2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
25 #include "xfs_buf_item.h"
29 #include "xfs_dmapi.h"
30 #include "xfs_mount.h"
31 #include "xfs_trans_priv.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_inode_item.h"
40 #include "xfs_btree.h"
41 #include "xfs_ialloc.h"
43 #include "xfs_error.h"
46 kmem_zone_t
*xfs_ili_zone
; /* inode log item zone */
49 * This returns the number of iovecs needed to log the given inode item.
51 * We need one iovec for the inode log format structure, one for the
52 * inode core, and possibly one for the inode data/extents/b-tree root
53 * and one for the inode attribute data/extents/b-tree root.
57 xfs_inode_log_item_t
*iip
)
66 * Only log the data/extents/b-tree root if there is something
69 iip
->ili_format
.ilf_fields
|= XFS_ILOG_CORE
;
71 switch (ip
->i_d
.di_format
) {
72 case XFS_DINODE_FMT_EXTENTS
:
73 iip
->ili_format
.ilf_fields
&=
74 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
75 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
76 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_DEXT
) &&
77 (ip
->i_d
.di_nextents
> 0) &&
78 (ip
->i_df
.if_bytes
> 0)) {
79 ASSERT(ip
->i_df
.if_u1
.if_extents
!= NULL
);
82 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_DEXT
;
86 case XFS_DINODE_FMT_BTREE
:
87 ASSERT(ip
->i_df
.if_ext_max
==
88 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
));
89 iip
->ili_format
.ilf_fields
&=
90 ~(XFS_ILOG_DDATA
| XFS_ILOG_DEXT
|
91 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
92 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_DBROOT
) &&
93 (ip
->i_df
.if_broot_bytes
> 0)) {
94 ASSERT(ip
->i_df
.if_broot
!= NULL
);
97 ASSERT(!(iip
->ili_format
.ilf_fields
&
99 #ifdef XFS_TRANS_DEBUG
100 if (iip
->ili_root_size
> 0) {
101 ASSERT(iip
->ili_root_size
==
102 ip
->i_df
.if_broot_bytes
);
103 ASSERT(memcmp(iip
->ili_orig_root
,
105 iip
->ili_root_size
) == 0);
107 ASSERT(ip
->i_df
.if_broot_bytes
== 0);
110 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_DBROOT
;
114 case XFS_DINODE_FMT_LOCAL
:
115 iip
->ili_format
.ilf_fields
&=
116 ~(XFS_ILOG_DEXT
| XFS_ILOG_DBROOT
|
117 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
118 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_DDATA
) &&
119 (ip
->i_df
.if_bytes
> 0)) {
120 ASSERT(ip
->i_df
.if_u1
.if_data
!= NULL
);
121 ASSERT(ip
->i_d
.di_size
> 0);
124 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_DDATA
;
128 case XFS_DINODE_FMT_DEV
:
129 iip
->ili_format
.ilf_fields
&=
130 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
131 XFS_ILOG_DEXT
| XFS_ILOG_UUID
);
134 case XFS_DINODE_FMT_UUID
:
135 iip
->ili_format
.ilf_fields
&=
136 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
137 XFS_ILOG_DEXT
| XFS_ILOG_DEV
);
146 * If there are no attributes associated with this file,
147 * then there cannot be anything more to log.
148 * Clear all attribute-related log flags.
150 if (!XFS_IFORK_Q(ip
)) {
151 iip
->ili_format
.ilf_fields
&=
152 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
| XFS_ILOG_AEXT
);
157 * Log any necessary attribute data.
159 switch (ip
->i_d
.di_aformat
) {
160 case XFS_DINODE_FMT_EXTENTS
:
161 iip
->ili_format
.ilf_fields
&=
162 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
);
163 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_AEXT
) &&
164 (ip
->i_d
.di_anextents
> 0) &&
165 (ip
->i_afp
->if_bytes
> 0)) {
166 ASSERT(ip
->i_afp
->if_u1
.if_extents
!= NULL
);
169 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_AEXT
;
173 case XFS_DINODE_FMT_BTREE
:
174 iip
->ili_format
.ilf_fields
&=
175 ~(XFS_ILOG_ADATA
| XFS_ILOG_AEXT
);
176 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_ABROOT
) &&
177 (ip
->i_afp
->if_broot_bytes
> 0)) {
178 ASSERT(ip
->i_afp
->if_broot
!= NULL
);
181 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_ABROOT
;
185 case XFS_DINODE_FMT_LOCAL
:
186 iip
->ili_format
.ilf_fields
&=
187 ~(XFS_ILOG_AEXT
| XFS_ILOG_ABROOT
);
188 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_ADATA
) &&
189 (ip
->i_afp
->if_bytes
> 0)) {
190 ASSERT(ip
->i_afp
->if_u1
.if_data
!= NULL
);
193 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_ADATA
;
206 * This is called to fill in the vector of log iovecs for the
207 * given inode log item. It fills the first item with an inode
208 * log format structure, the second with the on-disk inode structure,
209 * and a possible third and/or fourth with the inode data/extents/b-tree
210 * root and inode attributes data/extents/b-tree root.
213 xfs_inode_item_format(
214 xfs_inode_log_item_t
*iip
,
215 xfs_log_iovec_t
*log_vector
)
218 xfs_log_iovec_t
*vecp
;
221 xfs_bmbt_rec_t
*ext_buffer
;
228 vecp
->i_addr
= (xfs_caddr_t
)&iip
->ili_format
;
229 vecp
->i_len
= sizeof(xfs_inode_log_format_t
);
230 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_IFORMAT
);
235 * Make sure the linux inode is dirty. We do this before
236 * clearing i_update_core as the VFS will call back into
237 * XFS here and set i_update_core, so we need to dirty the
238 * inode first so that the ordering of i_update_core and
239 * unlogged modifications still works as described below.
241 xfs_mark_inode_dirty_sync(ip
);
244 * Clear i_update_core if the timestamps (or any other
245 * non-transactional modification) need flushing/logging
246 * and we're about to log them with the rest of the core.
248 * This is the same logic as xfs_iflush() but this code can't
249 * run at the same time as xfs_iflush because we're in commit
250 * processing here and so we have the inode lock held in
251 * exclusive mode. Although it doesn't really matter
252 * for the timestamps if both routines were to grab the
253 * timestamps or not. That would be ok.
255 * We clear i_update_core before copying out the data.
256 * This is for coordination with our timestamp updates
257 * that don't hold the inode lock. They will always
258 * update the timestamps BEFORE setting i_update_core,
259 * so if we clear i_update_core after they set it we
260 * are guaranteed to see their updates to the timestamps
261 * either here. Likewise, if they set it after we clear it
262 * here, we'll see it either on the next commit of this
263 * inode or the next time the inode gets flushed via
264 * xfs_iflush(). This depends on strongly ordered memory
265 * semantics, but we have that. We use the SYNCHRONIZE
266 * macro to make sure that the compiler does not reorder
267 * the i_update_core access below the data copy below.
269 if (ip
->i_update_core
) {
270 ip
->i_update_core
= 0;
275 * Make sure to get the latest timestamps from the Linux inode.
277 xfs_synchronize_times(ip
);
279 vecp
->i_addr
= (xfs_caddr_t
)&ip
->i_d
;
280 vecp
->i_len
= sizeof(struct xfs_icdinode
);
281 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_ICORE
);
284 iip
->ili_format
.ilf_fields
|= XFS_ILOG_CORE
;
287 * If this is really an old format inode, then we need to
288 * log it as such. This means that we have to copy the link
289 * count from the new field to the old. We don't have to worry
290 * about the new fields, because nothing trusts them as long as
291 * the old inode version number is there. If the superblock already
292 * has a new version number, then we don't bother converting back.
295 ASSERT(ip
->i_d
.di_version
== 1 || xfs_sb_version_hasnlink(&mp
->m_sb
));
296 if (ip
->i_d
.di_version
== 1) {
297 if (!xfs_sb_version_hasnlink(&mp
->m_sb
)) {
301 ASSERT(ip
->i_d
.di_nlink
<= XFS_MAXLINK_1
);
302 ip
->i_d
.di_onlink
= ip
->i_d
.di_nlink
;
305 * The superblock version has already been bumped,
306 * so just make the conversion to the new inode
309 ip
->i_d
.di_version
= 2;
310 ip
->i_d
.di_onlink
= 0;
311 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
315 switch (ip
->i_d
.di_format
) {
316 case XFS_DINODE_FMT_EXTENTS
:
317 ASSERT(!(iip
->ili_format
.ilf_fields
&
318 (XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
319 XFS_ILOG_DEV
| XFS_ILOG_UUID
)));
320 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEXT
) {
321 ASSERT(ip
->i_df
.if_bytes
> 0);
322 ASSERT(ip
->i_df
.if_u1
.if_extents
!= NULL
);
323 ASSERT(ip
->i_d
.di_nextents
> 0);
324 ASSERT(iip
->ili_extents_buf
== NULL
);
325 nrecs
= ip
->i_df
.if_bytes
/
326 (uint
)sizeof(xfs_bmbt_rec_t
);
328 #ifdef XFS_NATIVE_HOST
329 if (nrecs
== ip
->i_d
.di_nextents
) {
331 * There are no delayed allocation
332 * extents, so just point to the
333 * real extents array.
336 (char *)(ip
->i_df
.if_u1
.if_extents
);
337 vecp
->i_len
= ip
->i_df
.if_bytes
;
338 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_IEXT
);
343 * There are delayed allocation extents
344 * in the inode, or we need to convert
345 * the extents to on disk format.
346 * Use xfs_iextents_copy()
347 * to copy only the real extents into
348 * a separate buffer. We'll free the
349 * buffer in the unlock routine.
351 ext_buffer
= kmem_alloc(ip
->i_df
.if_bytes
,
353 iip
->ili_extents_buf
= ext_buffer
;
354 vecp
->i_addr
= (xfs_caddr_t
)ext_buffer
;
355 vecp
->i_len
= xfs_iextents_copy(ip
, ext_buffer
,
357 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_IEXT
);
359 ASSERT(vecp
->i_len
<= ip
->i_df
.if_bytes
);
360 iip
->ili_format
.ilf_dsize
= vecp
->i_len
;
366 case XFS_DINODE_FMT_BTREE
:
367 ASSERT(!(iip
->ili_format
.ilf_fields
&
368 (XFS_ILOG_DDATA
| XFS_ILOG_DEXT
|
369 XFS_ILOG_DEV
| XFS_ILOG_UUID
)));
370 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DBROOT
) {
371 ASSERT(ip
->i_df
.if_broot_bytes
> 0);
372 ASSERT(ip
->i_df
.if_broot
!= NULL
);
373 vecp
->i_addr
= (xfs_caddr_t
)ip
->i_df
.if_broot
;
374 vecp
->i_len
= ip
->i_df
.if_broot_bytes
;
375 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_IBROOT
);
378 iip
->ili_format
.ilf_dsize
= ip
->i_df
.if_broot_bytes
;
382 case XFS_DINODE_FMT_LOCAL
:
383 ASSERT(!(iip
->ili_format
.ilf_fields
&
384 (XFS_ILOG_DBROOT
| XFS_ILOG_DEXT
|
385 XFS_ILOG_DEV
| XFS_ILOG_UUID
)));
386 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DDATA
) {
387 ASSERT(ip
->i_df
.if_bytes
> 0);
388 ASSERT(ip
->i_df
.if_u1
.if_data
!= NULL
);
389 ASSERT(ip
->i_d
.di_size
> 0);
391 vecp
->i_addr
= (xfs_caddr_t
)ip
->i_df
.if_u1
.if_data
;
393 * Round i_bytes up to a word boundary.
394 * The underlying memory is guaranteed to
395 * to be there by xfs_idata_realloc().
397 data_bytes
= roundup(ip
->i_df
.if_bytes
, 4);
398 ASSERT((ip
->i_df
.if_real_bytes
== 0) ||
399 (ip
->i_df
.if_real_bytes
== data_bytes
));
400 vecp
->i_len
= (int)data_bytes
;
401 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_ILOCAL
);
404 iip
->ili_format
.ilf_dsize
= (unsigned)data_bytes
;
408 case XFS_DINODE_FMT_DEV
:
409 ASSERT(!(iip
->ili_format
.ilf_fields
&
410 (XFS_ILOG_DBROOT
| XFS_ILOG_DEXT
|
411 XFS_ILOG_DDATA
| XFS_ILOG_UUID
)));
412 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEV
) {
413 iip
->ili_format
.ilf_u
.ilfu_rdev
=
414 ip
->i_df
.if_u2
.if_rdev
;
418 case XFS_DINODE_FMT_UUID
:
419 ASSERT(!(iip
->ili_format
.ilf_fields
&
420 (XFS_ILOG_DBROOT
| XFS_ILOG_DEXT
|
421 XFS_ILOG_DDATA
| XFS_ILOG_DEV
)));
422 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_UUID
) {
423 iip
->ili_format
.ilf_u
.ilfu_uuid
=
424 ip
->i_df
.if_u2
.if_uuid
;
434 * If there are no attributes associated with the file,
436 * Assert that no attribute-related log flags are set.
438 if (!XFS_IFORK_Q(ip
)) {
439 ASSERT(nvecs
== iip
->ili_item
.li_desc
->lid_size
);
440 iip
->ili_format
.ilf_size
= nvecs
;
441 ASSERT(!(iip
->ili_format
.ilf_fields
&
442 (XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
| XFS_ILOG_AEXT
)));
446 switch (ip
->i_d
.di_aformat
) {
447 case XFS_DINODE_FMT_EXTENTS
:
448 ASSERT(!(iip
->ili_format
.ilf_fields
&
449 (XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
)));
450 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_AEXT
) {
451 ASSERT(ip
->i_afp
->if_bytes
> 0);
452 ASSERT(ip
->i_afp
->if_u1
.if_extents
!= NULL
);
453 ASSERT(ip
->i_d
.di_anextents
> 0);
455 nrecs
= ip
->i_afp
->if_bytes
/
456 (uint
)sizeof(xfs_bmbt_rec_t
);
459 ASSERT(nrecs
== ip
->i_d
.di_anextents
);
460 #ifdef XFS_NATIVE_HOST
462 * There are not delayed allocation extents
463 * for attributes, so just point at the array.
465 vecp
->i_addr
= (char *)(ip
->i_afp
->if_u1
.if_extents
);
466 vecp
->i_len
= ip
->i_afp
->if_bytes
;
468 ASSERT(iip
->ili_aextents_buf
== NULL
);
470 * Need to endian flip before logging
472 ext_buffer
= kmem_alloc(ip
->i_afp
->if_bytes
,
474 iip
->ili_aextents_buf
= ext_buffer
;
475 vecp
->i_addr
= (xfs_caddr_t
)ext_buffer
;
476 vecp
->i_len
= xfs_iextents_copy(ip
, ext_buffer
,
479 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_IATTR_EXT
);
480 iip
->ili_format
.ilf_asize
= vecp
->i_len
;
486 case XFS_DINODE_FMT_BTREE
:
487 ASSERT(!(iip
->ili_format
.ilf_fields
&
488 (XFS_ILOG_ADATA
| XFS_ILOG_AEXT
)));
489 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_ABROOT
) {
490 ASSERT(ip
->i_afp
->if_broot_bytes
> 0);
491 ASSERT(ip
->i_afp
->if_broot
!= NULL
);
492 vecp
->i_addr
= (xfs_caddr_t
)ip
->i_afp
->if_broot
;
493 vecp
->i_len
= ip
->i_afp
->if_broot_bytes
;
494 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_IATTR_BROOT
);
497 iip
->ili_format
.ilf_asize
= ip
->i_afp
->if_broot_bytes
;
501 case XFS_DINODE_FMT_LOCAL
:
502 ASSERT(!(iip
->ili_format
.ilf_fields
&
503 (XFS_ILOG_ABROOT
| XFS_ILOG_AEXT
)));
504 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_ADATA
) {
505 ASSERT(ip
->i_afp
->if_bytes
> 0);
506 ASSERT(ip
->i_afp
->if_u1
.if_data
!= NULL
);
508 vecp
->i_addr
= (xfs_caddr_t
)ip
->i_afp
->if_u1
.if_data
;
510 * Round i_bytes up to a word boundary.
511 * The underlying memory is guaranteed to
512 * to be there by xfs_idata_realloc().
514 data_bytes
= roundup(ip
->i_afp
->if_bytes
, 4);
515 ASSERT((ip
->i_afp
->if_real_bytes
== 0) ||
516 (ip
->i_afp
->if_real_bytes
== data_bytes
));
517 vecp
->i_len
= (int)data_bytes
;
518 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_IATTR_LOCAL
);
521 iip
->ili_format
.ilf_asize
= (unsigned)data_bytes
;
530 ASSERT(nvecs
== iip
->ili_item
.li_desc
->lid_size
);
531 iip
->ili_format
.ilf_size
= nvecs
;
536 * This is called to pin the inode associated with the inode log
537 * item in memory so it cannot be written out. Do this by calling
538 * xfs_ipin() to bump the pin count in the inode while holding the
543 xfs_inode_log_item_t
*iip
)
545 ASSERT(xfs_isilocked(iip
->ili_inode
, XFS_ILOCK_EXCL
));
546 xfs_ipin(iip
->ili_inode
);
551 * This is called to unpin the inode associated with the inode log
552 * item which was previously pinned with a call to xfs_inode_item_pin().
553 * Just call xfs_iunpin() on the inode to do this.
557 xfs_inode_item_unpin(
558 xfs_inode_log_item_t
*iip
,
561 xfs_iunpin(iip
->ili_inode
);
566 xfs_inode_item_unpin_remove(
567 xfs_inode_log_item_t
*iip
,
570 xfs_iunpin(iip
->ili_inode
);
574 * This is called to attempt to lock the inode associated with this
575 * inode log item, in preparation for the push routine which does the actual
576 * iflush. Don't sleep on the inode lock or the flush lock.
578 * If the flush lock is already held, indicating that the inode has
579 * been or is in the process of being flushed, then (ideally) we'd like to
580 * see if the inode's buffer is still incore, and if so give it a nudge.
581 * We delay doing so until the pushbuf routine, though, to avoid holding
582 * the AIL lock across a call to the blackhole which is the buffer cache.
583 * Also we don't want to sleep in any device strategy routines, which can happen
584 * if we do the subsequent bawrite in here.
587 xfs_inode_item_trylock(
588 xfs_inode_log_item_t
*iip
)
590 register xfs_inode_t
*ip
;
594 if (xfs_ipincount(ip
) > 0) {
595 return XFS_ITEM_PINNED
;
598 if (!xfs_ilock_nowait(ip
, XFS_ILOCK_SHARED
)) {
599 return XFS_ITEM_LOCKED
;
602 if (!xfs_iflock_nowait(ip
)) {
604 * If someone else isn't already trying to push the inode
605 * buffer, we get to do it.
607 if (iip
->ili_pushbuf_flag
== 0) {
608 iip
->ili_pushbuf_flag
= 1;
610 iip
->ili_push_owner
= current_pid();
613 * Inode is left locked in shared mode.
614 * Pushbuf routine gets to unlock it.
616 return XFS_ITEM_PUSHBUF
;
619 * We hold the AIL lock, so we must specify the
620 * NONOTIFY flag so that we won't double trip.
622 xfs_iunlock(ip
, XFS_ILOCK_SHARED
|XFS_IUNLOCK_NONOTIFY
);
623 return XFS_ITEM_FLUSHING
;
628 /* Stale items should force out the iclog */
629 if (ip
->i_flags
& XFS_ISTALE
) {
631 xfs_iunlock(ip
, XFS_ILOCK_SHARED
|XFS_IUNLOCK_NONOTIFY
);
632 return XFS_ITEM_PINNED
;
636 if (!XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
637 ASSERT(iip
->ili_format
.ilf_fields
!= 0);
638 ASSERT(iip
->ili_logged
== 0);
639 ASSERT(iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
);
642 return XFS_ITEM_SUCCESS
;
646 * Unlock the inode associated with the inode log item.
647 * Clear the fields of the inode and inode log item that
648 * are specific to the current transaction. If the
649 * hold flags is set, do not unlock the inode.
652 xfs_inode_item_unlock(
653 xfs_inode_log_item_t
*iip
)
661 ASSERT(iip
->ili_inode
->i_itemp
!= NULL
);
662 ASSERT(xfs_isilocked(iip
->ili_inode
, XFS_ILOCK_EXCL
));
663 ASSERT((!(iip
->ili_inode
->i_itemp
->ili_flags
&
664 XFS_ILI_IOLOCKED_EXCL
)) ||
665 xfs_isilocked(iip
->ili_inode
, XFS_IOLOCK_EXCL
));
666 ASSERT((!(iip
->ili_inode
->i_itemp
->ili_flags
&
667 XFS_ILI_IOLOCKED_SHARED
)) ||
668 xfs_isilocked(iip
->ili_inode
, XFS_IOLOCK_SHARED
));
670 * Clear the transaction pointer in the inode.
676 * If the inode needed a separate buffer with which to log
677 * its extents, then free it now.
679 if (iip
->ili_extents_buf
!= NULL
) {
680 ASSERT(ip
->i_d
.di_format
== XFS_DINODE_FMT_EXTENTS
);
681 ASSERT(ip
->i_d
.di_nextents
> 0);
682 ASSERT(iip
->ili_format
.ilf_fields
& XFS_ILOG_DEXT
);
683 ASSERT(ip
->i_df
.if_bytes
> 0);
684 kmem_free(iip
->ili_extents_buf
);
685 iip
->ili_extents_buf
= NULL
;
687 if (iip
->ili_aextents_buf
!= NULL
) {
688 ASSERT(ip
->i_d
.di_aformat
== XFS_DINODE_FMT_EXTENTS
);
689 ASSERT(ip
->i_d
.di_anextents
> 0);
690 ASSERT(iip
->ili_format
.ilf_fields
& XFS_ILOG_AEXT
);
691 ASSERT(ip
->i_afp
->if_bytes
> 0);
692 kmem_free(iip
->ili_aextents_buf
);
693 iip
->ili_aextents_buf
= NULL
;
697 * Figure out if we should unlock the inode or not.
699 hold
= iip
->ili_flags
& XFS_ILI_HOLD
;
702 * Before clearing out the flags, remember whether we
703 * are holding the inode's IO lock.
705 iolocked
= iip
->ili_flags
& XFS_ILI_IOLOCKED_ANY
;
708 * Clear out the fields of the inode log item particular
709 * to the current transaction.
714 * Unlock the inode if XFS_ILI_HOLD was not set.
717 lock_flags
= XFS_ILOCK_EXCL
;
718 if (iolocked
& XFS_ILI_IOLOCKED_EXCL
) {
719 lock_flags
|= XFS_IOLOCK_EXCL
;
720 } else if (iolocked
& XFS_ILI_IOLOCKED_SHARED
) {
721 lock_flags
|= XFS_IOLOCK_SHARED
;
723 xfs_iput(iip
->ili_inode
, lock_flags
);
728 * This is called to find out where the oldest active copy of the
729 * inode log item in the on disk log resides now that the last log
730 * write of it completed at the given lsn. Since we always re-log
731 * all dirty data in an inode, the latest copy in the on disk log
732 * is the only one that matters. Therefore, simply return the
737 xfs_inode_item_committed(
738 xfs_inode_log_item_t
*iip
,
745 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
746 * failed to get the inode flush lock but did get the inode locked SHARED.
747 * Here we're trying to see if the inode buffer is incore, and if so whether it's
748 * marked delayed write. If that's the case, we'll initiate a bawrite on that
749 * buffer to expedite the process.
751 * We aren't holding the AIL lock (or the flush lock) when this gets called,
752 * so it is inherently race-y.
755 xfs_inode_item_pushbuf(
756 xfs_inode_log_item_t
*iip
)
765 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_SHARED
));
768 * The ili_pushbuf_flag keeps others from
769 * trying to duplicate our effort.
771 ASSERT(iip
->ili_pushbuf_flag
!= 0);
772 ASSERT(iip
->ili_push_owner
== current_pid());
775 * If a flush is not in progress anymore, chances are that the
776 * inode was taken off the AIL. So, just get out.
778 if (completion_done(&ip
->i_flush
) ||
779 ((iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) == 0)) {
780 iip
->ili_pushbuf_flag
= 0;
781 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
786 bp
= xfs_incore(mp
->m_ddev_targp
, iip
->ili_format
.ilf_blkno
,
787 iip
->ili_format
.ilf_len
, XFS_INCORE_TRYLOCK
);
790 if (XFS_BUF_ISDELAYWRITE(bp
)) {
792 * We were racing with iflush because we don't hold
793 * the AIL lock or the flush lock. However, at this point,
794 * we have the buffer, and we know that it's dirty.
795 * So, it's possible that iflush raced with us, and
796 * this item is already taken off the AIL.
797 * If not, we can flush it async.
799 dopush
= ((iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) &&
800 !completion_done(&ip
->i_flush
));
801 iip
->ili_pushbuf_flag
= 0;
802 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
803 xfs_buftrace("INODE ITEM PUSH", bp
);
804 if (XFS_BUF_ISPINNED(bp
)) {
805 xfs_log_force(mp
, (xfs_lsn_t
)0,
810 error
= xfs_bawrite(mp
, bp
);
812 xfs_fs_cmn_err(CE_WARN
, mp
,
813 "xfs_inode_item_pushbuf: pushbuf error %d on iip %p, bp %p",
819 iip
->ili_pushbuf_flag
= 0;
820 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
826 * We have to be careful about resetting pushbuf flag too early (above).
827 * Even though in theory we can do it as soon as we have the buflock,
828 * we don't want others to be doing work needlessly. They'll come to
829 * this function thinking that pushing the buffer is their
830 * responsibility only to find that the buffer is still locked by
831 * another doing the same thing
833 iip
->ili_pushbuf_flag
= 0;
834 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
840 * This is called to asynchronously write the inode associated with this
841 * inode log item out to disk. The inode will already have been locked by
842 * a successful call to xfs_inode_item_trylock().
846 xfs_inode_log_item_t
*iip
)
852 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_SHARED
));
853 ASSERT(!completion_done(&ip
->i_flush
));
855 * Since we were able to lock the inode's flush lock and
856 * we found it on the AIL, the inode must be dirty. This
857 * is because the inode is removed from the AIL while still
858 * holding the flush lock in xfs_iflush_done(). Thus, if
859 * we found it in the AIL and were able to obtain the flush
860 * lock without sleeping, then there must not have been
861 * anyone in the process of flushing the inode.
863 ASSERT(XFS_FORCED_SHUTDOWN(ip
->i_mount
) ||
864 iip
->ili_format
.ilf_fields
!= 0);
867 * Write out the inode. The completion routine ('iflush_done') will
868 * pull it from the AIL, mark it clean, unlock the flush lock.
870 (void) xfs_iflush(ip
, XFS_IFLUSH_ASYNC
);
871 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
877 * XXX rcc - this one really has to do something. Probably needs
878 * to stamp in a new field in the incore inode.
882 xfs_inode_item_committing(
883 xfs_inode_log_item_t
*iip
,
886 iip
->ili_last_lsn
= lsn
;
891 * This is the ops vector shared by all buf log items.
893 static struct xfs_item_ops xfs_inode_item_ops
= {
894 .iop_size
= (uint(*)(xfs_log_item_t
*))xfs_inode_item_size
,
895 .iop_format
= (void(*)(xfs_log_item_t
*, xfs_log_iovec_t
*))
896 xfs_inode_item_format
,
897 .iop_pin
= (void(*)(xfs_log_item_t
*))xfs_inode_item_pin
,
898 .iop_unpin
= (void(*)(xfs_log_item_t
*, int))xfs_inode_item_unpin
,
899 .iop_unpin_remove
= (void(*)(xfs_log_item_t
*, xfs_trans_t
*))
900 xfs_inode_item_unpin_remove
,
901 .iop_trylock
= (uint(*)(xfs_log_item_t
*))xfs_inode_item_trylock
,
902 .iop_unlock
= (void(*)(xfs_log_item_t
*))xfs_inode_item_unlock
,
903 .iop_committed
= (xfs_lsn_t(*)(xfs_log_item_t
*, xfs_lsn_t
))
904 xfs_inode_item_committed
,
905 .iop_push
= (void(*)(xfs_log_item_t
*))xfs_inode_item_push
,
906 .iop_pushbuf
= (void(*)(xfs_log_item_t
*))xfs_inode_item_pushbuf
,
907 .iop_committing
= (void(*)(xfs_log_item_t
*, xfs_lsn_t
))
908 xfs_inode_item_committing
913 * Initialize the inode log item for a newly allocated (in-core) inode.
920 xfs_inode_log_item_t
*iip
;
922 ASSERT(ip
->i_itemp
== NULL
);
923 iip
= ip
->i_itemp
= kmem_zone_zalloc(xfs_ili_zone
, KM_SLEEP
);
925 iip
->ili_item
.li_type
= XFS_LI_INODE
;
926 iip
->ili_item
.li_ops
= &xfs_inode_item_ops
;
927 iip
->ili_item
.li_mountp
= mp
;
928 iip
->ili_item
.li_ailp
= mp
->m_ail
;
932 We have zeroed memory. No need ...
933 iip->ili_extents_buf = NULL;
934 iip->ili_pushbuf_flag = 0;
937 iip
->ili_format
.ilf_type
= XFS_LI_INODE
;
938 iip
->ili_format
.ilf_ino
= ip
->i_ino
;
939 iip
->ili_format
.ilf_blkno
= ip
->i_imap
.im_blkno
;
940 iip
->ili_format
.ilf_len
= ip
->i_imap
.im_len
;
941 iip
->ili_format
.ilf_boffset
= ip
->i_imap
.im_boffset
;
945 * Free the inode log item and any memory hanging off of it.
948 xfs_inode_item_destroy(
951 #ifdef XFS_TRANS_DEBUG
952 if (ip
->i_itemp
->ili_root_size
!= 0) {
953 kmem_free(ip
->i_itemp
->ili_orig_root
);
956 kmem_zone_free(xfs_ili_zone
, ip
->i_itemp
);
961 * This is the inode flushing I/O completion routine. It is called
962 * from interrupt level when the buffer containing the inode is
963 * flushed to disk. It is responsible for removing the inode item
964 * from the AIL if it has not been re-logged, and unlocking the inode's
971 xfs_inode_log_item_t
*iip
)
973 xfs_inode_t
*ip
= iip
->ili_inode
;
974 struct xfs_ail
*ailp
= iip
->ili_item
.li_ailp
;
977 * We only want to pull the item from the AIL if it is
978 * actually there and its location in the log has not
979 * changed since we started the flush. Thus, we only bother
980 * if the ili_logged flag is set and the inode's lsn has not
981 * changed. First we check the lsn outside
982 * the lock since it's cheaper, and then we recheck while
983 * holding the lock before removing the inode from the AIL.
985 if (iip
->ili_logged
&&
986 (iip
->ili_item
.li_lsn
== iip
->ili_flush_lsn
)) {
987 spin_lock(&ailp
->xa_lock
);
988 if (iip
->ili_item
.li_lsn
== iip
->ili_flush_lsn
) {
989 /* xfs_trans_ail_delete() drops the AIL lock. */
990 xfs_trans_ail_delete(ailp
, (xfs_log_item_t
*)iip
);
992 spin_unlock(&ailp
->xa_lock
);
999 * Clear the ili_last_fields bits now that we know that the
1000 * data corresponding to them is safely on disk.
1002 iip
->ili_last_fields
= 0;
1005 * Release the inode's flush lock since we're done with it.
1013 * This is the inode flushing abort routine. It is called
1014 * from xfs_iflush when the filesystem is shutting down to clean
1015 * up the inode state.
1016 * It is responsible for removing the inode item
1017 * from the AIL if it has not been re-logged, and unlocking the inode's
1024 xfs_inode_log_item_t
*iip
= ip
->i_itemp
;
1030 struct xfs_ail
*ailp
= iip
->ili_item
.li_ailp
;
1031 if (iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) {
1032 spin_lock(&ailp
->xa_lock
);
1033 if (iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) {
1034 /* xfs_trans_ail_delete() drops the AIL lock. */
1035 xfs_trans_ail_delete(ailp
, (xfs_log_item_t
*)iip
);
1037 spin_unlock(&ailp
->xa_lock
);
1039 iip
->ili_logged
= 0;
1041 * Clear the ili_last_fields bits now that we know that the
1042 * data corresponding to them is safely on disk.
1044 iip
->ili_last_fields
= 0;
1046 * Clear the inode logging fields so no more flushes are
1049 iip
->ili_format
.ilf_fields
= 0;
1052 * Release the inode's flush lock since we're done with it.
1060 xfs_inode_log_item_t
*iip
)
1062 xfs_iflush_abort(iip
->ili_inode
);
1066 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
1067 * (which can have different field alignments) to the native version
1070 xfs_inode_item_format_convert(
1071 xfs_log_iovec_t
*buf
,
1072 xfs_inode_log_format_t
*in_f
)
1074 if (buf
->i_len
== sizeof(xfs_inode_log_format_32_t
)) {
1075 xfs_inode_log_format_32_t
*in_f32
;
1077 in_f32
= (xfs_inode_log_format_32_t
*)buf
->i_addr
;
1078 in_f
->ilf_type
= in_f32
->ilf_type
;
1079 in_f
->ilf_size
= in_f32
->ilf_size
;
1080 in_f
->ilf_fields
= in_f32
->ilf_fields
;
1081 in_f
->ilf_asize
= in_f32
->ilf_asize
;
1082 in_f
->ilf_dsize
= in_f32
->ilf_dsize
;
1083 in_f
->ilf_ino
= in_f32
->ilf_ino
;
1084 /* copy biggest field of ilf_u */
1085 memcpy(in_f
->ilf_u
.ilfu_uuid
.__u_bits
,
1086 in_f32
->ilf_u
.ilfu_uuid
.__u_bits
,
1088 in_f
->ilf_blkno
= in_f32
->ilf_blkno
;
1089 in_f
->ilf_len
= in_f32
->ilf_len
;
1090 in_f
->ilf_boffset
= in_f32
->ilf_boffset
;
1092 } else if (buf
->i_len
== sizeof(xfs_inode_log_format_64_t
)){
1093 xfs_inode_log_format_64_t
*in_f64
;
1095 in_f64
= (xfs_inode_log_format_64_t
*)buf
->i_addr
;
1096 in_f
->ilf_type
= in_f64
->ilf_type
;
1097 in_f
->ilf_size
= in_f64
->ilf_size
;
1098 in_f
->ilf_fields
= in_f64
->ilf_fields
;
1099 in_f
->ilf_asize
= in_f64
->ilf_asize
;
1100 in_f
->ilf_dsize
= in_f64
->ilf_dsize
;
1101 in_f
->ilf_ino
= in_f64
->ilf_ino
;
1102 /* copy biggest field of ilf_u */
1103 memcpy(in_f
->ilf_u
.ilfu_uuid
.__u_bits
,
1104 in_f64
->ilf_u
.ilfu_uuid
.__u_bits
,
1106 in_f
->ilf_blkno
= in_f64
->ilf_blkno
;
1107 in_f
->ilf_len
= in_f64
->ilf_len
;
1108 in_f
->ilf_boffset
= in_f64
->ilf_boffset
;
1111 return EFSCORRUPTED
;