2 * Copyright (c) 2005-7 The University of Waikato, Hamilton, New Zealand.
3 * Copyright (c) 2007 The University of Aberdeen, Scotland, UK
5 * An implementation of the DCCP protocol
7 * This code has been developed by the University of Waikato WAND
8 * research group. For further information please see http://www.wand.net.nz/
9 * or e-mail Ian McDonald - ian.mcdonald@jandi.co.nz
11 * This code also uses code from Lulea University, rereleased as GPL by its
13 * Copyright (c) 2003 Nils-Erik Mattsson, Joacim Haggmark, Magnus Erixzon
15 * Changes to meet Linux coding standards, to make it meet latest ccid3 draft
16 * and to make it work as a loadable module in the DCCP stack written by
17 * Arnaldo Carvalho de Melo <acme@conectiva.com.br>.
19 * Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@conectiva.com.br>
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License as published by
23 * the Free Software Foundation; either version 2 of the License, or
24 * (at your option) any later version.
26 * This program is distributed in the hope that it will be useful,
27 * but WITHOUT ANY WARRANTY; without even the implied warranty of
28 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
29 * GNU General Public License for more details.
31 * You should have received a copy of the GNU General Public License
32 * along with this program; if not, write to the Free Software
33 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #ifndef _DCCP_CCID3_H_
36 #define _DCCP_CCID3_H_
38 #include <linux/ktime.h>
39 #include <linux/list.h>
40 #include <linux/types.h>
41 #include <linux/tfrc.h>
45 /* Two seconds as per RFC 5348, 4.2 */
46 #define TFRC_INITIAL_TIMEOUT (2 * USEC_PER_SEC)
48 /* Parameter t_mbi from [RFC 3448, 4.3]: backoff interval in seconds */
52 * The t_delta parameter (RFC 5348, 8.3): delays of less than %USEC_PER_MSEC are
53 * rounded down to 0, since sk_reset_timer() here uses millisecond granularity.
54 * Hence we can use a constant t_delta = %USEC_PER_MSEC when HZ >= 500. A coarse
55 * resolution of HZ < 500 means that the error is below one timer tick (t_gran)
56 * when using the constant t_delta = t_gran / 2 = %USEC_PER_SEC / (2 * HZ).
59 # define TFRC_T_DELTA USEC_PER_MSEC
61 # define TFRC_T_DELTA (USEC_PER_SEC / (2 * HZ))
65 TFRC_OPT_LOSS_EVENT_RATE
= 192,
66 TFRC_OPT_LOSS_INTERVALS
= 193,
67 TFRC_OPT_RECEIVE_RATE
= 194,
70 /* TFRC sender states */
71 enum ccid3_hc_tx_states
{
72 TFRC_SSTATE_NO_SENT
= 1,
78 * struct ccid3_hc_tx_sock - CCID3 sender half-connection socket
79 * @tx_x: Current sending rate in 64 * bytes per second
80 * @tx_x_recv: Receive rate in 64 * bytes per second
81 * @tx_x_calc: Calculated rate in bytes per second
82 * @tx_rtt: Estimate of current round trip time in usecs
83 * @tx_p: Current loss event rate (0-1) scaled by 1000000
84 * @tx_s: Packet size in bytes
85 * @tx_t_rto: Nofeedback Timer setting in usecs
86 * @tx_t_ipi: Interpacket (send) interval (RFC 3448, 4.6) in usecs
87 * @tx_state: Sender state, one of %ccid3_hc_tx_states
88 * @tx_last_win_count: Last window counter sent
89 * @tx_t_last_win_count: Timestamp of earliest packet
90 * with last_win_count value sent
91 * @tx_no_feedback_timer: Handle to no feedback timer
92 * @tx_t_ld: Time last doubled during slow start
93 * @tx_t_nom: Nominal send time of next packet
94 * @tx_hist: Packet history
96 struct ccid3_hc_tx_sock
{
105 enum ccid3_hc_tx_states tx_state
:8;
106 u8 tx_last_win_count
;
107 ktime_t tx_t_last_win_count
;
108 struct timer_list tx_no_feedback_timer
;
111 struct tfrc_tx_hist_entry
*tx_hist
;
114 static inline struct ccid3_hc_tx_sock
*ccid3_hc_tx_sk(const struct sock
*sk
)
116 struct ccid3_hc_tx_sock
*hctx
= ccid_priv(dccp_sk(sk
)->dccps_hc_tx_ccid
);
117 BUG_ON(hctx
== NULL
);
121 /* TFRC receiver states */
122 enum ccid3_hc_rx_states
{
123 TFRC_RSTATE_NO_DATA
= 1,
128 * struct ccid3_hc_rx_sock - CCID3 receiver half-connection socket
129 * @rx_last_counter: Tracks window counter (RFC 4342, 8.1)
130 * @rx_state: Receiver state, one of %ccid3_hc_rx_states
131 * @rx_bytes_recv: Total sum of DCCP payload bytes
132 * @rx_x_recv: Receiver estimate of send rate (RFC 3448, sec. 4.3)
133 * @rx_rtt: Receiver estimate of RTT
134 * @rx_tstamp_last_feedback: Time at which last feedback was sent
135 * @rx_hist: Packet history (loss detection + RTT sampling)
136 * @rx_li_hist: Loss Interval database
137 * @rx_s: Received packet size in bytes
138 * @rx_pinv: Inverse of Loss Event Rate (RFC 4342, sec. 8.5)
140 struct ccid3_hc_rx_sock
{
141 u8 rx_last_counter
:4;
142 enum ccid3_hc_rx_states rx_state
:8;
146 ktime_t rx_tstamp_last_feedback
;
147 struct tfrc_rx_hist rx_hist
;
148 struct tfrc_loss_hist rx_li_hist
;
150 #define rx_pinv rx_li_hist.i_mean
153 static inline struct ccid3_hc_rx_sock
*ccid3_hc_rx_sk(const struct sock
*sk
)
155 struct ccid3_hc_rx_sock
*hcrx
= ccid_priv(dccp_sk(sk
)->dccps_hc_rx_ccid
);
156 BUG_ON(hcrx
== NULL
);
160 #endif /* _DCCP_CCID3_H_ */