2 * linux/kernel/power/snapshot.c
4 * This file provides system snapshot/restore functionality for swsusp.
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9 * This file is released under the GPLv2.
13 #include <linux/version.h>
14 #include <linux/module.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
31 #include <asm/uaccess.h>
32 #include <asm/mmu_context.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
39 static int swsusp_page_is_free(struct page
*);
40 static void swsusp_set_page_forbidden(struct page
*);
41 static void swsusp_unset_page_forbidden(struct page
*);
44 * Preferred image size in bytes (tunable via /sys/power/image_size).
45 * When it is set to N, swsusp will do its best to ensure the image
46 * size will not exceed N bytes, but if that is impossible, it will
47 * try to create the smallest image possible.
49 unsigned long image_size
= 500 * 1024 * 1024;
51 /* List of PBEs needed for restoring the pages that were allocated before
52 * the suspend and included in the suspend image, but have also been
53 * allocated by the "resume" kernel, so their contents cannot be written
54 * directly to their "original" page frames.
56 struct pbe
*restore_pblist
;
58 /* Pointer to an auxiliary buffer (1 page) */
62 * @safe_needed - on resume, for storing the PBE list and the image,
63 * we can only use memory pages that do not conflict with the pages
64 * used before suspend. The unsafe pages have PageNosaveFree set
65 * and we count them using unsafe_pages.
67 * Each allocated image page is marked as PageNosave and PageNosaveFree
68 * so that swsusp_free() can release it.
73 #define PG_UNSAFE_CLEAR 1
74 #define PG_UNSAFE_KEEP 0
76 static unsigned int allocated_unsafe_pages
;
78 static void *get_image_page(gfp_t gfp_mask
, int safe_needed
)
82 res
= (void *)get_zeroed_page(gfp_mask
);
84 while (res
&& swsusp_page_is_free(virt_to_page(res
))) {
85 /* The page is unsafe, mark it for swsusp_free() */
86 swsusp_set_page_forbidden(virt_to_page(res
));
87 allocated_unsafe_pages
++;
88 res
= (void *)get_zeroed_page(gfp_mask
);
91 swsusp_set_page_forbidden(virt_to_page(res
));
92 swsusp_set_page_free(virt_to_page(res
));
97 unsigned long get_safe_page(gfp_t gfp_mask
)
99 return (unsigned long)get_image_page(gfp_mask
, PG_SAFE
);
102 static struct page
*alloc_image_page(gfp_t gfp_mask
)
106 page
= alloc_page(gfp_mask
);
108 swsusp_set_page_forbidden(page
);
109 swsusp_set_page_free(page
);
115 * free_image_page - free page represented by @addr, allocated with
116 * get_image_page (page flags set by it must be cleared)
119 static inline void free_image_page(void *addr
, int clear_nosave_free
)
123 BUG_ON(!virt_addr_valid(addr
));
125 page
= virt_to_page(addr
);
127 swsusp_unset_page_forbidden(page
);
128 if (clear_nosave_free
)
129 swsusp_unset_page_free(page
);
134 /* struct linked_page is used to build chains of pages */
136 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
139 struct linked_page
*next
;
140 char data
[LINKED_PAGE_DATA_SIZE
];
141 } __attribute__((packed
));
144 free_list_of_pages(struct linked_page
*list
, int clear_page_nosave
)
147 struct linked_page
*lp
= list
->next
;
149 free_image_page(list
, clear_page_nosave
);
155 * struct chain_allocator is used for allocating small objects out of
156 * a linked list of pages called 'the chain'.
158 * The chain grows each time when there is no room for a new object in
159 * the current page. The allocated objects cannot be freed individually.
160 * It is only possible to free them all at once, by freeing the entire
163 * NOTE: The chain allocator may be inefficient if the allocated objects
164 * are not much smaller than PAGE_SIZE.
167 struct chain_allocator
{
168 struct linked_page
*chain
; /* the chain */
169 unsigned int used_space
; /* total size of objects allocated out
170 * of the current page
172 gfp_t gfp_mask
; /* mask for allocating pages */
173 int safe_needed
; /* if set, only "safe" pages are allocated */
177 chain_init(struct chain_allocator
*ca
, gfp_t gfp_mask
, int safe_needed
)
180 ca
->used_space
= LINKED_PAGE_DATA_SIZE
;
181 ca
->gfp_mask
= gfp_mask
;
182 ca
->safe_needed
= safe_needed
;
185 static void *chain_alloc(struct chain_allocator
*ca
, unsigned int size
)
189 if (LINKED_PAGE_DATA_SIZE
- ca
->used_space
< size
) {
190 struct linked_page
*lp
;
192 lp
= get_image_page(ca
->gfp_mask
, ca
->safe_needed
);
196 lp
->next
= ca
->chain
;
200 ret
= ca
->chain
->data
+ ca
->used_space
;
201 ca
->used_space
+= size
;
206 * Data types related to memory bitmaps.
208 * Memory bitmap is a structure consiting of many linked lists of
209 * objects. The main list's elements are of type struct zone_bitmap
210 * and each of them corresonds to one zone. For each zone bitmap
211 * object there is a list of objects of type struct bm_block that
212 * represent each blocks of bitmap in which information is stored.
214 * struct memory_bitmap contains a pointer to the main list of zone
215 * bitmap objects, a struct bm_position used for browsing the bitmap,
216 * and a pointer to the list of pages used for allocating all of the
217 * zone bitmap objects and bitmap block objects.
219 * NOTE: It has to be possible to lay out the bitmap in memory
220 * using only allocations of order 0. Additionally, the bitmap is
221 * designed to work with arbitrary number of zones (this is over the
222 * top for now, but let's avoid making unnecessary assumptions ;-).
224 * struct zone_bitmap contains a pointer to a list of bitmap block
225 * objects and a pointer to the bitmap block object that has been
226 * most recently used for setting bits. Additionally, it contains the
227 * pfns that correspond to the start and end of the represented zone.
229 * struct bm_block contains a pointer to the memory page in which
230 * information is stored (in the form of a block of bitmap)
231 * It also contains the pfns that correspond to the start and end of
232 * the represented memory area.
235 #define BM_END_OF_MAP (~0UL)
237 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
240 struct list_head hook
; /* hook into a list of bitmap blocks */
241 unsigned long start_pfn
; /* pfn represented by the first bit */
242 unsigned long end_pfn
; /* pfn represented by the last bit plus 1 */
243 unsigned long *data
; /* bitmap representing pages */
246 static inline unsigned long bm_block_bits(struct bm_block
*bb
)
248 return bb
->end_pfn
- bb
->start_pfn
;
251 /* strcut bm_position is used for browsing memory bitmaps */
254 struct bm_block
*block
;
258 struct memory_bitmap
{
259 struct list_head blocks
; /* list of bitmap blocks */
260 struct linked_page
*p_list
; /* list of pages used to store zone
261 * bitmap objects and bitmap block
264 struct bm_position cur
; /* most recently used bit position */
267 /* Functions that operate on memory bitmaps */
269 static void memory_bm_position_reset(struct memory_bitmap
*bm
)
271 bm
->cur
.block
= list_entry(bm
->blocks
.next
, struct bm_block
, hook
);
275 static void memory_bm_free(struct memory_bitmap
*bm
, int clear_nosave_free
);
278 * create_bm_block_list - create a list of block bitmap objects
279 * @pages - number of pages to track
280 * @list - list to put the allocated blocks into
281 * @ca - chain allocator to be used for allocating memory
283 static int create_bm_block_list(unsigned long pages
,
284 struct list_head
*list
,
285 struct chain_allocator
*ca
)
287 unsigned int nr_blocks
= DIV_ROUND_UP(pages
, BM_BITS_PER_BLOCK
);
289 while (nr_blocks
-- > 0) {
292 bb
= chain_alloc(ca
, sizeof(struct bm_block
));
295 list_add(&bb
->hook
, list
);
302 struct list_head hook
;
308 * free_mem_extents - free a list of memory extents
309 * @list - list of extents to empty
311 static void free_mem_extents(struct list_head
*list
)
313 struct mem_extent
*ext
, *aux
;
315 list_for_each_entry_safe(ext
, aux
, list
, hook
) {
316 list_del(&ext
->hook
);
322 * create_mem_extents - create a list of memory extents representing
323 * contiguous ranges of PFNs
324 * @list - list to put the extents into
325 * @gfp_mask - mask to use for memory allocations
327 static int create_mem_extents(struct list_head
*list
, gfp_t gfp_mask
)
331 INIT_LIST_HEAD(list
);
333 for_each_populated_zone(zone
) {
334 unsigned long zone_start
, zone_end
;
335 struct mem_extent
*ext
, *cur
, *aux
;
337 zone_start
= zone
->zone_start_pfn
;
338 zone_end
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
340 list_for_each_entry(ext
, list
, hook
)
341 if (zone_start
<= ext
->end
)
344 if (&ext
->hook
== list
|| zone_end
< ext
->start
) {
345 /* New extent is necessary */
346 struct mem_extent
*new_ext
;
348 new_ext
= kzalloc(sizeof(struct mem_extent
), gfp_mask
);
350 free_mem_extents(list
);
353 new_ext
->start
= zone_start
;
354 new_ext
->end
= zone_end
;
355 list_add_tail(&new_ext
->hook
, &ext
->hook
);
359 /* Merge this zone's range of PFNs with the existing one */
360 if (zone_start
< ext
->start
)
361 ext
->start
= zone_start
;
362 if (zone_end
> ext
->end
)
365 /* More merging may be possible */
367 list_for_each_entry_safe_continue(cur
, aux
, list
, hook
) {
368 if (zone_end
< cur
->start
)
370 if (zone_end
< cur
->end
)
372 list_del(&cur
->hook
);
381 * memory_bm_create - allocate memory for a memory bitmap
384 memory_bm_create(struct memory_bitmap
*bm
, gfp_t gfp_mask
, int safe_needed
)
386 struct chain_allocator ca
;
387 struct list_head mem_extents
;
388 struct mem_extent
*ext
;
391 chain_init(&ca
, gfp_mask
, safe_needed
);
392 INIT_LIST_HEAD(&bm
->blocks
);
394 error
= create_mem_extents(&mem_extents
, gfp_mask
);
398 list_for_each_entry(ext
, &mem_extents
, hook
) {
400 unsigned long pfn
= ext
->start
;
401 unsigned long pages
= ext
->end
- ext
->start
;
403 bb
= list_entry(bm
->blocks
.prev
, struct bm_block
, hook
);
405 error
= create_bm_block_list(pages
, bm
->blocks
.prev
, &ca
);
409 list_for_each_entry_continue(bb
, &bm
->blocks
, hook
) {
410 bb
->data
= get_image_page(gfp_mask
, safe_needed
);
417 if (pages
>= BM_BITS_PER_BLOCK
) {
418 pfn
+= BM_BITS_PER_BLOCK
;
419 pages
-= BM_BITS_PER_BLOCK
;
421 /* This is executed only once in the loop */
428 bm
->p_list
= ca
.chain
;
429 memory_bm_position_reset(bm
);
431 free_mem_extents(&mem_extents
);
435 bm
->p_list
= ca
.chain
;
436 memory_bm_free(bm
, PG_UNSAFE_CLEAR
);
441 * memory_bm_free - free memory occupied by the memory bitmap @bm
443 static void memory_bm_free(struct memory_bitmap
*bm
, int clear_nosave_free
)
447 list_for_each_entry(bb
, &bm
->blocks
, hook
)
449 free_image_page(bb
->data
, clear_nosave_free
);
451 free_list_of_pages(bm
->p_list
, clear_nosave_free
);
453 INIT_LIST_HEAD(&bm
->blocks
);
457 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
458 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
459 * of @bm->cur_zone_bm are updated.
461 static int memory_bm_find_bit(struct memory_bitmap
*bm
, unsigned long pfn
,
462 void **addr
, unsigned int *bit_nr
)
467 * Check if the pfn corresponds to the current bitmap block and find
468 * the block where it fits if this is not the case.
471 if (pfn
< bb
->start_pfn
)
472 list_for_each_entry_continue_reverse(bb
, &bm
->blocks
, hook
)
473 if (pfn
>= bb
->start_pfn
)
476 if (pfn
>= bb
->end_pfn
)
477 list_for_each_entry_continue(bb
, &bm
->blocks
, hook
)
478 if (pfn
>= bb
->start_pfn
&& pfn
< bb
->end_pfn
)
481 if (&bb
->hook
== &bm
->blocks
)
484 /* The block has been found */
486 pfn
-= bb
->start_pfn
;
487 bm
->cur
.bit
= pfn
+ 1;
493 static void memory_bm_set_bit(struct memory_bitmap
*bm
, unsigned long pfn
)
499 error
= memory_bm_find_bit(bm
, pfn
, &addr
, &bit
);
504 static int mem_bm_set_bit_check(struct memory_bitmap
*bm
, unsigned long pfn
)
510 error
= memory_bm_find_bit(bm
, pfn
, &addr
, &bit
);
516 static void memory_bm_clear_bit(struct memory_bitmap
*bm
, unsigned long pfn
)
522 error
= memory_bm_find_bit(bm
, pfn
, &addr
, &bit
);
524 clear_bit(bit
, addr
);
527 static int memory_bm_test_bit(struct memory_bitmap
*bm
, unsigned long pfn
)
533 error
= memory_bm_find_bit(bm
, pfn
, &addr
, &bit
);
535 return test_bit(bit
, addr
);
538 static bool memory_bm_pfn_present(struct memory_bitmap
*bm
, unsigned long pfn
)
543 return !memory_bm_find_bit(bm
, pfn
, &addr
, &bit
);
547 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
548 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
551 * It is required to run memory_bm_position_reset() before the first call to
555 static unsigned long memory_bm_next_pfn(struct memory_bitmap
*bm
)
563 bit
= find_next_bit(bb
->data
, bm_block_bits(bb
), bit
);
564 if (bit
< bm_block_bits(bb
))
567 bb
= list_entry(bb
->hook
.next
, struct bm_block
, hook
);
570 } while (&bb
->hook
!= &bm
->blocks
);
572 memory_bm_position_reset(bm
);
573 return BM_END_OF_MAP
;
576 bm
->cur
.bit
= bit
+ 1;
577 return bb
->start_pfn
+ bit
;
581 * This structure represents a range of page frames the contents of which
582 * should not be saved during the suspend.
585 struct nosave_region
{
586 struct list_head list
;
587 unsigned long start_pfn
;
588 unsigned long end_pfn
;
591 static LIST_HEAD(nosave_regions
);
594 * register_nosave_region - register a range of page frames the contents
595 * of which should not be saved during the suspend (to be used in the early
596 * initialization code)
600 __register_nosave_region(unsigned long start_pfn
, unsigned long end_pfn
,
603 struct nosave_region
*region
;
605 if (start_pfn
>= end_pfn
)
608 if (!list_empty(&nosave_regions
)) {
609 /* Try to extend the previous region (they should be sorted) */
610 region
= list_entry(nosave_regions
.prev
,
611 struct nosave_region
, list
);
612 if (region
->end_pfn
== start_pfn
) {
613 region
->end_pfn
= end_pfn
;
618 /* during init, this shouldn't fail */
619 region
= kmalloc(sizeof(struct nosave_region
), GFP_KERNEL
);
622 /* This allocation cannot fail */
623 region
= alloc_bootmem(sizeof(struct nosave_region
));
624 region
->start_pfn
= start_pfn
;
625 region
->end_pfn
= end_pfn
;
626 list_add_tail(®ion
->list
, &nosave_regions
);
628 printk(KERN_INFO
"PM: Registered nosave memory: %016lx - %016lx\n",
629 start_pfn
<< PAGE_SHIFT
, end_pfn
<< PAGE_SHIFT
);
633 * Set bits in this map correspond to the page frames the contents of which
634 * should not be saved during the suspend.
636 static struct memory_bitmap
*forbidden_pages_map
;
638 /* Set bits in this map correspond to free page frames. */
639 static struct memory_bitmap
*free_pages_map
;
642 * Each page frame allocated for creating the image is marked by setting the
643 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
646 void swsusp_set_page_free(struct page
*page
)
649 memory_bm_set_bit(free_pages_map
, page_to_pfn(page
));
652 static int swsusp_page_is_free(struct page
*page
)
654 return free_pages_map
?
655 memory_bm_test_bit(free_pages_map
, page_to_pfn(page
)) : 0;
658 void swsusp_unset_page_free(struct page
*page
)
661 memory_bm_clear_bit(free_pages_map
, page_to_pfn(page
));
664 static void swsusp_set_page_forbidden(struct page
*page
)
666 if (forbidden_pages_map
)
667 memory_bm_set_bit(forbidden_pages_map
, page_to_pfn(page
));
670 int swsusp_page_is_forbidden(struct page
*page
)
672 return forbidden_pages_map
?
673 memory_bm_test_bit(forbidden_pages_map
, page_to_pfn(page
)) : 0;
676 static void swsusp_unset_page_forbidden(struct page
*page
)
678 if (forbidden_pages_map
)
679 memory_bm_clear_bit(forbidden_pages_map
, page_to_pfn(page
));
683 * mark_nosave_pages - set bits corresponding to the page frames the
684 * contents of which should not be saved in a given bitmap.
687 static void mark_nosave_pages(struct memory_bitmap
*bm
)
689 struct nosave_region
*region
;
691 if (list_empty(&nosave_regions
))
694 list_for_each_entry(region
, &nosave_regions
, list
) {
697 pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
698 region
->start_pfn
<< PAGE_SHIFT
,
699 region
->end_pfn
<< PAGE_SHIFT
);
701 for (pfn
= region
->start_pfn
; pfn
< region
->end_pfn
; pfn
++)
702 if (pfn_valid(pfn
)) {
704 * It is safe to ignore the result of
705 * mem_bm_set_bit_check() here, since we won't
706 * touch the PFNs for which the error is
709 mem_bm_set_bit_check(bm
, pfn
);
715 * create_basic_memory_bitmaps - create bitmaps needed for marking page
716 * frames that should not be saved and free page frames. The pointers
717 * forbidden_pages_map and free_pages_map are only modified if everything
718 * goes well, because we don't want the bits to be used before both bitmaps
722 int create_basic_memory_bitmaps(void)
724 struct memory_bitmap
*bm1
, *bm2
;
727 BUG_ON(forbidden_pages_map
|| free_pages_map
);
729 bm1
= kzalloc(sizeof(struct memory_bitmap
), GFP_KERNEL
);
733 error
= memory_bm_create(bm1
, GFP_KERNEL
, PG_ANY
);
735 goto Free_first_object
;
737 bm2
= kzalloc(sizeof(struct memory_bitmap
), GFP_KERNEL
);
739 goto Free_first_bitmap
;
741 error
= memory_bm_create(bm2
, GFP_KERNEL
, PG_ANY
);
743 goto Free_second_object
;
745 forbidden_pages_map
= bm1
;
746 free_pages_map
= bm2
;
747 mark_nosave_pages(forbidden_pages_map
);
749 pr_debug("PM: Basic memory bitmaps created\n");
756 memory_bm_free(bm1
, PG_UNSAFE_CLEAR
);
763 * free_basic_memory_bitmaps - free memory bitmaps allocated by
764 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
765 * so that the bitmaps themselves are not referred to while they are being
769 void free_basic_memory_bitmaps(void)
771 struct memory_bitmap
*bm1
, *bm2
;
773 BUG_ON(!(forbidden_pages_map
&& free_pages_map
));
775 bm1
= forbidden_pages_map
;
776 bm2
= free_pages_map
;
777 forbidden_pages_map
= NULL
;
778 free_pages_map
= NULL
;
779 memory_bm_free(bm1
, PG_UNSAFE_CLEAR
);
781 memory_bm_free(bm2
, PG_UNSAFE_CLEAR
);
784 pr_debug("PM: Basic memory bitmaps freed\n");
788 * snapshot_additional_pages - estimate the number of additional pages
789 * be needed for setting up the suspend image data structures for given
790 * zone (usually the returned value is greater than the exact number)
793 unsigned int snapshot_additional_pages(struct zone
*zone
)
797 res
= DIV_ROUND_UP(zone
->spanned_pages
, BM_BITS_PER_BLOCK
);
798 res
+= DIV_ROUND_UP(res
* sizeof(struct bm_block
), PAGE_SIZE
);
802 #ifdef CONFIG_HIGHMEM
804 * count_free_highmem_pages - compute the total number of free highmem
805 * pages, system-wide.
808 static unsigned int count_free_highmem_pages(void)
811 unsigned int cnt
= 0;
813 for_each_populated_zone(zone
)
814 if (is_highmem(zone
))
815 cnt
+= zone_page_state(zone
, NR_FREE_PAGES
);
821 * saveable_highmem_page - Determine whether a highmem page should be
822 * included in the suspend image.
824 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
825 * and it isn't a part of a free chunk of pages.
827 static struct page
*saveable_highmem_page(struct zone
*zone
, unsigned long pfn
)
834 page
= pfn_to_page(pfn
);
835 if (page_zone(page
) != zone
)
838 BUG_ON(!PageHighMem(page
));
840 if (swsusp_page_is_forbidden(page
) || swsusp_page_is_free(page
) ||
848 * count_highmem_pages - compute the total number of saveable highmem
852 static unsigned int count_highmem_pages(void)
857 for_each_populated_zone(zone
) {
858 unsigned long pfn
, max_zone_pfn
;
860 if (!is_highmem(zone
))
863 mark_free_pages(zone
);
864 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
865 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
866 if (saveable_highmem_page(zone
, pfn
))
872 static inline void *saveable_highmem_page(struct zone
*z
, unsigned long p
)
876 #endif /* CONFIG_HIGHMEM */
879 * saveable_page - Determine whether a non-highmem page should be included
880 * in the suspend image.
882 * We should save the page if it isn't Nosave, and is not in the range
883 * of pages statically defined as 'unsaveable', and it isn't a part of
884 * a free chunk of pages.
886 static struct page
*saveable_page(struct zone
*zone
, unsigned long pfn
)
893 page
= pfn_to_page(pfn
);
894 if (page_zone(page
) != zone
)
897 BUG_ON(PageHighMem(page
));
899 if (swsusp_page_is_forbidden(page
) || swsusp_page_is_free(page
))
902 if (PageReserved(page
)
903 && (!kernel_page_present(page
) || pfn_is_nosave(pfn
)))
910 * count_data_pages - compute the total number of saveable non-highmem
914 static unsigned int count_data_pages(void)
917 unsigned long pfn
, max_zone_pfn
;
920 for_each_populated_zone(zone
) {
921 if (is_highmem(zone
))
924 mark_free_pages(zone
);
925 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
926 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
927 if (saveable_page(zone
, pfn
))
933 /* This is needed, because copy_page and memcpy are not usable for copying
936 static inline void do_copy_page(long *dst
, long *src
)
940 for (n
= PAGE_SIZE
/ sizeof(long); n
; n
--)
946 * safe_copy_page - check if the page we are going to copy is marked as
947 * present in the kernel page tables (this always is the case if
948 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
949 * kernel_page_present() always returns 'true').
951 static void safe_copy_page(void *dst
, struct page
*s_page
)
953 if (kernel_page_present(s_page
)) {
954 do_copy_page(dst
, page_address(s_page
));
956 kernel_map_pages(s_page
, 1, 1);
957 do_copy_page(dst
, page_address(s_page
));
958 kernel_map_pages(s_page
, 1, 0);
963 #ifdef CONFIG_HIGHMEM
964 static inline struct page
*
965 page_is_saveable(struct zone
*zone
, unsigned long pfn
)
967 return is_highmem(zone
) ?
968 saveable_highmem_page(zone
, pfn
) : saveable_page(zone
, pfn
);
971 static void copy_data_page(unsigned long dst_pfn
, unsigned long src_pfn
)
973 struct page
*s_page
, *d_page
;
976 s_page
= pfn_to_page(src_pfn
);
977 d_page
= pfn_to_page(dst_pfn
);
978 if (PageHighMem(s_page
)) {
979 src
= kmap_atomic(s_page
, KM_USER0
);
980 dst
= kmap_atomic(d_page
, KM_USER1
);
981 do_copy_page(dst
, src
);
982 kunmap_atomic(src
, KM_USER0
);
983 kunmap_atomic(dst
, KM_USER1
);
985 if (PageHighMem(d_page
)) {
986 /* Page pointed to by src may contain some kernel
987 * data modified by kmap_atomic()
989 safe_copy_page(buffer
, s_page
);
990 dst
= kmap_atomic(d_page
, KM_USER0
);
991 memcpy(dst
, buffer
, PAGE_SIZE
);
992 kunmap_atomic(dst
, KM_USER0
);
994 safe_copy_page(page_address(d_page
), s_page
);
999 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
1001 static inline void copy_data_page(unsigned long dst_pfn
, unsigned long src_pfn
)
1003 safe_copy_page(page_address(pfn_to_page(dst_pfn
)),
1004 pfn_to_page(src_pfn
));
1006 #endif /* CONFIG_HIGHMEM */
1009 copy_data_pages(struct memory_bitmap
*copy_bm
, struct memory_bitmap
*orig_bm
)
1014 for_each_populated_zone(zone
) {
1015 unsigned long max_zone_pfn
;
1017 mark_free_pages(zone
);
1018 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
1019 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1020 if (page_is_saveable(zone
, pfn
))
1021 memory_bm_set_bit(orig_bm
, pfn
);
1023 memory_bm_position_reset(orig_bm
);
1024 memory_bm_position_reset(copy_bm
);
1026 pfn
= memory_bm_next_pfn(orig_bm
);
1027 if (unlikely(pfn
== BM_END_OF_MAP
))
1029 copy_data_page(memory_bm_next_pfn(copy_bm
), pfn
);
1033 /* Total number of image pages */
1034 static unsigned int nr_copy_pages
;
1035 /* Number of pages needed for saving the original pfns of the image pages */
1036 static unsigned int nr_meta_pages
;
1038 * Numbers of normal and highmem page frames allocated for hibernation image
1039 * before suspending devices.
1041 unsigned int alloc_normal
, alloc_highmem
;
1043 * Memory bitmap used for marking saveable pages (during hibernation) or
1044 * hibernation image pages (during restore)
1046 static struct memory_bitmap orig_bm
;
1048 * Memory bitmap used during hibernation for marking allocated page frames that
1049 * will contain copies of saveable pages. During restore it is initially used
1050 * for marking hibernation image pages, but then the set bits from it are
1051 * duplicated in @orig_bm and it is released. On highmem systems it is next
1052 * used for marking "safe" highmem pages, but it has to be reinitialized for
1055 static struct memory_bitmap copy_bm
;
1058 * swsusp_free - free pages allocated for the suspend.
1060 * Suspend pages are alocated before the atomic copy is made, so we
1061 * need to release them after the resume.
1064 void swsusp_free(void)
1067 unsigned long pfn
, max_zone_pfn
;
1069 for_each_populated_zone(zone
) {
1070 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
1071 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1072 if (pfn_valid(pfn
)) {
1073 struct page
*page
= pfn_to_page(pfn
);
1075 if (swsusp_page_is_forbidden(page
) &&
1076 swsusp_page_is_free(page
)) {
1077 swsusp_unset_page_forbidden(page
);
1078 swsusp_unset_page_free(page
);
1085 restore_pblist
= NULL
;
1089 hibernation_thaw_swap();
1092 /* Helper functions used for the shrinking of memory. */
1094 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1097 * preallocate_image_pages - Allocate a number of pages for hibernation image
1098 * @nr_pages: Number of page frames to allocate.
1099 * @mask: GFP flags to use for the allocation.
1101 * Return value: Number of page frames actually allocated
1103 static unsigned long preallocate_image_pages(unsigned long nr_pages
, gfp_t mask
)
1105 unsigned long nr_alloc
= 0;
1107 while (nr_pages
> 0) {
1110 page
= alloc_image_page(mask
);
1113 memory_bm_set_bit(©_bm
, page_to_pfn(page
));
1114 if (PageHighMem(page
))
1125 static unsigned long preallocate_image_memory(unsigned long nr_pages
)
1127 return preallocate_image_pages(nr_pages
, GFP_IMAGE
);
1130 #ifdef CONFIG_HIGHMEM
1131 static unsigned long preallocate_image_highmem(unsigned long nr_pages
)
1133 return preallocate_image_pages(nr_pages
, GFP_IMAGE
| __GFP_HIGHMEM
);
1137 * __fraction - Compute (an approximation of) x * (multiplier / base)
1139 static unsigned long __fraction(u64 x
, u64 multiplier
, u64 base
)
1143 return (unsigned long)x
;
1146 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages
,
1147 unsigned long highmem
,
1148 unsigned long total
)
1150 unsigned long alloc
= __fraction(nr_pages
, highmem
, total
);
1152 return preallocate_image_pages(alloc
, GFP_IMAGE
| __GFP_HIGHMEM
);
1154 #else /* CONFIG_HIGHMEM */
1155 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages
)
1160 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages
,
1161 unsigned long highmem
,
1162 unsigned long total
)
1166 #endif /* CONFIG_HIGHMEM */
1169 * free_unnecessary_pages - Release preallocated pages not needed for the image
1171 static void free_unnecessary_pages(void)
1173 unsigned long save_highmem
, to_free_normal
, to_free_highmem
;
1175 to_free_normal
= alloc_normal
- count_data_pages();
1176 save_highmem
= count_highmem_pages();
1177 if (alloc_highmem
> save_highmem
) {
1178 to_free_highmem
= alloc_highmem
- save_highmem
;
1180 to_free_highmem
= 0;
1181 to_free_normal
-= save_highmem
- alloc_highmem
;
1184 memory_bm_position_reset(©_bm
);
1186 while (to_free_normal
> 0 || to_free_highmem
> 0) {
1187 unsigned long pfn
= memory_bm_next_pfn(©_bm
);
1188 struct page
*page
= pfn_to_page(pfn
);
1190 if (PageHighMem(page
)) {
1191 if (!to_free_highmem
)
1196 if (!to_free_normal
)
1201 memory_bm_clear_bit(©_bm
, pfn
);
1202 swsusp_unset_page_forbidden(page
);
1203 swsusp_unset_page_free(page
);
1209 * minimum_image_size - Estimate the minimum acceptable size of an image
1210 * @saveable: Number of saveable pages in the system.
1212 * We want to avoid attempting to free too much memory too hard, so estimate the
1213 * minimum acceptable size of a hibernation image to use as the lower limit for
1214 * preallocating memory.
1216 * We assume that the minimum image size should be proportional to
1218 * [number of saveable pages] - [number of pages that can be freed in theory]
1220 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1221 * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
1222 * minus mapped file pages.
1224 static unsigned long minimum_image_size(unsigned long saveable
)
1228 size
= global_page_state(NR_SLAB_RECLAIMABLE
)
1229 + global_page_state(NR_ACTIVE_ANON
)
1230 + global_page_state(NR_INACTIVE_ANON
)
1231 + global_page_state(NR_ACTIVE_FILE
)
1232 + global_page_state(NR_INACTIVE_FILE
)
1233 - global_page_state(NR_FILE_MAPPED
);
1235 return saveable
<= size
? 0 : saveable
- size
;
1239 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1241 * To create a hibernation image it is necessary to make a copy of every page
1242 * frame in use. We also need a number of page frames to be free during
1243 * hibernation for allocations made while saving the image and for device
1244 * drivers, in case they need to allocate memory from their hibernation
1245 * callbacks (these two numbers are given by PAGES_FOR_IO and SPARE_PAGES,
1246 * respectively, both of which are rough estimates). To make this happen, we
1247 * compute the total number of available page frames and allocate at least
1249 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 + 2 * SPARE_PAGES
1251 * of them, which corresponds to the maximum size of a hibernation image.
1253 * If image_size is set below the number following from the above formula,
1254 * the preallocation of memory is continued until the total number of saveable
1255 * pages in the system is below the requested image size or the minimum
1256 * acceptable image size returned by minimum_image_size(), whichever is greater.
1258 int hibernate_preallocate_memory(void)
1261 unsigned long saveable
, size
, max_size
, count
, highmem
, pages
= 0;
1262 unsigned long alloc
, save_highmem
, pages_highmem
;
1263 struct timeval start
, stop
;
1266 printk(KERN_INFO
"PM: Preallocating image memory... ");
1267 do_gettimeofday(&start
);
1269 error
= memory_bm_create(&orig_bm
, GFP_IMAGE
, PG_ANY
);
1273 error
= memory_bm_create(©_bm
, GFP_IMAGE
, PG_ANY
);
1280 /* Count the number of saveable data pages. */
1281 save_highmem
= count_highmem_pages();
1282 saveable
= count_data_pages();
1285 * Compute the total number of page frames we can use (count) and the
1286 * number of pages needed for image metadata (size).
1289 saveable
+= save_highmem
;
1290 highmem
= save_highmem
;
1292 for_each_populated_zone(zone
) {
1293 size
+= snapshot_additional_pages(zone
);
1294 if (is_highmem(zone
))
1295 highmem
+= zone_page_state(zone
, NR_FREE_PAGES
);
1297 count
+= zone_page_state(zone
, NR_FREE_PAGES
);
1300 count
-= totalreserve_pages
;
1302 /* Compute the maximum number of saveable pages to leave in memory. */
1303 max_size
= (count
- (size
+ PAGES_FOR_IO
)) / 2 - 2 * SPARE_PAGES
;
1304 size
= DIV_ROUND_UP(image_size
, PAGE_SIZE
);
1305 if (size
> max_size
)
1308 * If the maximum is not less than the current number of saveable pages
1309 * in memory, allocate page frames for the image and we're done.
1311 if (size
>= saveable
) {
1312 pages
= preallocate_image_highmem(save_highmem
);
1313 pages
+= preallocate_image_memory(saveable
- pages
);
1317 /* Estimate the minimum size of the image. */
1318 pages
= minimum_image_size(saveable
);
1320 size
= min_t(unsigned long, pages
, max_size
);
1323 * Let the memory management subsystem know that we're going to need a
1324 * large number of page frames to allocate and make it free some memory.
1325 * NOTE: If this is not done, performance will be hurt badly in some
1328 shrink_all_memory(saveable
- size
);
1331 * The number of saveable pages in memory was too high, so apply some
1332 * pressure to decrease it. First, make room for the largest possible
1333 * image and fail if that doesn't work. Next, try to decrease the size
1334 * of the image as much as indicated by 'size' using allocations from
1335 * highmem and non-highmem zones separately.
1337 pages_highmem
= preallocate_image_highmem(highmem
/ 2);
1338 alloc
= (count
- max_size
) - pages_highmem
;
1339 pages
= preallocate_image_memory(alloc
);
1342 size
= max_size
- size
;
1344 size
= preallocate_highmem_fraction(size
, highmem
, count
);
1345 pages_highmem
+= size
;
1347 pages
+= preallocate_image_memory(alloc
);
1348 pages
+= pages_highmem
;
1351 * We only need as many page frames for the image as there are saveable
1352 * pages in memory, but we have allocated more. Release the excessive
1355 free_unnecessary_pages();
1358 do_gettimeofday(&stop
);
1359 printk(KERN_CONT
"done (allocated %lu pages)\n", pages
);
1360 swsusp_show_speed(&start
, &stop
, pages
, "Allocated");
1365 printk(KERN_CONT
"\n");
1370 #ifdef CONFIG_HIGHMEM
1372 * count_pages_for_highmem - compute the number of non-highmem pages
1373 * that will be necessary for creating copies of highmem pages.
1376 static unsigned int count_pages_for_highmem(unsigned int nr_highmem
)
1378 unsigned int free_highmem
= count_free_highmem_pages() + alloc_highmem
;
1380 if (free_highmem
>= nr_highmem
)
1383 nr_highmem
-= free_highmem
;
1389 count_pages_for_highmem(unsigned int nr_highmem
) { return 0; }
1390 #endif /* CONFIG_HIGHMEM */
1393 * enough_free_mem - Make sure we have enough free memory for the
1397 static int enough_free_mem(unsigned int nr_pages
, unsigned int nr_highmem
)
1400 unsigned int free
= alloc_normal
;
1402 for_each_populated_zone(zone
)
1403 if (!is_highmem(zone
))
1404 free
+= zone_page_state(zone
, NR_FREE_PAGES
);
1406 nr_pages
+= count_pages_for_highmem(nr_highmem
);
1407 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1408 nr_pages
, PAGES_FOR_IO
, free
);
1410 return free
> nr_pages
+ PAGES_FOR_IO
;
1413 #ifdef CONFIG_HIGHMEM
1415 * get_highmem_buffer - if there are some highmem pages in the suspend
1416 * image, we may need the buffer to copy them and/or load their data.
1419 static inline int get_highmem_buffer(int safe_needed
)
1421 buffer
= get_image_page(GFP_ATOMIC
| __GFP_COLD
, safe_needed
);
1422 return buffer
? 0 : -ENOMEM
;
1426 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1427 * Try to allocate as many pages as needed, but if the number of free
1428 * highmem pages is lesser than that, allocate them all.
1431 static inline unsigned int
1432 alloc_highmem_pages(struct memory_bitmap
*bm
, unsigned int nr_highmem
)
1434 unsigned int to_alloc
= count_free_highmem_pages();
1436 if (to_alloc
> nr_highmem
)
1437 to_alloc
= nr_highmem
;
1439 nr_highmem
-= to_alloc
;
1440 while (to_alloc
-- > 0) {
1443 page
= alloc_image_page(__GFP_HIGHMEM
);
1444 memory_bm_set_bit(bm
, page_to_pfn(page
));
1449 static inline int get_highmem_buffer(int safe_needed
) { return 0; }
1451 static inline unsigned int
1452 alloc_highmem_pages(struct memory_bitmap
*bm
, unsigned int n
) { return 0; }
1453 #endif /* CONFIG_HIGHMEM */
1456 * swsusp_alloc - allocate memory for the suspend image
1458 * We first try to allocate as many highmem pages as there are
1459 * saveable highmem pages in the system. If that fails, we allocate
1460 * non-highmem pages for the copies of the remaining highmem ones.
1462 * In this approach it is likely that the copies of highmem pages will
1463 * also be located in the high memory, because of the way in which
1464 * copy_data_pages() works.
1468 swsusp_alloc(struct memory_bitmap
*orig_bm
, struct memory_bitmap
*copy_bm
,
1469 unsigned int nr_pages
, unsigned int nr_highmem
)
1473 if (nr_highmem
> 0) {
1474 error
= get_highmem_buffer(PG_ANY
);
1477 if (nr_highmem
> alloc_highmem
) {
1478 nr_highmem
-= alloc_highmem
;
1479 nr_pages
+= alloc_highmem_pages(copy_bm
, nr_highmem
);
1482 if (nr_pages
> alloc_normal
) {
1483 nr_pages
-= alloc_normal
;
1484 while (nr_pages
-- > 0) {
1487 page
= alloc_image_page(GFP_ATOMIC
| __GFP_COLD
);
1490 memory_bm_set_bit(copy_bm
, page_to_pfn(page
));
1501 asmlinkage
int swsusp_save(void)
1503 unsigned int nr_pages
, nr_highmem
;
1505 printk(KERN_INFO
"PM: Creating hibernation image:\n");
1507 drain_local_pages(NULL
);
1508 nr_pages
= count_data_pages();
1509 nr_highmem
= count_highmem_pages();
1510 printk(KERN_INFO
"PM: Need to copy %u pages\n", nr_pages
+ nr_highmem
);
1512 if (!enough_free_mem(nr_pages
, nr_highmem
)) {
1513 printk(KERN_ERR
"PM: Not enough free memory\n");
1517 if (swsusp_alloc(&orig_bm
, ©_bm
, nr_pages
, nr_highmem
)) {
1518 printk(KERN_ERR
"PM: Memory allocation failed\n");
1522 /* During allocating of suspend pagedir, new cold pages may appear.
1525 drain_local_pages(NULL
);
1526 copy_data_pages(©_bm
, &orig_bm
);
1529 * End of critical section. From now on, we can write to memory,
1530 * but we should not touch disk. This specially means we must _not_
1531 * touch swap space! Except we must write out our image of course.
1534 nr_pages
+= nr_highmem
;
1535 nr_copy_pages
= nr_pages
;
1536 nr_meta_pages
= DIV_ROUND_UP(nr_pages
* sizeof(long), PAGE_SIZE
);
1538 printk(KERN_INFO
"PM: Hibernation image created (%d pages copied)\n",
1544 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1545 static int init_header_complete(struct swsusp_info
*info
)
1547 memcpy(&info
->uts
, init_utsname(), sizeof(struct new_utsname
));
1548 info
->version_code
= LINUX_VERSION_CODE
;
1552 static char *check_image_kernel(struct swsusp_info
*info
)
1554 if (info
->version_code
!= LINUX_VERSION_CODE
)
1555 return "kernel version";
1556 if (strcmp(info
->uts
.sysname
,init_utsname()->sysname
))
1557 return "system type";
1558 if (strcmp(info
->uts
.release
,init_utsname()->release
))
1559 return "kernel release";
1560 if (strcmp(info
->uts
.version
,init_utsname()->version
))
1562 if (strcmp(info
->uts
.machine
,init_utsname()->machine
))
1566 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1568 unsigned long snapshot_get_image_size(void)
1570 return nr_copy_pages
+ nr_meta_pages
+ 1;
1573 static int init_header(struct swsusp_info
*info
)
1575 memset(info
, 0, sizeof(struct swsusp_info
));
1576 info
->num_physpages
= num_physpages
;
1577 info
->image_pages
= nr_copy_pages
;
1578 info
->pages
= snapshot_get_image_size();
1579 info
->size
= info
->pages
;
1580 info
->size
<<= PAGE_SHIFT
;
1581 return init_header_complete(info
);
1585 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1586 * are stored in the array @buf[] (1 page at a time)
1590 pack_pfns(unsigned long *buf
, struct memory_bitmap
*bm
)
1594 for (j
= 0; j
< PAGE_SIZE
/ sizeof(long); j
++) {
1595 buf
[j
] = memory_bm_next_pfn(bm
);
1596 if (unlikely(buf
[j
] == BM_END_OF_MAP
))
1602 * snapshot_read_next - used for reading the system memory snapshot.
1604 * On the first call to it @handle should point to a zeroed
1605 * snapshot_handle structure. The structure gets updated and a pointer
1606 * to it should be passed to this function every next time.
1608 * On success the function returns a positive number. Then, the caller
1609 * is allowed to read up to the returned number of bytes from the memory
1610 * location computed by the data_of() macro.
1612 * The function returns 0 to indicate the end of data stream condition,
1613 * and a negative number is returned on error. In such cases the
1614 * structure pointed to by @handle is not updated and should not be used
1618 int snapshot_read_next(struct snapshot_handle
*handle
)
1620 if (handle
->cur
> nr_meta_pages
+ nr_copy_pages
)
1624 /* This makes the buffer be freed by swsusp_free() */
1625 buffer
= get_image_page(GFP_ATOMIC
, PG_ANY
);
1632 error
= init_header((struct swsusp_info
*)buffer
);
1635 handle
->buffer
= buffer
;
1636 memory_bm_position_reset(&orig_bm
);
1637 memory_bm_position_reset(©_bm
);
1638 } else if (handle
->cur
<= nr_meta_pages
) {
1639 memset(buffer
, 0, PAGE_SIZE
);
1640 pack_pfns(buffer
, &orig_bm
);
1644 page
= pfn_to_page(memory_bm_next_pfn(©_bm
));
1645 if (PageHighMem(page
)) {
1646 /* Highmem pages are copied to the buffer,
1647 * because we can't return with a kmapped
1648 * highmem page (we may not be called again).
1652 kaddr
= kmap_atomic(page
, KM_USER0
);
1653 memcpy(buffer
, kaddr
, PAGE_SIZE
);
1654 kunmap_atomic(kaddr
, KM_USER0
);
1655 handle
->buffer
= buffer
;
1657 handle
->buffer
= page_address(page
);
1665 * mark_unsafe_pages - mark the pages that cannot be used for storing
1666 * the image during resume, because they conflict with the pages that
1667 * had been used before suspend
1670 static int mark_unsafe_pages(struct memory_bitmap
*bm
)
1673 unsigned long pfn
, max_zone_pfn
;
1675 /* Clear page flags */
1676 for_each_populated_zone(zone
) {
1677 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
1678 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1680 swsusp_unset_page_free(pfn_to_page(pfn
));
1683 /* Mark pages that correspond to the "original" pfns as "unsafe" */
1684 memory_bm_position_reset(bm
);
1686 pfn
= memory_bm_next_pfn(bm
);
1687 if (likely(pfn
!= BM_END_OF_MAP
)) {
1688 if (likely(pfn_valid(pfn
)))
1689 swsusp_set_page_free(pfn_to_page(pfn
));
1693 } while (pfn
!= BM_END_OF_MAP
);
1695 allocated_unsafe_pages
= 0;
1701 duplicate_memory_bitmap(struct memory_bitmap
*dst
, struct memory_bitmap
*src
)
1705 memory_bm_position_reset(src
);
1706 pfn
= memory_bm_next_pfn(src
);
1707 while (pfn
!= BM_END_OF_MAP
) {
1708 memory_bm_set_bit(dst
, pfn
);
1709 pfn
= memory_bm_next_pfn(src
);
1713 static int check_header(struct swsusp_info
*info
)
1717 reason
= check_image_kernel(info
);
1718 if (!reason
&& info
->num_physpages
!= num_physpages
)
1719 reason
= "memory size";
1721 printk(KERN_ERR
"PM: Image mismatch: %s\n", reason
);
1728 * load header - check the image header and copy data from it
1732 load_header(struct swsusp_info
*info
)
1736 restore_pblist
= NULL
;
1737 error
= check_header(info
);
1739 nr_copy_pages
= info
->image_pages
;
1740 nr_meta_pages
= info
->pages
- info
->image_pages
- 1;
1746 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1747 * the corresponding bit in the memory bitmap @bm
1749 static int unpack_orig_pfns(unsigned long *buf
, struct memory_bitmap
*bm
)
1753 for (j
= 0; j
< PAGE_SIZE
/ sizeof(long); j
++) {
1754 if (unlikely(buf
[j
] == BM_END_OF_MAP
))
1757 if (memory_bm_pfn_present(bm
, buf
[j
]))
1758 memory_bm_set_bit(bm
, buf
[j
]);
1766 /* List of "safe" pages that may be used to store data loaded from the suspend
1769 static struct linked_page
*safe_pages_list
;
1771 #ifdef CONFIG_HIGHMEM
1772 /* struct highmem_pbe is used for creating the list of highmem pages that
1773 * should be restored atomically during the resume from disk, because the page
1774 * frames they have occupied before the suspend are in use.
1776 struct highmem_pbe
{
1777 struct page
*copy_page
; /* data is here now */
1778 struct page
*orig_page
; /* data was here before the suspend */
1779 struct highmem_pbe
*next
;
1782 /* List of highmem PBEs needed for restoring the highmem pages that were
1783 * allocated before the suspend and included in the suspend image, but have
1784 * also been allocated by the "resume" kernel, so their contents cannot be
1785 * written directly to their "original" page frames.
1787 static struct highmem_pbe
*highmem_pblist
;
1790 * count_highmem_image_pages - compute the number of highmem pages in the
1791 * suspend image. The bits in the memory bitmap @bm that correspond to the
1792 * image pages are assumed to be set.
1795 static unsigned int count_highmem_image_pages(struct memory_bitmap
*bm
)
1798 unsigned int cnt
= 0;
1800 memory_bm_position_reset(bm
);
1801 pfn
= memory_bm_next_pfn(bm
);
1802 while (pfn
!= BM_END_OF_MAP
) {
1803 if (PageHighMem(pfn_to_page(pfn
)))
1806 pfn
= memory_bm_next_pfn(bm
);
1812 * prepare_highmem_image - try to allocate as many highmem pages as
1813 * there are highmem image pages (@nr_highmem_p points to the variable
1814 * containing the number of highmem image pages). The pages that are
1815 * "safe" (ie. will not be overwritten when the suspend image is
1816 * restored) have the corresponding bits set in @bm (it must be
1819 * NOTE: This function should not be called if there are no highmem
1823 static unsigned int safe_highmem_pages
;
1825 static struct memory_bitmap
*safe_highmem_bm
;
1828 prepare_highmem_image(struct memory_bitmap
*bm
, unsigned int *nr_highmem_p
)
1830 unsigned int to_alloc
;
1832 if (memory_bm_create(bm
, GFP_ATOMIC
, PG_SAFE
))
1835 if (get_highmem_buffer(PG_SAFE
))
1838 to_alloc
= count_free_highmem_pages();
1839 if (to_alloc
> *nr_highmem_p
)
1840 to_alloc
= *nr_highmem_p
;
1842 *nr_highmem_p
= to_alloc
;
1844 safe_highmem_pages
= 0;
1845 while (to_alloc
-- > 0) {
1848 page
= alloc_page(__GFP_HIGHMEM
);
1849 if (!swsusp_page_is_free(page
)) {
1850 /* The page is "safe", set its bit the bitmap */
1851 memory_bm_set_bit(bm
, page_to_pfn(page
));
1852 safe_highmem_pages
++;
1854 /* Mark the page as allocated */
1855 swsusp_set_page_forbidden(page
);
1856 swsusp_set_page_free(page
);
1858 memory_bm_position_reset(bm
);
1859 safe_highmem_bm
= bm
;
1864 * get_highmem_page_buffer - for given highmem image page find the buffer
1865 * that suspend_write_next() should set for its caller to write to.
1867 * If the page is to be saved to its "original" page frame or a copy of
1868 * the page is to be made in the highmem, @buffer is returned. Otherwise,
1869 * the copy of the page is to be made in normal memory, so the address of
1870 * the copy is returned.
1872 * If @buffer is returned, the caller of suspend_write_next() will write
1873 * the page's contents to @buffer, so they will have to be copied to the
1874 * right location on the next call to suspend_write_next() and it is done
1875 * with the help of copy_last_highmem_page(). For this purpose, if
1876 * @buffer is returned, @last_highmem page is set to the page to which
1877 * the data will have to be copied from @buffer.
1880 static struct page
*last_highmem_page
;
1883 get_highmem_page_buffer(struct page
*page
, struct chain_allocator
*ca
)
1885 struct highmem_pbe
*pbe
;
1888 if (swsusp_page_is_forbidden(page
) && swsusp_page_is_free(page
)) {
1889 /* We have allocated the "original" page frame and we can
1890 * use it directly to store the loaded page.
1892 last_highmem_page
= page
;
1895 /* The "original" page frame has not been allocated and we have to
1896 * use a "safe" page frame to store the loaded page.
1898 pbe
= chain_alloc(ca
, sizeof(struct highmem_pbe
));
1901 return ERR_PTR(-ENOMEM
);
1903 pbe
->orig_page
= page
;
1904 if (safe_highmem_pages
> 0) {
1907 /* Copy of the page will be stored in high memory */
1909 tmp
= pfn_to_page(memory_bm_next_pfn(safe_highmem_bm
));
1910 safe_highmem_pages
--;
1911 last_highmem_page
= tmp
;
1912 pbe
->copy_page
= tmp
;
1914 /* Copy of the page will be stored in normal memory */
1915 kaddr
= safe_pages_list
;
1916 safe_pages_list
= safe_pages_list
->next
;
1917 pbe
->copy_page
= virt_to_page(kaddr
);
1919 pbe
->next
= highmem_pblist
;
1920 highmem_pblist
= pbe
;
1925 * copy_last_highmem_page - copy the contents of a highmem image from
1926 * @buffer, where the caller of snapshot_write_next() has place them,
1927 * to the right location represented by @last_highmem_page .
1930 static void copy_last_highmem_page(void)
1932 if (last_highmem_page
) {
1935 dst
= kmap_atomic(last_highmem_page
, KM_USER0
);
1936 memcpy(dst
, buffer
, PAGE_SIZE
);
1937 kunmap_atomic(dst
, KM_USER0
);
1938 last_highmem_page
= NULL
;
1942 static inline int last_highmem_page_copied(void)
1944 return !last_highmem_page
;
1947 static inline void free_highmem_data(void)
1949 if (safe_highmem_bm
)
1950 memory_bm_free(safe_highmem_bm
, PG_UNSAFE_CLEAR
);
1953 free_image_page(buffer
, PG_UNSAFE_CLEAR
);
1956 static inline int get_safe_write_buffer(void) { return 0; }
1959 count_highmem_image_pages(struct memory_bitmap
*bm
) { return 0; }
1962 prepare_highmem_image(struct memory_bitmap
*bm
, unsigned int *nr_highmem_p
)
1967 static inline void *
1968 get_highmem_page_buffer(struct page
*page
, struct chain_allocator
*ca
)
1970 return ERR_PTR(-EINVAL
);
1973 static inline void copy_last_highmem_page(void) {}
1974 static inline int last_highmem_page_copied(void) { return 1; }
1975 static inline void free_highmem_data(void) {}
1976 #endif /* CONFIG_HIGHMEM */
1979 * prepare_image - use the memory bitmap @bm to mark the pages that will
1980 * be overwritten in the process of restoring the system memory state
1981 * from the suspend image ("unsafe" pages) and allocate memory for the
1984 * The idea is to allocate a new memory bitmap first and then allocate
1985 * as many pages as needed for the image data, but not to assign these
1986 * pages to specific tasks initially. Instead, we just mark them as
1987 * allocated and create a lists of "safe" pages that will be used
1988 * later. On systems with high memory a list of "safe" highmem pages is
1992 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
1995 prepare_image(struct memory_bitmap
*new_bm
, struct memory_bitmap
*bm
)
1997 unsigned int nr_pages
, nr_highmem
;
1998 struct linked_page
*sp_list
, *lp
;
2001 /* If there is no highmem, the buffer will not be necessary */
2002 free_image_page(buffer
, PG_UNSAFE_CLEAR
);
2005 nr_highmem
= count_highmem_image_pages(bm
);
2006 error
= mark_unsafe_pages(bm
);
2010 error
= memory_bm_create(new_bm
, GFP_ATOMIC
, PG_SAFE
);
2014 duplicate_memory_bitmap(new_bm
, bm
);
2015 memory_bm_free(bm
, PG_UNSAFE_KEEP
);
2016 if (nr_highmem
> 0) {
2017 error
= prepare_highmem_image(bm
, &nr_highmem
);
2021 /* Reserve some safe pages for potential later use.
2023 * NOTE: This way we make sure there will be enough safe pages for the
2024 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2025 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2028 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2029 nr_pages
= nr_copy_pages
- nr_highmem
- allocated_unsafe_pages
;
2030 nr_pages
= DIV_ROUND_UP(nr_pages
, PBES_PER_LINKED_PAGE
);
2031 while (nr_pages
> 0) {
2032 lp
= get_image_page(GFP_ATOMIC
, PG_SAFE
);
2041 /* Preallocate memory for the image */
2042 safe_pages_list
= NULL
;
2043 nr_pages
= nr_copy_pages
- nr_highmem
- allocated_unsafe_pages
;
2044 while (nr_pages
> 0) {
2045 lp
= (struct linked_page
*)get_zeroed_page(GFP_ATOMIC
);
2050 if (!swsusp_page_is_free(virt_to_page(lp
))) {
2051 /* The page is "safe", add it to the list */
2052 lp
->next
= safe_pages_list
;
2053 safe_pages_list
= lp
;
2055 /* Mark the page as allocated */
2056 swsusp_set_page_forbidden(virt_to_page(lp
));
2057 swsusp_set_page_free(virt_to_page(lp
));
2060 /* Free the reserved safe pages so that chain_alloc() can use them */
2063 free_image_page(sp_list
, PG_UNSAFE_CLEAR
);
2074 * get_buffer - compute the address that snapshot_write_next() should
2075 * set for its caller to write to.
2078 static void *get_buffer(struct memory_bitmap
*bm
, struct chain_allocator
*ca
)
2082 unsigned long pfn
= memory_bm_next_pfn(bm
);
2084 if (pfn
== BM_END_OF_MAP
)
2085 return ERR_PTR(-EFAULT
);
2087 page
= pfn_to_page(pfn
);
2088 if (PageHighMem(page
))
2089 return get_highmem_page_buffer(page
, ca
);
2091 if (swsusp_page_is_forbidden(page
) && swsusp_page_is_free(page
))
2092 /* We have allocated the "original" page frame and we can
2093 * use it directly to store the loaded page.
2095 return page_address(page
);
2097 /* The "original" page frame has not been allocated and we have to
2098 * use a "safe" page frame to store the loaded page.
2100 pbe
= chain_alloc(ca
, sizeof(struct pbe
));
2103 return ERR_PTR(-ENOMEM
);
2105 pbe
->orig_address
= page_address(page
);
2106 pbe
->address
= safe_pages_list
;
2107 safe_pages_list
= safe_pages_list
->next
;
2108 pbe
->next
= restore_pblist
;
2109 restore_pblist
= pbe
;
2110 return pbe
->address
;
2114 * snapshot_write_next - used for writing the system memory snapshot.
2116 * On the first call to it @handle should point to a zeroed
2117 * snapshot_handle structure. The structure gets updated and a pointer
2118 * to it should be passed to this function every next time.
2120 * On success the function returns a positive number. Then, the caller
2121 * is allowed to write up to the returned number of bytes to the memory
2122 * location computed by the data_of() macro.
2124 * The function returns 0 to indicate the "end of file" condition,
2125 * and a negative number is returned on error. In such cases the
2126 * structure pointed to by @handle is not updated and should not be used
2130 int snapshot_write_next(struct snapshot_handle
*handle
)
2132 static struct chain_allocator ca
;
2135 /* Check if we have already loaded the entire image */
2136 if (handle
->cur
> 1 && handle
->cur
> nr_meta_pages
+ nr_copy_pages
)
2139 handle
->sync_read
= 1;
2143 /* This makes the buffer be freed by swsusp_free() */
2144 buffer
= get_image_page(GFP_ATOMIC
, PG_ANY
);
2149 handle
->buffer
= buffer
;
2150 } else if (handle
->cur
== 1) {
2151 error
= load_header(buffer
);
2155 error
= memory_bm_create(©_bm
, GFP_ATOMIC
, PG_ANY
);
2159 } else if (handle
->cur
<= nr_meta_pages
+ 1) {
2160 error
= unpack_orig_pfns(buffer
, ©_bm
);
2164 if (handle
->cur
== nr_meta_pages
+ 1) {
2165 error
= prepare_image(&orig_bm
, ©_bm
);
2169 chain_init(&ca
, GFP_ATOMIC
, PG_SAFE
);
2170 memory_bm_position_reset(&orig_bm
);
2171 restore_pblist
= NULL
;
2172 handle
->buffer
= get_buffer(&orig_bm
, &ca
);
2173 handle
->sync_read
= 0;
2174 if (IS_ERR(handle
->buffer
))
2175 return PTR_ERR(handle
->buffer
);
2178 copy_last_highmem_page();
2179 handle
->buffer
= get_buffer(&orig_bm
, &ca
);
2180 if (IS_ERR(handle
->buffer
))
2181 return PTR_ERR(handle
->buffer
);
2182 if (handle
->buffer
!= buffer
)
2183 handle
->sync_read
= 0;
2190 * snapshot_write_finalize - must be called after the last call to
2191 * snapshot_write_next() in case the last page in the image happens
2192 * to be a highmem page and its contents should be stored in the
2193 * highmem. Additionally, it releases the memory that will not be
2197 void snapshot_write_finalize(struct snapshot_handle
*handle
)
2199 copy_last_highmem_page();
2200 /* Free only if we have loaded the image entirely */
2201 if (handle
->cur
> 1 && handle
->cur
> nr_meta_pages
+ nr_copy_pages
) {
2202 memory_bm_free(&orig_bm
, PG_UNSAFE_CLEAR
);
2203 free_highmem_data();
2207 int snapshot_image_loaded(struct snapshot_handle
*handle
)
2209 return !(!nr_copy_pages
|| !last_highmem_page_copied() ||
2210 handle
->cur
<= nr_meta_pages
+ nr_copy_pages
);
2213 #ifdef CONFIG_HIGHMEM
2214 /* Assumes that @buf is ready and points to a "safe" page */
2216 swap_two_pages_data(struct page
*p1
, struct page
*p2
, void *buf
)
2218 void *kaddr1
, *kaddr2
;
2220 kaddr1
= kmap_atomic(p1
, KM_USER0
);
2221 kaddr2
= kmap_atomic(p2
, KM_USER1
);
2222 memcpy(buf
, kaddr1
, PAGE_SIZE
);
2223 memcpy(kaddr1
, kaddr2
, PAGE_SIZE
);
2224 memcpy(kaddr2
, buf
, PAGE_SIZE
);
2225 kunmap_atomic(kaddr1
, KM_USER0
);
2226 kunmap_atomic(kaddr2
, KM_USER1
);
2230 * restore_highmem - for each highmem page that was allocated before
2231 * the suspend and included in the suspend image, and also has been
2232 * allocated by the "resume" kernel swap its current (ie. "before
2233 * resume") contents with the previous (ie. "before suspend") one.
2235 * If the resume eventually fails, we can call this function once
2236 * again and restore the "before resume" highmem state.
2239 int restore_highmem(void)
2241 struct highmem_pbe
*pbe
= highmem_pblist
;
2247 buf
= get_image_page(GFP_ATOMIC
, PG_SAFE
);
2252 swap_two_pages_data(pbe
->copy_page
, pbe
->orig_page
, buf
);
2255 free_image_page(buf
, PG_UNSAFE_CLEAR
);
2258 #endif /* CONFIG_HIGHMEM */