4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
11 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <asm/atomic.h>
30 #include <asm/uaccess.h>
31 #include <asm/tlbflush.h>
32 #include <asm/shmparam.h>
34 bool vmap_lazy_unmap __read_mostly
= true;
36 /*** Page table manipulation functions ***/
38 static void vunmap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
)
42 pte
= pte_offset_kernel(pmd
, addr
);
44 pte_t ptent
= ptep_get_and_clear(&init_mm
, addr
, pte
);
45 WARN_ON(!pte_none(ptent
) && !pte_present(ptent
));
46 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
49 static void vunmap_pmd_range(pud_t
*pud
, unsigned long addr
, unsigned long end
)
54 pmd
= pmd_offset(pud
, addr
);
56 next
= pmd_addr_end(addr
, end
);
57 if (pmd_none_or_clear_bad(pmd
))
59 vunmap_pte_range(pmd
, addr
, next
);
60 } while (pmd
++, addr
= next
, addr
!= end
);
63 static void vunmap_pud_range(pgd_t
*pgd
, unsigned long addr
, unsigned long end
)
68 pud
= pud_offset(pgd
, addr
);
70 next
= pud_addr_end(addr
, end
);
71 if (pud_none_or_clear_bad(pud
))
73 vunmap_pmd_range(pud
, addr
, next
);
74 } while (pud
++, addr
= next
, addr
!= end
);
77 static void vunmap_page_range(unsigned long addr
, unsigned long end
)
83 pgd
= pgd_offset_k(addr
);
85 next
= pgd_addr_end(addr
, end
);
86 if (pgd_none_or_clear_bad(pgd
))
88 vunmap_pud_range(pgd
, addr
, next
);
89 } while (pgd
++, addr
= next
, addr
!= end
);
92 static int vmap_pte_range(pmd_t
*pmd
, unsigned long addr
,
93 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
98 * nr is a running index into the array which helps higher level
99 * callers keep track of where we're up to.
102 pte
= pte_alloc_kernel(pmd
, addr
);
106 struct page
*page
= pages
[*nr
];
108 if (WARN_ON(!pte_none(*pte
)))
112 set_pte_at(&init_mm
, addr
, pte
, mk_pte(page
, prot
));
114 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
118 static int vmap_pmd_range(pud_t
*pud
, unsigned long addr
,
119 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
124 pmd
= pmd_alloc(&init_mm
, pud
, addr
);
128 next
= pmd_addr_end(addr
, end
);
129 if (vmap_pte_range(pmd
, addr
, next
, prot
, pages
, nr
))
131 } while (pmd
++, addr
= next
, addr
!= end
);
135 static int vmap_pud_range(pgd_t
*pgd
, unsigned long addr
,
136 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
141 pud
= pud_alloc(&init_mm
, pgd
, addr
);
145 next
= pud_addr_end(addr
, end
);
146 if (vmap_pmd_range(pud
, addr
, next
, prot
, pages
, nr
))
148 } while (pud
++, addr
= next
, addr
!= end
);
153 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
154 * will have pfns corresponding to the "pages" array.
156 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
158 static int vmap_page_range_noflush(unsigned long start
, unsigned long end
,
159 pgprot_t prot
, struct page
**pages
)
163 unsigned long addr
= start
;
168 pgd
= pgd_offset_k(addr
);
170 next
= pgd_addr_end(addr
, end
);
171 err
= vmap_pud_range(pgd
, addr
, next
, prot
, pages
, &nr
);
174 } while (pgd
++, addr
= next
, addr
!= end
);
179 static int vmap_page_range(unsigned long start
, unsigned long end
,
180 pgprot_t prot
, struct page
**pages
)
184 ret
= vmap_page_range_noflush(start
, end
, prot
, pages
);
185 flush_cache_vmap(start
, end
);
189 int is_vmalloc_or_module_addr(const void *x
)
192 * ARM, x86-64 and sparc64 put modules in a special place,
193 * and fall back on vmalloc() if that fails. Others
194 * just put it in the vmalloc space.
196 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
197 unsigned long addr
= (unsigned long)x
;
198 if (addr
>= MODULES_VADDR
&& addr
< MODULES_END
)
201 return is_vmalloc_addr(x
);
205 * Walk a vmap address to the struct page it maps.
207 struct page
*vmalloc_to_page(const void *vmalloc_addr
)
209 unsigned long addr
= (unsigned long) vmalloc_addr
;
210 struct page
*page
= NULL
;
211 pgd_t
*pgd
= pgd_offset_k(addr
);
214 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
215 * architectures that do not vmalloc module space
217 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr
));
219 if (!pgd_none(*pgd
)) {
220 pud_t
*pud
= pud_offset(pgd
, addr
);
221 if (!pud_none(*pud
)) {
222 pmd_t
*pmd
= pmd_offset(pud
, addr
);
223 if (!pmd_none(*pmd
)) {
226 ptep
= pte_offset_map(pmd
, addr
);
228 if (pte_present(pte
))
229 page
= pte_page(pte
);
236 EXPORT_SYMBOL(vmalloc_to_page
);
239 * Map a vmalloc()-space virtual address to the physical page frame number.
241 unsigned long vmalloc_to_pfn(const void *vmalloc_addr
)
243 return page_to_pfn(vmalloc_to_page(vmalloc_addr
));
245 EXPORT_SYMBOL(vmalloc_to_pfn
);
248 /*** Global kva allocator ***/
250 #define VM_LAZY_FREE 0x01
251 #define VM_LAZY_FREEING 0x02
252 #define VM_VM_AREA 0x04
255 unsigned long va_start
;
256 unsigned long va_end
;
258 struct rb_node rb_node
; /* address sorted rbtree */
259 struct list_head list
; /* address sorted list */
260 struct list_head purge_list
; /* "lazy purge" list */
262 struct rcu_head rcu_head
;
265 static DEFINE_SPINLOCK(vmap_area_lock
);
266 static struct rb_root vmap_area_root
= RB_ROOT
;
267 static LIST_HEAD(vmap_area_list
);
268 static unsigned long vmap_area_pcpu_hole
;
270 static struct vmap_area
*__find_vmap_area(unsigned long addr
)
272 struct rb_node
*n
= vmap_area_root
.rb_node
;
275 struct vmap_area
*va
;
277 va
= rb_entry(n
, struct vmap_area
, rb_node
);
278 if (addr
< va
->va_start
)
280 else if (addr
> va
->va_start
)
289 static void __insert_vmap_area(struct vmap_area
*va
)
291 struct rb_node
**p
= &vmap_area_root
.rb_node
;
292 struct rb_node
*parent
= NULL
;
296 struct vmap_area
*tmp
;
299 tmp
= rb_entry(parent
, struct vmap_area
, rb_node
);
300 if (va
->va_start
< tmp
->va_end
)
302 else if (va
->va_end
> tmp
->va_start
)
308 rb_link_node(&va
->rb_node
, parent
, p
);
309 rb_insert_color(&va
->rb_node
, &vmap_area_root
);
311 /* address-sort this list so it is usable like the vmlist */
312 tmp
= rb_prev(&va
->rb_node
);
314 struct vmap_area
*prev
;
315 prev
= rb_entry(tmp
, struct vmap_area
, rb_node
);
316 list_add_rcu(&va
->list
, &prev
->list
);
318 list_add_rcu(&va
->list
, &vmap_area_list
);
321 static void purge_vmap_area_lazy(void);
324 * Allocate a region of KVA of the specified size and alignment, within the
327 static struct vmap_area
*alloc_vmap_area(unsigned long size
,
329 unsigned long vstart
, unsigned long vend
,
330 int node
, gfp_t gfp_mask
)
332 struct vmap_area
*va
;
338 BUG_ON(size
& ~PAGE_MASK
);
340 va
= kmalloc_node(sizeof(struct vmap_area
),
341 gfp_mask
& GFP_RECLAIM_MASK
, node
);
343 return ERR_PTR(-ENOMEM
);
346 addr
= ALIGN(vstart
, align
);
348 spin_lock(&vmap_area_lock
);
349 if (addr
+ size
- 1 < addr
)
352 /* XXX: could have a last_hole cache */
353 n
= vmap_area_root
.rb_node
;
355 struct vmap_area
*first
= NULL
;
358 struct vmap_area
*tmp
;
359 tmp
= rb_entry(n
, struct vmap_area
, rb_node
);
360 if (tmp
->va_end
>= addr
) {
361 if (!first
&& tmp
->va_start
< addr
+ size
)
373 if (first
->va_end
< addr
) {
374 n
= rb_next(&first
->rb_node
);
376 first
= rb_entry(n
, struct vmap_area
, rb_node
);
381 while (addr
+ size
> first
->va_start
&& addr
+ size
<= vend
) {
382 addr
= ALIGN(first
->va_end
+ PAGE_SIZE
, align
);
383 if (addr
+ size
- 1 < addr
)
386 n
= rb_next(&first
->rb_node
);
388 first
= rb_entry(n
, struct vmap_area
, rb_node
);
394 if (addr
+ size
> vend
) {
396 spin_unlock(&vmap_area_lock
);
398 purge_vmap_area_lazy();
402 if (printk_ratelimit())
404 "vmap allocation for size %lu failed: "
405 "use vmalloc=<size> to increase size.\n", size
);
407 return ERR_PTR(-EBUSY
);
410 BUG_ON(addr
& (align
-1));
413 va
->va_end
= addr
+ size
;
415 __insert_vmap_area(va
);
416 spin_unlock(&vmap_area_lock
);
421 static void rcu_free_va(struct rcu_head
*head
)
423 struct vmap_area
*va
= container_of(head
, struct vmap_area
, rcu_head
);
428 static void __free_vmap_area(struct vmap_area
*va
)
430 BUG_ON(RB_EMPTY_NODE(&va
->rb_node
));
431 rb_erase(&va
->rb_node
, &vmap_area_root
);
432 RB_CLEAR_NODE(&va
->rb_node
);
433 list_del_rcu(&va
->list
);
436 * Track the highest possible candidate for pcpu area
437 * allocation. Areas outside of vmalloc area can be returned
438 * here too, consider only end addresses which fall inside
439 * vmalloc area proper.
441 if (va
->va_end
> VMALLOC_START
&& va
->va_end
<= VMALLOC_END
)
442 vmap_area_pcpu_hole
= max(vmap_area_pcpu_hole
, va
->va_end
);
444 call_rcu(&va
->rcu_head
, rcu_free_va
);
448 * Free a region of KVA allocated by alloc_vmap_area
450 static void free_vmap_area(struct vmap_area
*va
)
452 spin_lock(&vmap_area_lock
);
453 __free_vmap_area(va
);
454 spin_unlock(&vmap_area_lock
);
458 * Clear the pagetable entries of a given vmap_area
460 static void unmap_vmap_area(struct vmap_area
*va
)
462 vunmap_page_range(va
->va_start
, va
->va_end
);
465 static void vmap_debug_free_range(unsigned long start
, unsigned long end
)
468 * Unmap page tables and force a TLB flush immediately if
469 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
470 * bugs similarly to those in linear kernel virtual address
471 * space after a page has been freed.
473 * All the lazy freeing logic is still retained, in order to
474 * minimise intrusiveness of this debugging feature.
476 * This is going to be *slow* (linear kernel virtual address
477 * debugging doesn't do a broadcast TLB flush so it is a lot
480 #ifdef CONFIG_DEBUG_PAGEALLOC
481 vunmap_page_range(start
, end
);
482 flush_tlb_kernel_range(start
, end
);
487 * lazy_max_pages is the maximum amount of virtual address space we gather up
488 * before attempting to purge with a TLB flush.
490 * There is a tradeoff here: a larger number will cover more kernel page tables
491 * and take slightly longer to purge, but it will linearly reduce the number of
492 * global TLB flushes that must be performed. It would seem natural to scale
493 * this number up linearly with the number of CPUs (because vmapping activity
494 * could also scale linearly with the number of CPUs), however it is likely
495 * that in practice, workloads might be constrained in other ways that mean
496 * vmap activity will not scale linearly with CPUs. Also, I want to be
497 * conservative and not introduce a big latency on huge systems, so go with
498 * a less aggressive log scale. It will still be an improvement over the old
499 * code, and it will be simple to change the scale factor if we find that it
500 * becomes a problem on bigger systems.
502 static unsigned long lazy_max_pages(void)
506 if (!vmap_lazy_unmap
)
509 log
= fls(num_online_cpus());
511 return log
* (32UL * 1024 * 1024 / PAGE_SIZE
);
514 static atomic_t vmap_lazy_nr
= ATOMIC_INIT(0);
516 /* for per-CPU blocks */
517 static void purge_fragmented_blocks_allcpus(void);
520 * Purges all lazily-freed vmap areas.
522 * If sync is 0 then don't purge if there is already a purge in progress.
523 * If force_flush is 1, then flush kernel TLBs between *start and *end even
524 * if we found no lazy vmap areas to unmap (callers can use this to optimise
525 * their own TLB flushing).
526 * Returns with *start = min(*start, lowest purged address)
527 * *end = max(*end, highest purged address)
529 static void __purge_vmap_area_lazy(unsigned long *start
, unsigned long *end
,
530 int sync
, int force_flush
)
532 static DEFINE_SPINLOCK(purge_lock
);
534 struct vmap_area
*va
;
535 struct vmap_area
*n_va
;
539 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
540 * should not expect such behaviour. This just simplifies locking for
541 * the case that isn't actually used at the moment anyway.
543 if (!sync
&& !force_flush
) {
544 if (!spin_trylock(&purge_lock
))
547 spin_lock(&purge_lock
);
550 purge_fragmented_blocks_allcpus();
553 list_for_each_entry_rcu(va
, &vmap_area_list
, list
) {
554 if (va
->flags
& VM_LAZY_FREE
) {
555 if (va
->va_start
< *start
)
556 *start
= va
->va_start
;
557 if (va
->va_end
> *end
)
559 nr
+= (va
->va_end
- va
->va_start
) >> PAGE_SHIFT
;
561 list_add_tail(&va
->purge_list
, &valist
);
562 va
->flags
|= VM_LAZY_FREEING
;
563 va
->flags
&= ~VM_LAZY_FREE
;
569 atomic_sub(nr
, &vmap_lazy_nr
);
571 if (nr
|| force_flush
)
572 flush_tlb_kernel_range(*start
, *end
);
575 spin_lock(&vmap_area_lock
);
576 list_for_each_entry_safe(va
, n_va
, &valist
, purge_list
)
577 __free_vmap_area(va
);
578 spin_unlock(&vmap_area_lock
);
580 spin_unlock(&purge_lock
);
584 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
585 * is already purging.
587 static void try_purge_vmap_area_lazy(void)
589 unsigned long start
= ULONG_MAX
, end
= 0;
591 __purge_vmap_area_lazy(&start
, &end
, 0, 0);
595 * Kick off a purge of the outstanding lazy areas.
597 static void purge_vmap_area_lazy(void)
599 unsigned long start
= ULONG_MAX
, end
= 0;
601 __purge_vmap_area_lazy(&start
, &end
, 1, 0);
605 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
606 * called for the correct range previously.
608 static void free_unmap_vmap_area_noflush(struct vmap_area
*va
)
610 va
->flags
|= VM_LAZY_FREE
;
611 atomic_add((va
->va_end
- va
->va_start
) >> PAGE_SHIFT
, &vmap_lazy_nr
);
612 if (unlikely(atomic_read(&vmap_lazy_nr
) > lazy_max_pages()))
613 try_purge_vmap_area_lazy();
617 * Free and unmap a vmap area
619 static void free_unmap_vmap_area(struct vmap_area
*va
)
621 flush_cache_vunmap(va
->va_start
, va
->va_end
);
622 free_unmap_vmap_area_noflush(va
);
625 static struct vmap_area
*find_vmap_area(unsigned long addr
)
627 struct vmap_area
*va
;
629 spin_lock(&vmap_area_lock
);
630 va
= __find_vmap_area(addr
);
631 spin_unlock(&vmap_area_lock
);
636 static void free_unmap_vmap_area_addr(unsigned long addr
)
638 struct vmap_area
*va
;
640 va
= find_vmap_area(addr
);
642 free_unmap_vmap_area(va
);
646 /*** Per cpu kva allocator ***/
649 * vmap space is limited especially on 32 bit architectures. Ensure there is
650 * room for at least 16 percpu vmap blocks per CPU.
653 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
654 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
655 * instead (we just need a rough idea)
657 #if BITS_PER_LONG == 32
658 #define VMALLOC_SPACE (128UL*1024*1024)
660 #define VMALLOC_SPACE (128UL*1024*1024*1024)
663 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
664 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
665 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
666 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
667 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
668 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
669 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
670 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
671 VMALLOC_PAGES / NR_CPUS / 16))
673 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
675 static bool vmap_initialized __read_mostly
= false;
677 struct vmap_block_queue
{
679 struct list_head free
;
684 struct vmap_area
*va
;
685 struct vmap_block_queue
*vbq
;
686 unsigned long free
, dirty
;
687 DECLARE_BITMAP(alloc_map
, VMAP_BBMAP_BITS
);
688 DECLARE_BITMAP(dirty_map
, VMAP_BBMAP_BITS
);
689 struct list_head free_list
;
690 struct rcu_head rcu_head
;
691 struct list_head purge
;
694 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
695 static DEFINE_PER_CPU(struct vmap_block_queue
, vmap_block_queue
);
698 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
699 * in the free path. Could get rid of this if we change the API to return a
700 * "cookie" from alloc, to be passed to free. But no big deal yet.
702 static DEFINE_SPINLOCK(vmap_block_tree_lock
);
703 static RADIX_TREE(vmap_block_tree
, GFP_ATOMIC
);
706 * We should probably have a fallback mechanism to allocate virtual memory
707 * out of partially filled vmap blocks. However vmap block sizing should be
708 * fairly reasonable according to the vmalloc size, so it shouldn't be a
712 static unsigned long addr_to_vb_idx(unsigned long addr
)
714 addr
-= VMALLOC_START
& ~(VMAP_BLOCK_SIZE
-1);
715 addr
/= VMAP_BLOCK_SIZE
;
719 static struct vmap_block
*new_vmap_block(gfp_t gfp_mask
)
721 struct vmap_block_queue
*vbq
;
722 struct vmap_block
*vb
;
723 struct vmap_area
*va
;
724 unsigned long vb_idx
;
727 node
= numa_node_id();
729 vb
= kmalloc_node(sizeof(struct vmap_block
),
730 gfp_mask
& GFP_RECLAIM_MASK
, node
);
732 return ERR_PTR(-ENOMEM
);
734 va
= alloc_vmap_area(VMAP_BLOCK_SIZE
, VMAP_BLOCK_SIZE
,
735 VMALLOC_START
, VMALLOC_END
,
737 if (unlikely(IS_ERR(va
))) {
742 err
= radix_tree_preload(gfp_mask
);
749 spin_lock_init(&vb
->lock
);
751 vb
->free
= VMAP_BBMAP_BITS
;
753 bitmap_zero(vb
->alloc_map
, VMAP_BBMAP_BITS
);
754 bitmap_zero(vb
->dirty_map
, VMAP_BBMAP_BITS
);
755 INIT_LIST_HEAD(&vb
->free_list
);
757 vb_idx
= addr_to_vb_idx(va
->va_start
);
758 spin_lock(&vmap_block_tree_lock
);
759 err
= radix_tree_insert(&vmap_block_tree
, vb_idx
, vb
);
760 spin_unlock(&vmap_block_tree_lock
);
762 radix_tree_preload_end();
764 vbq
= &get_cpu_var(vmap_block_queue
);
766 spin_lock(&vbq
->lock
);
767 list_add_rcu(&vb
->free_list
, &vbq
->free
);
768 spin_unlock(&vbq
->lock
);
769 put_cpu_var(vmap_block_queue
);
774 static void rcu_free_vb(struct rcu_head
*head
)
776 struct vmap_block
*vb
= container_of(head
, struct vmap_block
, rcu_head
);
781 static void free_vmap_block(struct vmap_block
*vb
)
783 struct vmap_block
*tmp
;
784 unsigned long vb_idx
;
786 vb_idx
= addr_to_vb_idx(vb
->va
->va_start
);
787 spin_lock(&vmap_block_tree_lock
);
788 tmp
= radix_tree_delete(&vmap_block_tree
, vb_idx
);
789 spin_unlock(&vmap_block_tree_lock
);
792 free_unmap_vmap_area_noflush(vb
->va
);
793 call_rcu(&vb
->rcu_head
, rcu_free_vb
);
796 static void purge_fragmented_blocks(int cpu
)
799 struct vmap_block
*vb
;
800 struct vmap_block
*n_vb
;
801 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
804 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
806 if (!(vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
))
809 spin_lock(&vb
->lock
);
810 if (vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
) {
811 vb
->free
= 0; /* prevent further allocs after releasing lock */
812 vb
->dirty
= VMAP_BBMAP_BITS
; /* prevent purging it again */
813 bitmap_fill(vb
->alloc_map
, VMAP_BBMAP_BITS
);
814 bitmap_fill(vb
->dirty_map
, VMAP_BBMAP_BITS
);
815 spin_lock(&vbq
->lock
);
816 list_del_rcu(&vb
->free_list
);
817 spin_unlock(&vbq
->lock
);
818 spin_unlock(&vb
->lock
);
819 list_add_tail(&vb
->purge
, &purge
);
821 spin_unlock(&vb
->lock
);
825 list_for_each_entry_safe(vb
, n_vb
, &purge
, purge
) {
826 list_del(&vb
->purge
);
831 static void purge_fragmented_blocks_thiscpu(void)
833 purge_fragmented_blocks(smp_processor_id());
836 static void purge_fragmented_blocks_allcpus(void)
840 for_each_possible_cpu(cpu
)
841 purge_fragmented_blocks(cpu
);
844 static void *vb_alloc(unsigned long size
, gfp_t gfp_mask
)
846 struct vmap_block_queue
*vbq
;
847 struct vmap_block
*vb
;
848 unsigned long addr
= 0;
852 BUG_ON(size
& ~PAGE_MASK
);
853 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
854 order
= get_order(size
);
858 vbq
= &get_cpu_var(vmap_block_queue
);
859 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
862 spin_lock(&vb
->lock
);
863 if (vb
->free
< 1UL << order
)
866 i
= bitmap_find_free_region(vb
->alloc_map
,
867 VMAP_BBMAP_BITS
, order
);
870 if (vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
) {
871 /* fragmented and no outstanding allocations */
872 BUG_ON(vb
->dirty
!= VMAP_BBMAP_BITS
);
877 addr
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
878 BUG_ON(addr_to_vb_idx(addr
) !=
879 addr_to_vb_idx(vb
->va
->va_start
));
880 vb
->free
-= 1UL << order
;
882 spin_lock(&vbq
->lock
);
883 list_del_rcu(&vb
->free_list
);
884 spin_unlock(&vbq
->lock
);
886 spin_unlock(&vb
->lock
);
889 spin_unlock(&vb
->lock
);
893 purge_fragmented_blocks_thiscpu();
895 put_cpu_var(vmap_block_queue
);
899 vb
= new_vmap_block(gfp_mask
);
908 static void vb_free(const void *addr
, unsigned long size
)
910 unsigned long offset
;
911 unsigned long vb_idx
;
913 struct vmap_block
*vb
;
915 BUG_ON(size
& ~PAGE_MASK
);
916 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
918 flush_cache_vunmap((unsigned long)addr
, (unsigned long)addr
+ size
);
920 order
= get_order(size
);
922 offset
= (unsigned long)addr
& (VMAP_BLOCK_SIZE
- 1);
924 vb_idx
= addr_to_vb_idx((unsigned long)addr
);
926 vb
= radix_tree_lookup(&vmap_block_tree
, vb_idx
);
930 spin_lock(&vb
->lock
);
931 BUG_ON(bitmap_allocate_region(vb
->dirty_map
, offset
>> PAGE_SHIFT
, order
));
933 vb
->dirty
+= 1UL << order
;
934 if (vb
->dirty
== VMAP_BBMAP_BITS
) {
936 spin_unlock(&vb
->lock
);
939 spin_unlock(&vb
->lock
);
943 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
945 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
946 * to amortize TLB flushing overheads. What this means is that any page you
947 * have now, may, in a former life, have been mapped into kernel virtual
948 * address by the vmap layer and so there might be some CPUs with TLB entries
949 * still referencing that page (additional to the regular 1:1 kernel mapping).
951 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
952 * be sure that none of the pages we have control over will have any aliases
953 * from the vmap layer.
955 void vm_unmap_aliases(void)
957 unsigned long start
= ULONG_MAX
, end
= 0;
961 if (unlikely(!vmap_initialized
))
964 for_each_possible_cpu(cpu
) {
965 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
966 struct vmap_block
*vb
;
969 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
972 spin_lock(&vb
->lock
);
973 i
= find_first_bit(vb
->dirty_map
, VMAP_BBMAP_BITS
);
974 while (i
< VMAP_BBMAP_BITS
) {
977 j
= find_next_zero_bit(vb
->dirty_map
,
980 s
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
981 e
= vb
->va
->va_start
+ (j
<< PAGE_SHIFT
);
982 vunmap_page_range(s
, e
);
991 i
= find_next_bit(vb
->dirty_map
,
994 spin_unlock(&vb
->lock
);
999 __purge_vmap_area_lazy(&start
, &end
, 1, flush
);
1001 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
1004 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1005 * @mem: the pointer returned by vm_map_ram
1006 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1008 void vm_unmap_ram(const void *mem
, unsigned int count
)
1010 unsigned long size
= count
<< PAGE_SHIFT
;
1011 unsigned long addr
= (unsigned long)mem
;
1014 BUG_ON(addr
< VMALLOC_START
);
1015 BUG_ON(addr
> VMALLOC_END
);
1016 BUG_ON(addr
& (PAGE_SIZE
-1));
1018 debug_check_no_locks_freed(mem
, size
);
1019 vmap_debug_free_range(addr
, addr
+size
);
1021 if (likely(count
<= VMAP_MAX_ALLOC
))
1024 free_unmap_vmap_area_addr(addr
);
1026 EXPORT_SYMBOL(vm_unmap_ram
);
1029 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1030 * @pages: an array of pointers to the pages to be mapped
1031 * @count: number of pages
1032 * @node: prefer to allocate data structures on this node
1033 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1035 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1037 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
1039 unsigned long size
= count
<< PAGE_SHIFT
;
1043 if (likely(count
<= VMAP_MAX_ALLOC
)) {
1044 mem
= vb_alloc(size
, GFP_KERNEL
);
1047 addr
= (unsigned long)mem
;
1049 struct vmap_area
*va
;
1050 va
= alloc_vmap_area(size
, PAGE_SIZE
,
1051 VMALLOC_START
, VMALLOC_END
, node
, GFP_KERNEL
);
1055 addr
= va
->va_start
;
1058 if (vmap_page_range(addr
, addr
+ size
, prot
, pages
) < 0) {
1059 vm_unmap_ram(mem
, count
);
1064 EXPORT_SYMBOL(vm_map_ram
);
1067 * vm_area_register_early - register vmap area early during boot
1068 * @vm: vm_struct to register
1069 * @align: requested alignment
1071 * This function is used to register kernel vm area before
1072 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1073 * proper values on entry and other fields should be zero. On return,
1074 * vm->addr contains the allocated address.
1076 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1078 void __init
vm_area_register_early(struct vm_struct
*vm
, size_t align
)
1080 static size_t vm_init_off __initdata
;
1083 addr
= ALIGN(VMALLOC_START
+ vm_init_off
, align
);
1084 vm_init_off
= PFN_ALIGN(addr
+ vm
->size
) - VMALLOC_START
;
1086 vm
->addr
= (void *)addr
;
1092 void __init
vmalloc_init(void)
1094 struct vmap_area
*va
;
1095 struct vm_struct
*tmp
;
1098 for_each_possible_cpu(i
) {
1099 struct vmap_block_queue
*vbq
;
1101 vbq
= &per_cpu(vmap_block_queue
, i
);
1102 spin_lock_init(&vbq
->lock
);
1103 INIT_LIST_HEAD(&vbq
->free
);
1106 /* Import existing vmlist entries. */
1107 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1108 va
= kzalloc(sizeof(struct vmap_area
), GFP_NOWAIT
);
1109 va
->flags
= tmp
->flags
| VM_VM_AREA
;
1110 va
->va_start
= (unsigned long)tmp
->addr
;
1111 va
->va_end
= va
->va_start
+ tmp
->size
;
1112 __insert_vmap_area(va
);
1115 vmap_area_pcpu_hole
= VMALLOC_END
;
1117 vmap_initialized
= true;
1121 * map_kernel_range_noflush - map kernel VM area with the specified pages
1122 * @addr: start of the VM area to map
1123 * @size: size of the VM area to map
1124 * @prot: page protection flags to use
1125 * @pages: pages to map
1127 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1128 * specify should have been allocated using get_vm_area() and its
1132 * This function does NOT do any cache flushing. The caller is
1133 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1134 * before calling this function.
1137 * The number of pages mapped on success, -errno on failure.
1139 int map_kernel_range_noflush(unsigned long addr
, unsigned long size
,
1140 pgprot_t prot
, struct page
**pages
)
1142 return vmap_page_range_noflush(addr
, addr
+ size
, prot
, pages
);
1146 * unmap_kernel_range_noflush - unmap kernel VM area
1147 * @addr: start of the VM area to unmap
1148 * @size: size of the VM area to unmap
1150 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1151 * specify should have been allocated using get_vm_area() and its
1155 * This function does NOT do any cache flushing. The caller is
1156 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1157 * before calling this function and flush_tlb_kernel_range() after.
1159 void unmap_kernel_range_noflush(unsigned long addr
, unsigned long size
)
1161 vunmap_page_range(addr
, addr
+ size
);
1165 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1166 * @addr: start of the VM area to unmap
1167 * @size: size of the VM area to unmap
1169 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1170 * the unmapping and tlb after.
1172 void unmap_kernel_range(unsigned long addr
, unsigned long size
)
1174 unsigned long end
= addr
+ size
;
1176 flush_cache_vunmap(addr
, end
);
1177 vunmap_page_range(addr
, end
);
1178 flush_tlb_kernel_range(addr
, end
);
1181 int map_vm_area(struct vm_struct
*area
, pgprot_t prot
, struct page
***pages
)
1183 unsigned long addr
= (unsigned long)area
->addr
;
1184 unsigned long end
= addr
+ area
->size
- PAGE_SIZE
;
1187 err
= vmap_page_range(addr
, end
, prot
, *pages
);
1195 EXPORT_SYMBOL_GPL(map_vm_area
);
1197 /*** Old vmalloc interfaces ***/
1198 DEFINE_RWLOCK(vmlist_lock
);
1199 struct vm_struct
*vmlist
;
1201 static void insert_vmalloc_vm(struct vm_struct
*vm
, struct vmap_area
*va
,
1202 unsigned long flags
, void *caller
)
1204 struct vm_struct
*tmp
, **p
;
1207 vm
->addr
= (void *)va
->va_start
;
1208 vm
->size
= va
->va_end
- va
->va_start
;
1209 vm
->caller
= caller
;
1211 va
->flags
|= VM_VM_AREA
;
1213 write_lock(&vmlist_lock
);
1214 for (p
= &vmlist
; (tmp
= *p
) != NULL
; p
= &tmp
->next
) {
1215 if (tmp
->addr
>= vm
->addr
)
1220 write_unlock(&vmlist_lock
);
1223 static struct vm_struct
*__get_vm_area_node(unsigned long size
,
1224 unsigned long align
, unsigned long flags
, unsigned long start
,
1225 unsigned long end
, int node
, gfp_t gfp_mask
, void *caller
)
1227 static struct vmap_area
*va
;
1228 struct vm_struct
*area
;
1230 BUG_ON(in_interrupt());
1231 if (flags
& VM_IOREMAP
) {
1232 int bit
= fls(size
);
1234 if (bit
> IOREMAP_MAX_ORDER
)
1235 bit
= IOREMAP_MAX_ORDER
;
1236 else if (bit
< PAGE_SHIFT
)
1242 size
= PAGE_ALIGN(size
);
1243 if (unlikely(!size
))
1246 area
= kzalloc_node(sizeof(*area
), gfp_mask
& GFP_RECLAIM_MASK
, node
);
1247 if (unlikely(!area
))
1251 * We always allocate a guard page.
1255 va
= alloc_vmap_area(size
, align
, start
, end
, node
, gfp_mask
);
1261 insert_vmalloc_vm(area
, va
, flags
, caller
);
1265 struct vm_struct
*__get_vm_area(unsigned long size
, unsigned long flags
,
1266 unsigned long start
, unsigned long end
)
1268 return __get_vm_area_node(size
, 1, flags
, start
, end
, -1, GFP_KERNEL
,
1269 __builtin_return_address(0));
1271 EXPORT_SYMBOL_GPL(__get_vm_area
);
1273 struct vm_struct
*__get_vm_area_caller(unsigned long size
, unsigned long flags
,
1274 unsigned long start
, unsigned long end
,
1277 return __get_vm_area_node(size
, 1, flags
, start
, end
, -1, GFP_KERNEL
,
1282 * get_vm_area - reserve a contiguous kernel virtual area
1283 * @size: size of the area
1284 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1286 * Search an area of @size in the kernel virtual mapping area,
1287 * and reserved it for out purposes. Returns the area descriptor
1288 * on success or %NULL on failure.
1290 struct vm_struct
*get_vm_area(unsigned long size
, unsigned long flags
)
1292 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1293 -1, GFP_KERNEL
, __builtin_return_address(0));
1296 struct vm_struct
*get_vm_area_caller(unsigned long size
, unsigned long flags
,
1299 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1300 -1, GFP_KERNEL
, caller
);
1303 struct vm_struct
*get_vm_area_node(unsigned long size
, unsigned long flags
,
1304 int node
, gfp_t gfp_mask
)
1306 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1307 node
, gfp_mask
, __builtin_return_address(0));
1310 static struct vm_struct
*find_vm_area(const void *addr
)
1312 struct vmap_area
*va
;
1314 va
= find_vmap_area((unsigned long)addr
);
1315 if (va
&& va
->flags
& VM_VM_AREA
)
1322 * remove_vm_area - find and remove a continuous kernel virtual area
1323 * @addr: base address
1325 * Search for the kernel VM area starting at @addr, and remove it.
1326 * This function returns the found VM area, but using it is NOT safe
1327 * on SMP machines, except for its size or flags.
1329 struct vm_struct
*remove_vm_area(const void *addr
)
1331 struct vmap_area
*va
;
1333 va
= find_vmap_area((unsigned long)addr
);
1334 if (va
&& va
->flags
& VM_VM_AREA
) {
1335 struct vm_struct
*vm
= va
->private;
1336 struct vm_struct
*tmp
, **p
;
1338 * remove from list and disallow access to this vm_struct
1339 * before unmap. (address range confliction is maintained by
1342 write_lock(&vmlist_lock
);
1343 for (p
= &vmlist
; (tmp
= *p
) != vm
; p
= &tmp
->next
)
1346 write_unlock(&vmlist_lock
);
1348 vmap_debug_free_range(va
->va_start
, va
->va_end
);
1349 free_unmap_vmap_area(va
);
1350 vm
->size
-= PAGE_SIZE
;
1357 static void __vunmap(const void *addr
, int deallocate_pages
)
1359 struct vm_struct
*area
;
1364 if ((PAGE_SIZE
-1) & (unsigned long)addr
) {
1365 WARN(1, KERN_ERR
"Trying to vfree() bad address (%p)\n", addr
);
1369 area
= remove_vm_area(addr
);
1370 if (unlikely(!area
)) {
1371 WARN(1, KERN_ERR
"Trying to vfree() nonexistent vm area (%p)\n",
1376 debug_check_no_locks_freed(addr
, area
->size
);
1377 debug_check_no_obj_freed(addr
, area
->size
);
1379 if (deallocate_pages
) {
1382 for (i
= 0; i
< area
->nr_pages
; i
++) {
1383 struct page
*page
= area
->pages
[i
];
1389 if (area
->flags
& VM_VPAGES
)
1400 * vfree - release memory allocated by vmalloc()
1401 * @addr: memory base address
1403 * Free the virtually continuous memory area starting at @addr, as
1404 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1405 * NULL, no operation is performed.
1407 * Must not be called in interrupt context.
1409 void vfree(const void *addr
)
1411 BUG_ON(in_interrupt());
1413 kmemleak_free(addr
);
1417 EXPORT_SYMBOL(vfree
);
1420 * vunmap - release virtual mapping obtained by vmap()
1421 * @addr: memory base address
1423 * Free the virtually contiguous memory area starting at @addr,
1424 * which was created from the page array passed to vmap().
1426 * Must not be called in interrupt context.
1428 void vunmap(const void *addr
)
1430 BUG_ON(in_interrupt());
1434 EXPORT_SYMBOL(vunmap
);
1437 * vmap - map an array of pages into virtually contiguous space
1438 * @pages: array of page pointers
1439 * @count: number of pages to map
1440 * @flags: vm_area->flags
1441 * @prot: page protection for the mapping
1443 * Maps @count pages from @pages into contiguous kernel virtual
1446 void *vmap(struct page
**pages
, unsigned int count
,
1447 unsigned long flags
, pgprot_t prot
)
1449 struct vm_struct
*area
;
1453 if (count
> totalram_pages
)
1456 area
= get_vm_area_caller((count
<< PAGE_SHIFT
), flags
,
1457 __builtin_return_address(0));
1461 if (map_vm_area(area
, prot
, &pages
)) {
1468 EXPORT_SYMBOL(vmap
);
1470 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
1471 gfp_t gfp_mask
, pgprot_t prot
,
1472 int node
, void *caller
);
1473 static void *__vmalloc_area_node(struct vm_struct
*area
, gfp_t gfp_mask
,
1474 pgprot_t prot
, int node
, void *caller
)
1476 struct page
**pages
;
1477 unsigned int nr_pages
, array_size
, i
;
1478 gfp_t nested_gfp
= (gfp_mask
& GFP_RECLAIM_MASK
) | __GFP_ZERO
;
1480 nr_pages
= (area
->size
- PAGE_SIZE
) >> PAGE_SHIFT
;
1481 array_size
= (nr_pages
* sizeof(struct page
*));
1483 area
->nr_pages
= nr_pages
;
1484 /* Please note that the recursion is strictly bounded. */
1485 if (array_size
> PAGE_SIZE
) {
1486 pages
= __vmalloc_node(array_size
, 1, nested_gfp
|__GFP_HIGHMEM
,
1487 PAGE_KERNEL
, node
, caller
);
1488 area
->flags
|= VM_VPAGES
;
1490 pages
= kmalloc_node(array_size
, nested_gfp
, node
);
1492 area
->pages
= pages
;
1493 area
->caller
= caller
;
1495 remove_vm_area(area
->addr
);
1500 for (i
= 0; i
< area
->nr_pages
; i
++) {
1504 page
= alloc_page(gfp_mask
);
1506 page
= alloc_pages_node(node
, gfp_mask
, 0);
1508 if (unlikely(!page
)) {
1509 /* Successfully allocated i pages, free them in __vunmap() */
1513 area
->pages
[i
] = page
;
1516 if (map_vm_area(area
, prot
, &pages
))
1525 void *__vmalloc_area(struct vm_struct
*area
, gfp_t gfp_mask
, pgprot_t prot
)
1527 void *addr
= __vmalloc_area_node(area
, gfp_mask
, prot
, -1,
1528 __builtin_return_address(0));
1531 * A ref_count = 3 is needed because the vm_struct and vmap_area
1532 * structures allocated in the __get_vm_area_node() function contain
1533 * references to the virtual address of the vmalloc'ed block.
1535 kmemleak_alloc(addr
, area
->size
- PAGE_SIZE
, 3, gfp_mask
);
1541 * __vmalloc_node - allocate virtually contiguous memory
1542 * @size: allocation size
1543 * @align: desired alignment
1544 * @gfp_mask: flags for the page level allocator
1545 * @prot: protection mask for the allocated pages
1546 * @node: node to use for allocation or -1
1547 * @caller: caller's return address
1549 * Allocate enough pages to cover @size from the page level
1550 * allocator with @gfp_mask flags. Map them into contiguous
1551 * kernel virtual space, using a pagetable protection of @prot.
1553 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
1554 gfp_t gfp_mask
, pgprot_t prot
,
1555 int node
, void *caller
)
1557 struct vm_struct
*area
;
1559 unsigned long real_size
= size
;
1561 size
= PAGE_ALIGN(size
);
1562 if (!size
|| (size
>> PAGE_SHIFT
) > totalram_pages
)
1565 area
= __get_vm_area_node(size
, align
, VM_ALLOC
, VMALLOC_START
,
1566 VMALLOC_END
, node
, gfp_mask
, caller
);
1571 addr
= __vmalloc_area_node(area
, gfp_mask
, prot
, node
, caller
);
1574 * A ref_count = 3 is needed because the vm_struct and vmap_area
1575 * structures allocated in the __get_vm_area_node() function contain
1576 * references to the virtual address of the vmalloc'ed block.
1578 kmemleak_alloc(addr
, real_size
, 3, gfp_mask
);
1583 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
1585 return __vmalloc_node(size
, 1, gfp_mask
, prot
, -1,
1586 __builtin_return_address(0));
1588 EXPORT_SYMBOL(__vmalloc
);
1591 * vmalloc - allocate virtually contiguous memory
1592 * @size: allocation size
1593 * Allocate enough pages to cover @size from the page level
1594 * allocator and map them into contiguous kernel virtual space.
1596 * For tight control over page level allocator and protection flags
1597 * use __vmalloc() instead.
1599 void *vmalloc(unsigned long size
)
1601 return __vmalloc_node(size
, 1, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1602 -1, __builtin_return_address(0));
1604 EXPORT_SYMBOL(vmalloc
);
1607 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1608 * @size: allocation size
1610 * The resulting memory area is zeroed so it can be mapped to userspace
1611 * without leaking data.
1613 void *vmalloc_user(unsigned long size
)
1615 struct vm_struct
*area
;
1618 ret
= __vmalloc_node(size
, SHMLBA
,
1619 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
1620 PAGE_KERNEL
, -1, __builtin_return_address(0));
1622 area
= find_vm_area(ret
);
1623 area
->flags
|= VM_USERMAP
;
1627 EXPORT_SYMBOL(vmalloc_user
);
1630 * vmalloc_node - allocate memory on a specific node
1631 * @size: allocation size
1634 * Allocate enough pages to cover @size from the page level
1635 * allocator and map them into contiguous kernel virtual space.
1637 * For tight control over page level allocator and protection flags
1638 * use __vmalloc() instead.
1640 void *vmalloc_node(unsigned long size
, int node
)
1642 return __vmalloc_node(size
, 1, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1643 node
, __builtin_return_address(0));
1645 EXPORT_SYMBOL(vmalloc_node
);
1647 #ifndef PAGE_KERNEL_EXEC
1648 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1652 * vmalloc_exec - allocate virtually contiguous, executable memory
1653 * @size: allocation size
1655 * Kernel-internal function to allocate enough pages to cover @size
1656 * the page level allocator and map them into contiguous and
1657 * executable kernel virtual space.
1659 * For tight control over page level allocator and protection flags
1660 * use __vmalloc() instead.
1663 void *vmalloc_exec(unsigned long size
)
1665 return __vmalloc_node(size
, 1, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
,
1666 -1, __builtin_return_address(0));
1669 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1670 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1671 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1672 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1674 #define GFP_VMALLOC32 GFP_KERNEL
1678 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1679 * @size: allocation size
1681 * Allocate enough 32bit PA addressable pages to cover @size from the
1682 * page level allocator and map them into contiguous kernel virtual space.
1684 void *vmalloc_32(unsigned long size
)
1686 return __vmalloc_node(size
, 1, GFP_VMALLOC32
, PAGE_KERNEL
,
1687 -1, __builtin_return_address(0));
1689 EXPORT_SYMBOL(vmalloc_32
);
1692 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1693 * @size: allocation size
1695 * The resulting memory area is 32bit addressable and zeroed so it can be
1696 * mapped to userspace without leaking data.
1698 void *vmalloc_32_user(unsigned long size
)
1700 struct vm_struct
*area
;
1703 ret
= __vmalloc_node(size
, 1, GFP_VMALLOC32
| __GFP_ZERO
, PAGE_KERNEL
,
1704 -1, __builtin_return_address(0));
1706 area
= find_vm_area(ret
);
1707 area
->flags
|= VM_USERMAP
;
1711 EXPORT_SYMBOL(vmalloc_32_user
);
1714 * small helper routine , copy contents to buf from addr.
1715 * If the page is not present, fill zero.
1718 static int aligned_vread(char *buf
, char *addr
, unsigned long count
)
1724 unsigned long offset
, length
;
1726 offset
= (unsigned long)addr
& ~PAGE_MASK
;
1727 length
= PAGE_SIZE
- offset
;
1730 p
= vmalloc_to_page(addr
);
1732 * To do safe access to this _mapped_ area, we need
1733 * lock. But adding lock here means that we need to add
1734 * overhead of vmalloc()/vfree() calles for this _debug_
1735 * interface, rarely used. Instead of that, we'll use
1736 * kmap() and get small overhead in this access function.
1740 * we can expect USER0 is not used (see vread/vwrite's
1741 * function description)
1743 void *map
= kmap_atomic(p
, KM_USER0
);
1744 memcpy(buf
, map
+ offset
, length
);
1745 kunmap_atomic(map
, KM_USER0
);
1747 memset(buf
, 0, length
);
1757 static int aligned_vwrite(char *buf
, char *addr
, unsigned long count
)
1763 unsigned long offset
, length
;
1765 offset
= (unsigned long)addr
& ~PAGE_MASK
;
1766 length
= PAGE_SIZE
- offset
;
1769 p
= vmalloc_to_page(addr
);
1771 * To do safe access to this _mapped_ area, we need
1772 * lock. But adding lock here means that we need to add
1773 * overhead of vmalloc()/vfree() calles for this _debug_
1774 * interface, rarely used. Instead of that, we'll use
1775 * kmap() and get small overhead in this access function.
1779 * we can expect USER0 is not used (see vread/vwrite's
1780 * function description)
1782 void *map
= kmap_atomic(p
, KM_USER0
);
1783 memcpy(map
+ offset
, buf
, length
);
1784 kunmap_atomic(map
, KM_USER0
);
1795 * vread() - read vmalloc area in a safe way.
1796 * @buf: buffer for reading data
1797 * @addr: vm address.
1798 * @count: number of bytes to be read.
1800 * Returns # of bytes which addr and buf should be increased.
1801 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1802 * includes any intersect with alive vmalloc area.
1804 * This function checks that addr is a valid vmalloc'ed area, and
1805 * copy data from that area to a given buffer. If the given memory range
1806 * of [addr...addr+count) includes some valid address, data is copied to
1807 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1808 * IOREMAP area is treated as memory hole and no copy is done.
1810 * If [addr...addr+count) doesn't includes any intersects with alive
1811 * vm_struct area, returns 0.
1812 * @buf should be kernel's buffer. Because this function uses KM_USER0,
1813 * the caller should guarantee KM_USER0 is not used.
1815 * Note: In usual ops, vread() is never necessary because the caller
1816 * should know vmalloc() area is valid and can use memcpy().
1817 * This is for routines which have to access vmalloc area without
1818 * any informaion, as /dev/kmem.
1822 long vread(char *buf
, char *addr
, unsigned long count
)
1824 struct vm_struct
*tmp
;
1825 char *vaddr
, *buf_start
= buf
;
1826 unsigned long buflen
= count
;
1829 /* Don't allow overflow */
1830 if ((unsigned long) addr
+ count
< count
)
1831 count
= -(unsigned long) addr
;
1833 read_lock(&vmlist_lock
);
1834 for (tmp
= vmlist
; count
&& tmp
; tmp
= tmp
->next
) {
1835 vaddr
= (char *) tmp
->addr
;
1836 if (addr
>= vaddr
+ tmp
->size
- PAGE_SIZE
)
1838 while (addr
< vaddr
) {
1846 n
= vaddr
+ tmp
->size
- PAGE_SIZE
- addr
;
1849 if (!(tmp
->flags
& VM_IOREMAP
))
1850 aligned_vread(buf
, addr
, n
);
1851 else /* IOREMAP area is treated as memory hole */
1858 read_unlock(&vmlist_lock
);
1860 if (buf
== buf_start
)
1862 /* zero-fill memory holes */
1863 if (buf
!= buf_start
+ buflen
)
1864 memset(buf
, 0, buflen
- (buf
- buf_start
));
1870 * vwrite() - write vmalloc area in a safe way.
1871 * @buf: buffer for source data
1872 * @addr: vm address.
1873 * @count: number of bytes to be read.
1875 * Returns # of bytes which addr and buf should be incresed.
1876 * (same number to @count).
1877 * If [addr...addr+count) doesn't includes any intersect with valid
1878 * vmalloc area, returns 0.
1880 * This function checks that addr is a valid vmalloc'ed area, and
1881 * copy data from a buffer to the given addr. If specified range of
1882 * [addr...addr+count) includes some valid address, data is copied from
1883 * proper area of @buf. If there are memory holes, no copy to hole.
1884 * IOREMAP area is treated as memory hole and no copy is done.
1886 * If [addr...addr+count) doesn't includes any intersects with alive
1887 * vm_struct area, returns 0.
1888 * @buf should be kernel's buffer. Because this function uses KM_USER0,
1889 * the caller should guarantee KM_USER0 is not used.
1891 * Note: In usual ops, vwrite() is never necessary because the caller
1892 * should know vmalloc() area is valid and can use memcpy().
1893 * This is for routines which have to access vmalloc area without
1894 * any informaion, as /dev/kmem.
1896 * The caller should guarantee KM_USER1 is not used.
1899 long vwrite(char *buf
, char *addr
, unsigned long count
)
1901 struct vm_struct
*tmp
;
1903 unsigned long n
, buflen
;
1906 /* Don't allow overflow */
1907 if ((unsigned long) addr
+ count
< count
)
1908 count
= -(unsigned long) addr
;
1911 read_lock(&vmlist_lock
);
1912 for (tmp
= vmlist
; count
&& tmp
; tmp
= tmp
->next
) {
1913 vaddr
= (char *) tmp
->addr
;
1914 if (addr
>= vaddr
+ tmp
->size
- PAGE_SIZE
)
1916 while (addr
< vaddr
) {
1923 n
= vaddr
+ tmp
->size
- PAGE_SIZE
- addr
;
1926 if (!(tmp
->flags
& VM_IOREMAP
)) {
1927 aligned_vwrite(buf
, addr
, n
);
1935 read_unlock(&vmlist_lock
);
1942 * remap_vmalloc_range - map vmalloc pages to userspace
1943 * @vma: vma to cover (map full range of vma)
1944 * @addr: vmalloc memory
1945 * @pgoff: number of pages into addr before first page to map
1947 * Returns: 0 for success, -Exxx on failure
1949 * This function checks that addr is a valid vmalloc'ed area, and
1950 * that it is big enough to cover the vma. Will return failure if
1951 * that criteria isn't met.
1953 * Similar to remap_pfn_range() (see mm/memory.c)
1955 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
1956 unsigned long pgoff
)
1958 struct vm_struct
*area
;
1959 unsigned long uaddr
= vma
->vm_start
;
1960 unsigned long usize
= vma
->vm_end
- vma
->vm_start
;
1962 if ((PAGE_SIZE
-1) & (unsigned long)addr
)
1965 area
= find_vm_area(addr
);
1969 if (!(area
->flags
& VM_USERMAP
))
1972 if (usize
+ (pgoff
<< PAGE_SHIFT
) > area
->size
- PAGE_SIZE
)
1975 addr
+= pgoff
<< PAGE_SHIFT
;
1977 struct page
*page
= vmalloc_to_page(addr
);
1980 ret
= vm_insert_page(vma
, uaddr
, page
);
1987 } while (usize
> 0);
1989 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
1990 vma
->vm_flags
|= VM_RESERVED
;
1994 EXPORT_SYMBOL(remap_vmalloc_range
);
1997 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2000 void __attribute__((weak
)) vmalloc_sync_all(void)
2005 static int f(pte_t
*pte
, pgtable_t table
, unsigned long addr
, void *data
)
2007 /* apply_to_page_range() does all the hard work. */
2012 * alloc_vm_area - allocate a range of kernel address space
2013 * @size: size of the area
2015 * Returns: NULL on failure, vm_struct on success
2017 * This function reserves a range of kernel address space, and
2018 * allocates pagetables to map that range. No actual mappings
2019 * are created. If the kernel address space is not shared
2020 * between processes, it syncs the pagetable across all
2023 struct vm_struct
*alloc_vm_area(size_t size
)
2025 struct vm_struct
*area
;
2027 area
= get_vm_area_caller(size
, VM_IOREMAP
,
2028 __builtin_return_address(0));
2033 * This ensures that page tables are constructed for this region
2034 * of kernel virtual address space and mapped into init_mm.
2036 if (apply_to_page_range(&init_mm
, (unsigned long)area
->addr
,
2037 area
->size
, f
, NULL
)) {
2042 /* Make sure the pagetables are constructed in process kernel
2048 EXPORT_SYMBOL_GPL(alloc_vm_area
);
2050 void free_vm_area(struct vm_struct
*area
)
2052 struct vm_struct
*ret
;
2053 ret
= remove_vm_area(area
->addr
);
2054 BUG_ON(ret
!= area
);
2057 EXPORT_SYMBOL_GPL(free_vm_area
);
2059 static struct vmap_area
*node_to_va(struct rb_node
*n
)
2061 return n
? rb_entry(n
, struct vmap_area
, rb_node
) : NULL
;
2065 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2066 * @end: target address
2067 * @pnext: out arg for the next vmap_area
2068 * @pprev: out arg for the previous vmap_area
2070 * Returns: %true if either or both of next and prev are found,
2071 * %false if no vmap_area exists
2073 * Find vmap_areas end addresses of which enclose @end. ie. if not
2074 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2076 static bool pvm_find_next_prev(unsigned long end
,
2077 struct vmap_area
**pnext
,
2078 struct vmap_area
**pprev
)
2080 struct rb_node
*n
= vmap_area_root
.rb_node
;
2081 struct vmap_area
*va
= NULL
;
2084 va
= rb_entry(n
, struct vmap_area
, rb_node
);
2085 if (end
< va
->va_end
)
2087 else if (end
> va
->va_end
)
2096 if (va
->va_end
> end
) {
2098 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2101 *pnext
= node_to_va(rb_next(&(*pprev
)->rb_node
));
2107 * pvm_determine_end - find the highest aligned address between two vmap_areas
2108 * @pnext: in/out arg for the next vmap_area
2109 * @pprev: in/out arg for the previous vmap_area
2112 * Returns: determined end address
2114 * Find the highest aligned address between *@pnext and *@pprev below
2115 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2116 * down address is between the end addresses of the two vmap_areas.
2118 * Please note that the address returned by this function may fall
2119 * inside *@pnext vmap_area. The caller is responsible for checking
2122 static unsigned long pvm_determine_end(struct vmap_area
**pnext
,
2123 struct vmap_area
**pprev
,
2124 unsigned long align
)
2126 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2130 addr
= min((*pnext
)->va_start
& ~(align
- 1), vmalloc_end
);
2134 while (*pprev
&& (*pprev
)->va_end
> addr
) {
2136 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2143 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2144 * @offsets: array containing offset of each area
2145 * @sizes: array containing size of each area
2146 * @nr_vms: the number of areas to allocate
2147 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2148 * @gfp_mask: allocation mask
2150 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2151 * vm_structs on success, %NULL on failure
2153 * Percpu allocator wants to use congruent vm areas so that it can
2154 * maintain the offsets among percpu areas. This function allocates
2155 * congruent vmalloc areas for it. These areas tend to be scattered
2156 * pretty far, distance between two areas easily going up to
2157 * gigabytes. To avoid interacting with regular vmallocs, these areas
2158 * are allocated from top.
2160 * Despite its complicated look, this allocator is rather simple. It
2161 * does everything top-down and scans areas from the end looking for
2162 * matching slot. While scanning, if any of the areas overlaps with
2163 * existing vmap_area, the base address is pulled down to fit the
2164 * area. Scanning is repeated till all the areas fit and then all
2165 * necessary data structres are inserted and the result is returned.
2167 struct vm_struct
**pcpu_get_vm_areas(const unsigned long *offsets
,
2168 const size_t *sizes
, int nr_vms
,
2169 size_t align
, gfp_t gfp_mask
)
2171 const unsigned long vmalloc_start
= ALIGN(VMALLOC_START
, align
);
2172 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2173 struct vmap_area
**vas
, *prev
, *next
;
2174 struct vm_struct
**vms
;
2175 int area
, area2
, last_area
, term_area
;
2176 unsigned long base
, start
, end
, last_end
;
2177 bool purged
= false;
2179 gfp_mask
&= GFP_RECLAIM_MASK
;
2181 /* verify parameters and allocate data structures */
2182 BUG_ON(align
& ~PAGE_MASK
|| !is_power_of_2(align
));
2183 for (last_area
= 0, area
= 0; area
< nr_vms
; area
++) {
2184 start
= offsets
[area
];
2185 end
= start
+ sizes
[area
];
2187 /* is everything aligned properly? */
2188 BUG_ON(!IS_ALIGNED(offsets
[area
], align
));
2189 BUG_ON(!IS_ALIGNED(sizes
[area
], align
));
2191 /* detect the area with the highest address */
2192 if (start
> offsets
[last_area
])
2195 for (area2
= 0; area2
< nr_vms
; area2
++) {
2196 unsigned long start2
= offsets
[area2
];
2197 unsigned long end2
= start2
+ sizes
[area2
];
2202 BUG_ON(start2
>= start
&& start2
< end
);
2203 BUG_ON(end2
<= end
&& end2
> start
);
2206 last_end
= offsets
[last_area
] + sizes
[last_area
];
2208 if (vmalloc_end
- vmalloc_start
< last_end
) {
2213 vms
= kzalloc(sizeof(vms
[0]) * nr_vms
, gfp_mask
);
2214 vas
= kzalloc(sizeof(vas
[0]) * nr_vms
, gfp_mask
);
2218 for (area
= 0; area
< nr_vms
; area
++) {
2219 vas
[area
] = kzalloc(sizeof(struct vmap_area
), gfp_mask
);
2220 vms
[area
] = kzalloc(sizeof(struct vm_struct
), gfp_mask
);
2221 if (!vas
[area
] || !vms
[area
])
2225 spin_lock(&vmap_area_lock
);
2227 /* start scanning - we scan from the top, begin with the last area */
2228 area
= term_area
= last_area
;
2229 start
= offsets
[area
];
2230 end
= start
+ sizes
[area
];
2232 if (!pvm_find_next_prev(vmap_area_pcpu_hole
, &next
, &prev
)) {
2233 base
= vmalloc_end
- last_end
;
2236 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2239 BUG_ON(next
&& next
->va_end
<= base
+ end
);
2240 BUG_ON(prev
&& prev
->va_end
> base
+ end
);
2243 * base might have underflowed, add last_end before
2246 if (base
+ last_end
< vmalloc_start
+ last_end
) {
2247 spin_unlock(&vmap_area_lock
);
2249 purge_vmap_area_lazy();
2257 * If next overlaps, move base downwards so that it's
2258 * right below next and then recheck.
2260 if (next
&& next
->va_start
< base
+ end
) {
2261 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2267 * If prev overlaps, shift down next and prev and move
2268 * base so that it's right below new next and then
2271 if (prev
&& prev
->va_end
> base
+ start
) {
2273 prev
= node_to_va(rb_prev(&next
->rb_node
));
2274 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2280 * This area fits, move on to the previous one. If
2281 * the previous one is the terminal one, we're done.
2283 area
= (area
+ nr_vms
- 1) % nr_vms
;
2284 if (area
== term_area
)
2286 start
= offsets
[area
];
2287 end
= start
+ sizes
[area
];
2288 pvm_find_next_prev(base
+ end
, &next
, &prev
);
2291 /* we've found a fitting base, insert all va's */
2292 for (area
= 0; area
< nr_vms
; area
++) {
2293 struct vmap_area
*va
= vas
[area
];
2295 va
->va_start
= base
+ offsets
[area
];
2296 va
->va_end
= va
->va_start
+ sizes
[area
];
2297 __insert_vmap_area(va
);
2300 vmap_area_pcpu_hole
= base
+ offsets
[last_area
];
2302 spin_unlock(&vmap_area_lock
);
2304 /* insert all vm's */
2305 for (area
= 0; area
< nr_vms
; area
++)
2306 insert_vmalloc_vm(vms
[area
], vas
[area
], VM_ALLOC
,
2313 for (area
= 0; area
< nr_vms
; area
++) {
2325 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2326 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2327 * @nr_vms: the number of allocated areas
2329 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2331 void pcpu_free_vm_areas(struct vm_struct
**vms
, int nr_vms
)
2335 for (i
= 0; i
< nr_vms
; i
++)
2336 free_vm_area(vms
[i
]);
2340 #ifdef CONFIG_PROC_FS
2341 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
2344 struct vm_struct
*v
;
2346 read_lock(&vmlist_lock
);
2348 while (n
> 0 && v
) {
2359 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
2361 struct vm_struct
*v
= p
;
2367 static void s_stop(struct seq_file
*m
, void *p
)
2369 read_unlock(&vmlist_lock
);
2372 static void show_numa_info(struct seq_file
*m
, struct vm_struct
*v
)
2375 unsigned int nr
, *counters
= m
->private;
2380 memset(counters
, 0, nr_node_ids
* sizeof(unsigned int));
2382 for (nr
= 0; nr
< v
->nr_pages
; nr
++)
2383 counters
[page_to_nid(v
->pages
[nr
])]++;
2385 for_each_node_state(nr
, N_HIGH_MEMORY
)
2387 seq_printf(m
, " N%u=%u", nr
, counters
[nr
]);
2391 static int s_show(struct seq_file
*m
, void *p
)
2393 struct vm_struct
*v
= p
;
2395 seq_printf(m
, "0x%p-0x%p %7ld",
2396 v
->addr
, v
->addr
+ v
->size
, v
->size
);
2399 char buff
[KSYM_SYMBOL_LEN
];
2402 sprint_symbol(buff
, (unsigned long)v
->caller
);
2407 seq_printf(m
, " pages=%d", v
->nr_pages
);
2410 seq_printf(m
, " phys=%llx", (unsigned long long)v
->phys_addr
);
2412 if (v
->flags
& VM_IOREMAP
)
2413 seq_printf(m
, " ioremap");
2415 if (v
->flags
& VM_ALLOC
)
2416 seq_printf(m
, " vmalloc");
2418 if (v
->flags
& VM_MAP
)
2419 seq_printf(m
, " vmap");
2421 if (v
->flags
& VM_USERMAP
)
2422 seq_printf(m
, " user");
2424 if (v
->flags
& VM_VPAGES
)
2425 seq_printf(m
, " vpages");
2427 show_numa_info(m
, v
);
2432 static const struct seq_operations vmalloc_op
= {
2439 static int vmalloc_open(struct inode
*inode
, struct file
*file
)
2441 unsigned int *ptr
= NULL
;
2445 ptr
= kmalloc(nr_node_ids
* sizeof(unsigned int), GFP_KERNEL
);
2449 ret
= seq_open(file
, &vmalloc_op
);
2451 struct seq_file
*m
= file
->private_data
;
2458 static const struct file_operations proc_vmalloc_operations
= {
2459 .open
= vmalloc_open
,
2461 .llseek
= seq_lseek
,
2462 .release
= seq_release_private
,
2465 static int __init
proc_vmalloc_init(void)
2467 proc_create("vmallocinfo", S_IRUSR
, NULL
, &proc_vmalloc_operations
);
2470 module_init(proc_vmalloc_init
);