[PATCH] mm: vm_stat_account unshackled
[wandboard.git] / mm / memory.c
blob13667681cd168992f2ea25ca4bb170da7101d136
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/init.h>
52 #include <asm/pgalloc.h>
53 #include <asm/uaccess.h>
54 #include <asm/tlb.h>
55 #include <asm/tlbflush.h>
56 #include <asm/pgtable.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
61 #ifndef CONFIG_NEED_MULTIPLE_NODES
62 /* use the per-pgdat data instead for discontigmem - mbligh */
63 unsigned long max_mapnr;
64 struct page *mem_map;
66 EXPORT_SYMBOL(max_mapnr);
67 EXPORT_SYMBOL(mem_map);
68 #endif
70 unsigned long num_physpages;
72 * A number of key systems in x86 including ioremap() rely on the assumption
73 * that high_memory defines the upper bound on direct map memory, then end
74 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76 * and ZONE_HIGHMEM.
78 void * high_memory;
79 unsigned long vmalloc_earlyreserve;
81 EXPORT_SYMBOL(num_physpages);
82 EXPORT_SYMBOL(high_memory);
83 EXPORT_SYMBOL(vmalloc_earlyreserve);
86 * If a p?d_bad entry is found while walking page tables, report
87 * the error, before resetting entry to p?d_none. Usually (but
88 * very seldom) called out from the p?d_none_or_clear_bad macros.
91 void pgd_clear_bad(pgd_t *pgd)
93 pgd_ERROR(*pgd);
94 pgd_clear(pgd);
97 void pud_clear_bad(pud_t *pud)
99 pud_ERROR(*pud);
100 pud_clear(pud);
103 void pmd_clear_bad(pmd_t *pmd)
105 pmd_ERROR(*pmd);
106 pmd_clear(pmd);
110 * Note: this doesn't free the actual pages themselves. That
111 * has been handled earlier when unmapping all the memory regions.
113 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
115 struct page *page = pmd_page(*pmd);
116 pmd_clear(pmd);
117 pte_free_tlb(tlb, page);
118 dec_page_state(nr_page_table_pages);
119 tlb->mm->nr_ptes--;
122 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
123 unsigned long addr, unsigned long end,
124 unsigned long floor, unsigned long ceiling)
126 pmd_t *pmd;
127 unsigned long next;
128 unsigned long start;
130 start = addr;
131 pmd = pmd_offset(pud, addr);
132 do {
133 next = pmd_addr_end(addr, end);
134 if (pmd_none_or_clear_bad(pmd))
135 continue;
136 free_pte_range(tlb, pmd);
137 } while (pmd++, addr = next, addr != end);
139 start &= PUD_MASK;
140 if (start < floor)
141 return;
142 if (ceiling) {
143 ceiling &= PUD_MASK;
144 if (!ceiling)
145 return;
147 if (end - 1 > ceiling - 1)
148 return;
150 pmd = pmd_offset(pud, start);
151 pud_clear(pud);
152 pmd_free_tlb(tlb, pmd);
155 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
156 unsigned long addr, unsigned long end,
157 unsigned long floor, unsigned long ceiling)
159 pud_t *pud;
160 unsigned long next;
161 unsigned long start;
163 start = addr;
164 pud = pud_offset(pgd, addr);
165 do {
166 next = pud_addr_end(addr, end);
167 if (pud_none_or_clear_bad(pud))
168 continue;
169 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
170 } while (pud++, addr = next, addr != end);
172 start &= PGDIR_MASK;
173 if (start < floor)
174 return;
175 if (ceiling) {
176 ceiling &= PGDIR_MASK;
177 if (!ceiling)
178 return;
180 if (end - 1 > ceiling - 1)
181 return;
183 pud = pud_offset(pgd, start);
184 pgd_clear(pgd);
185 pud_free_tlb(tlb, pud);
189 * This function frees user-level page tables of a process.
191 * Must be called with pagetable lock held.
193 void free_pgd_range(struct mmu_gather **tlb,
194 unsigned long addr, unsigned long end,
195 unsigned long floor, unsigned long ceiling)
197 pgd_t *pgd;
198 unsigned long next;
199 unsigned long start;
202 * The next few lines have given us lots of grief...
204 * Why are we testing PMD* at this top level? Because often
205 * there will be no work to do at all, and we'd prefer not to
206 * go all the way down to the bottom just to discover that.
208 * Why all these "- 1"s? Because 0 represents both the bottom
209 * of the address space and the top of it (using -1 for the
210 * top wouldn't help much: the masks would do the wrong thing).
211 * The rule is that addr 0 and floor 0 refer to the bottom of
212 * the address space, but end 0 and ceiling 0 refer to the top
213 * Comparisons need to use "end - 1" and "ceiling - 1" (though
214 * that end 0 case should be mythical).
216 * Wherever addr is brought up or ceiling brought down, we must
217 * be careful to reject "the opposite 0" before it confuses the
218 * subsequent tests. But what about where end is brought down
219 * by PMD_SIZE below? no, end can't go down to 0 there.
221 * Whereas we round start (addr) and ceiling down, by different
222 * masks at different levels, in order to test whether a table
223 * now has no other vmas using it, so can be freed, we don't
224 * bother to round floor or end up - the tests don't need that.
227 addr &= PMD_MASK;
228 if (addr < floor) {
229 addr += PMD_SIZE;
230 if (!addr)
231 return;
233 if (ceiling) {
234 ceiling &= PMD_MASK;
235 if (!ceiling)
236 return;
238 if (end - 1 > ceiling - 1)
239 end -= PMD_SIZE;
240 if (addr > end - 1)
241 return;
243 start = addr;
244 pgd = pgd_offset((*tlb)->mm, addr);
245 do {
246 next = pgd_addr_end(addr, end);
247 if (pgd_none_or_clear_bad(pgd))
248 continue;
249 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
250 } while (pgd++, addr = next, addr != end);
252 if (!tlb_is_full_mm(*tlb))
253 flush_tlb_pgtables((*tlb)->mm, start, end);
256 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
257 unsigned long floor, unsigned long ceiling)
259 while (vma) {
260 struct vm_area_struct *next = vma->vm_next;
261 unsigned long addr = vma->vm_start;
263 if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
264 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
265 floor, next? next->vm_start: ceiling);
266 } else {
268 * Optimization: gather nearby vmas into one call down
270 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
271 && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
272 HPAGE_SIZE)) {
273 vma = next;
274 next = vma->vm_next;
276 free_pgd_range(tlb, addr, vma->vm_end,
277 floor, next? next->vm_start: ceiling);
279 vma = next;
283 pte_t fastcall *pte_alloc_map(struct mm_struct *mm, pmd_t *pmd,
284 unsigned long address)
286 if (!pmd_present(*pmd)) {
287 struct page *new;
289 spin_unlock(&mm->page_table_lock);
290 new = pte_alloc_one(mm, address);
291 spin_lock(&mm->page_table_lock);
292 if (!new)
293 return NULL;
295 * Because we dropped the lock, we should re-check the
296 * entry, as somebody else could have populated it..
298 if (pmd_present(*pmd)) {
299 pte_free(new);
300 goto out;
302 mm->nr_ptes++;
303 inc_page_state(nr_page_table_pages);
304 pmd_populate(mm, pmd, new);
306 out:
307 return pte_offset_map(pmd, address);
310 pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
312 if (!pmd_present(*pmd)) {
313 pte_t *new;
315 spin_unlock(&mm->page_table_lock);
316 new = pte_alloc_one_kernel(mm, address);
317 spin_lock(&mm->page_table_lock);
318 if (!new)
319 return NULL;
322 * Because we dropped the lock, we should re-check the
323 * entry, as somebody else could have populated it..
325 if (pmd_present(*pmd)) {
326 pte_free_kernel(new);
327 goto out;
329 pmd_populate_kernel(mm, pmd, new);
331 out:
332 return pte_offset_kernel(pmd, address);
336 * copy one vm_area from one task to the other. Assumes the page tables
337 * already present in the new task to be cleared in the whole range
338 * covered by this vma.
340 * dst->page_table_lock is held on entry and exit,
341 * but may be dropped within p[mg]d_alloc() and pte_alloc_map().
344 static inline void
345 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
346 pte_t *dst_pte, pte_t *src_pte, unsigned long vm_flags,
347 unsigned long addr)
349 pte_t pte = *src_pte;
350 struct page *page;
351 unsigned long pfn;
353 /* pte contains position in swap or file, so copy. */
354 if (unlikely(!pte_present(pte))) {
355 if (!pte_file(pte)) {
356 swap_duplicate(pte_to_swp_entry(pte));
357 /* make sure dst_mm is on swapoff's mmlist. */
358 if (unlikely(list_empty(&dst_mm->mmlist))) {
359 spin_lock(&mmlist_lock);
360 list_add(&dst_mm->mmlist, &src_mm->mmlist);
361 spin_unlock(&mmlist_lock);
364 set_pte_at(dst_mm, addr, dst_pte, pte);
365 return;
368 pfn = pte_pfn(pte);
369 /* the pte points outside of valid memory, the
370 * mapping is assumed to be good, meaningful
371 * and not mapped via rmap - duplicate the
372 * mapping as is.
374 page = NULL;
375 if (pfn_valid(pfn))
376 page = pfn_to_page(pfn);
378 if (!page || PageReserved(page)) {
379 set_pte_at(dst_mm, addr, dst_pte, pte);
380 return;
384 * If it's a COW mapping, write protect it both
385 * in the parent and the child
387 if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
388 ptep_set_wrprotect(src_mm, addr, src_pte);
389 pte = *src_pte;
393 * If it's a shared mapping, mark it clean in
394 * the child
396 if (vm_flags & VM_SHARED)
397 pte = pte_mkclean(pte);
398 pte = pte_mkold(pte);
399 get_page(page);
400 inc_mm_counter(dst_mm, rss);
401 if (PageAnon(page))
402 inc_mm_counter(dst_mm, anon_rss);
403 set_pte_at(dst_mm, addr, dst_pte, pte);
404 page_dup_rmap(page);
407 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
408 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
409 unsigned long addr, unsigned long end)
411 pte_t *src_pte, *dst_pte;
412 unsigned long vm_flags = vma->vm_flags;
413 int progress = 0;
415 again:
416 dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr);
417 if (!dst_pte)
418 return -ENOMEM;
419 src_pte = pte_offset_map_nested(src_pmd, addr);
421 spin_lock(&src_mm->page_table_lock);
422 do {
424 * We are holding two locks at this point - either of them
425 * could generate latencies in another task on another CPU.
427 if (progress >= 32) {
428 progress = 0;
429 if (need_resched() ||
430 need_lockbreak(&src_mm->page_table_lock) ||
431 need_lockbreak(&dst_mm->page_table_lock))
432 break;
434 if (pte_none(*src_pte)) {
435 progress++;
436 continue;
438 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vm_flags, addr);
439 progress += 8;
440 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
441 spin_unlock(&src_mm->page_table_lock);
443 pte_unmap_nested(src_pte - 1);
444 pte_unmap(dst_pte - 1);
445 cond_resched_lock(&dst_mm->page_table_lock);
446 if (addr != end)
447 goto again;
448 return 0;
451 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
452 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
453 unsigned long addr, unsigned long end)
455 pmd_t *src_pmd, *dst_pmd;
456 unsigned long next;
458 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
459 if (!dst_pmd)
460 return -ENOMEM;
461 src_pmd = pmd_offset(src_pud, addr);
462 do {
463 next = pmd_addr_end(addr, end);
464 if (pmd_none_or_clear_bad(src_pmd))
465 continue;
466 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
467 vma, addr, next))
468 return -ENOMEM;
469 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
470 return 0;
473 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
474 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
475 unsigned long addr, unsigned long end)
477 pud_t *src_pud, *dst_pud;
478 unsigned long next;
480 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
481 if (!dst_pud)
482 return -ENOMEM;
483 src_pud = pud_offset(src_pgd, addr);
484 do {
485 next = pud_addr_end(addr, end);
486 if (pud_none_or_clear_bad(src_pud))
487 continue;
488 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
489 vma, addr, next))
490 return -ENOMEM;
491 } while (dst_pud++, src_pud++, addr = next, addr != end);
492 return 0;
495 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
496 struct vm_area_struct *vma)
498 pgd_t *src_pgd, *dst_pgd;
499 unsigned long next;
500 unsigned long addr = vma->vm_start;
501 unsigned long end = vma->vm_end;
504 * Don't copy ptes where a page fault will fill them correctly.
505 * Fork becomes much lighter when there are big shared or private
506 * readonly mappings. The tradeoff is that copy_page_range is more
507 * efficient than faulting.
509 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_RESERVED))) {
510 if (!vma->anon_vma)
511 return 0;
514 if (is_vm_hugetlb_page(vma))
515 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
517 dst_pgd = pgd_offset(dst_mm, addr);
518 src_pgd = pgd_offset(src_mm, addr);
519 do {
520 next = pgd_addr_end(addr, end);
521 if (pgd_none_or_clear_bad(src_pgd))
522 continue;
523 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
524 vma, addr, next))
525 return -ENOMEM;
526 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
527 return 0;
530 static void zap_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
531 unsigned long addr, unsigned long end,
532 struct zap_details *details)
534 pte_t *pte;
536 pte = pte_offset_map(pmd, addr);
537 do {
538 pte_t ptent = *pte;
539 if (pte_none(ptent))
540 continue;
541 if (pte_present(ptent)) {
542 struct page *page = NULL;
543 unsigned long pfn = pte_pfn(ptent);
544 if (pfn_valid(pfn)) {
545 page = pfn_to_page(pfn);
546 if (PageReserved(page))
547 page = NULL;
549 if (unlikely(details) && page) {
551 * unmap_shared_mapping_pages() wants to
552 * invalidate cache without truncating:
553 * unmap shared but keep private pages.
555 if (details->check_mapping &&
556 details->check_mapping != page->mapping)
557 continue;
559 * Each page->index must be checked when
560 * invalidating or truncating nonlinear.
562 if (details->nonlinear_vma &&
563 (page->index < details->first_index ||
564 page->index > details->last_index))
565 continue;
567 ptent = ptep_get_and_clear_full(tlb->mm, addr, pte,
568 tlb->fullmm);
569 tlb_remove_tlb_entry(tlb, pte, addr);
570 if (unlikely(!page))
571 continue;
572 if (unlikely(details) && details->nonlinear_vma
573 && linear_page_index(details->nonlinear_vma,
574 addr) != page->index)
575 set_pte_at(tlb->mm, addr, pte,
576 pgoff_to_pte(page->index));
577 if (PageAnon(page))
578 dec_mm_counter(tlb->mm, anon_rss);
579 else {
580 if (pte_dirty(ptent))
581 set_page_dirty(page);
582 if (pte_young(ptent))
583 mark_page_accessed(page);
585 tlb->freed++;
586 page_remove_rmap(page);
587 tlb_remove_page(tlb, page);
588 continue;
591 * If details->check_mapping, we leave swap entries;
592 * if details->nonlinear_vma, we leave file entries.
594 if (unlikely(details))
595 continue;
596 if (!pte_file(ptent))
597 free_swap_and_cache(pte_to_swp_entry(ptent));
598 pte_clear_full(tlb->mm, addr, pte, tlb->fullmm);
599 } while (pte++, addr += PAGE_SIZE, addr != end);
600 pte_unmap(pte - 1);
603 static inline void zap_pmd_range(struct mmu_gather *tlb, pud_t *pud,
604 unsigned long addr, unsigned long end,
605 struct zap_details *details)
607 pmd_t *pmd;
608 unsigned long next;
610 pmd = pmd_offset(pud, addr);
611 do {
612 next = pmd_addr_end(addr, end);
613 if (pmd_none_or_clear_bad(pmd))
614 continue;
615 zap_pte_range(tlb, pmd, addr, next, details);
616 } while (pmd++, addr = next, addr != end);
619 static inline void zap_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
620 unsigned long addr, unsigned long end,
621 struct zap_details *details)
623 pud_t *pud;
624 unsigned long next;
626 pud = pud_offset(pgd, addr);
627 do {
628 next = pud_addr_end(addr, end);
629 if (pud_none_or_clear_bad(pud))
630 continue;
631 zap_pmd_range(tlb, pud, addr, next, details);
632 } while (pud++, addr = next, addr != end);
635 static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
636 unsigned long addr, unsigned long end,
637 struct zap_details *details)
639 pgd_t *pgd;
640 unsigned long next;
642 if (details && !details->check_mapping && !details->nonlinear_vma)
643 details = NULL;
645 BUG_ON(addr >= end);
646 tlb_start_vma(tlb, vma);
647 pgd = pgd_offset(vma->vm_mm, addr);
648 do {
649 next = pgd_addr_end(addr, end);
650 if (pgd_none_or_clear_bad(pgd))
651 continue;
652 zap_pud_range(tlb, pgd, addr, next, details);
653 } while (pgd++, addr = next, addr != end);
654 tlb_end_vma(tlb, vma);
657 #ifdef CONFIG_PREEMPT
658 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
659 #else
660 /* No preempt: go for improved straight-line efficiency */
661 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
662 #endif
665 * unmap_vmas - unmap a range of memory covered by a list of vma's
666 * @tlbp: address of the caller's struct mmu_gather
667 * @mm: the controlling mm_struct
668 * @vma: the starting vma
669 * @start_addr: virtual address at which to start unmapping
670 * @end_addr: virtual address at which to end unmapping
671 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
672 * @details: details of nonlinear truncation or shared cache invalidation
674 * Returns the end address of the unmapping (restart addr if interrupted).
676 * Unmap all pages in the vma list. Called under page_table_lock.
678 * We aim to not hold page_table_lock for too long (for scheduling latency
679 * reasons). So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
680 * return the ending mmu_gather to the caller.
682 * Only addresses between `start' and `end' will be unmapped.
684 * The VMA list must be sorted in ascending virtual address order.
686 * unmap_vmas() assumes that the caller will flush the whole unmapped address
687 * range after unmap_vmas() returns. So the only responsibility here is to
688 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
689 * drops the lock and schedules.
691 unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
692 struct vm_area_struct *vma, unsigned long start_addr,
693 unsigned long end_addr, unsigned long *nr_accounted,
694 struct zap_details *details)
696 unsigned long zap_bytes = ZAP_BLOCK_SIZE;
697 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
698 int tlb_start_valid = 0;
699 unsigned long start = start_addr;
700 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
701 int fullmm = tlb_is_full_mm(*tlbp);
703 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
704 unsigned long end;
706 start = max(vma->vm_start, start_addr);
707 if (start >= vma->vm_end)
708 continue;
709 end = min(vma->vm_end, end_addr);
710 if (end <= vma->vm_start)
711 continue;
713 if (vma->vm_flags & VM_ACCOUNT)
714 *nr_accounted += (end - start) >> PAGE_SHIFT;
716 while (start != end) {
717 unsigned long block;
719 if (!tlb_start_valid) {
720 tlb_start = start;
721 tlb_start_valid = 1;
724 if (is_vm_hugetlb_page(vma)) {
725 block = end - start;
726 unmap_hugepage_range(vma, start, end);
727 } else {
728 block = min(zap_bytes, end - start);
729 unmap_page_range(*tlbp, vma, start,
730 start + block, details);
733 start += block;
734 zap_bytes -= block;
735 if ((long)zap_bytes > 0)
736 continue;
738 tlb_finish_mmu(*tlbp, tlb_start, start);
740 if (need_resched() ||
741 need_lockbreak(&mm->page_table_lock) ||
742 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
743 if (i_mmap_lock) {
744 /* must reset count of rss freed */
745 *tlbp = tlb_gather_mmu(mm, fullmm);
746 goto out;
748 spin_unlock(&mm->page_table_lock);
749 cond_resched();
750 spin_lock(&mm->page_table_lock);
753 *tlbp = tlb_gather_mmu(mm, fullmm);
754 tlb_start_valid = 0;
755 zap_bytes = ZAP_BLOCK_SIZE;
758 out:
759 return start; /* which is now the end (or restart) address */
763 * zap_page_range - remove user pages in a given range
764 * @vma: vm_area_struct holding the applicable pages
765 * @address: starting address of pages to zap
766 * @size: number of bytes to zap
767 * @details: details of nonlinear truncation or shared cache invalidation
769 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
770 unsigned long size, struct zap_details *details)
772 struct mm_struct *mm = vma->vm_mm;
773 struct mmu_gather *tlb;
774 unsigned long end = address + size;
775 unsigned long nr_accounted = 0;
777 if (is_vm_hugetlb_page(vma)) {
778 zap_hugepage_range(vma, address, size);
779 return end;
782 lru_add_drain();
783 spin_lock(&mm->page_table_lock);
784 tlb = tlb_gather_mmu(mm, 0);
785 end = unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details);
786 tlb_finish_mmu(tlb, address, end);
787 spin_unlock(&mm->page_table_lock);
788 return end;
792 * Do a quick page-table lookup for a single page.
793 * mm->page_table_lock must be held.
795 static struct page *__follow_page(struct mm_struct *mm, unsigned long address,
796 int read, int write, int accessed)
798 pgd_t *pgd;
799 pud_t *pud;
800 pmd_t *pmd;
801 pte_t *ptep, pte;
802 unsigned long pfn;
803 struct page *page;
805 page = follow_huge_addr(mm, address, write);
806 if (! IS_ERR(page))
807 return page;
809 pgd = pgd_offset(mm, address);
810 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
811 goto out;
813 pud = pud_offset(pgd, address);
814 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
815 goto out;
817 pmd = pmd_offset(pud, address);
818 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
819 goto out;
820 if (pmd_huge(*pmd))
821 return follow_huge_pmd(mm, address, pmd, write);
823 ptep = pte_offset_map(pmd, address);
824 if (!ptep)
825 goto out;
827 pte = *ptep;
828 pte_unmap(ptep);
829 if (pte_present(pte)) {
830 if (write && !pte_write(pte))
831 goto out;
832 if (read && !pte_read(pte))
833 goto out;
834 pfn = pte_pfn(pte);
835 if (pfn_valid(pfn)) {
836 page = pfn_to_page(pfn);
837 if (accessed) {
838 if (write && !pte_dirty(pte) &&!PageDirty(page))
839 set_page_dirty(page);
840 mark_page_accessed(page);
842 return page;
846 out:
847 return NULL;
850 inline struct page *
851 follow_page(struct mm_struct *mm, unsigned long address, int write)
853 return __follow_page(mm, address, 0, write, 1);
857 * check_user_page_readable() can be called frm niterrupt context by oprofile,
858 * so we need to avoid taking any non-irq-safe locks
860 int check_user_page_readable(struct mm_struct *mm, unsigned long address)
862 return __follow_page(mm, address, 1, 0, 0) != NULL;
864 EXPORT_SYMBOL(check_user_page_readable);
866 static inline int
867 untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
868 unsigned long address)
870 pgd_t *pgd;
871 pud_t *pud;
872 pmd_t *pmd;
874 /* Check if the vma is for an anonymous mapping. */
875 if (vma->vm_ops && vma->vm_ops->nopage)
876 return 0;
878 /* Check if page directory entry exists. */
879 pgd = pgd_offset(mm, address);
880 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
881 return 1;
883 pud = pud_offset(pgd, address);
884 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
885 return 1;
887 /* Check if page middle directory entry exists. */
888 pmd = pmd_offset(pud, address);
889 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
890 return 1;
892 /* There is a pte slot for 'address' in 'mm'. */
893 return 0;
896 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
897 unsigned long start, int len, int write, int force,
898 struct page **pages, struct vm_area_struct **vmas)
900 int i;
901 unsigned int flags;
904 * Require read or write permissions.
905 * If 'force' is set, we only require the "MAY" flags.
907 flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
908 flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
909 i = 0;
911 do {
912 struct vm_area_struct * vma;
914 vma = find_extend_vma(mm, start);
915 if (!vma && in_gate_area(tsk, start)) {
916 unsigned long pg = start & PAGE_MASK;
917 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
918 pgd_t *pgd;
919 pud_t *pud;
920 pmd_t *pmd;
921 pte_t *pte;
922 if (write) /* user gate pages are read-only */
923 return i ? : -EFAULT;
924 if (pg > TASK_SIZE)
925 pgd = pgd_offset_k(pg);
926 else
927 pgd = pgd_offset_gate(mm, pg);
928 BUG_ON(pgd_none(*pgd));
929 pud = pud_offset(pgd, pg);
930 BUG_ON(pud_none(*pud));
931 pmd = pmd_offset(pud, pg);
932 if (pmd_none(*pmd))
933 return i ? : -EFAULT;
934 pte = pte_offset_map(pmd, pg);
935 if (pte_none(*pte)) {
936 pte_unmap(pte);
937 return i ? : -EFAULT;
939 if (pages) {
940 pages[i] = pte_page(*pte);
941 get_page(pages[i]);
943 pte_unmap(pte);
944 if (vmas)
945 vmas[i] = gate_vma;
946 i++;
947 start += PAGE_SIZE;
948 len--;
949 continue;
952 if (!vma || (vma->vm_flags & VM_IO)
953 || !(flags & vma->vm_flags))
954 return i ? : -EFAULT;
956 if (is_vm_hugetlb_page(vma)) {
957 i = follow_hugetlb_page(mm, vma, pages, vmas,
958 &start, &len, i);
959 continue;
961 spin_lock(&mm->page_table_lock);
962 do {
963 int write_access = write;
964 struct page *page;
966 cond_resched_lock(&mm->page_table_lock);
967 while (!(page = follow_page(mm, start, write_access))) {
968 int ret;
971 * Shortcut for anonymous pages. We don't want
972 * to force the creation of pages tables for
973 * insanely big anonymously mapped areas that
974 * nobody touched so far. This is important
975 * for doing a core dump for these mappings.
977 if (!write && untouched_anonymous_page(mm,vma,start)) {
978 page = ZERO_PAGE(start);
979 break;
981 spin_unlock(&mm->page_table_lock);
982 ret = __handle_mm_fault(mm, vma, start, write_access);
985 * The VM_FAULT_WRITE bit tells us that do_wp_page has
986 * broken COW when necessary, even if maybe_mkwrite
987 * decided not to set pte_write. We can thus safely do
988 * subsequent page lookups as if they were reads.
990 if (ret & VM_FAULT_WRITE)
991 write_access = 0;
993 switch (ret & ~VM_FAULT_WRITE) {
994 case VM_FAULT_MINOR:
995 tsk->min_flt++;
996 break;
997 case VM_FAULT_MAJOR:
998 tsk->maj_flt++;
999 break;
1000 case VM_FAULT_SIGBUS:
1001 return i ? i : -EFAULT;
1002 case VM_FAULT_OOM:
1003 return i ? i : -ENOMEM;
1004 default:
1005 BUG();
1007 spin_lock(&mm->page_table_lock);
1009 if (pages) {
1010 pages[i] = page;
1011 flush_dcache_page(page);
1012 if (!PageReserved(page))
1013 page_cache_get(page);
1015 if (vmas)
1016 vmas[i] = vma;
1017 i++;
1018 start += PAGE_SIZE;
1019 len--;
1020 } while (len && start < vma->vm_end);
1021 spin_unlock(&mm->page_table_lock);
1022 } while (len);
1023 return i;
1025 EXPORT_SYMBOL(get_user_pages);
1027 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1028 unsigned long addr, unsigned long end, pgprot_t prot)
1030 pte_t *pte;
1032 pte = pte_alloc_map(mm, pmd, addr);
1033 if (!pte)
1034 return -ENOMEM;
1035 do {
1036 pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(addr), prot));
1037 BUG_ON(!pte_none(*pte));
1038 set_pte_at(mm, addr, pte, zero_pte);
1039 } while (pte++, addr += PAGE_SIZE, addr != end);
1040 pte_unmap(pte - 1);
1041 return 0;
1044 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1045 unsigned long addr, unsigned long end, pgprot_t prot)
1047 pmd_t *pmd;
1048 unsigned long next;
1050 pmd = pmd_alloc(mm, pud, addr);
1051 if (!pmd)
1052 return -ENOMEM;
1053 do {
1054 next = pmd_addr_end(addr, end);
1055 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1056 return -ENOMEM;
1057 } while (pmd++, addr = next, addr != end);
1058 return 0;
1061 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1062 unsigned long addr, unsigned long end, pgprot_t prot)
1064 pud_t *pud;
1065 unsigned long next;
1067 pud = pud_alloc(mm, pgd, addr);
1068 if (!pud)
1069 return -ENOMEM;
1070 do {
1071 next = pud_addr_end(addr, end);
1072 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1073 return -ENOMEM;
1074 } while (pud++, addr = next, addr != end);
1075 return 0;
1078 int zeromap_page_range(struct vm_area_struct *vma,
1079 unsigned long addr, unsigned long size, pgprot_t prot)
1081 pgd_t *pgd;
1082 unsigned long next;
1083 unsigned long end = addr + size;
1084 struct mm_struct *mm = vma->vm_mm;
1085 int err;
1087 BUG_ON(addr >= end);
1088 pgd = pgd_offset(mm, addr);
1089 flush_cache_range(vma, addr, end);
1090 spin_lock(&mm->page_table_lock);
1091 do {
1092 next = pgd_addr_end(addr, end);
1093 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1094 if (err)
1095 break;
1096 } while (pgd++, addr = next, addr != end);
1097 spin_unlock(&mm->page_table_lock);
1098 return err;
1102 * maps a range of physical memory into the requested pages. the old
1103 * mappings are removed. any references to nonexistent pages results
1104 * in null mappings (currently treated as "copy-on-access")
1106 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1107 unsigned long addr, unsigned long end,
1108 unsigned long pfn, pgprot_t prot)
1110 pte_t *pte;
1112 pte = pte_alloc_map(mm, pmd, addr);
1113 if (!pte)
1114 return -ENOMEM;
1115 do {
1116 BUG_ON(!pte_none(*pte));
1117 if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn)))
1118 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1119 pfn++;
1120 } while (pte++, addr += PAGE_SIZE, addr != end);
1121 pte_unmap(pte - 1);
1122 return 0;
1125 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1126 unsigned long addr, unsigned long end,
1127 unsigned long pfn, pgprot_t prot)
1129 pmd_t *pmd;
1130 unsigned long next;
1132 pfn -= addr >> PAGE_SHIFT;
1133 pmd = pmd_alloc(mm, pud, addr);
1134 if (!pmd)
1135 return -ENOMEM;
1136 do {
1137 next = pmd_addr_end(addr, end);
1138 if (remap_pte_range(mm, pmd, addr, next,
1139 pfn + (addr >> PAGE_SHIFT), prot))
1140 return -ENOMEM;
1141 } while (pmd++, addr = next, addr != end);
1142 return 0;
1145 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1146 unsigned long addr, unsigned long end,
1147 unsigned long pfn, pgprot_t prot)
1149 pud_t *pud;
1150 unsigned long next;
1152 pfn -= addr >> PAGE_SHIFT;
1153 pud = pud_alloc(mm, pgd, addr);
1154 if (!pud)
1155 return -ENOMEM;
1156 do {
1157 next = pud_addr_end(addr, end);
1158 if (remap_pmd_range(mm, pud, addr, next,
1159 pfn + (addr >> PAGE_SHIFT), prot))
1160 return -ENOMEM;
1161 } while (pud++, addr = next, addr != end);
1162 return 0;
1165 /* Note: this is only safe if the mm semaphore is held when called. */
1166 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1167 unsigned long pfn, unsigned long size, pgprot_t prot)
1169 pgd_t *pgd;
1170 unsigned long next;
1171 unsigned long end = addr + PAGE_ALIGN(size);
1172 struct mm_struct *mm = vma->vm_mm;
1173 int err;
1176 * Physically remapped pages are special. Tell the
1177 * rest of the world about it:
1178 * VM_IO tells people not to look at these pages
1179 * (accesses can have side effects).
1180 * VM_RESERVED tells swapout not to try to touch
1181 * this region.
1183 vma->vm_flags |= VM_IO | VM_RESERVED;
1185 BUG_ON(addr >= end);
1186 pfn -= addr >> PAGE_SHIFT;
1187 pgd = pgd_offset(mm, addr);
1188 flush_cache_range(vma, addr, end);
1189 spin_lock(&mm->page_table_lock);
1190 do {
1191 next = pgd_addr_end(addr, end);
1192 err = remap_pud_range(mm, pgd, addr, next,
1193 pfn + (addr >> PAGE_SHIFT), prot);
1194 if (err)
1195 break;
1196 } while (pgd++, addr = next, addr != end);
1197 spin_unlock(&mm->page_table_lock);
1198 return err;
1200 EXPORT_SYMBOL(remap_pfn_range);
1203 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1204 * servicing faults for write access. In the normal case, do always want
1205 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1206 * that do not have writing enabled, when used by access_process_vm.
1208 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1210 if (likely(vma->vm_flags & VM_WRITE))
1211 pte = pte_mkwrite(pte);
1212 return pte;
1216 * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock
1218 static inline void break_cow(struct vm_area_struct * vma, struct page * new_page, unsigned long address,
1219 pte_t *page_table)
1221 pte_t entry;
1223 entry = maybe_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot)),
1224 vma);
1225 ptep_establish(vma, address, page_table, entry);
1226 update_mmu_cache(vma, address, entry);
1227 lazy_mmu_prot_update(entry);
1231 * This routine handles present pages, when users try to write
1232 * to a shared page. It is done by copying the page to a new address
1233 * and decrementing the shared-page counter for the old page.
1235 * Goto-purists beware: the only reason for goto's here is that it results
1236 * in better assembly code.. The "default" path will see no jumps at all.
1238 * Note that this routine assumes that the protection checks have been
1239 * done by the caller (the low-level page fault routine in most cases).
1240 * Thus we can safely just mark it writable once we've done any necessary
1241 * COW.
1243 * We also mark the page dirty at this point even though the page will
1244 * change only once the write actually happens. This avoids a few races,
1245 * and potentially makes it more efficient.
1247 * We hold the mm semaphore and the page_table_lock on entry and exit
1248 * with the page_table_lock released.
1250 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma,
1251 unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t pte)
1253 struct page *old_page, *new_page;
1254 unsigned long pfn = pte_pfn(pte);
1255 pte_t entry;
1256 int ret;
1258 if (unlikely(!pfn_valid(pfn))) {
1260 * This should really halt the system so it can be debugged or
1261 * at least the kernel stops what it's doing before it corrupts
1262 * data, but for the moment just pretend this is OOM.
1264 pte_unmap(page_table);
1265 printk(KERN_ERR "do_wp_page: bogus page at address %08lx\n",
1266 address);
1267 spin_unlock(&mm->page_table_lock);
1268 return VM_FAULT_OOM;
1270 old_page = pfn_to_page(pfn);
1272 if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1273 int reuse = can_share_swap_page(old_page);
1274 unlock_page(old_page);
1275 if (reuse) {
1276 flush_cache_page(vma, address, pfn);
1277 entry = maybe_mkwrite(pte_mkyoung(pte_mkdirty(pte)),
1278 vma);
1279 ptep_set_access_flags(vma, address, page_table, entry, 1);
1280 update_mmu_cache(vma, address, entry);
1281 lazy_mmu_prot_update(entry);
1282 pte_unmap(page_table);
1283 spin_unlock(&mm->page_table_lock);
1284 return VM_FAULT_MINOR|VM_FAULT_WRITE;
1287 pte_unmap(page_table);
1290 * Ok, we need to copy. Oh, well..
1292 if (!PageReserved(old_page))
1293 page_cache_get(old_page);
1294 spin_unlock(&mm->page_table_lock);
1296 if (unlikely(anon_vma_prepare(vma)))
1297 goto no_new_page;
1298 if (old_page == ZERO_PAGE(address)) {
1299 new_page = alloc_zeroed_user_highpage(vma, address);
1300 if (!new_page)
1301 goto no_new_page;
1302 } else {
1303 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1304 if (!new_page)
1305 goto no_new_page;
1306 copy_user_highpage(new_page, old_page, address);
1309 * Re-check the pte - we dropped the lock
1311 ret = VM_FAULT_MINOR;
1312 spin_lock(&mm->page_table_lock);
1313 page_table = pte_offset_map(pmd, address);
1314 if (likely(pte_same(*page_table, pte))) {
1315 if (PageAnon(old_page))
1316 dec_mm_counter(mm, anon_rss);
1317 if (PageReserved(old_page))
1318 inc_mm_counter(mm, rss);
1319 else
1320 page_remove_rmap(old_page);
1321 flush_cache_page(vma, address, pfn);
1322 break_cow(vma, new_page, address, page_table);
1323 lru_cache_add_active(new_page);
1324 page_add_anon_rmap(new_page, vma, address);
1326 /* Free the old page.. */
1327 new_page = old_page;
1328 ret |= VM_FAULT_WRITE;
1330 pte_unmap(page_table);
1331 page_cache_release(new_page);
1332 page_cache_release(old_page);
1333 spin_unlock(&mm->page_table_lock);
1334 return ret;
1336 no_new_page:
1337 page_cache_release(old_page);
1338 return VM_FAULT_OOM;
1342 * Helper functions for unmap_mapping_range().
1344 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1346 * We have to restart searching the prio_tree whenever we drop the lock,
1347 * since the iterator is only valid while the lock is held, and anyway
1348 * a later vma might be split and reinserted earlier while lock dropped.
1350 * The list of nonlinear vmas could be handled more efficiently, using
1351 * a placeholder, but handle it in the same way until a need is shown.
1352 * It is important to search the prio_tree before nonlinear list: a vma
1353 * may become nonlinear and be shifted from prio_tree to nonlinear list
1354 * while the lock is dropped; but never shifted from list to prio_tree.
1356 * In order to make forward progress despite restarting the search,
1357 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1358 * quickly skip it next time around. Since the prio_tree search only
1359 * shows us those vmas affected by unmapping the range in question, we
1360 * can't efficiently keep all vmas in step with mapping->truncate_count:
1361 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1362 * mapping->truncate_count and vma->vm_truncate_count are protected by
1363 * i_mmap_lock.
1365 * In order to make forward progress despite repeatedly restarting some
1366 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1367 * and restart from that address when we reach that vma again. It might
1368 * have been split or merged, shrunk or extended, but never shifted: so
1369 * restart_addr remains valid so long as it remains in the vma's range.
1370 * unmap_mapping_range forces truncate_count to leap over page-aligned
1371 * values so we can save vma's restart_addr in its truncate_count field.
1373 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1375 static void reset_vma_truncate_counts(struct address_space *mapping)
1377 struct vm_area_struct *vma;
1378 struct prio_tree_iter iter;
1380 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1381 vma->vm_truncate_count = 0;
1382 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1383 vma->vm_truncate_count = 0;
1386 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1387 unsigned long start_addr, unsigned long end_addr,
1388 struct zap_details *details)
1390 unsigned long restart_addr;
1391 int need_break;
1393 again:
1394 restart_addr = vma->vm_truncate_count;
1395 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1396 start_addr = restart_addr;
1397 if (start_addr >= end_addr) {
1398 /* Top of vma has been split off since last time */
1399 vma->vm_truncate_count = details->truncate_count;
1400 return 0;
1404 restart_addr = zap_page_range(vma, start_addr,
1405 end_addr - start_addr, details);
1408 * We cannot rely on the break test in unmap_vmas:
1409 * on the one hand, we don't want to restart our loop
1410 * just because that broke out for the page_table_lock;
1411 * on the other hand, it does no test when vma is small.
1413 need_break = need_resched() ||
1414 need_lockbreak(details->i_mmap_lock);
1416 if (restart_addr >= end_addr) {
1417 /* We have now completed this vma: mark it so */
1418 vma->vm_truncate_count = details->truncate_count;
1419 if (!need_break)
1420 return 0;
1421 } else {
1422 /* Note restart_addr in vma's truncate_count field */
1423 vma->vm_truncate_count = restart_addr;
1424 if (!need_break)
1425 goto again;
1428 spin_unlock(details->i_mmap_lock);
1429 cond_resched();
1430 spin_lock(details->i_mmap_lock);
1431 return -EINTR;
1434 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1435 struct zap_details *details)
1437 struct vm_area_struct *vma;
1438 struct prio_tree_iter iter;
1439 pgoff_t vba, vea, zba, zea;
1441 restart:
1442 vma_prio_tree_foreach(vma, &iter, root,
1443 details->first_index, details->last_index) {
1444 /* Skip quickly over those we have already dealt with */
1445 if (vma->vm_truncate_count == details->truncate_count)
1446 continue;
1448 vba = vma->vm_pgoff;
1449 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1450 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1451 zba = details->first_index;
1452 if (zba < vba)
1453 zba = vba;
1454 zea = details->last_index;
1455 if (zea > vea)
1456 zea = vea;
1458 if (unmap_mapping_range_vma(vma,
1459 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1460 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1461 details) < 0)
1462 goto restart;
1466 static inline void unmap_mapping_range_list(struct list_head *head,
1467 struct zap_details *details)
1469 struct vm_area_struct *vma;
1472 * In nonlinear VMAs there is no correspondence between virtual address
1473 * offset and file offset. So we must perform an exhaustive search
1474 * across *all* the pages in each nonlinear VMA, not just the pages
1475 * whose virtual address lies outside the file truncation point.
1477 restart:
1478 list_for_each_entry(vma, head, shared.vm_set.list) {
1479 /* Skip quickly over those we have already dealt with */
1480 if (vma->vm_truncate_count == details->truncate_count)
1481 continue;
1482 details->nonlinear_vma = vma;
1483 if (unmap_mapping_range_vma(vma, vma->vm_start,
1484 vma->vm_end, details) < 0)
1485 goto restart;
1490 * unmap_mapping_range - unmap the portion of all mmaps
1491 * in the specified address_space corresponding to the specified
1492 * page range in the underlying file.
1493 * @mapping: the address space containing mmaps to be unmapped.
1494 * @holebegin: byte in first page to unmap, relative to the start of
1495 * the underlying file. This will be rounded down to a PAGE_SIZE
1496 * boundary. Note that this is different from vmtruncate(), which
1497 * must keep the partial page. In contrast, we must get rid of
1498 * partial pages.
1499 * @holelen: size of prospective hole in bytes. This will be rounded
1500 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1501 * end of the file.
1502 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1503 * but 0 when invalidating pagecache, don't throw away private data.
1505 void unmap_mapping_range(struct address_space *mapping,
1506 loff_t const holebegin, loff_t const holelen, int even_cows)
1508 struct zap_details details;
1509 pgoff_t hba = holebegin >> PAGE_SHIFT;
1510 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1512 /* Check for overflow. */
1513 if (sizeof(holelen) > sizeof(hlen)) {
1514 long long holeend =
1515 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1516 if (holeend & ~(long long)ULONG_MAX)
1517 hlen = ULONG_MAX - hba + 1;
1520 details.check_mapping = even_cows? NULL: mapping;
1521 details.nonlinear_vma = NULL;
1522 details.first_index = hba;
1523 details.last_index = hba + hlen - 1;
1524 if (details.last_index < details.first_index)
1525 details.last_index = ULONG_MAX;
1526 details.i_mmap_lock = &mapping->i_mmap_lock;
1528 spin_lock(&mapping->i_mmap_lock);
1530 /* serialize i_size write against truncate_count write */
1531 smp_wmb();
1532 /* Protect against page faults, and endless unmapping loops */
1533 mapping->truncate_count++;
1535 * For archs where spin_lock has inclusive semantics like ia64
1536 * this smp_mb() will prevent to read pagetable contents
1537 * before the truncate_count increment is visible to
1538 * other cpus.
1540 smp_mb();
1541 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1542 if (mapping->truncate_count == 0)
1543 reset_vma_truncate_counts(mapping);
1544 mapping->truncate_count++;
1546 details.truncate_count = mapping->truncate_count;
1548 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1549 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1550 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1551 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1552 spin_unlock(&mapping->i_mmap_lock);
1554 EXPORT_SYMBOL(unmap_mapping_range);
1557 * Handle all mappings that got truncated by a "truncate()"
1558 * system call.
1560 * NOTE! We have to be ready to update the memory sharing
1561 * between the file and the memory map for a potential last
1562 * incomplete page. Ugly, but necessary.
1564 int vmtruncate(struct inode * inode, loff_t offset)
1566 struct address_space *mapping = inode->i_mapping;
1567 unsigned long limit;
1569 if (inode->i_size < offset)
1570 goto do_expand;
1572 * truncation of in-use swapfiles is disallowed - it would cause
1573 * subsequent swapout to scribble on the now-freed blocks.
1575 if (IS_SWAPFILE(inode))
1576 goto out_busy;
1577 i_size_write(inode, offset);
1578 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1579 truncate_inode_pages(mapping, offset);
1580 goto out_truncate;
1582 do_expand:
1583 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1584 if (limit != RLIM_INFINITY && offset > limit)
1585 goto out_sig;
1586 if (offset > inode->i_sb->s_maxbytes)
1587 goto out_big;
1588 i_size_write(inode, offset);
1590 out_truncate:
1591 if (inode->i_op && inode->i_op->truncate)
1592 inode->i_op->truncate(inode);
1593 return 0;
1594 out_sig:
1595 send_sig(SIGXFSZ, current, 0);
1596 out_big:
1597 return -EFBIG;
1598 out_busy:
1599 return -ETXTBSY;
1602 EXPORT_SYMBOL(vmtruncate);
1605 * Primitive swap readahead code. We simply read an aligned block of
1606 * (1 << page_cluster) entries in the swap area. This method is chosen
1607 * because it doesn't cost us any seek time. We also make sure to queue
1608 * the 'original' request together with the readahead ones...
1610 * This has been extended to use the NUMA policies from the mm triggering
1611 * the readahead.
1613 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1615 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1617 #ifdef CONFIG_NUMA
1618 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1619 #endif
1620 int i, num;
1621 struct page *new_page;
1622 unsigned long offset;
1625 * Get the number of handles we should do readahead io to.
1627 num = valid_swaphandles(entry, &offset);
1628 for (i = 0; i < num; offset++, i++) {
1629 /* Ok, do the async read-ahead now */
1630 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1631 offset), vma, addr);
1632 if (!new_page)
1633 break;
1634 page_cache_release(new_page);
1635 #ifdef CONFIG_NUMA
1637 * Find the next applicable VMA for the NUMA policy.
1639 addr += PAGE_SIZE;
1640 if (addr == 0)
1641 vma = NULL;
1642 if (vma) {
1643 if (addr >= vma->vm_end) {
1644 vma = next_vma;
1645 next_vma = vma ? vma->vm_next : NULL;
1647 if (vma && addr < vma->vm_start)
1648 vma = NULL;
1649 } else {
1650 if (next_vma && addr >= next_vma->vm_start) {
1651 vma = next_vma;
1652 next_vma = vma->vm_next;
1655 #endif
1657 lru_add_drain(); /* Push any new pages onto the LRU now */
1661 * We hold the mm semaphore and the page_table_lock on entry and
1662 * should release the pagetable lock on exit..
1664 static int do_swap_page(struct mm_struct * mm,
1665 struct vm_area_struct * vma, unsigned long address,
1666 pte_t *page_table, pmd_t *pmd, pte_t orig_pte, int write_access)
1668 struct page *page;
1669 swp_entry_t entry = pte_to_swp_entry(orig_pte);
1670 pte_t pte;
1671 int ret = VM_FAULT_MINOR;
1673 pte_unmap(page_table);
1674 spin_unlock(&mm->page_table_lock);
1675 page = lookup_swap_cache(entry);
1676 if (!page) {
1677 swapin_readahead(entry, address, vma);
1678 page = read_swap_cache_async(entry, vma, address);
1679 if (!page) {
1681 * Back out if somebody else faulted in this pte while
1682 * we released the page table lock.
1684 spin_lock(&mm->page_table_lock);
1685 page_table = pte_offset_map(pmd, address);
1686 if (likely(pte_same(*page_table, orig_pte)))
1687 ret = VM_FAULT_OOM;
1688 else
1689 ret = VM_FAULT_MINOR;
1690 pte_unmap(page_table);
1691 spin_unlock(&mm->page_table_lock);
1692 goto out;
1695 /* Had to read the page from swap area: Major fault */
1696 ret = VM_FAULT_MAJOR;
1697 inc_page_state(pgmajfault);
1698 grab_swap_token();
1701 mark_page_accessed(page);
1702 lock_page(page);
1705 * Back out if somebody else faulted in this pte while we
1706 * released the page table lock.
1708 spin_lock(&mm->page_table_lock);
1709 page_table = pte_offset_map(pmd, address);
1710 if (unlikely(!pte_same(*page_table, orig_pte))) {
1711 ret = VM_FAULT_MINOR;
1712 goto out_nomap;
1715 if (unlikely(!PageUptodate(page))) {
1716 ret = VM_FAULT_SIGBUS;
1717 goto out_nomap;
1720 /* The page isn't present yet, go ahead with the fault. */
1722 inc_mm_counter(mm, rss);
1723 pte = mk_pte(page, vma->vm_page_prot);
1724 if (write_access && can_share_swap_page(page)) {
1725 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1726 write_access = 0;
1729 flush_icache_page(vma, page);
1730 set_pte_at(mm, address, page_table, pte);
1731 page_add_anon_rmap(page, vma, address);
1733 swap_free(entry);
1734 if (vm_swap_full())
1735 remove_exclusive_swap_page(page);
1736 unlock_page(page);
1738 if (write_access) {
1739 if (do_wp_page(mm, vma, address,
1740 page_table, pmd, pte) == VM_FAULT_OOM)
1741 ret = VM_FAULT_OOM;
1742 goto out;
1745 /* No need to invalidate - it was non-present before */
1746 update_mmu_cache(vma, address, pte);
1747 lazy_mmu_prot_update(pte);
1748 pte_unmap(page_table);
1749 spin_unlock(&mm->page_table_lock);
1750 out:
1751 return ret;
1752 out_nomap:
1753 pte_unmap(page_table);
1754 spin_unlock(&mm->page_table_lock);
1755 unlock_page(page);
1756 page_cache_release(page);
1757 goto out;
1761 * We are called with the MM semaphore and page_table_lock
1762 * spinlock held to protect against concurrent faults in
1763 * multithreaded programs.
1765 static int
1766 do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1767 pte_t *page_table, pmd_t *pmd, int write_access,
1768 unsigned long addr)
1770 pte_t entry;
1772 /* Mapping of ZERO_PAGE - vm_page_prot is readonly */
1773 entry = mk_pte(ZERO_PAGE(addr), vma->vm_page_prot);
1775 /* ..except if it's a write access */
1776 if (write_access) {
1777 struct page *page;
1779 /* Allocate our own private page. */
1780 pte_unmap(page_table);
1781 spin_unlock(&mm->page_table_lock);
1783 if (unlikely(anon_vma_prepare(vma)))
1784 goto no_mem;
1785 page = alloc_zeroed_user_highpage(vma, addr);
1786 if (!page)
1787 goto no_mem;
1789 spin_lock(&mm->page_table_lock);
1790 page_table = pte_offset_map(pmd, addr);
1792 if (!pte_none(*page_table)) {
1793 pte_unmap(page_table);
1794 page_cache_release(page);
1795 spin_unlock(&mm->page_table_lock);
1796 goto out;
1798 inc_mm_counter(mm, rss);
1799 entry = maybe_mkwrite(pte_mkdirty(mk_pte(page,
1800 vma->vm_page_prot)),
1801 vma);
1802 lru_cache_add_active(page);
1803 SetPageReferenced(page);
1804 page_add_anon_rmap(page, vma, addr);
1807 set_pte_at(mm, addr, page_table, entry);
1808 pte_unmap(page_table);
1810 /* No need to invalidate - it was non-present before */
1811 update_mmu_cache(vma, addr, entry);
1812 lazy_mmu_prot_update(entry);
1813 spin_unlock(&mm->page_table_lock);
1814 out:
1815 return VM_FAULT_MINOR;
1816 no_mem:
1817 return VM_FAULT_OOM;
1821 * do_no_page() tries to create a new page mapping. It aggressively
1822 * tries to share with existing pages, but makes a separate copy if
1823 * the "write_access" parameter is true in order to avoid the next
1824 * page fault.
1826 * As this is called only for pages that do not currently exist, we
1827 * do not need to flush old virtual caches or the TLB.
1829 * This is called with the MM semaphore held and the page table
1830 * spinlock held. Exit with the spinlock released.
1832 static int
1833 do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1834 unsigned long address, int write_access, pte_t *page_table, pmd_t *pmd)
1836 struct page * new_page;
1837 struct address_space *mapping = NULL;
1838 pte_t entry;
1839 unsigned int sequence = 0;
1840 int ret = VM_FAULT_MINOR;
1841 int anon = 0;
1843 if (!vma->vm_ops || !vma->vm_ops->nopage)
1844 return do_anonymous_page(mm, vma, page_table,
1845 pmd, write_access, address);
1846 pte_unmap(page_table);
1847 spin_unlock(&mm->page_table_lock);
1849 if (vma->vm_file) {
1850 mapping = vma->vm_file->f_mapping;
1851 sequence = mapping->truncate_count;
1852 smp_rmb(); /* serializes i_size against truncate_count */
1854 retry:
1855 cond_resched();
1856 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
1858 * No smp_rmb is needed here as long as there's a full
1859 * spin_lock/unlock sequence inside the ->nopage callback
1860 * (for the pagecache lookup) that acts as an implicit
1861 * smp_mb() and prevents the i_size read to happen
1862 * after the next truncate_count read.
1865 /* no page was available -- either SIGBUS or OOM */
1866 if (new_page == NOPAGE_SIGBUS)
1867 return VM_FAULT_SIGBUS;
1868 if (new_page == NOPAGE_OOM)
1869 return VM_FAULT_OOM;
1872 * Should we do an early C-O-W break?
1874 if (write_access && !(vma->vm_flags & VM_SHARED)) {
1875 struct page *page;
1877 if (unlikely(anon_vma_prepare(vma)))
1878 goto oom;
1879 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1880 if (!page)
1881 goto oom;
1882 copy_user_highpage(page, new_page, address);
1883 page_cache_release(new_page);
1884 new_page = page;
1885 anon = 1;
1888 spin_lock(&mm->page_table_lock);
1890 * For a file-backed vma, someone could have truncated or otherwise
1891 * invalidated this page. If unmap_mapping_range got called,
1892 * retry getting the page.
1894 if (mapping && unlikely(sequence != mapping->truncate_count)) {
1895 sequence = mapping->truncate_count;
1896 spin_unlock(&mm->page_table_lock);
1897 page_cache_release(new_page);
1898 goto retry;
1900 page_table = pte_offset_map(pmd, address);
1903 * This silly early PAGE_DIRTY setting removes a race
1904 * due to the bad i386 page protection. But it's valid
1905 * for other architectures too.
1907 * Note that if write_access is true, we either now have
1908 * an exclusive copy of the page, or this is a shared mapping,
1909 * so we can make it writable and dirty to avoid having to
1910 * handle that later.
1912 /* Only go through if we didn't race with anybody else... */
1913 if (pte_none(*page_table)) {
1914 if (!PageReserved(new_page))
1915 inc_mm_counter(mm, rss);
1917 flush_icache_page(vma, new_page);
1918 entry = mk_pte(new_page, vma->vm_page_prot);
1919 if (write_access)
1920 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1921 set_pte_at(mm, address, page_table, entry);
1922 if (anon) {
1923 lru_cache_add_active(new_page);
1924 page_add_anon_rmap(new_page, vma, address);
1925 } else
1926 page_add_file_rmap(new_page);
1927 pte_unmap(page_table);
1928 } else {
1929 /* One of our sibling threads was faster, back out. */
1930 pte_unmap(page_table);
1931 page_cache_release(new_page);
1932 spin_unlock(&mm->page_table_lock);
1933 goto out;
1936 /* no need to invalidate: a not-present page shouldn't be cached */
1937 update_mmu_cache(vma, address, entry);
1938 lazy_mmu_prot_update(entry);
1939 spin_unlock(&mm->page_table_lock);
1940 out:
1941 return ret;
1942 oom:
1943 page_cache_release(new_page);
1944 ret = VM_FAULT_OOM;
1945 goto out;
1949 * Fault of a previously existing named mapping. Repopulate the pte
1950 * from the encoded file_pte if possible. This enables swappable
1951 * nonlinear vmas.
1953 static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma,
1954 unsigned long address, int write_access, pte_t *pte, pmd_t *pmd)
1956 unsigned long pgoff;
1957 int err;
1959 BUG_ON(!vma->vm_ops || !vma->vm_ops->nopage);
1961 * Fall back to the linear mapping if the fs does not support
1962 * ->populate:
1964 if (!vma->vm_ops->populate ||
1965 (write_access && !(vma->vm_flags & VM_SHARED))) {
1966 pte_clear(mm, address, pte);
1967 return do_no_page(mm, vma, address, write_access, pte, pmd);
1970 pgoff = pte_to_pgoff(*pte);
1972 pte_unmap(pte);
1973 spin_unlock(&mm->page_table_lock);
1975 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, vma->vm_page_prot, pgoff, 0);
1976 if (err == -ENOMEM)
1977 return VM_FAULT_OOM;
1978 if (err)
1979 return VM_FAULT_SIGBUS;
1980 return VM_FAULT_MAJOR;
1984 * These routines also need to handle stuff like marking pages dirty
1985 * and/or accessed for architectures that don't do it in hardware (most
1986 * RISC architectures). The early dirtying is also good on the i386.
1988 * There is also a hook called "update_mmu_cache()" that architectures
1989 * with external mmu caches can use to update those (ie the Sparc or
1990 * PowerPC hashed page tables that act as extended TLBs).
1992 * Note the "page_table_lock". It is to protect against kswapd removing
1993 * pages from under us. Note that kswapd only ever _removes_ pages, never
1994 * adds them. As such, once we have noticed that the page is not present,
1995 * we can drop the lock early.
1997 * The adding of pages is protected by the MM semaphore (which we hold),
1998 * so we don't need to worry about a page being suddenly been added into
1999 * our VM.
2001 * We enter with the pagetable spinlock held, we are supposed to
2002 * release it when done.
2004 static inline int handle_pte_fault(struct mm_struct *mm,
2005 struct vm_area_struct * vma, unsigned long address,
2006 int write_access, pte_t *pte, pmd_t *pmd)
2008 pte_t entry;
2010 entry = *pte;
2011 if (!pte_present(entry)) {
2013 * If it truly wasn't present, we know that kswapd
2014 * and the PTE updates will not touch it later. So
2015 * drop the lock.
2017 if (pte_none(entry))
2018 return do_no_page(mm, vma, address, write_access, pte, pmd);
2019 if (pte_file(entry))
2020 return do_file_page(mm, vma, address, write_access, pte, pmd);
2021 return do_swap_page(mm, vma, address, pte, pmd, entry, write_access);
2024 if (write_access) {
2025 if (!pte_write(entry))
2026 return do_wp_page(mm, vma, address, pte, pmd, entry);
2027 entry = pte_mkdirty(entry);
2029 entry = pte_mkyoung(entry);
2030 ptep_set_access_flags(vma, address, pte, entry, write_access);
2031 update_mmu_cache(vma, address, entry);
2032 lazy_mmu_prot_update(entry);
2033 pte_unmap(pte);
2034 spin_unlock(&mm->page_table_lock);
2035 return VM_FAULT_MINOR;
2039 * By the time we get here, we already hold the mm semaphore
2041 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma,
2042 unsigned long address, int write_access)
2044 pgd_t *pgd;
2045 pud_t *pud;
2046 pmd_t *pmd;
2047 pte_t *pte;
2049 __set_current_state(TASK_RUNNING);
2051 inc_page_state(pgfault);
2053 if (unlikely(is_vm_hugetlb_page(vma)))
2054 return hugetlb_fault(mm, vma, address, write_access);
2057 * We need the page table lock to synchronize with kswapd
2058 * and the SMP-safe atomic PTE updates.
2060 pgd = pgd_offset(mm, address);
2061 spin_lock(&mm->page_table_lock);
2063 pud = pud_alloc(mm, pgd, address);
2064 if (!pud)
2065 goto oom;
2067 pmd = pmd_alloc(mm, pud, address);
2068 if (!pmd)
2069 goto oom;
2071 pte = pte_alloc_map(mm, pmd, address);
2072 if (!pte)
2073 goto oom;
2075 return handle_pte_fault(mm, vma, address, write_access, pte, pmd);
2077 oom:
2078 spin_unlock(&mm->page_table_lock);
2079 return VM_FAULT_OOM;
2082 #ifndef __PAGETABLE_PUD_FOLDED
2084 * Allocate page upper directory.
2086 * We've already handled the fast-path in-line, and we own the
2087 * page table lock.
2089 pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2091 pud_t *new;
2093 spin_unlock(&mm->page_table_lock);
2094 new = pud_alloc_one(mm, address);
2095 spin_lock(&mm->page_table_lock);
2096 if (!new)
2097 return NULL;
2100 * Because we dropped the lock, we should re-check the
2101 * entry, as somebody else could have populated it..
2103 if (pgd_present(*pgd)) {
2104 pud_free(new);
2105 goto out;
2107 pgd_populate(mm, pgd, new);
2108 out:
2109 return pud_offset(pgd, address);
2111 #endif /* __PAGETABLE_PUD_FOLDED */
2113 #ifndef __PAGETABLE_PMD_FOLDED
2115 * Allocate page middle directory.
2117 * We've already handled the fast-path in-line, and we own the
2118 * page table lock.
2120 pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2122 pmd_t *new;
2124 spin_unlock(&mm->page_table_lock);
2125 new = pmd_alloc_one(mm, address);
2126 spin_lock(&mm->page_table_lock);
2127 if (!new)
2128 return NULL;
2131 * Because we dropped the lock, we should re-check the
2132 * entry, as somebody else could have populated it..
2134 #ifndef __ARCH_HAS_4LEVEL_HACK
2135 if (pud_present(*pud)) {
2136 pmd_free(new);
2137 goto out;
2139 pud_populate(mm, pud, new);
2140 #else
2141 if (pgd_present(*pud)) {
2142 pmd_free(new);
2143 goto out;
2145 pgd_populate(mm, pud, new);
2146 #endif /* __ARCH_HAS_4LEVEL_HACK */
2148 out:
2149 return pmd_offset(pud, address);
2151 #endif /* __PAGETABLE_PMD_FOLDED */
2153 int make_pages_present(unsigned long addr, unsigned long end)
2155 int ret, len, write;
2156 struct vm_area_struct * vma;
2158 vma = find_vma(current->mm, addr);
2159 if (!vma)
2160 return -1;
2161 write = (vma->vm_flags & VM_WRITE) != 0;
2162 if (addr >= end)
2163 BUG();
2164 if (end > vma->vm_end)
2165 BUG();
2166 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2167 ret = get_user_pages(current, current->mm, addr,
2168 len, write, 0, NULL, NULL);
2169 if (ret < 0)
2170 return ret;
2171 return ret == len ? 0 : -1;
2175 * Map a vmalloc()-space virtual address to the physical page.
2177 struct page * vmalloc_to_page(void * vmalloc_addr)
2179 unsigned long addr = (unsigned long) vmalloc_addr;
2180 struct page *page = NULL;
2181 pgd_t *pgd = pgd_offset_k(addr);
2182 pud_t *pud;
2183 pmd_t *pmd;
2184 pte_t *ptep, pte;
2186 if (!pgd_none(*pgd)) {
2187 pud = pud_offset(pgd, addr);
2188 if (!pud_none(*pud)) {
2189 pmd = pmd_offset(pud, addr);
2190 if (!pmd_none(*pmd)) {
2191 ptep = pte_offset_map(pmd, addr);
2192 pte = *ptep;
2193 if (pte_present(pte))
2194 page = pte_page(pte);
2195 pte_unmap(ptep);
2199 return page;
2202 EXPORT_SYMBOL(vmalloc_to_page);
2205 * Map a vmalloc()-space virtual address to the physical page frame number.
2207 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2209 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2212 EXPORT_SYMBOL(vmalloc_to_pfn);
2215 * update_mem_hiwater
2216 * - update per process rss and vm high water data
2218 void update_mem_hiwater(struct task_struct *tsk)
2220 if (tsk->mm) {
2221 unsigned long rss = get_mm_counter(tsk->mm, rss);
2223 if (tsk->mm->hiwater_rss < rss)
2224 tsk->mm->hiwater_rss = rss;
2225 if (tsk->mm->hiwater_vm < tsk->mm->total_vm)
2226 tsk->mm->hiwater_vm = tsk->mm->total_vm;
2230 #if !defined(__HAVE_ARCH_GATE_AREA)
2232 #if defined(AT_SYSINFO_EHDR)
2233 static struct vm_area_struct gate_vma;
2235 static int __init gate_vma_init(void)
2237 gate_vma.vm_mm = NULL;
2238 gate_vma.vm_start = FIXADDR_USER_START;
2239 gate_vma.vm_end = FIXADDR_USER_END;
2240 gate_vma.vm_page_prot = PAGE_READONLY;
2241 gate_vma.vm_flags = 0;
2242 return 0;
2244 __initcall(gate_vma_init);
2245 #endif
2247 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2249 #ifdef AT_SYSINFO_EHDR
2250 return &gate_vma;
2251 #else
2252 return NULL;
2253 #endif
2256 int in_gate_area_no_task(unsigned long addr)
2258 #ifdef AT_SYSINFO_EHDR
2259 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2260 return 1;
2261 #endif
2262 return 0;
2265 #endif /* __HAVE_ARCH_GATE_AREA */