2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
14 * Copyright (C) 1999-2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/proc_fs.h>
27 #include <linux/seq_file.h>
28 #include <linux/init.h>
29 #include <linux/vmalloc.h>
31 #include <linux/sysctl.h>
32 #include <linux/list.h>
33 #include <linux/file.h>
34 #include <linux/poll.h>
35 #include <linux/vfs.h>
36 #include <linux/smp.h>
37 #include <linux/pagemap.h>
38 #include <linux/mount.h>
39 #include <linux/bitops.h>
40 #include <linux/capability.h>
41 #include <linux/rcupdate.h>
42 #include <linux/completion.h>
43 #include <linux/tracehook.h>
44 #include <linux/slab.h>
46 #include <asm/errno.h>
47 #include <asm/intrinsics.h>
49 #include <asm/perfmon.h>
50 #include <asm/processor.h>
51 #include <asm/signal.h>
52 #include <asm/system.h>
53 #include <asm/uaccess.h>
54 #include <asm/delay.h>
58 * perfmon context state
60 #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
61 #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
62 #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
63 #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
65 #define PFM_INVALID_ACTIVATION (~0UL)
67 #define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
68 #define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
71 * depth of message queue
73 #define PFM_MAX_MSGS 32
74 #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
77 * type of a PMU register (bitmask).
79 * bit0 : register implemented
82 * bit4 : pmc has pmc.pm
83 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
84 * bit6-7 : register type
87 #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
88 #define PFM_REG_IMPL 0x1 /* register implemented */
89 #define PFM_REG_END 0x2 /* end marker */
90 #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
91 #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
92 #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
93 #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
94 #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
96 #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
97 #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
99 #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
101 /* i assumed unsigned */
102 #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
103 #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
105 /* XXX: these assume that register i is implemented */
106 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
107 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
108 #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
109 #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
111 #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
112 #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
113 #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
114 #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
116 #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
117 #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
119 #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
120 #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
121 #define PFM_CTX_TASK(h) (h)->ctx_task
123 #define PMU_PMC_OI 5 /* position of pmc.oi bit */
125 /* XXX: does not support more than 64 PMDs */
126 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
127 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
129 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
131 #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
132 #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
133 #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
134 #define PFM_CODE_RR 0 /* requesting code range restriction */
135 #define PFM_DATA_RR 1 /* requestion data range restriction */
137 #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
138 #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
139 #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
141 #define RDEP(x) (1UL<<(x))
144 * context protection macros
146 * - we need to protect against CPU concurrency (spin_lock)
147 * - we need to protect against PMU overflow interrupts (local_irq_disable)
149 * - we need to protect against PMU overflow interrupts (local_irq_disable)
151 * spin_lock_irqsave()/spin_unlock_irqrestore():
152 * in SMP: local_irq_disable + spin_lock
153 * in UP : local_irq_disable
155 * spin_lock()/spin_lock():
156 * in UP : removed automatically
157 * in SMP: protect against context accesses from other CPU. interrupts
158 * are not masked. This is useful for the PMU interrupt handler
159 * because we know we will not get PMU concurrency in that code.
161 #define PROTECT_CTX(c, f) \
163 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
164 spin_lock_irqsave(&(c)->ctx_lock, f); \
165 DPRINT(("spinlocked ctx %p by [%d]\n", c, task_pid_nr(current))); \
168 #define UNPROTECT_CTX(c, f) \
170 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
171 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
174 #define PROTECT_CTX_NOPRINT(c, f) \
176 spin_lock_irqsave(&(c)->ctx_lock, f); \
180 #define UNPROTECT_CTX_NOPRINT(c, f) \
182 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
186 #define PROTECT_CTX_NOIRQ(c) \
188 spin_lock(&(c)->ctx_lock); \
191 #define UNPROTECT_CTX_NOIRQ(c) \
193 spin_unlock(&(c)->ctx_lock); \
199 #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
200 #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
201 #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
203 #else /* !CONFIG_SMP */
204 #define SET_ACTIVATION(t) do {} while(0)
205 #define GET_ACTIVATION(t) do {} while(0)
206 #define INC_ACTIVATION(t) do {} while(0)
207 #endif /* CONFIG_SMP */
209 #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
210 #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
211 #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
213 #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
214 #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
216 #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
219 * cmp0 must be the value of pmc0
221 #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
223 #define PFMFS_MAGIC 0xa0b4d889
228 #define PFM_DEBUGGING 1
232 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
235 #define DPRINT_ovfl(a) \
237 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
242 * 64-bit software counter structure
244 * the next_reset_type is applied to the next call to pfm_reset_regs()
247 unsigned long val
; /* virtual 64bit counter value */
248 unsigned long lval
; /* last reset value */
249 unsigned long long_reset
; /* reset value on sampling overflow */
250 unsigned long short_reset
; /* reset value on overflow */
251 unsigned long reset_pmds
[4]; /* which other pmds to reset when this counter overflows */
252 unsigned long smpl_pmds
[4]; /* which pmds are accessed when counter overflow */
253 unsigned long seed
; /* seed for random-number generator */
254 unsigned long mask
; /* mask for random-number generator */
255 unsigned int flags
; /* notify/do not notify */
256 unsigned long eventid
; /* overflow event identifier */
263 unsigned int block
:1; /* when 1, task will blocked on user notifications */
264 unsigned int system
:1; /* do system wide monitoring */
265 unsigned int using_dbreg
:1; /* using range restrictions (debug registers) */
266 unsigned int is_sampling
:1; /* true if using a custom format */
267 unsigned int excl_idle
:1; /* exclude idle task in system wide session */
268 unsigned int going_zombie
:1; /* context is zombie (MASKED+blocking) */
269 unsigned int trap_reason
:2; /* reason for going into pfm_handle_work() */
270 unsigned int no_msg
:1; /* no message sent on overflow */
271 unsigned int can_restart
:1; /* allowed to issue a PFM_RESTART */
272 unsigned int reserved
:22;
273 } pfm_context_flags_t
;
275 #define PFM_TRAP_REASON_NONE 0x0 /* default value */
276 #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
277 #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
281 * perfmon context: encapsulates all the state of a monitoring session
284 typedef struct pfm_context
{
285 spinlock_t ctx_lock
; /* context protection */
287 pfm_context_flags_t ctx_flags
; /* bitmask of flags (block reason incl.) */
288 unsigned int ctx_state
; /* state: active/inactive (no bitfield) */
290 struct task_struct
*ctx_task
; /* task to which context is attached */
292 unsigned long ctx_ovfl_regs
[4]; /* which registers overflowed (notification) */
294 struct completion ctx_restart_done
; /* use for blocking notification mode */
296 unsigned long ctx_used_pmds
[4]; /* bitmask of PMD used */
297 unsigned long ctx_all_pmds
[4]; /* bitmask of all accessible PMDs */
298 unsigned long ctx_reload_pmds
[4]; /* bitmask of force reload PMD on ctxsw in */
300 unsigned long ctx_all_pmcs
[4]; /* bitmask of all accessible PMCs */
301 unsigned long ctx_reload_pmcs
[4]; /* bitmask of force reload PMC on ctxsw in */
302 unsigned long ctx_used_monitors
[4]; /* bitmask of monitor PMC being used */
304 unsigned long ctx_pmcs
[PFM_NUM_PMC_REGS
]; /* saved copies of PMC values */
306 unsigned int ctx_used_ibrs
[1]; /* bitmask of used IBR (speedup ctxsw in) */
307 unsigned int ctx_used_dbrs
[1]; /* bitmask of used DBR (speedup ctxsw in) */
308 unsigned long ctx_dbrs
[IA64_NUM_DBG_REGS
]; /* DBR values (cache) when not loaded */
309 unsigned long ctx_ibrs
[IA64_NUM_DBG_REGS
]; /* IBR values (cache) when not loaded */
311 pfm_counter_t ctx_pmds
[PFM_NUM_PMD_REGS
]; /* software state for PMDS */
313 unsigned long th_pmcs
[PFM_NUM_PMC_REGS
]; /* PMC thread save state */
314 unsigned long th_pmds
[PFM_NUM_PMD_REGS
]; /* PMD thread save state */
316 unsigned long ctx_saved_psr_up
; /* only contains psr.up value */
318 unsigned long ctx_last_activation
; /* context last activation number for last_cpu */
319 unsigned int ctx_last_cpu
; /* CPU id of current or last CPU used (SMP only) */
320 unsigned int ctx_cpu
; /* cpu to which perfmon is applied (system wide) */
322 int ctx_fd
; /* file descriptor used my this context */
323 pfm_ovfl_arg_t ctx_ovfl_arg
; /* argument to custom buffer format handler */
325 pfm_buffer_fmt_t
*ctx_buf_fmt
; /* buffer format callbacks */
326 void *ctx_smpl_hdr
; /* points to sampling buffer header kernel vaddr */
327 unsigned long ctx_smpl_size
; /* size of sampling buffer */
328 void *ctx_smpl_vaddr
; /* user level virtual address of smpl buffer */
330 wait_queue_head_t ctx_msgq_wait
;
331 pfm_msg_t ctx_msgq
[PFM_MAX_MSGS
];
334 struct fasync_struct
*ctx_async_queue
;
336 wait_queue_head_t ctx_zombieq
; /* termination cleanup wait queue */
340 * magic number used to verify that structure is really
343 #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
345 #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
348 #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
349 #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
351 #define SET_LAST_CPU(ctx, v) do {} while(0)
352 #define GET_LAST_CPU(ctx) do {} while(0)
356 #define ctx_fl_block ctx_flags.block
357 #define ctx_fl_system ctx_flags.system
358 #define ctx_fl_using_dbreg ctx_flags.using_dbreg
359 #define ctx_fl_is_sampling ctx_flags.is_sampling
360 #define ctx_fl_excl_idle ctx_flags.excl_idle
361 #define ctx_fl_going_zombie ctx_flags.going_zombie
362 #define ctx_fl_trap_reason ctx_flags.trap_reason
363 #define ctx_fl_no_msg ctx_flags.no_msg
364 #define ctx_fl_can_restart ctx_flags.can_restart
366 #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
367 #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
370 * global information about all sessions
371 * mostly used to synchronize between system wide and per-process
374 spinlock_t pfs_lock
; /* lock the structure */
376 unsigned int pfs_task_sessions
; /* number of per task sessions */
377 unsigned int pfs_sys_sessions
; /* number of per system wide sessions */
378 unsigned int pfs_sys_use_dbregs
; /* incremented when a system wide session uses debug regs */
379 unsigned int pfs_ptrace_use_dbregs
; /* incremented when a process uses debug regs */
380 struct task_struct
*pfs_sys_session
[NR_CPUS
]; /* point to task owning a system-wide session */
384 * information about a PMC or PMD.
385 * dep_pmd[]: a bitmask of dependent PMD registers
386 * dep_pmc[]: a bitmask of dependent PMC registers
388 typedef int (*pfm_reg_check_t
)(struct task_struct
*task
, pfm_context_t
*ctx
, unsigned int cnum
, unsigned long *val
, struct pt_regs
*regs
);
392 unsigned long default_value
; /* power-on default value */
393 unsigned long reserved_mask
; /* bitmask of reserved bits */
394 pfm_reg_check_t read_check
;
395 pfm_reg_check_t write_check
;
396 unsigned long dep_pmd
[4];
397 unsigned long dep_pmc
[4];
400 /* assume cnum is a valid monitor */
401 #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
404 * This structure is initialized at boot time and contains
405 * a description of the PMU main characteristics.
407 * If the probe function is defined, detection is based
408 * on its return value:
409 * - 0 means recognized PMU
410 * - anything else means not supported
411 * When the probe function is not defined, then the pmu_family field
412 * is used and it must match the host CPU family such that:
413 * - cpu->family & config->pmu_family != 0
416 unsigned long ovfl_val
; /* overflow value for counters */
418 pfm_reg_desc_t
*pmc_desc
; /* detailed PMC register dependencies descriptions */
419 pfm_reg_desc_t
*pmd_desc
; /* detailed PMD register dependencies descriptions */
421 unsigned int num_pmcs
; /* number of PMCS: computed at init time */
422 unsigned int num_pmds
; /* number of PMDS: computed at init time */
423 unsigned long impl_pmcs
[4]; /* bitmask of implemented PMCS */
424 unsigned long impl_pmds
[4]; /* bitmask of implemented PMDS */
426 char *pmu_name
; /* PMU family name */
427 unsigned int pmu_family
; /* cpuid family pattern used to identify pmu */
428 unsigned int flags
; /* pmu specific flags */
429 unsigned int num_ibrs
; /* number of IBRS: computed at init time */
430 unsigned int num_dbrs
; /* number of DBRS: computed at init time */
431 unsigned int num_counters
; /* PMC/PMD counting pairs : computed at init time */
432 int (*probe
)(void); /* customized probe routine */
433 unsigned int use_rr_dbregs
:1; /* set if debug registers used for range restriction */
438 #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
441 * debug register related type definitions
444 unsigned long ibr_mask
:56;
445 unsigned long ibr_plm
:4;
446 unsigned long ibr_ig
:3;
447 unsigned long ibr_x
:1;
451 unsigned long dbr_mask
:56;
452 unsigned long dbr_plm
:4;
453 unsigned long dbr_ig
:2;
454 unsigned long dbr_w
:1;
455 unsigned long dbr_r
:1;
466 * perfmon command descriptions
469 int (*cmd_func
)(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
472 unsigned int cmd_narg
;
474 int (*cmd_getsize
)(void *arg
, size_t *sz
);
477 #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
478 #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
479 #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
480 #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
483 #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
484 #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
485 #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
486 #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
487 #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
489 #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
492 unsigned long pfm_spurious_ovfl_intr_count
; /* keep track of spurious ovfl interrupts */
493 unsigned long pfm_replay_ovfl_intr_count
; /* keep track of replayed ovfl interrupts */
494 unsigned long pfm_ovfl_intr_count
; /* keep track of ovfl interrupts */
495 unsigned long pfm_ovfl_intr_cycles
; /* cycles spent processing ovfl interrupts */
496 unsigned long pfm_ovfl_intr_cycles_min
; /* min cycles spent processing ovfl interrupts */
497 unsigned long pfm_ovfl_intr_cycles_max
; /* max cycles spent processing ovfl interrupts */
498 unsigned long pfm_smpl_handler_calls
;
499 unsigned long pfm_smpl_handler_cycles
;
500 char pad
[SMP_CACHE_BYTES
] ____cacheline_aligned
;
504 * perfmon internal variables
506 static pfm_stats_t pfm_stats
[NR_CPUS
];
507 static pfm_session_t pfm_sessions
; /* global sessions information */
509 static DEFINE_SPINLOCK(pfm_alt_install_check
);
510 static pfm_intr_handler_desc_t
*pfm_alt_intr_handler
;
512 static struct proc_dir_entry
*perfmon_dir
;
513 static pfm_uuid_t pfm_null_uuid
= {0,};
515 static spinlock_t pfm_buffer_fmt_lock
;
516 static LIST_HEAD(pfm_buffer_fmt_list
);
518 static pmu_config_t
*pmu_conf
;
520 /* sysctl() controls */
521 pfm_sysctl_t pfm_sysctl
;
522 EXPORT_SYMBOL(pfm_sysctl
);
524 static ctl_table pfm_ctl_table
[]={
527 .data
= &pfm_sysctl
.debug
,
528 .maxlen
= sizeof(int),
530 .proc_handler
= proc_dointvec
,
533 .procname
= "debug_ovfl",
534 .data
= &pfm_sysctl
.debug_ovfl
,
535 .maxlen
= sizeof(int),
537 .proc_handler
= proc_dointvec
,
540 .procname
= "fastctxsw",
541 .data
= &pfm_sysctl
.fastctxsw
,
542 .maxlen
= sizeof(int),
544 .proc_handler
= proc_dointvec
,
547 .procname
= "expert_mode",
548 .data
= &pfm_sysctl
.expert_mode
,
549 .maxlen
= sizeof(int),
551 .proc_handler
= proc_dointvec
,
555 static ctl_table pfm_sysctl_dir
[] = {
557 .procname
= "perfmon",
559 .child
= pfm_ctl_table
,
563 static ctl_table pfm_sysctl_root
[] = {
565 .procname
= "kernel",
567 .child
= pfm_sysctl_dir
,
571 static struct ctl_table_header
*pfm_sysctl_header
;
573 static int pfm_context_unload(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
575 #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
576 #define pfm_get_cpu_data(a,b) per_cpu(a, b)
579 pfm_put_task(struct task_struct
*task
)
581 if (task
!= current
) put_task_struct(task
);
585 pfm_reserve_page(unsigned long a
)
587 SetPageReserved(vmalloc_to_page((void *)a
));
590 pfm_unreserve_page(unsigned long a
)
592 ClearPageReserved(vmalloc_to_page((void*)a
));
595 static inline unsigned long
596 pfm_protect_ctx_ctxsw(pfm_context_t
*x
)
598 spin_lock(&(x
)->ctx_lock
);
603 pfm_unprotect_ctx_ctxsw(pfm_context_t
*x
, unsigned long f
)
605 spin_unlock(&(x
)->ctx_lock
);
608 static inline unsigned int
609 pfm_do_munmap(struct mm_struct
*mm
, unsigned long addr
, size_t len
, int acct
)
611 return do_munmap(mm
, addr
, len
);
614 static inline unsigned long
615 pfm_get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
, unsigned long pgoff
, unsigned long flags
, unsigned long exec
)
617 return get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
620 /* forward declaration */
621 static const struct dentry_operations pfmfs_dentry_operations
;
623 static struct dentry
*
624 pfmfs_mount(struct file_system_type
*fs_type
, int flags
, const char *dev_name
, void *data
)
626 return mount_pseudo(fs_type
, "pfm:", NULL
, &pfmfs_dentry_operations
,
630 static struct file_system_type pfm_fs_type
= {
632 .mount
= pfmfs_mount
,
633 .kill_sb
= kill_anon_super
,
636 DEFINE_PER_CPU(unsigned long, pfm_syst_info
);
637 DEFINE_PER_CPU(struct task_struct
*, pmu_owner
);
638 DEFINE_PER_CPU(pfm_context_t
*, pmu_ctx
);
639 DEFINE_PER_CPU(unsigned long, pmu_activation_number
);
640 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info
);
643 /* forward declaration */
644 static const struct file_operations pfm_file_ops
;
647 * forward declarations
650 static void pfm_lazy_save_regs (struct task_struct
*ta
);
653 void dump_pmu_state(const char *);
654 static int pfm_write_ibr_dbr(int mode
, pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
656 #include "perfmon_itanium.h"
657 #include "perfmon_mckinley.h"
658 #include "perfmon_montecito.h"
659 #include "perfmon_generic.h"
661 static pmu_config_t
*pmu_confs
[]={
665 &pmu_conf_gen
, /* must be last */
670 static int pfm_end_notify_user(pfm_context_t
*ctx
);
673 pfm_clear_psr_pp(void)
675 ia64_rsm(IA64_PSR_PP
);
682 ia64_ssm(IA64_PSR_PP
);
687 pfm_clear_psr_up(void)
689 ia64_rsm(IA64_PSR_UP
);
696 ia64_ssm(IA64_PSR_UP
);
700 static inline unsigned long
704 tmp
= ia64_getreg(_IA64_REG_PSR
);
710 pfm_set_psr_l(unsigned long val
)
712 ia64_setreg(_IA64_REG_PSR_L
, val
);
724 pfm_unfreeze_pmu(void)
731 pfm_restore_ibrs(unsigned long *ibrs
, unsigned int nibrs
)
735 for (i
=0; i
< nibrs
; i
++) {
736 ia64_set_ibr(i
, ibrs
[i
]);
737 ia64_dv_serialize_instruction();
743 pfm_restore_dbrs(unsigned long *dbrs
, unsigned int ndbrs
)
747 for (i
=0; i
< ndbrs
; i
++) {
748 ia64_set_dbr(i
, dbrs
[i
]);
749 ia64_dv_serialize_data();
755 * PMD[i] must be a counter. no check is made
757 static inline unsigned long
758 pfm_read_soft_counter(pfm_context_t
*ctx
, int i
)
760 return ctx
->ctx_pmds
[i
].val
+ (ia64_get_pmd(i
) & pmu_conf
->ovfl_val
);
764 * PMD[i] must be a counter. no check is made
767 pfm_write_soft_counter(pfm_context_t
*ctx
, int i
, unsigned long val
)
769 unsigned long ovfl_val
= pmu_conf
->ovfl_val
;
771 ctx
->ctx_pmds
[i
].val
= val
& ~ovfl_val
;
773 * writing to unimplemented part is ignore, so we do not need to
776 ia64_set_pmd(i
, val
& ovfl_val
);
780 pfm_get_new_msg(pfm_context_t
*ctx
)
784 next
= (ctx
->ctx_msgq_tail
+1) % PFM_MAX_MSGS
;
786 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
787 if (next
== ctx
->ctx_msgq_head
) return NULL
;
789 idx
= ctx
->ctx_msgq_tail
;
790 ctx
->ctx_msgq_tail
= next
;
792 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
, idx
));
794 return ctx
->ctx_msgq
+idx
;
798 pfm_get_next_msg(pfm_context_t
*ctx
)
802 DPRINT(("ctx=%p head=%d tail=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
804 if (PFM_CTXQ_EMPTY(ctx
)) return NULL
;
809 msg
= ctx
->ctx_msgq
+ctx
->ctx_msgq_head
;
814 ctx
->ctx_msgq_head
= (ctx
->ctx_msgq_head
+1) % PFM_MAX_MSGS
;
816 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
, msg
->pfm_gen_msg
.msg_type
));
822 pfm_reset_msgq(pfm_context_t
*ctx
)
824 ctx
->ctx_msgq_head
= ctx
->ctx_msgq_tail
= 0;
825 DPRINT(("ctx=%p msgq reset\n", ctx
));
829 pfm_rvmalloc(unsigned long size
)
834 size
= PAGE_ALIGN(size
);
837 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
838 addr
= (unsigned long)mem
;
840 pfm_reserve_page(addr
);
849 pfm_rvfree(void *mem
, unsigned long size
)
854 DPRINT(("freeing physical buffer @%p size=%lu\n", mem
, size
));
855 addr
= (unsigned long) mem
;
856 while ((long) size
> 0) {
857 pfm_unreserve_page(addr
);
866 static pfm_context_t
*
867 pfm_context_alloc(int ctx_flags
)
872 * allocate context descriptor
873 * must be able to free with interrupts disabled
875 ctx
= kzalloc(sizeof(pfm_context_t
), GFP_KERNEL
);
877 DPRINT(("alloc ctx @%p\n", ctx
));
880 * init context protection lock
882 spin_lock_init(&ctx
->ctx_lock
);
885 * context is unloaded
887 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
890 * initialization of context's flags
892 ctx
->ctx_fl_block
= (ctx_flags
& PFM_FL_NOTIFY_BLOCK
) ? 1 : 0;
893 ctx
->ctx_fl_system
= (ctx_flags
& PFM_FL_SYSTEM_WIDE
) ? 1: 0;
894 ctx
->ctx_fl_no_msg
= (ctx_flags
& PFM_FL_OVFL_NO_MSG
) ? 1: 0;
896 * will move to set properties
897 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
901 * init restart semaphore to locked
903 init_completion(&ctx
->ctx_restart_done
);
906 * activation is used in SMP only
908 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
909 SET_LAST_CPU(ctx
, -1);
912 * initialize notification message queue
914 ctx
->ctx_msgq_head
= ctx
->ctx_msgq_tail
= 0;
915 init_waitqueue_head(&ctx
->ctx_msgq_wait
);
916 init_waitqueue_head(&ctx
->ctx_zombieq
);
923 pfm_context_free(pfm_context_t
*ctx
)
926 DPRINT(("free ctx @%p\n", ctx
));
932 pfm_mask_monitoring(struct task_struct
*task
)
934 pfm_context_t
*ctx
= PFM_GET_CTX(task
);
935 unsigned long mask
, val
, ovfl_mask
;
938 DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task
)));
940 ovfl_mask
= pmu_conf
->ovfl_val
;
942 * monitoring can only be masked as a result of a valid
943 * counter overflow. In UP, it means that the PMU still
944 * has an owner. Note that the owner can be different
945 * from the current task. However the PMU state belongs
947 * In SMP, a valid overflow only happens when task is
948 * current. Therefore if we come here, we know that
949 * the PMU state belongs to the current task, therefore
950 * we can access the live registers.
952 * So in both cases, the live register contains the owner's
953 * state. We can ONLY touch the PMU registers and NOT the PSR.
955 * As a consequence to this call, the ctx->th_pmds[] array
956 * contains stale information which must be ignored
957 * when context is reloaded AND monitoring is active (see
960 mask
= ctx
->ctx_used_pmds
[0];
961 for (i
= 0; mask
; i
++, mask
>>=1) {
962 /* skip non used pmds */
963 if ((mask
& 0x1) == 0) continue;
964 val
= ia64_get_pmd(i
);
966 if (PMD_IS_COUNTING(i
)) {
968 * we rebuild the full 64 bit value of the counter
970 ctx
->ctx_pmds
[i
].val
+= (val
& ovfl_mask
);
972 ctx
->ctx_pmds
[i
].val
= val
;
974 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
976 ctx
->ctx_pmds
[i
].val
,
980 * mask monitoring by setting the privilege level to 0
981 * we cannot use psr.pp/psr.up for this, it is controlled by
984 * if task is current, modify actual registers, otherwise modify
985 * thread save state, i.e., what will be restored in pfm_load_regs()
987 mask
= ctx
->ctx_used_monitors
[0] >> PMU_FIRST_COUNTER
;
988 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>=1) {
989 if ((mask
& 0x1) == 0UL) continue;
990 ia64_set_pmc(i
, ctx
->th_pmcs
[i
] & ~0xfUL
);
991 ctx
->th_pmcs
[i
] &= ~0xfUL
;
992 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i
, ctx
->th_pmcs
[i
]));
995 * make all of this visible
1001 * must always be done with task == current
1003 * context must be in MASKED state when calling
1006 pfm_restore_monitoring(struct task_struct
*task
)
1008 pfm_context_t
*ctx
= PFM_GET_CTX(task
);
1009 unsigned long mask
, ovfl_mask
;
1010 unsigned long psr
, val
;
1013 is_system
= ctx
->ctx_fl_system
;
1014 ovfl_mask
= pmu_conf
->ovfl_val
;
1016 if (task
!= current
) {
1017 printk(KERN_ERR
"perfmon.%d: invalid task[%d] current[%d]\n", __LINE__
, task_pid_nr(task
), task_pid_nr(current
));
1020 if (ctx
->ctx_state
!= PFM_CTX_MASKED
) {
1021 printk(KERN_ERR
"perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__
,
1022 task_pid_nr(task
), task_pid_nr(current
), ctx
->ctx_state
);
1025 psr
= pfm_get_psr();
1027 * monitoring is masked via the PMC.
1028 * As we restore their value, we do not want each counter to
1029 * restart right away. We stop monitoring using the PSR,
1030 * restore the PMC (and PMD) and then re-establish the psr
1031 * as it was. Note that there can be no pending overflow at
1032 * this point, because monitoring was MASKED.
1034 * system-wide session are pinned and self-monitoring
1036 if (is_system
&& (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP
)) {
1037 /* disable dcr pp */
1038 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) & ~IA64_DCR_PP
);
1044 * first, we restore the PMD
1046 mask
= ctx
->ctx_used_pmds
[0];
1047 for (i
= 0; mask
; i
++, mask
>>=1) {
1048 /* skip non used pmds */
1049 if ((mask
& 0x1) == 0) continue;
1051 if (PMD_IS_COUNTING(i
)) {
1053 * we split the 64bit value according to
1056 val
= ctx
->ctx_pmds
[i
].val
& ovfl_mask
;
1057 ctx
->ctx_pmds
[i
].val
&= ~ovfl_mask
;
1059 val
= ctx
->ctx_pmds
[i
].val
;
1061 ia64_set_pmd(i
, val
);
1063 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1065 ctx
->ctx_pmds
[i
].val
,
1071 mask
= ctx
->ctx_used_monitors
[0] >> PMU_FIRST_COUNTER
;
1072 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>=1) {
1073 if ((mask
& 0x1) == 0UL) continue;
1074 ctx
->th_pmcs
[i
] = ctx
->ctx_pmcs
[i
];
1075 ia64_set_pmc(i
, ctx
->th_pmcs
[i
]);
1076 DPRINT(("[%d] pmc[%d]=0x%lx\n",
1077 task_pid_nr(task
), i
, ctx
->th_pmcs
[i
]));
1082 * must restore DBR/IBR because could be modified while masked
1083 * XXX: need to optimize
1085 if (ctx
->ctx_fl_using_dbreg
) {
1086 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
1087 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
1093 if (is_system
&& (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP
)) {
1095 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) | IA64_DCR_PP
);
1102 pfm_save_pmds(unsigned long *pmds
, unsigned long mask
)
1108 for (i
=0; mask
; i
++, mask
>>=1) {
1109 if (mask
& 0x1) pmds
[i
] = ia64_get_pmd(i
);
1114 * reload from thread state (used for ctxw only)
1117 pfm_restore_pmds(unsigned long *pmds
, unsigned long mask
)
1120 unsigned long val
, ovfl_val
= pmu_conf
->ovfl_val
;
1122 for (i
=0; mask
; i
++, mask
>>=1) {
1123 if ((mask
& 0x1) == 0) continue;
1124 val
= PMD_IS_COUNTING(i
) ? pmds
[i
] & ovfl_val
: pmds
[i
];
1125 ia64_set_pmd(i
, val
);
1131 * propagate PMD from context to thread-state
1134 pfm_copy_pmds(struct task_struct
*task
, pfm_context_t
*ctx
)
1136 unsigned long ovfl_val
= pmu_conf
->ovfl_val
;
1137 unsigned long mask
= ctx
->ctx_all_pmds
[0];
1141 DPRINT(("mask=0x%lx\n", mask
));
1143 for (i
=0; mask
; i
++, mask
>>=1) {
1145 val
= ctx
->ctx_pmds
[i
].val
;
1148 * We break up the 64 bit value into 2 pieces
1149 * the lower bits go to the machine state in the
1150 * thread (will be reloaded on ctxsw in).
1151 * The upper part stays in the soft-counter.
1153 if (PMD_IS_COUNTING(i
)) {
1154 ctx
->ctx_pmds
[i
].val
= val
& ~ovfl_val
;
1157 ctx
->th_pmds
[i
] = val
;
1159 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1162 ctx
->ctx_pmds
[i
].val
));
1167 * propagate PMC from context to thread-state
1170 pfm_copy_pmcs(struct task_struct
*task
, pfm_context_t
*ctx
)
1172 unsigned long mask
= ctx
->ctx_all_pmcs
[0];
1175 DPRINT(("mask=0x%lx\n", mask
));
1177 for (i
=0; mask
; i
++, mask
>>=1) {
1178 /* masking 0 with ovfl_val yields 0 */
1179 ctx
->th_pmcs
[i
] = ctx
->ctx_pmcs
[i
];
1180 DPRINT(("pmc[%d]=0x%lx\n", i
, ctx
->th_pmcs
[i
]));
1187 pfm_restore_pmcs(unsigned long *pmcs
, unsigned long mask
)
1191 for (i
=0; mask
; i
++, mask
>>=1) {
1192 if ((mask
& 0x1) == 0) continue;
1193 ia64_set_pmc(i
, pmcs
[i
]);
1199 pfm_uuid_cmp(pfm_uuid_t a
, pfm_uuid_t b
)
1201 return memcmp(a
, b
, sizeof(pfm_uuid_t
));
1205 pfm_buf_fmt_exit(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, void *buf
, struct pt_regs
*regs
)
1208 if (fmt
->fmt_exit
) ret
= (*fmt
->fmt_exit
)(task
, buf
, regs
);
1213 pfm_buf_fmt_getsize(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, unsigned int flags
, int cpu
, void *arg
, unsigned long *size
)
1216 if (fmt
->fmt_getsize
) ret
= (*fmt
->fmt_getsize
)(task
, flags
, cpu
, arg
, size
);
1222 pfm_buf_fmt_validate(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, unsigned int flags
,
1226 if (fmt
->fmt_validate
) ret
= (*fmt
->fmt_validate
)(task
, flags
, cpu
, arg
);
1231 pfm_buf_fmt_init(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, void *buf
, unsigned int flags
,
1235 if (fmt
->fmt_init
) ret
= (*fmt
->fmt_init
)(task
, buf
, flags
, cpu
, arg
);
1240 pfm_buf_fmt_restart(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, pfm_ovfl_ctrl_t
*ctrl
, void *buf
, struct pt_regs
*regs
)
1243 if (fmt
->fmt_restart
) ret
= (*fmt
->fmt_restart
)(task
, ctrl
, buf
, regs
);
1248 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, pfm_ovfl_ctrl_t
*ctrl
, void *buf
, struct pt_regs
*regs
)
1251 if (fmt
->fmt_restart_active
) ret
= (*fmt
->fmt_restart_active
)(task
, ctrl
, buf
, regs
);
1255 static pfm_buffer_fmt_t
*
1256 __pfm_find_buffer_fmt(pfm_uuid_t uuid
)
1258 struct list_head
* pos
;
1259 pfm_buffer_fmt_t
* entry
;
1261 list_for_each(pos
, &pfm_buffer_fmt_list
) {
1262 entry
= list_entry(pos
, pfm_buffer_fmt_t
, fmt_list
);
1263 if (pfm_uuid_cmp(uuid
, entry
->fmt_uuid
) == 0)
1270 * find a buffer format based on its uuid
1272 static pfm_buffer_fmt_t
*
1273 pfm_find_buffer_fmt(pfm_uuid_t uuid
)
1275 pfm_buffer_fmt_t
* fmt
;
1276 spin_lock(&pfm_buffer_fmt_lock
);
1277 fmt
= __pfm_find_buffer_fmt(uuid
);
1278 spin_unlock(&pfm_buffer_fmt_lock
);
1283 pfm_register_buffer_fmt(pfm_buffer_fmt_t
*fmt
)
1287 /* some sanity checks */
1288 if (fmt
== NULL
|| fmt
->fmt_name
== NULL
) return -EINVAL
;
1290 /* we need at least a handler */
1291 if (fmt
->fmt_handler
== NULL
) return -EINVAL
;
1294 * XXX: need check validity of fmt_arg_size
1297 spin_lock(&pfm_buffer_fmt_lock
);
1299 if (__pfm_find_buffer_fmt(fmt
->fmt_uuid
)) {
1300 printk(KERN_ERR
"perfmon: duplicate sampling format: %s\n", fmt
->fmt_name
);
1304 list_add(&fmt
->fmt_list
, &pfm_buffer_fmt_list
);
1305 printk(KERN_INFO
"perfmon: added sampling format %s\n", fmt
->fmt_name
);
1308 spin_unlock(&pfm_buffer_fmt_lock
);
1311 EXPORT_SYMBOL(pfm_register_buffer_fmt
);
1314 pfm_unregister_buffer_fmt(pfm_uuid_t uuid
)
1316 pfm_buffer_fmt_t
*fmt
;
1319 spin_lock(&pfm_buffer_fmt_lock
);
1321 fmt
= __pfm_find_buffer_fmt(uuid
);
1323 printk(KERN_ERR
"perfmon: cannot unregister format, not found\n");
1327 list_del_init(&fmt
->fmt_list
);
1328 printk(KERN_INFO
"perfmon: removed sampling format: %s\n", fmt
->fmt_name
);
1331 spin_unlock(&pfm_buffer_fmt_lock
);
1335 EXPORT_SYMBOL(pfm_unregister_buffer_fmt
);
1337 extern void update_pal_halt_status(int);
1340 pfm_reserve_session(struct task_struct
*task
, int is_syswide
, unsigned int cpu
)
1342 unsigned long flags
;
1344 * validity checks on cpu_mask have been done upstream
1348 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1349 pfm_sessions
.pfs_sys_sessions
,
1350 pfm_sessions
.pfs_task_sessions
,
1351 pfm_sessions
.pfs_sys_use_dbregs
,
1357 * cannot mix system wide and per-task sessions
1359 if (pfm_sessions
.pfs_task_sessions
> 0UL) {
1360 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1361 pfm_sessions
.pfs_task_sessions
));
1365 if (pfm_sessions
.pfs_sys_session
[cpu
]) goto error_conflict
;
1367 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu
, smp_processor_id()));
1369 pfm_sessions
.pfs_sys_session
[cpu
] = task
;
1371 pfm_sessions
.pfs_sys_sessions
++ ;
1374 if (pfm_sessions
.pfs_sys_sessions
) goto abort
;
1375 pfm_sessions
.pfs_task_sessions
++;
1378 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1379 pfm_sessions
.pfs_sys_sessions
,
1380 pfm_sessions
.pfs_task_sessions
,
1381 pfm_sessions
.pfs_sys_use_dbregs
,
1386 * disable default_idle() to go to PAL_HALT
1388 update_pal_halt_status(0);
1395 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1396 task_pid_nr(pfm_sessions
.pfs_sys_session
[cpu
]),
1406 pfm_unreserve_session(pfm_context_t
*ctx
, int is_syswide
, unsigned int cpu
)
1408 unsigned long flags
;
1410 * validity checks on cpu_mask have been done upstream
1414 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1415 pfm_sessions
.pfs_sys_sessions
,
1416 pfm_sessions
.pfs_task_sessions
,
1417 pfm_sessions
.pfs_sys_use_dbregs
,
1423 pfm_sessions
.pfs_sys_session
[cpu
] = NULL
;
1425 * would not work with perfmon+more than one bit in cpu_mask
1427 if (ctx
&& ctx
->ctx_fl_using_dbreg
) {
1428 if (pfm_sessions
.pfs_sys_use_dbregs
== 0) {
1429 printk(KERN_ERR
"perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx
);
1431 pfm_sessions
.pfs_sys_use_dbregs
--;
1434 pfm_sessions
.pfs_sys_sessions
--;
1436 pfm_sessions
.pfs_task_sessions
--;
1438 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1439 pfm_sessions
.pfs_sys_sessions
,
1440 pfm_sessions
.pfs_task_sessions
,
1441 pfm_sessions
.pfs_sys_use_dbregs
,
1446 * if possible, enable default_idle() to go into PAL_HALT
1448 if (pfm_sessions
.pfs_task_sessions
== 0 && pfm_sessions
.pfs_sys_sessions
== 0)
1449 update_pal_halt_status(1);
1457 * removes virtual mapping of the sampling buffer.
1458 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1459 * a PROTECT_CTX() section.
1462 pfm_remove_smpl_mapping(struct task_struct
*task
, void *vaddr
, unsigned long size
)
1467 if (task
->mm
== NULL
|| size
== 0UL || vaddr
== NULL
) {
1468 printk(KERN_ERR
"perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task
), task
->mm
);
1472 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr
, size
));
1475 * does the actual unmapping
1477 down_write(&task
->mm
->mmap_sem
);
1479 DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr
, size
));
1481 r
= pfm_do_munmap(task
->mm
, (unsigned long)vaddr
, size
, 0);
1483 up_write(&task
->mm
->mmap_sem
);
1485 printk(KERN_ERR
"perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task
), vaddr
, size
);
1488 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr
, size
, r
));
1494 * free actual physical storage used by sampling buffer
1498 pfm_free_smpl_buffer(pfm_context_t
*ctx
)
1500 pfm_buffer_fmt_t
*fmt
;
1502 if (ctx
->ctx_smpl_hdr
== NULL
) goto invalid_free
;
1505 * we won't use the buffer format anymore
1507 fmt
= ctx
->ctx_buf_fmt
;
1509 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1512 ctx
->ctx_smpl_vaddr
));
1514 pfm_buf_fmt_exit(fmt
, current
, NULL
, NULL
);
1519 pfm_rvfree(ctx
->ctx_smpl_hdr
, ctx
->ctx_smpl_size
);
1521 ctx
->ctx_smpl_hdr
= NULL
;
1522 ctx
->ctx_smpl_size
= 0UL;
1527 printk(KERN_ERR
"perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current
));
1533 pfm_exit_smpl_buffer(pfm_buffer_fmt_t
*fmt
)
1535 if (fmt
== NULL
) return;
1537 pfm_buf_fmt_exit(fmt
, current
, NULL
, NULL
);
1542 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1543 * no real gain from having the whole whorehouse mounted. So we don't need
1544 * any operations on the root directory. However, we need a non-trivial
1545 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1547 static struct vfsmount
*pfmfs_mnt __read_mostly
;
1552 int err
= register_filesystem(&pfm_fs_type
);
1554 pfmfs_mnt
= kern_mount(&pfm_fs_type
);
1555 err
= PTR_ERR(pfmfs_mnt
);
1556 if (IS_ERR(pfmfs_mnt
))
1557 unregister_filesystem(&pfm_fs_type
);
1565 pfm_read(struct file
*filp
, char __user
*buf
, size_t size
, loff_t
*ppos
)
1570 unsigned long flags
;
1571 DECLARE_WAITQUEUE(wait
, current
);
1572 if (PFM_IS_FILE(filp
) == 0) {
1573 printk(KERN_ERR
"perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current
));
1577 ctx
= filp
->private_data
;
1579 printk(KERN_ERR
"perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current
));
1584 * check even when there is no message
1586 if (size
< sizeof(pfm_msg_t
)) {
1587 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx
, sizeof(pfm_msg_t
)));
1591 PROTECT_CTX(ctx
, flags
);
1594 * put ourselves on the wait queue
1596 add_wait_queue(&ctx
->ctx_msgq_wait
, &wait
);
1604 set_current_state(TASK_INTERRUPTIBLE
);
1606 DPRINT(("head=%d tail=%d\n", ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
1609 if(PFM_CTXQ_EMPTY(ctx
) == 0) break;
1611 UNPROTECT_CTX(ctx
, flags
);
1614 * check non-blocking read
1617 if(filp
->f_flags
& O_NONBLOCK
) break;
1620 * check pending signals
1622 if(signal_pending(current
)) {
1627 * no message, so wait
1631 PROTECT_CTX(ctx
, flags
);
1633 DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current
), ret
));
1634 set_current_state(TASK_RUNNING
);
1635 remove_wait_queue(&ctx
->ctx_msgq_wait
, &wait
);
1637 if (ret
< 0) goto abort
;
1640 msg
= pfm_get_next_msg(ctx
);
1642 printk(KERN_ERR
"perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx
, task_pid_nr(current
));
1646 DPRINT(("fd=%d type=%d\n", msg
->pfm_gen_msg
.msg_ctx_fd
, msg
->pfm_gen_msg
.msg_type
));
1649 if(copy_to_user(buf
, msg
, sizeof(pfm_msg_t
)) == 0) ret
= sizeof(pfm_msg_t
);
1652 UNPROTECT_CTX(ctx
, flags
);
1658 pfm_write(struct file
*file
, const char __user
*ubuf
,
1659 size_t size
, loff_t
*ppos
)
1661 DPRINT(("pfm_write called\n"));
1666 pfm_poll(struct file
*filp
, poll_table
* wait
)
1669 unsigned long flags
;
1670 unsigned int mask
= 0;
1672 if (PFM_IS_FILE(filp
) == 0) {
1673 printk(KERN_ERR
"perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current
));
1677 ctx
= filp
->private_data
;
1679 printk(KERN_ERR
"perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current
));
1684 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx
->ctx_fd
));
1686 poll_wait(filp
, &ctx
->ctx_msgq_wait
, wait
);
1688 PROTECT_CTX(ctx
, flags
);
1690 if (PFM_CTXQ_EMPTY(ctx
) == 0)
1691 mask
= POLLIN
| POLLRDNORM
;
1693 UNPROTECT_CTX(ctx
, flags
);
1695 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx
->ctx_fd
, mask
));
1701 pfm_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
1703 DPRINT(("pfm_ioctl called\n"));
1708 * interrupt cannot be masked when coming here
1711 pfm_do_fasync(int fd
, struct file
*filp
, pfm_context_t
*ctx
, int on
)
1715 ret
= fasync_helper (fd
, filp
, on
, &ctx
->ctx_async_queue
);
1717 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1718 task_pid_nr(current
),
1721 ctx
->ctx_async_queue
, ret
));
1727 pfm_fasync(int fd
, struct file
*filp
, int on
)
1732 if (PFM_IS_FILE(filp
) == 0) {
1733 printk(KERN_ERR
"perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current
));
1737 ctx
= filp
->private_data
;
1739 printk(KERN_ERR
"perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current
));
1743 * we cannot mask interrupts during this call because this may
1744 * may go to sleep if memory is not readily avalaible.
1746 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1747 * done in caller. Serialization of this function is ensured by caller.
1749 ret
= pfm_do_fasync(fd
, filp
, ctx
, on
);
1752 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1755 ctx
->ctx_async_queue
, ret
));
1762 * this function is exclusively called from pfm_close().
1763 * The context is not protected at that time, nor are interrupts
1764 * on the remote CPU. That's necessary to avoid deadlocks.
1767 pfm_syswide_force_stop(void *info
)
1769 pfm_context_t
*ctx
= (pfm_context_t
*)info
;
1770 struct pt_regs
*regs
= task_pt_regs(current
);
1771 struct task_struct
*owner
;
1772 unsigned long flags
;
1775 if (ctx
->ctx_cpu
!= smp_processor_id()) {
1776 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1778 smp_processor_id());
1781 owner
= GET_PMU_OWNER();
1782 if (owner
!= ctx
->ctx_task
) {
1783 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1785 task_pid_nr(owner
), task_pid_nr(ctx
->ctx_task
));
1788 if (GET_PMU_CTX() != ctx
) {
1789 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1791 GET_PMU_CTX(), ctx
);
1795 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx
->ctx_task
)));
1797 * the context is already protected in pfm_close(), we simply
1798 * need to mask interrupts to avoid a PMU interrupt race on
1801 local_irq_save(flags
);
1803 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
1805 DPRINT(("context_unload returned %d\n", ret
));
1809 * unmask interrupts, PMU interrupts are now spurious here
1811 local_irq_restore(flags
);
1815 pfm_syswide_cleanup_other_cpu(pfm_context_t
*ctx
)
1819 DPRINT(("calling CPU%d for cleanup\n", ctx
->ctx_cpu
));
1820 ret
= smp_call_function_single(ctx
->ctx_cpu
, pfm_syswide_force_stop
, ctx
, 1);
1821 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx
->ctx_cpu
, ret
));
1823 #endif /* CONFIG_SMP */
1826 * called for each close(). Partially free resources.
1827 * When caller is self-monitoring, the context is unloaded.
1830 pfm_flush(struct file
*filp
, fl_owner_t id
)
1833 struct task_struct
*task
;
1834 struct pt_regs
*regs
;
1835 unsigned long flags
;
1836 unsigned long smpl_buf_size
= 0UL;
1837 void *smpl_buf_vaddr
= NULL
;
1838 int state
, is_system
;
1840 if (PFM_IS_FILE(filp
) == 0) {
1841 DPRINT(("bad magic for\n"));
1845 ctx
= filp
->private_data
;
1847 printk(KERN_ERR
"perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current
));
1852 * remove our file from the async queue, if we use this mode.
1853 * This can be done without the context being protected. We come
1854 * here when the context has become unreachable by other tasks.
1856 * We may still have active monitoring at this point and we may
1857 * end up in pfm_overflow_handler(). However, fasync_helper()
1858 * operates with interrupts disabled and it cleans up the
1859 * queue. If the PMU handler is called prior to entering
1860 * fasync_helper() then it will send a signal. If it is
1861 * invoked after, it will find an empty queue and no
1862 * signal will be sent. In both case, we are safe
1864 PROTECT_CTX(ctx
, flags
);
1866 state
= ctx
->ctx_state
;
1867 is_system
= ctx
->ctx_fl_system
;
1869 task
= PFM_CTX_TASK(ctx
);
1870 regs
= task_pt_regs(task
);
1872 DPRINT(("ctx_state=%d is_current=%d\n",
1874 task
== current
? 1 : 0));
1877 * if state == UNLOADED, then task is NULL
1881 * we must stop and unload because we are losing access to the context.
1883 if (task
== current
) {
1886 * the task IS the owner but it migrated to another CPU: that's bad
1887 * but we must handle this cleanly. Unfortunately, the kernel does
1888 * not provide a mechanism to block migration (while the context is loaded).
1890 * We need to release the resource on the ORIGINAL cpu.
1892 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
1894 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
1896 * keep context protected but unmask interrupt for IPI
1898 local_irq_restore(flags
);
1900 pfm_syswide_cleanup_other_cpu(ctx
);
1903 * restore interrupt masking
1905 local_irq_save(flags
);
1908 * context is unloaded at this point
1911 #endif /* CONFIG_SMP */
1914 DPRINT(("forcing unload\n"));
1916 * stop and unload, returning with state UNLOADED
1917 * and session unreserved.
1919 pfm_context_unload(ctx
, NULL
, 0, regs
);
1921 DPRINT(("ctx_state=%d\n", ctx
->ctx_state
));
1926 * remove virtual mapping, if any, for the calling task.
1927 * cannot reset ctx field until last user is calling close().
1929 * ctx_smpl_vaddr must never be cleared because it is needed
1930 * by every task with access to the context
1932 * When called from do_exit(), the mm context is gone already, therefore
1933 * mm is NULL, i.e., the VMA is already gone and we do not have to
1936 if (ctx
->ctx_smpl_vaddr
&& current
->mm
) {
1937 smpl_buf_vaddr
= ctx
->ctx_smpl_vaddr
;
1938 smpl_buf_size
= ctx
->ctx_smpl_size
;
1941 UNPROTECT_CTX(ctx
, flags
);
1944 * if there was a mapping, then we systematically remove it
1945 * at this point. Cannot be done inside critical section
1946 * because some VM function reenables interrupts.
1949 if (smpl_buf_vaddr
) pfm_remove_smpl_mapping(current
, smpl_buf_vaddr
, smpl_buf_size
);
1954 * called either on explicit close() or from exit_files().
1955 * Only the LAST user of the file gets to this point, i.e., it is
1958 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1959 * (fput()),i.e, last task to access the file. Nobody else can access the
1960 * file at this point.
1962 * When called from exit_files(), the VMA has been freed because exit_mm()
1963 * is executed before exit_files().
1965 * When called from exit_files(), the current task is not yet ZOMBIE but we
1966 * flush the PMU state to the context.
1969 pfm_close(struct inode
*inode
, struct file
*filp
)
1972 struct task_struct
*task
;
1973 struct pt_regs
*regs
;
1974 DECLARE_WAITQUEUE(wait
, current
);
1975 unsigned long flags
;
1976 unsigned long smpl_buf_size
= 0UL;
1977 void *smpl_buf_addr
= NULL
;
1978 int free_possible
= 1;
1979 int state
, is_system
;
1981 DPRINT(("pfm_close called private=%p\n", filp
->private_data
));
1983 if (PFM_IS_FILE(filp
) == 0) {
1984 DPRINT(("bad magic\n"));
1988 ctx
= filp
->private_data
;
1990 printk(KERN_ERR
"perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current
));
1994 PROTECT_CTX(ctx
, flags
);
1996 state
= ctx
->ctx_state
;
1997 is_system
= ctx
->ctx_fl_system
;
1999 task
= PFM_CTX_TASK(ctx
);
2000 regs
= task_pt_regs(task
);
2002 DPRINT(("ctx_state=%d is_current=%d\n",
2004 task
== current
? 1 : 0));
2007 * if task == current, then pfm_flush() unloaded the context
2009 if (state
== PFM_CTX_UNLOADED
) goto doit
;
2012 * context is loaded/masked and task != current, we need to
2013 * either force an unload or go zombie
2017 * The task is currently blocked or will block after an overflow.
2018 * we must force it to wakeup to get out of the
2019 * MASKED state and transition to the unloaded state by itself.
2021 * This situation is only possible for per-task mode
2023 if (state
== PFM_CTX_MASKED
&& CTX_OVFL_NOBLOCK(ctx
) == 0) {
2026 * set a "partial" zombie state to be checked
2027 * upon return from down() in pfm_handle_work().
2029 * We cannot use the ZOMBIE state, because it is checked
2030 * by pfm_load_regs() which is called upon wakeup from down().
2031 * In such case, it would free the context and then we would
2032 * return to pfm_handle_work() which would access the
2033 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2034 * but visible to pfm_handle_work().
2036 * For some window of time, we have a zombie context with
2037 * ctx_state = MASKED and not ZOMBIE
2039 ctx
->ctx_fl_going_zombie
= 1;
2042 * force task to wake up from MASKED state
2044 complete(&ctx
->ctx_restart_done
);
2046 DPRINT(("waking up ctx_state=%d\n", state
));
2049 * put ourself to sleep waiting for the other
2050 * task to report completion
2052 * the context is protected by mutex, therefore there
2053 * is no risk of being notified of completion before
2054 * begin actually on the waitq.
2056 set_current_state(TASK_INTERRUPTIBLE
);
2057 add_wait_queue(&ctx
->ctx_zombieq
, &wait
);
2059 UNPROTECT_CTX(ctx
, flags
);
2062 * XXX: check for signals :
2063 * - ok for explicit close
2064 * - not ok when coming from exit_files()
2069 PROTECT_CTX(ctx
, flags
);
2072 remove_wait_queue(&ctx
->ctx_zombieq
, &wait
);
2073 set_current_state(TASK_RUNNING
);
2076 * context is unloaded at this point
2078 DPRINT(("after zombie wakeup ctx_state=%d for\n", state
));
2080 else if (task
!= current
) {
2083 * switch context to zombie state
2085 ctx
->ctx_state
= PFM_CTX_ZOMBIE
;
2087 DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task
)));
2089 * cannot free the context on the spot. deferred until
2090 * the task notices the ZOMBIE state
2094 pfm_context_unload(ctx
, NULL
, 0, regs
);
2099 /* reload state, may have changed during opening of critical section */
2100 state
= ctx
->ctx_state
;
2103 * the context is still attached to a task (possibly current)
2104 * we cannot destroy it right now
2108 * we must free the sampling buffer right here because
2109 * we cannot rely on it being cleaned up later by the
2110 * monitored task. It is not possible to free vmalloc'ed
2111 * memory in pfm_load_regs(). Instead, we remove the buffer
2112 * now. should there be subsequent PMU overflow originally
2113 * meant for sampling, the will be converted to spurious
2114 * and that's fine because the monitoring tools is gone anyway.
2116 if (ctx
->ctx_smpl_hdr
) {
2117 smpl_buf_addr
= ctx
->ctx_smpl_hdr
;
2118 smpl_buf_size
= ctx
->ctx_smpl_size
;
2119 /* no more sampling */
2120 ctx
->ctx_smpl_hdr
= NULL
;
2121 ctx
->ctx_fl_is_sampling
= 0;
2124 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2130 if (smpl_buf_addr
) pfm_exit_smpl_buffer(ctx
->ctx_buf_fmt
);
2133 * UNLOADED that the session has already been unreserved.
2135 if (state
== PFM_CTX_ZOMBIE
) {
2136 pfm_unreserve_session(ctx
, ctx
->ctx_fl_system
, ctx
->ctx_cpu
);
2140 * disconnect file descriptor from context must be done
2143 filp
->private_data
= NULL
;
2146 * if we free on the spot, the context is now completely unreachable
2147 * from the callers side. The monitored task side is also cut, so we
2150 * If we have a deferred free, only the caller side is disconnected.
2152 UNPROTECT_CTX(ctx
, flags
);
2155 * All memory free operations (especially for vmalloc'ed memory)
2156 * MUST be done with interrupts ENABLED.
2158 if (smpl_buf_addr
) pfm_rvfree(smpl_buf_addr
, smpl_buf_size
);
2161 * return the memory used by the context
2163 if (free_possible
) pfm_context_free(ctx
);
2169 pfm_no_open(struct inode
*irrelevant
, struct file
*dontcare
)
2171 DPRINT(("pfm_no_open called\n"));
2177 static const struct file_operations pfm_file_ops
= {
2178 .llseek
= no_llseek
,
2182 .unlocked_ioctl
= pfm_ioctl
,
2183 .open
= pfm_no_open
, /* special open code to disallow open via /proc */
2184 .fasync
= pfm_fasync
,
2185 .release
= pfm_close
,
2190 pfmfs_delete_dentry(const struct dentry
*dentry
)
2195 static char *pfmfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
2197 return dynamic_dname(dentry
, buffer
, buflen
, "pfm:[%lu]",
2198 dentry
->d_inode
->i_ino
);
2201 static const struct dentry_operations pfmfs_dentry_operations
= {
2202 .d_delete
= pfmfs_delete_dentry
,
2203 .d_dname
= pfmfs_dname
,
2207 static struct file
*
2208 pfm_alloc_file(pfm_context_t
*ctx
)
2211 struct inode
*inode
;
2213 struct qstr
this = { .name
= "" };
2216 * allocate a new inode
2218 inode
= new_inode(pfmfs_mnt
->mnt_sb
);
2220 return ERR_PTR(-ENOMEM
);
2222 DPRINT(("new inode ino=%ld @%p\n", inode
->i_ino
, inode
));
2224 inode
->i_mode
= S_IFCHR
|S_IRUGO
;
2225 inode
->i_uid
= current_fsuid();
2226 inode
->i_gid
= current_fsgid();
2229 * allocate a new dcache entry
2231 path
.dentry
= d_alloc(pfmfs_mnt
->mnt_root
, &this);
2234 return ERR_PTR(-ENOMEM
);
2236 path
.mnt
= mntget(pfmfs_mnt
);
2238 d_add(path
.dentry
, inode
);
2240 file
= alloc_file(&path
, FMODE_READ
, &pfm_file_ops
);
2243 return ERR_PTR(-ENFILE
);
2246 file
->f_flags
= O_RDONLY
;
2247 file
->private_data
= ctx
;
2253 pfm_remap_buffer(struct vm_area_struct
*vma
, unsigned long buf
, unsigned long addr
, unsigned long size
)
2255 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf
, addr
, size
));
2258 unsigned long pfn
= ia64_tpa(buf
) >> PAGE_SHIFT
;
2261 if (remap_pfn_range(vma
, addr
, pfn
, PAGE_SIZE
, PAGE_READONLY
))
2272 * allocate a sampling buffer and remaps it into the user address space of the task
2275 pfm_smpl_buffer_alloc(struct task_struct
*task
, struct file
*filp
, pfm_context_t
*ctx
, unsigned long rsize
, void **user_vaddr
)
2277 struct mm_struct
*mm
= task
->mm
;
2278 struct vm_area_struct
*vma
= NULL
;
2284 * the fixed header + requested size and align to page boundary
2286 size
= PAGE_ALIGN(rsize
);
2288 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize
, size
));
2291 * check requested size to avoid Denial-of-service attacks
2292 * XXX: may have to refine this test
2293 * Check against address space limit.
2295 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2298 if (size
> task_rlimit(task
, RLIMIT_MEMLOCK
))
2302 * We do the easy to undo allocations first.
2304 * pfm_rvmalloc(), clears the buffer, so there is no leak
2306 smpl_buf
= pfm_rvmalloc(size
);
2307 if (smpl_buf
== NULL
) {
2308 DPRINT(("Can't allocate sampling buffer\n"));
2312 DPRINT(("smpl_buf @%p\n", smpl_buf
));
2315 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2317 DPRINT(("Cannot allocate vma\n"));
2320 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2323 * partially initialize the vma for the sampling buffer
2326 vma
->vm_file
= filp
;
2327 vma
->vm_flags
= VM_READ
| VM_MAYREAD
|VM_RESERVED
;
2328 vma
->vm_page_prot
= PAGE_READONLY
; /* XXX may need to change */
2331 * Now we have everything we need and we can initialize
2332 * and connect all the data structures
2335 ctx
->ctx_smpl_hdr
= smpl_buf
;
2336 ctx
->ctx_smpl_size
= size
; /* aligned size */
2339 * Let's do the difficult operations next.
2341 * now we atomically find some area in the address space and
2342 * remap the buffer in it.
2344 down_write(&task
->mm
->mmap_sem
);
2346 /* find some free area in address space, must have mmap sem held */
2347 vma
->vm_start
= pfm_get_unmapped_area(NULL
, 0, size
, 0, MAP_PRIVATE
|MAP_ANONYMOUS
, 0);
2348 if (vma
->vm_start
== 0UL) {
2349 DPRINT(("Cannot find unmapped area for size %ld\n", size
));
2350 up_write(&task
->mm
->mmap_sem
);
2353 vma
->vm_end
= vma
->vm_start
+ size
;
2354 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2356 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size
, ctx
->ctx_smpl_hdr
, vma
->vm_start
));
2358 /* can only be applied to current task, need to have the mm semaphore held when called */
2359 if (pfm_remap_buffer(vma
, (unsigned long)smpl_buf
, vma
->vm_start
, size
)) {
2360 DPRINT(("Can't remap buffer\n"));
2361 up_write(&task
->mm
->mmap_sem
);
2368 * now insert the vma in the vm list for the process, must be
2369 * done with mmap lock held
2371 insert_vm_struct(mm
, vma
);
2373 mm
->total_vm
+= size
>> PAGE_SHIFT
;
2374 vm_stat_account(vma
->vm_mm
, vma
->vm_flags
, vma
->vm_file
,
2376 up_write(&task
->mm
->mmap_sem
);
2379 * keep track of user level virtual address
2381 ctx
->ctx_smpl_vaddr
= (void *)vma
->vm_start
;
2382 *(unsigned long *)user_vaddr
= vma
->vm_start
;
2387 kmem_cache_free(vm_area_cachep
, vma
);
2389 pfm_rvfree(smpl_buf
, size
);
2395 * XXX: do something better here
2398 pfm_bad_permissions(struct task_struct
*task
)
2400 const struct cred
*tcred
;
2401 uid_t uid
= current_uid();
2402 gid_t gid
= current_gid();
2406 tcred
= __task_cred(task
);
2408 /* inspired by ptrace_attach() */
2409 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2418 ret
= ((uid
!= tcred
->euid
)
2419 || (uid
!= tcred
->suid
)
2420 || (uid
!= tcred
->uid
)
2421 || (gid
!= tcred
->egid
)
2422 || (gid
!= tcred
->sgid
)
2423 || (gid
!= tcred
->gid
)) && !capable(CAP_SYS_PTRACE
);
2430 pfarg_is_sane(struct task_struct
*task
, pfarg_context_t
*pfx
)
2436 ctx_flags
= pfx
->ctx_flags
;
2438 if (ctx_flags
& PFM_FL_SYSTEM_WIDE
) {
2441 * cannot block in this mode
2443 if (ctx_flags
& PFM_FL_NOTIFY_BLOCK
) {
2444 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2449 /* probably more to add here */
2455 pfm_setup_buffer_fmt(struct task_struct
*task
, struct file
*filp
, pfm_context_t
*ctx
, unsigned int ctx_flags
,
2456 unsigned int cpu
, pfarg_context_t
*arg
)
2458 pfm_buffer_fmt_t
*fmt
= NULL
;
2459 unsigned long size
= 0UL;
2461 void *fmt_arg
= NULL
;
2463 #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2465 /* invoke and lock buffer format, if found */
2466 fmt
= pfm_find_buffer_fmt(arg
->ctx_smpl_buf_id
);
2468 DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task
)));
2473 * buffer argument MUST be contiguous to pfarg_context_t
2475 if (fmt
->fmt_arg_size
) fmt_arg
= PFM_CTXARG_BUF_ARG(arg
);
2477 ret
= pfm_buf_fmt_validate(fmt
, task
, ctx_flags
, cpu
, fmt_arg
);
2479 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task
), ctx_flags
, cpu
, fmt_arg
, ret
));
2481 if (ret
) goto error
;
2483 /* link buffer format and context */
2484 ctx
->ctx_buf_fmt
= fmt
;
2485 ctx
->ctx_fl_is_sampling
= 1; /* assume record() is defined */
2488 * check if buffer format wants to use perfmon buffer allocation/mapping service
2490 ret
= pfm_buf_fmt_getsize(fmt
, task
, ctx_flags
, cpu
, fmt_arg
, &size
);
2491 if (ret
) goto error
;
2495 * buffer is always remapped into the caller's address space
2497 ret
= pfm_smpl_buffer_alloc(current
, filp
, ctx
, size
, &uaddr
);
2498 if (ret
) goto error
;
2500 /* keep track of user address of buffer */
2501 arg
->ctx_smpl_vaddr
= uaddr
;
2503 ret
= pfm_buf_fmt_init(fmt
, task
, ctx
->ctx_smpl_hdr
, ctx_flags
, cpu
, fmt_arg
);
2510 pfm_reset_pmu_state(pfm_context_t
*ctx
)
2515 * install reset values for PMC.
2517 for (i
=1; PMC_IS_LAST(i
) == 0; i
++) {
2518 if (PMC_IS_IMPL(i
) == 0) continue;
2519 ctx
->ctx_pmcs
[i
] = PMC_DFL_VAL(i
);
2520 DPRINT(("pmc[%d]=0x%lx\n", i
, ctx
->ctx_pmcs
[i
]));
2523 * PMD registers are set to 0UL when the context in memset()
2527 * On context switched restore, we must restore ALL pmc and ALL pmd even
2528 * when they are not actively used by the task. In UP, the incoming process
2529 * may otherwise pick up left over PMC, PMD state from the previous process.
2530 * As opposed to PMD, stale PMC can cause harm to the incoming
2531 * process because they may change what is being measured.
2532 * Therefore, we must systematically reinstall the entire
2533 * PMC state. In SMP, the same thing is possible on the
2534 * same CPU but also on between 2 CPUs.
2536 * The problem with PMD is information leaking especially
2537 * to user level when psr.sp=0
2539 * There is unfortunately no easy way to avoid this problem
2540 * on either UP or SMP. This definitively slows down the
2541 * pfm_load_regs() function.
2545 * bitmask of all PMCs accessible to this context
2547 * PMC0 is treated differently.
2549 ctx
->ctx_all_pmcs
[0] = pmu_conf
->impl_pmcs
[0] & ~0x1;
2552 * bitmask of all PMDs that are accessible to this context
2554 ctx
->ctx_all_pmds
[0] = pmu_conf
->impl_pmds
[0];
2556 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx
->ctx_fd
, ctx
->ctx_all_pmcs
[0],ctx
->ctx_all_pmds
[0]));
2559 * useful in case of re-enable after disable
2561 ctx
->ctx_used_ibrs
[0] = 0UL;
2562 ctx
->ctx_used_dbrs
[0] = 0UL;
2566 pfm_ctx_getsize(void *arg
, size_t *sz
)
2568 pfarg_context_t
*req
= (pfarg_context_t
*)arg
;
2569 pfm_buffer_fmt_t
*fmt
;
2573 if (!pfm_uuid_cmp(req
->ctx_smpl_buf_id
, pfm_null_uuid
)) return 0;
2575 fmt
= pfm_find_buffer_fmt(req
->ctx_smpl_buf_id
);
2577 DPRINT(("cannot find buffer format\n"));
2580 /* get just enough to copy in user parameters */
2581 *sz
= fmt
->fmt_arg_size
;
2582 DPRINT(("arg_size=%lu\n", *sz
));
2590 * cannot attach if :
2592 * - task not owned by caller
2593 * - task incompatible with context mode
2596 pfm_task_incompatible(pfm_context_t
*ctx
, struct task_struct
*task
)
2599 * no kernel task or task not owner by caller
2601 if (task
->mm
== NULL
) {
2602 DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task
)));
2605 if (pfm_bad_permissions(task
)) {
2606 DPRINT(("no permission to attach to [%d]\n", task_pid_nr(task
)));
2610 * cannot block in self-monitoring mode
2612 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && task
== current
) {
2613 DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task
)));
2617 if (task
->exit_state
== EXIT_ZOMBIE
) {
2618 DPRINT(("cannot attach to zombie task [%d]\n", task_pid_nr(task
)));
2623 * always ok for self
2625 if (task
== current
) return 0;
2627 if (!task_is_stopped_or_traced(task
)) {
2628 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task
), task
->state
));
2632 * make sure the task is off any CPU
2634 wait_task_inactive(task
, 0);
2636 /* more to come... */
2642 pfm_get_task(pfm_context_t
*ctx
, pid_t pid
, struct task_struct
**task
)
2644 struct task_struct
*p
= current
;
2647 /* XXX: need to add more checks here */
2648 if (pid
< 2) return -EPERM
;
2650 if (pid
!= task_pid_vnr(current
)) {
2652 read_lock(&tasklist_lock
);
2654 p
= find_task_by_vpid(pid
);
2656 /* make sure task cannot go away while we operate on it */
2657 if (p
) get_task_struct(p
);
2659 read_unlock(&tasklist_lock
);
2661 if (p
== NULL
) return -ESRCH
;
2664 ret
= pfm_task_incompatible(ctx
, p
);
2667 } else if (p
!= current
) {
2676 pfm_context_create(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
2678 pfarg_context_t
*req
= (pfarg_context_t
*)arg
;
2685 /* let's check the arguments first */
2686 ret
= pfarg_is_sane(current
, req
);
2690 ctx_flags
= req
->ctx_flags
;
2694 fd
= get_unused_fd();
2698 ctx
= pfm_context_alloc(ctx_flags
);
2702 filp
= pfm_alloc_file(ctx
);
2704 ret
= PTR_ERR(filp
);
2708 req
->ctx_fd
= ctx
->ctx_fd
= fd
;
2711 * does the user want to sample?
2713 if (pfm_uuid_cmp(req
->ctx_smpl_buf_id
, pfm_null_uuid
)) {
2714 ret
= pfm_setup_buffer_fmt(current
, filp
, ctx
, ctx_flags
, 0, req
);
2719 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2724 ctx
->ctx_fl_excl_idle
,
2729 * initialize soft PMU state
2731 pfm_reset_pmu_state(ctx
);
2733 fd_install(fd
, filp
);
2738 path
= filp
->f_path
;
2742 if (ctx
->ctx_buf_fmt
) {
2743 pfm_buf_fmt_exit(ctx
->ctx_buf_fmt
, current
, NULL
, regs
);
2746 pfm_context_free(ctx
);
2753 static inline unsigned long
2754 pfm_new_counter_value (pfm_counter_t
*reg
, int is_long_reset
)
2756 unsigned long val
= is_long_reset
? reg
->long_reset
: reg
->short_reset
;
2757 unsigned long new_seed
, old_seed
= reg
->seed
, mask
= reg
->mask
;
2758 extern unsigned long carta_random32 (unsigned long seed
);
2760 if (reg
->flags
& PFM_REGFL_RANDOM
) {
2761 new_seed
= carta_random32(old_seed
);
2762 val
-= (old_seed
& mask
); /* counter values are negative numbers! */
2763 if ((mask
>> 32) != 0)
2764 /* construct a full 64-bit random value: */
2765 new_seed
|= carta_random32(old_seed
>> 32) << 32;
2766 reg
->seed
= new_seed
;
2773 pfm_reset_regs_masked(pfm_context_t
*ctx
, unsigned long *ovfl_regs
, int is_long_reset
)
2775 unsigned long mask
= ovfl_regs
[0];
2776 unsigned long reset_others
= 0UL;
2781 * now restore reset value on sampling overflowed counters
2783 mask
>>= PMU_FIRST_COUNTER
;
2784 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
2786 if ((mask
& 0x1UL
) == 0UL) continue;
2788 ctx
->ctx_pmds
[i
].val
= val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2789 reset_others
|= ctx
->ctx_pmds
[i
].reset_pmds
[0];
2791 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset
? "long" : "short", i
, val
));
2795 * Now take care of resetting the other registers
2797 for(i
= 0; reset_others
; i
++, reset_others
>>= 1) {
2799 if ((reset_others
& 0x1) == 0) continue;
2801 ctx
->ctx_pmds
[i
].val
= val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2803 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2804 is_long_reset
? "long" : "short", i
, val
));
2809 pfm_reset_regs(pfm_context_t
*ctx
, unsigned long *ovfl_regs
, int is_long_reset
)
2811 unsigned long mask
= ovfl_regs
[0];
2812 unsigned long reset_others
= 0UL;
2816 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs
[0], is_long_reset
));
2818 if (ctx
->ctx_state
== PFM_CTX_MASKED
) {
2819 pfm_reset_regs_masked(ctx
, ovfl_regs
, is_long_reset
);
2824 * now restore reset value on sampling overflowed counters
2826 mask
>>= PMU_FIRST_COUNTER
;
2827 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
2829 if ((mask
& 0x1UL
) == 0UL) continue;
2831 val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2832 reset_others
|= ctx
->ctx_pmds
[i
].reset_pmds
[0];
2834 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset
? "long" : "short", i
, val
));
2836 pfm_write_soft_counter(ctx
, i
, val
);
2840 * Now take care of resetting the other registers
2842 for(i
= 0; reset_others
; i
++, reset_others
>>= 1) {
2844 if ((reset_others
& 0x1) == 0) continue;
2846 val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2848 if (PMD_IS_COUNTING(i
)) {
2849 pfm_write_soft_counter(ctx
, i
, val
);
2851 ia64_set_pmd(i
, val
);
2853 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2854 is_long_reset
? "long" : "short", i
, val
));
2860 pfm_write_pmcs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
2862 struct task_struct
*task
;
2863 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
2864 unsigned long value
, pmc_pm
;
2865 unsigned long smpl_pmds
, reset_pmds
, impl_pmds
;
2866 unsigned int cnum
, reg_flags
, flags
, pmc_type
;
2867 int i
, can_access_pmu
= 0, is_loaded
, is_system
, expert_mode
;
2868 int is_monitor
, is_counting
, state
;
2870 pfm_reg_check_t wr_func
;
2871 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2873 state
= ctx
->ctx_state
;
2874 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
2875 is_system
= ctx
->ctx_fl_system
;
2876 task
= ctx
->ctx_task
;
2877 impl_pmds
= pmu_conf
->impl_pmds
[0];
2879 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
2883 * In system wide and when the context is loaded, access can only happen
2884 * when the caller is running on the CPU being monitored by the session.
2885 * It does not have to be the owner (ctx_task) of the context per se.
2887 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
2888 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
2891 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
2893 expert_mode
= pfm_sysctl
.expert_mode
;
2895 for (i
= 0; i
< count
; i
++, req
++) {
2897 cnum
= req
->reg_num
;
2898 reg_flags
= req
->reg_flags
;
2899 value
= req
->reg_value
;
2900 smpl_pmds
= req
->reg_smpl_pmds
[0];
2901 reset_pmds
= req
->reg_reset_pmds
[0];
2905 if (cnum
>= PMU_MAX_PMCS
) {
2906 DPRINT(("pmc%u is invalid\n", cnum
));
2910 pmc_type
= pmu_conf
->pmc_desc
[cnum
].type
;
2911 pmc_pm
= (value
>> pmu_conf
->pmc_desc
[cnum
].pm_pos
) & 0x1;
2912 is_counting
= (pmc_type
& PFM_REG_COUNTING
) == PFM_REG_COUNTING
? 1 : 0;
2913 is_monitor
= (pmc_type
& PFM_REG_MONITOR
) == PFM_REG_MONITOR
? 1 : 0;
2916 * we reject all non implemented PMC as well
2917 * as attempts to modify PMC[0-3] which are used
2918 * as status registers by the PMU
2920 if ((pmc_type
& PFM_REG_IMPL
) == 0 || (pmc_type
& PFM_REG_CONTROL
) == PFM_REG_CONTROL
) {
2921 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum
, pmc_type
));
2924 wr_func
= pmu_conf
->pmc_desc
[cnum
].write_check
;
2926 * If the PMC is a monitor, then if the value is not the default:
2927 * - system-wide session: PMCx.pm=1 (privileged monitor)
2928 * - per-task : PMCx.pm=0 (user monitor)
2930 if (is_monitor
&& value
!= PMC_DFL_VAL(cnum
) && is_system
^ pmc_pm
) {
2931 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2940 * enforce generation of overflow interrupt. Necessary on all
2943 value
|= 1 << PMU_PMC_OI
;
2945 if (reg_flags
& PFM_REGFL_OVFL_NOTIFY
) {
2946 flags
|= PFM_REGFL_OVFL_NOTIFY
;
2949 if (reg_flags
& PFM_REGFL_RANDOM
) flags
|= PFM_REGFL_RANDOM
;
2951 /* verify validity of smpl_pmds */
2952 if ((smpl_pmds
& impl_pmds
) != smpl_pmds
) {
2953 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds
, cnum
));
2957 /* verify validity of reset_pmds */
2958 if ((reset_pmds
& impl_pmds
) != reset_pmds
) {
2959 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds
, cnum
));
2963 if (reg_flags
& (PFM_REGFL_OVFL_NOTIFY
|PFM_REGFL_RANDOM
)) {
2964 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum
));
2967 /* eventid on non-counting monitors are ignored */
2971 * execute write checker, if any
2973 if (likely(expert_mode
== 0 && wr_func
)) {
2974 ret
= (*wr_func
)(task
, ctx
, cnum
, &value
, regs
);
2975 if (ret
) goto error
;
2980 * no error on this register
2982 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
2985 * Now we commit the changes to the software state
2989 * update overflow information
2993 * full flag update each time a register is programmed
2995 ctx
->ctx_pmds
[cnum
].flags
= flags
;
2997 ctx
->ctx_pmds
[cnum
].reset_pmds
[0] = reset_pmds
;
2998 ctx
->ctx_pmds
[cnum
].smpl_pmds
[0] = smpl_pmds
;
2999 ctx
->ctx_pmds
[cnum
].eventid
= req
->reg_smpl_eventid
;
3002 * Mark all PMDS to be accessed as used.
3004 * We do not keep track of PMC because we have to
3005 * systematically restore ALL of them.
3007 * We do not update the used_monitors mask, because
3008 * if we have not programmed them, then will be in
3009 * a quiescent state, therefore we will not need to
3010 * mask/restore then when context is MASKED.
3012 CTX_USED_PMD(ctx
, reset_pmds
);
3013 CTX_USED_PMD(ctx
, smpl_pmds
);
3015 * make sure we do not try to reset on
3016 * restart because we have established new values
3018 if (state
== PFM_CTX_MASKED
) ctx
->ctx_ovfl_regs
[0] &= ~1UL << cnum
;
3021 * Needed in case the user does not initialize the equivalent
3022 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3023 * possible leak here.
3025 CTX_USED_PMD(ctx
, pmu_conf
->pmc_desc
[cnum
].dep_pmd
[0]);
3028 * keep track of the monitor PMC that we are using.
3029 * we save the value of the pmc in ctx_pmcs[] and if
3030 * the monitoring is not stopped for the context we also
3031 * place it in the saved state area so that it will be
3032 * picked up later by the context switch code.
3034 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3036 * The value in th_pmcs[] may be modified on overflow, i.e., when
3037 * monitoring needs to be stopped.
3039 if (is_monitor
) CTX_USED_MONITOR(ctx
, 1UL << cnum
);
3042 * update context state
3044 ctx
->ctx_pmcs
[cnum
] = value
;
3048 * write thread state
3050 if (is_system
== 0) ctx
->th_pmcs
[cnum
] = value
;
3053 * write hardware register if we can
3055 if (can_access_pmu
) {
3056 ia64_set_pmc(cnum
, value
);
3061 * per-task SMP only here
3063 * we are guaranteed that the task is not running on the other CPU,
3064 * we indicate that this PMD will need to be reloaded if the task
3065 * is rescheduled on the CPU it ran last on.
3067 ctx
->ctx_reload_pmcs
[0] |= 1UL << cnum
;
3072 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3078 ctx
->ctx_all_pmcs
[0],
3079 ctx
->ctx_used_pmds
[0],
3080 ctx
->ctx_pmds
[cnum
].eventid
,
3083 ctx
->ctx_reload_pmcs
[0],
3084 ctx
->ctx_used_monitors
[0],
3085 ctx
->ctx_ovfl_regs
[0]));
3089 * make sure the changes are visible
3091 if (can_access_pmu
) ia64_srlz_d();
3095 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3100 pfm_write_pmds(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3102 struct task_struct
*task
;
3103 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
3104 unsigned long value
, hw_value
, ovfl_mask
;
3106 int i
, can_access_pmu
= 0, state
;
3107 int is_counting
, is_loaded
, is_system
, expert_mode
;
3109 pfm_reg_check_t wr_func
;
3112 state
= ctx
->ctx_state
;
3113 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3114 is_system
= ctx
->ctx_fl_system
;
3115 ovfl_mask
= pmu_conf
->ovfl_val
;
3116 task
= ctx
->ctx_task
;
3118 if (unlikely(state
== PFM_CTX_ZOMBIE
)) return -EINVAL
;
3121 * on both UP and SMP, we can only write to the PMC when the task is
3122 * the owner of the local PMU.
3124 if (likely(is_loaded
)) {
3126 * In system wide and when the context is loaded, access can only happen
3127 * when the caller is running on the CPU being monitored by the session.
3128 * It does not have to be the owner (ctx_task) of the context per se.
3130 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3131 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3134 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3136 expert_mode
= pfm_sysctl
.expert_mode
;
3138 for (i
= 0; i
< count
; i
++, req
++) {
3140 cnum
= req
->reg_num
;
3141 value
= req
->reg_value
;
3143 if (!PMD_IS_IMPL(cnum
)) {
3144 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum
));
3147 is_counting
= PMD_IS_COUNTING(cnum
);
3148 wr_func
= pmu_conf
->pmd_desc
[cnum
].write_check
;
3151 * execute write checker, if any
3153 if (unlikely(expert_mode
== 0 && wr_func
)) {
3154 unsigned long v
= value
;
3156 ret
= (*wr_func
)(task
, ctx
, cnum
, &v
, regs
);
3157 if (ret
) goto abort_mission
;
3164 * no error on this register
3166 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
3169 * now commit changes to software state
3174 * update virtualized (64bits) counter
3178 * write context state
3180 ctx
->ctx_pmds
[cnum
].lval
= value
;
3183 * when context is load we use the split value
3186 hw_value
= value
& ovfl_mask
;
3187 value
= value
& ~ovfl_mask
;
3191 * update reset values (not just for counters)
3193 ctx
->ctx_pmds
[cnum
].long_reset
= req
->reg_long_reset
;
3194 ctx
->ctx_pmds
[cnum
].short_reset
= req
->reg_short_reset
;
3197 * update randomization parameters (not just for counters)
3199 ctx
->ctx_pmds
[cnum
].seed
= req
->reg_random_seed
;
3200 ctx
->ctx_pmds
[cnum
].mask
= req
->reg_random_mask
;
3203 * update context value
3205 ctx
->ctx_pmds
[cnum
].val
= value
;
3208 * Keep track of what we use
3210 * We do not keep track of PMC because we have to
3211 * systematically restore ALL of them.
3213 CTX_USED_PMD(ctx
, PMD_PMD_DEP(cnum
));
3216 * mark this PMD register used as well
3218 CTX_USED_PMD(ctx
, RDEP(cnum
));
3221 * make sure we do not try to reset on
3222 * restart because we have established new values
3224 if (is_counting
&& state
== PFM_CTX_MASKED
) {
3225 ctx
->ctx_ovfl_regs
[0] &= ~1UL << cnum
;
3230 * write thread state
3232 if (is_system
== 0) ctx
->th_pmds
[cnum
] = hw_value
;
3235 * write hardware register if we can
3237 if (can_access_pmu
) {
3238 ia64_set_pmd(cnum
, hw_value
);
3242 * we are guaranteed that the task is not running on the other CPU,
3243 * we indicate that this PMD will need to be reloaded if the task
3244 * is rescheduled on the CPU it ran last on.
3246 ctx
->ctx_reload_pmds
[0] |= 1UL << cnum
;
3251 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3252 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3258 ctx
->ctx_pmds
[cnum
].val
,
3259 ctx
->ctx_pmds
[cnum
].short_reset
,
3260 ctx
->ctx_pmds
[cnum
].long_reset
,
3261 PMC_OVFL_NOTIFY(ctx
, cnum
) ? 'Y':'N',
3262 ctx
->ctx_pmds
[cnum
].seed
,
3263 ctx
->ctx_pmds
[cnum
].mask
,
3264 ctx
->ctx_used_pmds
[0],
3265 ctx
->ctx_pmds
[cnum
].reset_pmds
[0],
3266 ctx
->ctx_reload_pmds
[0],
3267 ctx
->ctx_all_pmds
[0],
3268 ctx
->ctx_ovfl_regs
[0]));
3272 * make changes visible
3274 if (can_access_pmu
) ia64_srlz_d();
3280 * for now, we have only one possibility for error
3282 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3287 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3288 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3289 * interrupt is delivered during the call, it will be kept pending until we leave, making
3290 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3291 * guaranteed to return consistent data to the user, it may simply be old. It is not
3292 * trivial to treat the overflow while inside the call because you may end up in
3293 * some module sampling buffer code causing deadlocks.
3296 pfm_read_pmds(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3298 struct task_struct
*task
;
3299 unsigned long val
= 0UL, lval
, ovfl_mask
, sval
;
3300 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
3301 unsigned int cnum
, reg_flags
= 0;
3302 int i
, can_access_pmu
= 0, state
;
3303 int is_loaded
, is_system
, is_counting
, expert_mode
;
3305 pfm_reg_check_t rd_func
;
3308 * access is possible when loaded only for
3309 * self-monitoring tasks or in UP mode
3312 state
= ctx
->ctx_state
;
3313 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3314 is_system
= ctx
->ctx_fl_system
;
3315 ovfl_mask
= pmu_conf
->ovfl_val
;
3316 task
= ctx
->ctx_task
;
3318 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
3320 if (likely(is_loaded
)) {
3322 * In system wide and when the context is loaded, access can only happen
3323 * when the caller is running on the CPU being monitored by the session.
3324 * It does not have to be the owner (ctx_task) of the context per se.
3326 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3327 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3331 * this can be true when not self-monitoring only in UP
3333 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3335 if (can_access_pmu
) ia64_srlz_d();
3337 expert_mode
= pfm_sysctl
.expert_mode
;
3339 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3345 * on both UP and SMP, we can only read the PMD from the hardware register when
3346 * the task is the owner of the local PMU.
3349 for (i
= 0; i
< count
; i
++, req
++) {
3351 cnum
= req
->reg_num
;
3352 reg_flags
= req
->reg_flags
;
3354 if (unlikely(!PMD_IS_IMPL(cnum
))) goto error
;
3356 * we can only read the register that we use. That includes
3357 * the one we explicitly initialize AND the one we want included
3358 * in the sampling buffer (smpl_regs).
3360 * Having this restriction allows optimization in the ctxsw routine
3361 * without compromising security (leaks)
3363 if (unlikely(!CTX_IS_USED_PMD(ctx
, cnum
))) goto error
;
3365 sval
= ctx
->ctx_pmds
[cnum
].val
;
3366 lval
= ctx
->ctx_pmds
[cnum
].lval
;
3367 is_counting
= PMD_IS_COUNTING(cnum
);
3370 * If the task is not the current one, then we check if the
3371 * PMU state is still in the local live register due to lazy ctxsw.
3372 * If true, then we read directly from the registers.
3374 if (can_access_pmu
){
3375 val
= ia64_get_pmd(cnum
);
3378 * context has been saved
3379 * if context is zombie, then task does not exist anymore.
3380 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3382 val
= is_loaded
? ctx
->th_pmds
[cnum
] : 0UL;
3384 rd_func
= pmu_conf
->pmd_desc
[cnum
].read_check
;
3388 * XXX: need to check for overflow when loaded
3395 * execute read checker, if any
3397 if (unlikely(expert_mode
== 0 && rd_func
)) {
3398 unsigned long v
= val
;
3399 ret
= (*rd_func
)(ctx
->ctx_task
, ctx
, cnum
, &v
, regs
);
3400 if (ret
) goto error
;
3405 PFM_REG_RETFLAG_SET(reg_flags
, 0);
3407 DPRINT(("pmd[%u]=0x%lx\n", cnum
, val
));
3410 * update register return value, abort all if problem during copy.
3411 * we only modify the reg_flags field. no check mode is fine because
3412 * access has been verified upfront in sys_perfmonctl().
3414 req
->reg_value
= val
;
3415 req
->reg_flags
= reg_flags
;
3416 req
->reg_last_reset_val
= lval
;
3422 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3427 pfm_mod_write_pmcs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3431 if (req
== NULL
) return -EINVAL
;
3433 ctx
= GET_PMU_CTX();
3435 if (ctx
== NULL
) return -EINVAL
;
3438 * for now limit to current task, which is enough when calling
3439 * from overflow handler
3441 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3443 return pfm_write_pmcs(ctx
, req
, nreq
, regs
);
3445 EXPORT_SYMBOL(pfm_mod_write_pmcs
);
3448 pfm_mod_read_pmds(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3452 if (req
== NULL
) return -EINVAL
;
3454 ctx
= GET_PMU_CTX();
3456 if (ctx
== NULL
) return -EINVAL
;
3459 * for now limit to current task, which is enough when calling
3460 * from overflow handler
3462 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3464 return pfm_read_pmds(ctx
, req
, nreq
, regs
);
3466 EXPORT_SYMBOL(pfm_mod_read_pmds
);
3469 * Only call this function when a process it trying to
3470 * write the debug registers (reading is always allowed)
3473 pfm_use_debug_registers(struct task_struct
*task
)
3475 pfm_context_t
*ctx
= task
->thread
.pfm_context
;
3476 unsigned long flags
;
3479 if (pmu_conf
->use_rr_dbregs
== 0) return 0;
3481 DPRINT(("called for [%d]\n", task_pid_nr(task
)));
3486 if (task
->thread
.flags
& IA64_THREAD_DBG_VALID
) return 0;
3489 * Even on SMP, we do not need to use an atomic here because
3490 * the only way in is via ptrace() and this is possible only when the
3491 * process is stopped. Even in the case where the ctxsw out is not totally
3492 * completed by the time we come here, there is no way the 'stopped' process
3493 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3494 * So this is always safe.
3496 if (ctx
&& ctx
->ctx_fl_using_dbreg
== 1) return -1;
3501 * We cannot allow setting breakpoints when system wide monitoring
3502 * sessions are using the debug registers.
3504 if (pfm_sessions
.pfs_sys_use_dbregs
> 0)
3507 pfm_sessions
.pfs_ptrace_use_dbregs
++;
3509 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3510 pfm_sessions
.pfs_ptrace_use_dbregs
,
3511 pfm_sessions
.pfs_sys_use_dbregs
,
3512 task_pid_nr(task
), ret
));
3520 * This function is called for every task that exits with the
3521 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3522 * able to use the debug registers for debugging purposes via
3523 * ptrace(). Therefore we know it was not using them for
3524 * performance monitoring, so we only decrement the number
3525 * of "ptraced" debug register users to keep the count up to date
3528 pfm_release_debug_registers(struct task_struct
*task
)
3530 unsigned long flags
;
3533 if (pmu_conf
->use_rr_dbregs
== 0) return 0;
3536 if (pfm_sessions
.pfs_ptrace_use_dbregs
== 0) {
3537 printk(KERN_ERR
"perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task
));
3540 pfm_sessions
.pfs_ptrace_use_dbregs
--;
3549 pfm_restart(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3551 struct task_struct
*task
;
3552 pfm_buffer_fmt_t
*fmt
;
3553 pfm_ovfl_ctrl_t rst_ctrl
;
3554 int state
, is_system
;
3557 state
= ctx
->ctx_state
;
3558 fmt
= ctx
->ctx_buf_fmt
;
3559 is_system
= ctx
->ctx_fl_system
;
3560 task
= PFM_CTX_TASK(ctx
);
3563 case PFM_CTX_MASKED
:
3565 case PFM_CTX_LOADED
:
3566 if (CTX_HAS_SMPL(ctx
) && fmt
->fmt_restart_active
) break;
3568 case PFM_CTX_UNLOADED
:
3569 case PFM_CTX_ZOMBIE
:
3570 DPRINT(("invalid state=%d\n", state
));
3573 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state
));
3578 * In system wide and when the context is loaded, access can only happen
3579 * when the caller is running on the CPU being monitored by the session.
3580 * It does not have to be the owner (ctx_task) of the context per se.
3582 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
3583 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3588 if (unlikely(task
== NULL
)) {
3589 printk(KERN_ERR
"perfmon: [%d] pfm_restart no task\n", task_pid_nr(current
));
3593 if (task
== current
|| is_system
) {
3595 fmt
= ctx
->ctx_buf_fmt
;
3597 DPRINT(("restarting self %d ovfl=0x%lx\n",
3599 ctx
->ctx_ovfl_regs
[0]));
3601 if (CTX_HAS_SMPL(ctx
)) {
3603 prefetch(ctx
->ctx_smpl_hdr
);
3605 rst_ctrl
.bits
.mask_monitoring
= 0;
3606 rst_ctrl
.bits
.reset_ovfl_pmds
= 0;
3608 if (state
== PFM_CTX_LOADED
)
3609 ret
= pfm_buf_fmt_restart_active(fmt
, task
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
3611 ret
= pfm_buf_fmt_restart(fmt
, task
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
3613 rst_ctrl
.bits
.mask_monitoring
= 0;
3614 rst_ctrl
.bits
.reset_ovfl_pmds
= 1;
3618 if (rst_ctrl
.bits
.reset_ovfl_pmds
)
3619 pfm_reset_regs(ctx
, ctx
->ctx_ovfl_regs
, PFM_PMD_LONG_RESET
);
3621 if (rst_ctrl
.bits
.mask_monitoring
== 0) {
3622 DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task
)));
3624 if (state
== PFM_CTX_MASKED
) pfm_restore_monitoring(task
);
3626 DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task
)));
3628 // cannot use pfm_stop_monitoring(task, regs);
3632 * clear overflowed PMD mask to remove any stale information
3634 ctx
->ctx_ovfl_regs
[0] = 0UL;
3637 * back to LOADED state
3639 ctx
->ctx_state
= PFM_CTX_LOADED
;
3642 * XXX: not really useful for self monitoring
3644 ctx
->ctx_fl_can_restart
= 0;
3650 * restart another task
3654 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3655 * one is seen by the task.
3657 if (state
== PFM_CTX_MASKED
) {
3658 if (ctx
->ctx_fl_can_restart
== 0) return -EINVAL
;
3660 * will prevent subsequent restart before this one is
3661 * seen by other task
3663 ctx
->ctx_fl_can_restart
= 0;
3667 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3668 * the task is blocked or on its way to block. That's the normal
3669 * restart path. If the monitoring is not masked, then the task
3670 * can be actively monitoring and we cannot directly intervene.
3671 * Therefore we use the trap mechanism to catch the task and
3672 * force it to reset the buffer/reset PMDs.
3674 * if non-blocking, then we ensure that the task will go into
3675 * pfm_handle_work() before returning to user mode.
3677 * We cannot explicitly reset another task, it MUST always
3678 * be done by the task itself. This works for system wide because
3679 * the tool that is controlling the session is logically doing
3680 * "self-monitoring".
3682 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && state
== PFM_CTX_MASKED
) {
3683 DPRINT(("unblocking [%d]\n", task_pid_nr(task
)));
3684 complete(&ctx
->ctx_restart_done
);
3686 DPRINT(("[%d] armed exit trap\n", task_pid_nr(task
)));
3688 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_RESET
;
3690 PFM_SET_WORK_PENDING(task
, 1);
3692 set_notify_resume(task
);
3695 * XXX: send reschedule if task runs on another CPU
3702 pfm_debug(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3704 unsigned int m
= *(unsigned int *)arg
;
3706 pfm_sysctl
.debug
= m
== 0 ? 0 : 1;
3708 printk(KERN_INFO
"perfmon debugging %s (timing reset)\n", pfm_sysctl
.debug
? "on" : "off");
3711 memset(pfm_stats
, 0, sizeof(pfm_stats
));
3712 for(m
=0; m
< NR_CPUS
; m
++) pfm_stats
[m
].pfm_ovfl_intr_cycles_min
= ~0UL;
3718 * arg can be NULL and count can be zero for this function
3721 pfm_write_ibr_dbr(int mode
, pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3723 struct thread_struct
*thread
= NULL
;
3724 struct task_struct
*task
;
3725 pfarg_dbreg_t
*req
= (pfarg_dbreg_t
*)arg
;
3726 unsigned long flags
;
3731 int i
, can_access_pmu
= 0;
3732 int is_system
, is_loaded
;
3734 if (pmu_conf
->use_rr_dbregs
== 0) return -EINVAL
;
3736 state
= ctx
->ctx_state
;
3737 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3738 is_system
= ctx
->ctx_fl_system
;
3739 task
= ctx
->ctx_task
;
3741 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
3744 * on both UP and SMP, we can only write to the PMC when the task is
3745 * the owner of the local PMU.
3748 thread
= &task
->thread
;
3750 * In system wide and when the context is loaded, access can only happen
3751 * when the caller is running on the CPU being monitored by the session.
3752 * It does not have to be the owner (ctx_task) of the context per se.
3754 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3755 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3758 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3762 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3763 * ensuring that no real breakpoint can be installed via this call.
3765 * IMPORTANT: regs can be NULL in this function
3768 first_time
= ctx
->ctx_fl_using_dbreg
== 0;
3771 * don't bother if we are loaded and task is being debugged
3773 if (is_loaded
&& (thread
->flags
& IA64_THREAD_DBG_VALID
) != 0) {
3774 DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task
)));
3779 * check for debug registers in system wide mode
3781 * If though a check is done in pfm_context_load(),
3782 * we must repeat it here, in case the registers are
3783 * written after the context is loaded
3788 if (first_time
&& is_system
) {
3789 if (pfm_sessions
.pfs_ptrace_use_dbregs
)
3792 pfm_sessions
.pfs_sys_use_dbregs
++;
3797 if (ret
!= 0) return ret
;
3800 * mark ourself as user of the debug registers for
3803 ctx
->ctx_fl_using_dbreg
= 1;
3806 * clear hardware registers to make sure we don't
3807 * pick up stale state.
3809 * for a system wide session, we do not use
3810 * thread.dbr, thread.ibr because this process
3811 * never leaves the current CPU and the state
3812 * is shared by all processes running on it
3814 if (first_time
&& can_access_pmu
) {
3815 DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task
)));
3816 for (i
=0; i
< pmu_conf
->num_ibrs
; i
++) {
3817 ia64_set_ibr(i
, 0UL);
3818 ia64_dv_serialize_instruction();
3821 for (i
=0; i
< pmu_conf
->num_dbrs
; i
++) {
3822 ia64_set_dbr(i
, 0UL);
3823 ia64_dv_serialize_data();
3829 * Now install the values into the registers
3831 for (i
= 0; i
< count
; i
++, req
++) {
3833 rnum
= req
->dbreg_num
;
3834 dbreg
.val
= req
->dbreg_value
;
3838 if ((mode
== PFM_CODE_RR
&& rnum
>= PFM_NUM_IBRS
) || ((mode
== PFM_DATA_RR
) && rnum
>= PFM_NUM_DBRS
)) {
3839 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3840 rnum
, dbreg
.val
, mode
, i
, count
));
3846 * make sure we do not install enabled breakpoint
3849 if (mode
== PFM_CODE_RR
)
3850 dbreg
.ibr
.ibr_x
= 0;
3852 dbreg
.dbr
.dbr_r
= dbreg
.dbr
.dbr_w
= 0;
3855 PFM_REG_RETFLAG_SET(req
->dbreg_flags
, 0);
3858 * Debug registers, just like PMC, can only be modified
3859 * by a kernel call. Moreover, perfmon() access to those
3860 * registers are centralized in this routine. The hardware
3861 * does not modify the value of these registers, therefore,
3862 * if we save them as they are written, we can avoid having
3863 * to save them on context switch out. This is made possible
3864 * by the fact that when perfmon uses debug registers, ptrace()
3865 * won't be able to modify them concurrently.
3867 if (mode
== PFM_CODE_RR
) {
3868 CTX_USED_IBR(ctx
, rnum
);
3870 if (can_access_pmu
) {
3871 ia64_set_ibr(rnum
, dbreg
.val
);
3872 ia64_dv_serialize_instruction();
3875 ctx
->ctx_ibrs
[rnum
] = dbreg
.val
;
3877 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3878 rnum
, dbreg
.val
, ctx
->ctx_used_ibrs
[0], is_loaded
, can_access_pmu
));
3880 CTX_USED_DBR(ctx
, rnum
);
3882 if (can_access_pmu
) {
3883 ia64_set_dbr(rnum
, dbreg
.val
);
3884 ia64_dv_serialize_data();
3886 ctx
->ctx_dbrs
[rnum
] = dbreg
.val
;
3888 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3889 rnum
, dbreg
.val
, ctx
->ctx_used_dbrs
[0], is_loaded
, can_access_pmu
));
3897 * in case it was our first attempt, we undo the global modifications
3901 if (ctx
->ctx_fl_system
) {
3902 pfm_sessions
.pfs_sys_use_dbregs
--;
3905 ctx
->ctx_fl_using_dbreg
= 0;
3908 * install error return flag
3910 PFM_REG_RETFLAG_SET(req
->dbreg_flags
, PFM_REG_RETFL_EINVAL
);
3916 pfm_write_ibrs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3918 return pfm_write_ibr_dbr(PFM_CODE_RR
, ctx
, arg
, count
, regs
);
3922 pfm_write_dbrs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3924 return pfm_write_ibr_dbr(PFM_DATA_RR
, ctx
, arg
, count
, regs
);
3928 pfm_mod_write_ibrs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3932 if (req
== NULL
) return -EINVAL
;
3934 ctx
= GET_PMU_CTX();
3936 if (ctx
== NULL
) return -EINVAL
;
3939 * for now limit to current task, which is enough when calling
3940 * from overflow handler
3942 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3944 return pfm_write_ibrs(ctx
, req
, nreq
, regs
);
3946 EXPORT_SYMBOL(pfm_mod_write_ibrs
);
3949 pfm_mod_write_dbrs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3953 if (req
== NULL
) return -EINVAL
;
3955 ctx
= GET_PMU_CTX();
3957 if (ctx
== NULL
) return -EINVAL
;
3960 * for now limit to current task, which is enough when calling
3961 * from overflow handler
3963 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3965 return pfm_write_dbrs(ctx
, req
, nreq
, regs
);
3967 EXPORT_SYMBOL(pfm_mod_write_dbrs
);
3971 pfm_get_features(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3973 pfarg_features_t
*req
= (pfarg_features_t
*)arg
;
3975 req
->ft_version
= PFM_VERSION
;
3980 pfm_stop(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3982 struct pt_regs
*tregs
;
3983 struct task_struct
*task
= PFM_CTX_TASK(ctx
);
3984 int state
, is_system
;
3986 state
= ctx
->ctx_state
;
3987 is_system
= ctx
->ctx_fl_system
;
3990 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3992 if (state
== PFM_CTX_UNLOADED
) return -EINVAL
;
3995 * In system wide and when the context is loaded, access can only happen
3996 * when the caller is running on the CPU being monitored by the session.
3997 * It does not have to be the owner (ctx_task) of the context per se.
3999 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
4000 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
4003 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
4004 task_pid_nr(PFM_CTX_TASK(ctx
)),
4008 * in system mode, we need to update the PMU directly
4009 * and the user level state of the caller, which may not
4010 * necessarily be the creator of the context.
4014 * Update local PMU first
4018 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) & ~IA64_DCR_PP
);
4022 * update local cpuinfo
4024 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP
);
4027 * stop monitoring, does srlz.i
4032 * stop monitoring in the caller
4034 ia64_psr(regs
)->pp
= 0;
4042 if (task
== current
) {
4043 /* stop monitoring at kernel level */
4047 * stop monitoring at the user level
4049 ia64_psr(regs
)->up
= 0;
4051 tregs
= task_pt_regs(task
);
4054 * stop monitoring at the user level
4056 ia64_psr(tregs
)->up
= 0;
4059 * monitoring disabled in kernel at next reschedule
4061 ctx
->ctx_saved_psr_up
= 0;
4062 DPRINT(("task=[%d]\n", task_pid_nr(task
)));
4069 pfm_start(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4071 struct pt_regs
*tregs
;
4072 int state
, is_system
;
4074 state
= ctx
->ctx_state
;
4075 is_system
= ctx
->ctx_fl_system
;
4077 if (state
!= PFM_CTX_LOADED
) return -EINVAL
;
4080 * In system wide and when the context is loaded, access can only happen
4081 * when the caller is running on the CPU being monitored by the session.
4082 * It does not have to be the owner (ctx_task) of the context per se.
4084 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
4085 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
4090 * in system mode, we need to update the PMU directly
4091 * and the user level state of the caller, which may not
4092 * necessarily be the creator of the context.
4097 * set user level psr.pp for the caller
4099 ia64_psr(regs
)->pp
= 1;
4102 * now update the local PMU and cpuinfo
4104 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP
);
4107 * start monitoring at kernel level
4112 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) | IA64_DCR_PP
);
4122 if (ctx
->ctx_task
== current
) {
4124 /* start monitoring at kernel level */
4128 * activate monitoring at user level
4130 ia64_psr(regs
)->up
= 1;
4133 tregs
= task_pt_regs(ctx
->ctx_task
);
4136 * start monitoring at the kernel level the next
4137 * time the task is scheduled
4139 ctx
->ctx_saved_psr_up
= IA64_PSR_UP
;
4142 * activate monitoring at user level
4144 ia64_psr(tregs
)->up
= 1;
4150 pfm_get_pmc_reset(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4152 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
4157 for (i
= 0; i
< count
; i
++, req
++) {
4159 cnum
= req
->reg_num
;
4161 if (!PMC_IS_IMPL(cnum
)) goto abort_mission
;
4163 req
->reg_value
= PMC_DFL_VAL(cnum
);
4165 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
4167 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum
, req
->reg_value
));
4172 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
4177 pfm_check_task_exist(pfm_context_t
*ctx
)
4179 struct task_struct
*g
, *t
;
4182 read_lock(&tasklist_lock
);
4184 do_each_thread (g
, t
) {
4185 if (t
->thread
.pfm_context
== ctx
) {
4189 } while_each_thread (g
, t
);
4191 read_unlock(&tasklist_lock
);
4193 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret
, ctx
));
4199 pfm_context_load(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4201 struct task_struct
*task
;
4202 struct thread_struct
*thread
;
4203 struct pfm_context_t
*old
;
4204 unsigned long flags
;
4206 struct task_struct
*owner_task
= NULL
;
4208 pfarg_load_t
*req
= (pfarg_load_t
*)arg
;
4209 unsigned long *pmcs_source
, *pmds_source
;
4212 int state
, is_system
, set_dbregs
= 0;
4214 state
= ctx
->ctx_state
;
4215 is_system
= ctx
->ctx_fl_system
;
4217 * can only load from unloaded or terminated state
4219 if (state
!= PFM_CTX_UNLOADED
) {
4220 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4226 DPRINT(("load_pid [%d] using_dbreg=%d\n", req
->load_pid
, ctx
->ctx_fl_using_dbreg
));
4228 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && req
->load_pid
== current
->pid
) {
4229 DPRINT(("cannot use blocking mode on self\n"));
4233 ret
= pfm_get_task(ctx
, req
->load_pid
, &task
);
4235 DPRINT(("load_pid [%d] get_task=%d\n", req
->load_pid
, ret
));
4242 * system wide is self monitoring only
4244 if (is_system
&& task
!= current
) {
4245 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4250 thread
= &task
->thread
;
4254 * cannot load a context which is using range restrictions,
4255 * into a task that is being debugged.
4257 if (ctx
->ctx_fl_using_dbreg
) {
4258 if (thread
->flags
& IA64_THREAD_DBG_VALID
) {
4260 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req
->load_pid
));
4266 if (pfm_sessions
.pfs_ptrace_use_dbregs
) {
4267 DPRINT(("cannot load [%d] dbregs in use\n",
4268 task_pid_nr(task
)));
4271 pfm_sessions
.pfs_sys_use_dbregs
++;
4272 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task
), pfm_sessions
.pfs_sys_use_dbregs
));
4279 if (ret
) goto error
;
4283 * SMP system-wide monitoring implies self-monitoring.
4285 * The programming model expects the task to
4286 * be pinned on a CPU throughout the session.
4287 * Here we take note of the current CPU at the
4288 * time the context is loaded. No call from
4289 * another CPU will be allowed.
4291 * The pinning via shed_setaffinity()
4292 * must be done by the calling task prior
4295 * systemwide: keep track of CPU this session is supposed to run on
4297 the_cpu
= ctx
->ctx_cpu
= smp_processor_id();
4301 * now reserve the session
4303 ret
= pfm_reserve_session(current
, is_system
, the_cpu
);
4304 if (ret
) goto error
;
4307 * task is necessarily stopped at this point.
4309 * If the previous context was zombie, then it got removed in
4310 * pfm_save_regs(). Therefore we should not see it here.
4311 * If we see a context, then this is an active context
4313 * XXX: needs to be atomic
4315 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4316 thread
->pfm_context
, ctx
));
4319 old
= ia64_cmpxchg(acq
, &thread
->pfm_context
, NULL
, ctx
, sizeof(pfm_context_t
*));
4321 DPRINT(("load_pid [%d] already has a context\n", req
->load_pid
));
4325 pfm_reset_msgq(ctx
);
4327 ctx
->ctx_state
= PFM_CTX_LOADED
;
4330 * link context to task
4332 ctx
->ctx_task
= task
;
4336 * we load as stopped
4338 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE
);
4339 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP
);
4341 if (ctx
->ctx_fl_excl_idle
) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE
);
4343 thread
->flags
|= IA64_THREAD_PM_VALID
;
4347 * propagate into thread-state
4349 pfm_copy_pmds(task
, ctx
);
4350 pfm_copy_pmcs(task
, ctx
);
4352 pmcs_source
= ctx
->th_pmcs
;
4353 pmds_source
= ctx
->th_pmds
;
4356 * always the case for system-wide
4358 if (task
== current
) {
4360 if (is_system
== 0) {
4362 /* allow user level control */
4363 ia64_psr(regs
)->sp
= 0;
4364 DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task
)));
4366 SET_LAST_CPU(ctx
, smp_processor_id());
4368 SET_ACTIVATION(ctx
);
4371 * push the other task out, if any
4373 owner_task
= GET_PMU_OWNER();
4374 if (owner_task
) pfm_lazy_save_regs(owner_task
);
4378 * load all PMD from ctx to PMU (as opposed to thread state)
4379 * restore all PMC from ctx to PMU
4381 pfm_restore_pmds(pmds_source
, ctx
->ctx_all_pmds
[0]);
4382 pfm_restore_pmcs(pmcs_source
, ctx
->ctx_all_pmcs
[0]);
4384 ctx
->ctx_reload_pmcs
[0] = 0UL;
4385 ctx
->ctx_reload_pmds
[0] = 0UL;
4388 * guaranteed safe by earlier check against DBG_VALID
4390 if (ctx
->ctx_fl_using_dbreg
) {
4391 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
4392 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
4397 SET_PMU_OWNER(task
, ctx
);
4399 DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task
)));
4402 * when not current, task MUST be stopped, so this is safe
4404 regs
= task_pt_regs(task
);
4406 /* force a full reload */
4407 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
4408 SET_LAST_CPU(ctx
, -1);
4410 /* initial saved psr (stopped) */
4411 ctx
->ctx_saved_psr_up
= 0UL;
4412 ia64_psr(regs
)->up
= ia64_psr(regs
)->pp
= 0;
4418 if (ret
) pfm_unreserve_session(ctx
, ctx
->ctx_fl_system
, the_cpu
);
4421 * we must undo the dbregs setting (for system-wide)
4423 if (ret
&& set_dbregs
) {
4425 pfm_sessions
.pfs_sys_use_dbregs
--;
4429 * release task, there is now a link with the context
4431 if (is_system
== 0 && task
!= current
) {
4435 ret
= pfm_check_task_exist(ctx
);
4437 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
4438 ctx
->ctx_task
= NULL
;
4446 * in this function, we do not need to increase the use count
4447 * for the task via get_task_struct(), because we hold the
4448 * context lock. If the task were to disappear while having
4449 * a context attached, it would go through pfm_exit_thread()
4450 * which also grabs the context lock and would therefore be blocked
4451 * until we are here.
4453 static void pfm_flush_pmds(struct task_struct
*, pfm_context_t
*ctx
);
4456 pfm_context_unload(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4458 struct task_struct
*task
= PFM_CTX_TASK(ctx
);
4459 struct pt_regs
*tregs
;
4460 int prev_state
, is_system
;
4463 DPRINT(("ctx_state=%d task [%d]\n", ctx
->ctx_state
, task
? task_pid_nr(task
) : -1));
4465 prev_state
= ctx
->ctx_state
;
4466 is_system
= ctx
->ctx_fl_system
;
4469 * unload only when necessary
4471 if (prev_state
== PFM_CTX_UNLOADED
) {
4472 DPRINT(("ctx_state=%d, nothing to do\n", prev_state
));
4477 * clear psr and dcr bits
4479 ret
= pfm_stop(ctx
, NULL
, 0, regs
);
4480 if (ret
) return ret
;
4482 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
4485 * in system mode, we need to update the PMU directly
4486 * and the user level state of the caller, which may not
4487 * necessarily be the creator of the context.
4494 * local PMU is taken care of in pfm_stop()
4496 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE
);
4497 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE
);
4500 * save PMDs in context
4503 pfm_flush_pmds(current
, ctx
);
4506 * at this point we are done with the PMU
4507 * so we can unreserve the resource.
4509 if (prev_state
!= PFM_CTX_ZOMBIE
)
4510 pfm_unreserve_session(ctx
, 1 , ctx
->ctx_cpu
);
4513 * disconnect context from task
4515 task
->thread
.pfm_context
= NULL
;
4517 * disconnect task from context
4519 ctx
->ctx_task
= NULL
;
4522 * There is nothing more to cleanup here.
4530 tregs
= task
== current
? regs
: task_pt_regs(task
);
4532 if (task
== current
) {
4534 * cancel user level control
4536 ia64_psr(regs
)->sp
= 1;
4538 DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task
)));
4541 * save PMDs to context
4544 pfm_flush_pmds(task
, ctx
);
4547 * at this point we are done with the PMU
4548 * so we can unreserve the resource.
4550 * when state was ZOMBIE, we have already unreserved.
4552 if (prev_state
!= PFM_CTX_ZOMBIE
)
4553 pfm_unreserve_session(ctx
, 0 , ctx
->ctx_cpu
);
4556 * reset activation counter and psr
4558 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
4559 SET_LAST_CPU(ctx
, -1);
4562 * PMU state will not be restored
4564 task
->thread
.flags
&= ~IA64_THREAD_PM_VALID
;
4567 * break links between context and task
4569 task
->thread
.pfm_context
= NULL
;
4570 ctx
->ctx_task
= NULL
;
4572 PFM_SET_WORK_PENDING(task
, 0);
4574 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_NONE
;
4575 ctx
->ctx_fl_can_restart
= 0;
4576 ctx
->ctx_fl_going_zombie
= 0;
4578 DPRINT(("disconnected [%d] from context\n", task_pid_nr(task
)));
4585 * called only from exit_thread(): task == current
4586 * we come here only if current has a context attached (loaded or masked)
4589 pfm_exit_thread(struct task_struct
*task
)
4592 unsigned long flags
;
4593 struct pt_regs
*regs
= task_pt_regs(task
);
4597 ctx
= PFM_GET_CTX(task
);
4599 PROTECT_CTX(ctx
, flags
);
4601 DPRINT(("state=%d task [%d]\n", ctx
->ctx_state
, task_pid_nr(task
)));
4603 state
= ctx
->ctx_state
;
4605 case PFM_CTX_UNLOADED
:
4607 * only comes to this function if pfm_context is not NULL, i.e., cannot
4608 * be in unloaded state
4610 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task
));
4612 case PFM_CTX_LOADED
:
4613 case PFM_CTX_MASKED
:
4614 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
4616 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task
), state
, ret
);
4618 DPRINT(("ctx unloaded for current state was %d\n", state
));
4620 pfm_end_notify_user(ctx
);
4622 case PFM_CTX_ZOMBIE
:
4623 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
4625 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task
), state
, ret
);
4630 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task
), state
);
4633 UNPROTECT_CTX(ctx
, flags
);
4635 { u64 psr
= pfm_get_psr();
4636 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
4637 BUG_ON(GET_PMU_OWNER());
4638 BUG_ON(ia64_psr(regs
)->up
);
4639 BUG_ON(ia64_psr(regs
)->pp
);
4643 * All memory free operations (especially for vmalloc'ed memory)
4644 * MUST be done with interrupts ENABLED.
4646 if (free_ok
) pfm_context_free(ctx
);
4650 * functions MUST be listed in the increasing order of their index (see permfon.h)
4652 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4653 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4654 #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4655 #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4656 #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4658 static pfm_cmd_desc_t pfm_cmd_tab
[]={
4659 /* 0 */PFM_CMD_NONE
,
4660 /* 1 */PFM_CMD(pfm_write_pmcs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4661 /* 2 */PFM_CMD(pfm_write_pmds
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4662 /* 3 */PFM_CMD(pfm_read_pmds
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4663 /* 4 */PFM_CMD_S(pfm_stop
, PFM_CMD_PCLRWS
),
4664 /* 5 */PFM_CMD_S(pfm_start
, PFM_CMD_PCLRWS
),
4665 /* 6 */PFM_CMD_NONE
,
4666 /* 7 */PFM_CMD_NONE
,
4667 /* 8 */PFM_CMD(pfm_context_create
, PFM_CMD_ARG_RW
, 1, pfarg_context_t
, pfm_ctx_getsize
),
4668 /* 9 */PFM_CMD_NONE
,
4669 /* 10 */PFM_CMD_S(pfm_restart
, PFM_CMD_PCLRW
),
4670 /* 11 */PFM_CMD_NONE
,
4671 /* 12 */PFM_CMD(pfm_get_features
, PFM_CMD_ARG_RW
, 1, pfarg_features_t
, NULL
),
4672 /* 13 */PFM_CMD(pfm_debug
, 0, 1, unsigned int, NULL
),
4673 /* 14 */PFM_CMD_NONE
,
4674 /* 15 */PFM_CMD(pfm_get_pmc_reset
, PFM_CMD_ARG_RW
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4675 /* 16 */PFM_CMD(pfm_context_load
, PFM_CMD_PCLRWS
, 1, pfarg_load_t
, NULL
),
4676 /* 17 */PFM_CMD_S(pfm_context_unload
, PFM_CMD_PCLRWS
),
4677 /* 18 */PFM_CMD_NONE
,
4678 /* 19 */PFM_CMD_NONE
,
4679 /* 20 */PFM_CMD_NONE
,
4680 /* 21 */PFM_CMD_NONE
,
4681 /* 22 */PFM_CMD_NONE
,
4682 /* 23 */PFM_CMD_NONE
,
4683 /* 24 */PFM_CMD_NONE
,
4684 /* 25 */PFM_CMD_NONE
,
4685 /* 26 */PFM_CMD_NONE
,
4686 /* 27 */PFM_CMD_NONE
,
4687 /* 28 */PFM_CMD_NONE
,
4688 /* 29 */PFM_CMD_NONE
,
4689 /* 30 */PFM_CMD_NONE
,
4690 /* 31 */PFM_CMD_NONE
,
4691 /* 32 */PFM_CMD(pfm_write_ibrs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_dbreg_t
, NULL
),
4692 /* 33 */PFM_CMD(pfm_write_dbrs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_dbreg_t
, NULL
)
4694 #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4697 pfm_check_task_state(pfm_context_t
*ctx
, int cmd
, unsigned long flags
)
4699 struct task_struct
*task
;
4700 int state
, old_state
;
4703 state
= ctx
->ctx_state
;
4704 task
= ctx
->ctx_task
;
4707 DPRINT(("context %d no task, state=%d\n", ctx
->ctx_fd
, state
));
4711 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4715 task
->state
, PFM_CMD_STOPPED(cmd
)));
4718 * self-monitoring always ok.
4720 * for system-wide the caller can either be the creator of the
4721 * context (to one to which the context is attached to) OR
4722 * a task running on the same CPU as the session.
4724 if (task
== current
|| ctx
->ctx_fl_system
) return 0;
4727 * we are monitoring another thread
4730 case PFM_CTX_UNLOADED
:
4732 * if context is UNLOADED we are safe to go
4735 case PFM_CTX_ZOMBIE
:
4737 * no command can operate on a zombie context
4739 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd
));
4741 case PFM_CTX_MASKED
:
4743 * PMU state has been saved to software even though
4744 * the thread may still be running.
4746 if (cmd
!= PFM_UNLOAD_CONTEXT
) return 0;
4750 * context is LOADED or MASKED. Some commands may need to have
4753 * We could lift this restriction for UP but it would mean that
4754 * the user has no guarantee the task would not run between
4755 * two successive calls to perfmonctl(). That's probably OK.
4756 * If this user wants to ensure the task does not run, then
4757 * the task must be stopped.
4759 if (PFM_CMD_STOPPED(cmd
)) {
4760 if (!task_is_stopped_or_traced(task
)) {
4761 DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task
)));
4765 * task is now stopped, wait for ctxsw out
4767 * This is an interesting point in the code.
4768 * We need to unprotect the context because
4769 * the pfm_save_regs() routines needs to grab
4770 * the same lock. There are danger in doing
4771 * this because it leaves a window open for
4772 * another task to get access to the context
4773 * and possibly change its state. The one thing
4774 * that is not possible is for the context to disappear
4775 * because we are protected by the VFS layer, i.e.,
4776 * get_fd()/put_fd().
4780 UNPROTECT_CTX(ctx
, flags
);
4782 wait_task_inactive(task
, 0);
4784 PROTECT_CTX(ctx
, flags
);
4787 * we must recheck to verify if state has changed
4789 if (ctx
->ctx_state
!= old_state
) {
4790 DPRINT(("old_state=%d new_state=%d\n", old_state
, ctx
->ctx_state
));
4798 * system-call entry point (must return long)
4801 sys_perfmonctl (int fd
, int cmd
, void __user
*arg
, int count
)
4803 struct file
*file
= NULL
;
4804 pfm_context_t
*ctx
= NULL
;
4805 unsigned long flags
= 0UL;
4806 void *args_k
= NULL
;
4807 long ret
; /* will expand int return types */
4808 size_t base_sz
, sz
, xtra_sz
= 0;
4809 int narg
, completed_args
= 0, call_made
= 0, cmd_flags
;
4810 int (*func
)(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
4811 int (*getsize
)(void *arg
, size_t *sz
);
4812 #define PFM_MAX_ARGSIZE 4096
4815 * reject any call if perfmon was disabled at initialization
4817 if (unlikely(pmu_conf
== NULL
)) return -ENOSYS
;
4819 if (unlikely(cmd
< 0 || cmd
>= PFM_CMD_COUNT
)) {
4820 DPRINT(("invalid cmd=%d\n", cmd
));
4824 func
= pfm_cmd_tab
[cmd
].cmd_func
;
4825 narg
= pfm_cmd_tab
[cmd
].cmd_narg
;
4826 base_sz
= pfm_cmd_tab
[cmd
].cmd_argsize
;
4827 getsize
= pfm_cmd_tab
[cmd
].cmd_getsize
;
4828 cmd_flags
= pfm_cmd_tab
[cmd
].cmd_flags
;
4830 if (unlikely(func
== NULL
)) {
4831 DPRINT(("invalid cmd=%d\n", cmd
));
4835 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4843 * check if number of arguments matches what the command expects
4845 if (unlikely((narg
== PFM_CMD_ARG_MANY
&& count
<= 0) || (narg
> 0 && narg
!= count
)))
4849 sz
= xtra_sz
+ base_sz
*count
;
4851 * limit abuse to min page size
4853 if (unlikely(sz
> PFM_MAX_ARGSIZE
)) {
4854 printk(KERN_ERR
"perfmon: [%d] argument too big %lu\n", task_pid_nr(current
), sz
);
4859 * allocate default-sized argument buffer
4861 if (likely(count
&& args_k
== NULL
)) {
4862 args_k
= kmalloc(PFM_MAX_ARGSIZE
, GFP_KERNEL
);
4863 if (args_k
== NULL
) return -ENOMEM
;
4871 * assume sz = 0 for command without parameters
4873 if (sz
&& copy_from_user(args_k
, arg
, sz
)) {
4874 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz
, arg
));
4879 * check if command supports extra parameters
4881 if (completed_args
== 0 && getsize
) {
4883 * get extra parameters size (based on main argument)
4885 ret
= (*getsize
)(args_k
, &xtra_sz
);
4886 if (ret
) goto error_args
;
4890 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz
, xtra_sz
));
4892 /* retry if necessary */
4893 if (likely(xtra_sz
)) goto restart_args
;
4896 if (unlikely((cmd_flags
& PFM_CMD_FD
) == 0)) goto skip_fd
;
4901 if (unlikely(file
== NULL
)) {
4902 DPRINT(("invalid fd %d\n", fd
));
4905 if (unlikely(PFM_IS_FILE(file
) == 0)) {
4906 DPRINT(("fd %d not related to perfmon\n", fd
));
4910 ctx
= file
->private_data
;
4911 if (unlikely(ctx
== NULL
)) {
4912 DPRINT(("no context for fd %d\n", fd
));
4915 prefetch(&ctx
->ctx_state
);
4917 PROTECT_CTX(ctx
, flags
);
4920 * check task is stopped
4922 ret
= pfm_check_task_state(ctx
, cmd
, flags
);
4923 if (unlikely(ret
)) goto abort_locked
;
4926 ret
= (*func
)(ctx
, args_k
, count
, task_pt_regs(current
));
4932 DPRINT(("context unlocked\n"));
4933 UNPROTECT_CTX(ctx
, flags
);
4936 /* copy argument back to user, if needed */
4937 if (call_made
&& PFM_CMD_RW_ARG(cmd
) && copy_to_user(arg
, args_k
, base_sz
*count
)) ret
= -EFAULT
;
4945 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd
), ret
));
4951 pfm_resume_after_ovfl(pfm_context_t
*ctx
, unsigned long ovfl_regs
, struct pt_regs
*regs
)
4953 pfm_buffer_fmt_t
*fmt
= ctx
->ctx_buf_fmt
;
4954 pfm_ovfl_ctrl_t rst_ctrl
;
4958 state
= ctx
->ctx_state
;
4960 * Unlock sampling buffer and reset index atomically
4961 * XXX: not really needed when blocking
4963 if (CTX_HAS_SMPL(ctx
)) {
4965 rst_ctrl
.bits
.mask_monitoring
= 0;
4966 rst_ctrl
.bits
.reset_ovfl_pmds
= 0;
4968 if (state
== PFM_CTX_LOADED
)
4969 ret
= pfm_buf_fmt_restart_active(fmt
, current
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
4971 ret
= pfm_buf_fmt_restart(fmt
, current
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
4973 rst_ctrl
.bits
.mask_monitoring
= 0;
4974 rst_ctrl
.bits
.reset_ovfl_pmds
= 1;
4978 if (rst_ctrl
.bits
.reset_ovfl_pmds
) {
4979 pfm_reset_regs(ctx
, &ovfl_regs
, PFM_PMD_LONG_RESET
);
4981 if (rst_ctrl
.bits
.mask_monitoring
== 0) {
4982 DPRINT(("resuming monitoring\n"));
4983 if (ctx
->ctx_state
== PFM_CTX_MASKED
) pfm_restore_monitoring(current
);
4985 DPRINT(("stopping monitoring\n"));
4986 //pfm_stop_monitoring(current, regs);
4988 ctx
->ctx_state
= PFM_CTX_LOADED
;
4993 * context MUST BE LOCKED when calling
4994 * can only be called for current
4997 pfm_context_force_terminate(pfm_context_t
*ctx
, struct pt_regs
*regs
)
5001 DPRINT(("entering for [%d]\n", task_pid_nr(current
)));
5003 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
5005 printk(KERN_ERR
"pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current
), ret
);
5009 * and wakeup controlling task, indicating we are now disconnected
5011 wake_up_interruptible(&ctx
->ctx_zombieq
);
5014 * given that context is still locked, the controlling
5015 * task will only get access when we return from
5016 * pfm_handle_work().
5020 static int pfm_ovfl_notify_user(pfm_context_t
*ctx
, unsigned long ovfl_pmds
);
5023 * pfm_handle_work() can be called with interrupts enabled
5024 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5025 * call may sleep, therefore we must re-enable interrupts
5026 * to avoid deadlocks. It is safe to do so because this function
5027 * is called ONLY when returning to user level (pUStk=1), in which case
5028 * there is no risk of kernel stack overflow due to deep
5029 * interrupt nesting.
5032 pfm_handle_work(void)
5035 struct pt_regs
*regs
;
5036 unsigned long flags
, dummy_flags
;
5037 unsigned long ovfl_regs
;
5038 unsigned int reason
;
5041 ctx
= PFM_GET_CTX(current
);
5043 printk(KERN_ERR
"perfmon: [%d] has no PFM context\n",
5044 task_pid_nr(current
));
5048 PROTECT_CTX(ctx
, flags
);
5050 PFM_SET_WORK_PENDING(current
, 0);
5052 regs
= task_pt_regs(current
);
5055 * extract reason for being here and clear
5057 reason
= ctx
->ctx_fl_trap_reason
;
5058 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_NONE
;
5059 ovfl_regs
= ctx
->ctx_ovfl_regs
[0];
5061 DPRINT(("reason=%d state=%d\n", reason
, ctx
->ctx_state
));
5064 * must be done before we check for simple-reset mode
5066 if (ctx
->ctx_fl_going_zombie
|| ctx
->ctx_state
== PFM_CTX_ZOMBIE
)
5069 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5070 if (reason
== PFM_TRAP_REASON_RESET
)
5074 * restore interrupt mask to what it was on entry.
5075 * Could be enabled/diasbled.
5077 UNPROTECT_CTX(ctx
, flags
);
5080 * force interrupt enable because of down_interruptible()
5084 DPRINT(("before block sleeping\n"));
5087 * may go through without blocking on SMP systems
5088 * if restart has been received already by the time we call down()
5090 ret
= wait_for_completion_interruptible(&ctx
->ctx_restart_done
);
5092 DPRINT(("after block sleeping ret=%d\n", ret
));
5095 * lock context and mask interrupts again
5096 * We save flags into a dummy because we may have
5097 * altered interrupts mask compared to entry in this
5100 PROTECT_CTX(ctx
, dummy_flags
);
5103 * we need to read the ovfl_regs only after wake-up
5104 * because we may have had pfm_write_pmds() in between
5105 * and that can changed PMD values and therefore
5106 * ovfl_regs is reset for these new PMD values.
5108 ovfl_regs
= ctx
->ctx_ovfl_regs
[0];
5110 if (ctx
->ctx_fl_going_zombie
) {
5112 DPRINT(("context is zombie, bailing out\n"));
5113 pfm_context_force_terminate(ctx
, regs
);
5117 * in case of interruption of down() we don't restart anything
5123 pfm_resume_after_ovfl(ctx
, ovfl_regs
, regs
);
5124 ctx
->ctx_ovfl_regs
[0] = 0UL;
5128 * restore flags as they were upon entry
5130 UNPROTECT_CTX(ctx
, flags
);
5134 pfm_notify_user(pfm_context_t
*ctx
, pfm_msg_t
*msg
)
5136 if (ctx
->ctx_state
== PFM_CTX_ZOMBIE
) {
5137 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5141 DPRINT(("waking up somebody\n"));
5143 if (msg
) wake_up_interruptible(&ctx
->ctx_msgq_wait
);
5146 * safe, we are not in intr handler, nor in ctxsw when
5149 kill_fasync (&ctx
->ctx_async_queue
, SIGIO
, POLL_IN
);
5155 pfm_ovfl_notify_user(pfm_context_t
*ctx
, unsigned long ovfl_pmds
)
5157 pfm_msg_t
*msg
= NULL
;
5159 if (ctx
->ctx_fl_no_msg
== 0) {
5160 msg
= pfm_get_new_msg(ctx
);
5162 printk(KERN_ERR
"perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5166 msg
->pfm_ovfl_msg
.msg_type
= PFM_MSG_OVFL
;
5167 msg
->pfm_ovfl_msg
.msg_ctx_fd
= ctx
->ctx_fd
;
5168 msg
->pfm_ovfl_msg
.msg_active_set
= 0;
5169 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[0] = ovfl_pmds
;
5170 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[1] = 0UL;
5171 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[2] = 0UL;
5172 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[3] = 0UL;
5173 msg
->pfm_ovfl_msg
.msg_tstamp
= 0UL;
5176 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5182 return pfm_notify_user(ctx
, msg
);
5186 pfm_end_notify_user(pfm_context_t
*ctx
)
5190 msg
= pfm_get_new_msg(ctx
);
5192 printk(KERN_ERR
"perfmon: pfm_end_notify_user no more notification msgs\n");
5196 memset(msg
, 0, sizeof(*msg
));
5198 msg
->pfm_end_msg
.msg_type
= PFM_MSG_END
;
5199 msg
->pfm_end_msg
.msg_ctx_fd
= ctx
->ctx_fd
;
5200 msg
->pfm_ovfl_msg
.msg_tstamp
= 0UL;
5202 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5207 return pfm_notify_user(ctx
, msg
);
5211 * main overflow processing routine.
5212 * it can be called from the interrupt path or explicitly during the context switch code
5214 static void pfm_overflow_handler(struct task_struct
*task
, pfm_context_t
*ctx
,
5215 unsigned long pmc0
, struct pt_regs
*regs
)
5217 pfm_ovfl_arg_t
*ovfl_arg
;
5219 unsigned long old_val
, ovfl_val
, new_val
;
5220 unsigned long ovfl_notify
= 0UL, ovfl_pmds
= 0UL, smpl_pmds
= 0UL, reset_pmds
;
5221 unsigned long tstamp
;
5222 pfm_ovfl_ctrl_t ovfl_ctrl
;
5223 unsigned int i
, has_smpl
;
5224 int must_notify
= 0;
5226 if (unlikely(ctx
->ctx_state
== PFM_CTX_ZOMBIE
)) goto stop_monitoring
;
5229 * sanity test. Should never happen
5231 if (unlikely((pmc0
& 0x1) == 0)) goto sanity_check
;
5233 tstamp
= ia64_get_itc();
5234 mask
= pmc0
>> PMU_FIRST_COUNTER
;
5235 ovfl_val
= pmu_conf
->ovfl_val
;
5236 has_smpl
= CTX_HAS_SMPL(ctx
);
5238 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5239 "used_pmds=0x%lx\n",
5241 task
? task_pid_nr(task
): -1,
5242 (regs
? regs
->cr_iip
: 0),
5243 CTX_OVFL_NOBLOCK(ctx
) ? "nonblocking" : "blocking",
5244 ctx
->ctx_used_pmds
[0]));
5248 * first we update the virtual counters
5249 * assume there was a prior ia64_srlz_d() issued
5251 for (i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
5253 /* skip pmd which did not overflow */
5254 if ((mask
& 0x1) == 0) continue;
5257 * Note that the pmd is not necessarily 0 at this point as qualified events
5258 * may have happened before the PMU was frozen. The residual count is not
5259 * taken into consideration here but will be with any read of the pmd via
5262 old_val
= new_val
= ctx
->ctx_pmds
[i
].val
;
5263 new_val
+= 1 + ovfl_val
;
5264 ctx
->ctx_pmds
[i
].val
= new_val
;
5267 * check for overflow condition
5269 if (likely(old_val
> new_val
)) {
5270 ovfl_pmds
|= 1UL << i
;
5271 if (PMC_OVFL_NOTIFY(ctx
, i
)) ovfl_notify
|= 1UL << i
;
5274 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5278 ia64_get_pmd(i
) & ovfl_val
,
5284 * there was no 64-bit overflow, nothing else to do
5286 if (ovfl_pmds
== 0UL) return;
5289 * reset all control bits
5295 * if a sampling format module exists, then we "cache" the overflow by
5296 * calling the module's handler() routine.
5299 unsigned long start_cycles
, end_cycles
;
5300 unsigned long pmd_mask
;
5302 int this_cpu
= smp_processor_id();
5304 pmd_mask
= ovfl_pmds
>> PMU_FIRST_COUNTER
;
5305 ovfl_arg
= &ctx
->ctx_ovfl_arg
;
5307 prefetch(ctx
->ctx_smpl_hdr
);
5309 for(i
=PMU_FIRST_COUNTER
; pmd_mask
&& ret
== 0; i
++, pmd_mask
>>=1) {
5313 if ((pmd_mask
& 0x1) == 0) continue;
5315 ovfl_arg
->ovfl_pmd
= (unsigned char )i
;
5316 ovfl_arg
->ovfl_notify
= ovfl_notify
& mask
? 1 : 0;
5317 ovfl_arg
->active_set
= 0;
5318 ovfl_arg
->ovfl_ctrl
.val
= 0; /* module must fill in all fields */
5319 ovfl_arg
->smpl_pmds
[0] = smpl_pmds
= ctx
->ctx_pmds
[i
].smpl_pmds
[0];
5321 ovfl_arg
->pmd_value
= ctx
->ctx_pmds
[i
].val
;
5322 ovfl_arg
->pmd_last_reset
= ctx
->ctx_pmds
[i
].lval
;
5323 ovfl_arg
->pmd_eventid
= ctx
->ctx_pmds
[i
].eventid
;
5326 * copy values of pmds of interest. Sampling format may copy them
5327 * into sampling buffer.
5330 for(j
=0, k
=0; smpl_pmds
; j
++, smpl_pmds
>>=1) {
5331 if ((smpl_pmds
& 0x1) == 0) continue;
5332 ovfl_arg
->smpl_pmds_values
[k
++] = PMD_IS_COUNTING(j
) ? pfm_read_soft_counter(ctx
, j
) : ia64_get_pmd(j
);
5333 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k
-1, j
, ovfl_arg
->smpl_pmds_values
[k
-1]));
5337 pfm_stats
[this_cpu
].pfm_smpl_handler_calls
++;
5339 start_cycles
= ia64_get_itc();
5342 * call custom buffer format record (handler) routine
5344 ret
= (*ctx
->ctx_buf_fmt
->fmt_handler
)(task
, ctx
->ctx_smpl_hdr
, ovfl_arg
, regs
, tstamp
);
5346 end_cycles
= ia64_get_itc();
5349 * For those controls, we take the union because they have
5350 * an all or nothing behavior.
5352 ovfl_ctrl
.bits
.notify_user
|= ovfl_arg
->ovfl_ctrl
.bits
.notify_user
;
5353 ovfl_ctrl
.bits
.block_task
|= ovfl_arg
->ovfl_ctrl
.bits
.block_task
;
5354 ovfl_ctrl
.bits
.mask_monitoring
|= ovfl_arg
->ovfl_ctrl
.bits
.mask_monitoring
;
5356 * build the bitmask of pmds to reset now
5358 if (ovfl_arg
->ovfl_ctrl
.bits
.reset_ovfl_pmds
) reset_pmds
|= mask
;
5360 pfm_stats
[this_cpu
].pfm_smpl_handler_cycles
+= end_cycles
- start_cycles
;
5363 * when the module cannot handle the rest of the overflows, we abort right here
5365 if (ret
&& pmd_mask
) {
5366 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5367 pmd_mask
<<PMU_FIRST_COUNTER
));
5370 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5372 ovfl_pmds
&= ~reset_pmds
;
5375 * when no sampling module is used, then the default
5376 * is to notify on overflow if requested by user
5378 ovfl_ctrl
.bits
.notify_user
= ovfl_notify
? 1 : 0;
5379 ovfl_ctrl
.bits
.block_task
= ovfl_notify
? 1 : 0;
5380 ovfl_ctrl
.bits
.mask_monitoring
= ovfl_notify
? 1 : 0; /* XXX: change for saturation */
5381 ovfl_ctrl
.bits
.reset_ovfl_pmds
= ovfl_notify
? 0 : 1;
5383 * if needed, we reset all overflowed pmds
5385 if (ovfl_notify
== 0) reset_pmds
= ovfl_pmds
;
5388 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds
, reset_pmds
));
5391 * reset the requested PMD registers using the short reset values
5394 unsigned long bm
= reset_pmds
;
5395 pfm_reset_regs(ctx
, &bm
, PFM_PMD_SHORT_RESET
);
5398 if (ovfl_notify
&& ovfl_ctrl
.bits
.notify_user
) {
5400 * keep track of what to reset when unblocking
5402 ctx
->ctx_ovfl_regs
[0] = ovfl_pmds
;
5405 * check for blocking context
5407 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && ovfl_ctrl
.bits
.block_task
) {
5409 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_BLOCK
;
5412 * set the perfmon specific checking pending work for the task
5414 PFM_SET_WORK_PENDING(task
, 1);
5417 * when coming from ctxsw, current still points to the
5418 * previous task, therefore we must work with task and not current.
5420 set_notify_resume(task
);
5423 * defer until state is changed (shorten spin window). the context is locked
5424 * anyway, so the signal receiver would come spin for nothing.
5429 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5430 GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5431 PFM_GET_WORK_PENDING(task
),
5432 ctx
->ctx_fl_trap_reason
,
5435 ovfl_ctrl
.bits
.mask_monitoring
? 1 : 0));
5437 * in case monitoring must be stopped, we toggle the psr bits
5439 if (ovfl_ctrl
.bits
.mask_monitoring
) {
5440 pfm_mask_monitoring(task
);
5441 ctx
->ctx_state
= PFM_CTX_MASKED
;
5442 ctx
->ctx_fl_can_restart
= 1;
5446 * send notification now
5448 if (must_notify
) pfm_ovfl_notify_user(ctx
, ovfl_notify
);
5453 printk(KERN_ERR
"perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5455 task
? task_pid_nr(task
) : -1,
5461 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5462 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5463 * come here as zombie only if the task is the current task. In which case, we
5464 * can access the PMU hardware directly.
5466 * Note that zombies do have PM_VALID set. So here we do the minimal.
5468 * In case the context was zombified it could not be reclaimed at the time
5469 * the monitoring program exited. At this point, the PMU reservation has been
5470 * returned, the sampiing buffer has been freed. We must convert this call
5471 * into a spurious interrupt. However, we must also avoid infinite overflows
5472 * by stopping monitoring for this task. We can only come here for a per-task
5473 * context. All we need to do is to stop monitoring using the psr bits which
5474 * are always task private. By re-enabling secure montioring, we ensure that
5475 * the monitored task will not be able to re-activate monitoring.
5476 * The task will eventually be context switched out, at which point the context
5477 * will be reclaimed (that includes releasing ownership of the PMU).
5479 * So there might be a window of time where the number of per-task session is zero
5480 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5481 * context. This is safe because if a per-task session comes in, it will push this one
5482 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5483 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5484 * also push our zombie context out.
5486 * Overall pretty hairy stuff....
5488 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task
? task_pid_nr(task
): -1));
5490 ia64_psr(regs
)->up
= 0;
5491 ia64_psr(regs
)->sp
= 1;
5496 pfm_do_interrupt_handler(void *arg
, struct pt_regs
*regs
)
5498 struct task_struct
*task
;
5500 unsigned long flags
;
5502 int this_cpu
= smp_processor_id();
5505 pfm_stats
[this_cpu
].pfm_ovfl_intr_count
++;
5508 * srlz.d done before arriving here
5510 pmc0
= ia64_get_pmc(0);
5512 task
= GET_PMU_OWNER();
5513 ctx
= GET_PMU_CTX();
5516 * if we have some pending bits set
5517 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5519 if (PMC0_HAS_OVFL(pmc0
) && task
) {
5521 * we assume that pmc0.fr is always set here
5525 if (!ctx
) goto report_spurious1
;
5527 if (ctx
->ctx_fl_system
== 0 && (task
->thread
.flags
& IA64_THREAD_PM_VALID
) == 0)
5528 goto report_spurious2
;
5530 PROTECT_CTX_NOPRINT(ctx
, flags
);
5532 pfm_overflow_handler(task
, ctx
, pmc0
, regs
);
5534 UNPROTECT_CTX_NOPRINT(ctx
, flags
);
5537 pfm_stats
[this_cpu
].pfm_spurious_ovfl_intr_count
++;
5541 * keep it unfrozen at all times
5548 printk(KERN_INFO
"perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5549 this_cpu
, task_pid_nr(task
));
5553 printk(KERN_INFO
"perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5561 pfm_interrupt_handler(int irq
, void *arg
)
5563 unsigned long start_cycles
, total_cycles
;
5564 unsigned long min
, max
;
5567 struct pt_regs
*regs
= get_irq_regs();
5569 this_cpu
= get_cpu();
5570 if (likely(!pfm_alt_intr_handler
)) {
5571 min
= pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_min
;
5572 max
= pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_max
;
5574 start_cycles
= ia64_get_itc();
5576 ret
= pfm_do_interrupt_handler(arg
, regs
);
5578 total_cycles
= ia64_get_itc();
5581 * don't measure spurious interrupts
5583 if (likely(ret
== 0)) {
5584 total_cycles
-= start_cycles
;
5586 if (total_cycles
< min
) pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_min
= total_cycles
;
5587 if (total_cycles
> max
) pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_max
= total_cycles
;
5589 pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles
+= total_cycles
;
5593 (*pfm_alt_intr_handler
->handler
)(irq
, arg
, regs
);
5601 * /proc/perfmon interface, for debug only
5604 #define PFM_PROC_SHOW_HEADER ((void *)(long)nr_cpu_ids+1)
5607 pfm_proc_start(struct seq_file
*m
, loff_t
*pos
)
5610 return PFM_PROC_SHOW_HEADER
;
5613 while (*pos
<= nr_cpu_ids
) {
5614 if (cpu_online(*pos
- 1)) {
5615 return (void *)*pos
;
5623 pfm_proc_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
5626 return pfm_proc_start(m
, pos
);
5630 pfm_proc_stop(struct seq_file
*m
, void *v
)
5635 pfm_proc_show_header(struct seq_file
*m
)
5637 struct list_head
* pos
;
5638 pfm_buffer_fmt_t
* entry
;
5639 unsigned long flags
;
5642 "perfmon version : %u.%u\n"
5645 "expert mode : %s\n"
5646 "ovfl_mask : 0x%lx\n"
5647 "PMU flags : 0x%x\n",
5648 PFM_VERSION_MAJ
, PFM_VERSION_MIN
,
5650 pfm_sysctl
.fastctxsw
> 0 ? "Yes": "No",
5651 pfm_sysctl
.expert_mode
> 0 ? "Yes": "No",
5658 "proc_sessions : %u\n"
5659 "sys_sessions : %u\n"
5660 "sys_use_dbregs : %u\n"
5661 "ptrace_use_dbregs : %u\n",
5662 pfm_sessions
.pfs_task_sessions
,
5663 pfm_sessions
.pfs_sys_sessions
,
5664 pfm_sessions
.pfs_sys_use_dbregs
,
5665 pfm_sessions
.pfs_ptrace_use_dbregs
);
5669 spin_lock(&pfm_buffer_fmt_lock
);
5671 list_for_each(pos
, &pfm_buffer_fmt_list
) {
5672 entry
= list_entry(pos
, pfm_buffer_fmt_t
, fmt_list
);
5673 seq_printf(m
, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5684 entry
->fmt_uuid
[10],
5685 entry
->fmt_uuid
[11],
5686 entry
->fmt_uuid
[12],
5687 entry
->fmt_uuid
[13],
5688 entry
->fmt_uuid
[14],
5689 entry
->fmt_uuid
[15],
5692 spin_unlock(&pfm_buffer_fmt_lock
);
5697 pfm_proc_show(struct seq_file
*m
, void *v
)
5703 if (v
== PFM_PROC_SHOW_HEADER
) {
5704 pfm_proc_show_header(m
);
5708 /* show info for CPU (v - 1) */
5712 "CPU%-2d overflow intrs : %lu\n"
5713 "CPU%-2d overflow cycles : %lu\n"
5714 "CPU%-2d overflow min : %lu\n"
5715 "CPU%-2d overflow max : %lu\n"
5716 "CPU%-2d smpl handler calls : %lu\n"
5717 "CPU%-2d smpl handler cycles : %lu\n"
5718 "CPU%-2d spurious intrs : %lu\n"
5719 "CPU%-2d replay intrs : %lu\n"
5720 "CPU%-2d syst_wide : %d\n"
5721 "CPU%-2d dcr_pp : %d\n"
5722 "CPU%-2d exclude idle : %d\n"
5723 "CPU%-2d owner : %d\n"
5724 "CPU%-2d context : %p\n"
5725 "CPU%-2d activations : %lu\n",
5726 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_count
,
5727 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles
,
5728 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles_min
,
5729 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles_max
,
5730 cpu
, pfm_stats
[cpu
].pfm_smpl_handler_calls
,
5731 cpu
, pfm_stats
[cpu
].pfm_smpl_handler_cycles
,
5732 cpu
, pfm_stats
[cpu
].pfm_spurious_ovfl_intr_count
,
5733 cpu
, pfm_stats
[cpu
].pfm_replay_ovfl_intr_count
,
5734 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_SYST_WIDE
? 1 : 0,
5735 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_DCR_PP
? 1 : 0,
5736 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_EXCL_IDLE
? 1 : 0,
5737 cpu
, pfm_get_cpu_data(pmu_owner
, cpu
) ? pfm_get_cpu_data(pmu_owner
, cpu
)->pid
: -1,
5738 cpu
, pfm_get_cpu_data(pmu_ctx
, cpu
),
5739 cpu
, pfm_get_cpu_data(pmu_activation_number
, cpu
));
5741 if (num_online_cpus() == 1 && pfm_sysctl
.debug
> 0) {
5743 psr
= pfm_get_psr();
5748 "CPU%-2d psr : 0x%lx\n"
5749 "CPU%-2d pmc0 : 0x%lx\n",
5751 cpu
, ia64_get_pmc(0));
5753 for (i
=0; PMC_IS_LAST(i
) == 0; i
++) {
5754 if (PMC_IS_COUNTING(i
) == 0) continue;
5756 "CPU%-2d pmc%u : 0x%lx\n"
5757 "CPU%-2d pmd%u : 0x%lx\n",
5758 cpu
, i
, ia64_get_pmc(i
),
5759 cpu
, i
, ia64_get_pmd(i
));
5765 const struct seq_operations pfm_seq_ops
= {
5766 .start
= pfm_proc_start
,
5767 .next
= pfm_proc_next
,
5768 .stop
= pfm_proc_stop
,
5769 .show
= pfm_proc_show
5773 pfm_proc_open(struct inode
*inode
, struct file
*file
)
5775 return seq_open(file
, &pfm_seq_ops
);
5780 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5781 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5782 * is active or inactive based on mode. We must rely on the value in
5783 * local_cpu_data->pfm_syst_info
5786 pfm_syst_wide_update_task(struct task_struct
*task
, unsigned long info
, int is_ctxswin
)
5788 struct pt_regs
*regs
;
5790 unsigned long dcr_pp
;
5792 dcr_pp
= info
& PFM_CPUINFO_DCR_PP
? 1 : 0;
5795 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5796 * on every CPU, so we can rely on the pid to identify the idle task.
5798 if ((info
& PFM_CPUINFO_EXCL_IDLE
) == 0 || task
->pid
) {
5799 regs
= task_pt_regs(task
);
5800 ia64_psr(regs
)->pp
= is_ctxswin
? dcr_pp
: 0;
5804 * if monitoring has started
5807 dcr
= ia64_getreg(_IA64_REG_CR_DCR
);
5809 * context switching in?
5812 /* mask monitoring for the idle task */
5813 ia64_setreg(_IA64_REG_CR_DCR
, dcr
& ~IA64_DCR_PP
);
5819 * context switching out
5820 * restore monitoring for next task
5822 * Due to inlining this odd if-then-else construction generates
5825 ia64_setreg(_IA64_REG_CR_DCR
, dcr
|IA64_DCR_PP
);
5834 pfm_force_cleanup(pfm_context_t
*ctx
, struct pt_regs
*regs
)
5836 struct task_struct
*task
= ctx
->ctx_task
;
5838 ia64_psr(regs
)->up
= 0;
5839 ia64_psr(regs
)->sp
= 1;
5841 if (GET_PMU_OWNER() == task
) {
5842 DPRINT(("cleared ownership for [%d]\n",
5843 task_pid_nr(ctx
->ctx_task
)));
5844 SET_PMU_OWNER(NULL
, NULL
);
5848 * disconnect the task from the context and vice-versa
5850 PFM_SET_WORK_PENDING(task
, 0);
5852 task
->thread
.pfm_context
= NULL
;
5853 task
->thread
.flags
&= ~IA64_THREAD_PM_VALID
;
5855 DPRINT(("force cleanup for [%d]\n", task_pid_nr(task
)));
5860 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5863 pfm_save_regs(struct task_struct
*task
)
5866 unsigned long flags
;
5870 ctx
= PFM_GET_CTX(task
);
5871 if (ctx
== NULL
) return;
5874 * we always come here with interrupts ALREADY disabled by
5875 * the scheduler. So we simply need to protect against concurrent
5876 * access, not CPU concurrency.
5878 flags
= pfm_protect_ctx_ctxsw(ctx
);
5880 if (ctx
->ctx_state
== PFM_CTX_ZOMBIE
) {
5881 struct pt_regs
*regs
= task_pt_regs(task
);
5885 pfm_force_cleanup(ctx
, regs
);
5887 BUG_ON(ctx
->ctx_smpl_hdr
);
5889 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
5891 pfm_context_free(ctx
);
5896 * save current PSR: needed because we modify it
5899 psr
= pfm_get_psr();
5901 BUG_ON(psr
& (IA64_PSR_I
));
5905 * This is the last instruction which may generate an overflow
5907 * We do not need to set psr.sp because, it is irrelevant in kernel.
5908 * It will be restored from ipsr when going back to user level
5913 * keep a copy of psr.up (for reload)
5915 ctx
->ctx_saved_psr_up
= psr
& IA64_PSR_UP
;
5918 * release ownership of this PMU.
5919 * PM interrupts are masked, so nothing
5922 SET_PMU_OWNER(NULL
, NULL
);
5925 * we systematically save the PMD as we have no
5926 * guarantee we will be schedule at that same
5929 pfm_save_pmds(ctx
->th_pmds
, ctx
->ctx_used_pmds
[0]);
5932 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5933 * we will need it on the restore path to check
5934 * for pending overflow.
5936 ctx
->th_pmcs
[0] = ia64_get_pmc(0);
5939 * unfreeze PMU if had pending overflows
5941 if (ctx
->th_pmcs
[0] & ~0x1UL
) pfm_unfreeze_pmu();
5944 * finally, allow context access.
5945 * interrupts will still be masked after this call.
5947 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
5950 #else /* !CONFIG_SMP */
5952 pfm_save_regs(struct task_struct
*task
)
5957 ctx
= PFM_GET_CTX(task
);
5958 if (ctx
== NULL
) return;
5961 * save current PSR: needed because we modify it
5963 psr
= pfm_get_psr();
5965 BUG_ON(psr
& (IA64_PSR_I
));
5969 * This is the last instruction which may generate an overflow
5971 * We do not need to set psr.sp because, it is irrelevant in kernel.
5972 * It will be restored from ipsr when going back to user level
5977 * keep a copy of psr.up (for reload)
5979 ctx
->ctx_saved_psr_up
= psr
& IA64_PSR_UP
;
5983 pfm_lazy_save_regs (struct task_struct
*task
)
5986 unsigned long flags
;
5988 { u64 psr
= pfm_get_psr();
5989 BUG_ON(psr
& IA64_PSR_UP
);
5992 ctx
= PFM_GET_CTX(task
);
5995 * we need to mask PMU overflow here to
5996 * make sure that we maintain pmc0 until
5997 * we save it. overflow interrupts are
5998 * treated as spurious if there is no
6001 * XXX: I don't think this is necessary
6003 PROTECT_CTX(ctx
,flags
);
6006 * release ownership of this PMU.
6007 * must be done before we save the registers.
6009 * after this call any PMU interrupt is treated
6012 SET_PMU_OWNER(NULL
, NULL
);
6015 * save all the pmds we use
6017 pfm_save_pmds(ctx
->th_pmds
, ctx
->ctx_used_pmds
[0]);
6020 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6021 * it is needed to check for pended overflow
6022 * on the restore path
6024 ctx
->th_pmcs
[0] = ia64_get_pmc(0);
6027 * unfreeze PMU if had pending overflows
6029 if (ctx
->th_pmcs
[0] & ~0x1UL
) pfm_unfreeze_pmu();
6032 * now get can unmask PMU interrupts, they will
6033 * be treated as purely spurious and we will not
6034 * lose any information
6036 UNPROTECT_CTX(ctx
,flags
);
6038 #endif /* CONFIG_SMP */
6042 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6045 pfm_load_regs (struct task_struct
*task
)
6048 unsigned long pmc_mask
= 0UL, pmd_mask
= 0UL;
6049 unsigned long flags
;
6051 int need_irq_resend
;
6053 ctx
= PFM_GET_CTX(task
);
6054 if (unlikely(ctx
== NULL
)) return;
6056 BUG_ON(GET_PMU_OWNER());
6059 * possible on unload
6061 if (unlikely((task
->thread
.flags
& IA64_THREAD_PM_VALID
) == 0)) return;
6064 * we always come here with interrupts ALREADY disabled by
6065 * the scheduler. So we simply need to protect against concurrent
6066 * access, not CPU concurrency.
6068 flags
= pfm_protect_ctx_ctxsw(ctx
);
6069 psr
= pfm_get_psr();
6071 need_irq_resend
= pmu_conf
->flags
& PFM_PMU_IRQ_RESEND
;
6073 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
6074 BUG_ON(psr
& IA64_PSR_I
);
6076 if (unlikely(ctx
->ctx_state
== PFM_CTX_ZOMBIE
)) {
6077 struct pt_regs
*regs
= task_pt_regs(task
);
6079 BUG_ON(ctx
->ctx_smpl_hdr
);
6081 pfm_force_cleanup(ctx
, regs
);
6083 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
6086 * this one (kmalloc'ed) is fine with interrupts disabled
6088 pfm_context_free(ctx
);
6094 * we restore ALL the debug registers to avoid picking up
6097 if (ctx
->ctx_fl_using_dbreg
) {
6098 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
6099 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
6102 * retrieve saved psr.up
6104 psr_up
= ctx
->ctx_saved_psr_up
;
6107 * if we were the last user of the PMU on that CPU,
6108 * then nothing to do except restore psr
6110 if (GET_LAST_CPU(ctx
) == smp_processor_id() && ctx
->ctx_last_activation
== GET_ACTIVATION()) {
6113 * retrieve partial reload masks (due to user modifications)
6115 pmc_mask
= ctx
->ctx_reload_pmcs
[0];
6116 pmd_mask
= ctx
->ctx_reload_pmds
[0];
6120 * To avoid leaking information to the user level when psr.sp=0,
6121 * we must reload ALL implemented pmds (even the ones we don't use).
6122 * In the kernel we only allow PFM_READ_PMDS on registers which
6123 * we initialized or requested (sampling) so there is no risk there.
6125 pmd_mask
= pfm_sysctl
.fastctxsw
? ctx
->ctx_used_pmds
[0] : ctx
->ctx_all_pmds
[0];
6128 * ALL accessible PMCs are systematically reloaded, unused registers
6129 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6130 * up stale configuration.
6132 * PMC0 is never in the mask. It is always restored separately.
6134 pmc_mask
= ctx
->ctx_all_pmcs
[0];
6137 * when context is MASKED, we will restore PMC with plm=0
6138 * and PMD with stale information, but that's ok, nothing
6141 * XXX: optimize here
6143 if (pmd_mask
) pfm_restore_pmds(ctx
->th_pmds
, pmd_mask
);
6144 if (pmc_mask
) pfm_restore_pmcs(ctx
->th_pmcs
, pmc_mask
);
6147 * check for pending overflow at the time the state
6150 if (unlikely(PMC0_HAS_OVFL(ctx
->th_pmcs
[0]))) {
6152 * reload pmc0 with the overflow information
6153 * On McKinley PMU, this will trigger a PMU interrupt
6155 ia64_set_pmc(0, ctx
->th_pmcs
[0]);
6157 ctx
->th_pmcs
[0] = 0UL;
6160 * will replay the PMU interrupt
6162 if (need_irq_resend
) ia64_resend_irq(IA64_PERFMON_VECTOR
);
6164 pfm_stats
[smp_processor_id()].pfm_replay_ovfl_intr_count
++;
6168 * we just did a reload, so we reset the partial reload fields
6170 ctx
->ctx_reload_pmcs
[0] = 0UL;
6171 ctx
->ctx_reload_pmds
[0] = 0UL;
6173 SET_LAST_CPU(ctx
, smp_processor_id());
6176 * dump activation value for this PMU
6180 * record current activation for this context
6182 SET_ACTIVATION(ctx
);
6185 * establish new ownership.
6187 SET_PMU_OWNER(task
, ctx
);
6190 * restore the psr.up bit. measurement
6192 * no PMU interrupt can happen at this point
6193 * because we still have interrupts disabled.
6195 if (likely(psr_up
)) pfm_set_psr_up();
6198 * allow concurrent access to context
6200 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
6202 #else /* !CONFIG_SMP */
6204 * reload PMU state for UP kernels
6205 * in 2.5 we come here with interrupts disabled
6208 pfm_load_regs (struct task_struct
*task
)
6211 struct task_struct
*owner
;
6212 unsigned long pmd_mask
, pmc_mask
;
6214 int need_irq_resend
;
6216 owner
= GET_PMU_OWNER();
6217 ctx
= PFM_GET_CTX(task
);
6218 psr
= pfm_get_psr();
6220 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
6221 BUG_ON(psr
& IA64_PSR_I
);
6224 * we restore ALL the debug registers to avoid picking up
6227 * This must be done even when the task is still the owner
6228 * as the registers may have been modified via ptrace()
6229 * (not perfmon) by the previous task.
6231 if (ctx
->ctx_fl_using_dbreg
) {
6232 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
6233 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
6237 * retrieved saved psr.up
6239 psr_up
= ctx
->ctx_saved_psr_up
;
6240 need_irq_resend
= pmu_conf
->flags
& PFM_PMU_IRQ_RESEND
;
6243 * short path, our state is still there, just
6244 * need to restore psr and we go
6246 * we do not touch either PMC nor PMD. the psr is not touched
6247 * by the overflow_handler. So we are safe w.r.t. to interrupt
6248 * concurrency even without interrupt masking.
6250 if (likely(owner
== task
)) {
6251 if (likely(psr_up
)) pfm_set_psr_up();
6256 * someone else is still using the PMU, first push it out and
6257 * then we'll be able to install our stuff !
6259 * Upon return, there will be no owner for the current PMU
6261 if (owner
) pfm_lazy_save_regs(owner
);
6264 * To avoid leaking information to the user level when psr.sp=0,
6265 * we must reload ALL implemented pmds (even the ones we don't use).
6266 * In the kernel we only allow PFM_READ_PMDS on registers which
6267 * we initialized or requested (sampling) so there is no risk there.
6269 pmd_mask
= pfm_sysctl
.fastctxsw
? ctx
->ctx_used_pmds
[0] : ctx
->ctx_all_pmds
[0];
6272 * ALL accessible PMCs are systematically reloaded, unused registers
6273 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6274 * up stale configuration.
6276 * PMC0 is never in the mask. It is always restored separately
6278 pmc_mask
= ctx
->ctx_all_pmcs
[0];
6280 pfm_restore_pmds(ctx
->th_pmds
, pmd_mask
);
6281 pfm_restore_pmcs(ctx
->th_pmcs
, pmc_mask
);
6284 * check for pending overflow at the time the state
6287 if (unlikely(PMC0_HAS_OVFL(ctx
->th_pmcs
[0]))) {
6289 * reload pmc0 with the overflow information
6290 * On McKinley PMU, this will trigger a PMU interrupt
6292 ia64_set_pmc(0, ctx
->th_pmcs
[0]);
6295 ctx
->th_pmcs
[0] = 0UL;
6298 * will replay the PMU interrupt
6300 if (need_irq_resend
) ia64_resend_irq(IA64_PERFMON_VECTOR
);
6302 pfm_stats
[smp_processor_id()].pfm_replay_ovfl_intr_count
++;
6306 * establish new ownership.
6308 SET_PMU_OWNER(task
, ctx
);
6311 * restore the psr.up bit. measurement
6313 * no PMU interrupt can happen at this point
6314 * because we still have interrupts disabled.
6316 if (likely(psr_up
)) pfm_set_psr_up();
6318 #endif /* CONFIG_SMP */
6321 * this function assumes monitoring is stopped
6324 pfm_flush_pmds(struct task_struct
*task
, pfm_context_t
*ctx
)
6327 unsigned long mask2
, val
, pmd_val
, ovfl_val
;
6328 int i
, can_access_pmu
= 0;
6332 * is the caller the task being monitored (or which initiated the
6333 * session for system wide measurements)
6335 is_self
= ctx
->ctx_task
== task
? 1 : 0;
6338 * can access PMU is task is the owner of the PMU state on the current CPU
6339 * or if we are running on the CPU bound to the context in system-wide mode
6340 * (that is not necessarily the task the context is attached to in this mode).
6341 * In system-wide we always have can_access_pmu true because a task running on an
6342 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6344 can_access_pmu
= (GET_PMU_OWNER() == task
) || (ctx
->ctx_fl_system
&& ctx
->ctx_cpu
== smp_processor_id());
6345 if (can_access_pmu
) {
6347 * Mark the PMU as not owned
6348 * This will cause the interrupt handler to do nothing in case an overflow
6349 * interrupt was in-flight
6350 * This also guarantees that pmc0 will contain the final state
6351 * It virtually gives us full control on overflow processing from that point
6354 SET_PMU_OWNER(NULL
, NULL
);
6355 DPRINT(("releasing ownership\n"));
6358 * read current overflow status:
6360 * we are guaranteed to read the final stable state
6363 pmc0
= ia64_get_pmc(0); /* slow */
6366 * reset freeze bit, overflow status information destroyed
6370 pmc0
= ctx
->th_pmcs
[0];
6372 * clear whatever overflow status bits there were
6374 ctx
->th_pmcs
[0] = 0;
6376 ovfl_val
= pmu_conf
->ovfl_val
;
6378 * we save all the used pmds
6379 * we take care of overflows for counting PMDs
6381 * XXX: sampling situation is not taken into account here
6383 mask2
= ctx
->ctx_used_pmds
[0];
6385 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self
, ovfl_val
, mask2
));
6387 for (i
= 0; mask2
; i
++, mask2
>>=1) {
6389 /* skip non used pmds */
6390 if ((mask2
& 0x1) == 0) continue;
6393 * can access PMU always true in system wide mode
6395 val
= pmd_val
= can_access_pmu
? ia64_get_pmd(i
) : ctx
->th_pmds
[i
];
6397 if (PMD_IS_COUNTING(i
)) {
6398 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6401 ctx
->ctx_pmds
[i
].val
,
6405 * we rebuild the full 64 bit value of the counter
6407 val
= ctx
->ctx_pmds
[i
].val
+ (val
& ovfl_val
);
6410 * now everything is in ctx_pmds[] and we need
6411 * to clear the saved context from save_regs() such that
6412 * pfm_read_pmds() gets the correct value
6417 * take care of overflow inline
6419 if (pmc0
& (1UL << i
)) {
6420 val
+= 1 + ovfl_val
;
6421 DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task
), i
));
6425 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task_pid_nr(task
), i
, val
, pmd_val
));
6427 if (is_self
) ctx
->th_pmds
[i
] = pmd_val
;
6429 ctx
->ctx_pmds
[i
].val
= val
;
6433 static struct irqaction perfmon_irqaction
= {
6434 .handler
= pfm_interrupt_handler
,
6435 .flags
= IRQF_DISABLED
,
6440 pfm_alt_save_pmu_state(void *data
)
6442 struct pt_regs
*regs
;
6444 regs
= task_pt_regs(current
);
6446 DPRINT(("called\n"));
6449 * should not be necessary but
6450 * let's take not risk
6454 ia64_psr(regs
)->pp
= 0;
6457 * This call is required
6458 * May cause a spurious interrupt on some processors
6466 pfm_alt_restore_pmu_state(void *data
)
6468 struct pt_regs
*regs
;
6470 regs
= task_pt_regs(current
);
6472 DPRINT(("called\n"));
6475 * put PMU back in state expected
6480 ia64_psr(regs
)->pp
= 0;
6483 * perfmon runs with PMU unfrozen at all times
6491 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t
*hdl
)
6496 /* some sanity checks */
6497 if (hdl
== NULL
|| hdl
->handler
== NULL
) return -EINVAL
;
6499 /* do the easy test first */
6500 if (pfm_alt_intr_handler
) return -EBUSY
;
6502 /* one at a time in the install or remove, just fail the others */
6503 if (!spin_trylock(&pfm_alt_install_check
)) {
6507 /* reserve our session */
6508 for_each_online_cpu(reserve_cpu
) {
6509 ret
= pfm_reserve_session(NULL
, 1, reserve_cpu
);
6510 if (ret
) goto cleanup_reserve
;
6513 /* save the current system wide pmu states */
6514 ret
= on_each_cpu(pfm_alt_save_pmu_state
, NULL
, 1);
6516 DPRINT(("on_each_cpu() failed: %d\n", ret
));
6517 goto cleanup_reserve
;
6520 /* officially change to the alternate interrupt handler */
6521 pfm_alt_intr_handler
= hdl
;
6523 spin_unlock(&pfm_alt_install_check
);
6528 for_each_online_cpu(i
) {
6529 /* don't unreserve more than we reserved */
6530 if (i
>= reserve_cpu
) break;
6532 pfm_unreserve_session(NULL
, 1, i
);
6535 spin_unlock(&pfm_alt_install_check
);
6539 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt
);
6542 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t
*hdl
)
6547 if (hdl
== NULL
) return -EINVAL
;
6549 /* cannot remove someone else's handler! */
6550 if (pfm_alt_intr_handler
!= hdl
) return -EINVAL
;
6552 /* one at a time in the install or remove, just fail the others */
6553 if (!spin_trylock(&pfm_alt_install_check
)) {
6557 pfm_alt_intr_handler
= NULL
;
6559 ret
= on_each_cpu(pfm_alt_restore_pmu_state
, NULL
, 1);
6561 DPRINT(("on_each_cpu() failed: %d\n", ret
));
6564 for_each_online_cpu(i
) {
6565 pfm_unreserve_session(NULL
, 1, i
);
6568 spin_unlock(&pfm_alt_install_check
);
6572 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt
);
6575 * perfmon initialization routine, called from the initcall() table
6577 static int init_pfm_fs(void);
6585 family
= local_cpu_data
->family
;
6590 if ((*p
)->probe() == 0) goto found
;
6591 } else if ((*p
)->pmu_family
== family
|| (*p
)->pmu_family
== 0xff) {
6602 static const struct file_operations pfm_proc_fops
= {
6603 .open
= pfm_proc_open
,
6605 .llseek
= seq_lseek
,
6606 .release
= seq_release
,
6612 unsigned int n
, n_counters
, i
;
6614 printk("perfmon: version %u.%u IRQ %u\n",
6617 IA64_PERFMON_VECTOR
);
6619 if (pfm_probe_pmu()) {
6620 printk(KERN_INFO
"perfmon: disabled, there is no support for processor family %d\n",
6621 local_cpu_data
->family
);
6626 * compute the number of implemented PMD/PMC from the
6627 * description tables
6630 for (i
=0; PMC_IS_LAST(i
) == 0; i
++) {
6631 if (PMC_IS_IMPL(i
) == 0) continue;
6632 pmu_conf
->impl_pmcs
[i
>>6] |= 1UL << (i
&63);
6635 pmu_conf
->num_pmcs
= n
;
6637 n
= 0; n_counters
= 0;
6638 for (i
=0; PMD_IS_LAST(i
) == 0; i
++) {
6639 if (PMD_IS_IMPL(i
) == 0) continue;
6640 pmu_conf
->impl_pmds
[i
>>6] |= 1UL << (i
&63);
6642 if (PMD_IS_COUNTING(i
)) n_counters
++;
6644 pmu_conf
->num_pmds
= n
;
6645 pmu_conf
->num_counters
= n_counters
;
6648 * sanity checks on the number of debug registers
6650 if (pmu_conf
->use_rr_dbregs
) {
6651 if (pmu_conf
->num_ibrs
> IA64_NUM_DBG_REGS
) {
6652 printk(KERN_INFO
"perfmon: unsupported number of code debug registers (%u)\n", pmu_conf
->num_ibrs
);
6656 if (pmu_conf
->num_dbrs
> IA64_NUM_DBG_REGS
) {
6657 printk(KERN_INFO
"perfmon: unsupported number of data debug registers (%u)\n", pmu_conf
->num_ibrs
);
6663 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6667 pmu_conf
->num_counters
,
6668 ffz(pmu_conf
->ovfl_val
));
6671 if (pmu_conf
->num_pmds
>= PFM_NUM_PMD_REGS
|| pmu_conf
->num_pmcs
>= PFM_NUM_PMC_REGS
) {
6672 printk(KERN_ERR
"perfmon: not enough pmc/pmd, perfmon disabled\n");
6678 * create /proc/perfmon (mostly for debugging purposes)
6680 perfmon_dir
= proc_create("perfmon", S_IRUGO
, NULL
, &pfm_proc_fops
);
6681 if (perfmon_dir
== NULL
) {
6682 printk(KERN_ERR
"perfmon: cannot create /proc entry, perfmon disabled\n");
6688 * create /proc/sys/kernel/perfmon (for debugging purposes)
6690 pfm_sysctl_header
= register_sysctl_table(pfm_sysctl_root
);
6693 * initialize all our spinlocks
6695 spin_lock_init(&pfm_sessions
.pfs_lock
);
6696 spin_lock_init(&pfm_buffer_fmt_lock
);
6700 for(i
=0; i
< NR_CPUS
; i
++) pfm_stats
[i
].pfm_ovfl_intr_cycles_min
= ~0UL;
6705 __initcall(pfm_init
);
6708 * this function is called before pfm_init()
6711 pfm_init_percpu (void)
6713 static int first_time
=1;
6715 * make sure no measurement is active
6716 * (may inherit programmed PMCs from EFI).
6722 * we run with the PMU not frozen at all times
6727 register_percpu_irq(IA64_PERFMON_VECTOR
, &perfmon_irqaction
);
6731 ia64_setreg(_IA64_REG_CR_PMV
, IA64_PERFMON_VECTOR
);
6736 * used for debug purposes only
6739 dump_pmu_state(const char *from
)
6741 struct task_struct
*task
;
6742 struct pt_regs
*regs
;
6744 unsigned long psr
, dcr
, info
, flags
;
6747 local_irq_save(flags
);
6749 this_cpu
= smp_processor_id();
6750 regs
= task_pt_regs(current
);
6751 info
= PFM_CPUINFO_GET();
6752 dcr
= ia64_getreg(_IA64_REG_CR_DCR
);
6754 if (info
== 0 && ia64_psr(regs
)->pp
== 0 && (dcr
& IA64_DCR_PP
) == 0) {
6755 local_irq_restore(flags
);
6759 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6762 task_pid_nr(current
),
6766 task
= GET_PMU_OWNER();
6767 ctx
= GET_PMU_CTX();
6769 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu
, task
? task_pid_nr(task
) : -1, ctx
);
6771 psr
= pfm_get_psr();
6773 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6776 psr
& IA64_PSR_PP
? 1 : 0,
6777 psr
& IA64_PSR_UP
? 1 : 0,
6778 dcr
& IA64_DCR_PP
? 1 : 0,
6781 ia64_psr(regs
)->pp
);
6783 ia64_psr(regs
)->up
= 0;
6784 ia64_psr(regs
)->pp
= 0;
6786 for (i
=1; PMC_IS_LAST(i
) == 0; i
++) {
6787 if (PMC_IS_IMPL(i
) == 0) continue;
6788 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu
, i
, ia64_get_pmc(i
), i
, ctx
->th_pmcs
[i
]);
6791 for (i
=1; PMD_IS_LAST(i
) == 0; i
++) {
6792 if (PMD_IS_IMPL(i
) == 0) continue;
6793 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu
, i
, ia64_get_pmd(i
), i
, ctx
->th_pmds
[i
]);
6797 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6800 ctx
->ctx_smpl_vaddr
,
6804 ctx
->ctx_saved_psr_up
);
6806 local_irq_restore(flags
);
6810 * called from process.c:copy_thread(). task is new child.
6813 pfm_inherit(struct task_struct
*task
, struct pt_regs
*regs
)
6815 struct thread_struct
*thread
;
6817 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task
)));
6819 thread
= &task
->thread
;
6822 * cut links inherited from parent (current)
6824 thread
->pfm_context
= NULL
;
6826 PFM_SET_WORK_PENDING(task
, 0);
6829 * the psr bits are already set properly in copy_threads()
6832 #else /* !CONFIG_PERFMON */
6834 sys_perfmonctl (int fd
, int cmd
, void *arg
, int count
)
6838 #endif /* CONFIG_PERFMON */