staging: ft1000: fix error path
[wandboard.git] / kernel / power / snapshot.c
blob5e7edfb05e66cff0d2c99d5fc8fddfde03e372c3
1 /*
2 * linux/kernel/power/snapshot.c
4 * This file provides system snapshot/restore functionality for swsusp.
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9 * This file is released under the GPLv2.
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
31 #include <asm/uaccess.h>
32 #include <asm/mmu_context.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <asm/io.h>
37 #include "power.h"
39 static int swsusp_page_is_free(struct page *);
40 static void swsusp_set_page_forbidden(struct page *);
41 static void swsusp_unset_page_forbidden(struct page *);
44 * Preferred image size in bytes (tunable via /sys/power/image_size).
45 * When it is set to N, swsusp will do its best to ensure the image
46 * size will not exceed N bytes, but if that is impossible, it will
47 * try to create the smallest image possible.
49 unsigned long image_size = 500 * 1024 * 1024;
51 /* List of PBEs needed for restoring the pages that were allocated before
52 * the suspend and included in the suspend image, but have also been
53 * allocated by the "resume" kernel, so their contents cannot be written
54 * directly to their "original" page frames.
56 struct pbe *restore_pblist;
58 /* Pointer to an auxiliary buffer (1 page) */
59 static void *buffer;
61 /**
62 * @safe_needed - on resume, for storing the PBE list and the image,
63 * we can only use memory pages that do not conflict with the pages
64 * used before suspend. The unsafe pages have PageNosaveFree set
65 * and we count them using unsafe_pages.
67 * Each allocated image page is marked as PageNosave and PageNosaveFree
68 * so that swsusp_free() can release it.
71 #define PG_ANY 0
72 #define PG_SAFE 1
73 #define PG_UNSAFE_CLEAR 1
74 #define PG_UNSAFE_KEEP 0
76 static unsigned int allocated_unsafe_pages;
78 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
80 void *res;
82 res = (void *)get_zeroed_page(gfp_mask);
83 if (safe_needed)
84 while (res && swsusp_page_is_free(virt_to_page(res))) {
85 /* The page is unsafe, mark it for swsusp_free() */
86 swsusp_set_page_forbidden(virt_to_page(res));
87 allocated_unsafe_pages++;
88 res = (void *)get_zeroed_page(gfp_mask);
90 if (res) {
91 swsusp_set_page_forbidden(virt_to_page(res));
92 swsusp_set_page_free(virt_to_page(res));
94 return res;
97 unsigned long get_safe_page(gfp_t gfp_mask)
99 return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
102 static struct page *alloc_image_page(gfp_t gfp_mask)
104 struct page *page;
106 page = alloc_page(gfp_mask);
107 if (page) {
108 swsusp_set_page_forbidden(page);
109 swsusp_set_page_free(page);
111 return page;
115 * free_image_page - free page represented by @addr, allocated with
116 * get_image_page (page flags set by it must be cleared)
119 static inline void free_image_page(void *addr, int clear_nosave_free)
121 struct page *page;
123 BUG_ON(!virt_addr_valid(addr));
125 page = virt_to_page(addr);
127 swsusp_unset_page_forbidden(page);
128 if (clear_nosave_free)
129 swsusp_unset_page_free(page);
131 __free_page(page);
134 /* struct linked_page is used to build chains of pages */
136 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
138 struct linked_page {
139 struct linked_page *next;
140 char data[LINKED_PAGE_DATA_SIZE];
141 } __attribute__((packed));
143 static inline void
144 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
146 while (list) {
147 struct linked_page *lp = list->next;
149 free_image_page(list, clear_page_nosave);
150 list = lp;
155 * struct chain_allocator is used for allocating small objects out of
156 * a linked list of pages called 'the chain'.
158 * The chain grows each time when there is no room for a new object in
159 * the current page. The allocated objects cannot be freed individually.
160 * It is only possible to free them all at once, by freeing the entire
161 * chain.
163 * NOTE: The chain allocator may be inefficient if the allocated objects
164 * are not much smaller than PAGE_SIZE.
167 struct chain_allocator {
168 struct linked_page *chain; /* the chain */
169 unsigned int used_space; /* total size of objects allocated out
170 * of the current page
172 gfp_t gfp_mask; /* mask for allocating pages */
173 int safe_needed; /* if set, only "safe" pages are allocated */
176 static void
177 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
179 ca->chain = NULL;
180 ca->used_space = LINKED_PAGE_DATA_SIZE;
181 ca->gfp_mask = gfp_mask;
182 ca->safe_needed = safe_needed;
185 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
187 void *ret;
189 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
190 struct linked_page *lp;
192 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
193 if (!lp)
194 return NULL;
196 lp->next = ca->chain;
197 ca->chain = lp;
198 ca->used_space = 0;
200 ret = ca->chain->data + ca->used_space;
201 ca->used_space += size;
202 return ret;
206 * Data types related to memory bitmaps.
208 * Memory bitmap is a structure consiting of many linked lists of
209 * objects. The main list's elements are of type struct zone_bitmap
210 * and each of them corresonds to one zone. For each zone bitmap
211 * object there is a list of objects of type struct bm_block that
212 * represent each blocks of bitmap in which information is stored.
214 * struct memory_bitmap contains a pointer to the main list of zone
215 * bitmap objects, a struct bm_position used for browsing the bitmap,
216 * and a pointer to the list of pages used for allocating all of the
217 * zone bitmap objects and bitmap block objects.
219 * NOTE: It has to be possible to lay out the bitmap in memory
220 * using only allocations of order 0. Additionally, the bitmap is
221 * designed to work with arbitrary number of zones (this is over the
222 * top for now, but let's avoid making unnecessary assumptions ;-).
224 * struct zone_bitmap contains a pointer to a list of bitmap block
225 * objects and a pointer to the bitmap block object that has been
226 * most recently used for setting bits. Additionally, it contains the
227 * pfns that correspond to the start and end of the represented zone.
229 * struct bm_block contains a pointer to the memory page in which
230 * information is stored (in the form of a block of bitmap)
231 * It also contains the pfns that correspond to the start and end of
232 * the represented memory area.
235 #define BM_END_OF_MAP (~0UL)
237 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
239 struct bm_block {
240 struct list_head hook; /* hook into a list of bitmap blocks */
241 unsigned long start_pfn; /* pfn represented by the first bit */
242 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
243 unsigned long *data; /* bitmap representing pages */
246 static inline unsigned long bm_block_bits(struct bm_block *bb)
248 return bb->end_pfn - bb->start_pfn;
251 /* strcut bm_position is used for browsing memory bitmaps */
253 struct bm_position {
254 struct bm_block *block;
255 int bit;
258 struct memory_bitmap {
259 struct list_head blocks; /* list of bitmap blocks */
260 struct linked_page *p_list; /* list of pages used to store zone
261 * bitmap objects and bitmap block
262 * objects
264 struct bm_position cur; /* most recently used bit position */
267 /* Functions that operate on memory bitmaps */
269 static void memory_bm_position_reset(struct memory_bitmap *bm)
271 bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
272 bm->cur.bit = 0;
275 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
278 * create_bm_block_list - create a list of block bitmap objects
279 * @pages - number of pages to track
280 * @list - list to put the allocated blocks into
281 * @ca - chain allocator to be used for allocating memory
283 static int create_bm_block_list(unsigned long pages,
284 struct list_head *list,
285 struct chain_allocator *ca)
287 unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
289 while (nr_blocks-- > 0) {
290 struct bm_block *bb;
292 bb = chain_alloc(ca, sizeof(struct bm_block));
293 if (!bb)
294 return -ENOMEM;
295 list_add(&bb->hook, list);
298 return 0;
301 struct mem_extent {
302 struct list_head hook;
303 unsigned long start;
304 unsigned long end;
308 * free_mem_extents - free a list of memory extents
309 * @list - list of extents to empty
311 static void free_mem_extents(struct list_head *list)
313 struct mem_extent *ext, *aux;
315 list_for_each_entry_safe(ext, aux, list, hook) {
316 list_del(&ext->hook);
317 kfree(ext);
322 * create_mem_extents - create a list of memory extents representing
323 * contiguous ranges of PFNs
324 * @list - list to put the extents into
325 * @gfp_mask - mask to use for memory allocations
327 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
329 struct zone *zone;
331 INIT_LIST_HEAD(list);
333 for_each_populated_zone(zone) {
334 unsigned long zone_start, zone_end;
335 struct mem_extent *ext, *cur, *aux;
337 zone_start = zone->zone_start_pfn;
338 zone_end = zone->zone_start_pfn + zone->spanned_pages;
340 list_for_each_entry(ext, list, hook)
341 if (zone_start <= ext->end)
342 break;
344 if (&ext->hook == list || zone_end < ext->start) {
345 /* New extent is necessary */
346 struct mem_extent *new_ext;
348 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
349 if (!new_ext) {
350 free_mem_extents(list);
351 return -ENOMEM;
353 new_ext->start = zone_start;
354 new_ext->end = zone_end;
355 list_add_tail(&new_ext->hook, &ext->hook);
356 continue;
359 /* Merge this zone's range of PFNs with the existing one */
360 if (zone_start < ext->start)
361 ext->start = zone_start;
362 if (zone_end > ext->end)
363 ext->end = zone_end;
365 /* More merging may be possible */
366 cur = ext;
367 list_for_each_entry_safe_continue(cur, aux, list, hook) {
368 if (zone_end < cur->start)
369 break;
370 if (zone_end < cur->end)
371 ext->end = cur->end;
372 list_del(&cur->hook);
373 kfree(cur);
377 return 0;
381 * memory_bm_create - allocate memory for a memory bitmap
383 static int
384 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
386 struct chain_allocator ca;
387 struct list_head mem_extents;
388 struct mem_extent *ext;
389 int error;
391 chain_init(&ca, gfp_mask, safe_needed);
392 INIT_LIST_HEAD(&bm->blocks);
394 error = create_mem_extents(&mem_extents, gfp_mask);
395 if (error)
396 return error;
398 list_for_each_entry(ext, &mem_extents, hook) {
399 struct bm_block *bb;
400 unsigned long pfn = ext->start;
401 unsigned long pages = ext->end - ext->start;
403 bb = list_entry(bm->blocks.prev, struct bm_block, hook);
405 error = create_bm_block_list(pages, bm->blocks.prev, &ca);
406 if (error)
407 goto Error;
409 list_for_each_entry_continue(bb, &bm->blocks, hook) {
410 bb->data = get_image_page(gfp_mask, safe_needed);
411 if (!bb->data) {
412 error = -ENOMEM;
413 goto Error;
416 bb->start_pfn = pfn;
417 if (pages >= BM_BITS_PER_BLOCK) {
418 pfn += BM_BITS_PER_BLOCK;
419 pages -= BM_BITS_PER_BLOCK;
420 } else {
421 /* This is executed only once in the loop */
422 pfn += pages;
424 bb->end_pfn = pfn;
428 bm->p_list = ca.chain;
429 memory_bm_position_reset(bm);
430 Exit:
431 free_mem_extents(&mem_extents);
432 return error;
434 Error:
435 bm->p_list = ca.chain;
436 memory_bm_free(bm, PG_UNSAFE_CLEAR);
437 goto Exit;
441 * memory_bm_free - free memory occupied by the memory bitmap @bm
443 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
445 struct bm_block *bb;
447 list_for_each_entry(bb, &bm->blocks, hook)
448 if (bb->data)
449 free_image_page(bb->data, clear_nosave_free);
451 free_list_of_pages(bm->p_list, clear_nosave_free);
453 INIT_LIST_HEAD(&bm->blocks);
457 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
458 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
459 * of @bm->cur_zone_bm are updated.
461 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
462 void **addr, unsigned int *bit_nr)
464 struct bm_block *bb;
467 * Check if the pfn corresponds to the current bitmap block and find
468 * the block where it fits if this is not the case.
470 bb = bm->cur.block;
471 if (pfn < bb->start_pfn)
472 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
473 if (pfn >= bb->start_pfn)
474 break;
476 if (pfn >= bb->end_pfn)
477 list_for_each_entry_continue(bb, &bm->blocks, hook)
478 if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
479 break;
481 if (&bb->hook == &bm->blocks)
482 return -EFAULT;
484 /* The block has been found */
485 bm->cur.block = bb;
486 pfn -= bb->start_pfn;
487 bm->cur.bit = pfn + 1;
488 *bit_nr = pfn;
489 *addr = bb->data;
490 return 0;
493 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
495 void *addr;
496 unsigned int bit;
497 int error;
499 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
500 BUG_ON(error);
501 set_bit(bit, addr);
504 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
506 void *addr;
507 unsigned int bit;
508 int error;
510 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
511 if (!error)
512 set_bit(bit, addr);
513 return error;
516 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
518 void *addr;
519 unsigned int bit;
520 int error;
522 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
523 BUG_ON(error);
524 clear_bit(bit, addr);
527 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
529 void *addr;
530 unsigned int bit;
531 int error;
533 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
534 BUG_ON(error);
535 return test_bit(bit, addr);
538 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
540 void *addr;
541 unsigned int bit;
543 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
547 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
548 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
549 * returned.
551 * It is required to run memory_bm_position_reset() before the first call to
552 * this function.
555 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
557 struct bm_block *bb;
558 int bit;
560 bb = bm->cur.block;
561 do {
562 bit = bm->cur.bit;
563 bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
564 if (bit < bm_block_bits(bb))
565 goto Return_pfn;
567 bb = list_entry(bb->hook.next, struct bm_block, hook);
568 bm->cur.block = bb;
569 bm->cur.bit = 0;
570 } while (&bb->hook != &bm->blocks);
572 memory_bm_position_reset(bm);
573 return BM_END_OF_MAP;
575 Return_pfn:
576 bm->cur.bit = bit + 1;
577 return bb->start_pfn + bit;
581 * This structure represents a range of page frames the contents of which
582 * should not be saved during the suspend.
585 struct nosave_region {
586 struct list_head list;
587 unsigned long start_pfn;
588 unsigned long end_pfn;
591 static LIST_HEAD(nosave_regions);
594 * register_nosave_region - register a range of page frames the contents
595 * of which should not be saved during the suspend (to be used in the early
596 * initialization code)
599 void __init
600 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
601 int use_kmalloc)
603 struct nosave_region *region;
605 if (start_pfn >= end_pfn)
606 return;
608 if (!list_empty(&nosave_regions)) {
609 /* Try to extend the previous region (they should be sorted) */
610 region = list_entry(nosave_regions.prev,
611 struct nosave_region, list);
612 if (region->end_pfn == start_pfn) {
613 region->end_pfn = end_pfn;
614 goto Report;
617 if (use_kmalloc) {
618 /* during init, this shouldn't fail */
619 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
620 BUG_ON(!region);
621 } else
622 /* This allocation cannot fail */
623 region = alloc_bootmem(sizeof(struct nosave_region));
624 region->start_pfn = start_pfn;
625 region->end_pfn = end_pfn;
626 list_add_tail(&region->list, &nosave_regions);
627 Report:
628 printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
629 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
633 * Set bits in this map correspond to the page frames the contents of which
634 * should not be saved during the suspend.
636 static struct memory_bitmap *forbidden_pages_map;
638 /* Set bits in this map correspond to free page frames. */
639 static struct memory_bitmap *free_pages_map;
642 * Each page frame allocated for creating the image is marked by setting the
643 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
646 void swsusp_set_page_free(struct page *page)
648 if (free_pages_map)
649 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
652 static int swsusp_page_is_free(struct page *page)
654 return free_pages_map ?
655 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
658 void swsusp_unset_page_free(struct page *page)
660 if (free_pages_map)
661 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
664 static void swsusp_set_page_forbidden(struct page *page)
666 if (forbidden_pages_map)
667 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
670 int swsusp_page_is_forbidden(struct page *page)
672 return forbidden_pages_map ?
673 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
676 static void swsusp_unset_page_forbidden(struct page *page)
678 if (forbidden_pages_map)
679 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
683 * mark_nosave_pages - set bits corresponding to the page frames the
684 * contents of which should not be saved in a given bitmap.
687 static void mark_nosave_pages(struct memory_bitmap *bm)
689 struct nosave_region *region;
691 if (list_empty(&nosave_regions))
692 return;
694 list_for_each_entry(region, &nosave_regions, list) {
695 unsigned long pfn;
697 pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
698 region->start_pfn << PAGE_SHIFT,
699 region->end_pfn << PAGE_SHIFT);
701 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
702 if (pfn_valid(pfn)) {
704 * It is safe to ignore the result of
705 * mem_bm_set_bit_check() here, since we won't
706 * touch the PFNs for which the error is
707 * returned anyway.
709 mem_bm_set_bit_check(bm, pfn);
715 * create_basic_memory_bitmaps - create bitmaps needed for marking page
716 * frames that should not be saved and free page frames. The pointers
717 * forbidden_pages_map and free_pages_map are only modified if everything
718 * goes well, because we don't want the bits to be used before both bitmaps
719 * are set up.
722 int create_basic_memory_bitmaps(void)
724 struct memory_bitmap *bm1, *bm2;
725 int error = 0;
727 BUG_ON(forbidden_pages_map || free_pages_map);
729 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
730 if (!bm1)
731 return -ENOMEM;
733 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
734 if (error)
735 goto Free_first_object;
737 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
738 if (!bm2)
739 goto Free_first_bitmap;
741 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
742 if (error)
743 goto Free_second_object;
745 forbidden_pages_map = bm1;
746 free_pages_map = bm2;
747 mark_nosave_pages(forbidden_pages_map);
749 pr_debug("PM: Basic memory bitmaps created\n");
751 return 0;
753 Free_second_object:
754 kfree(bm2);
755 Free_first_bitmap:
756 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
757 Free_first_object:
758 kfree(bm1);
759 return -ENOMEM;
763 * free_basic_memory_bitmaps - free memory bitmaps allocated by
764 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
765 * so that the bitmaps themselves are not referred to while they are being
766 * freed.
769 void free_basic_memory_bitmaps(void)
771 struct memory_bitmap *bm1, *bm2;
773 BUG_ON(!(forbidden_pages_map && free_pages_map));
775 bm1 = forbidden_pages_map;
776 bm2 = free_pages_map;
777 forbidden_pages_map = NULL;
778 free_pages_map = NULL;
779 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
780 kfree(bm1);
781 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
782 kfree(bm2);
784 pr_debug("PM: Basic memory bitmaps freed\n");
788 * snapshot_additional_pages - estimate the number of additional pages
789 * be needed for setting up the suspend image data structures for given
790 * zone (usually the returned value is greater than the exact number)
793 unsigned int snapshot_additional_pages(struct zone *zone)
795 unsigned int res;
797 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
798 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
799 return 2 * res;
802 #ifdef CONFIG_HIGHMEM
804 * count_free_highmem_pages - compute the total number of free highmem
805 * pages, system-wide.
808 static unsigned int count_free_highmem_pages(void)
810 struct zone *zone;
811 unsigned int cnt = 0;
813 for_each_populated_zone(zone)
814 if (is_highmem(zone))
815 cnt += zone_page_state(zone, NR_FREE_PAGES);
817 return cnt;
821 * saveable_highmem_page - Determine whether a highmem page should be
822 * included in the suspend image.
824 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
825 * and it isn't a part of a free chunk of pages.
827 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
829 struct page *page;
831 if (!pfn_valid(pfn))
832 return NULL;
834 page = pfn_to_page(pfn);
835 if (page_zone(page) != zone)
836 return NULL;
838 BUG_ON(!PageHighMem(page));
840 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
841 PageReserved(page))
842 return NULL;
844 return page;
848 * count_highmem_pages - compute the total number of saveable highmem
849 * pages.
852 static unsigned int count_highmem_pages(void)
854 struct zone *zone;
855 unsigned int n = 0;
857 for_each_populated_zone(zone) {
858 unsigned long pfn, max_zone_pfn;
860 if (!is_highmem(zone))
861 continue;
863 mark_free_pages(zone);
864 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
865 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
866 if (saveable_highmem_page(zone, pfn))
867 n++;
869 return n;
871 #else
872 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
874 return NULL;
876 #endif /* CONFIG_HIGHMEM */
879 * saveable_page - Determine whether a non-highmem page should be included
880 * in the suspend image.
882 * We should save the page if it isn't Nosave, and is not in the range
883 * of pages statically defined as 'unsaveable', and it isn't a part of
884 * a free chunk of pages.
886 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
888 struct page *page;
890 if (!pfn_valid(pfn))
891 return NULL;
893 page = pfn_to_page(pfn);
894 if (page_zone(page) != zone)
895 return NULL;
897 BUG_ON(PageHighMem(page));
899 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
900 return NULL;
902 if (PageReserved(page)
903 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
904 return NULL;
906 return page;
910 * count_data_pages - compute the total number of saveable non-highmem
911 * pages.
914 static unsigned int count_data_pages(void)
916 struct zone *zone;
917 unsigned long pfn, max_zone_pfn;
918 unsigned int n = 0;
920 for_each_populated_zone(zone) {
921 if (is_highmem(zone))
922 continue;
924 mark_free_pages(zone);
925 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
926 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
927 if (saveable_page(zone, pfn))
928 n++;
930 return n;
933 /* This is needed, because copy_page and memcpy are not usable for copying
934 * task structs.
936 static inline void do_copy_page(long *dst, long *src)
938 int n;
940 for (n = PAGE_SIZE / sizeof(long); n; n--)
941 *dst++ = *src++;
946 * safe_copy_page - check if the page we are going to copy is marked as
947 * present in the kernel page tables (this always is the case if
948 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
949 * kernel_page_present() always returns 'true').
951 static void safe_copy_page(void *dst, struct page *s_page)
953 if (kernel_page_present(s_page)) {
954 do_copy_page(dst, page_address(s_page));
955 } else {
956 kernel_map_pages(s_page, 1, 1);
957 do_copy_page(dst, page_address(s_page));
958 kernel_map_pages(s_page, 1, 0);
963 #ifdef CONFIG_HIGHMEM
964 static inline struct page *
965 page_is_saveable(struct zone *zone, unsigned long pfn)
967 return is_highmem(zone) ?
968 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
971 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
973 struct page *s_page, *d_page;
974 void *src, *dst;
976 s_page = pfn_to_page(src_pfn);
977 d_page = pfn_to_page(dst_pfn);
978 if (PageHighMem(s_page)) {
979 src = kmap_atomic(s_page, KM_USER0);
980 dst = kmap_atomic(d_page, KM_USER1);
981 do_copy_page(dst, src);
982 kunmap_atomic(src, KM_USER0);
983 kunmap_atomic(dst, KM_USER1);
984 } else {
985 if (PageHighMem(d_page)) {
986 /* Page pointed to by src may contain some kernel
987 * data modified by kmap_atomic()
989 safe_copy_page(buffer, s_page);
990 dst = kmap_atomic(d_page, KM_USER0);
991 memcpy(dst, buffer, PAGE_SIZE);
992 kunmap_atomic(dst, KM_USER0);
993 } else {
994 safe_copy_page(page_address(d_page), s_page);
998 #else
999 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
1001 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1003 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1004 pfn_to_page(src_pfn));
1006 #endif /* CONFIG_HIGHMEM */
1008 static void
1009 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1011 struct zone *zone;
1012 unsigned long pfn;
1014 for_each_populated_zone(zone) {
1015 unsigned long max_zone_pfn;
1017 mark_free_pages(zone);
1018 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1019 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1020 if (page_is_saveable(zone, pfn))
1021 memory_bm_set_bit(orig_bm, pfn);
1023 memory_bm_position_reset(orig_bm);
1024 memory_bm_position_reset(copy_bm);
1025 for(;;) {
1026 pfn = memory_bm_next_pfn(orig_bm);
1027 if (unlikely(pfn == BM_END_OF_MAP))
1028 break;
1029 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1033 /* Total number of image pages */
1034 static unsigned int nr_copy_pages;
1035 /* Number of pages needed for saving the original pfns of the image pages */
1036 static unsigned int nr_meta_pages;
1038 * Numbers of normal and highmem page frames allocated for hibernation image
1039 * before suspending devices.
1041 unsigned int alloc_normal, alloc_highmem;
1043 * Memory bitmap used for marking saveable pages (during hibernation) or
1044 * hibernation image pages (during restore)
1046 static struct memory_bitmap orig_bm;
1048 * Memory bitmap used during hibernation for marking allocated page frames that
1049 * will contain copies of saveable pages. During restore it is initially used
1050 * for marking hibernation image pages, but then the set bits from it are
1051 * duplicated in @orig_bm and it is released. On highmem systems it is next
1052 * used for marking "safe" highmem pages, but it has to be reinitialized for
1053 * this purpose.
1055 static struct memory_bitmap copy_bm;
1058 * swsusp_free - free pages allocated for the suspend.
1060 * Suspend pages are alocated before the atomic copy is made, so we
1061 * need to release them after the resume.
1064 void swsusp_free(void)
1066 struct zone *zone;
1067 unsigned long pfn, max_zone_pfn;
1069 for_each_populated_zone(zone) {
1070 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1071 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1072 if (pfn_valid(pfn)) {
1073 struct page *page = pfn_to_page(pfn);
1075 if (swsusp_page_is_forbidden(page) &&
1076 swsusp_page_is_free(page)) {
1077 swsusp_unset_page_forbidden(page);
1078 swsusp_unset_page_free(page);
1079 __free_page(page);
1083 nr_copy_pages = 0;
1084 nr_meta_pages = 0;
1085 restore_pblist = NULL;
1086 buffer = NULL;
1087 alloc_normal = 0;
1088 alloc_highmem = 0;
1089 hibernation_thaw_swap();
1092 /* Helper functions used for the shrinking of memory. */
1094 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1097 * preallocate_image_pages - Allocate a number of pages for hibernation image
1098 * @nr_pages: Number of page frames to allocate.
1099 * @mask: GFP flags to use for the allocation.
1101 * Return value: Number of page frames actually allocated
1103 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1105 unsigned long nr_alloc = 0;
1107 while (nr_pages > 0) {
1108 struct page *page;
1110 page = alloc_image_page(mask);
1111 if (!page)
1112 break;
1113 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1114 if (PageHighMem(page))
1115 alloc_highmem++;
1116 else
1117 alloc_normal++;
1118 nr_pages--;
1119 nr_alloc++;
1122 return nr_alloc;
1125 static unsigned long preallocate_image_memory(unsigned long nr_pages)
1127 return preallocate_image_pages(nr_pages, GFP_IMAGE);
1130 #ifdef CONFIG_HIGHMEM
1131 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1133 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1137 * __fraction - Compute (an approximation of) x * (multiplier / base)
1139 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1141 x *= multiplier;
1142 do_div(x, base);
1143 return (unsigned long)x;
1146 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1147 unsigned long highmem,
1148 unsigned long total)
1150 unsigned long alloc = __fraction(nr_pages, highmem, total);
1152 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1154 #else /* CONFIG_HIGHMEM */
1155 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1157 return 0;
1160 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1161 unsigned long highmem,
1162 unsigned long total)
1164 return 0;
1166 #endif /* CONFIG_HIGHMEM */
1169 * free_unnecessary_pages - Release preallocated pages not needed for the image
1171 static void free_unnecessary_pages(void)
1173 unsigned long save_highmem, to_free_normal, to_free_highmem;
1175 to_free_normal = alloc_normal - count_data_pages();
1176 save_highmem = count_highmem_pages();
1177 if (alloc_highmem > save_highmem) {
1178 to_free_highmem = alloc_highmem - save_highmem;
1179 } else {
1180 to_free_highmem = 0;
1181 to_free_normal -= save_highmem - alloc_highmem;
1184 memory_bm_position_reset(&copy_bm);
1186 while (to_free_normal > 0 || to_free_highmem > 0) {
1187 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1188 struct page *page = pfn_to_page(pfn);
1190 if (PageHighMem(page)) {
1191 if (!to_free_highmem)
1192 continue;
1193 to_free_highmem--;
1194 alloc_highmem--;
1195 } else {
1196 if (!to_free_normal)
1197 continue;
1198 to_free_normal--;
1199 alloc_normal--;
1201 memory_bm_clear_bit(&copy_bm, pfn);
1202 swsusp_unset_page_forbidden(page);
1203 swsusp_unset_page_free(page);
1204 __free_page(page);
1209 * minimum_image_size - Estimate the minimum acceptable size of an image
1210 * @saveable: Number of saveable pages in the system.
1212 * We want to avoid attempting to free too much memory too hard, so estimate the
1213 * minimum acceptable size of a hibernation image to use as the lower limit for
1214 * preallocating memory.
1216 * We assume that the minimum image size should be proportional to
1218 * [number of saveable pages] - [number of pages that can be freed in theory]
1220 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1221 * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
1222 * minus mapped file pages.
1224 static unsigned long minimum_image_size(unsigned long saveable)
1226 unsigned long size;
1228 size = global_page_state(NR_SLAB_RECLAIMABLE)
1229 + global_page_state(NR_ACTIVE_ANON)
1230 + global_page_state(NR_INACTIVE_ANON)
1231 + global_page_state(NR_ACTIVE_FILE)
1232 + global_page_state(NR_INACTIVE_FILE)
1233 - global_page_state(NR_FILE_MAPPED);
1235 return saveable <= size ? 0 : saveable - size;
1239 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1241 * To create a hibernation image it is necessary to make a copy of every page
1242 * frame in use. We also need a number of page frames to be free during
1243 * hibernation for allocations made while saving the image and for device
1244 * drivers, in case they need to allocate memory from their hibernation
1245 * callbacks (these two numbers are given by PAGES_FOR_IO and SPARE_PAGES,
1246 * respectively, both of which are rough estimates). To make this happen, we
1247 * compute the total number of available page frames and allocate at least
1249 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 + 2 * SPARE_PAGES
1251 * of them, which corresponds to the maximum size of a hibernation image.
1253 * If image_size is set below the number following from the above formula,
1254 * the preallocation of memory is continued until the total number of saveable
1255 * pages in the system is below the requested image size or the minimum
1256 * acceptable image size returned by minimum_image_size(), whichever is greater.
1258 int hibernate_preallocate_memory(void)
1260 struct zone *zone;
1261 unsigned long saveable, size, max_size, count, highmem, pages = 0;
1262 unsigned long alloc, save_highmem, pages_highmem;
1263 struct timeval start, stop;
1264 int error;
1266 printk(KERN_INFO "PM: Preallocating image memory... ");
1267 do_gettimeofday(&start);
1269 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1270 if (error)
1271 goto err_out;
1273 error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1274 if (error)
1275 goto err_out;
1277 alloc_normal = 0;
1278 alloc_highmem = 0;
1280 /* Count the number of saveable data pages. */
1281 save_highmem = count_highmem_pages();
1282 saveable = count_data_pages();
1285 * Compute the total number of page frames we can use (count) and the
1286 * number of pages needed for image metadata (size).
1288 count = saveable;
1289 saveable += save_highmem;
1290 highmem = save_highmem;
1291 size = 0;
1292 for_each_populated_zone(zone) {
1293 size += snapshot_additional_pages(zone);
1294 if (is_highmem(zone))
1295 highmem += zone_page_state(zone, NR_FREE_PAGES);
1296 else
1297 count += zone_page_state(zone, NR_FREE_PAGES);
1299 count += highmem;
1300 count -= totalreserve_pages;
1302 /* Compute the maximum number of saveable pages to leave in memory. */
1303 max_size = (count - (size + PAGES_FOR_IO)) / 2 - 2 * SPARE_PAGES;
1304 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1305 if (size > max_size)
1306 size = max_size;
1308 * If the maximum is not less than the current number of saveable pages
1309 * in memory, allocate page frames for the image and we're done.
1311 if (size >= saveable) {
1312 pages = preallocate_image_highmem(save_highmem);
1313 pages += preallocate_image_memory(saveable - pages);
1314 goto out;
1317 /* Estimate the minimum size of the image. */
1318 pages = minimum_image_size(saveable);
1319 if (size < pages)
1320 size = min_t(unsigned long, pages, max_size);
1323 * Let the memory management subsystem know that we're going to need a
1324 * large number of page frames to allocate and make it free some memory.
1325 * NOTE: If this is not done, performance will be hurt badly in some
1326 * test cases.
1328 shrink_all_memory(saveable - size);
1331 * The number of saveable pages in memory was too high, so apply some
1332 * pressure to decrease it. First, make room for the largest possible
1333 * image and fail if that doesn't work. Next, try to decrease the size
1334 * of the image as much as indicated by 'size' using allocations from
1335 * highmem and non-highmem zones separately.
1337 pages_highmem = preallocate_image_highmem(highmem / 2);
1338 alloc = (count - max_size) - pages_highmem;
1339 pages = preallocate_image_memory(alloc);
1340 if (pages < alloc)
1341 goto err_out;
1342 size = max_size - size;
1343 alloc = size;
1344 size = preallocate_highmem_fraction(size, highmem, count);
1345 pages_highmem += size;
1346 alloc -= size;
1347 pages += preallocate_image_memory(alloc);
1348 pages += pages_highmem;
1351 * We only need as many page frames for the image as there are saveable
1352 * pages in memory, but we have allocated more. Release the excessive
1353 * ones now.
1355 free_unnecessary_pages();
1357 out:
1358 do_gettimeofday(&stop);
1359 printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1360 swsusp_show_speed(&start, &stop, pages, "Allocated");
1362 return 0;
1364 err_out:
1365 printk(KERN_CONT "\n");
1366 swsusp_free();
1367 return -ENOMEM;
1370 #ifdef CONFIG_HIGHMEM
1372 * count_pages_for_highmem - compute the number of non-highmem pages
1373 * that will be necessary for creating copies of highmem pages.
1376 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1378 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1380 if (free_highmem >= nr_highmem)
1381 nr_highmem = 0;
1382 else
1383 nr_highmem -= free_highmem;
1385 return nr_highmem;
1387 #else
1388 static unsigned int
1389 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1390 #endif /* CONFIG_HIGHMEM */
1393 * enough_free_mem - Make sure we have enough free memory for the
1394 * snapshot image.
1397 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1399 struct zone *zone;
1400 unsigned int free = alloc_normal;
1402 for_each_populated_zone(zone)
1403 if (!is_highmem(zone))
1404 free += zone_page_state(zone, NR_FREE_PAGES);
1406 nr_pages += count_pages_for_highmem(nr_highmem);
1407 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1408 nr_pages, PAGES_FOR_IO, free);
1410 return free > nr_pages + PAGES_FOR_IO;
1413 #ifdef CONFIG_HIGHMEM
1415 * get_highmem_buffer - if there are some highmem pages in the suspend
1416 * image, we may need the buffer to copy them and/or load their data.
1419 static inline int get_highmem_buffer(int safe_needed)
1421 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1422 return buffer ? 0 : -ENOMEM;
1426 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1427 * Try to allocate as many pages as needed, but if the number of free
1428 * highmem pages is lesser than that, allocate them all.
1431 static inline unsigned int
1432 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1434 unsigned int to_alloc = count_free_highmem_pages();
1436 if (to_alloc > nr_highmem)
1437 to_alloc = nr_highmem;
1439 nr_highmem -= to_alloc;
1440 while (to_alloc-- > 0) {
1441 struct page *page;
1443 page = alloc_image_page(__GFP_HIGHMEM);
1444 memory_bm_set_bit(bm, page_to_pfn(page));
1446 return nr_highmem;
1448 #else
1449 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1451 static inline unsigned int
1452 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1453 #endif /* CONFIG_HIGHMEM */
1456 * swsusp_alloc - allocate memory for the suspend image
1458 * We first try to allocate as many highmem pages as there are
1459 * saveable highmem pages in the system. If that fails, we allocate
1460 * non-highmem pages for the copies of the remaining highmem ones.
1462 * In this approach it is likely that the copies of highmem pages will
1463 * also be located in the high memory, because of the way in which
1464 * copy_data_pages() works.
1467 static int
1468 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1469 unsigned int nr_pages, unsigned int nr_highmem)
1471 int error = 0;
1473 if (nr_highmem > 0) {
1474 error = get_highmem_buffer(PG_ANY);
1475 if (error)
1476 goto err_out;
1477 if (nr_highmem > alloc_highmem) {
1478 nr_highmem -= alloc_highmem;
1479 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1482 if (nr_pages > alloc_normal) {
1483 nr_pages -= alloc_normal;
1484 while (nr_pages-- > 0) {
1485 struct page *page;
1487 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1488 if (!page)
1489 goto err_out;
1490 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1494 return 0;
1496 err_out:
1497 swsusp_free();
1498 return error;
1501 asmlinkage int swsusp_save(void)
1503 unsigned int nr_pages, nr_highmem;
1505 printk(KERN_INFO "PM: Creating hibernation image:\n");
1507 drain_local_pages(NULL);
1508 nr_pages = count_data_pages();
1509 nr_highmem = count_highmem_pages();
1510 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1512 if (!enough_free_mem(nr_pages, nr_highmem)) {
1513 printk(KERN_ERR "PM: Not enough free memory\n");
1514 return -ENOMEM;
1517 if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1518 printk(KERN_ERR "PM: Memory allocation failed\n");
1519 return -ENOMEM;
1522 /* During allocating of suspend pagedir, new cold pages may appear.
1523 * Kill them.
1525 drain_local_pages(NULL);
1526 copy_data_pages(&copy_bm, &orig_bm);
1529 * End of critical section. From now on, we can write to memory,
1530 * but we should not touch disk. This specially means we must _not_
1531 * touch swap space! Except we must write out our image of course.
1534 nr_pages += nr_highmem;
1535 nr_copy_pages = nr_pages;
1536 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1538 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1539 nr_pages);
1541 return 0;
1544 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1545 static int init_header_complete(struct swsusp_info *info)
1547 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1548 info->version_code = LINUX_VERSION_CODE;
1549 return 0;
1552 static char *check_image_kernel(struct swsusp_info *info)
1554 if (info->version_code != LINUX_VERSION_CODE)
1555 return "kernel version";
1556 if (strcmp(info->uts.sysname,init_utsname()->sysname))
1557 return "system type";
1558 if (strcmp(info->uts.release,init_utsname()->release))
1559 return "kernel release";
1560 if (strcmp(info->uts.version,init_utsname()->version))
1561 return "version";
1562 if (strcmp(info->uts.machine,init_utsname()->machine))
1563 return "machine";
1564 return NULL;
1566 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1568 unsigned long snapshot_get_image_size(void)
1570 return nr_copy_pages + nr_meta_pages + 1;
1573 static int init_header(struct swsusp_info *info)
1575 memset(info, 0, sizeof(struct swsusp_info));
1576 info->num_physpages = num_physpages;
1577 info->image_pages = nr_copy_pages;
1578 info->pages = snapshot_get_image_size();
1579 info->size = info->pages;
1580 info->size <<= PAGE_SHIFT;
1581 return init_header_complete(info);
1585 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1586 * are stored in the array @buf[] (1 page at a time)
1589 static inline void
1590 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1592 int j;
1594 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1595 buf[j] = memory_bm_next_pfn(bm);
1596 if (unlikely(buf[j] == BM_END_OF_MAP))
1597 break;
1602 * snapshot_read_next - used for reading the system memory snapshot.
1604 * On the first call to it @handle should point to a zeroed
1605 * snapshot_handle structure. The structure gets updated and a pointer
1606 * to it should be passed to this function every next time.
1608 * On success the function returns a positive number. Then, the caller
1609 * is allowed to read up to the returned number of bytes from the memory
1610 * location computed by the data_of() macro.
1612 * The function returns 0 to indicate the end of data stream condition,
1613 * and a negative number is returned on error. In such cases the
1614 * structure pointed to by @handle is not updated and should not be used
1615 * any more.
1618 int snapshot_read_next(struct snapshot_handle *handle)
1620 if (handle->cur > nr_meta_pages + nr_copy_pages)
1621 return 0;
1623 if (!buffer) {
1624 /* This makes the buffer be freed by swsusp_free() */
1625 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1626 if (!buffer)
1627 return -ENOMEM;
1629 if (!handle->cur) {
1630 int error;
1632 error = init_header((struct swsusp_info *)buffer);
1633 if (error)
1634 return error;
1635 handle->buffer = buffer;
1636 memory_bm_position_reset(&orig_bm);
1637 memory_bm_position_reset(&copy_bm);
1638 } else if (handle->cur <= nr_meta_pages) {
1639 memset(buffer, 0, PAGE_SIZE);
1640 pack_pfns(buffer, &orig_bm);
1641 } else {
1642 struct page *page;
1644 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1645 if (PageHighMem(page)) {
1646 /* Highmem pages are copied to the buffer,
1647 * because we can't return with a kmapped
1648 * highmem page (we may not be called again).
1650 void *kaddr;
1652 kaddr = kmap_atomic(page, KM_USER0);
1653 memcpy(buffer, kaddr, PAGE_SIZE);
1654 kunmap_atomic(kaddr, KM_USER0);
1655 handle->buffer = buffer;
1656 } else {
1657 handle->buffer = page_address(page);
1660 handle->cur++;
1661 return PAGE_SIZE;
1665 * mark_unsafe_pages - mark the pages that cannot be used for storing
1666 * the image during resume, because they conflict with the pages that
1667 * had been used before suspend
1670 static int mark_unsafe_pages(struct memory_bitmap *bm)
1672 struct zone *zone;
1673 unsigned long pfn, max_zone_pfn;
1675 /* Clear page flags */
1676 for_each_populated_zone(zone) {
1677 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1678 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1679 if (pfn_valid(pfn))
1680 swsusp_unset_page_free(pfn_to_page(pfn));
1683 /* Mark pages that correspond to the "original" pfns as "unsafe" */
1684 memory_bm_position_reset(bm);
1685 do {
1686 pfn = memory_bm_next_pfn(bm);
1687 if (likely(pfn != BM_END_OF_MAP)) {
1688 if (likely(pfn_valid(pfn)))
1689 swsusp_set_page_free(pfn_to_page(pfn));
1690 else
1691 return -EFAULT;
1693 } while (pfn != BM_END_OF_MAP);
1695 allocated_unsafe_pages = 0;
1697 return 0;
1700 static void
1701 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1703 unsigned long pfn;
1705 memory_bm_position_reset(src);
1706 pfn = memory_bm_next_pfn(src);
1707 while (pfn != BM_END_OF_MAP) {
1708 memory_bm_set_bit(dst, pfn);
1709 pfn = memory_bm_next_pfn(src);
1713 static int check_header(struct swsusp_info *info)
1715 char *reason;
1717 reason = check_image_kernel(info);
1718 if (!reason && info->num_physpages != num_physpages)
1719 reason = "memory size";
1720 if (reason) {
1721 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1722 return -EPERM;
1724 return 0;
1728 * load header - check the image header and copy data from it
1731 static int
1732 load_header(struct swsusp_info *info)
1734 int error;
1736 restore_pblist = NULL;
1737 error = check_header(info);
1738 if (!error) {
1739 nr_copy_pages = info->image_pages;
1740 nr_meta_pages = info->pages - info->image_pages - 1;
1742 return error;
1746 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1747 * the corresponding bit in the memory bitmap @bm
1749 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1751 int j;
1753 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1754 if (unlikely(buf[j] == BM_END_OF_MAP))
1755 break;
1757 if (memory_bm_pfn_present(bm, buf[j]))
1758 memory_bm_set_bit(bm, buf[j]);
1759 else
1760 return -EFAULT;
1763 return 0;
1766 /* List of "safe" pages that may be used to store data loaded from the suspend
1767 * image
1769 static struct linked_page *safe_pages_list;
1771 #ifdef CONFIG_HIGHMEM
1772 /* struct highmem_pbe is used for creating the list of highmem pages that
1773 * should be restored atomically during the resume from disk, because the page
1774 * frames they have occupied before the suspend are in use.
1776 struct highmem_pbe {
1777 struct page *copy_page; /* data is here now */
1778 struct page *orig_page; /* data was here before the suspend */
1779 struct highmem_pbe *next;
1782 /* List of highmem PBEs needed for restoring the highmem pages that were
1783 * allocated before the suspend and included in the suspend image, but have
1784 * also been allocated by the "resume" kernel, so their contents cannot be
1785 * written directly to their "original" page frames.
1787 static struct highmem_pbe *highmem_pblist;
1790 * count_highmem_image_pages - compute the number of highmem pages in the
1791 * suspend image. The bits in the memory bitmap @bm that correspond to the
1792 * image pages are assumed to be set.
1795 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1797 unsigned long pfn;
1798 unsigned int cnt = 0;
1800 memory_bm_position_reset(bm);
1801 pfn = memory_bm_next_pfn(bm);
1802 while (pfn != BM_END_OF_MAP) {
1803 if (PageHighMem(pfn_to_page(pfn)))
1804 cnt++;
1806 pfn = memory_bm_next_pfn(bm);
1808 return cnt;
1812 * prepare_highmem_image - try to allocate as many highmem pages as
1813 * there are highmem image pages (@nr_highmem_p points to the variable
1814 * containing the number of highmem image pages). The pages that are
1815 * "safe" (ie. will not be overwritten when the suspend image is
1816 * restored) have the corresponding bits set in @bm (it must be
1817 * unitialized).
1819 * NOTE: This function should not be called if there are no highmem
1820 * image pages.
1823 static unsigned int safe_highmem_pages;
1825 static struct memory_bitmap *safe_highmem_bm;
1827 static int
1828 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1830 unsigned int to_alloc;
1832 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1833 return -ENOMEM;
1835 if (get_highmem_buffer(PG_SAFE))
1836 return -ENOMEM;
1838 to_alloc = count_free_highmem_pages();
1839 if (to_alloc > *nr_highmem_p)
1840 to_alloc = *nr_highmem_p;
1841 else
1842 *nr_highmem_p = to_alloc;
1844 safe_highmem_pages = 0;
1845 while (to_alloc-- > 0) {
1846 struct page *page;
1848 page = alloc_page(__GFP_HIGHMEM);
1849 if (!swsusp_page_is_free(page)) {
1850 /* The page is "safe", set its bit the bitmap */
1851 memory_bm_set_bit(bm, page_to_pfn(page));
1852 safe_highmem_pages++;
1854 /* Mark the page as allocated */
1855 swsusp_set_page_forbidden(page);
1856 swsusp_set_page_free(page);
1858 memory_bm_position_reset(bm);
1859 safe_highmem_bm = bm;
1860 return 0;
1864 * get_highmem_page_buffer - for given highmem image page find the buffer
1865 * that suspend_write_next() should set for its caller to write to.
1867 * If the page is to be saved to its "original" page frame or a copy of
1868 * the page is to be made in the highmem, @buffer is returned. Otherwise,
1869 * the copy of the page is to be made in normal memory, so the address of
1870 * the copy is returned.
1872 * If @buffer is returned, the caller of suspend_write_next() will write
1873 * the page's contents to @buffer, so they will have to be copied to the
1874 * right location on the next call to suspend_write_next() and it is done
1875 * with the help of copy_last_highmem_page(). For this purpose, if
1876 * @buffer is returned, @last_highmem page is set to the page to which
1877 * the data will have to be copied from @buffer.
1880 static struct page *last_highmem_page;
1882 static void *
1883 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1885 struct highmem_pbe *pbe;
1886 void *kaddr;
1888 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1889 /* We have allocated the "original" page frame and we can
1890 * use it directly to store the loaded page.
1892 last_highmem_page = page;
1893 return buffer;
1895 /* The "original" page frame has not been allocated and we have to
1896 * use a "safe" page frame to store the loaded page.
1898 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1899 if (!pbe) {
1900 swsusp_free();
1901 return ERR_PTR(-ENOMEM);
1903 pbe->orig_page = page;
1904 if (safe_highmem_pages > 0) {
1905 struct page *tmp;
1907 /* Copy of the page will be stored in high memory */
1908 kaddr = buffer;
1909 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1910 safe_highmem_pages--;
1911 last_highmem_page = tmp;
1912 pbe->copy_page = tmp;
1913 } else {
1914 /* Copy of the page will be stored in normal memory */
1915 kaddr = safe_pages_list;
1916 safe_pages_list = safe_pages_list->next;
1917 pbe->copy_page = virt_to_page(kaddr);
1919 pbe->next = highmem_pblist;
1920 highmem_pblist = pbe;
1921 return kaddr;
1925 * copy_last_highmem_page - copy the contents of a highmem image from
1926 * @buffer, where the caller of snapshot_write_next() has place them,
1927 * to the right location represented by @last_highmem_page .
1930 static void copy_last_highmem_page(void)
1932 if (last_highmem_page) {
1933 void *dst;
1935 dst = kmap_atomic(last_highmem_page, KM_USER0);
1936 memcpy(dst, buffer, PAGE_SIZE);
1937 kunmap_atomic(dst, KM_USER0);
1938 last_highmem_page = NULL;
1942 static inline int last_highmem_page_copied(void)
1944 return !last_highmem_page;
1947 static inline void free_highmem_data(void)
1949 if (safe_highmem_bm)
1950 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
1952 if (buffer)
1953 free_image_page(buffer, PG_UNSAFE_CLEAR);
1955 #else
1956 static inline int get_safe_write_buffer(void) { return 0; }
1958 static unsigned int
1959 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
1961 static inline int
1962 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1964 return 0;
1967 static inline void *
1968 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1970 return ERR_PTR(-EINVAL);
1973 static inline void copy_last_highmem_page(void) {}
1974 static inline int last_highmem_page_copied(void) { return 1; }
1975 static inline void free_highmem_data(void) {}
1976 #endif /* CONFIG_HIGHMEM */
1979 * prepare_image - use the memory bitmap @bm to mark the pages that will
1980 * be overwritten in the process of restoring the system memory state
1981 * from the suspend image ("unsafe" pages) and allocate memory for the
1982 * image.
1984 * The idea is to allocate a new memory bitmap first and then allocate
1985 * as many pages as needed for the image data, but not to assign these
1986 * pages to specific tasks initially. Instead, we just mark them as
1987 * allocated and create a lists of "safe" pages that will be used
1988 * later. On systems with high memory a list of "safe" highmem pages is
1989 * also created.
1992 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
1994 static int
1995 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
1997 unsigned int nr_pages, nr_highmem;
1998 struct linked_page *sp_list, *lp;
1999 int error;
2001 /* If there is no highmem, the buffer will not be necessary */
2002 free_image_page(buffer, PG_UNSAFE_CLEAR);
2003 buffer = NULL;
2005 nr_highmem = count_highmem_image_pages(bm);
2006 error = mark_unsafe_pages(bm);
2007 if (error)
2008 goto Free;
2010 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2011 if (error)
2012 goto Free;
2014 duplicate_memory_bitmap(new_bm, bm);
2015 memory_bm_free(bm, PG_UNSAFE_KEEP);
2016 if (nr_highmem > 0) {
2017 error = prepare_highmem_image(bm, &nr_highmem);
2018 if (error)
2019 goto Free;
2021 /* Reserve some safe pages for potential later use.
2023 * NOTE: This way we make sure there will be enough safe pages for the
2024 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2025 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2027 sp_list = NULL;
2028 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2029 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2030 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2031 while (nr_pages > 0) {
2032 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2033 if (!lp) {
2034 error = -ENOMEM;
2035 goto Free;
2037 lp->next = sp_list;
2038 sp_list = lp;
2039 nr_pages--;
2041 /* Preallocate memory for the image */
2042 safe_pages_list = NULL;
2043 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2044 while (nr_pages > 0) {
2045 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2046 if (!lp) {
2047 error = -ENOMEM;
2048 goto Free;
2050 if (!swsusp_page_is_free(virt_to_page(lp))) {
2051 /* The page is "safe", add it to the list */
2052 lp->next = safe_pages_list;
2053 safe_pages_list = lp;
2055 /* Mark the page as allocated */
2056 swsusp_set_page_forbidden(virt_to_page(lp));
2057 swsusp_set_page_free(virt_to_page(lp));
2058 nr_pages--;
2060 /* Free the reserved safe pages so that chain_alloc() can use them */
2061 while (sp_list) {
2062 lp = sp_list->next;
2063 free_image_page(sp_list, PG_UNSAFE_CLEAR);
2064 sp_list = lp;
2066 return 0;
2068 Free:
2069 swsusp_free();
2070 return error;
2074 * get_buffer - compute the address that snapshot_write_next() should
2075 * set for its caller to write to.
2078 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2080 struct pbe *pbe;
2081 struct page *page;
2082 unsigned long pfn = memory_bm_next_pfn(bm);
2084 if (pfn == BM_END_OF_MAP)
2085 return ERR_PTR(-EFAULT);
2087 page = pfn_to_page(pfn);
2088 if (PageHighMem(page))
2089 return get_highmem_page_buffer(page, ca);
2091 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2092 /* We have allocated the "original" page frame and we can
2093 * use it directly to store the loaded page.
2095 return page_address(page);
2097 /* The "original" page frame has not been allocated and we have to
2098 * use a "safe" page frame to store the loaded page.
2100 pbe = chain_alloc(ca, sizeof(struct pbe));
2101 if (!pbe) {
2102 swsusp_free();
2103 return ERR_PTR(-ENOMEM);
2105 pbe->orig_address = page_address(page);
2106 pbe->address = safe_pages_list;
2107 safe_pages_list = safe_pages_list->next;
2108 pbe->next = restore_pblist;
2109 restore_pblist = pbe;
2110 return pbe->address;
2114 * snapshot_write_next - used for writing the system memory snapshot.
2116 * On the first call to it @handle should point to a zeroed
2117 * snapshot_handle structure. The structure gets updated and a pointer
2118 * to it should be passed to this function every next time.
2120 * On success the function returns a positive number. Then, the caller
2121 * is allowed to write up to the returned number of bytes to the memory
2122 * location computed by the data_of() macro.
2124 * The function returns 0 to indicate the "end of file" condition,
2125 * and a negative number is returned on error. In such cases the
2126 * structure pointed to by @handle is not updated and should not be used
2127 * any more.
2130 int snapshot_write_next(struct snapshot_handle *handle)
2132 static struct chain_allocator ca;
2133 int error = 0;
2135 /* Check if we have already loaded the entire image */
2136 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2137 return 0;
2139 handle->sync_read = 1;
2141 if (!handle->cur) {
2142 if (!buffer)
2143 /* This makes the buffer be freed by swsusp_free() */
2144 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2146 if (!buffer)
2147 return -ENOMEM;
2149 handle->buffer = buffer;
2150 } else if (handle->cur == 1) {
2151 error = load_header(buffer);
2152 if (error)
2153 return error;
2155 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2156 if (error)
2157 return error;
2159 } else if (handle->cur <= nr_meta_pages + 1) {
2160 error = unpack_orig_pfns(buffer, &copy_bm);
2161 if (error)
2162 return error;
2164 if (handle->cur == nr_meta_pages + 1) {
2165 error = prepare_image(&orig_bm, &copy_bm);
2166 if (error)
2167 return error;
2169 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2170 memory_bm_position_reset(&orig_bm);
2171 restore_pblist = NULL;
2172 handle->buffer = get_buffer(&orig_bm, &ca);
2173 handle->sync_read = 0;
2174 if (IS_ERR(handle->buffer))
2175 return PTR_ERR(handle->buffer);
2177 } else {
2178 copy_last_highmem_page();
2179 handle->buffer = get_buffer(&orig_bm, &ca);
2180 if (IS_ERR(handle->buffer))
2181 return PTR_ERR(handle->buffer);
2182 if (handle->buffer != buffer)
2183 handle->sync_read = 0;
2185 handle->cur++;
2186 return PAGE_SIZE;
2190 * snapshot_write_finalize - must be called after the last call to
2191 * snapshot_write_next() in case the last page in the image happens
2192 * to be a highmem page and its contents should be stored in the
2193 * highmem. Additionally, it releases the memory that will not be
2194 * used any more.
2197 void snapshot_write_finalize(struct snapshot_handle *handle)
2199 copy_last_highmem_page();
2200 /* Free only if we have loaded the image entirely */
2201 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2202 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2203 free_highmem_data();
2207 int snapshot_image_loaded(struct snapshot_handle *handle)
2209 return !(!nr_copy_pages || !last_highmem_page_copied() ||
2210 handle->cur <= nr_meta_pages + nr_copy_pages);
2213 #ifdef CONFIG_HIGHMEM
2214 /* Assumes that @buf is ready and points to a "safe" page */
2215 static inline void
2216 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2218 void *kaddr1, *kaddr2;
2220 kaddr1 = kmap_atomic(p1, KM_USER0);
2221 kaddr2 = kmap_atomic(p2, KM_USER1);
2222 memcpy(buf, kaddr1, PAGE_SIZE);
2223 memcpy(kaddr1, kaddr2, PAGE_SIZE);
2224 memcpy(kaddr2, buf, PAGE_SIZE);
2225 kunmap_atomic(kaddr1, KM_USER0);
2226 kunmap_atomic(kaddr2, KM_USER1);
2230 * restore_highmem - for each highmem page that was allocated before
2231 * the suspend and included in the suspend image, and also has been
2232 * allocated by the "resume" kernel swap its current (ie. "before
2233 * resume") contents with the previous (ie. "before suspend") one.
2235 * If the resume eventually fails, we can call this function once
2236 * again and restore the "before resume" highmem state.
2239 int restore_highmem(void)
2241 struct highmem_pbe *pbe = highmem_pblist;
2242 void *buf;
2244 if (!pbe)
2245 return 0;
2247 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2248 if (!buf)
2249 return -ENOMEM;
2251 while (pbe) {
2252 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2253 pbe = pbe->next;
2255 free_image_page(buf, PG_UNSAFE_CLEAR);
2256 return 0;
2258 #endif /* CONFIG_HIGHMEM */