2 * Intel IXP4xx NPE-C crypto driver
4 * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of version 2 of the GNU General Public License
8 * as published by the Free Software Foundation.
12 #include <linux/platform_device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmapool.h>
15 #include <linux/crypto.h>
16 #include <linux/kernel.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
21 #include <crypto/ctr.h>
22 #include <crypto/des.h>
23 #include <crypto/aes.h>
24 #include <crypto/sha.h>
25 #include <crypto/algapi.h>
26 #include <crypto/aead.h>
27 #include <crypto/authenc.h>
28 #include <crypto/scatterwalk.h>
31 #include <mach/qmgr.h>
35 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
36 #define NPE_CTX_LEN 80
37 #define AES_BLOCK128 16
39 #define NPE_OP_HASH_VERIFY 0x01
40 #define NPE_OP_CCM_ENABLE 0x04
41 #define NPE_OP_CRYPT_ENABLE 0x08
42 #define NPE_OP_HASH_ENABLE 0x10
43 #define NPE_OP_NOT_IN_PLACE 0x20
44 #define NPE_OP_HMAC_DISABLE 0x40
45 #define NPE_OP_CRYPT_ENCRYPT 0x80
47 #define NPE_OP_CCM_GEN_MIC 0xcc
48 #define NPE_OP_HASH_GEN_ICV 0x50
49 #define NPE_OP_ENC_GEN_KEY 0xc9
51 #define MOD_ECB 0x0000
52 #define MOD_CTR 0x1000
53 #define MOD_CBC_ENC 0x2000
54 #define MOD_CBC_DEC 0x3000
55 #define MOD_CCM_ENC 0x4000
56 #define MOD_CCM_DEC 0x5000
62 #define CIPH_DECR 0x0000
63 #define CIPH_ENCR 0x0400
65 #define MOD_DES 0x0000
66 #define MOD_TDEA2 0x0100
67 #define MOD_3DES 0x0200
68 #define MOD_AES 0x0800
69 #define MOD_AES128 (0x0800 | KEYLEN_128)
70 #define MOD_AES192 (0x0900 | KEYLEN_192)
71 #define MOD_AES256 (0x0a00 | KEYLEN_256)
74 #define NPE_ID 2 /* NPE C */
76 /* Space for registering when the first
77 * NPE_QLEN crypt_ctl are busy */
78 #define NPE_QLEN_TOTAL 64
83 #define CTL_FLAG_UNUSED 0x0000
84 #define CTL_FLAG_USED 0x1000
85 #define CTL_FLAG_PERFORM_ABLK 0x0001
86 #define CTL_FLAG_GEN_ICV 0x0002
87 #define CTL_FLAG_GEN_REVAES 0x0004
88 #define CTL_FLAG_PERFORM_AEAD 0x0008
89 #define CTL_FLAG_MASK 0x000f
91 #define HMAC_IPAD_VALUE 0x36
92 #define HMAC_OPAD_VALUE 0x5C
93 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
95 #define MD5_DIGEST_SIZE 16
103 struct buffer_desc
*next
;
107 u8 mode
; /* NPE_OP_* operation mode */
110 u8 iv
[MAX_IVLEN
]; /* IV for CBC mode or CTR IV for CTR mode */
111 u32 icv_rev_aes
; /* icv or rev aes */
114 u16 auth_offs
; /* Authentication start offset */
115 u16 auth_len
; /* Authentication data length */
116 u16 crypt_offs
; /* Cryption start offset */
117 u16 crypt_len
; /* Cryption data length */
118 u32 aadAddr
; /* Additional Auth Data Addr for CCM mode */
119 u32 crypto_ctx
; /* NPE Crypto Param structure address */
121 /* Used by Host: 4*4 bytes*/
124 struct ablkcipher_request
*ablk_req
;
125 struct aead_request
*aead_req
;
126 struct crypto_tfm
*tfm
;
128 struct buffer_desc
*regist_buf
;
133 struct buffer_desc
*src
;
134 struct buffer_desc
*dst
;
140 struct buffer_desc
*buffer
;
141 unsigned short assoc_nents
;
142 unsigned short src_nents
;
143 struct scatterlist ivlist
;
144 /* used when the hmac is not on one sg entry */
149 struct ix_hash_algo
{
155 unsigned char *npe_ctx
;
156 dma_addr_t npe_ctx_phys
;
162 struct ix_sa_dir encrypt
;
163 struct ix_sa_dir decrypt
;
165 u8 authkey
[MAX_KEYLEN
];
167 u8 enckey
[MAX_KEYLEN
];
169 u8 nonce
[CTR_RFC3686_NONCE_SIZE
];
171 atomic_t configuring
;
172 struct completion completion
;
176 struct crypto_alg crypto
;
177 const struct ix_hash_algo
*hash
;
184 static const struct ix_hash_algo hash_alg_md5
= {
185 .cfgword
= 0xAA010004,
186 .icv
= "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
187 "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
189 static const struct ix_hash_algo hash_alg_sha1
= {
190 .cfgword
= 0x00000005,
191 .icv
= "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
192 "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
195 static struct npe
*npe_c
;
196 static struct dma_pool
*buffer_pool
= NULL
;
197 static struct dma_pool
*ctx_pool
= NULL
;
199 static struct crypt_ctl
*crypt_virt
= NULL
;
200 static dma_addr_t crypt_phys
;
202 static int support_aes
= 1;
204 static void dev_release(struct device
*dev
)
209 #define DRIVER_NAME "ixp4xx_crypto"
210 static struct platform_device pseudo_dev
= {
215 .coherent_dma_mask
= DMA_32BIT_MASK
,
216 .release
= dev_release
,
220 static struct device
*dev
= &pseudo_dev
.dev
;
222 static inline dma_addr_t
crypt_virt2phys(struct crypt_ctl
*virt
)
224 return crypt_phys
+ (virt
- crypt_virt
) * sizeof(struct crypt_ctl
);
227 static inline struct crypt_ctl
*crypt_phys2virt(dma_addr_t phys
)
229 return crypt_virt
+ (phys
- crypt_phys
) / sizeof(struct crypt_ctl
);
232 static inline u32
cipher_cfg_enc(struct crypto_tfm
*tfm
)
234 return container_of(tfm
->__crt_alg
, struct ixp_alg
,crypto
)->cfg_enc
;
237 static inline u32
cipher_cfg_dec(struct crypto_tfm
*tfm
)
239 return container_of(tfm
->__crt_alg
, struct ixp_alg
,crypto
)->cfg_dec
;
242 static inline const struct ix_hash_algo
*ix_hash(struct crypto_tfm
*tfm
)
244 return container_of(tfm
->__crt_alg
, struct ixp_alg
, crypto
)->hash
;
247 static int setup_crypt_desc(void)
249 BUILD_BUG_ON(sizeof(struct crypt_ctl
) != 64);
250 crypt_virt
= dma_alloc_coherent(dev
,
251 NPE_QLEN
* sizeof(struct crypt_ctl
),
252 &crypt_phys
, GFP_KERNEL
);
255 memset(crypt_virt
, 0, NPE_QLEN
* sizeof(struct crypt_ctl
));
259 static spinlock_t desc_lock
;
260 static struct crypt_ctl
*get_crypt_desc(void)
266 spin_lock_irqsave(&desc_lock
, flags
);
268 if (unlikely(!crypt_virt
))
270 if (unlikely(!crypt_virt
)) {
271 spin_unlock_irqrestore(&desc_lock
, flags
);
275 if (crypt_virt
[i
].ctl_flags
== CTL_FLAG_UNUSED
) {
276 if (++idx
>= NPE_QLEN
)
278 crypt_virt
[i
].ctl_flags
= CTL_FLAG_USED
;
279 spin_unlock_irqrestore(&desc_lock
, flags
);
280 return crypt_virt
+i
;
282 spin_unlock_irqrestore(&desc_lock
, flags
);
287 static spinlock_t emerg_lock
;
288 static struct crypt_ctl
*get_crypt_desc_emerg(void)
291 static int idx
= NPE_QLEN
;
292 struct crypt_ctl
*desc
;
295 desc
= get_crypt_desc();
298 if (unlikely(!crypt_virt
))
301 spin_lock_irqsave(&emerg_lock
, flags
);
303 if (crypt_virt
[i
].ctl_flags
== CTL_FLAG_UNUSED
) {
304 if (++idx
>= NPE_QLEN_TOTAL
)
306 crypt_virt
[i
].ctl_flags
= CTL_FLAG_USED
;
307 spin_unlock_irqrestore(&emerg_lock
, flags
);
308 return crypt_virt
+i
;
310 spin_unlock_irqrestore(&emerg_lock
, flags
);
315 static void free_buf_chain(struct buffer_desc
*buf
, u32 phys
)
318 struct buffer_desc
*buf1
;
322 phys1
= buf
->phys_next
;
323 dma_pool_free(buffer_pool
, buf
, phys
);
329 static struct tasklet_struct crypto_done_tasklet
;
331 static void finish_scattered_hmac(struct crypt_ctl
*crypt
)
333 struct aead_request
*req
= crypt
->data
.aead_req
;
334 struct aead_ctx
*req_ctx
= aead_request_ctx(req
);
335 struct crypto_aead
*tfm
= crypto_aead_reqtfm(req
);
336 int authsize
= crypto_aead_authsize(tfm
);
337 int decryptlen
= req
->cryptlen
- authsize
;
339 if (req_ctx
->encrypt
) {
340 scatterwalk_map_and_copy(req_ctx
->hmac_virt
,
341 req
->src
, decryptlen
, authsize
, 1);
343 dma_pool_free(buffer_pool
, req_ctx
->hmac_virt
, crypt
->icv_rev_aes
);
346 static void one_packet(dma_addr_t phys
)
348 struct crypt_ctl
*crypt
;
351 enum dma_data_direction src_direction
= DMA_BIDIRECTIONAL
;
353 failed
= phys
& 0x1 ? -EBADMSG
: 0;
355 crypt
= crypt_phys2virt(phys
);
357 switch (crypt
->ctl_flags
& CTL_FLAG_MASK
) {
358 case CTL_FLAG_PERFORM_AEAD
: {
359 struct aead_request
*req
= crypt
->data
.aead_req
;
360 struct aead_ctx
*req_ctx
= aead_request_ctx(req
);
361 dma_unmap_sg(dev
, req
->assoc
, req_ctx
->assoc_nents
,
363 dma_unmap_sg(dev
, &req_ctx
->ivlist
, 1, DMA_BIDIRECTIONAL
);
364 dma_unmap_sg(dev
, req
->src
, req_ctx
->src_nents
,
367 free_buf_chain(req_ctx
->buffer
, crypt
->src_buf
);
368 if (req_ctx
->hmac_virt
) {
369 finish_scattered_hmac(crypt
);
371 req
->base
.complete(&req
->base
, failed
);
374 case CTL_FLAG_PERFORM_ABLK
: {
375 struct ablkcipher_request
*req
= crypt
->data
.ablk_req
;
376 struct ablk_ctx
*req_ctx
= ablkcipher_request_ctx(req
);
379 nents
= req_ctx
->dst_nents
;
380 dma_unmap_sg(dev
, req
->dst
, nents
, DMA_FROM_DEVICE
);
381 free_buf_chain(req_ctx
->dst
, crypt
->dst_buf
);
382 src_direction
= DMA_TO_DEVICE
;
384 nents
= req_ctx
->src_nents
;
385 dma_unmap_sg(dev
, req
->src
, nents
, src_direction
);
386 free_buf_chain(req_ctx
->src
, crypt
->src_buf
);
387 req
->base
.complete(&req
->base
, failed
);
390 case CTL_FLAG_GEN_ICV
:
391 ctx
= crypto_tfm_ctx(crypt
->data
.tfm
);
392 dma_pool_free(ctx_pool
, crypt
->regist_ptr
,
393 crypt
->regist_buf
->phys_addr
);
394 dma_pool_free(buffer_pool
, crypt
->regist_buf
, crypt
->src_buf
);
395 if (atomic_dec_and_test(&ctx
->configuring
))
396 complete(&ctx
->completion
);
398 case CTL_FLAG_GEN_REVAES
:
399 ctx
= crypto_tfm_ctx(crypt
->data
.tfm
);
400 *(u32
*)ctx
->decrypt
.npe_ctx
&= cpu_to_be32(~CIPH_ENCR
);
401 if (atomic_dec_and_test(&ctx
->configuring
))
402 complete(&ctx
->completion
);
407 crypt
->ctl_flags
= CTL_FLAG_UNUSED
;
410 static void irqhandler(void *_unused
)
412 tasklet_schedule(&crypto_done_tasklet
);
415 static void crypto_done_action(unsigned long arg
)
420 dma_addr_t phys
= qmgr_get_entry(RECV_QID
);
425 tasklet_schedule(&crypto_done_tasklet
);
428 static int init_ixp_crypto(void)
432 if (! ( ~(*IXP4XX_EXP_CFG2
) & (IXP4XX_FEATURE_HASH
|
433 IXP4XX_FEATURE_AES
| IXP4XX_FEATURE_DES
))) {
434 printk(KERN_ERR
"ixp_crypto: No HW crypto available\n");
437 npe_c
= npe_request(NPE_ID
);
441 if (!npe_running(npe_c
)) {
442 npe_load_firmware(npe_c
, npe_name(npe_c
), dev
);
445 /* buffer_pool will also be used to sometimes store the hmac,
446 * so assure it is large enough
448 BUILD_BUG_ON(SHA1_DIGEST_SIZE
> sizeof(struct buffer_desc
));
449 buffer_pool
= dma_pool_create("buffer", dev
,
450 sizeof(struct buffer_desc
), 32, 0);
455 ctx_pool
= dma_pool_create("context", dev
,
460 ret
= qmgr_request_queue(SEND_QID
, NPE_QLEN_TOTAL
, 0, 0);
463 ret
= qmgr_request_queue(RECV_QID
, NPE_QLEN
, 0, 0);
465 qmgr_release_queue(SEND_QID
);
468 qmgr_set_irq(RECV_QID
, QUEUE_IRQ_SRC_NOT_EMPTY
, irqhandler
, NULL
);
469 tasklet_init(&crypto_done_tasklet
, crypto_done_action
, 0);
471 qmgr_enable_irq(RECV_QID
);
475 dma_pool_destroy(ctx_pool
);
477 dma_pool_destroy(buffer_pool
);
482 static void release_ixp_crypto(void)
484 qmgr_disable_irq(RECV_QID
);
485 tasklet_kill(&crypto_done_tasklet
);
487 qmgr_release_queue(SEND_QID
);
488 qmgr_release_queue(RECV_QID
);
490 dma_pool_destroy(ctx_pool
);
491 dma_pool_destroy(buffer_pool
);
496 dma_free_coherent(dev
,
497 NPE_QLEN_TOTAL
* sizeof( struct crypt_ctl
),
498 crypt_virt
, crypt_phys
);
503 static void reset_sa_dir(struct ix_sa_dir
*dir
)
505 memset(dir
->npe_ctx
, 0, NPE_CTX_LEN
);
506 dir
->npe_ctx_idx
= 0;
510 static int init_sa_dir(struct ix_sa_dir
*dir
)
512 dir
->npe_ctx
= dma_pool_alloc(ctx_pool
, GFP_KERNEL
, &dir
->npe_ctx_phys
);
520 static void free_sa_dir(struct ix_sa_dir
*dir
)
522 memset(dir
->npe_ctx
, 0, NPE_CTX_LEN
);
523 dma_pool_free(ctx_pool
, dir
->npe_ctx
, dir
->npe_ctx_phys
);
526 static int init_tfm(struct crypto_tfm
*tfm
)
528 struct ixp_ctx
*ctx
= crypto_tfm_ctx(tfm
);
531 atomic_set(&ctx
->configuring
, 0);
532 ret
= init_sa_dir(&ctx
->encrypt
);
535 ret
= init_sa_dir(&ctx
->decrypt
);
537 free_sa_dir(&ctx
->encrypt
);
542 static int init_tfm_ablk(struct crypto_tfm
*tfm
)
544 tfm
->crt_ablkcipher
.reqsize
= sizeof(struct ablk_ctx
);
545 return init_tfm(tfm
);
548 static int init_tfm_aead(struct crypto_tfm
*tfm
)
550 tfm
->crt_aead
.reqsize
= sizeof(struct aead_ctx
);
551 return init_tfm(tfm
);
554 static void exit_tfm(struct crypto_tfm
*tfm
)
556 struct ixp_ctx
*ctx
= crypto_tfm_ctx(tfm
);
557 free_sa_dir(&ctx
->encrypt
);
558 free_sa_dir(&ctx
->decrypt
);
561 static int register_chain_var(struct crypto_tfm
*tfm
, u8 xpad
, u32 target
,
562 int init_len
, u32 ctx_addr
, const u8
*key
, int key_len
)
564 struct ixp_ctx
*ctx
= crypto_tfm_ctx(tfm
);
565 struct crypt_ctl
*crypt
;
566 struct buffer_desc
*buf
;
569 u32 pad_phys
, buf_phys
;
571 BUILD_BUG_ON(NPE_CTX_LEN
< HMAC_PAD_BLOCKLEN
);
572 pad
= dma_pool_alloc(ctx_pool
, GFP_KERNEL
, &pad_phys
);
575 buf
= dma_pool_alloc(buffer_pool
, GFP_KERNEL
, &buf_phys
);
577 dma_pool_free(ctx_pool
, pad
, pad_phys
);
580 crypt
= get_crypt_desc_emerg();
582 dma_pool_free(ctx_pool
, pad
, pad_phys
);
583 dma_pool_free(buffer_pool
, buf
, buf_phys
);
587 memcpy(pad
, key
, key_len
);
588 memset(pad
+ key_len
, 0, HMAC_PAD_BLOCKLEN
- key_len
);
589 for (i
= 0; i
< HMAC_PAD_BLOCKLEN
; i
++) {
593 crypt
->data
.tfm
= tfm
;
594 crypt
->regist_ptr
= pad
;
595 crypt
->regist_buf
= buf
;
597 crypt
->auth_offs
= 0;
598 crypt
->auth_len
= HMAC_PAD_BLOCKLEN
;
599 crypt
->crypto_ctx
= ctx_addr
;
600 crypt
->src_buf
= buf_phys
;
601 crypt
->icv_rev_aes
= target
;
602 crypt
->mode
= NPE_OP_HASH_GEN_ICV
;
603 crypt
->init_len
= init_len
;
604 crypt
->ctl_flags
|= CTL_FLAG_GEN_ICV
;
607 buf
->buf_len
= HMAC_PAD_BLOCKLEN
;
609 buf
->phys_addr
= pad_phys
;
611 atomic_inc(&ctx
->configuring
);
612 qmgr_put_entry(SEND_QID
, crypt_virt2phys(crypt
));
613 BUG_ON(qmgr_stat_overflow(SEND_QID
));
617 static int setup_auth(struct crypto_tfm
*tfm
, int encrypt
, unsigned authsize
,
618 const u8
*key
, int key_len
, unsigned digest_len
)
620 u32 itarget
, otarget
, npe_ctx_addr
;
621 unsigned char *cinfo
;
622 int init_len
, ret
= 0;
624 struct ix_sa_dir
*dir
;
625 struct ixp_ctx
*ctx
= crypto_tfm_ctx(tfm
);
626 const struct ix_hash_algo
*algo
;
628 dir
= encrypt
? &ctx
->encrypt
: &ctx
->decrypt
;
629 cinfo
= dir
->npe_ctx
+ dir
->npe_ctx_idx
;
632 /* write cfg word to cryptinfo */
633 cfgword
= algo
->cfgword
| ( authsize
<< 6); /* (authsize/4) << 8 */
634 *(u32
*)cinfo
= cpu_to_be32(cfgword
);
635 cinfo
+= sizeof(cfgword
);
637 /* write ICV to cryptinfo */
638 memcpy(cinfo
, algo
->icv
, digest_len
);
641 itarget
= dir
->npe_ctx_phys
+ dir
->npe_ctx_idx
642 + sizeof(algo
->cfgword
);
643 otarget
= itarget
+ digest_len
;
644 init_len
= cinfo
- (dir
->npe_ctx
+ dir
->npe_ctx_idx
);
645 npe_ctx_addr
= dir
->npe_ctx_phys
+ dir
->npe_ctx_idx
;
647 dir
->npe_ctx_idx
+= init_len
;
648 dir
->npe_mode
|= NPE_OP_HASH_ENABLE
;
651 dir
->npe_mode
|= NPE_OP_HASH_VERIFY
;
653 ret
= register_chain_var(tfm
, HMAC_OPAD_VALUE
, otarget
,
654 init_len
, npe_ctx_addr
, key
, key_len
);
657 return register_chain_var(tfm
, HMAC_IPAD_VALUE
, itarget
,
658 init_len
, npe_ctx_addr
, key
, key_len
);
661 static int gen_rev_aes_key(struct crypto_tfm
*tfm
)
663 struct crypt_ctl
*crypt
;
664 struct ixp_ctx
*ctx
= crypto_tfm_ctx(tfm
);
665 struct ix_sa_dir
*dir
= &ctx
->decrypt
;
667 crypt
= get_crypt_desc_emerg();
671 *(u32
*)dir
->npe_ctx
|= cpu_to_be32(CIPH_ENCR
);
673 crypt
->data
.tfm
= tfm
;
674 crypt
->crypt_offs
= 0;
675 crypt
->crypt_len
= AES_BLOCK128
;
677 crypt
->crypto_ctx
= dir
->npe_ctx_phys
;
678 crypt
->icv_rev_aes
= dir
->npe_ctx_phys
+ sizeof(u32
);
679 crypt
->mode
= NPE_OP_ENC_GEN_KEY
;
680 crypt
->init_len
= dir
->npe_ctx_idx
;
681 crypt
->ctl_flags
|= CTL_FLAG_GEN_REVAES
;
683 atomic_inc(&ctx
->configuring
);
684 qmgr_put_entry(SEND_QID
, crypt_virt2phys(crypt
));
685 BUG_ON(qmgr_stat_overflow(SEND_QID
));
689 static int setup_cipher(struct crypto_tfm
*tfm
, int encrypt
,
690 const u8
*key
, int key_len
)
695 struct ix_sa_dir
*dir
;
696 struct ixp_ctx
*ctx
= crypto_tfm_ctx(tfm
);
697 u32
*flags
= &tfm
->crt_flags
;
699 dir
= encrypt
? &ctx
->encrypt
: &ctx
->decrypt
;
700 cinfo
= dir
->npe_ctx
;
703 cipher_cfg
= cipher_cfg_enc(tfm
);
704 dir
->npe_mode
|= NPE_OP_CRYPT_ENCRYPT
;
706 cipher_cfg
= cipher_cfg_dec(tfm
);
708 if (cipher_cfg
& MOD_AES
) {
710 case 16: keylen_cfg
= MOD_AES128
| KEYLEN_128
; break;
711 case 24: keylen_cfg
= MOD_AES192
| KEYLEN_192
; break;
712 case 32: keylen_cfg
= MOD_AES256
| KEYLEN_256
; break;
714 *flags
|= CRYPTO_TFM_RES_BAD_KEY_LEN
;
717 cipher_cfg
|= keylen_cfg
;
718 } else if (cipher_cfg
& MOD_3DES
) {
719 const u32
*K
= (const u32
*)key
;
720 if (unlikely(!((K
[0] ^ K
[2]) | (K
[1] ^ K
[3])) ||
721 !((K
[2] ^ K
[4]) | (K
[3] ^ K
[5]))))
723 *flags
|= CRYPTO_TFM_RES_BAD_KEY_SCHED
;
727 u32 tmp
[DES_EXPKEY_WORDS
];
728 if (des_ekey(tmp
, key
) == 0) {
729 *flags
|= CRYPTO_TFM_RES_WEAK_KEY
;
732 /* write cfg word to cryptinfo */
733 *(u32
*)cinfo
= cpu_to_be32(cipher_cfg
);
734 cinfo
+= sizeof(cipher_cfg
);
736 /* write cipher key to cryptinfo */
737 memcpy(cinfo
, key
, key_len
);
738 /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
739 if (key_len
< DES3_EDE_KEY_SIZE
&& !(cipher_cfg
& MOD_AES
)) {
740 memset(cinfo
+ key_len
, 0, DES3_EDE_KEY_SIZE
-key_len
);
741 key_len
= DES3_EDE_KEY_SIZE
;
743 dir
->npe_ctx_idx
= sizeof(cipher_cfg
) + key_len
;
744 dir
->npe_mode
|= NPE_OP_CRYPT_ENABLE
;
745 if ((cipher_cfg
& MOD_AES
) && !encrypt
) {
746 return gen_rev_aes_key(tfm
);
751 static int count_sg(struct scatterlist
*sg
, int nbytes
)
754 for (i
= 0; nbytes
> 0; i
++, sg
= sg_next(sg
))
755 nbytes
-= sg
->length
;
759 static struct buffer_desc
*chainup_buffers(struct scatterlist
*sg
,
760 unsigned nbytes
, struct buffer_desc
*buf
, gfp_t flags
)
765 struct buffer_desc
*next_buf
;
767 unsigned len
= min(nbytes
, sg_dma_len(sg
));
771 if (!buf
->phys_addr
) {
772 buf
->phys_addr
= sg_dma_address(sg
);
778 /* Two consecutive chunks on one page may be handled by the old
779 * buffer descriptor, increased by the length of the new one
781 if (sg_dma_address(sg
) == buf
->phys_addr
+ buf
->buf_len
) {
785 next_buf
= dma_pool_alloc(buffer_pool
, flags
, &next_buf_phys
);
788 buf
->next
= next_buf
;
789 buf
->phys_next
= next_buf_phys
;
794 buf
->phys_addr
= sg_dma_address(sg
);
804 static int ablk_setkey(struct crypto_ablkcipher
*tfm
, const u8
*key
,
805 unsigned int key_len
)
807 struct ixp_ctx
*ctx
= crypto_ablkcipher_ctx(tfm
);
808 u32
*flags
= &tfm
->base
.crt_flags
;
811 init_completion(&ctx
->completion
);
812 atomic_inc(&ctx
->configuring
);
814 reset_sa_dir(&ctx
->encrypt
);
815 reset_sa_dir(&ctx
->decrypt
);
817 ctx
->encrypt
.npe_mode
= NPE_OP_HMAC_DISABLE
;
818 ctx
->decrypt
.npe_mode
= NPE_OP_HMAC_DISABLE
;
820 ret
= setup_cipher(&tfm
->base
, 0, key
, key_len
);
823 ret
= setup_cipher(&tfm
->base
, 1, key
, key_len
);
827 if (*flags
& CRYPTO_TFM_RES_WEAK_KEY
) {
828 if (*flags
& CRYPTO_TFM_REQ_WEAK_KEY
) {
831 *flags
&= ~CRYPTO_TFM_RES_WEAK_KEY
;
835 if (!atomic_dec_and_test(&ctx
->configuring
))
836 wait_for_completion(&ctx
->completion
);
840 static int ablk_rfc3686_setkey(struct crypto_ablkcipher
*tfm
, const u8
*key
,
841 unsigned int key_len
)
843 struct ixp_ctx
*ctx
= crypto_ablkcipher_ctx(tfm
);
845 /* the nonce is stored in bytes at end of key */
846 if (key_len
< CTR_RFC3686_NONCE_SIZE
)
849 memcpy(ctx
->nonce
, key
+ (key_len
- CTR_RFC3686_NONCE_SIZE
),
850 CTR_RFC3686_NONCE_SIZE
);
852 key_len
-= CTR_RFC3686_NONCE_SIZE
;
853 return ablk_setkey(tfm
, key
, key_len
);
856 static int ablk_perform(struct ablkcipher_request
*req
, int encrypt
)
858 struct crypto_ablkcipher
*tfm
= crypto_ablkcipher_reqtfm(req
);
859 struct ixp_ctx
*ctx
= crypto_ablkcipher_ctx(tfm
);
860 unsigned ivsize
= crypto_ablkcipher_ivsize(tfm
);
862 struct ix_sa_dir
*dir
;
863 struct crypt_ctl
*crypt
;
864 unsigned int nbytes
= req
->nbytes
, nents
;
865 enum dma_data_direction src_direction
= DMA_BIDIRECTIONAL
;
866 struct ablk_ctx
*req_ctx
= ablkcipher_request_ctx(req
);
867 gfp_t flags
= req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
?
868 GFP_KERNEL
: GFP_ATOMIC
;
870 if (qmgr_stat_full(SEND_QID
))
872 if (atomic_read(&ctx
->configuring
))
875 dir
= encrypt
? &ctx
->encrypt
: &ctx
->decrypt
;
877 crypt
= get_crypt_desc();
881 crypt
->data
.ablk_req
= req
;
882 crypt
->crypto_ctx
= dir
->npe_ctx_phys
;
883 crypt
->mode
= dir
->npe_mode
;
884 crypt
->init_len
= dir
->npe_ctx_idx
;
886 crypt
->crypt_offs
= 0;
887 crypt
->crypt_len
= nbytes
;
889 BUG_ON(ivsize
&& !req
->info
);
890 memcpy(crypt
->iv
, req
->info
, ivsize
);
891 if (req
->src
!= req
->dst
) {
892 crypt
->mode
|= NPE_OP_NOT_IN_PLACE
;
893 nents
= count_sg(req
->dst
, nbytes
);
894 /* This was never tested by Intel
895 * for more than one dst buffer, I think. */
897 req_ctx
->dst_nents
= nents
;
898 dma_map_sg(dev
, req
->dst
, nents
, DMA_FROM_DEVICE
);
899 req_ctx
->dst
= dma_pool_alloc(buffer_pool
, flags
,&crypt
->dst_buf
);
902 req_ctx
->dst
->phys_addr
= 0;
903 if (!chainup_buffers(req
->dst
, nbytes
, req_ctx
->dst
, flags
))
905 src_direction
= DMA_TO_DEVICE
;
908 req_ctx
->dst_nents
= 0;
910 nents
= count_sg(req
->src
, nbytes
);
911 req_ctx
->src_nents
= nents
;
912 dma_map_sg(dev
, req
->src
, nents
, src_direction
);
914 req_ctx
->src
= dma_pool_alloc(buffer_pool
, flags
, &crypt
->src_buf
);
917 req_ctx
->src
->phys_addr
= 0;
918 if (!chainup_buffers(req
->src
, nbytes
, req_ctx
->src
, flags
))
921 crypt
->ctl_flags
|= CTL_FLAG_PERFORM_ABLK
;
922 qmgr_put_entry(SEND_QID
, crypt_virt2phys(crypt
));
923 BUG_ON(qmgr_stat_overflow(SEND_QID
));
927 free_buf_chain(req_ctx
->src
, crypt
->src_buf
);
929 dma_unmap_sg(dev
, req
->src
, req_ctx
->src_nents
, src_direction
);
931 if (req
->src
!= req
->dst
) {
932 free_buf_chain(req_ctx
->dst
, crypt
->dst_buf
);
934 dma_unmap_sg(dev
, req
->src
, req_ctx
->dst_nents
,
937 crypt
->ctl_flags
= CTL_FLAG_UNUSED
;
941 static int ablk_encrypt(struct ablkcipher_request
*req
)
943 return ablk_perform(req
, 1);
946 static int ablk_decrypt(struct ablkcipher_request
*req
)
948 return ablk_perform(req
, 0);
951 static int ablk_rfc3686_crypt(struct ablkcipher_request
*req
)
953 struct crypto_ablkcipher
*tfm
= crypto_ablkcipher_reqtfm(req
);
954 struct ixp_ctx
*ctx
= crypto_ablkcipher_ctx(tfm
);
955 u8 iv
[CTR_RFC3686_BLOCK_SIZE
];
956 u8
*info
= req
->info
;
959 /* set up counter block */
960 memcpy(iv
, ctx
->nonce
, CTR_RFC3686_NONCE_SIZE
);
961 memcpy(iv
+ CTR_RFC3686_NONCE_SIZE
, info
, CTR_RFC3686_IV_SIZE
);
963 /* initialize counter portion of counter block */
964 *(__be32
*)(iv
+ CTR_RFC3686_NONCE_SIZE
+ CTR_RFC3686_IV_SIZE
) =
968 ret
= ablk_perform(req
, 1);
973 static int hmac_inconsistent(struct scatterlist
*sg
, unsigned start
,
982 if (start
< offset
+ sg
->length
)
985 offset
+= sg
->length
;
988 return (start
+ nbytes
> offset
+ sg
->length
);
991 static int aead_perform(struct aead_request
*req
, int encrypt
,
992 int cryptoffset
, int eff_cryptlen
, u8
*iv
)
994 struct crypto_aead
*tfm
= crypto_aead_reqtfm(req
);
995 struct ixp_ctx
*ctx
= crypto_aead_ctx(tfm
);
996 unsigned ivsize
= crypto_aead_ivsize(tfm
);
997 unsigned authsize
= crypto_aead_authsize(tfm
);
999 struct ix_sa_dir
*dir
;
1000 struct crypt_ctl
*crypt
;
1001 unsigned int cryptlen
, nents
;
1002 struct buffer_desc
*buf
;
1003 struct aead_ctx
*req_ctx
= aead_request_ctx(req
);
1004 gfp_t flags
= req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
?
1005 GFP_KERNEL
: GFP_ATOMIC
;
1007 if (qmgr_stat_full(SEND_QID
))
1009 if (atomic_read(&ctx
->configuring
))
1013 dir
= &ctx
->encrypt
;
1014 cryptlen
= req
->cryptlen
;
1016 dir
= &ctx
->decrypt
;
1017 /* req->cryptlen includes the authsize when decrypting */
1018 cryptlen
= req
->cryptlen
-authsize
;
1019 eff_cryptlen
-= authsize
;
1021 crypt
= get_crypt_desc();
1025 crypt
->data
.aead_req
= req
;
1026 crypt
->crypto_ctx
= dir
->npe_ctx_phys
;
1027 crypt
->mode
= dir
->npe_mode
;
1028 crypt
->init_len
= dir
->npe_ctx_idx
;
1030 crypt
->crypt_offs
= cryptoffset
;
1031 crypt
->crypt_len
= eff_cryptlen
;
1033 crypt
->auth_offs
= 0;
1034 crypt
->auth_len
= req
->assoclen
+ ivsize
+ cryptlen
;
1035 BUG_ON(ivsize
&& !req
->iv
);
1036 memcpy(crypt
->iv
, req
->iv
, ivsize
);
1038 if (req
->src
!= req
->dst
) {
1039 BUG(); /* -ENOTSUP because of my lazyness */
1042 req_ctx
->buffer
= dma_pool_alloc(buffer_pool
, flags
, &crypt
->src_buf
);
1043 if (!req_ctx
->buffer
)
1045 req_ctx
->buffer
->phys_addr
= 0;
1047 nents
= count_sg(req
->assoc
, req
->assoclen
);
1048 req_ctx
->assoc_nents
= nents
;
1049 dma_map_sg(dev
, req
->assoc
, nents
, DMA_TO_DEVICE
);
1050 buf
= chainup_buffers(req
->assoc
, req
->assoclen
, req_ctx
->buffer
,flags
);
1052 goto unmap_sg_assoc
;
1054 sg_init_table(&req_ctx
->ivlist
, 1);
1055 sg_set_buf(&req_ctx
->ivlist
, iv
, ivsize
);
1056 dma_map_sg(dev
, &req_ctx
->ivlist
, 1, DMA_BIDIRECTIONAL
);
1057 buf
= chainup_buffers(&req_ctx
->ivlist
, ivsize
, buf
, flags
);
1060 if (unlikely(hmac_inconsistent(req
->src
, cryptlen
, authsize
))) {
1061 /* The 12 hmac bytes are scattered,
1062 * we need to copy them into a safe buffer */
1063 req_ctx
->hmac_virt
= dma_pool_alloc(buffer_pool
, flags
,
1064 &crypt
->icv_rev_aes
);
1065 if (unlikely(!req_ctx
->hmac_virt
))
1068 scatterwalk_map_and_copy(req_ctx
->hmac_virt
,
1069 req
->src
, cryptlen
, authsize
, 0);
1071 req_ctx
->encrypt
= encrypt
;
1073 req_ctx
->hmac_virt
= NULL
;
1076 nents
= count_sg(req
->src
, cryptlen
+ authsize
);
1077 req_ctx
->src_nents
= nents
;
1078 dma_map_sg(dev
, req
->src
, nents
, DMA_BIDIRECTIONAL
);
1079 buf
= chainup_buffers(req
->src
, cryptlen
+ authsize
, buf
, flags
);
1082 if (!req_ctx
->hmac_virt
) {
1083 crypt
->icv_rev_aes
= buf
->phys_addr
+ buf
->buf_len
- authsize
;
1085 crypt
->ctl_flags
|= CTL_FLAG_PERFORM_AEAD
;
1086 qmgr_put_entry(SEND_QID
, crypt_virt2phys(crypt
));
1087 BUG_ON(qmgr_stat_overflow(SEND_QID
));
1088 return -EINPROGRESS
;
1090 dma_unmap_sg(dev
, req
->src
, req_ctx
->src_nents
, DMA_BIDIRECTIONAL
);
1091 if (req_ctx
->hmac_virt
) {
1092 dma_pool_free(buffer_pool
, req_ctx
->hmac_virt
,
1093 crypt
->icv_rev_aes
);
1096 dma_unmap_sg(dev
, &req_ctx
->ivlist
, 1, DMA_BIDIRECTIONAL
);
1098 dma_unmap_sg(dev
, req
->assoc
, req_ctx
->assoc_nents
, DMA_TO_DEVICE
);
1099 free_buf_chain(req_ctx
->buffer
, crypt
->src_buf
);
1101 crypt
->ctl_flags
= CTL_FLAG_UNUSED
;
1105 static int aead_setup(struct crypto_aead
*tfm
, unsigned int authsize
)
1107 struct ixp_ctx
*ctx
= crypto_aead_ctx(tfm
);
1108 u32
*flags
= &tfm
->base
.crt_flags
;
1109 unsigned digest_len
= crypto_aead_alg(tfm
)->maxauthsize
;
1112 if (!ctx
->enckey_len
&& !ctx
->authkey_len
)
1114 init_completion(&ctx
->completion
);
1115 atomic_inc(&ctx
->configuring
);
1117 reset_sa_dir(&ctx
->encrypt
);
1118 reset_sa_dir(&ctx
->decrypt
);
1120 ret
= setup_cipher(&tfm
->base
, 0, ctx
->enckey
, ctx
->enckey_len
);
1123 ret
= setup_cipher(&tfm
->base
, 1, ctx
->enckey
, ctx
->enckey_len
);
1126 ret
= setup_auth(&tfm
->base
, 0, authsize
, ctx
->authkey
,
1127 ctx
->authkey_len
, digest_len
);
1130 ret
= setup_auth(&tfm
->base
, 1, authsize
, ctx
->authkey
,
1131 ctx
->authkey_len
, digest_len
);
1135 if (*flags
& CRYPTO_TFM_RES_WEAK_KEY
) {
1136 if (*flags
& CRYPTO_TFM_REQ_WEAK_KEY
) {
1140 *flags
&= ~CRYPTO_TFM_RES_WEAK_KEY
;
1144 if (!atomic_dec_and_test(&ctx
->configuring
))
1145 wait_for_completion(&ctx
->completion
);
1149 static int aead_setauthsize(struct crypto_aead
*tfm
, unsigned int authsize
)
1151 int max
= crypto_aead_alg(tfm
)->maxauthsize
>> 2;
1153 if ((authsize
>>2) < 1 || (authsize
>>2) > max
|| (authsize
& 3))
1155 return aead_setup(tfm
, authsize
);
1158 static int aead_setkey(struct crypto_aead
*tfm
, const u8
*key
,
1159 unsigned int keylen
)
1161 struct ixp_ctx
*ctx
= crypto_aead_ctx(tfm
);
1162 struct rtattr
*rta
= (struct rtattr
*)key
;
1163 struct crypto_authenc_key_param
*param
;
1165 if (!RTA_OK(rta
, keylen
))
1167 if (rta
->rta_type
!= CRYPTO_AUTHENC_KEYA_PARAM
)
1169 if (RTA_PAYLOAD(rta
) < sizeof(*param
))
1172 param
= RTA_DATA(rta
);
1173 ctx
->enckey_len
= be32_to_cpu(param
->enckeylen
);
1175 key
+= RTA_ALIGN(rta
->rta_len
);
1176 keylen
-= RTA_ALIGN(rta
->rta_len
);
1178 if (keylen
< ctx
->enckey_len
)
1181 ctx
->authkey_len
= keylen
- ctx
->enckey_len
;
1182 memcpy(ctx
->enckey
, key
+ ctx
->authkey_len
, ctx
->enckey_len
);
1183 memcpy(ctx
->authkey
, key
, ctx
->authkey_len
);
1185 return aead_setup(tfm
, crypto_aead_authsize(tfm
));
1187 ctx
->enckey_len
= 0;
1188 crypto_aead_set_flags(tfm
, CRYPTO_TFM_RES_BAD_KEY_LEN
);
1192 static int aead_encrypt(struct aead_request
*req
)
1194 unsigned ivsize
= crypto_aead_ivsize(crypto_aead_reqtfm(req
));
1195 return aead_perform(req
, 1, req
->assoclen
+ ivsize
,
1196 req
->cryptlen
, req
->iv
);
1199 static int aead_decrypt(struct aead_request
*req
)
1201 unsigned ivsize
= crypto_aead_ivsize(crypto_aead_reqtfm(req
));
1202 return aead_perform(req
, 0, req
->assoclen
+ ivsize
,
1203 req
->cryptlen
, req
->iv
);
1206 static int aead_givencrypt(struct aead_givcrypt_request
*req
)
1208 struct crypto_aead
*tfm
= aead_givcrypt_reqtfm(req
);
1209 struct ixp_ctx
*ctx
= crypto_aead_ctx(tfm
);
1210 unsigned len
, ivsize
= crypto_aead_ivsize(tfm
);
1213 /* copied from eseqiv.c */
1215 get_random_bytes(ctx
->salt
, ivsize
);
1218 memcpy(req
->areq
.iv
, ctx
->salt
, ivsize
);
1220 if (ivsize
> sizeof(u64
)) {
1221 memset(req
->giv
, 0, ivsize
- sizeof(u64
));
1224 seq
= cpu_to_be64(req
->seq
);
1225 memcpy(req
->giv
+ ivsize
- len
, &seq
, len
);
1226 return aead_perform(&req
->areq
, 1, req
->areq
.assoclen
,
1227 req
->areq
.cryptlen
+ivsize
, req
->giv
);
1230 static struct ixp_alg ixp4xx_algos
[] = {
1233 .cra_name
= "cbc(des)",
1234 .cra_blocksize
= DES_BLOCK_SIZE
,
1235 .cra_u
= { .ablkcipher
= {
1236 .min_keysize
= DES_KEY_SIZE
,
1237 .max_keysize
= DES_KEY_SIZE
,
1238 .ivsize
= DES_BLOCK_SIZE
,
1243 .cfg_enc
= CIPH_ENCR
| MOD_DES
| MOD_CBC_ENC
| KEYLEN_192
,
1244 .cfg_dec
= CIPH_DECR
| MOD_DES
| MOD_CBC_DEC
| KEYLEN_192
,
1248 .cra_name
= "ecb(des)",
1249 .cra_blocksize
= DES_BLOCK_SIZE
,
1250 .cra_u
= { .ablkcipher
= {
1251 .min_keysize
= DES_KEY_SIZE
,
1252 .max_keysize
= DES_KEY_SIZE
,
1256 .cfg_enc
= CIPH_ENCR
| MOD_DES
| MOD_ECB
| KEYLEN_192
,
1257 .cfg_dec
= CIPH_DECR
| MOD_DES
| MOD_ECB
| KEYLEN_192
,
1260 .cra_name
= "cbc(des3_ede)",
1261 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
1262 .cra_u
= { .ablkcipher
= {
1263 .min_keysize
= DES3_EDE_KEY_SIZE
,
1264 .max_keysize
= DES3_EDE_KEY_SIZE
,
1265 .ivsize
= DES3_EDE_BLOCK_SIZE
,
1270 .cfg_enc
= CIPH_ENCR
| MOD_3DES
| MOD_CBC_ENC
| KEYLEN_192
,
1271 .cfg_dec
= CIPH_DECR
| MOD_3DES
| MOD_CBC_DEC
| KEYLEN_192
,
1274 .cra_name
= "ecb(des3_ede)",
1275 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
1276 .cra_u
= { .ablkcipher
= {
1277 .min_keysize
= DES3_EDE_KEY_SIZE
,
1278 .max_keysize
= DES3_EDE_KEY_SIZE
,
1282 .cfg_enc
= CIPH_ENCR
| MOD_3DES
| MOD_ECB
| KEYLEN_192
,
1283 .cfg_dec
= CIPH_DECR
| MOD_3DES
| MOD_ECB
| KEYLEN_192
,
1286 .cra_name
= "cbc(aes)",
1287 .cra_blocksize
= AES_BLOCK_SIZE
,
1288 .cra_u
= { .ablkcipher
= {
1289 .min_keysize
= AES_MIN_KEY_SIZE
,
1290 .max_keysize
= AES_MAX_KEY_SIZE
,
1291 .ivsize
= AES_BLOCK_SIZE
,
1296 .cfg_enc
= CIPH_ENCR
| MOD_AES
| MOD_CBC_ENC
,
1297 .cfg_dec
= CIPH_DECR
| MOD_AES
| MOD_CBC_DEC
,
1300 .cra_name
= "ecb(aes)",
1301 .cra_blocksize
= AES_BLOCK_SIZE
,
1302 .cra_u
= { .ablkcipher
= {
1303 .min_keysize
= AES_MIN_KEY_SIZE
,
1304 .max_keysize
= AES_MAX_KEY_SIZE
,
1308 .cfg_enc
= CIPH_ENCR
| MOD_AES
| MOD_ECB
,
1309 .cfg_dec
= CIPH_DECR
| MOD_AES
| MOD_ECB
,
1312 .cra_name
= "ctr(aes)",
1313 .cra_blocksize
= AES_BLOCK_SIZE
,
1314 .cra_u
= { .ablkcipher
= {
1315 .min_keysize
= AES_MIN_KEY_SIZE
,
1316 .max_keysize
= AES_MAX_KEY_SIZE
,
1317 .ivsize
= AES_BLOCK_SIZE
,
1322 .cfg_enc
= CIPH_ENCR
| MOD_AES
| MOD_CTR
,
1323 .cfg_dec
= CIPH_ENCR
| MOD_AES
| MOD_CTR
,
1326 .cra_name
= "rfc3686(ctr(aes))",
1327 .cra_blocksize
= AES_BLOCK_SIZE
,
1328 .cra_u
= { .ablkcipher
= {
1329 .min_keysize
= AES_MIN_KEY_SIZE
,
1330 .max_keysize
= AES_MAX_KEY_SIZE
,
1331 .ivsize
= AES_BLOCK_SIZE
,
1333 .setkey
= ablk_rfc3686_setkey
,
1334 .encrypt
= ablk_rfc3686_crypt
,
1335 .decrypt
= ablk_rfc3686_crypt
}
1338 .cfg_enc
= CIPH_ENCR
| MOD_AES
| MOD_CTR
,
1339 .cfg_dec
= CIPH_ENCR
| MOD_AES
| MOD_CTR
,
1342 .cra_name
= "authenc(hmac(md5),cbc(des))",
1343 .cra_blocksize
= DES_BLOCK_SIZE
,
1344 .cra_u
= { .aead
= {
1345 .ivsize
= DES_BLOCK_SIZE
,
1346 .maxauthsize
= MD5_DIGEST_SIZE
,
1350 .hash
= &hash_alg_md5
,
1351 .cfg_enc
= CIPH_ENCR
| MOD_DES
| MOD_CBC_ENC
| KEYLEN_192
,
1352 .cfg_dec
= CIPH_DECR
| MOD_DES
| MOD_CBC_DEC
| KEYLEN_192
,
1355 .cra_name
= "authenc(hmac(md5),cbc(des3_ede))",
1356 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
1357 .cra_u
= { .aead
= {
1358 .ivsize
= DES3_EDE_BLOCK_SIZE
,
1359 .maxauthsize
= MD5_DIGEST_SIZE
,
1363 .hash
= &hash_alg_md5
,
1364 .cfg_enc
= CIPH_ENCR
| MOD_3DES
| MOD_CBC_ENC
| KEYLEN_192
,
1365 .cfg_dec
= CIPH_DECR
| MOD_3DES
| MOD_CBC_DEC
| KEYLEN_192
,
1368 .cra_name
= "authenc(hmac(sha1),cbc(des))",
1369 .cra_blocksize
= DES_BLOCK_SIZE
,
1370 .cra_u
= { .aead
= {
1371 .ivsize
= DES_BLOCK_SIZE
,
1372 .maxauthsize
= SHA1_DIGEST_SIZE
,
1376 .hash
= &hash_alg_sha1
,
1377 .cfg_enc
= CIPH_ENCR
| MOD_DES
| MOD_CBC_ENC
| KEYLEN_192
,
1378 .cfg_dec
= CIPH_DECR
| MOD_DES
| MOD_CBC_DEC
| KEYLEN_192
,
1381 .cra_name
= "authenc(hmac(sha1),cbc(des3_ede))",
1382 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
1383 .cra_u
= { .aead
= {
1384 .ivsize
= DES3_EDE_BLOCK_SIZE
,
1385 .maxauthsize
= SHA1_DIGEST_SIZE
,
1389 .hash
= &hash_alg_sha1
,
1390 .cfg_enc
= CIPH_ENCR
| MOD_3DES
| MOD_CBC_ENC
| KEYLEN_192
,
1391 .cfg_dec
= CIPH_DECR
| MOD_3DES
| MOD_CBC_DEC
| KEYLEN_192
,
1394 .cra_name
= "authenc(hmac(md5),cbc(aes))",
1395 .cra_blocksize
= AES_BLOCK_SIZE
,
1396 .cra_u
= { .aead
= {
1397 .ivsize
= AES_BLOCK_SIZE
,
1398 .maxauthsize
= MD5_DIGEST_SIZE
,
1402 .hash
= &hash_alg_md5
,
1403 .cfg_enc
= CIPH_ENCR
| MOD_AES
| MOD_CBC_ENC
,
1404 .cfg_dec
= CIPH_DECR
| MOD_AES
| MOD_CBC_DEC
,
1407 .cra_name
= "authenc(hmac(sha1),cbc(aes))",
1408 .cra_blocksize
= AES_BLOCK_SIZE
,
1409 .cra_u
= { .aead
= {
1410 .ivsize
= AES_BLOCK_SIZE
,
1411 .maxauthsize
= SHA1_DIGEST_SIZE
,
1415 .hash
= &hash_alg_sha1
,
1416 .cfg_enc
= CIPH_ENCR
| MOD_AES
| MOD_CBC_ENC
,
1417 .cfg_dec
= CIPH_DECR
| MOD_AES
| MOD_CBC_DEC
,
1420 #define IXP_POSTFIX "-ixp4xx"
1421 static int __init
ixp_module_init(void)
1423 int num
= ARRAY_SIZE(ixp4xx_algos
);
1426 if (platform_device_register(&pseudo_dev
))
1429 spin_lock_init(&desc_lock
);
1430 spin_lock_init(&emerg_lock
);
1432 err
= init_ixp_crypto();
1434 platform_device_unregister(&pseudo_dev
);
1437 for (i
=0; i
< num
; i
++) {
1438 struct crypto_alg
*cra
= &ixp4xx_algos
[i
].crypto
;
1440 if (snprintf(cra
->cra_driver_name
, CRYPTO_MAX_ALG_NAME
,
1441 "%s"IXP_POSTFIX
, cra
->cra_name
) >=
1442 CRYPTO_MAX_ALG_NAME
)
1446 if (!support_aes
&& (ixp4xx_algos
[i
].cfg_enc
& MOD_AES
)) {
1449 if (!ixp4xx_algos
[i
].hash
) {
1451 cra
->cra_type
= &crypto_ablkcipher_type
;
1452 cra
->cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
|
1454 if (!cra
->cra_ablkcipher
.setkey
)
1455 cra
->cra_ablkcipher
.setkey
= ablk_setkey
;
1456 if (!cra
->cra_ablkcipher
.encrypt
)
1457 cra
->cra_ablkcipher
.encrypt
= ablk_encrypt
;
1458 if (!cra
->cra_ablkcipher
.decrypt
)
1459 cra
->cra_ablkcipher
.decrypt
= ablk_decrypt
;
1460 cra
->cra_init
= init_tfm_ablk
;
1463 cra
->cra_type
= &crypto_aead_type
;
1464 cra
->cra_flags
= CRYPTO_ALG_TYPE_AEAD
|
1466 cra
->cra_aead
.setkey
= aead_setkey
;
1467 cra
->cra_aead
.setauthsize
= aead_setauthsize
;
1468 cra
->cra_aead
.encrypt
= aead_encrypt
;
1469 cra
->cra_aead
.decrypt
= aead_decrypt
;
1470 cra
->cra_aead
.givencrypt
= aead_givencrypt
;
1471 cra
->cra_init
= init_tfm_aead
;
1473 cra
->cra_ctxsize
= sizeof(struct ixp_ctx
);
1474 cra
->cra_module
= THIS_MODULE
;
1475 cra
->cra_alignmask
= 3;
1476 cra
->cra_priority
= 300;
1477 cra
->cra_exit
= exit_tfm
;
1478 if (crypto_register_alg(cra
))
1479 printk(KERN_ERR
"Failed to register '%s'\n",
1482 ixp4xx_algos
[i
].registered
= 1;
1487 static void __exit
ixp_module_exit(void)
1489 int num
= ARRAY_SIZE(ixp4xx_algos
);
1492 for (i
=0; i
< num
; i
++) {
1493 if (ixp4xx_algos
[i
].registered
)
1494 crypto_unregister_alg(&ixp4xx_algos
[i
].crypto
);
1496 release_ixp_crypto();
1497 platform_device_unregister(&pseudo_dev
);
1500 module_init(ixp_module_init
);
1501 module_exit(ixp_module_exit
);
1503 MODULE_LICENSE("GPL");
1504 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1505 MODULE_DESCRIPTION("IXP4xx hardware crypto");