buf
, 2);
391 /* Wait for convertion */
393 /* Switch to data register */
395 rc
= i2c_master_send(state
->monitor
, buf
, 1);
399 rc
= i2c_master_recv(state
->monitor
, buf
, 2);
402 data
= ((u16
)buf
[0]) << 8 | (u16
)buf
[1];
405 DBG("Error reading ADC, retrying...\n");
407 printk(KERN_ERR
"therm_pm72: Error reading ADC !\n");
414 static int read_lm87_reg(struct i2c_client
* chip
, int reg
)
422 rc
= i2c_master_send(chip
, &buf
, 1);
425 rc
= i2c_master_recv(chip
, &buf
, 1);
430 DBG("Error reading LM87, retrying...\n");
432 printk(KERN_ERR
"therm_pm72: Error reading LM87 !\n");
439 static int fan_read_reg(int reg
, unsigned char *buf
, int nb
)
446 nw
= i2c_master_send(fcu
, buf
, 1);
447 if (nw
> 0 || (nw
< 0 && nw
!= -EIO
) || tries
>= 100)
453 printk(KERN_ERR
"Failure writing address to FCU: %d", nw
);
458 nr
= i2c_master_recv(fcu
, buf
, nb
);
459 if (nr
> 0 || (nr
< 0 && nr
!= ENODEV
) || tries
>= 100)
465 printk(KERN_ERR
"Failure reading data from FCU: %d", nw
);
469 static int fan_write_reg(int reg
, const unsigned char *ptr
, int nb
)
472 unsigned char buf
[16];
475 memcpy(buf
+1, ptr
, nb
);
479 nw
= i2c_master_send(fcu
, buf
, nb
);
480 if (nw
> 0 || (nw
< 0 && nw
!= EIO
) || tries
>= 100)
486 printk(KERN_ERR
"Failure writing to FCU: %d", nw
);
490 static int start_fcu(void)
492 unsigned char buf
= 0xff;
495 rc
= fan_write_reg(0xe, &buf
, 1);
498 rc
= fan_write_reg(0x2e, &buf
, 1);
504 static int set_rpm_fan(int fan_index
, int rpm
)
506 unsigned char buf
[2];
509 if (fcu_fans
[fan_index
].type
!= FCU_FAN_RPM
)
511 id
= fcu_fans
[fan_index
].id
;
512 if (id
== FCU_FAN_ABSENT_ID
)
521 rc
= fan_write_reg(0x10 + (id
* 2), buf
, 2);
527 static int get_rpm_fan(int fan_index
, int programmed
)
529 unsigned char failure
;
530 unsigned char active
;
531 unsigned char buf
[2];
532 int rc
, id
, reg_base
;
534 if (fcu_fans
[fan_index
].type
!= FCU_FAN_RPM
)
536 id
= fcu_fans
[fan_index
].id
;
537 if (id
== FCU_FAN_ABSENT_ID
)
540 rc
= fan_read_reg(0xb, &failure
, 1);
543 if ((failure
& (1 << id
)) != 0)
545 rc
= fan_read_reg(0xd, &active
, 1);
548 if ((active
& (1 << id
)) == 0)
551 /* Programmed value or real current speed */
552 reg_base
= programmed
? 0x10 : 0x11;
553 rc
= fan_read_reg(reg_base
+ (id
* 2), buf
, 2);
557 return (buf
[0] << 5) | buf
[1] >> 3;
560 static int set_pwm_fan(int fan_index
, int pwm
)
562 unsigned char buf
[2];
565 if (fcu_fans
[fan_index
].type
!= FCU_FAN_PWM
)
567 id
= fcu_fans
[fan_index
].id
;
568 if (id
== FCU_FAN_ABSENT_ID
)
575 pwm
= (pwm
* 2559) / 1000;
577 rc
= fan_write_reg(0x30 + (id
* 2), buf
, 1);
583 static int get_pwm_fan(int fan_index
)
585 unsigned char failure
;
586 unsigned char active
;
587 unsigned char buf
[2];
590 if (fcu_fans
[fan_index
].type
!= FCU_FAN_PWM
)
592 id
= fcu_fans
[fan_index
].id
;
593 if (id
== FCU_FAN_ABSENT_ID
)
596 rc
= fan_read_reg(0x2b, &failure
, 1);
599 if ((failure
& (1 << id
)) != 0)
601 rc
= fan_read_reg(0x2d, &active
, 1);
604 if ((active
& (1 << id
)) == 0)
607 /* Programmed value or real current speed */
608 rc
= fan_read_reg(0x30 + (id
* 2), buf
, 1);
612 return (buf
[0] * 1000) / 2559;
616 * Utility routine to read the CPU calibration EEPROM data
617 * from the device-tree
619 static int read_eeprom(int cpu
, struct mpu_data
*out
)
621 struct device_node
*np
;
626 /* prom.c routine for finding a node by path is a bit brain dead
627 * and requires exact @xxx unit numbers. This is a bit ugly but
628 * will work for these machines
630 sprintf(nodename
, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu
? 2 : 0);
631 np
= of_find_node_by_path(nodename
);
633 printk(KERN_ERR
"therm_pm72: Failed to retrieve cpuid node from device-tree\n");
636 data
= (u8
*)get_property(np
, "cpuid", &len
);
638 printk(KERN_ERR
"therm_pm72: Failed to retrieve cpuid property from device-tree\n");
642 memcpy(out
, data
, sizeof(struct mpu_data
));
648 static void fetch_cpu_pumps_minmax(void)
650 struct cpu_pid_state
*state0
= &cpu_state
[0];
651 struct cpu_pid_state
*state1
= &cpu_state
[1];
652 u16 pump_min
= 0, pump_max
= 0xffff;
655 /* Try to fetch pumps min/max infos from eeprom */
657 memcpy(&tmp
, &state0
->mpu
.processor_part_num
, 8);
658 if (tmp
[0] != 0xffff && tmp
[1] != 0xffff) {
659 pump_min
= max(pump_min
, tmp
[0]);
660 pump_max
= min(pump_max
, tmp
[1]);
662 if (tmp
[2] != 0xffff && tmp
[3] != 0xffff) {
663 pump_min
= max(pump_min
, tmp
[2]);
664 pump_max
= min(pump_max
, tmp
[3]);
667 /* Double check the values, this _IS_ needed as the EEPROM on
668 * some dual 2.5Ghz G5s seem, at least, to have both min & max
669 * same to the same value ... (grrrr)
671 if (pump_min
== pump_max
|| pump_min
== 0 || pump_max
== 0xffff) {
672 pump_min
= CPU_PUMP_OUTPUT_MIN
;
673 pump_max
= CPU_PUMP_OUTPUT_MAX
;
676 state0
->pump_min
= state1
->pump_min
= pump_min
;
677 state0
->pump_max
= state1
->pump_max
= pump_max
;
681 * Now, unfortunately, sysfs doesn't give us a nice void * we could
682 * pass around to the attribute functions, so we don't really have
683 * choice but implement a bunch of them...
685 * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
686 * the input twice... I accept patches :)
688 #define BUILD_SHOW_FUNC_FIX(name, data) \
689 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \
692 down(&driver_lock); \
693 r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data)); \
697 #define BUILD_SHOW_FUNC_INT(name, data) \
698 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \
700 return sprintf(buf, "%d", data); \
703 BUILD_SHOW_FUNC_FIX(cpu0_temperature
, cpu_state
[0].last_temp
)
704 BUILD_SHOW_FUNC_FIX(cpu0_voltage
, cpu_state
[0].voltage
)
705 BUILD_SHOW_FUNC_FIX(cpu0_current
, cpu_state
[0].current_a
)
706 BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm
, cpu_state
[0].rpm
)
707 BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm
, cpu_state
[0].intake_rpm
)
709 BUILD_SHOW_FUNC_FIX(cpu1_temperature
, cpu_state
[1].last_temp
)
710 BUILD_SHOW_FUNC_FIX(cpu1_voltage
, cpu_state
[1].voltage
)
711 BUILD_SHOW_FUNC_FIX(cpu1_current
, cpu_state
[1].current_a
)
712 BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm
, cpu_state
[1].rpm
)
713 BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm
, cpu_state
[1].intake_rpm
)
715 BUILD_SHOW_FUNC_FIX(backside_temperature
, backside_state
.last_temp
)
716 BUILD_SHOW_FUNC_INT(backside_fan_pwm
, backside_state
.pwm
)
718 BUILD_SHOW_FUNC_FIX(drives_temperature
, drives_state
.last_temp
)
719 BUILD_SHOW_FUNC_INT(drives_fan_rpm
, drives_state
.rpm
)
721 BUILD_SHOW_FUNC_FIX(dimms_temperature
, dimms_state
.last_temp
)
723 static DEVICE_ATTR(cpu0_temperature
,S_IRUGO
,show_cpu0_temperature
,NULL
);
724 static DEVICE_ATTR(cpu0_voltage
,S_IRUGO
,show_cpu0_voltage
,NULL
);
725 static DEVICE_ATTR(cpu0_current
,S_IRUGO
,show_cpu0_current
,NULL
);
726 static DEVICE_ATTR(cpu0_exhaust_fan_rpm
,S_IRUGO
,show_cpu0_exhaust_fan_rpm
,NULL
);
727 static DEVICE_ATTR(cpu0_intake_fan_rpm
,S_IRUGO
,show_cpu0_intake_fan_rpm
,NULL
);
729 static DEVICE_ATTR(cpu1_temperature
,S_IRUGO
,show_cpu1_temperature
,NULL
);
730 static DEVICE_ATTR(cpu1_voltage
,S_IRUGO
,show_cpu1_voltage
,NULL
);
731 static DEVICE_ATTR(cpu1_current
,S_IRUGO
,show_cpu1_current
,NULL
);
732 static DEVICE_ATTR(cpu1_exhaust_fan_rpm
,S_IRUGO
,show_cpu1_exhaust_fan_rpm
,NULL
);
733 static DEVICE_ATTR(cpu1_intake_fan_rpm
,S_IRUGO
,show_cpu1_intake_fan_rpm
,NULL
);
735 static DEVICE_ATTR(backside_temperature
,S_IRUGO
,show_backside_temperature
,NULL
);
736 static DEVICE_ATTR(backside_fan_pwm
,S_IRUGO
,show_backside_fan_pwm
,NULL
);
738 static DEVICE_ATTR(drives_temperature
,S_IRUGO
,show_drives_temperature
,NULL
);
739 static DEVICE_ATTR(drives_fan_rpm
,S_IRUGO
,show_drives_fan_rpm
,NULL
);
741 static DEVICE_ATTR(dimms_temperature
,S_IRUGO
,show_dimms_temperature
,NULL
);
744 * CPUs fans control loop
747 static int do_read_one_cpu_values(struct cpu_pid_state
*state
, s32
*temp
, s32
*power
)
749 s32 ltemp
, volts
, amps
;
752 /* Default (in case of error) */
753 *temp
= state
->cur_temp
;
754 *power
= state
->cur_power
;
756 if (cpu_pid_type
== CPU_PID_TYPE_RACKMAC
)
757 index
= (state
->index
== 0) ?
758 CPU_A1_FAN_RPM_INDEX
: CPU_B1_FAN_RPM_INDEX
;
760 index
= (state
->index
== 0) ?
761 CPUA_EXHAUST_FAN_RPM_INDEX
: CPUB_EXHAUST_FAN_RPM_INDEX
;
763 /* Read current fan status */
764 rc
= get_rpm_fan(index
, !RPM_PID_USE_ACTUAL_SPEED
);
766 /* XXX What do we do now ? Nothing for now, keep old value, but
767 * return error upstream
769 DBG(" cpu %d, fan reading error !\n", state
->index
);
772 DBG(" cpu %d, exhaust RPM: %d\n", state
->index
, state
->rpm
);
775 /* Get some sensor readings and scale it */
776 ltemp
= read_smon_adc(state
, 1);
778 /* XXX What do we do now ? */
782 DBG(" cpu %d, temp reading error !\n", state
->index
);
784 /* Fixup temperature according to diode calibration
786 DBG(" cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
788 ltemp
, state
->mpu
.mdiode
, state
->mpu
.bdiode
);
789 *temp
= ((s32
)ltemp
* (s32
)state
->mpu
.mdiode
+ ((s32
)state
->mpu
.bdiode
<< 12)) >> 2;
790 state
->last_temp
= *temp
;
791 DBG(" temp: %d.%03d\n", FIX32TOPRINT((*temp
)));
795 * Read voltage & current and calculate power
797 volts
= read_smon_adc(state
, 3);
798 amps
= read_smon_adc(state
, 4);
800 /* Scale voltage and current raw sensor values according to fixed scales
801 * obtained in Darwin and calculate power from I and V
803 volts
*= ADC_CPU_VOLTAGE_SCALE
;
804 amps
*= ADC_CPU_CURRENT_SCALE
;
805 *power
= (((u64
)volts
) * ((u64
)amps
)) >> 16;
806 state
->voltage
= volts
;
807 state
->current_a
= amps
;
808 state
->last_power
= *power
;
810 DBG(" cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
811 state
->index
, FIX32TOPRINT(state
->current_a
),
812 FIX32TOPRINT(state
->voltage
), FIX32TOPRINT(*power
));
817 static void do_cpu_pid(struct cpu_pid_state
*state
, s32 temp
, s32 power
)
819 s32 power_target
, integral
, derivative
, proportional
, adj_in_target
, sval
;
820 s64 integ_p
, deriv_p
, prop_p
, sum
;
823 /* Calculate power target value (could be done once for all)
824 * and convert to a 16.16 fp number
826 power_target
= ((u32
)(state
->mpu
.pmaxh
- state
->mpu
.padjmax
)) << 16;
827 DBG(" power target: %d.%03d, error: %d.%03d\n",
828 FIX32TOPRINT(power_target
), FIX32TOPRINT(power_target
- power
));
830 /* Store temperature and power in history array */
831 state
->cur_temp
= (state
->cur_temp
+ 1) % CPU_TEMP_HISTORY_SIZE
;
832 state
->temp_history
[state
->cur_temp
] = temp
;
833 state
->cur_power
= (state
->cur_power
+ 1) % state
->count_power
;
834 state
->power_history
[state
->cur_power
] = power
;
835 state
->error_history
[state
->cur_power
] = power_target
- power
;
837 /* If first loop, fill the history table */
839 for (i
= 0; i
< (state
->count_power
- 1); i
++) {
840 state
->cur_power
= (state
->cur_power
+ 1) % state
->count_power
;
841 state
->power_history
[state
->cur_power
] = power
;
842 state
->error_history
[state
->cur_power
] = power_target
- power
;
844 for (i
= 0; i
< (CPU_TEMP_HISTORY_SIZE
- 1); i
++) {
845 state
->cur_temp
= (state
->cur_temp
+ 1) % CPU_TEMP_HISTORY_SIZE
;
846 state
->temp_history
[state
->cur_temp
] = temp
;
851 /* Calculate the integral term normally based on the "power" values */
854 for (i
= 0; i
< state
->count_power
; i
++)
855 integral
+= state
->error_history
[i
];
856 integral
*= CPU_PID_INTERVAL
;
857 DBG(" integral: %08x\n", integral
);
859 /* Calculate the adjusted input (sense value).
862 * so the result is 28.36
864 * input target is mpu.ttarget, input max is mpu.tmax
866 integ_p
= ((s64
)state
->mpu
.pid_gr
) * (s64
)integral
;
867 DBG(" integ_p: %d\n", (int)(integ_p
>> 36));
868 sval
= (state
->mpu
.tmax
<< 16) - ((integ_p
>> 20) & 0xffffffff);
869 adj_in_target
= (state
->mpu
.ttarget
<< 16);
870 if (adj_in_target
> sval
)
871 adj_in_target
= sval
;
872 DBG(" adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target
),
875 /* Calculate the derivative term */
876 derivative
= state
->temp_history
[state
->cur_temp
] -
877 state
->temp_history
[(state
->cur_temp
+ CPU_TEMP_HISTORY_SIZE
- 1)
878 % CPU_TEMP_HISTORY_SIZE
];
879 derivative
/= CPU_PID_INTERVAL
;
880 deriv_p
= ((s64
)state
->mpu
.pid_gd
) * (s64
)derivative
;
881 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
884 /* Calculate the proportional term */
885 proportional
= temp
- adj_in_target
;
886 prop_p
= ((s64
)state
->mpu
.pid_gp
) * (s64
)proportional
;
887 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
893 DBG(" sum: %d\n", (int)sum
);
894 state
->rpm
+= (s32
)sum
;
897 static void do_monitor_cpu_combined(void)
899 struct cpu_pid_state
*state0
= &cpu_state
[0];
900 struct cpu_pid_state
*state1
= &cpu_state
[1];
901 s32 temp0
, power0
, temp1
, power1
;
902 s32 temp_combi
, power_combi
;
903 int rc
, intake
, pump
;
905 rc
= do_read_one_cpu_values(state0
, &temp0
, &power0
);
907 /* XXX What do we do now ? */
909 state1
->overtemp
= 0;
910 rc
= do_read_one_cpu_values(state1
, &temp1
, &power1
);
912 /* XXX What do we do now ? */
914 if (state1
->overtemp
)
917 temp_combi
= max(temp0
, temp1
);
918 power_combi
= max(power0
, power1
);
920 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
921 * full blown immediately and try to trigger a shutdown
923 if (temp_combi
>= ((state0
->mpu
.tmax
+ 8) << 16)) {
924 printk(KERN_WARNING
"Warning ! Temperature way above maximum (%d) !\n",
926 state0
->overtemp
+= CPU_MAX_OVERTEMP
/ 4;
927 } else if (temp_combi
> (state0
->mpu
.tmax
<< 16))
930 state0
->overtemp
= 0;
931 if (state0
->overtemp
>= CPU_MAX_OVERTEMP
)
933 if (state0
->overtemp
> 0) {
934 state0
->rpm
= state0
->mpu
.rmaxn_exhaust_fan
;
935 state0
->intake_rpm
= intake
= state0
->mpu
.rmaxn_intake_fan
;
936 pump
= state0
->pump_max
;
941 do_cpu_pid(state0
, temp_combi
, power_combi
);
944 state0
->rpm
= max(state0
->rpm
, (int)state0
->mpu
.rminn_exhaust_fan
);
945 state0
->rpm
= min(state0
->rpm
, (int)state0
->mpu
.rmaxn_exhaust_fan
);
947 /* Calculate intake fan speed */
948 intake
= (state0
->rpm
* CPU_INTAKE_SCALE
) >> 16;
949 intake
= max(intake
, (int)state0
->mpu
.rminn_intake_fan
);
950 intake
= min(intake
, (int)state0
->mpu
.rmaxn_intake_fan
);
951 state0
->intake_rpm
= intake
;
953 /* Calculate pump speed */
954 pump
= (state0
->rpm
* state0
->pump_max
) /
955 state0
->mpu
.rmaxn_exhaust_fan
;
956 pump
= min(pump
, state0
->pump_max
);
957 pump
= max(pump
, state0
->pump_min
);
960 /* We copy values from state 0 to state 1 for /sysfs */
961 state1
->rpm
= state0
->rpm
;
962 state1
->intake_rpm
= state0
->intake_rpm
;
964 DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
965 state1
->index
, (int)state1
->rpm
, intake
, pump
, state1
->overtemp
);
967 /* We should check for errors, shouldn't we ? But then, what
968 * do we do once the error occurs ? For FCU notified fan
969 * failures (-EFAULT) we probably want to notify userland
972 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX
, intake
);
973 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX
, state0
->rpm
);
974 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX
, intake
);
975 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX
, state0
->rpm
);
977 if (fcu_fans
[CPUA_PUMP_RPM_INDEX
].id
!= FCU_FAN_ABSENT_ID
)
978 set_rpm_fan(CPUA_PUMP_RPM_INDEX
, pump
);
979 if (fcu_fans
[CPUB_PUMP_RPM_INDEX
].id
!= FCU_FAN_ABSENT_ID
)
980 set_rpm_fan(CPUB_PUMP_RPM_INDEX
, pump
);
983 static void do_monitor_cpu_split(struct cpu_pid_state
*state
)
988 /* Read current fan status */
989 rc
= do_read_one_cpu_values(state
, &temp
, &power
);
991 /* XXX What do we do now ? */
994 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
995 * full blown immediately and try to trigger a shutdown
997 if (temp
>= ((state
->mpu
.tmax
+ 8) << 16)) {
998 printk(KERN_WARNING
"Warning ! CPU %d temperature way above maximum"
1000 state
->index
, temp
>> 16);
1001 state
->overtemp
+= CPU_MAX_OVERTEMP
/ 4;
1002 } else if (temp
> (state
->mpu
.tmax
<< 16))
1005 state
->overtemp
= 0;
1006 if (state
->overtemp
>= CPU_MAX_OVERTEMP
)
1008 if (state
->overtemp
> 0) {
1009 state
->rpm
= state
->mpu
.rmaxn_exhaust_fan
;
1010 state
->intake_rpm
= intake
= state
->mpu
.rmaxn_intake_fan
;
1015 do_cpu_pid(state
, temp
, power
);
1018 state
->rpm
= max(state
->rpm
, (int)state
->mpu
.rminn_exhaust_fan
);
1019 state
->rpm
= min(state
->rpm
, (int)state
->mpu
.rmaxn_exhaust_fan
);
1021 /* Calculate intake fan */
1022 intake
= (state
->rpm
* CPU_INTAKE_SCALE
) >> 16;
1023 intake
= max(intake
, (int)state
->mpu
.rminn_intake_fan
);
1024 intake
= min(intake
, (int)state
->mpu
.rmaxn_intake_fan
);
1025 state
->intake_rpm
= intake
;
1028 DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
1029 state
->index
, (int)state
->rpm
, intake
, state
->overtemp
);
1031 /* We should check for errors, shouldn't we ? But then, what
1032 * do we do once the error occurs ? For FCU notified fan
1033 * failures (-EFAULT) we probably want to notify userland
1036 if (state
->index
== 0) {
1037 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX
, intake
);
1038 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX
, state
->rpm
);
1040 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX
, intake
);
1041 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX
, state
->rpm
);
1045 static void do_monitor_cpu_rack(struct cpu_pid_state
*state
)
1047 s32 temp
, power
, fan_min
;
1050 /* Read current fan status */
1051 rc
= do_read_one_cpu_values(state
, &temp
, &power
);
1053 /* XXX What do we do now ? */
1056 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1057 * full blown immediately and try to trigger a shutdown
1059 if (temp
>= ((state
->mpu
.tmax
+ 8) << 16)) {
1060 printk(KERN_WARNING
"Warning ! CPU %d temperature way above maximum"
1062 state
->index
, temp
>> 16);
1063 state
->overtemp
= CPU_MAX_OVERTEMP
/ 4;
1064 } else if (temp
> (state
->mpu
.tmax
<< 16))
1067 state
->overtemp
= 0;
1068 if (state
->overtemp
>= CPU_MAX_OVERTEMP
)
1070 if (state
->overtemp
> 0) {
1071 state
->rpm
= state
->intake_rpm
= state
->mpu
.rmaxn_intake_fan
;
1076 do_cpu_pid(state
, temp
, power
);
1078 /* Check clamp from dimms */
1079 fan_min
= dimm_output_clamp
;
1080 fan_min
= max(fan_min
, (int)state
->mpu
.rminn_intake_fan
);
1082 state
->rpm
= max(state
->rpm
, (int)fan_min
);
1083 state
->rpm
= min(state
->rpm
, (int)state
->mpu
.rmaxn_intake_fan
);
1084 state
->intake_rpm
= state
->rpm
;
1087 DBG("** CPU %d RPM: %d overtemp: %d\n",
1088 state
->index
, (int)state
->rpm
, state
->overtemp
);
1090 /* We should check for errors, shouldn't we ? But then, what
1091 * do we do once the error occurs ? For FCU notified fan
1092 * failures (-EFAULT) we probably want to notify userland
1095 if (state
->index
== 0) {
1096 set_rpm_fan(CPU_A1_FAN_RPM_INDEX
, state
->rpm
);
1097 set_rpm_fan(CPU_A2_FAN_RPM_INDEX
, state
->rpm
);
1098 set_rpm_fan(CPU_A3_FAN_RPM_INDEX
, state
->rpm
);
1100 set_rpm_fan(CPU_B1_FAN_RPM_INDEX
, state
->rpm
);
1101 set_rpm_fan(CPU_B2_FAN_RPM_INDEX
, state
->rpm
);
1102 set_rpm_fan(CPU_B3_FAN_RPM_INDEX
, state
->rpm
);
1107 * Initialize the state structure for one CPU control loop
1109 static int init_cpu_state(struct cpu_pid_state
*state
, int index
)
1111 state
->index
= index
;
1113 state
->rpm
= (cpu_pid_type
== CPU_PID_TYPE_RACKMAC
) ? 4000 : 1000;
1114 state
->overtemp
= 0;
1115 state
->adc_config
= 0x00;
1119 state
->monitor
= attach_i2c_chip(SUPPLY_MONITOR_ID
, "CPU0_monitor");
1120 else if (index
== 1)
1121 state
->monitor
= attach_i2c_chip(SUPPLY_MONITORB_ID
, "CPU1_monitor");
1122 if (state
->monitor
== NULL
)
1125 if (read_eeprom(index
, &state
->mpu
))
1128 state
->count_power
= state
->mpu
.tguardband
;
1129 if (state
->count_power
> CPU_POWER_HISTORY_SIZE
) {
1130 printk(KERN_WARNING
"Warning ! too many power history slots\n");
1131 state
->count_power
= CPU_POWER_HISTORY_SIZE
;
1133 DBG("CPU %d Using %d power history entries\n", index
, state
->count_power
);
1136 device_create_file(&of_dev
->dev
, &dev_attr_cpu0_temperature
);
1137 device_create_file(&of_dev
->dev
, &dev_attr_cpu0_voltage
);
1138 device_create_file(&of_dev
->dev
, &dev_attr_cpu0_current
);
1139 device_create_file(&of_dev
->dev
, &dev_attr_cpu0_exhaust_fan_rpm
);
1140 device_create_file(&of_dev
->dev
, &dev_attr_cpu0_intake_fan_rpm
);
1142 device_create_file(&of_dev
->dev
, &dev_attr_cpu1_temperature
);
1143 device_create_file(&of_dev
->dev
, &dev_attr_cpu1_voltage
);
1144 device_create_file(&of_dev
->dev
, &dev_attr_cpu1_current
);
1145 device_create_file(&of_dev
->dev
, &dev_attr_cpu1_exhaust_fan_rpm
);
1146 device_create_file(&of_dev
->dev
, &dev_attr_cpu1_intake_fan_rpm
);
1152 detach_i2c_chip(state
->monitor
);
1153 state
->monitor
= NULL
;
1159 * Dispose of the state data for one CPU control loop
1161 static void dispose_cpu_state(struct cpu_pid_state
*state
)
1163 if (state
->monitor
== NULL
)
1166 if (state
->index
== 0) {
1167 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_temperature
);
1168 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_voltage
);
1169 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_current
);
1170 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_exhaust_fan_rpm
);
1171 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_intake_fan_rpm
);
1173 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_temperature
);
1174 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_voltage
);
1175 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_current
);
1176 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_exhaust_fan_rpm
);
1177 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_intake_fan_rpm
);
1180 detach_i2c_chip(state
->monitor
);
1181 state
->monitor
= NULL
;
1185 * Motherboard backside & U3 heatsink fan control loop
1187 static void do_monitor_backside(struct backside_pid_state
*state
)
1189 s32 temp
, integral
, derivative
, fan_min
;
1190 s64 integ_p
, deriv_p
, prop_p
, sum
;
1193 if (--state
->ticks
!= 0)
1195 state
->ticks
= backside_params
.interval
;
1199 /* Check fan status */
1200 rc
= get_pwm_fan(BACKSIDE_FAN_PWM_INDEX
);
1202 printk(KERN_WARNING
"Error %d reading backside fan !\n", rc
);
1203 /* XXX What do we do now ? */
1206 DBG(" current pwm: %d\n", state
->pwm
);
1208 /* Get some sensor readings */
1209 temp
= i2c_smbus_read_byte_data(state
->monitor
, MAX6690_EXT_TEMP
) << 16;
1210 state
->last_temp
= temp
;
1211 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp
),
1212 FIX32TOPRINT(backside_params
.input_target
));
1214 /* Store temperature and error in history array */
1215 state
->cur_sample
= (state
->cur_sample
+ 1) % BACKSIDE_PID_HISTORY_SIZE
;
1216 state
->sample_history
[state
->cur_sample
] = temp
;
1217 state
->error_history
[state
->cur_sample
] = temp
- backside_params
.input_target
;
1219 /* If first loop, fill the history table */
1221 for (i
= 0; i
< (BACKSIDE_PID_HISTORY_SIZE
- 1); i
++) {
1222 state
->cur_sample
= (state
->cur_sample
+ 1) %
1223 BACKSIDE_PID_HISTORY_SIZE
;
1224 state
->sample_history
[state
->cur_sample
] = temp
;
1225 state
->error_history
[state
->cur_sample
] =
1226 temp
- backside_params
.input_target
;
1231 /* Calculate the integral term */
1234 for (i
= 0; i
< BACKSIDE_PID_HISTORY_SIZE
; i
++)
1235 integral
+= state
->error_history
[i
];
1236 integral
*= backside_params
.interval
;
1237 DBG(" integral: %08x\n", integral
);
1238 integ_p
= ((s64
)backside_params
.G_r
) * (s64
)integral
;
1239 DBG(" integ_p: %d\n", (int)(integ_p
>> 36));
1242 /* Calculate the derivative term */
1243 derivative
= state
->error_history
[state
->cur_sample
] -
1244 state
->error_history
[(state
->cur_sample
+ BACKSIDE_PID_HISTORY_SIZE
- 1)
1245 % BACKSIDE_PID_HISTORY_SIZE
];
1246 derivative
/= backside_params
.interval
;
1247 deriv_p
= ((s64
)backside_params
.G_d
) * (s64
)derivative
;
1248 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
1251 /* Calculate the proportional term */
1252 prop_p
= ((s64
)backside_params
.G_p
) * (s64
)(state
->error_history
[state
->cur_sample
]);
1253 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
1259 DBG(" sum: %d\n", (int)sum
);
1260 if (backside_params
.additive
)
1261 state
->pwm
+= (s32
)sum
;
1265 /* Check for clamp */
1266 fan_min
= (dimm_output_clamp
* 100) / 14000;
1267 fan_min
= max(fan_min
, backside_params
.output_min
);
1269 state
->pwm
= max(state
->pwm
, fan_min
);
1270 state
->pwm
= min(state
->pwm
, backside_params
.output_max
);
1272 DBG("** BACKSIDE PWM: %d\n", (int)state
->pwm
);
1273 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX
, state
->pwm
);
1277 * Initialize the state structure for the backside fan control loop
1279 static int init_backside_state(struct backside_pid_state
*state
)
1281 struct device_node
*u3
;
1282 int u3h
= 1; /* conservative by default */
1285 * There are different PID params for machines with U3 and machines
1286 * with U3H, pick the right ones now
1288 u3
= of_find_node_by_path("/u3@0,f8000000");
1290 u32
*vers
= (u32
*)get_property(u3
, "device-rev", NULL
);
1292 if (((*vers
) & 0x3f) < 0x34)
1298 backside_params
.G_d
= BACKSIDE_PID_RACK_G_d
;
1299 backside_params
.input_target
= BACKSIDE_PID_RACK_INPUT_TARGET
;
1300 backside_params
.output_min
= BACKSIDE_PID_U3H_OUTPUT_MIN
;
1301 backside_params
.interval
= BACKSIDE_PID_RACK_INTERVAL
;
1302 backside_params
.G_p
= BACKSIDE_PID_RACK_G_p
;
1303 backside_params
.G_r
= BACKSIDE_PID_G_r
;
1304 backside_params
.output_max
= BACKSIDE_PID_OUTPUT_MAX
;
1305 backside_params
.additive
= 0;
1307 backside_params
.G_d
= BACKSIDE_PID_U3H_G_d
;
1308 backside_params
.input_target
= BACKSIDE_PID_U3H_INPUT_TARGET
;
1309 backside_params
.output_min
= BACKSIDE_PID_U3H_OUTPUT_MIN
;
1310 backside_params
.interval
= BACKSIDE_PID_INTERVAL
;
1311 backside_params
.G_p
= BACKSIDE_PID_G_p
;
1312 backside_params
.G_r
= BACKSIDE_PID_G_r
;
1313 backside_params
.output_max
= BACKSIDE_PID_OUTPUT_MAX
;
1314 backside_params
.additive
= 1;
1316 backside_params
.G_d
= BACKSIDE_PID_U3_G_d
;
1317 backside_params
.input_target
= BACKSIDE_PID_U3_INPUT_TARGET
;
1318 backside_params
.output_min
= BACKSIDE_PID_U3_OUTPUT_MIN
;
1319 backside_params
.interval
= BACKSIDE_PID_INTERVAL
;
1320 backside_params
.G_p
= BACKSIDE_PID_G_p
;
1321 backside_params
.G_r
= BACKSIDE_PID_G_r
;
1322 backside_params
.output_max
= BACKSIDE_PID_OUTPUT_MAX
;
1323 backside_params
.additive
= 1;
1330 state
->monitor
= attach_i2c_chip(BACKSIDE_MAX_ID
, "backside_temp");
1331 if (state
->monitor
== NULL
)
1334 device_create_file(&of_dev
->dev
, &dev_attr_backside_temperature
);
1335 device_create_file(&of_dev
->dev
, &dev_attr_backside_fan_pwm
);
1341 * Dispose of the state data for the backside control loop
1343 static void dispose_backside_state(struct backside_pid_state
*state
)
1345 if (state
->monitor
== NULL
)
1348 device_remove_file(&of_dev
->dev
, &dev_attr_backside_temperature
);
1349 device_remove_file(&of_dev
->dev
, &dev_attr_backside_fan_pwm
);
1351 detach_i2c_chip(state
->monitor
);
1352 state
->monitor
= NULL
;
1356 * Drives bay fan control loop
1358 static void do_monitor_drives(struct drives_pid_state
*state
)
1360 s32 temp
, integral
, derivative
;
1361 s64 integ_p
, deriv_p
, prop_p
, sum
;
1364 if (--state
->ticks
!= 0)
1366 state
->ticks
= DRIVES_PID_INTERVAL
;
1370 /* Check fan status */
1371 rc
= get_rpm_fan(DRIVES_FAN_RPM_INDEX
, !RPM_PID_USE_ACTUAL_SPEED
);
1373 printk(KERN_WARNING
"Error %d reading drives fan !\n", rc
);
1374 /* XXX What do we do now ? */
1377 DBG(" current rpm: %d\n", state
->rpm
);
1379 /* Get some sensor readings */
1380 temp
= le16_to_cpu(i2c_smbus_read_word_data(state
->monitor
, DS1775_TEMP
)) << 8;
1381 state
->last_temp
= temp
;
1382 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp
),
1383 FIX32TOPRINT(DRIVES_PID_INPUT_TARGET
));
1385 /* Store temperature and error in history array */
1386 state
->cur_sample
= (state
->cur_sample
+ 1) % DRIVES_PID_HISTORY_SIZE
;
1387 state
->sample_history
[state
->cur_sample
] = temp
;
1388 state
->error_history
[state
->cur_sample
] = temp
- DRIVES_PID_INPUT_TARGET
;
1390 /* If first loop, fill the history table */
1392 for (i
= 0; i
< (DRIVES_PID_HISTORY_SIZE
- 1); i
++) {
1393 state
->cur_sample
= (state
->cur_sample
+ 1) %
1394 DRIVES_PID_HISTORY_SIZE
;
1395 state
->sample_history
[state
->cur_sample
] = temp
;
1396 state
->error_history
[state
->cur_sample
] =
1397 temp
- DRIVES_PID_INPUT_TARGET
;
1402 /* Calculate the integral term */
1405 for (i
= 0; i
< DRIVES_PID_HISTORY_SIZE
; i
++)
1406 integral
+= state
->error_history
[i
];
1407 integral
*= DRIVES_PID_INTERVAL
;
1408 DBG(" integral: %08x\n", integral
);
1409 integ_p
= ((s64
)DRIVES_PID_G_r
) * (s64
)integral
;
1410 DBG(" integ_p: %d\n", (int)(integ_p
>> 36));
1413 /* Calculate the derivative term */
1414 derivative
= state
->error_history
[state
->cur_sample
] -
1415 state
->error_history
[(state
->cur_sample
+ DRIVES_PID_HISTORY_SIZE
- 1)
1416 % DRIVES_PID_HISTORY_SIZE
];
1417 derivative
/= DRIVES_PID_INTERVAL
;
1418 deriv_p
= ((s64
)DRIVES_PID_G_d
) * (s64
)derivative
;
1419 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
1422 /* Calculate the proportional term */
1423 prop_p
= ((s64
)DRIVES_PID_G_p
) * (s64
)(state
->error_history
[state
->cur_sample
]);
1424 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
1430 DBG(" sum: %d\n", (int)sum
);
1431 state
->rpm
+= (s32
)sum
;
1433 state
->rpm
= max(state
->rpm
, DRIVES_PID_OUTPUT_MIN
);
1434 state
->rpm
= min(state
->rpm
, DRIVES_PID_OUTPUT_MAX
);
1436 DBG("** DRIVES RPM: %d\n", (int)state
->rpm
);
1437 set_rpm_fan(DRIVES_FAN_RPM_INDEX
, state
->rpm
);
1441 * Initialize the state structure for the drives bay fan control loop
1443 static int init_drives_state(struct drives_pid_state
*state
)
1449 state
->monitor
= attach_i2c_chip(DRIVES_DALLAS_ID
, "drives_temp");
1450 if (state
->monitor
== NULL
)
1453 device_create_file(&of_dev
->dev
, &dev_attr_drives_temperature
);
1454 device_create_file(&of_dev
->dev
, &dev_attr_drives_fan_rpm
);
1460 * Dispose of the state data for the drives control loop
1462 static void dispose_drives_state(struct drives_pid_state
*state
)
1464 if (state
->monitor
== NULL
)
1467 device_remove_file(&of_dev
->dev
, &dev_attr_drives_temperature
);
1468 device_remove_file(&of_dev
->dev
, &dev_attr_drives_fan_rpm
);
1470 detach_i2c_chip(state
->monitor
);
1471 state
->monitor
= NULL
;
1475 * DIMMs temp control loop
1477 static void do_monitor_dimms(struct dimm_pid_state
*state
)
1479 s32 temp
, integral
, derivative
, fan_min
;
1480 s64 integ_p
, deriv_p
, prop_p
, sum
;
1483 if (--state
->ticks
!= 0)
1485 state
->ticks
= DIMM_PID_INTERVAL
;
1489 DBG(" current value: %d\n", state
->output
);
1491 temp
= read_lm87_reg(state
->monitor
, LM87_INT_TEMP
);
1495 state
->last_temp
= temp
;
1496 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp
),
1497 FIX32TOPRINT(DIMM_PID_INPUT_TARGET
));
1499 /* Store temperature and error in history array */
1500 state
->cur_sample
= (state
->cur_sample
+ 1) % DIMM_PID_HISTORY_SIZE
;
1501 state
->sample_history
[state
->cur_sample
] = temp
;
1502 state
->error_history
[state
->cur_sample
] = temp
- DIMM_PID_INPUT_TARGET
;
1504 /* If first loop, fill the history table */
1506 for (i
= 0; i
< (DIMM_PID_HISTORY_SIZE
- 1); i
++) {
1507 state
->cur_sample
= (state
->cur_sample
+ 1) %
1508 DIMM_PID_HISTORY_SIZE
;
1509 state
->sample_history
[state
->cur_sample
] = temp
;
1510 state
->error_history
[state
->cur_sample
] =
1511 temp
- DIMM_PID_INPUT_TARGET
;
1516 /* Calculate the integral term */
1519 for (i
= 0; i
< DIMM_PID_HISTORY_SIZE
; i
++)
1520 integral
+= state
->error_history
[i
];
1521 integral
*= DIMM_PID_INTERVAL
;
1522 DBG(" integral: %08x\n", integral
);
1523 integ_p
= ((s64
)DIMM_PID_G_r
) * (s64
)integral
;
1524 DBG(" integ_p: %d\n", (int)(integ_p
>> 36));
1527 /* Calculate the derivative term */
1528 derivative
= state
->error_history
[state
->cur_sample
] -
1529 state
->error_history
[(state
->cur_sample
+ DIMM_PID_HISTORY_SIZE
- 1)
1530 % DIMM_PID_HISTORY_SIZE
];
1531 derivative
/= DIMM_PID_INTERVAL
;
1532 deriv_p
= ((s64
)DIMM_PID_G_d
) * (s64
)derivative
;
1533 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
1536 /* Calculate the proportional term */
1537 prop_p
= ((s64
)DIMM_PID_G_p
) * (s64
)(state
->error_history
[state
->cur_sample
]);
1538 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
1544 DBG(" sum: %d\n", (int)sum
);
1545 state
->output
= (s32
)sum
;
1546 state
->output
= max(state
->output
, DIMM_PID_OUTPUT_MIN
);
1547 state
->output
= min(state
->output
, DIMM_PID_OUTPUT_MAX
);
1548 dimm_output_clamp
= state
->output
;
1550 DBG("** DIMM clamp value: %d\n", (int)state
->output
);
1552 /* Backside PID is only every 5 seconds, force backside fan clamping now */
1553 fan_min
= (dimm_output_clamp
* 100) / 14000;
1554 fan_min
= max(fan_min
, backside_params
.output_min
);
1555 if (backside_state
.pwm
< fan_min
) {
1556 backside_state
.pwm
= fan_min
;
1557 DBG(" -> applying clamp to backside fan now: %d !\n", fan_min
);
1558 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX
, fan_min
);
1563 * Initialize the state structure for the DIMM temp control loop
1565 static int init_dimms_state(struct dimm_pid_state
*state
)
1569 state
->output
= 4000;
1571 state
->monitor
= attach_i2c_chip(XSERVE_DIMMS_LM87
, "dimms_temp");
1572 if (state
->monitor
== NULL
)
1575 device_create_file(&of_dev
->dev
, &dev_attr_dimms_temperature
);
1581 * Dispose of the state data for the drives control loop
1583 static void dispose_dimms_state(struct dimm_pid_state
*state
)
1585 if (state
->monitor
== NULL
)
1588 device_remove_file(&of_dev
->dev
, &dev_attr_dimms_temperature
);
1590 detach_i2c_chip(state
->monitor
);
1591 state
->monitor
= NULL
;
1594 static int call_critical_overtemp(void)
1596 char *argv
[] = { critical_overtemp_path
, NULL
};
1597 static char *envp
[] = { "HOME=/",
1599 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
1602 return call_usermodehelper(critical_overtemp_path
, argv
, envp
, 0);
1607 * Here's the kernel thread that calls the various control loops
1609 static int main_control_loop(void *x
)
1613 DBG("main_control_loop started\n");
1617 if (start_fcu() < 0) {
1618 printk(KERN_ERR
"kfand: failed to start FCU\n");
1623 /* Set the PCI fan once for now */
1624 set_pwm_fan(SLOTS_FAN_PWM_INDEX
, SLOTS_FAN_DEFAULT_PWM
);
1626 /* Initialize ADCs */
1627 initialize_adc(&cpu_state
[0]);
1628 if (cpu_state
[1].monitor
!= NULL
)
1629 initialize_adc(&cpu_state
[1]);
1633 while (state
== state_attached
) {
1634 unsigned long elapsed
, start
;
1640 /* First, we always calculate the new DIMMs state on an Xserve */
1642 do_monitor_dimms(&dimms_state
);
1644 /* Then, the CPUs */
1645 if (cpu_pid_type
== CPU_PID_TYPE_COMBINED
)
1646 do_monitor_cpu_combined();
1647 else if (cpu_pid_type
== CPU_PID_TYPE_RACKMAC
) {
1648 do_monitor_cpu_rack(&cpu_state
[0]);
1649 if (cpu_state
[1].monitor
!= NULL
)
1650 do_monitor_cpu_rack(&cpu_state
[1]);
1651 // better deal with UP
1653 do_monitor_cpu_split(&cpu_state
[0]);
1654 if (cpu_state
[1].monitor
!= NULL
)
1655 do_monitor_cpu_split(&cpu_state
[1]);
1656 // better deal with UP
1658 /* Then, the rest */
1659 do_monitor_backside(&backside_state
);
1661 do_monitor_drives(&drives_state
);
1664 if (critical_state
== 1) {
1665 printk(KERN_WARNING
"Temperature control detected a critical condition\n");
1666 printk(KERN_WARNING
"Attempting to shut down...\n");
1667 if (call_critical_overtemp()) {
1668 printk(KERN_WARNING
"Can't call %s, power off now!\n",
1669 critical_overtemp_path
);
1670 machine_power_off();
1673 if (critical_state
> 0)
1675 if (critical_state
> MAX_CRITICAL_STATE
) {
1676 printk(KERN_WARNING
"Shutdown timed out, power off now !\n");
1677 machine_power_off();
1680 // FIXME: Deal with signals
1681 elapsed
= jiffies
- start
;
1683 schedule_timeout_interruptible(HZ
- elapsed
);
1687 DBG("main_control_loop ended\n");
1690 complete_and_exit(&ctrl_complete
, 0);
1694 * Dispose the control loops when tearing down
1696 static void dispose_control_loops(void)
1698 dispose_cpu_state(&cpu_state
[0]);
1699 dispose_cpu_state(&cpu_state
[1]);
1700 dispose_backside_state(&backside_state
);
1701 dispose_drives_state(&drives_state
);
1702 dispose_dimms_state(&dimms_state
);
1706 * Create the control loops. U3-0 i2c bus is up, so we can now
1707 * get to the various sensors
1709 static int create_control_loops(void)
1711 struct device_node
*np
;
1713 /* Count CPUs from the device-tree, we don't care how many are
1714 * actually used by Linux
1717 for (np
= NULL
; NULL
!= (np
= of_find_node_by_type(np
, "cpu"));)
1720 DBG("counted %d CPUs in the device-tree\n", cpu_count
);
1722 /* Decide the type of PID algorithm to use based on the presence of
1723 * the pumps, though that may not be the best way, that is good enough
1727 cpu_pid_type
= CPU_PID_TYPE_RACKMAC
;
1728 else if (machine_is_compatible("PowerMac7,3")
1730 && fcu_fans
[CPUA_PUMP_RPM_INDEX
].id
!= FCU_FAN_ABSENT_ID
1731 && fcu_fans
[CPUB_PUMP_RPM_INDEX
].id
!= FCU_FAN_ABSENT_ID
) {
1732 printk(KERN_INFO
"Liquid cooling pumps detected, using new algorithm !\n");
1733 cpu_pid_type
= CPU_PID_TYPE_COMBINED
;
1735 cpu_pid_type
= CPU_PID_TYPE_SPLIT
;
1737 /* Create control loops for everything. If any fail, everything
1740 if (init_cpu_state(&cpu_state
[0], 0))
1742 if (cpu_pid_type
== CPU_PID_TYPE_COMBINED
)
1743 fetch_cpu_pumps_minmax();
1745 if (cpu_count
> 1 && init_cpu_state(&cpu_state
[1], 1))
1747 if (init_backside_state(&backside_state
))
1749 if (rackmac
&& init_dimms_state(&dimms_state
))
1751 if (!rackmac
&& init_drives_state(&drives_state
))
1754 DBG("all control loops up !\n");
1759 DBG("failure creating control loops, disposing\n");
1761 dispose_control_loops();
1767 * Start the control loops after everything is up, that is create
1768 * the thread that will make them run
1770 static void start_control_loops(void)
1772 init_completion(&ctrl_complete
);
1774 ctrl_task
= kernel_thread(main_control_loop
, NULL
, SIGCHLD
| CLONE_KERNEL
);
1778 * Stop the control loops when tearing down
1780 static void stop_control_loops(void)
1783 wait_for_completion(&ctrl_complete
);
1787 * Attach to the i2c FCU after detecting U3-1 bus
1789 static int attach_fcu(void)
1791 fcu
= attach_i2c_chip(FAN_CTRLER_ID
, "fcu");
1795 DBG("FCU attached\n");
1801 * Detach from the i2c FCU when tearing down
1803 static void detach_fcu(void)
1806 detach_i2c_chip(fcu
);
1811 * Attach to the i2c controller. We probe the various chips based
1812 * on the device-tree nodes and build everything for the driver to
1813 * run, we then kick the driver monitoring thread
1815 static int therm_pm72_attach(struct i2c_adapter
*adapter
)
1820 if (state
== state_detached
)
1821 state
= state_attaching
;
1822 if (state
!= state_attaching
) {
1827 /* Check if we are looking for one of these */
1828 if (u3_0
== NULL
&& !strcmp(adapter
->name
, "u3 0")) {
1830 DBG("found U3-0\n");
1832 if (create_control_loops())
1834 } else if (u3_1
== NULL
&& !strcmp(adapter
->name
, "u3 1")) {
1836 DBG("found U3-1, attaching FCU\n");
1839 } else if (k2
== NULL
&& !strcmp(adapter
->name
, "mac-io 0")) {
1842 if (u3_0
&& rackmac
)
1843 if (create_control_loops())
1846 /* We got all we need, start control loops */
1847 if (u3_0
!= NULL
&& u3_1
!= NULL
&& (k2
|| !rackmac
)) {
1848 DBG("everything up, starting control loops\n");
1849 state
= state_attached
;
1850 start_control_loops();
1858 * Called on every adapter when the driver or the i2c controller
1861 static int therm_pm72_detach(struct i2c_adapter
*adapter
)
1865 if (state
!= state_detached
)
1866 state
= state_detaching
;
1868 /* Stop control loops if any */
1869 DBG("stopping control loops\n");
1871 stop_control_loops();
1874 if (u3_0
!= NULL
&& !strcmp(adapter
->name
, "u3 0")) {
1875 DBG("lost U3-0, disposing control loops\n");
1876 dispose_control_loops();
1880 if (u3_1
!= NULL
&& !strcmp(adapter
->name
, "u3 1")) {
1881 DBG("lost U3-1, detaching FCU\n");
1885 if (u3_0
== NULL
&& u3_1
== NULL
)
1886 state
= state_detached
;
1893 static int fan_check_loc_match(const char *loc
, int fan
)
1898 strlcpy(tmp
, fcu_fans
[fan
].loc
, 64);
1905 if (strcmp(loc
, c
) == 0)
1914 static void fcu_lookup_fans(struct device_node
*fcu_node
)
1916 struct device_node
*np
= NULL
;
1919 /* The table is filled by default with values that are suitable
1920 * for the old machines without device-tree informations. We scan
1921 * the device-tree and override those values with whatever is
1925 DBG("Looking up FCU controls in device-tree...\n");
1927 while ((np
= of_get_next_child(fcu_node
, np
)) != NULL
) {
1932 DBG(" control: %s, type: %s\n", np
->name
, np
->type
);
1934 /* Detect control type */
1935 if (!strcmp(np
->type
, "fan-rpm-control") ||
1936 !strcmp(np
->type
, "fan-rpm"))
1938 if (!strcmp(np
->type
, "fan-pwm-control") ||
1939 !strcmp(np
->type
, "fan-pwm"))
1941 /* Only care about fans for now */
1945 /* Lookup for a matching location */
1946 loc
= (char *)get_property(np
, "location", NULL
);
1947 reg
= (u32
*)get_property(np
, "reg", NULL
);
1948 if (loc
== NULL
|| reg
== NULL
)
1950 DBG(" matching location: %s, reg: 0x%08x\n", loc
, *reg
);
1952 for (i
= 0; i
< FCU_FAN_COUNT
; i
++) {
1955 if (!fan_check_loc_match(loc
, i
))
1957 DBG(" location match, index: %d\n", i
);
1958 fcu_fans
[i
].id
= FCU_FAN_ABSENT_ID
;
1959 if (type
!= fcu_fans
[i
].type
) {
1960 printk(KERN_WARNING
"therm_pm72: Fan type mismatch "
1961 "in device-tree for %s\n", np
->full_name
);
1964 if (type
== FCU_FAN_RPM
)
1965 fan_id
= ((*reg
) - 0x10) / 2;
1967 fan_id
= ((*reg
) - 0x30) / 2;
1969 printk(KERN_WARNING
"therm_pm72: Can't parse "
1970 "fan ID in device-tree for %s\n", np
->full_name
);
1973 DBG(" fan id -> %d, type -> %d\n", fan_id
, type
);
1974 fcu_fans
[i
].id
= fan_id
;
1978 /* Now dump the array */
1979 printk(KERN_INFO
"Detected fan controls:\n");
1980 for (i
= 0; i
< FCU_FAN_COUNT
; i
++) {
1981 if (fcu_fans
[i
].id
== FCU_FAN_ABSENT_ID
)
1983 printk(KERN_INFO
" %d: %s fan, id %d, location: %s\n", i
,
1984 fcu_fans
[i
].type
== FCU_FAN_RPM
? "RPM" : "PWM",
1985 fcu_fans
[i
].id
, fcu_fans
[i
].loc
);
1989 static int fcu_of_probe(struct of_device
* dev
, const struct of_device_id
*match
)
1991 state
= state_detached
;
1993 /* Lookup the fans in the device tree */
1994 fcu_lookup_fans(dev
->node
);
1996 /* Add the driver */
1997 return i2c_add_driver(&therm_pm72_driver
);
2000 static int fcu_of_remove(struct of_device
* dev
)
2002 i2c_del_driver(&therm_pm72_driver
);
2007 static struct of_device_id fcu_match
[] =
2015 static struct of_platform_driver fcu_of_platform_driver
=
2017 .name
= "temperature",
2018 .match_table
= fcu_match
,
2019 .probe
= fcu_of_probe
,
2020 .remove
= fcu_of_remove
2024 * Check machine type, attach to i2c controller
2026 static int __init
therm_pm72_init(void)
2028 struct device_node
*np
;
2030 rackmac
= machine_is_compatible("RackMac3,1");
2032 if (!machine_is_compatible("PowerMac7,2") &&
2033 !machine_is_compatible("PowerMac7,3") &&
2037 printk(KERN_INFO
"PowerMac G5 Thermal control driver %s\n", VERSION
);
2039 np
= of_find_node_by_type(NULL
, "fcu");
2041 /* Some machines have strangely broken device-tree */
2042 np
= of_find_node_by_path("/u3@0,f8000000/i2c@f8001000/fan@15e");
2044 printk(KERN_ERR
"Can't find FCU in device-tree !\n");
2048 of_dev
= of_platform_device_create(np
, "temperature", NULL
);
2049 if (of_dev
== NULL
) {
2050 printk(KERN_ERR
"Can't register FCU platform device !\n");
2054 of_register_driver(&fcu_of_platform_driver
);
2059 static void __exit
therm_pm72_exit(void)
2061 of_unregister_driver(&fcu_of_platform_driver
);
2064 of_device_unregister(of_dev
);
2067 module_init(therm_pm72_init
);
2068 module_exit(therm_pm72_exit
);
2070 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
2071 MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
2072 MODULE_LICENSE("GPL");