gro: Reset dev pointer on reuse
[wandboard.git] / net / core / dev.c
blob88027bc121d189240b685256a78970e7579378aa
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <linux/if_bridge.h>
104 #include <linux/if_macvlan.h>
105 #include <net/dst.h>
106 #include <net/pkt_sched.h>
107 #include <net/checksum.h>
108 #include <net/xfrm.h>
109 #include <linux/highmem.h>
110 #include <linux/init.h>
111 #include <linux/kmod.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/wext.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
133 #include "net-sysfs.h"
135 /* Instead of increasing this, you should create a hash table. */
136 #define MAX_GRO_SKBS 8
138 /* This should be increased if a protocol with a bigger head is added. */
139 #define GRO_MAX_HEAD (MAX_HEADER + 128)
142 * The list of packet types we will receive (as opposed to discard)
143 * and the routines to invoke.
145 * Why 16. Because with 16 the only overlap we get on a hash of the
146 * low nibble of the protocol value is RARP/SNAP/X.25.
148 * NOTE: That is no longer true with the addition of VLAN tags. Not
149 * sure which should go first, but I bet it won't make much
150 * difference if we are running VLANs. The good news is that
151 * this protocol won't be in the list unless compiled in, so
152 * the average user (w/out VLANs) will not be adversely affected.
153 * --BLG
155 * 0800 IP
156 * 8100 802.1Q VLAN
157 * 0001 802.3
158 * 0002 AX.25
159 * 0004 802.2
160 * 8035 RARP
161 * 0005 SNAP
162 * 0805 X.25
163 * 0806 ARP
164 * 8137 IPX
165 * 0009 Localtalk
166 * 86DD IPv6
169 #define PTYPE_HASH_SIZE (16)
170 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
172 static DEFINE_SPINLOCK(ptype_lock);
173 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
174 static struct list_head ptype_all __read_mostly; /* Taps */
177 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
178 * semaphore.
180 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
182 * Writers must hold the rtnl semaphore while they loop through the
183 * dev_base_head list, and hold dev_base_lock for writing when they do the
184 * actual updates. This allows pure readers to access the list even
185 * while a writer is preparing to update it.
187 * To put it another way, dev_base_lock is held for writing only to
188 * protect against pure readers; the rtnl semaphore provides the
189 * protection against other writers.
191 * See, for example usages, register_netdevice() and
192 * unregister_netdevice(), which must be called with the rtnl
193 * semaphore held.
195 DEFINE_RWLOCK(dev_base_lock);
196 EXPORT_SYMBOL(dev_base_lock);
198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 /* Device list insertion */
210 static int list_netdevice(struct net_device *dev)
212 struct net *net = dev_net(dev);
214 ASSERT_RTNL();
216 write_lock_bh(&dev_base_lock);
217 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
218 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
219 hlist_add_head_rcu(&dev->index_hlist,
220 dev_index_hash(net, dev->ifindex));
221 write_unlock_bh(&dev_base_lock);
222 return 0;
225 /* Device list removal
226 * caller must respect a RCU grace period before freeing/reusing dev
228 static void unlist_netdevice(struct net_device *dev)
230 ASSERT_RTNL();
232 /* Unlink dev from the device chain */
233 write_lock_bh(&dev_base_lock);
234 list_del_rcu(&dev->dev_list);
235 hlist_del_rcu(&dev->name_hlist);
236 hlist_del_rcu(&dev->index_hlist);
237 write_unlock_bh(&dev_base_lock);
241 * Our notifier list
244 static RAW_NOTIFIER_HEAD(netdev_chain);
247 * Device drivers call our routines to queue packets here. We empty the
248 * queue in the local softnet handler.
251 DEFINE_PER_CPU(struct softnet_data, softnet_data);
252 EXPORT_PER_CPU_SYMBOL(softnet_data);
254 #ifdef CONFIG_LOCKDEP
256 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
257 * according to dev->type
259 static const unsigned short netdev_lock_type[] =
260 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
261 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
262 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
263 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
264 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
265 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
266 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
267 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
268 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
269 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
270 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
271 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
272 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
273 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
274 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
275 ARPHRD_VOID, ARPHRD_NONE};
277 static const char *const netdev_lock_name[] =
278 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
279 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
280 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
281 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
282 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
283 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
284 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
285 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
286 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
287 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
288 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
289 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
290 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
291 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
292 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
293 "_xmit_VOID", "_xmit_NONE"};
295 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
296 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
298 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
300 int i;
302 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
303 if (netdev_lock_type[i] == dev_type)
304 return i;
305 /* the last key is used by default */
306 return ARRAY_SIZE(netdev_lock_type) - 1;
309 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
310 unsigned short dev_type)
312 int i;
314 i = netdev_lock_pos(dev_type);
315 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
316 netdev_lock_name[i]);
319 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
321 int i;
323 i = netdev_lock_pos(dev->type);
324 lockdep_set_class_and_name(&dev->addr_list_lock,
325 &netdev_addr_lock_key[i],
326 netdev_lock_name[i]);
328 #else
329 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
330 unsigned short dev_type)
333 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 #endif
338 /*******************************************************************************
340 Protocol management and registration routines
342 *******************************************************************************/
345 * Add a protocol ID to the list. Now that the input handler is
346 * smarter we can dispense with all the messy stuff that used to be
347 * here.
349 * BEWARE!!! Protocol handlers, mangling input packets,
350 * MUST BE last in hash buckets and checking protocol handlers
351 * MUST start from promiscuous ptype_all chain in net_bh.
352 * It is true now, do not change it.
353 * Explanation follows: if protocol handler, mangling packet, will
354 * be the first on list, it is not able to sense, that packet
355 * is cloned and should be copied-on-write, so that it will
356 * change it and subsequent readers will get broken packet.
357 * --ANK (980803)
361 * dev_add_pack - add packet handler
362 * @pt: packet type declaration
364 * Add a protocol handler to the networking stack. The passed &packet_type
365 * is linked into kernel lists and may not be freed until it has been
366 * removed from the kernel lists.
368 * This call does not sleep therefore it can not
369 * guarantee all CPU's that are in middle of receiving packets
370 * will see the new packet type (until the next received packet).
373 void dev_add_pack(struct packet_type *pt)
375 int hash;
377 spin_lock_bh(&ptype_lock);
378 if (pt->type == htons(ETH_P_ALL))
379 list_add_rcu(&pt->list, &ptype_all);
380 else {
381 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
382 list_add_rcu(&pt->list, &ptype_base[hash]);
384 spin_unlock_bh(&ptype_lock);
386 EXPORT_SYMBOL(dev_add_pack);
389 * __dev_remove_pack - remove packet handler
390 * @pt: packet type declaration
392 * Remove a protocol handler that was previously added to the kernel
393 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
394 * from the kernel lists and can be freed or reused once this function
395 * returns.
397 * The packet type might still be in use by receivers
398 * and must not be freed until after all the CPU's have gone
399 * through a quiescent state.
401 void __dev_remove_pack(struct packet_type *pt)
403 struct list_head *head;
404 struct packet_type *pt1;
406 spin_lock_bh(&ptype_lock);
408 if (pt->type == htons(ETH_P_ALL))
409 head = &ptype_all;
410 else
411 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
413 list_for_each_entry(pt1, head, list) {
414 if (pt == pt1) {
415 list_del_rcu(&pt->list);
416 goto out;
420 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
421 out:
422 spin_unlock_bh(&ptype_lock);
424 EXPORT_SYMBOL(__dev_remove_pack);
427 * dev_remove_pack - remove packet handler
428 * @pt: packet type declaration
430 * Remove a protocol handler that was previously added to the kernel
431 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
432 * from the kernel lists and can be freed or reused once this function
433 * returns.
435 * This call sleeps to guarantee that no CPU is looking at the packet
436 * type after return.
438 void dev_remove_pack(struct packet_type *pt)
440 __dev_remove_pack(pt);
442 synchronize_net();
444 EXPORT_SYMBOL(dev_remove_pack);
446 /******************************************************************************
448 Device Boot-time Settings Routines
450 *******************************************************************************/
452 /* Boot time configuration table */
453 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
456 * netdev_boot_setup_add - add new setup entry
457 * @name: name of the device
458 * @map: configured settings for the device
460 * Adds new setup entry to the dev_boot_setup list. The function
461 * returns 0 on error and 1 on success. This is a generic routine to
462 * all netdevices.
464 static int netdev_boot_setup_add(char *name, struct ifmap *map)
466 struct netdev_boot_setup *s;
467 int i;
469 s = dev_boot_setup;
470 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
471 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
472 memset(s[i].name, 0, sizeof(s[i].name));
473 strlcpy(s[i].name, name, IFNAMSIZ);
474 memcpy(&s[i].map, map, sizeof(s[i].map));
475 break;
479 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
483 * netdev_boot_setup_check - check boot time settings
484 * @dev: the netdevice
486 * Check boot time settings for the device.
487 * The found settings are set for the device to be used
488 * later in the device probing.
489 * Returns 0 if no settings found, 1 if they are.
491 int netdev_boot_setup_check(struct net_device *dev)
493 struct netdev_boot_setup *s = dev_boot_setup;
494 int i;
496 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
497 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
498 !strcmp(dev->name, s[i].name)) {
499 dev->irq = s[i].map.irq;
500 dev->base_addr = s[i].map.base_addr;
501 dev->mem_start = s[i].map.mem_start;
502 dev->mem_end = s[i].map.mem_end;
503 return 1;
506 return 0;
508 EXPORT_SYMBOL(netdev_boot_setup_check);
512 * netdev_boot_base - get address from boot time settings
513 * @prefix: prefix for network device
514 * @unit: id for network device
516 * Check boot time settings for the base address of device.
517 * The found settings are set for the device to be used
518 * later in the device probing.
519 * Returns 0 if no settings found.
521 unsigned long netdev_boot_base(const char *prefix, int unit)
523 const struct netdev_boot_setup *s = dev_boot_setup;
524 char name[IFNAMSIZ];
525 int i;
527 sprintf(name, "%s%d", prefix, unit);
530 * If device already registered then return base of 1
531 * to indicate not to probe for this interface
533 if (__dev_get_by_name(&init_net, name))
534 return 1;
536 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
537 if (!strcmp(name, s[i].name))
538 return s[i].map.base_addr;
539 return 0;
543 * Saves at boot time configured settings for any netdevice.
545 int __init netdev_boot_setup(char *str)
547 int ints[5];
548 struct ifmap map;
550 str = get_options(str, ARRAY_SIZE(ints), ints);
551 if (!str || !*str)
552 return 0;
554 /* Save settings */
555 memset(&map, 0, sizeof(map));
556 if (ints[0] > 0)
557 map.irq = ints[1];
558 if (ints[0] > 1)
559 map.base_addr = ints[2];
560 if (ints[0] > 2)
561 map.mem_start = ints[3];
562 if (ints[0] > 3)
563 map.mem_end = ints[4];
565 /* Add new entry to the list */
566 return netdev_boot_setup_add(str, &map);
569 __setup("netdev=", netdev_boot_setup);
571 /*******************************************************************************
573 Device Interface Subroutines
575 *******************************************************************************/
578 * __dev_get_by_name - find a device by its name
579 * @net: the applicable net namespace
580 * @name: name to find
582 * Find an interface by name. Must be called under RTNL semaphore
583 * or @dev_base_lock. If the name is found a pointer to the device
584 * is returned. If the name is not found then %NULL is returned. The
585 * reference counters are not incremented so the caller must be
586 * careful with locks.
589 struct net_device *__dev_get_by_name(struct net *net, const char *name)
591 struct hlist_node *p;
592 struct net_device *dev;
593 struct hlist_head *head = dev_name_hash(net, name);
595 hlist_for_each_entry(dev, p, head, name_hlist)
596 if (!strncmp(dev->name, name, IFNAMSIZ))
597 return dev;
599 return NULL;
601 EXPORT_SYMBOL(__dev_get_by_name);
604 * dev_get_by_name_rcu - find a device by its name
605 * @net: the applicable net namespace
606 * @name: name to find
608 * Find an interface by name.
609 * If the name is found a pointer to the device is returned.
610 * If the name is not found then %NULL is returned.
611 * The reference counters are not incremented so the caller must be
612 * careful with locks. The caller must hold RCU lock.
615 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
617 struct hlist_node *p;
618 struct net_device *dev;
619 struct hlist_head *head = dev_name_hash(net, name);
621 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
622 if (!strncmp(dev->name, name, IFNAMSIZ))
623 return dev;
625 return NULL;
627 EXPORT_SYMBOL(dev_get_by_name_rcu);
630 * dev_get_by_name - find a device by its name
631 * @net: the applicable net namespace
632 * @name: name to find
634 * Find an interface by name. This can be called from any
635 * context and does its own locking. The returned handle has
636 * the usage count incremented and the caller must use dev_put() to
637 * release it when it is no longer needed. %NULL is returned if no
638 * matching device is found.
641 struct net_device *dev_get_by_name(struct net *net, const char *name)
643 struct net_device *dev;
645 rcu_read_lock();
646 dev = dev_get_by_name_rcu(net, name);
647 if (dev)
648 dev_hold(dev);
649 rcu_read_unlock();
650 return dev;
652 EXPORT_SYMBOL(dev_get_by_name);
655 * __dev_get_by_index - find a device by its ifindex
656 * @net: the applicable net namespace
657 * @ifindex: index of device
659 * Search for an interface by index. Returns %NULL if the device
660 * is not found or a pointer to the device. The device has not
661 * had its reference counter increased so the caller must be careful
662 * about locking. The caller must hold either the RTNL semaphore
663 * or @dev_base_lock.
666 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
668 struct hlist_node *p;
669 struct net_device *dev;
670 struct hlist_head *head = dev_index_hash(net, ifindex);
672 hlist_for_each_entry(dev, p, head, index_hlist)
673 if (dev->ifindex == ifindex)
674 return dev;
676 return NULL;
678 EXPORT_SYMBOL(__dev_get_by_index);
681 * dev_get_by_index_rcu - find a device by its ifindex
682 * @net: the applicable net namespace
683 * @ifindex: index of device
685 * Search for an interface by index. Returns %NULL if the device
686 * is not found or a pointer to the device. The device has not
687 * had its reference counter increased so the caller must be careful
688 * about locking. The caller must hold RCU lock.
691 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
693 struct hlist_node *p;
694 struct net_device *dev;
695 struct hlist_head *head = dev_index_hash(net, ifindex);
697 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
698 if (dev->ifindex == ifindex)
699 return dev;
701 return NULL;
703 EXPORT_SYMBOL(dev_get_by_index_rcu);
707 * dev_get_by_index - find a device by its ifindex
708 * @net: the applicable net namespace
709 * @ifindex: index of device
711 * Search for an interface by index. Returns NULL if the device
712 * is not found or a pointer to the device. The device returned has
713 * had a reference added and the pointer is safe until the user calls
714 * dev_put to indicate they have finished with it.
717 struct net_device *dev_get_by_index(struct net *net, int ifindex)
719 struct net_device *dev;
721 rcu_read_lock();
722 dev = dev_get_by_index_rcu(net, ifindex);
723 if (dev)
724 dev_hold(dev);
725 rcu_read_unlock();
726 return dev;
728 EXPORT_SYMBOL(dev_get_by_index);
731 * dev_getbyhwaddr - find a device by its hardware address
732 * @net: the applicable net namespace
733 * @type: media type of device
734 * @ha: hardware address
736 * Search for an interface by MAC address. Returns NULL if the device
737 * is not found or a pointer to the device. The caller must hold the
738 * rtnl semaphore. The returned device has not had its ref count increased
739 * and the caller must therefore be careful about locking
741 * BUGS:
742 * If the API was consistent this would be __dev_get_by_hwaddr
745 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
747 struct net_device *dev;
749 ASSERT_RTNL();
751 for_each_netdev(net, dev)
752 if (dev->type == type &&
753 !memcmp(dev->dev_addr, ha, dev->addr_len))
754 return dev;
756 return NULL;
758 EXPORT_SYMBOL(dev_getbyhwaddr);
760 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
762 struct net_device *dev;
764 ASSERT_RTNL();
765 for_each_netdev(net, dev)
766 if (dev->type == type)
767 return dev;
769 return NULL;
771 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
773 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
775 struct net_device *dev;
777 rtnl_lock();
778 dev = __dev_getfirstbyhwtype(net, type);
779 if (dev)
780 dev_hold(dev);
781 rtnl_unlock();
782 return dev;
784 EXPORT_SYMBOL(dev_getfirstbyhwtype);
787 * dev_get_by_flags - find any device with given flags
788 * @net: the applicable net namespace
789 * @if_flags: IFF_* values
790 * @mask: bitmask of bits in if_flags to check
792 * Search for any interface with the given flags. Returns NULL if a device
793 * is not found or a pointer to the device. The device returned has
794 * had a reference added and the pointer is safe until the user calls
795 * dev_put to indicate they have finished with it.
798 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
799 unsigned short mask)
801 struct net_device *dev, *ret;
803 ret = NULL;
804 rcu_read_lock();
805 for_each_netdev_rcu(net, dev) {
806 if (((dev->flags ^ if_flags) & mask) == 0) {
807 dev_hold(dev);
808 ret = dev;
809 break;
812 rcu_read_unlock();
813 return ret;
815 EXPORT_SYMBOL(dev_get_by_flags);
818 * dev_valid_name - check if name is okay for network device
819 * @name: name string
821 * Network device names need to be valid file names to
822 * to allow sysfs to work. We also disallow any kind of
823 * whitespace.
825 int dev_valid_name(const char *name)
827 if (*name == '\0')
828 return 0;
829 if (strlen(name) >= IFNAMSIZ)
830 return 0;
831 if (!strcmp(name, ".") || !strcmp(name, ".."))
832 return 0;
834 while (*name) {
835 if (*name == '/' || isspace(*name))
836 return 0;
837 name++;
839 return 1;
841 EXPORT_SYMBOL(dev_valid_name);
844 * __dev_alloc_name - allocate a name for a device
845 * @net: network namespace to allocate the device name in
846 * @name: name format string
847 * @buf: scratch buffer and result name string
849 * Passed a format string - eg "lt%d" it will try and find a suitable
850 * id. It scans list of devices to build up a free map, then chooses
851 * the first empty slot. The caller must hold the dev_base or rtnl lock
852 * while allocating the name and adding the device in order to avoid
853 * duplicates.
854 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
855 * Returns the number of the unit assigned or a negative errno code.
858 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
860 int i = 0;
861 const char *p;
862 const int max_netdevices = 8*PAGE_SIZE;
863 unsigned long *inuse;
864 struct net_device *d;
866 p = strnchr(name, IFNAMSIZ-1, '%');
867 if (p) {
869 * Verify the string as this thing may have come from
870 * the user. There must be either one "%d" and no other "%"
871 * characters.
873 if (p[1] != 'd' || strchr(p + 2, '%'))
874 return -EINVAL;
876 /* Use one page as a bit array of possible slots */
877 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
878 if (!inuse)
879 return -ENOMEM;
881 for_each_netdev(net, d) {
882 if (!sscanf(d->name, name, &i))
883 continue;
884 if (i < 0 || i >= max_netdevices)
885 continue;
887 /* avoid cases where sscanf is not exact inverse of printf */
888 snprintf(buf, IFNAMSIZ, name, i);
889 if (!strncmp(buf, d->name, IFNAMSIZ))
890 set_bit(i, inuse);
893 i = find_first_zero_bit(inuse, max_netdevices);
894 free_page((unsigned long) inuse);
897 if (buf != name)
898 snprintf(buf, IFNAMSIZ, name, i);
899 if (!__dev_get_by_name(net, buf))
900 return i;
902 /* It is possible to run out of possible slots
903 * when the name is long and there isn't enough space left
904 * for the digits, or if all bits are used.
906 return -ENFILE;
910 * dev_alloc_name - allocate a name for a device
911 * @dev: device
912 * @name: name format string
914 * Passed a format string - eg "lt%d" it will try and find a suitable
915 * id. It scans list of devices to build up a free map, then chooses
916 * the first empty slot. The caller must hold the dev_base or rtnl lock
917 * while allocating the name and adding the device in order to avoid
918 * duplicates.
919 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
920 * Returns the number of the unit assigned or a negative errno code.
923 int dev_alloc_name(struct net_device *dev, const char *name)
925 char buf[IFNAMSIZ];
926 struct net *net;
927 int ret;
929 BUG_ON(!dev_net(dev));
930 net = dev_net(dev);
931 ret = __dev_alloc_name(net, name, buf);
932 if (ret >= 0)
933 strlcpy(dev->name, buf, IFNAMSIZ);
934 return ret;
936 EXPORT_SYMBOL(dev_alloc_name);
938 static int dev_get_valid_name(struct net *net, const char *name, char *buf,
939 bool fmt)
941 if (!dev_valid_name(name))
942 return -EINVAL;
944 if (fmt && strchr(name, '%'))
945 return __dev_alloc_name(net, name, buf);
946 else if (__dev_get_by_name(net, name))
947 return -EEXIST;
948 else if (buf != name)
949 strlcpy(buf, name, IFNAMSIZ);
951 return 0;
955 * dev_change_name - change name of a device
956 * @dev: device
957 * @newname: name (or format string) must be at least IFNAMSIZ
959 * Change name of a device, can pass format strings "eth%d".
960 * for wildcarding.
962 int dev_change_name(struct net_device *dev, const char *newname)
964 char oldname[IFNAMSIZ];
965 int err = 0;
966 int ret;
967 struct net *net;
969 ASSERT_RTNL();
970 BUG_ON(!dev_net(dev));
972 net = dev_net(dev);
973 if (dev->flags & IFF_UP)
974 return -EBUSY;
976 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
977 return 0;
979 memcpy(oldname, dev->name, IFNAMSIZ);
981 err = dev_get_valid_name(net, newname, dev->name, 1);
982 if (err < 0)
983 return err;
985 rollback:
986 /* For now only devices in the initial network namespace
987 * are in sysfs.
989 if (net_eq(net, &init_net)) {
990 ret = device_rename(&dev->dev, dev->name);
991 if (ret) {
992 memcpy(dev->name, oldname, IFNAMSIZ);
993 return ret;
997 write_lock_bh(&dev_base_lock);
998 hlist_del(&dev->name_hlist);
999 write_unlock_bh(&dev_base_lock);
1001 synchronize_rcu();
1003 write_lock_bh(&dev_base_lock);
1004 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1005 write_unlock_bh(&dev_base_lock);
1007 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1008 ret = notifier_to_errno(ret);
1010 if (ret) {
1011 /* err >= 0 after dev_alloc_name() or stores the first errno */
1012 if (err >= 0) {
1013 err = ret;
1014 memcpy(dev->name, oldname, IFNAMSIZ);
1015 goto rollback;
1016 } else {
1017 printk(KERN_ERR
1018 "%s: name change rollback failed: %d.\n",
1019 dev->name, ret);
1023 return err;
1027 * dev_set_alias - change ifalias of a device
1028 * @dev: device
1029 * @alias: name up to IFALIASZ
1030 * @len: limit of bytes to copy from info
1032 * Set ifalias for a device,
1034 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1036 ASSERT_RTNL();
1038 if (len >= IFALIASZ)
1039 return -EINVAL;
1041 if (!len) {
1042 if (dev->ifalias) {
1043 kfree(dev->ifalias);
1044 dev->ifalias = NULL;
1046 return 0;
1049 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1050 if (!dev->ifalias)
1051 return -ENOMEM;
1053 strlcpy(dev->ifalias, alias, len+1);
1054 return len;
1059 * netdev_features_change - device changes features
1060 * @dev: device to cause notification
1062 * Called to indicate a device has changed features.
1064 void netdev_features_change(struct net_device *dev)
1066 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1068 EXPORT_SYMBOL(netdev_features_change);
1071 * netdev_state_change - device changes state
1072 * @dev: device to cause notification
1074 * Called to indicate a device has changed state. This function calls
1075 * the notifier chains for netdev_chain and sends a NEWLINK message
1076 * to the routing socket.
1078 void netdev_state_change(struct net_device *dev)
1080 if (dev->flags & IFF_UP) {
1081 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1082 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1085 EXPORT_SYMBOL(netdev_state_change);
1087 void netdev_bonding_change(struct net_device *dev, unsigned long event)
1089 call_netdevice_notifiers(event, dev);
1091 EXPORT_SYMBOL(netdev_bonding_change);
1094 * dev_load - load a network module
1095 * @net: the applicable net namespace
1096 * @name: name of interface
1098 * If a network interface is not present and the process has suitable
1099 * privileges this function loads the module. If module loading is not
1100 * available in this kernel then it becomes a nop.
1103 void dev_load(struct net *net, const char *name)
1105 struct net_device *dev;
1106 int no_module;
1108 rcu_read_lock();
1109 dev = dev_get_by_name_rcu(net, name);
1110 rcu_read_unlock();
1112 no_module = !dev;
1113 if (no_module && capable(CAP_NET_ADMIN))
1114 no_module = request_module("netdev-%s", name);
1115 if (no_module && capable(CAP_SYS_MODULE)) {
1116 if (!request_module("%s", name))
1117 pr_err("Loading kernel module for a network device "
1118 "with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s "
1119 "instead\n", name);
1122 EXPORT_SYMBOL(dev_load);
1125 * dev_open - prepare an interface for use.
1126 * @dev: device to open
1128 * Takes a device from down to up state. The device's private open
1129 * function is invoked and then the multicast lists are loaded. Finally
1130 * the device is moved into the up state and a %NETDEV_UP message is
1131 * sent to the netdev notifier chain.
1133 * Calling this function on an active interface is a nop. On a failure
1134 * a negative errno code is returned.
1136 int dev_open(struct net_device *dev)
1138 const struct net_device_ops *ops = dev->netdev_ops;
1139 int ret;
1141 ASSERT_RTNL();
1144 * Is it already up?
1147 if (dev->flags & IFF_UP)
1148 return 0;
1151 * Is it even present?
1153 if (!netif_device_present(dev))
1154 return -ENODEV;
1156 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1157 ret = notifier_to_errno(ret);
1158 if (ret)
1159 return ret;
1162 * Call device private open method
1164 set_bit(__LINK_STATE_START, &dev->state);
1166 if (ops->ndo_validate_addr)
1167 ret = ops->ndo_validate_addr(dev);
1169 if (!ret && ops->ndo_open)
1170 ret = ops->ndo_open(dev);
1173 * If it went open OK then:
1176 if (ret)
1177 clear_bit(__LINK_STATE_START, &dev->state);
1178 else {
1180 * Set the flags.
1182 dev->flags |= IFF_UP;
1185 * Enable NET_DMA
1187 net_dmaengine_get();
1190 * Initialize multicasting status
1192 dev_set_rx_mode(dev);
1195 * Wakeup transmit queue engine
1197 dev_activate(dev);
1200 * ... and announce new interface.
1202 call_netdevice_notifiers(NETDEV_UP, dev);
1205 return ret;
1207 EXPORT_SYMBOL(dev_open);
1210 * dev_close - shutdown an interface.
1211 * @dev: device to shutdown
1213 * This function moves an active device into down state. A
1214 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1215 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1216 * chain.
1218 int dev_close(struct net_device *dev)
1220 const struct net_device_ops *ops = dev->netdev_ops;
1221 ASSERT_RTNL();
1223 might_sleep();
1225 if (!(dev->flags & IFF_UP))
1226 return 0;
1229 * Tell people we are going down, so that they can
1230 * prepare to death, when device is still operating.
1232 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1234 clear_bit(__LINK_STATE_START, &dev->state);
1236 /* Synchronize to scheduled poll. We cannot touch poll list,
1237 * it can be even on different cpu. So just clear netif_running().
1239 * dev->stop() will invoke napi_disable() on all of it's
1240 * napi_struct instances on this device.
1242 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1244 dev_deactivate(dev);
1247 * Call the device specific close. This cannot fail.
1248 * Only if device is UP
1250 * We allow it to be called even after a DETACH hot-plug
1251 * event.
1253 if (ops->ndo_stop)
1254 ops->ndo_stop(dev);
1257 * Device is now down.
1260 dev->flags &= ~IFF_UP;
1263 * Tell people we are down
1265 call_netdevice_notifiers(NETDEV_DOWN, dev);
1268 * Shutdown NET_DMA
1270 net_dmaengine_put();
1272 return 0;
1274 EXPORT_SYMBOL(dev_close);
1278 * dev_disable_lro - disable Large Receive Offload on a device
1279 * @dev: device
1281 * Disable Large Receive Offload (LRO) on a net device. Must be
1282 * called under RTNL. This is needed if received packets may be
1283 * forwarded to another interface.
1285 void dev_disable_lro(struct net_device *dev)
1287 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1288 dev->ethtool_ops->set_flags) {
1289 u32 flags = dev->ethtool_ops->get_flags(dev);
1290 if (flags & ETH_FLAG_LRO) {
1291 flags &= ~ETH_FLAG_LRO;
1292 dev->ethtool_ops->set_flags(dev, flags);
1295 WARN_ON(dev->features & NETIF_F_LRO);
1297 EXPORT_SYMBOL(dev_disable_lro);
1300 static int dev_boot_phase = 1;
1303 * Device change register/unregister. These are not inline or static
1304 * as we export them to the world.
1308 * register_netdevice_notifier - register a network notifier block
1309 * @nb: notifier
1311 * Register a notifier to be called when network device events occur.
1312 * The notifier passed is linked into the kernel structures and must
1313 * not be reused until it has been unregistered. A negative errno code
1314 * is returned on a failure.
1316 * When registered all registration and up events are replayed
1317 * to the new notifier to allow device to have a race free
1318 * view of the network device list.
1321 int register_netdevice_notifier(struct notifier_block *nb)
1323 struct net_device *dev;
1324 struct net_device *last;
1325 struct net *net;
1326 int err;
1328 rtnl_lock();
1329 err = raw_notifier_chain_register(&netdev_chain, nb);
1330 if (err)
1331 goto unlock;
1332 if (dev_boot_phase)
1333 goto unlock;
1334 for_each_net(net) {
1335 for_each_netdev(net, dev) {
1336 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1337 err = notifier_to_errno(err);
1338 if (err)
1339 goto rollback;
1341 if (!(dev->flags & IFF_UP))
1342 continue;
1344 nb->notifier_call(nb, NETDEV_UP, dev);
1348 unlock:
1349 rtnl_unlock();
1350 return err;
1352 rollback:
1353 last = dev;
1354 for_each_net(net) {
1355 for_each_netdev(net, dev) {
1356 if (dev == last)
1357 break;
1359 if (dev->flags & IFF_UP) {
1360 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1361 nb->notifier_call(nb, NETDEV_DOWN, dev);
1363 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1364 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1368 raw_notifier_chain_unregister(&netdev_chain, nb);
1369 goto unlock;
1371 EXPORT_SYMBOL(register_netdevice_notifier);
1374 * unregister_netdevice_notifier - unregister a network notifier block
1375 * @nb: notifier
1377 * Unregister a notifier previously registered by
1378 * register_netdevice_notifier(). The notifier is unlinked into the
1379 * kernel structures and may then be reused. A negative errno code
1380 * is returned on a failure.
1383 int unregister_netdevice_notifier(struct notifier_block *nb)
1385 int err;
1387 rtnl_lock();
1388 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1389 rtnl_unlock();
1390 return err;
1392 EXPORT_SYMBOL(unregister_netdevice_notifier);
1395 * call_netdevice_notifiers - call all network notifier blocks
1396 * @val: value passed unmodified to notifier function
1397 * @dev: net_device pointer passed unmodified to notifier function
1399 * Call all network notifier blocks. Parameters and return value
1400 * are as for raw_notifier_call_chain().
1403 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1405 return raw_notifier_call_chain(&netdev_chain, val, dev);
1408 /* When > 0 there are consumers of rx skb time stamps */
1409 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1411 void net_enable_timestamp(void)
1413 atomic_inc(&netstamp_needed);
1415 EXPORT_SYMBOL(net_enable_timestamp);
1417 void net_disable_timestamp(void)
1419 atomic_dec(&netstamp_needed);
1421 EXPORT_SYMBOL(net_disable_timestamp);
1423 static inline void net_timestamp(struct sk_buff *skb)
1425 if (atomic_read(&netstamp_needed))
1426 __net_timestamp(skb);
1427 else
1428 skb->tstamp.tv64 = 0;
1432 * dev_forward_skb - loopback an skb to another netif
1434 * @dev: destination network device
1435 * @skb: buffer to forward
1437 * return values:
1438 * NET_RX_SUCCESS (no congestion)
1439 * NET_RX_DROP (packet was dropped, but freed)
1441 * dev_forward_skb can be used for injecting an skb from the
1442 * start_xmit function of one device into the receive queue
1443 * of another device.
1445 * The receiving device may be in another namespace, so
1446 * we have to clear all information in the skb that could
1447 * impact namespace isolation.
1449 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1451 skb_orphan(skb);
1453 if (!(dev->flags & IFF_UP) ||
1454 (skb->len > (dev->mtu + dev->hard_header_len))) {
1455 kfree_skb(skb);
1456 return NET_RX_DROP;
1459 skb_dst_drop(skb);
1460 skb->tstamp.tv64 = 0;
1461 skb->pkt_type = PACKET_HOST;
1462 skb->protocol = eth_type_trans(skb, dev);
1463 skb->mark = 0;
1464 secpath_reset(skb);
1465 nf_reset(skb);
1466 return netif_rx(skb);
1468 EXPORT_SYMBOL_GPL(dev_forward_skb);
1471 * Support routine. Sends outgoing frames to any network
1472 * taps currently in use.
1475 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1477 struct packet_type *ptype;
1479 #ifdef CONFIG_NET_CLS_ACT
1480 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1481 net_timestamp(skb);
1482 #else
1483 net_timestamp(skb);
1484 #endif
1486 rcu_read_lock();
1487 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1488 /* Never send packets back to the socket
1489 * they originated from - MvS (miquels@drinkel.ow.org)
1491 if ((ptype->dev == dev || !ptype->dev) &&
1492 (ptype->af_packet_priv == NULL ||
1493 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1494 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1495 if (!skb2)
1496 break;
1498 /* skb->nh should be correctly
1499 set by sender, so that the second statement is
1500 just protection against buggy protocols.
1502 skb_reset_mac_header(skb2);
1504 if (skb_network_header(skb2) < skb2->data ||
1505 skb2->network_header > skb2->tail) {
1506 if (net_ratelimit())
1507 printk(KERN_CRIT "protocol %04x is "
1508 "buggy, dev %s\n",
1509 skb2->protocol, dev->name);
1510 skb_reset_network_header(skb2);
1513 skb2->transport_header = skb2->network_header;
1514 skb2->pkt_type = PACKET_OUTGOING;
1515 ptype->func(skb2, skb->dev, ptype, skb->dev);
1518 rcu_read_unlock();
1522 static inline void __netif_reschedule(struct Qdisc *q)
1524 struct softnet_data *sd;
1525 unsigned long flags;
1527 local_irq_save(flags);
1528 sd = &__get_cpu_var(softnet_data);
1529 q->next_sched = sd->output_queue;
1530 sd->output_queue = q;
1531 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1532 local_irq_restore(flags);
1535 void __netif_schedule(struct Qdisc *q)
1537 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1538 __netif_reschedule(q);
1540 EXPORT_SYMBOL(__netif_schedule);
1542 void dev_kfree_skb_irq(struct sk_buff *skb)
1544 if (atomic_dec_and_test(&skb->users)) {
1545 struct softnet_data *sd;
1546 unsigned long flags;
1548 local_irq_save(flags);
1549 sd = &__get_cpu_var(softnet_data);
1550 skb->next = sd->completion_queue;
1551 sd->completion_queue = skb;
1552 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1553 local_irq_restore(flags);
1556 EXPORT_SYMBOL(dev_kfree_skb_irq);
1558 void dev_kfree_skb_any(struct sk_buff *skb)
1560 if (in_irq() || irqs_disabled())
1561 dev_kfree_skb_irq(skb);
1562 else
1563 dev_kfree_skb(skb);
1565 EXPORT_SYMBOL(dev_kfree_skb_any);
1569 * netif_device_detach - mark device as removed
1570 * @dev: network device
1572 * Mark device as removed from system and therefore no longer available.
1574 void netif_device_detach(struct net_device *dev)
1576 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1577 netif_running(dev)) {
1578 netif_tx_stop_all_queues(dev);
1581 EXPORT_SYMBOL(netif_device_detach);
1584 * netif_device_attach - mark device as attached
1585 * @dev: network device
1587 * Mark device as attached from system and restart if needed.
1589 void netif_device_attach(struct net_device *dev)
1591 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1592 netif_running(dev)) {
1593 netif_tx_wake_all_queues(dev);
1594 __netdev_watchdog_up(dev);
1597 EXPORT_SYMBOL(netif_device_attach);
1599 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1601 return ((features & NETIF_F_NO_CSUM) ||
1602 ((features & NETIF_F_V4_CSUM) &&
1603 protocol == htons(ETH_P_IP)) ||
1604 ((features & NETIF_F_V6_CSUM) &&
1605 protocol == htons(ETH_P_IPV6)) ||
1606 ((features & NETIF_F_FCOE_CRC) &&
1607 protocol == htons(ETH_P_FCOE)));
1610 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1612 if (can_checksum_protocol(dev->features, skb->protocol))
1613 return true;
1615 if (skb->protocol == htons(ETH_P_8021Q)) {
1616 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1617 if (can_checksum_protocol(dev->features & dev->vlan_features,
1618 veh->h_vlan_encapsulated_proto))
1619 return true;
1622 return false;
1626 * Invalidate hardware checksum when packet is to be mangled, and
1627 * complete checksum manually on outgoing path.
1629 int skb_checksum_help(struct sk_buff *skb)
1631 __wsum csum;
1632 int ret = 0, offset;
1634 if (skb->ip_summed == CHECKSUM_COMPLETE)
1635 goto out_set_summed;
1637 if (unlikely(skb_shinfo(skb)->gso_size)) {
1638 /* Let GSO fix up the checksum. */
1639 goto out_set_summed;
1642 offset = skb->csum_start - skb_headroom(skb);
1643 BUG_ON(offset >= skb_headlen(skb));
1644 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1646 offset += skb->csum_offset;
1647 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1649 if (skb_cloned(skb) &&
1650 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1651 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1652 if (ret)
1653 goto out;
1656 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1657 out_set_summed:
1658 skb->ip_summed = CHECKSUM_NONE;
1659 out:
1660 return ret;
1662 EXPORT_SYMBOL(skb_checksum_help);
1665 * skb_gso_segment - Perform segmentation on skb.
1666 * @skb: buffer to segment
1667 * @features: features for the output path (see dev->features)
1669 * This function segments the given skb and returns a list of segments.
1671 * It may return NULL if the skb requires no segmentation. This is
1672 * only possible when GSO is used for verifying header integrity.
1674 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1676 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1677 struct packet_type *ptype;
1678 __be16 type = skb->protocol;
1679 int err;
1681 skb_reset_mac_header(skb);
1682 skb->mac_len = skb->network_header - skb->mac_header;
1683 __skb_pull(skb, skb->mac_len);
1685 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1686 struct net_device *dev = skb->dev;
1687 struct ethtool_drvinfo info = {};
1689 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1690 dev->ethtool_ops->get_drvinfo(dev, &info);
1692 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1693 "ip_summed=%d",
1694 info.driver, dev ? dev->features : 0L,
1695 skb->sk ? skb->sk->sk_route_caps : 0L,
1696 skb->len, skb->data_len, skb->ip_summed);
1698 if (skb_header_cloned(skb) &&
1699 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1700 return ERR_PTR(err);
1703 rcu_read_lock();
1704 list_for_each_entry_rcu(ptype,
1705 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1706 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1707 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1708 err = ptype->gso_send_check(skb);
1709 segs = ERR_PTR(err);
1710 if (err || skb_gso_ok(skb, features))
1711 break;
1712 __skb_push(skb, (skb->data -
1713 skb_network_header(skb)));
1715 segs = ptype->gso_segment(skb, features);
1716 break;
1719 rcu_read_unlock();
1721 __skb_push(skb, skb->data - skb_mac_header(skb));
1723 return segs;
1725 EXPORT_SYMBOL(skb_gso_segment);
1727 /* Take action when hardware reception checksum errors are detected. */
1728 #ifdef CONFIG_BUG
1729 void netdev_rx_csum_fault(struct net_device *dev)
1731 if (net_ratelimit()) {
1732 printk(KERN_ERR "%s: hw csum failure.\n",
1733 dev ? dev->name : "<unknown>");
1734 dump_stack();
1737 EXPORT_SYMBOL(netdev_rx_csum_fault);
1738 #endif
1740 /* Actually, we should eliminate this check as soon as we know, that:
1741 * 1. IOMMU is present and allows to map all the memory.
1742 * 2. No high memory really exists on this machine.
1745 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1747 #ifdef CONFIG_HIGHMEM
1748 int i;
1750 if (dev->features & NETIF_F_HIGHDMA)
1751 return 0;
1753 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1754 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1755 return 1;
1757 #endif
1758 return 0;
1761 struct dev_gso_cb {
1762 void (*destructor)(struct sk_buff *skb);
1765 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1767 static void dev_gso_skb_destructor(struct sk_buff *skb)
1769 struct dev_gso_cb *cb;
1771 do {
1772 struct sk_buff *nskb = skb->next;
1774 skb->next = nskb->next;
1775 nskb->next = NULL;
1776 kfree_skb(nskb);
1777 } while (skb->next);
1779 cb = DEV_GSO_CB(skb);
1780 if (cb->destructor)
1781 cb->destructor(skb);
1785 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1786 * @skb: buffer to segment
1788 * This function segments the given skb and stores the list of segments
1789 * in skb->next.
1791 static int dev_gso_segment(struct sk_buff *skb)
1793 struct net_device *dev = skb->dev;
1794 struct sk_buff *segs;
1795 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1796 NETIF_F_SG : 0);
1798 segs = skb_gso_segment(skb, features);
1800 /* Verifying header integrity only. */
1801 if (!segs)
1802 return 0;
1804 if (IS_ERR(segs))
1805 return PTR_ERR(segs);
1807 skb->next = segs;
1808 DEV_GSO_CB(skb)->destructor = skb->destructor;
1809 skb->destructor = dev_gso_skb_destructor;
1811 return 0;
1814 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1815 struct netdev_queue *txq)
1817 const struct net_device_ops *ops = dev->netdev_ops;
1818 int rc = NETDEV_TX_OK;
1820 if (likely(!skb->next)) {
1821 if (!list_empty(&ptype_all))
1822 dev_queue_xmit_nit(skb, dev);
1824 if (netif_needs_gso(dev, skb)) {
1825 if (unlikely(dev_gso_segment(skb)))
1826 goto out_kfree_skb;
1827 if (skb->next)
1828 goto gso;
1832 * If device doesnt need skb->dst, release it right now while
1833 * its hot in this cpu cache
1835 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1836 skb_dst_drop(skb);
1838 rc = ops->ndo_start_xmit(skb, dev);
1839 if (rc == NETDEV_TX_OK)
1840 txq_trans_update(txq);
1842 * TODO: if skb_orphan() was called by
1843 * dev->hard_start_xmit() (for example, the unmodified
1844 * igb driver does that; bnx2 doesn't), then
1845 * skb_tx_software_timestamp() will be unable to send
1846 * back the time stamp.
1848 * How can this be prevented? Always create another
1849 * reference to the socket before calling
1850 * dev->hard_start_xmit()? Prevent that skb_orphan()
1851 * does anything in dev->hard_start_xmit() by clearing
1852 * the skb destructor before the call and restoring it
1853 * afterwards, then doing the skb_orphan() ourselves?
1855 return rc;
1858 gso:
1859 do {
1860 struct sk_buff *nskb = skb->next;
1862 skb->next = nskb->next;
1863 nskb->next = NULL;
1864 rc = ops->ndo_start_xmit(nskb, dev);
1865 if (unlikely(rc != NETDEV_TX_OK)) {
1866 if (rc & ~NETDEV_TX_MASK)
1867 goto out_kfree_gso_skb;
1868 nskb->next = skb->next;
1869 skb->next = nskb;
1870 return rc;
1872 txq_trans_update(txq);
1873 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1874 return NETDEV_TX_BUSY;
1875 } while (skb->next);
1877 out_kfree_gso_skb:
1878 if (likely(skb->next == NULL))
1879 skb->destructor = DEV_GSO_CB(skb)->destructor;
1880 out_kfree_skb:
1881 kfree_skb(skb);
1882 return rc;
1885 static u32 skb_tx_hashrnd;
1887 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1889 u32 hash;
1891 if (skb_rx_queue_recorded(skb)) {
1892 hash = skb_get_rx_queue(skb);
1893 while (unlikely(hash >= dev->real_num_tx_queues))
1894 hash -= dev->real_num_tx_queues;
1895 return hash;
1898 if (skb->sk && skb->sk->sk_hash)
1899 hash = skb->sk->sk_hash;
1900 else
1901 hash = skb->protocol;
1903 hash = jhash_1word(hash, skb_tx_hashrnd);
1905 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1907 EXPORT_SYMBOL(skb_tx_hash);
1909 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
1911 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
1912 if (net_ratelimit()) {
1913 WARN(1, "%s selects TX queue %d, but "
1914 "real number of TX queues is %d\n",
1915 dev->name, queue_index,
1916 dev->real_num_tx_queues);
1918 return 0;
1920 return queue_index;
1923 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1924 struct sk_buff *skb)
1926 int queue_index;
1927 struct sock *sk = skb->sk;
1929 queue_index = sk_tx_queue_get(sk);
1930 if (queue_index < 0) {
1931 const struct net_device_ops *ops = dev->netdev_ops;
1933 if (ops->ndo_select_queue) {
1934 queue_index = ops->ndo_select_queue(dev, skb);
1935 queue_index = dev_cap_txqueue(dev, queue_index);
1936 } else {
1937 queue_index = 0;
1938 if (dev->real_num_tx_queues > 1)
1939 queue_index = skb_tx_hash(dev, skb);
1941 if (sk && sk->sk_dst_cache)
1942 sk_tx_queue_set(sk, queue_index);
1946 skb_set_queue_mapping(skb, queue_index);
1947 return netdev_get_tx_queue(dev, queue_index);
1950 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
1951 struct net_device *dev,
1952 struct netdev_queue *txq)
1954 spinlock_t *root_lock = qdisc_lock(q);
1955 int rc;
1957 spin_lock(root_lock);
1958 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1959 kfree_skb(skb);
1960 rc = NET_XMIT_DROP;
1961 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
1962 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
1964 * This is a work-conserving queue; there are no old skbs
1965 * waiting to be sent out; and the qdisc is not running -
1966 * xmit the skb directly.
1968 __qdisc_update_bstats(q, skb->len);
1969 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
1970 __qdisc_run(q);
1971 else
1972 clear_bit(__QDISC_STATE_RUNNING, &q->state);
1974 rc = NET_XMIT_SUCCESS;
1975 } else {
1976 rc = qdisc_enqueue_root(skb, q);
1977 qdisc_run(q);
1979 spin_unlock(root_lock);
1981 return rc;
1985 * dev_queue_xmit - transmit a buffer
1986 * @skb: buffer to transmit
1988 * Queue a buffer for transmission to a network device. The caller must
1989 * have set the device and priority and built the buffer before calling
1990 * this function. The function can be called from an interrupt.
1992 * A negative errno code is returned on a failure. A success does not
1993 * guarantee the frame will be transmitted as it may be dropped due
1994 * to congestion or traffic shaping.
1996 * -----------------------------------------------------------------------------------
1997 * I notice this method can also return errors from the queue disciplines,
1998 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1999 * be positive.
2001 * Regardless of the return value, the skb is consumed, so it is currently
2002 * difficult to retry a send to this method. (You can bump the ref count
2003 * before sending to hold a reference for retry if you are careful.)
2005 * When calling this method, interrupts MUST be enabled. This is because
2006 * the BH enable code must have IRQs enabled so that it will not deadlock.
2007 * --BLG
2009 int dev_queue_xmit(struct sk_buff *skb)
2011 struct net_device *dev = skb->dev;
2012 struct netdev_queue *txq;
2013 struct Qdisc *q;
2014 int rc = -ENOMEM;
2016 /* GSO will handle the following emulations directly. */
2017 if (netif_needs_gso(dev, skb))
2018 goto gso;
2020 if (skb_has_frags(skb) &&
2021 !(dev->features & NETIF_F_FRAGLIST) &&
2022 __skb_linearize(skb))
2023 goto out_kfree_skb;
2025 /* Fragmented skb is linearized if device does not support SG,
2026 * or if at least one of fragments is in highmem and device
2027 * does not support DMA from it.
2029 if (skb_shinfo(skb)->nr_frags &&
2030 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
2031 __skb_linearize(skb))
2032 goto out_kfree_skb;
2034 /* If packet is not checksummed and device does not support
2035 * checksumming for this protocol, complete checksumming here.
2037 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2038 skb_set_transport_header(skb, skb->csum_start -
2039 skb_headroom(skb));
2040 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2041 goto out_kfree_skb;
2044 gso:
2045 /* Disable soft irqs for various locks below. Also
2046 * stops preemption for RCU.
2048 rcu_read_lock_bh();
2050 txq = dev_pick_tx(dev, skb);
2051 q = rcu_dereference(txq->qdisc);
2053 #ifdef CONFIG_NET_CLS_ACT
2054 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2055 #endif
2056 if (q->enqueue) {
2057 rc = __dev_xmit_skb(skb, q, dev, txq);
2058 goto out;
2061 /* The device has no queue. Common case for software devices:
2062 loopback, all the sorts of tunnels...
2064 Really, it is unlikely that netif_tx_lock protection is necessary
2065 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2066 counters.)
2067 However, it is possible, that they rely on protection
2068 made by us here.
2070 Check this and shot the lock. It is not prone from deadlocks.
2071 Either shot noqueue qdisc, it is even simpler 8)
2073 if (dev->flags & IFF_UP) {
2074 int cpu = smp_processor_id(); /* ok because BHs are off */
2076 if (txq->xmit_lock_owner != cpu) {
2078 HARD_TX_LOCK(dev, txq, cpu);
2080 if (!netif_tx_queue_stopped(txq)) {
2081 rc = dev_hard_start_xmit(skb, dev, txq);
2082 if (dev_xmit_complete(rc)) {
2083 HARD_TX_UNLOCK(dev, txq);
2084 goto out;
2087 HARD_TX_UNLOCK(dev, txq);
2088 if (net_ratelimit())
2089 printk(KERN_CRIT "Virtual device %s asks to "
2090 "queue packet!\n", dev->name);
2091 } else {
2092 /* Recursion is detected! It is possible,
2093 * unfortunately */
2094 if (net_ratelimit())
2095 printk(KERN_CRIT "Dead loop on virtual device "
2096 "%s, fix it urgently!\n", dev->name);
2100 rc = -ENETDOWN;
2101 rcu_read_unlock_bh();
2103 out_kfree_skb:
2104 kfree_skb(skb);
2105 return rc;
2106 out:
2107 rcu_read_unlock_bh();
2108 return rc;
2110 EXPORT_SYMBOL(dev_queue_xmit);
2113 /*=======================================================================
2114 Receiver routines
2115 =======================================================================*/
2117 int netdev_max_backlog __read_mostly = 1000;
2118 int netdev_budget __read_mostly = 300;
2119 int weight_p __read_mostly = 64; /* old backlog weight */
2121 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
2125 * netif_rx - post buffer to the network code
2126 * @skb: buffer to post
2128 * This function receives a packet from a device driver and queues it for
2129 * the upper (protocol) levels to process. It always succeeds. The buffer
2130 * may be dropped during processing for congestion control or by the
2131 * protocol layers.
2133 * return values:
2134 * NET_RX_SUCCESS (no congestion)
2135 * NET_RX_DROP (packet was dropped)
2139 int netif_rx(struct sk_buff *skb)
2141 struct softnet_data *queue;
2142 unsigned long flags;
2144 /* if netpoll wants it, pretend we never saw it */
2145 if (netpoll_rx(skb))
2146 return NET_RX_DROP;
2148 if (!skb->tstamp.tv64)
2149 net_timestamp(skb);
2152 * The code is rearranged so that the path is the most
2153 * short when CPU is congested, but is still operating.
2155 local_irq_save(flags);
2156 queue = &__get_cpu_var(softnet_data);
2158 __get_cpu_var(netdev_rx_stat).total++;
2159 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
2160 if (queue->input_pkt_queue.qlen) {
2161 enqueue:
2162 __skb_queue_tail(&queue->input_pkt_queue, skb);
2163 local_irq_restore(flags);
2164 return NET_RX_SUCCESS;
2167 napi_schedule(&queue->backlog);
2168 goto enqueue;
2171 __get_cpu_var(netdev_rx_stat).dropped++;
2172 local_irq_restore(flags);
2174 kfree_skb(skb);
2175 return NET_RX_DROP;
2177 EXPORT_SYMBOL(netif_rx);
2179 int netif_rx_ni(struct sk_buff *skb)
2181 int err;
2183 preempt_disable();
2184 err = netif_rx(skb);
2185 if (local_softirq_pending())
2186 do_softirq();
2187 preempt_enable();
2189 return err;
2191 EXPORT_SYMBOL(netif_rx_ni);
2193 static void net_tx_action(struct softirq_action *h)
2195 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2197 if (sd->completion_queue) {
2198 struct sk_buff *clist;
2200 local_irq_disable();
2201 clist = sd->completion_queue;
2202 sd->completion_queue = NULL;
2203 local_irq_enable();
2205 while (clist) {
2206 struct sk_buff *skb = clist;
2207 clist = clist->next;
2209 WARN_ON(atomic_read(&skb->users));
2210 __kfree_skb(skb);
2214 if (sd->output_queue) {
2215 struct Qdisc *head;
2217 local_irq_disable();
2218 head = sd->output_queue;
2219 sd->output_queue = NULL;
2220 local_irq_enable();
2222 while (head) {
2223 struct Qdisc *q = head;
2224 spinlock_t *root_lock;
2226 head = head->next_sched;
2228 root_lock = qdisc_lock(q);
2229 if (spin_trylock(root_lock)) {
2230 smp_mb__before_clear_bit();
2231 clear_bit(__QDISC_STATE_SCHED,
2232 &q->state);
2233 qdisc_run(q);
2234 spin_unlock(root_lock);
2235 } else {
2236 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2237 &q->state)) {
2238 __netif_reschedule(q);
2239 } else {
2240 smp_mb__before_clear_bit();
2241 clear_bit(__QDISC_STATE_SCHED,
2242 &q->state);
2249 static inline int deliver_skb(struct sk_buff *skb,
2250 struct packet_type *pt_prev,
2251 struct net_device *orig_dev)
2253 atomic_inc(&skb->users);
2254 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2257 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2259 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2260 /* This hook is defined here for ATM LANE */
2261 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2262 unsigned char *addr) __read_mostly;
2263 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2264 #endif
2267 * If bridge module is loaded call bridging hook.
2268 * returns NULL if packet was consumed.
2270 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2271 struct sk_buff *skb) __read_mostly;
2272 EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2274 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2275 struct packet_type **pt_prev, int *ret,
2276 struct net_device *orig_dev)
2278 struct net_bridge_port *port;
2280 if (skb->pkt_type == PACKET_LOOPBACK ||
2281 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2282 return skb;
2284 if (*pt_prev) {
2285 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2286 *pt_prev = NULL;
2289 return br_handle_frame_hook(port, skb);
2291 #else
2292 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2293 #endif
2295 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2296 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2297 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2299 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2300 struct packet_type **pt_prev,
2301 int *ret,
2302 struct net_device *orig_dev)
2304 if (skb->dev->macvlan_port == NULL)
2305 return skb;
2307 if (*pt_prev) {
2308 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2309 *pt_prev = NULL;
2311 return macvlan_handle_frame_hook(skb);
2313 #else
2314 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2315 #endif
2317 #ifdef CONFIG_NET_CLS_ACT
2318 /* TODO: Maybe we should just force sch_ingress to be compiled in
2319 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2320 * a compare and 2 stores extra right now if we dont have it on
2321 * but have CONFIG_NET_CLS_ACT
2322 * NOTE: This doesnt stop any functionality; if you dont have
2323 * the ingress scheduler, you just cant add policies on ingress.
2326 static int ing_filter(struct sk_buff *skb)
2328 struct net_device *dev = skb->dev;
2329 u32 ttl = G_TC_RTTL(skb->tc_verd);
2330 struct netdev_queue *rxq;
2331 int result = TC_ACT_OK;
2332 struct Qdisc *q;
2334 if (MAX_RED_LOOP < ttl++) {
2335 printk(KERN_WARNING
2336 "Redir loop detected Dropping packet (%d->%d)\n",
2337 skb->skb_iif, dev->ifindex);
2338 return TC_ACT_SHOT;
2341 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2342 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2344 rxq = &dev->rx_queue;
2346 q = rxq->qdisc;
2347 if (q != &noop_qdisc) {
2348 spin_lock(qdisc_lock(q));
2349 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2350 result = qdisc_enqueue_root(skb, q);
2351 spin_unlock(qdisc_lock(q));
2354 return result;
2357 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2358 struct packet_type **pt_prev,
2359 int *ret, struct net_device *orig_dev)
2361 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2362 goto out;
2364 if (*pt_prev) {
2365 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2366 *pt_prev = NULL;
2367 } else {
2368 /* Huh? Why does turning on AF_PACKET affect this? */
2369 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2372 switch (ing_filter(skb)) {
2373 case TC_ACT_SHOT:
2374 case TC_ACT_STOLEN:
2375 kfree_skb(skb);
2376 return NULL;
2379 out:
2380 skb->tc_verd = 0;
2381 return skb;
2383 #endif
2386 * netif_nit_deliver - deliver received packets to network taps
2387 * @skb: buffer
2389 * This function is used to deliver incoming packets to network
2390 * taps. It should be used when the normal netif_receive_skb path
2391 * is bypassed, for example because of VLAN acceleration.
2393 void netif_nit_deliver(struct sk_buff *skb)
2395 struct packet_type *ptype;
2397 if (list_empty(&ptype_all))
2398 return;
2400 skb_reset_network_header(skb);
2401 skb_reset_transport_header(skb);
2402 skb->mac_len = skb->network_header - skb->mac_header;
2404 rcu_read_lock();
2405 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2406 if (!ptype->dev || ptype->dev == skb->dev)
2407 deliver_skb(skb, ptype, skb->dev);
2409 rcu_read_unlock();
2413 * netif_receive_skb - process receive buffer from network
2414 * @skb: buffer to process
2416 * netif_receive_skb() is the main receive data processing function.
2417 * It always succeeds. The buffer may be dropped during processing
2418 * for congestion control or by the protocol layers.
2420 * This function may only be called from softirq context and interrupts
2421 * should be enabled.
2423 * Return values (usually ignored):
2424 * NET_RX_SUCCESS: no congestion
2425 * NET_RX_DROP: packet was dropped
2427 int netif_receive_skb(struct sk_buff *skb)
2429 struct packet_type *ptype, *pt_prev;
2430 struct net_device *orig_dev;
2431 struct net_device *master;
2432 struct net_device *null_or_orig;
2433 int ret = NET_RX_DROP;
2434 __be16 type;
2436 if (!skb->tstamp.tv64)
2437 net_timestamp(skb);
2439 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2440 return NET_RX_SUCCESS;
2442 /* if we've gotten here through NAPI, check netpoll */
2443 if (netpoll_receive_skb(skb))
2444 return NET_RX_DROP;
2446 if (!skb->skb_iif)
2447 skb->skb_iif = skb->dev->ifindex;
2449 null_or_orig = NULL;
2450 orig_dev = skb->dev;
2451 master = ACCESS_ONCE(orig_dev->master);
2452 if (master) {
2453 if (skb_bond_should_drop(skb, master))
2454 null_or_orig = orig_dev; /* deliver only exact match */
2455 else
2456 skb->dev = master;
2459 __get_cpu_var(netdev_rx_stat).total++;
2461 skb_reset_network_header(skb);
2462 skb_reset_transport_header(skb);
2463 skb->mac_len = skb->network_header - skb->mac_header;
2465 pt_prev = NULL;
2467 rcu_read_lock();
2469 #ifdef CONFIG_NET_CLS_ACT
2470 if (skb->tc_verd & TC_NCLS) {
2471 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2472 goto ncls;
2474 #endif
2476 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2477 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2478 ptype->dev == orig_dev) {
2479 if (pt_prev)
2480 ret = deliver_skb(skb, pt_prev, orig_dev);
2481 pt_prev = ptype;
2485 #ifdef CONFIG_NET_CLS_ACT
2486 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2487 if (!skb)
2488 goto out;
2489 ncls:
2490 #endif
2492 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2493 if (!skb)
2494 goto out;
2495 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2496 if (!skb)
2497 goto out;
2499 type = skb->protocol;
2500 list_for_each_entry_rcu(ptype,
2501 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2502 if (ptype->type == type &&
2503 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2504 ptype->dev == orig_dev)) {
2505 if (pt_prev)
2506 ret = deliver_skb(skb, pt_prev, orig_dev);
2507 pt_prev = ptype;
2511 if (pt_prev) {
2512 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2513 } else {
2514 kfree_skb(skb);
2515 /* Jamal, now you will not able to escape explaining
2516 * me how you were going to use this. :-)
2518 ret = NET_RX_DROP;
2521 out:
2522 rcu_read_unlock();
2523 return ret;
2525 EXPORT_SYMBOL(netif_receive_skb);
2527 /* Network device is going away, flush any packets still pending */
2528 static void flush_backlog(void *arg)
2530 struct net_device *dev = arg;
2531 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2532 struct sk_buff *skb, *tmp;
2534 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2535 if (skb->dev == dev) {
2536 __skb_unlink(skb, &queue->input_pkt_queue);
2537 kfree_skb(skb);
2541 static int napi_gro_complete(struct sk_buff *skb)
2543 struct packet_type *ptype;
2544 __be16 type = skb->protocol;
2545 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2546 int err = -ENOENT;
2548 if (NAPI_GRO_CB(skb)->count == 1) {
2549 skb_shinfo(skb)->gso_size = 0;
2550 goto out;
2553 rcu_read_lock();
2554 list_for_each_entry_rcu(ptype, head, list) {
2555 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2556 continue;
2558 err = ptype->gro_complete(skb);
2559 break;
2561 rcu_read_unlock();
2563 if (err) {
2564 WARN_ON(&ptype->list == head);
2565 kfree_skb(skb);
2566 return NET_RX_SUCCESS;
2569 out:
2570 return netif_receive_skb(skb);
2573 void napi_gro_flush(struct napi_struct *napi)
2575 struct sk_buff *skb, *next;
2577 for (skb = napi->gro_list; skb; skb = next) {
2578 next = skb->next;
2579 skb->next = NULL;
2580 napi_gro_complete(skb);
2583 napi->gro_count = 0;
2584 napi->gro_list = NULL;
2586 EXPORT_SYMBOL(napi_gro_flush);
2588 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2590 struct sk_buff **pp = NULL;
2591 struct packet_type *ptype;
2592 __be16 type = skb->protocol;
2593 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2594 int same_flow;
2595 int mac_len;
2596 enum gro_result ret;
2598 if (!(skb->dev->features & NETIF_F_GRO))
2599 goto normal;
2601 if (skb_is_gso(skb) || skb_has_frags(skb))
2602 goto normal;
2604 rcu_read_lock();
2605 list_for_each_entry_rcu(ptype, head, list) {
2606 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2607 continue;
2609 skb_set_network_header(skb, skb_gro_offset(skb));
2610 mac_len = skb->network_header - skb->mac_header;
2611 skb->mac_len = mac_len;
2612 NAPI_GRO_CB(skb)->same_flow = 0;
2613 NAPI_GRO_CB(skb)->flush = 0;
2614 NAPI_GRO_CB(skb)->free = 0;
2616 pp = ptype->gro_receive(&napi->gro_list, skb);
2617 break;
2619 rcu_read_unlock();
2621 if (&ptype->list == head)
2622 goto normal;
2624 same_flow = NAPI_GRO_CB(skb)->same_flow;
2625 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2627 if (pp) {
2628 struct sk_buff *nskb = *pp;
2630 *pp = nskb->next;
2631 nskb->next = NULL;
2632 napi_gro_complete(nskb);
2633 napi->gro_count--;
2636 if (same_flow)
2637 goto ok;
2639 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2640 goto normal;
2642 napi->gro_count++;
2643 NAPI_GRO_CB(skb)->count = 1;
2644 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2645 skb->next = napi->gro_list;
2646 napi->gro_list = skb;
2647 ret = GRO_HELD;
2649 pull:
2650 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2651 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2653 BUG_ON(skb->end - skb->tail < grow);
2655 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2657 skb->tail += grow;
2658 skb->data_len -= grow;
2660 skb_shinfo(skb)->frags[0].page_offset += grow;
2661 skb_shinfo(skb)->frags[0].size -= grow;
2663 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2664 put_page(skb_shinfo(skb)->frags[0].page);
2665 memmove(skb_shinfo(skb)->frags,
2666 skb_shinfo(skb)->frags + 1,
2667 --skb_shinfo(skb)->nr_frags);
2672 return ret;
2674 normal:
2675 ret = GRO_NORMAL;
2676 goto pull;
2678 EXPORT_SYMBOL(dev_gro_receive);
2680 static gro_result_t
2681 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2683 struct sk_buff *p;
2685 if (netpoll_rx_on(skb))
2686 return GRO_NORMAL;
2688 for (p = napi->gro_list; p; p = p->next) {
2689 NAPI_GRO_CB(p)->same_flow =
2690 (p->dev == skb->dev) &&
2691 !compare_ether_header(skb_mac_header(p),
2692 skb_gro_mac_header(skb));
2693 NAPI_GRO_CB(p)->flush = 0;
2696 return dev_gro_receive(napi, skb);
2699 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
2701 switch (ret) {
2702 case GRO_NORMAL:
2703 if (netif_receive_skb(skb))
2704 ret = GRO_DROP;
2705 break;
2707 case GRO_DROP:
2708 case GRO_MERGED_FREE:
2709 kfree_skb(skb);
2710 break;
2712 case GRO_HELD:
2713 case GRO_MERGED:
2714 break;
2717 return ret;
2719 EXPORT_SYMBOL(napi_skb_finish);
2721 void skb_gro_reset_offset(struct sk_buff *skb)
2723 NAPI_GRO_CB(skb)->data_offset = 0;
2724 NAPI_GRO_CB(skb)->frag0 = NULL;
2725 NAPI_GRO_CB(skb)->frag0_len = 0;
2727 if (skb->mac_header == skb->tail &&
2728 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
2729 NAPI_GRO_CB(skb)->frag0 =
2730 page_address(skb_shinfo(skb)->frags[0].page) +
2731 skb_shinfo(skb)->frags[0].page_offset;
2732 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
2735 EXPORT_SYMBOL(skb_gro_reset_offset);
2737 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2739 skb_gro_reset_offset(skb);
2741 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2743 EXPORT_SYMBOL(napi_gro_receive);
2745 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2747 __skb_pull(skb, skb_headlen(skb));
2748 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2749 skb->dev = napi->dev;
2751 napi->skb = skb;
2753 EXPORT_SYMBOL(napi_reuse_skb);
2755 struct sk_buff *napi_get_frags(struct napi_struct *napi)
2757 struct sk_buff *skb = napi->skb;
2759 if (!skb) {
2760 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
2761 if (skb)
2762 napi->skb = skb;
2764 return skb;
2766 EXPORT_SYMBOL(napi_get_frags);
2768 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
2769 gro_result_t ret)
2771 switch (ret) {
2772 case GRO_NORMAL:
2773 case GRO_HELD:
2774 skb->protocol = eth_type_trans(skb, skb->dev);
2776 if (ret == GRO_HELD)
2777 skb_gro_pull(skb, -ETH_HLEN);
2778 else if (netif_receive_skb(skb))
2779 ret = GRO_DROP;
2780 break;
2782 case GRO_DROP:
2783 case GRO_MERGED_FREE:
2784 napi_reuse_skb(napi, skb);
2785 break;
2787 case GRO_MERGED:
2788 break;
2791 return ret;
2793 EXPORT_SYMBOL(napi_frags_finish);
2795 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
2797 struct sk_buff *skb = napi->skb;
2798 struct ethhdr *eth;
2799 unsigned int hlen;
2800 unsigned int off;
2802 napi->skb = NULL;
2804 skb_reset_mac_header(skb);
2805 skb_gro_reset_offset(skb);
2807 off = skb_gro_offset(skb);
2808 hlen = off + sizeof(*eth);
2809 eth = skb_gro_header_fast(skb, off);
2810 if (skb_gro_header_hard(skb, hlen)) {
2811 eth = skb_gro_header_slow(skb, hlen, off);
2812 if (unlikely(!eth)) {
2813 napi_reuse_skb(napi, skb);
2814 skb = NULL;
2815 goto out;
2819 skb_gro_pull(skb, sizeof(*eth));
2822 * This works because the only protocols we care about don't require
2823 * special handling. We'll fix it up properly at the end.
2825 skb->protocol = eth->h_proto;
2827 out:
2828 return skb;
2830 EXPORT_SYMBOL(napi_frags_skb);
2832 gro_result_t napi_gro_frags(struct napi_struct *napi)
2834 struct sk_buff *skb = napi_frags_skb(napi);
2836 if (!skb)
2837 return GRO_DROP;
2839 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2841 EXPORT_SYMBOL(napi_gro_frags);
2843 static int process_backlog(struct napi_struct *napi, int quota)
2845 int work = 0;
2846 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2847 unsigned long start_time = jiffies;
2849 napi->weight = weight_p;
2850 do {
2851 struct sk_buff *skb;
2853 local_irq_disable();
2854 skb = __skb_dequeue(&queue->input_pkt_queue);
2855 if (!skb) {
2856 __napi_complete(napi);
2857 local_irq_enable();
2858 break;
2860 local_irq_enable();
2862 netif_receive_skb(skb);
2863 } while (++work < quota && jiffies == start_time);
2865 return work;
2869 * __napi_schedule - schedule for receive
2870 * @n: entry to schedule
2872 * The entry's receive function will be scheduled to run
2874 void __napi_schedule(struct napi_struct *n)
2876 unsigned long flags;
2878 local_irq_save(flags);
2879 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2880 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2881 local_irq_restore(flags);
2883 EXPORT_SYMBOL(__napi_schedule);
2885 void __napi_complete(struct napi_struct *n)
2887 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2888 BUG_ON(n->gro_list);
2890 list_del(&n->poll_list);
2891 smp_mb__before_clear_bit();
2892 clear_bit(NAPI_STATE_SCHED, &n->state);
2894 EXPORT_SYMBOL(__napi_complete);
2896 void napi_complete(struct napi_struct *n)
2898 unsigned long flags;
2901 * don't let napi dequeue from the cpu poll list
2902 * just in case its running on a different cpu
2904 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2905 return;
2907 napi_gro_flush(n);
2908 local_irq_save(flags);
2909 __napi_complete(n);
2910 local_irq_restore(flags);
2912 EXPORT_SYMBOL(napi_complete);
2914 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2915 int (*poll)(struct napi_struct *, int), int weight)
2917 INIT_LIST_HEAD(&napi->poll_list);
2918 napi->gro_count = 0;
2919 napi->gro_list = NULL;
2920 napi->skb = NULL;
2921 napi->poll = poll;
2922 napi->weight = weight;
2923 list_add(&napi->dev_list, &dev->napi_list);
2924 napi->dev = dev;
2925 #ifdef CONFIG_NETPOLL
2926 spin_lock_init(&napi->poll_lock);
2927 napi->poll_owner = -1;
2928 #endif
2929 set_bit(NAPI_STATE_SCHED, &napi->state);
2931 EXPORT_SYMBOL(netif_napi_add);
2933 void netif_napi_del(struct napi_struct *napi)
2935 struct sk_buff *skb, *next;
2937 list_del_init(&napi->dev_list);
2938 napi_free_frags(napi);
2940 for (skb = napi->gro_list; skb; skb = next) {
2941 next = skb->next;
2942 skb->next = NULL;
2943 kfree_skb(skb);
2946 napi->gro_list = NULL;
2947 napi->gro_count = 0;
2949 EXPORT_SYMBOL(netif_napi_del);
2952 static void net_rx_action(struct softirq_action *h)
2954 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2955 unsigned long time_limit = jiffies + 2;
2956 int budget = netdev_budget;
2957 void *have;
2959 local_irq_disable();
2961 while (!list_empty(list)) {
2962 struct napi_struct *n;
2963 int work, weight;
2965 /* If softirq window is exhuasted then punt.
2966 * Allow this to run for 2 jiffies since which will allow
2967 * an average latency of 1.5/HZ.
2969 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2970 goto softnet_break;
2972 local_irq_enable();
2974 /* Even though interrupts have been re-enabled, this
2975 * access is safe because interrupts can only add new
2976 * entries to the tail of this list, and only ->poll()
2977 * calls can remove this head entry from the list.
2979 n = list_entry(list->next, struct napi_struct, poll_list);
2981 have = netpoll_poll_lock(n);
2983 weight = n->weight;
2985 /* This NAPI_STATE_SCHED test is for avoiding a race
2986 * with netpoll's poll_napi(). Only the entity which
2987 * obtains the lock and sees NAPI_STATE_SCHED set will
2988 * actually make the ->poll() call. Therefore we avoid
2989 * accidently calling ->poll() when NAPI is not scheduled.
2991 work = 0;
2992 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
2993 work = n->poll(n, weight);
2994 trace_napi_poll(n);
2997 WARN_ON_ONCE(work > weight);
2999 budget -= work;
3001 local_irq_disable();
3003 /* Drivers must not modify the NAPI state if they
3004 * consume the entire weight. In such cases this code
3005 * still "owns" the NAPI instance and therefore can
3006 * move the instance around on the list at-will.
3008 if (unlikely(work == weight)) {
3009 if (unlikely(napi_disable_pending(n))) {
3010 local_irq_enable();
3011 napi_complete(n);
3012 local_irq_disable();
3013 } else
3014 list_move_tail(&n->poll_list, list);
3017 netpoll_poll_unlock(have);
3019 out:
3020 local_irq_enable();
3022 #ifdef CONFIG_NET_DMA
3024 * There may not be any more sk_buffs coming right now, so push
3025 * any pending DMA copies to hardware
3027 dma_issue_pending_all();
3028 #endif
3030 return;
3032 softnet_break:
3033 __get_cpu_var(netdev_rx_stat).time_squeeze++;
3034 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3035 goto out;
3038 static gifconf_func_t *gifconf_list[NPROTO];
3041 * register_gifconf - register a SIOCGIF handler
3042 * @family: Address family
3043 * @gifconf: Function handler
3045 * Register protocol dependent address dumping routines. The handler
3046 * that is passed must not be freed or reused until it has been replaced
3047 * by another handler.
3049 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3051 if (family >= NPROTO)
3052 return -EINVAL;
3053 gifconf_list[family] = gifconf;
3054 return 0;
3056 EXPORT_SYMBOL(register_gifconf);
3060 * Map an interface index to its name (SIOCGIFNAME)
3064 * We need this ioctl for efficient implementation of the
3065 * if_indextoname() function required by the IPv6 API. Without
3066 * it, we would have to search all the interfaces to find a
3067 * match. --pb
3070 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3072 struct net_device *dev;
3073 struct ifreq ifr;
3076 * Fetch the caller's info block.
3079 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3080 return -EFAULT;
3082 rcu_read_lock();
3083 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3084 if (!dev) {
3085 rcu_read_unlock();
3086 return -ENODEV;
3089 strcpy(ifr.ifr_name, dev->name);
3090 rcu_read_unlock();
3092 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3093 return -EFAULT;
3094 return 0;
3098 * Perform a SIOCGIFCONF call. This structure will change
3099 * size eventually, and there is nothing I can do about it.
3100 * Thus we will need a 'compatibility mode'.
3103 static int dev_ifconf(struct net *net, char __user *arg)
3105 struct ifconf ifc;
3106 struct net_device *dev;
3107 char __user *pos;
3108 int len;
3109 int total;
3110 int i;
3113 * Fetch the caller's info block.
3116 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3117 return -EFAULT;
3119 pos = ifc.ifc_buf;
3120 len = ifc.ifc_len;
3123 * Loop over the interfaces, and write an info block for each.
3126 total = 0;
3127 for_each_netdev(net, dev) {
3128 for (i = 0; i < NPROTO; i++) {
3129 if (gifconf_list[i]) {
3130 int done;
3131 if (!pos)
3132 done = gifconf_list[i](dev, NULL, 0);
3133 else
3134 done = gifconf_list[i](dev, pos + total,
3135 len - total);
3136 if (done < 0)
3137 return -EFAULT;
3138 total += done;
3144 * All done. Write the updated control block back to the caller.
3146 ifc.ifc_len = total;
3149 * Both BSD and Solaris return 0 here, so we do too.
3151 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3154 #ifdef CONFIG_PROC_FS
3156 * This is invoked by the /proc filesystem handler to display a device
3157 * in detail.
3159 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3160 __acquires(RCU)
3162 struct net *net = seq_file_net(seq);
3163 loff_t off;
3164 struct net_device *dev;
3166 rcu_read_lock();
3167 if (!*pos)
3168 return SEQ_START_TOKEN;
3170 off = 1;
3171 for_each_netdev_rcu(net, dev)
3172 if (off++ == *pos)
3173 return dev;
3175 return NULL;
3178 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3180 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3181 first_net_device(seq_file_net(seq)) :
3182 next_net_device((struct net_device *)v);
3184 ++*pos;
3185 return rcu_dereference(dev);
3188 void dev_seq_stop(struct seq_file *seq, void *v)
3189 __releases(RCU)
3191 rcu_read_unlock();
3194 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3196 const struct net_device_stats *stats = dev_get_stats(dev);
3198 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3199 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3200 dev->name, stats->rx_bytes, stats->rx_packets,
3201 stats->rx_errors,
3202 stats->rx_dropped + stats->rx_missed_errors,
3203 stats->rx_fifo_errors,
3204 stats->rx_length_errors + stats->rx_over_errors +
3205 stats->rx_crc_errors + stats->rx_frame_errors,
3206 stats->rx_compressed, stats->multicast,
3207 stats->tx_bytes, stats->tx_packets,
3208 stats->tx_errors, stats->tx_dropped,
3209 stats->tx_fifo_errors, stats->collisions,
3210 stats->tx_carrier_errors +
3211 stats->tx_aborted_errors +
3212 stats->tx_window_errors +
3213 stats->tx_heartbeat_errors,
3214 stats->tx_compressed);
3218 * Called from the PROCfs module. This now uses the new arbitrary sized
3219 * /proc/net interface to create /proc/net/dev
3221 static int dev_seq_show(struct seq_file *seq, void *v)
3223 if (v == SEQ_START_TOKEN)
3224 seq_puts(seq, "Inter-| Receive "
3225 " | Transmit\n"
3226 " face |bytes packets errs drop fifo frame "
3227 "compressed multicast|bytes packets errs "
3228 "drop fifo colls carrier compressed\n");
3229 else
3230 dev_seq_printf_stats(seq, v);
3231 return 0;
3234 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3236 struct netif_rx_stats *rc = NULL;
3238 while (*pos < nr_cpu_ids)
3239 if (cpu_online(*pos)) {
3240 rc = &per_cpu(netdev_rx_stat, *pos);
3241 break;
3242 } else
3243 ++*pos;
3244 return rc;
3247 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3249 return softnet_get_online(pos);
3252 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3254 ++*pos;
3255 return softnet_get_online(pos);
3258 static void softnet_seq_stop(struct seq_file *seq, void *v)
3262 static int softnet_seq_show(struct seq_file *seq, void *v)
3264 struct netif_rx_stats *s = v;
3266 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3267 s->total, s->dropped, s->time_squeeze, 0,
3268 0, 0, 0, 0, /* was fastroute */
3269 s->cpu_collision);
3270 return 0;
3273 static const struct seq_operations dev_seq_ops = {
3274 .start = dev_seq_start,
3275 .next = dev_seq_next,
3276 .stop = dev_seq_stop,
3277 .show = dev_seq_show,
3280 static int dev_seq_open(struct inode *inode, struct file *file)
3282 return seq_open_net(inode, file, &dev_seq_ops,
3283 sizeof(struct seq_net_private));
3286 static const struct file_operations dev_seq_fops = {
3287 .owner = THIS_MODULE,
3288 .open = dev_seq_open,
3289 .read = seq_read,
3290 .llseek = seq_lseek,
3291 .release = seq_release_net,
3294 static const struct seq_operations softnet_seq_ops = {
3295 .start = softnet_seq_start,
3296 .next = softnet_seq_next,
3297 .stop = softnet_seq_stop,
3298 .show = softnet_seq_show,
3301 static int softnet_seq_open(struct inode *inode, struct file *file)
3303 return seq_open(file, &softnet_seq_ops);
3306 static const struct file_operations softnet_seq_fops = {
3307 .owner = THIS_MODULE,
3308 .open = softnet_seq_open,
3309 .read = seq_read,
3310 .llseek = seq_lseek,
3311 .release = seq_release,
3314 static void *ptype_get_idx(loff_t pos)
3316 struct packet_type *pt = NULL;
3317 loff_t i = 0;
3318 int t;
3320 list_for_each_entry_rcu(pt, &ptype_all, list) {
3321 if (i == pos)
3322 return pt;
3323 ++i;
3326 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3327 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3328 if (i == pos)
3329 return pt;
3330 ++i;
3333 return NULL;
3336 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3337 __acquires(RCU)
3339 rcu_read_lock();
3340 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3343 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3345 struct packet_type *pt;
3346 struct list_head *nxt;
3347 int hash;
3349 ++*pos;
3350 if (v == SEQ_START_TOKEN)
3351 return ptype_get_idx(0);
3353 pt = v;
3354 nxt = pt->list.next;
3355 if (pt->type == htons(ETH_P_ALL)) {
3356 if (nxt != &ptype_all)
3357 goto found;
3358 hash = 0;
3359 nxt = ptype_base[0].next;
3360 } else
3361 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3363 while (nxt == &ptype_base[hash]) {
3364 if (++hash >= PTYPE_HASH_SIZE)
3365 return NULL;
3366 nxt = ptype_base[hash].next;
3368 found:
3369 return list_entry(nxt, struct packet_type, list);
3372 static void ptype_seq_stop(struct seq_file *seq, void *v)
3373 __releases(RCU)
3375 rcu_read_unlock();
3378 static int ptype_seq_show(struct seq_file *seq, void *v)
3380 struct packet_type *pt = v;
3382 if (v == SEQ_START_TOKEN)
3383 seq_puts(seq, "Type Device Function\n");
3384 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3385 if (pt->type == htons(ETH_P_ALL))
3386 seq_puts(seq, "ALL ");
3387 else
3388 seq_printf(seq, "%04x", ntohs(pt->type));
3390 seq_printf(seq, " %-8s %pF\n",
3391 pt->dev ? pt->dev->name : "", pt->func);
3394 return 0;
3397 static const struct seq_operations ptype_seq_ops = {
3398 .start = ptype_seq_start,
3399 .next = ptype_seq_next,
3400 .stop = ptype_seq_stop,
3401 .show = ptype_seq_show,
3404 static int ptype_seq_open(struct inode *inode, struct file *file)
3406 return seq_open_net(inode, file, &ptype_seq_ops,
3407 sizeof(struct seq_net_private));
3410 static const struct file_operations ptype_seq_fops = {
3411 .owner = THIS_MODULE,
3412 .open = ptype_seq_open,
3413 .read = seq_read,
3414 .llseek = seq_lseek,
3415 .release = seq_release_net,
3419 static int __net_init dev_proc_net_init(struct net *net)
3421 int rc = -ENOMEM;
3423 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3424 goto out;
3425 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3426 goto out_dev;
3427 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3428 goto out_softnet;
3430 if (wext_proc_init(net))
3431 goto out_ptype;
3432 rc = 0;
3433 out:
3434 return rc;
3435 out_ptype:
3436 proc_net_remove(net, "ptype");
3437 out_softnet:
3438 proc_net_remove(net, "softnet_stat");
3439 out_dev:
3440 proc_net_remove(net, "dev");
3441 goto out;
3444 static void __net_exit dev_proc_net_exit(struct net *net)
3446 wext_proc_exit(net);
3448 proc_net_remove(net, "ptype");
3449 proc_net_remove(net, "softnet_stat");
3450 proc_net_remove(net, "dev");
3453 static struct pernet_operations __net_initdata dev_proc_ops = {
3454 .init = dev_proc_net_init,
3455 .exit = dev_proc_net_exit,
3458 static int __init dev_proc_init(void)
3460 return register_pernet_subsys(&dev_proc_ops);
3462 #else
3463 #define dev_proc_init() 0
3464 #endif /* CONFIG_PROC_FS */
3468 * netdev_set_master - set up master/slave pair
3469 * @slave: slave device
3470 * @master: new master device
3472 * Changes the master device of the slave. Pass %NULL to break the
3473 * bonding. The caller must hold the RTNL semaphore. On a failure
3474 * a negative errno code is returned. On success the reference counts
3475 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3476 * function returns zero.
3478 int netdev_set_master(struct net_device *slave, struct net_device *master)
3480 struct net_device *old = slave->master;
3482 ASSERT_RTNL();
3484 if (master) {
3485 if (old)
3486 return -EBUSY;
3487 dev_hold(master);
3490 slave->master = master;
3492 synchronize_net();
3494 if (old)
3495 dev_put(old);
3497 if (master)
3498 slave->flags |= IFF_SLAVE;
3499 else
3500 slave->flags &= ~IFF_SLAVE;
3502 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3503 return 0;
3505 EXPORT_SYMBOL(netdev_set_master);
3507 static void dev_change_rx_flags(struct net_device *dev, int flags)
3509 const struct net_device_ops *ops = dev->netdev_ops;
3511 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3512 ops->ndo_change_rx_flags(dev, flags);
3515 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3517 unsigned short old_flags = dev->flags;
3518 uid_t uid;
3519 gid_t gid;
3521 ASSERT_RTNL();
3523 dev->flags |= IFF_PROMISC;
3524 dev->promiscuity += inc;
3525 if (dev->promiscuity == 0) {
3527 * Avoid overflow.
3528 * If inc causes overflow, untouch promisc and return error.
3530 if (inc < 0)
3531 dev->flags &= ~IFF_PROMISC;
3532 else {
3533 dev->promiscuity -= inc;
3534 printk(KERN_WARNING "%s: promiscuity touches roof, "
3535 "set promiscuity failed, promiscuity feature "
3536 "of device might be broken.\n", dev->name);
3537 return -EOVERFLOW;
3540 if (dev->flags != old_flags) {
3541 printk(KERN_INFO "device %s %s promiscuous mode\n",
3542 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3543 "left");
3544 if (audit_enabled) {
3545 current_uid_gid(&uid, &gid);
3546 audit_log(current->audit_context, GFP_ATOMIC,
3547 AUDIT_ANOM_PROMISCUOUS,
3548 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3549 dev->name, (dev->flags & IFF_PROMISC),
3550 (old_flags & IFF_PROMISC),
3551 audit_get_loginuid(current),
3552 uid, gid,
3553 audit_get_sessionid(current));
3556 dev_change_rx_flags(dev, IFF_PROMISC);
3558 return 0;
3562 * dev_set_promiscuity - update promiscuity count on a device
3563 * @dev: device
3564 * @inc: modifier
3566 * Add or remove promiscuity from a device. While the count in the device
3567 * remains above zero the interface remains promiscuous. Once it hits zero
3568 * the device reverts back to normal filtering operation. A negative inc
3569 * value is used to drop promiscuity on the device.
3570 * Return 0 if successful or a negative errno code on error.
3572 int dev_set_promiscuity(struct net_device *dev, int inc)
3574 unsigned short old_flags = dev->flags;
3575 int err;
3577 err = __dev_set_promiscuity(dev, inc);
3578 if (err < 0)
3579 return err;
3580 if (dev->flags != old_flags)
3581 dev_set_rx_mode(dev);
3582 return err;
3584 EXPORT_SYMBOL(dev_set_promiscuity);
3587 * dev_set_allmulti - update allmulti count on a device
3588 * @dev: device
3589 * @inc: modifier
3591 * Add or remove reception of all multicast frames to a device. While the
3592 * count in the device remains above zero the interface remains listening
3593 * to all interfaces. Once it hits zero the device reverts back to normal
3594 * filtering operation. A negative @inc value is used to drop the counter
3595 * when releasing a resource needing all multicasts.
3596 * Return 0 if successful or a negative errno code on error.
3599 int dev_set_allmulti(struct net_device *dev, int inc)
3601 unsigned short old_flags = dev->flags;
3603 ASSERT_RTNL();
3605 dev->flags |= IFF_ALLMULTI;
3606 dev->allmulti += inc;
3607 if (dev->allmulti == 0) {
3609 * Avoid overflow.
3610 * If inc causes overflow, untouch allmulti and return error.
3612 if (inc < 0)
3613 dev->flags &= ~IFF_ALLMULTI;
3614 else {
3615 dev->allmulti -= inc;
3616 printk(KERN_WARNING "%s: allmulti touches roof, "
3617 "set allmulti failed, allmulti feature of "
3618 "device might be broken.\n", dev->name);
3619 return -EOVERFLOW;
3622 if (dev->flags ^ old_flags) {
3623 dev_change_rx_flags(dev, IFF_ALLMULTI);
3624 dev_set_rx_mode(dev);
3626 return 0;
3628 EXPORT_SYMBOL(dev_set_allmulti);
3631 * Upload unicast and multicast address lists to device and
3632 * configure RX filtering. When the device doesn't support unicast
3633 * filtering it is put in promiscuous mode while unicast addresses
3634 * are present.
3636 void __dev_set_rx_mode(struct net_device *dev)
3638 const struct net_device_ops *ops = dev->netdev_ops;
3640 /* dev_open will call this function so the list will stay sane. */
3641 if (!(dev->flags&IFF_UP))
3642 return;
3644 if (!netif_device_present(dev))
3645 return;
3647 if (ops->ndo_set_rx_mode)
3648 ops->ndo_set_rx_mode(dev);
3649 else {
3650 /* Unicast addresses changes may only happen under the rtnl,
3651 * therefore calling __dev_set_promiscuity here is safe.
3653 if (dev->uc.count > 0 && !dev->uc_promisc) {
3654 __dev_set_promiscuity(dev, 1);
3655 dev->uc_promisc = 1;
3656 } else if (dev->uc.count == 0 && dev->uc_promisc) {
3657 __dev_set_promiscuity(dev, -1);
3658 dev->uc_promisc = 0;
3661 if (ops->ndo_set_multicast_list)
3662 ops->ndo_set_multicast_list(dev);
3666 void dev_set_rx_mode(struct net_device *dev)
3668 netif_addr_lock_bh(dev);
3669 __dev_set_rx_mode(dev);
3670 netif_addr_unlock_bh(dev);
3673 /* hw addresses list handling functions */
3675 static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr,
3676 int addr_len, unsigned char addr_type)
3678 struct netdev_hw_addr *ha;
3679 int alloc_size;
3681 if (addr_len > MAX_ADDR_LEN)
3682 return -EINVAL;
3684 list_for_each_entry(ha, &list->list, list) {
3685 if (!memcmp(ha->addr, addr, addr_len) &&
3686 ha->type == addr_type) {
3687 ha->refcount++;
3688 return 0;
3693 alloc_size = sizeof(*ha);
3694 if (alloc_size < L1_CACHE_BYTES)
3695 alloc_size = L1_CACHE_BYTES;
3696 ha = kmalloc(alloc_size, GFP_ATOMIC);
3697 if (!ha)
3698 return -ENOMEM;
3699 memcpy(ha->addr, addr, addr_len);
3700 ha->type = addr_type;
3701 ha->refcount = 1;
3702 ha->synced = false;
3703 list_add_tail_rcu(&ha->list, &list->list);
3704 list->count++;
3705 return 0;
3708 static void ha_rcu_free(struct rcu_head *head)
3710 struct netdev_hw_addr *ha;
3712 ha = container_of(head, struct netdev_hw_addr, rcu_head);
3713 kfree(ha);
3716 static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr,
3717 int addr_len, unsigned char addr_type)
3719 struct netdev_hw_addr *ha;
3721 list_for_each_entry(ha, &list->list, list) {
3722 if (!memcmp(ha->addr, addr, addr_len) &&
3723 (ha->type == addr_type || !addr_type)) {
3724 if (--ha->refcount)
3725 return 0;
3726 list_del_rcu(&ha->list);
3727 call_rcu(&ha->rcu_head, ha_rcu_free);
3728 list->count--;
3729 return 0;
3732 return -ENOENT;
3735 static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
3736 struct netdev_hw_addr_list *from_list,
3737 int addr_len,
3738 unsigned char addr_type)
3740 int err;
3741 struct netdev_hw_addr *ha, *ha2;
3742 unsigned char type;
3744 list_for_each_entry(ha, &from_list->list, list) {
3745 type = addr_type ? addr_type : ha->type;
3746 err = __hw_addr_add(to_list, ha->addr, addr_len, type);
3747 if (err)
3748 goto unroll;
3750 return 0;
3752 unroll:
3753 list_for_each_entry(ha2, &from_list->list, list) {
3754 if (ha2 == ha)
3755 break;
3756 type = addr_type ? addr_type : ha2->type;
3757 __hw_addr_del(to_list, ha2->addr, addr_len, type);
3759 return err;
3762 static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
3763 struct netdev_hw_addr_list *from_list,
3764 int addr_len,
3765 unsigned char addr_type)
3767 struct netdev_hw_addr *ha;
3768 unsigned char type;
3770 list_for_each_entry(ha, &from_list->list, list) {
3771 type = addr_type ? addr_type : ha->type;
3772 __hw_addr_del(to_list, ha->addr, addr_len, addr_type);
3776 static int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3777 struct netdev_hw_addr_list *from_list,
3778 int addr_len)
3780 int err = 0;
3781 struct netdev_hw_addr *ha, *tmp;
3783 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3784 if (!ha->synced) {
3785 err = __hw_addr_add(to_list, ha->addr,
3786 addr_len, ha->type);
3787 if (err)
3788 break;
3789 ha->synced = true;
3790 ha->refcount++;
3791 } else if (ha->refcount == 1) {
3792 __hw_addr_del(to_list, ha->addr, addr_len, ha->type);
3793 __hw_addr_del(from_list, ha->addr, addr_len, ha->type);
3796 return err;
3799 static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3800 struct netdev_hw_addr_list *from_list,
3801 int addr_len)
3803 struct netdev_hw_addr *ha, *tmp;
3805 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3806 if (ha->synced) {
3807 __hw_addr_del(to_list, ha->addr,
3808 addr_len, ha->type);
3809 ha->synced = false;
3810 __hw_addr_del(from_list, ha->addr,
3811 addr_len, ha->type);
3816 static void __hw_addr_flush(struct netdev_hw_addr_list *list)
3818 struct netdev_hw_addr *ha, *tmp;
3820 list_for_each_entry_safe(ha, tmp, &list->list, list) {
3821 list_del_rcu(&ha->list);
3822 call_rcu(&ha->rcu_head, ha_rcu_free);
3824 list->count = 0;
3827 static void __hw_addr_init(struct netdev_hw_addr_list *list)
3829 INIT_LIST_HEAD(&list->list);
3830 list->count = 0;
3833 /* Device addresses handling functions */
3835 static void dev_addr_flush(struct net_device *dev)
3837 /* rtnl_mutex must be held here */
3839 __hw_addr_flush(&dev->dev_addrs);
3840 dev->dev_addr = NULL;
3843 static int dev_addr_init(struct net_device *dev)
3845 unsigned char addr[MAX_ADDR_LEN];
3846 struct netdev_hw_addr *ha;
3847 int err;
3849 /* rtnl_mutex must be held here */
3851 __hw_addr_init(&dev->dev_addrs);
3852 memset(addr, 0, sizeof(addr));
3853 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr),
3854 NETDEV_HW_ADDR_T_LAN);
3855 if (!err) {
3857 * Get the first (previously created) address from the list
3858 * and set dev_addr pointer to this location.
3860 ha = list_first_entry(&dev->dev_addrs.list,
3861 struct netdev_hw_addr, list);
3862 dev->dev_addr = ha->addr;
3864 return err;
3868 * dev_addr_add - Add a device address
3869 * @dev: device
3870 * @addr: address to add
3871 * @addr_type: address type
3873 * Add a device address to the device or increase the reference count if
3874 * it already exists.
3876 * The caller must hold the rtnl_mutex.
3878 int dev_addr_add(struct net_device *dev, unsigned char *addr,
3879 unsigned char addr_type)
3881 int err;
3883 ASSERT_RTNL();
3885 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type);
3886 if (!err)
3887 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3888 return err;
3890 EXPORT_SYMBOL(dev_addr_add);
3893 * dev_addr_del - Release a device address.
3894 * @dev: device
3895 * @addr: address to delete
3896 * @addr_type: address type
3898 * Release reference to a device address and remove it from the device
3899 * if the reference count drops to zero.
3901 * The caller must hold the rtnl_mutex.
3903 int dev_addr_del(struct net_device *dev, unsigned char *addr,
3904 unsigned char addr_type)
3906 int err;
3907 struct netdev_hw_addr *ha;
3909 ASSERT_RTNL();
3912 * We can not remove the first address from the list because
3913 * dev->dev_addr points to that.
3915 ha = list_first_entry(&dev->dev_addrs.list,
3916 struct netdev_hw_addr, list);
3917 if (ha->addr == dev->dev_addr && ha->refcount == 1)
3918 return -ENOENT;
3920 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len,
3921 addr_type);
3922 if (!err)
3923 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3924 return err;
3926 EXPORT_SYMBOL(dev_addr_del);
3929 * dev_addr_add_multiple - Add device addresses from another device
3930 * @to_dev: device to which addresses will be added
3931 * @from_dev: device from which addresses will be added
3932 * @addr_type: address type - 0 means type will be used from from_dev
3934 * Add device addresses of the one device to another.
3936 * The caller must hold the rtnl_mutex.
3938 int dev_addr_add_multiple(struct net_device *to_dev,
3939 struct net_device *from_dev,
3940 unsigned char addr_type)
3942 int err;
3944 ASSERT_RTNL();
3946 if (from_dev->addr_len != to_dev->addr_len)
3947 return -EINVAL;
3948 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
3949 to_dev->addr_len, addr_type);
3950 if (!err)
3951 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3952 return err;
3954 EXPORT_SYMBOL(dev_addr_add_multiple);
3957 * dev_addr_del_multiple - Delete device addresses by another device
3958 * @to_dev: device where the addresses will be deleted
3959 * @from_dev: device by which addresses the addresses will be deleted
3960 * @addr_type: address type - 0 means type will used from from_dev
3962 * Deletes addresses in to device by the list of addresses in from device.
3964 * The caller must hold the rtnl_mutex.
3966 int dev_addr_del_multiple(struct net_device *to_dev,
3967 struct net_device *from_dev,
3968 unsigned char addr_type)
3970 ASSERT_RTNL();
3972 if (from_dev->addr_len != to_dev->addr_len)
3973 return -EINVAL;
3974 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
3975 to_dev->addr_len, addr_type);
3976 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3977 return 0;
3979 EXPORT_SYMBOL(dev_addr_del_multiple);
3981 /* multicast addresses handling functions */
3983 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3984 void *addr, int alen, int glbl)
3986 struct dev_addr_list *da;
3988 for (; (da = *list) != NULL; list = &da->next) {
3989 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3990 alen == da->da_addrlen) {
3991 if (glbl) {
3992 int old_glbl = da->da_gusers;
3993 da->da_gusers = 0;
3994 if (old_glbl == 0)
3995 break;
3997 if (--da->da_users)
3998 return 0;
4000 *list = da->next;
4001 kfree(da);
4002 (*count)--;
4003 return 0;
4006 return -ENOENT;
4009 int __dev_addr_add(struct dev_addr_list **list, int *count,
4010 void *addr, int alen, int glbl)
4012 struct dev_addr_list *da;
4014 for (da = *list; da != NULL; da = da->next) {
4015 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4016 da->da_addrlen == alen) {
4017 if (glbl) {
4018 int old_glbl = da->da_gusers;
4019 da->da_gusers = 1;
4020 if (old_glbl)
4021 return 0;
4023 da->da_users++;
4024 return 0;
4028 da = kzalloc(sizeof(*da), GFP_ATOMIC);
4029 if (da == NULL)
4030 return -ENOMEM;
4031 memcpy(da->da_addr, addr, alen);
4032 da->da_addrlen = alen;
4033 da->da_users = 1;
4034 da->da_gusers = glbl ? 1 : 0;
4035 da->next = *list;
4036 *list = da;
4037 (*count)++;
4038 return 0;
4042 * dev_unicast_delete - Release secondary unicast address.
4043 * @dev: device
4044 * @addr: address to delete
4046 * Release reference to a secondary unicast address and remove it
4047 * from the device if the reference count drops to zero.
4049 * The caller must hold the rtnl_mutex.
4051 int dev_unicast_delete(struct net_device *dev, void *addr)
4053 int err;
4055 ASSERT_RTNL();
4057 netif_addr_lock_bh(dev);
4058 err = __hw_addr_del(&dev->uc, addr, dev->addr_len,
4059 NETDEV_HW_ADDR_T_UNICAST);
4060 if (!err)
4061 __dev_set_rx_mode(dev);
4062 netif_addr_unlock_bh(dev);
4063 return err;
4065 EXPORT_SYMBOL(dev_unicast_delete);
4068 * dev_unicast_add - add a secondary unicast address
4069 * @dev: device
4070 * @addr: address to add
4072 * Add a secondary unicast address to the device or increase
4073 * the reference count if it already exists.
4075 * The caller must hold the rtnl_mutex.
4077 int dev_unicast_add(struct net_device *dev, void *addr)
4079 int err;
4081 ASSERT_RTNL();
4083 netif_addr_lock_bh(dev);
4084 err = __hw_addr_add(&dev->uc, addr, dev->addr_len,
4085 NETDEV_HW_ADDR_T_UNICAST);
4086 if (!err)
4087 __dev_set_rx_mode(dev);
4088 netif_addr_unlock_bh(dev);
4089 return err;
4091 EXPORT_SYMBOL(dev_unicast_add);
4093 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
4094 struct dev_addr_list **from, int *from_count)
4096 struct dev_addr_list *da, *next;
4097 int err = 0;
4099 da = *from;
4100 while (da != NULL) {
4101 next = da->next;
4102 if (!da->da_synced) {
4103 err = __dev_addr_add(to, to_count,
4104 da->da_addr, da->da_addrlen, 0);
4105 if (err < 0)
4106 break;
4107 da->da_synced = 1;
4108 da->da_users++;
4109 } else if (da->da_users == 1) {
4110 __dev_addr_delete(to, to_count,
4111 da->da_addr, da->da_addrlen, 0);
4112 __dev_addr_delete(from, from_count,
4113 da->da_addr, da->da_addrlen, 0);
4115 da = next;
4117 return err;
4119 EXPORT_SYMBOL_GPL(__dev_addr_sync);
4121 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
4122 struct dev_addr_list **from, int *from_count)
4124 struct dev_addr_list *da, *next;
4126 da = *from;
4127 while (da != NULL) {
4128 next = da->next;
4129 if (da->da_synced) {
4130 __dev_addr_delete(to, to_count,
4131 da->da_addr, da->da_addrlen, 0);
4132 da->da_synced = 0;
4133 __dev_addr_delete(from, from_count,
4134 da->da_addr, da->da_addrlen, 0);
4136 da = next;
4139 EXPORT_SYMBOL_GPL(__dev_addr_unsync);
4142 * dev_unicast_sync - Synchronize device's unicast list to another device
4143 * @to: destination device
4144 * @from: source device
4146 * Add newly added addresses to the destination device and release
4147 * addresses that have no users left. The source device must be
4148 * locked by netif_tx_lock_bh.
4150 * This function is intended to be called from the dev->set_rx_mode
4151 * function of layered software devices.
4153 int dev_unicast_sync(struct net_device *to, struct net_device *from)
4155 int err = 0;
4157 if (to->addr_len != from->addr_len)
4158 return -EINVAL;
4160 netif_addr_lock_bh(to);
4161 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len);
4162 if (!err)
4163 __dev_set_rx_mode(to);
4164 netif_addr_unlock_bh(to);
4165 return err;
4167 EXPORT_SYMBOL(dev_unicast_sync);
4170 * dev_unicast_unsync - Remove synchronized addresses from the destination device
4171 * @to: destination device
4172 * @from: source device
4174 * Remove all addresses that were added to the destination device by
4175 * dev_unicast_sync(). This function is intended to be called from the
4176 * dev->stop function of layered software devices.
4178 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
4180 if (to->addr_len != from->addr_len)
4181 return;
4183 netif_addr_lock_bh(from);
4184 netif_addr_lock(to);
4185 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len);
4186 __dev_set_rx_mode(to);
4187 netif_addr_unlock(to);
4188 netif_addr_unlock_bh(from);
4190 EXPORT_SYMBOL(dev_unicast_unsync);
4192 static void dev_unicast_flush(struct net_device *dev)
4194 netif_addr_lock_bh(dev);
4195 __hw_addr_flush(&dev->uc);
4196 netif_addr_unlock_bh(dev);
4199 static void dev_unicast_init(struct net_device *dev)
4201 __hw_addr_init(&dev->uc);
4205 static void __dev_addr_discard(struct dev_addr_list **list)
4207 struct dev_addr_list *tmp;
4209 while (*list != NULL) {
4210 tmp = *list;
4211 *list = tmp->next;
4212 if (tmp->da_users > tmp->da_gusers)
4213 printk("__dev_addr_discard: address leakage! "
4214 "da_users=%d\n", tmp->da_users);
4215 kfree(tmp);
4219 static void dev_addr_discard(struct net_device *dev)
4221 netif_addr_lock_bh(dev);
4223 __dev_addr_discard(&dev->mc_list);
4224 dev->mc_count = 0;
4226 netif_addr_unlock_bh(dev);
4230 * dev_get_flags - get flags reported to userspace
4231 * @dev: device
4233 * Get the combination of flag bits exported through APIs to userspace.
4235 unsigned dev_get_flags(const struct net_device *dev)
4237 unsigned flags;
4239 flags = (dev->flags & ~(IFF_PROMISC |
4240 IFF_ALLMULTI |
4241 IFF_RUNNING |
4242 IFF_LOWER_UP |
4243 IFF_DORMANT)) |
4244 (dev->gflags & (IFF_PROMISC |
4245 IFF_ALLMULTI));
4247 if (netif_running(dev)) {
4248 if (netif_oper_up(dev))
4249 flags |= IFF_RUNNING;
4250 if (netif_carrier_ok(dev))
4251 flags |= IFF_LOWER_UP;
4252 if (netif_dormant(dev))
4253 flags |= IFF_DORMANT;
4256 return flags;
4258 EXPORT_SYMBOL(dev_get_flags);
4261 * dev_change_flags - change device settings
4262 * @dev: device
4263 * @flags: device state flags
4265 * Change settings on device based state flags. The flags are
4266 * in the userspace exported format.
4268 int dev_change_flags(struct net_device *dev, unsigned flags)
4270 int ret, changes;
4271 int old_flags = dev->flags;
4273 ASSERT_RTNL();
4276 * Set the flags on our device.
4279 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4280 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4281 IFF_AUTOMEDIA)) |
4282 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4283 IFF_ALLMULTI));
4286 * Load in the correct multicast list now the flags have changed.
4289 if ((old_flags ^ flags) & IFF_MULTICAST)
4290 dev_change_rx_flags(dev, IFF_MULTICAST);
4292 dev_set_rx_mode(dev);
4295 * Have we downed the interface. We handle IFF_UP ourselves
4296 * according to user attempts to set it, rather than blindly
4297 * setting it.
4300 ret = 0;
4301 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4302 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
4304 if (!ret)
4305 dev_set_rx_mode(dev);
4308 if (dev->flags & IFF_UP &&
4309 ((old_flags ^ dev->flags) & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
4310 IFF_VOLATILE)))
4311 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4313 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4314 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4316 dev->gflags ^= IFF_PROMISC;
4317 dev_set_promiscuity(dev, inc);
4320 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4321 is important. Some (broken) drivers set IFF_PROMISC, when
4322 IFF_ALLMULTI is requested not asking us and not reporting.
4324 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4325 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4327 dev->gflags ^= IFF_ALLMULTI;
4328 dev_set_allmulti(dev, inc);
4331 /* Exclude state transition flags, already notified */
4332 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
4333 if (changes)
4334 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4336 return ret;
4338 EXPORT_SYMBOL(dev_change_flags);
4341 * dev_set_mtu - Change maximum transfer unit
4342 * @dev: device
4343 * @new_mtu: new transfer unit
4345 * Change the maximum transfer size of the network device.
4347 int dev_set_mtu(struct net_device *dev, int new_mtu)
4349 const struct net_device_ops *ops = dev->netdev_ops;
4350 int err;
4352 if (new_mtu == dev->mtu)
4353 return 0;
4355 /* MTU must be positive. */
4356 if (new_mtu < 0)
4357 return -EINVAL;
4359 if (!netif_device_present(dev))
4360 return -ENODEV;
4362 err = 0;
4363 if (ops->ndo_change_mtu)
4364 err = ops->ndo_change_mtu(dev, new_mtu);
4365 else
4366 dev->mtu = new_mtu;
4368 if (!err && dev->flags & IFF_UP)
4369 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4370 return err;
4372 EXPORT_SYMBOL(dev_set_mtu);
4375 * dev_set_mac_address - Change Media Access Control Address
4376 * @dev: device
4377 * @sa: new address
4379 * Change the hardware (MAC) address of the device
4381 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4383 const struct net_device_ops *ops = dev->netdev_ops;
4384 int err;
4386 if (!ops->ndo_set_mac_address)
4387 return -EOPNOTSUPP;
4388 if (sa->sa_family != dev->type)
4389 return -EINVAL;
4390 if (!netif_device_present(dev))
4391 return -ENODEV;
4392 err = ops->ndo_set_mac_address(dev, sa);
4393 if (!err)
4394 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4395 return err;
4397 EXPORT_SYMBOL(dev_set_mac_address);
4400 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4402 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4404 int err;
4405 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4407 if (!dev)
4408 return -ENODEV;
4410 switch (cmd) {
4411 case SIOCGIFFLAGS: /* Get interface flags */
4412 ifr->ifr_flags = (short) dev_get_flags(dev);
4413 return 0;
4415 case SIOCGIFMETRIC: /* Get the metric on the interface
4416 (currently unused) */
4417 ifr->ifr_metric = 0;
4418 return 0;
4420 case SIOCGIFMTU: /* Get the MTU of a device */
4421 ifr->ifr_mtu = dev->mtu;
4422 return 0;
4424 case SIOCGIFHWADDR:
4425 if (!dev->addr_len)
4426 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4427 else
4428 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4429 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4430 ifr->ifr_hwaddr.sa_family = dev->type;
4431 return 0;
4433 case SIOCGIFSLAVE:
4434 err = -EINVAL;
4435 break;
4437 case SIOCGIFMAP:
4438 ifr->ifr_map.mem_start = dev->mem_start;
4439 ifr->ifr_map.mem_end = dev->mem_end;
4440 ifr->ifr_map.base_addr = dev->base_addr;
4441 ifr->ifr_map.irq = dev->irq;
4442 ifr->ifr_map.dma = dev->dma;
4443 ifr->ifr_map.port = dev->if_port;
4444 return 0;
4446 case SIOCGIFINDEX:
4447 ifr->ifr_ifindex = dev->ifindex;
4448 return 0;
4450 case SIOCGIFTXQLEN:
4451 ifr->ifr_qlen = dev->tx_queue_len;
4452 return 0;
4454 default:
4455 /* dev_ioctl() should ensure this case
4456 * is never reached
4458 WARN_ON(1);
4459 err = -EINVAL;
4460 break;
4463 return err;
4467 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4469 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4471 int err;
4472 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4473 const struct net_device_ops *ops;
4475 if (!dev)
4476 return -ENODEV;
4478 ops = dev->netdev_ops;
4480 switch (cmd) {
4481 case SIOCSIFFLAGS: /* Set interface flags */
4482 return dev_change_flags(dev, ifr->ifr_flags);
4484 case SIOCSIFMETRIC: /* Set the metric on the interface
4485 (currently unused) */
4486 return -EOPNOTSUPP;
4488 case SIOCSIFMTU: /* Set the MTU of a device */
4489 return dev_set_mtu(dev, ifr->ifr_mtu);
4491 case SIOCSIFHWADDR:
4492 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4494 case SIOCSIFHWBROADCAST:
4495 if (ifr->ifr_hwaddr.sa_family != dev->type)
4496 return -EINVAL;
4497 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4498 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4499 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4500 return 0;
4502 case SIOCSIFMAP:
4503 if (ops->ndo_set_config) {
4504 if (!netif_device_present(dev))
4505 return -ENODEV;
4506 return ops->ndo_set_config(dev, &ifr->ifr_map);
4508 return -EOPNOTSUPP;
4510 case SIOCADDMULTI:
4511 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4512 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4513 return -EINVAL;
4514 if (!netif_device_present(dev))
4515 return -ENODEV;
4516 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4517 dev->addr_len, 1);
4519 case SIOCDELMULTI:
4520 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4521 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4522 return -EINVAL;
4523 if (!netif_device_present(dev))
4524 return -ENODEV;
4525 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4526 dev->addr_len, 1);
4528 case SIOCSIFTXQLEN:
4529 if (ifr->ifr_qlen < 0)
4530 return -EINVAL;
4531 dev->tx_queue_len = ifr->ifr_qlen;
4532 return 0;
4534 case SIOCSIFNAME:
4535 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4536 return dev_change_name(dev, ifr->ifr_newname);
4539 * Unknown or private ioctl
4541 default:
4542 if ((cmd >= SIOCDEVPRIVATE &&
4543 cmd <= SIOCDEVPRIVATE + 15) ||
4544 cmd == SIOCBONDENSLAVE ||
4545 cmd == SIOCBONDRELEASE ||
4546 cmd == SIOCBONDSETHWADDR ||
4547 cmd == SIOCBONDSLAVEINFOQUERY ||
4548 cmd == SIOCBONDINFOQUERY ||
4549 cmd == SIOCBONDCHANGEACTIVE ||
4550 cmd == SIOCGMIIPHY ||
4551 cmd == SIOCGMIIREG ||
4552 cmd == SIOCSMIIREG ||
4553 cmd == SIOCBRADDIF ||
4554 cmd == SIOCBRDELIF ||
4555 cmd == SIOCSHWTSTAMP ||
4556 cmd == SIOCWANDEV) {
4557 err = -EOPNOTSUPP;
4558 if (ops->ndo_do_ioctl) {
4559 if (netif_device_present(dev))
4560 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4561 else
4562 err = -ENODEV;
4564 } else
4565 err = -EINVAL;
4568 return err;
4572 * This function handles all "interface"-type I/O control requests. The actual
4573 * 'doing' part of this is dev_ifsioc above.
4577 * dev_ioctl - network device ioctl
4578 * @net: the applicable net namespace
4579 * @cmd: command to issue
4580 * @arg: pointer to a struct ifreq in user space
4582 * Issue ioctl functions to devices. This is normally called by the
4583 * user space syscall interfaces but can sometimes be useful for
4584 * other purposes. The return value is the return from the syscall if
4585 * positive or a negative errno code on error.
4588 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4590 struct ifreq ifr;
4591 int ret;
4592 char *colon;
4594 /* One special case: SIOCGIFCONF takes ifconf argument
4595 and requires shared lock, because it sleeps writing
4596 to user space.
4599 if (cmd == SIOCGIFCONF) {
4600 rtnl_lock();
4601 ret = dev_ifconf(net, (char __user *) arg);
4602 rtnl_unlock();
4603 return ret;
4605 if (cmd == SIOCGIFNAME)
4606 return dev_ifname(net, (struct ifreq __user *)arg);
4608 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4609 return -EFAULT;
4611 ifr.ifr_name[IFNAMSIZ-1] = 0;
4613 colon = strchr(ifr.ifr_name, ':');
4614 if (colon)
4615 *colon = 0;
4618 * See which interface the caller is talking about.
4621 switch (cmd) {
4623 * These ioctl calls:
4624 * - can be done by all.
4625 * - atomic and do not require locking.
4626 * - return a value
4628 case SIOCGIFFLAGS:
4629 case SIOCGIFMETRIC:
4630 case SIOCGIFMTU:
4631 case SIOCGIFHWADDR:
4632 case SIOCGIFSLAVE:
4633 case SIOCGIFMAP:
4634 case SIOCGIFINDEX:
4635 case SIOCGIFTXQLEN:
4636 dev_load(net, ifr.ifr_name);
4637 rcu_read_lock();
4638 ret = dev_ifsioc_locked(net, &ifr, cmd);
4639 rcu_read_unlock();
4640 if (!ret) {
4641 if (colon)
4642 *colon = ':';
4643 if (copy_to_user(arg, &ifr,
4644 sizeof(struct ifreq)))
4645 ret = -EFAULT;
4647 return ret;
4649 case SIOCETHTOOL:
4650 dev_load(net, ifr.ifr_name);
4651 rtnl_lock();
4652 ret = dev_ethtool(net, &ifr);
4653 rtnl_unlock();
4654 if (!ret) {
4655 if (colon)
4656 *colon = ':';
4657 if (copy_to_user(arg, &ifr,
4658 sizeof(struct ifreq)))
4659 ret = -EFAULT;
4661 return ret;
4664 * These ioctl calls:
4665 * - require superuser power.
4666 * - require strict serialization.
4667 * - return a value
4669 case SIOCGMIIPHY:
4670 case SIOCGMIIREG:
4671 case SIOCSIFNAME:
4672 if (!capable(CAP_NET_ADMIN))
4673 return -EPERM;
4674 dev_load(net, ifr.ifr_name);
4675 rtnl_lock();
4676 ret = dev_ifsioc(net, &ifr, cmd);
4677 rtnl_unlock();
4678 if (!ret) {
4679 if (colon)
4680 *colon = ':';
4681 if (copy_to_user(arg, &ifr,
4682 sizeof(struct ifreq)))
4683 ret = -EFAULT;
4685 return ret;
4688 * These ioctl calls:
4689 * - require superuser power.
4690 * - require strict serialization.
4691 * - do not return a value
4693 case SIOCSIFFLAGS:
4694 case SIOCSIFMETRIC:
4695 case SIOCSIFMTU:
4696 case SIOCSIFMAP:
4697 case SIOCSIFHWADDR:
4698 case SIOCSIFSLAVE:
4699 case SIOCADDMULTI:
4700 case SIOCDELMULTI:
4701 case SIOCSIFHWBROADCAST:
4702 case SIOCSIFTXQLEN:
4703 case SIOCSMIIREG:
4704 case SIOCBONDENSLAVE:
4705 case SIOCBONDRELEASE:
4706 case SIOCBONDSETHWADDR:
4707 case SIOCBONDCHANGEACTIVE:
4708 case SIOCBRADDIF:
4709 case SIOCBRDELIF:
4710 case SIOCSHWTSTAMP:
4711 if (!capable(CAP_NET_ADMIN))
4712 return -EPERM;
4713 /* fall through */
4714 case SIOCBONDSLAVEINFOQUERY:
4715 case SIOCBONDINFOQUERY:
4716 dev_load(net, ifr.ifr_name);
4717 rtnl_lock();
4718 ret = dev_ifsioc(net, &ifr, cmd);
4719 rtnl_unlock();
4720 return ret;
4722 case SIOCGIFMEM:
4723 /* Get the per device memory space. We can add this but
4724 * currently do not support it */
4725 case SIOCSIFMEM:
4726 /* Set the per device memory buffer space.
4727 * Not applicable in our case */
4728 case SIOCSIFLINK:
4729 return -EINVAL;
4732 * Unknown or private ioctl.
4734 default:
4735 if (cmd == SIOCWANDEV ||
4736 (cmd >= SIOCDEVPRIVATE &&
4737 cmd <= SIOCDEVPRIVATE + 15)) {
4738 dev_load(net, ifr.ifr_name);
4739 rtnl_lock();
4740 ret = dev_ifsioc(net, &ifr, cmd);
4741 rtnl_unlock();
4742 if (!ret && copy_to_user(arg, &ifr,
4743 sizeof(struct ifreq)))
4744 ret = -EFAULT;
4745 return ret;
4747 /* Take care of Wireless Extensions */
4748 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4749 return wext_handle_ioctl(net, &ifr, cmd, arg);
4750 return -EINVAL;
4756 * dev_new_index - allocate an ifindex
4757 * @net: the applicable net namespace
4759 * Returns a suitable unique value for a new device interface
4760 * number. The caller must hold the rtnl semaphore or the
4761 * dev_base_lock to be sure it remains unique.
4763 static int dev_new_index(struct net *net)
4765 static int ifindex;
4766 for (;;) {
4767 if (++ifindex <= 0)
4768 ifindex = 1;
4769 if (!__dev_get_by_index(net, ifindex))
4770 return ifindex;
4774 /* Delayed registration/unregisteration */
4775 static LIST_HEAD(net_todo_list);
4777 static void net_set_todo(struct net_device *dev)
4779 list_add_tail(&dev->todo_list, &net_todo_list);
4782 static void rollback_registered_many(struct list_head *head)
4784 struct net_device *dev, *tmp;
4786 BUG_ON(dev_boot_phase);
4787 ASSERT_RTNL();
4789 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4790 /* Some devices call without registering
4791 * for initialization unwind. Remove those
4792 * devices and proceed with the remaining.
4794 if (dev->reg_state == NETREG_UNINITIALIZED) {
4795 pr_debug("unregister_netdevice: device %s/%p never "
4796 "was registered\n", dev->name, dev);
4798 WARN_ON(1);
4799 list_del(&dev->unreg_list);
4800 continue;
4803 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4805 /* If device is running, close it first. */
4806 dev_close(dev);
4808 /* And unlink it from device chain. */
4809 unlist_netdevice(dev);
4811 dev->reg_state = NETREG_UNREGISTERING;
4814 synchronize_net();
4816 list_for_each_entry(dev, head, unreg_list) {
4817 /* Shutdown queueing discipline. */
4818 dev_shutdown(dev);
4821 /* Notify protocols, that we are about to destroy
4822 this device. They should clean all the things.
4824 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4827 * Flush the unicast and multicast chains
4829 dev_unicast_flush(dev);
4830 dev_addr_discard(dev);
4832 if (dev->netdev_ops->ndo_uninit)
4833 dev->netdev_ops->ndo_uninit(dev);
4835 /* Notifier chain MUST detach us from master device. */
4836 WARN_ON(dev->master);
4838 /* Remove entries from kobject tree */
4839 netdev_unregister_kobject(dev);
4842 /* Process any work delayed until the end of the batch */
4843 dev = list_entry(head->next, struct net_device, unreg_list);
4844 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4846 synchronize_net();
4848 list_for_each_entry(dev, head, unreg_list)
4849 dev_put(dev);
4852 static void rollback_registered(struct net_device *dev)
4854 LIST_HEAD(single);
4856 list_add(&dev->unreg_list, &single);
4857 rollback_registered_many(&single);
4858 list_del(&single);
4861 static void __netdev_init_queue_locks_one(struct net_device *dev,
4862 struct netdev_queue *dev_queue,
4863 void *_unused)
4865 spin_lock_init(&dev_queue->_xmit_lock);
4866 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4867 dev_queue->xmit_lock_owner = -1;
4870 static void netdev_init_queue_locks(struct net_device *dev)
4872 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4873 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4876 unsigned long netdev_fix_features(unsigned long features, const char *name)
4878 /* Fix illegal SG+CSUM combinations. */
4879 if ((features & NETIF_F_SG) &&
4880 !(features & NETIF_F_ALL_CSUM)) {
4881 if (name)
4882 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4883 "checksum feature.\n", name);
4884 features &= ~NETIF_F_SG;
4887 /* TSO requires that SG is present as well. */
4888 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4889 if (name)
4890 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4891 "SG feature.\n", name);
4892 features &= ~NETIF_F_TSO;
4895 if (features & NETIF_F_UFO) {
4896 if (!(features & NETIF_F_GEN_CSUM)) {
4897 if (name)
4898 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4899 "since no NETIF_F_HW_CSUM feature.\n",
4900 name);
4901 features &= ~NETIF_F_UFO;
4904 if (!(features & NETIF_F_SG)) {
4905 if (name)
4906 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4907 "since no NETIF_F_SG feature.\n", name);
4908 features &= ~NETIF_F_UFO;
4912 return features;
4914 EXPORT_SYMBOL(netdev_fix_features);
4917 * netif_stacked_transfer_operstate - transfer operstate
4918 * @rootdev: the root or lower level device to transfer state from
4919 * @dev: the device to transfer operstate to
4921 * Transfer operational state from root to device. This is normally
4922 * called when a stacking relationship exists between the root
4923 * device and the device(a leaf device).
4925 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4926 struct net_device *dev)
4928 if (rootdev->operstate == IF_OPER_DORMANT)
4929 netif_dormant_on(dev);
4930 else
4931 netif_dormant_off(dev);
4933 if (netif_carrier_ok(rootdev)) {
4934 if (!netif_carrier_ok(dev))
4935 netif_carrier_on(dev);
4936 } else {
4937 if (netif_carrier_ok(dev))
4938 netif_carrier_off(dev);
4941 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
4944 * register_netdevice - register a network device
4945 * @dev: device to register
4947 * Take a completed network device structure and add it to the kernel
4948 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4949 * chain. 0 is returned on success. A negative errno code is returned
4950 * on a failure to set up the device, or if the name is a duplicate.
4952 * Callers must hold the rtnl semaphore. You may want
4953 * register_netdev() instead of this.
4955 * BUGS:
4956 * The locking appears insufficient to guarantee two parallel registers
4957 * will not get the same name.
4960 int register_netdevice(struct net_device *dev)
4962 int ret;
4963 struct net *net = dev_net(dev);
4965 BUG_ON(dev_boot_phase);
4966 ASSERT_RTNL();
4968 might_sleep();
4970 /* When net_device's are persistent, this will be fatal. */
4971 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4972 BUG_ON(!net);
4974 spin_lock_init(&dev->addr_list_lock);
4975 netdev_set_addr_lockdep_class(dev);
4976 netdev_init_queue_locks(dev);
4978 dev->iflink = -1;
4980 /* Init, if this function is available */
4981 if (dev->netdev_ops->ndo_init) {
4982 ret = dev->netdev_ops->ndo_init(dev);
4983 if (ret) {
4984 if (ret > 0)
4985 ret = -EIO;
4986 goto out;
4990 ret = dev_get_valid_name(net, dev->name, dev->name, 0);
4991 if (ret)
4992 goto err_uninit;
4994 dev->ifindex = dev_new_index(net);
4995 if (dev->iflink == -1)
4996 dev->iflink = dev->ifindex;
4998 /* Fix illegal checksum combinations */
4999 if ((dev->features & NETIF_F_HW_CSUM) &&
5000 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5001 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5002 dev->name);
5003 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5006 if ((dev->features & NETIF_F_NO_CSUM) &&
5007 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5008 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5009 dev->name);
5010 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5013 dev->features = netdev_fix_features(dev->features, dev->name);
5015 /* Enable software GSO if SG is supported. */
5016 if (dev->features & NETIF_F_SG)
5017 dev->features |= NETIF_F_GSO;
5019 netdev_initialize_kobject(dev);
5021 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5022 ret = notifier_to_errno(ret);
5023 if (ret)
5024 goto err_uninit;
5026 ret = netdev_register_kobject(dev);
5027 if (ret)
5028 goto err_uninit;
5029 dev->reg_state = NETREG_REGISTERED;
5032 * Default initial state at registry is that the
5033 * device is present.
5036 set_bit(__LINK_STATE_PRESENT, &dev->state);
5038 dev_init_scheduler(dev);
5039 dev_hold(dev);
5040 list_netdevice(dev);
5042 /* Notify protocols, that a new device appeared. */
5043 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5044 ret = notifier_to_errno(ret);
5045 if (ret) {
5046 rollback_registered(dev);
5047 dev->reg_state = NETREG_UNREGISTERED;
5050 * Prevent userspace races by waiting until the network
5051 * device is fully setup before sending notifications.
5053 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5055 out:
5056 return ret;
5058 err_uninit:
5059 if (dev->netdev_ops->ndo_uninit)
5060 dev->netdev_ops->ndo_uninit(dev);
5061 goto out;
5063 EXPORT_SYMBOL(register_netdevice);
5066 * init_dummy_netdev - init a dummy network device for NAPI
5067 * @dev: device to init
5069 * This takes a network device structure and initialize the minimum
5070 * amount of fields so it can be used to schedule NAPI polls without
5071 * registering a full blown interface. This is to be used by drivers
5072 * that need to tie several hardware interfaces to a single NAPI
5073 * poll scheduler due to HW limitations.
5075 int init_dummy_netdev(struct net_device *dev)
5077 /* Clear everything. Note we don't initialize spinlocks
5078 * are they aren't supposed to be taken by any of the
5079 * NAPI code and this dummy netdev is supposed to be
5080 * only ever used for NAPI polls
5082 memset(dev, 0, sizeof(struct net_device));
5084 /* make sure we BUG if trying to hit standard
5085 * register/unregister code path
5087 dev->reg_state = NETREG_DUMMY;
5089 /* initialize the ref count */
5090 atomic_set(&dev->refcnt, 1);
5092 /* NAPI wants this */
5093 INIT_LIST_HEAD(&dev->napi_list);
5095 /* a dummy interface is started by default */
5096 set_bit(__LINK_STATE_PRESENT, &dev->state);
5097 set_bit(__LINK_STATE_START, &dev->state);
5099 return 0;
5101 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5105 * register_netdev - register a network device
5106 * @dev: device to register
5108 * Take a completed network device structure and add it to the kernel
5109 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5110 * chain. 0 is returned on success. A negative errno code is returned
5111 * on a failure to set up the device, or if the name is a duplicate.
5113 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5114 * and expands the device name if you passed a format string to
5115 * alloc_netdev.
5117 int register_netdev(struct net_device *dev)
5119 int err;
5121 rtnl_lock();
5124 * If the name is a format string the caller wants us to do a
5125 * name allocation.
5127 if (strchr(dev->name, '%')) {
5128 err = dev_alloc_name(dev, dev->name);
5129 if (err < 0)
5130 goto out;
5133 err = register_netdevice(dev);
5134 out:
5135 rtnl_unlock();
5136 return err;
5138 EXPORT_SYMBOL(register_netdev);
5141 * netdev_wait_allrefs - wait until all references are gone.
5143 * This is called when unregistering network devices.
5145 * Any protocol or device that holds a reference should register
5146 * for netdevice notification, and cleanup and put back the
5147 * reference if they receive an UNREGISTER event.
5148 * We can get stuck here if buggy protocols don't correctly
5149 * call dev_put.
5151 static void netdev_wait_allrefs(struct net_device *dev)
5153 unsigned long rebroadcast_time, warning_time;
5155 linkwatch_forget_dev(dev);
5157 rebroadcast_time = warning_time = jiffies;
5158 while (atomic_read(&dev->refcnt) != 0) {
5159 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5160 rtnl_lock();
5162 /* Rebroadcast unregister notification */
5163 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5164 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5165 * should have already handle it the first time */
5167 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5168 &dev->state)) {
5169 /* We must not have linkwatch events
5170 * pending on unregister. If this
5171 * happens, we simply run the queue
5172 * unscheduled, resulting in a noop
5173 * for this device.
5175 linkwatch_run_queue();
5178 __rtnl_unlock();
5180 rebroadcast_time = jiffies;
5183 msleep(250);
5185 if (time_after(jiffies, warning_time + 10 * HZ)) {
5186 printk(KERN_EMERG "unregister_netdevice: "
5187 "waiting for %s to become free. Usage "
5188 "count = %d\n",
5189 dev->name, atomic_read(&dev->refcnt));
5190 warning_time = jiffies;
5195 /* The sequence is:
5197 * rtnl_lock();
5198 * ...
5199 * register_netdevice(x1);
5200 * register_netdevice(x2);
5201 * ...
5202 * unregister_netdevice(y1);
5203 * unregister_netdevice(y2);
5204 * ...
5205 * rtnl_unlock();
5206 * free_netdev(y1);
5207 * free_netdev(y2);
5209 * We are invoked by rtnl_unlock().
5210 * This allows us to deal with problems:
5211 * 1) We can delete sysfs objects which invoke hotplug
5212 * without deadlocking with linkwatch via keventd.
5213 * 2) Since we run with the RTNL semaphore not held, we can sleep
5214 * safely in order to wait for the netdev refcnt to drop to zero.
5216 * We must not return until all unregister events added during
5217 * the interval the lock was held have been completed.
5219 void netdev_run_todo(void)
5221 struct list_head list;
5223 /* Snapshot list, allow later requests */
5224 list_replace_init(&net_todo_list, &list);
5226 __rtnl_unlock();
5228 while (!list_empty(&list)) {
5229 struct net_device *dev
5230 = list_entry(list.next, struct net_device, todo_list);
5231 list_del(&dev->todo_list);
5233 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5234 printk(KERN_ERR "network todo '%s' but state %d\n",
5235 dev->name, dev->reg_state);
5236 dump_stack();
5237 continue;
5240 dev->reg_state = NETREG_UNREGISTERED;
5242 on_each_cpu(flush_backlog, dev, 1);
5244 netdev_wait_allrefs(dev);
5246 /* paranoia */
5247 BUG_ON(atomic_read(&dev->refcnt));
5248 WARN_ON(dev->ip_ptr);
5249 WARN_ON(dev->ip6_ptr);
5250 WARN_ON(dev->dn_ptr);
5252 if (dev->destructor)
5253 dev->destructor(dev);
5255 /* Free network device */
5256 kobject_put(&dev->dev.kobj);
5261 * dev_txq_stats_fold - fold tx_queues stats
5262 * @dev: device to get statistics from
5263 * @stats: struct net_device_stats to hold results
5265 void dev_txq_stats_fold(const struct net_device *dev,
5266 struct net_device_stats *stats)
5268 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5269 unsigned int i;
5270 struct netdev_queue *txq;
5272 for (i = 0; i < dev->num_tx_queues; i++) {
5273 txq = netdev_get_tx_queue(dev, i);
5274 tx_bytes += txq->tx_bytes;
5275 tx_packets += txq->tx_packets;
5276 tx_dropped += txq->tx_dropped;
5278 if (tx_bytes || tx_packets || tx_dropped) {
5279 stats->tx_bytes = tx_bytes;
5280 stats->tx_packets = tx_packets;
5281 stats->tx_dropped = tx_dropped;
5284 EXPORT_SYMBOL(dev_txq_stats_fold);
5287 * dev_get_stats - get network device statistics
5288 * @dev: device to get statistics from
5290 * Get network statistics from device. The device driver may provide
5291 * its own method by setting dev->netdev_ops->get_stats; otherwise
5292 * the internal statistics structure is used.
5294 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5296 const struct net_device_ops *ops = dev->netdev_ops;
5298 if (ops->ndo_get_stats)
5299 return ops->ndo_get_stats(dev);
5301 dev_txq_stats_fold(dev, &dev->stats);
5302 return &dev->stats;
5304 EXPORT_SYMBOL(dev_get_stats);
5306 static void netdev_init_one_queue(struct net_device *dev,
5307 struct netdev_queue *queue,
5308 void *_unused)
5310 queue->dev = dev;
5313 static void netdev_init_queues(struct net_device *dev)
5315 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5316 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5317 spin_lock_init(&dev->tx_global_lock);
5321 * alloc_netdev_mq - allocate network device
5322 * @sizeof_priv: size of private data to allocate space for
5323 * @name: device name format string
5324 * @setup: callback to initialize device
5325 * @queue_count: the number of subqueues to allocate
5327 * Allocates a struct net_device with private data area for driver use
5328 * and performs basic initialization. Also allocates subquue structs
5329 * for each queue on the device at the end of the netdevice.
5331 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5332 void (*setup)(struct net_device *), unsigned int queue_count)
5334 struct netdev_queue *tx;
5335 struct net_device *dev;
5336 size_t alloc_size;
5337 struct net_device *p;
5339 BUG_ON(strlen(name) >= sizeof(dev->name));
5341 alloc_size = sizeof(struct net_device);
5342 if (sizeof_priv) {
5343 /* ensure 32-byte alignment of private area */
5344 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5345 alloc_size += sizeof_priv;
5347 /* ensure 32-byte alignment of whole construct */
5348 alloc_size += NETDEV_ALIGN - 1;
5350 p = kzalloc(alloc_size, GFP_KERNEL);
5351 if (!p) {
5352 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5353 return NULL;
5356 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5357 if (!tx) {
5358 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5359 "tx qdiscs.\n");
5360 goto free_p;
5363 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5364 dev->padded = (char *)dev - (char *)p;
5366 if (dev_addr_init(dev))
5367 goto free_tx;
5369 dev_unicast_init(dev);
5371 dev_net_set(dev, &init_net);
5373 dev->_tx = tx;
5374 dev->num_tx_queues = queue_count;
5375 dev->real_num_tx_queues = queue_count;
5377 dev->gso_max_size = GSO_MAX_SIZE;
5379 netdev_init_queues(dev);
5381 INIT_LIST_HEAD(&dev->napi_list);
5382 INIT_LIST_HEAD(&dev->unreg_list);
5383 INIT_LIST_HEAD(&dev->link_watch_list);
5384 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5385 setup(dev);
5386 strcpy(dev->name, name);
5387 return dev;
5389 free_tx:
5390 kfree(tx);
5392 free_p:
5393 kfree(p);
5394 return NULL;
5396 EXPORT_SYMBOL(alloc_netdev_mq);
5399 * free_netdev - free network device
5400 * @dev: device
5402 * This function does the last stage of destroying an allocated device
5403 * interface. The reference to the device object is released.
5404 * If this is the last reference then it will be freed.
5406 void free_netdev(struct net_device *dev)
5408 struct napi_struct *p, *n;
5410 release_net(dev_net(dev));
5412 kfree(dev->_tx);
5414 /* Flush device addresses */
5415 dev_addr_flush(dev);
5417 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5418 netif_napi_del(p);
5420 /* Compatibility with error handling in drivers */
5421 if (dev->reg_state == NETREG_UNINITIALIZED) {
5422 kfree((char *)dev - dev->padded);
5423 return;
5426 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5427 dev->reg_state = NETREG_RELEASED;
5429 /* will free via device release */
5430 put_device(&dev->dev);
5432 EXPORT_SYMBOL(free_netdev);
5435 * synchronize_net - Synchronize with packet receive processing
5437 * Wait for packets currently being received to be done.
5438 * Does not block later packets from starting.
5440 void synchronize_net(void)
5442 might_sleep();
5443 synchronize_rcu();
5445 EXPORT_SYMBOL(synchronize_net);
5448 * unregister_netdevice_queue - remove device from the kernel
5449 * @dev: device
5450 * @head: list
5452 * This function shuts down a device interface and removes it
5453 * from the kernel tables.
5454 * If head not NULL, device is queued to be unregistered later.
5456 * Callers must hold the rtnl semaphore. You may want
5457 * unregister_netdev() instead of this.
5460 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5462 ASSERT_RTNL();
5464 if (head) {
5465 list_move_tail(&dev->unreg_list, head);
5466 } else {
5467 rollback_registered(dev);
5468 /* Finish processing unregister after unlock */
5469 net_set_todo(dev);
5472 EXPORT_SYMBOL(unregister_netdevice_queue);
5475 * unregister_netdevice_many - unregister many devices
5476 * @head: list of devices
5478 void unregister_netdevice_many(struct list_head *head)
5480 struct net_device *dev;
5482 if (!list_empty(head)) {
5483 rollback_registered_many(head);
5484 list_for_each_entry(dev, head, unreg_list)
5485 net_set_todo(dev);
5488 EXPORT_SYMBOL(unregister_netdevice_many);
5491 * unregister_netdev - remove device from the kernel
5492 * @dev: device
5494 * This function shuts down a device interface and removes it
5495 * from the kernel tables.
5497 * This is just a wrapper for unregister_netdevice that takes
5498 * the rtnl semaphore. In general you want to use this and not
5499 * unregister_netdevice.
5501 void unregister_netdev(struct net_device *dev)
5503 rtnl_lock();
5504 unregister_netdevice(dev);
5505 rtnl_unlock();
5507 EXPORT_SYMBOL(unregister_netdev);
5510 * dev_change_net_namespace - move device to different nethost namespace
5511 * @dev: device
5512 * @net: network namespace
5513 * @pat: If not NULL name pattern to try if the current device name
5514 * is already taken in the destination network namespace.
5516 * This function shuts down a device interface and moves it
5517 * to a new network namespace. On success 0 is returned, on
5518 * a failure a netagive errno code is returned.
5520 * Callers must hold the rtnl semaphore.
5523 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5525 int err;
5527 ASSERT_RTNL();
5529 /* Don't allow namespace local devices to be moved. */
5530 err = -EINVAL;
5531 if (dev->features & NETIF_F_NETNS_LOCAL)
5532 goto out;
5534 #ifdef CONFIG_SYSFS
5535 /* Don't allow real devices to be moved when sysfs
5536 * is enabled.
5538 err = -EINVAL;
5539 if (dev->dev.parent)
5540 goto out;
5541 #endif
5543 /* Ensure the device has been registrered */
5544 err = -EINVAL;
5545 if (dev->reg_state != NETREG_REGISTERED)
5546 goto out;
5548 /* Get out if there is nothing todo */
5549 err = 0;
5550 if (net_eq(dev_net(dev), net))
5551 goto out;
5553 /* Pick the destination device name, and ensure
5554 * we can use it in the destination network namespace.
5556 err = -EEXIST;
5557 if (__dev_get_by_name(net, dev->name)) {
5558 /* We get here if we can't use the current device name */
5559 if (!pat)
5560 goto out;
5561 if (dev_get_valid_name(net, pat, dev->name, 1))
5562 goto out;
5566 * And now a mini version of register_netdevice unregister_netdevice.
5569 /* If device is running close it first. */
5570 dev_close(dev);
5572 /* And unlink it from device chain */
5573 err = -ENODEV;
5574 unlist_netdevice(dev);
5576 synchronize_net();
5578 /* Shutdown queueing discipline. */
5579 dev_shutdown(dev);
5581 /* Notify protocols, that we are about to destroy
5582 this device. They should clean all the things.
5584 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5585 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5588 * Flush the unicast and multicast chains
5590 dev_unicast_flush(dev);
5591 dev_addr_discard(dev);
5593 netdev_unregister_kobject(dev);
5595 /* Actually switch the network namespace */
5596 dev_net_set(dev, net);
5598 /* If there is an ifindex conflict assign a new one */
5599 if (__dev_get_by_index(net, dev->ifindex)) {
5600 int iflink = (dev->iflink == dev->ifindex);
5601 dev->ifindex = dev_new_index(net);
5602 if (iflink)
5603 dev->iflink = dev->ifindex;
5606 /* Fixup kobjects */
5607 err = netdev_register_kobject(dev);
5608 WARN_ON(err);
5610 /* Add the device back in the hashes */
5611 list_netdevice(dev);
5613 /* Notify protocols, that a new device appeared. */
5614 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5617 * Prevent userspace races by waiting until the network
5618 * device is fully setup before sending notifications.
5620 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5622 synchronize_net();
5623 err = 0;
5624 out:
5625 return err;
5627 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5629 static int dev_cpu_callback(struct notifier_block *nfb,
5630 unsigned long action,
5631 void *ocpu)
5633 struct sk_buff **list_skb;
5634 struct Qdisc **list_net;
5635 struct sk_buff *skb;
5636 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5637 struct softnet_data *sd, *oldsd;
5639 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5640 return NOTIFY_OK;
5642 local_irq_disable();
5643 cpu = smp_processor_id();
5644 sd = &per_cpu(softnet_data, cpu);
5645 oldsd = &per_cpu(softnet_data, oldcpu);
5647 /* Find end of our completion_queue. */
5648 list_skb = &sd->completion_queue;
5649 while (*list_skb)
5650 list_skb = &(*list_skb)->next;
5651 /* Append completion queue from offline CPU. */
5652 *list_skb = oldsd->completion_queue;
5653 oldsd->completion_queue = NULL;
5655 /* Find end of our output_queue. */
5656 list_net = &sd->output_queue;
5657 while (*list_net)
5658 list_net = &(*list_net)->next_sched;
5659 /* Append output queue from offline CPU. */
5660 *list_net = oldsd->output_queue;
5661 oldsd->output_queue = NULL;
5663 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5664 local_irq_enable();
5666 /* Process offline CPU's input_pkt_queue */
5667 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5668 netif_rx(skb);
5670 return NOTIFY_OK;
5675 * netdev_increment_features - increment feature set by one
5676 * @all: current feature set
5677 * @one: new feature set
5678 * @mask: mask feature set
5680 * Computes a new feature set after adding a device with feature set
5681 * @one to the master device with current feature set @all. Will not
5682 * enable anything that is off in @mask. Returns the new feature set.
5684 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5685 unsigned long mask)
5687 /* If device needs checksumming, downgrade to it. */
5688 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5689 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5690 else if (mask & NETIF_F_ALL_CSUM) {
5691 /* If one device supports v4/v6 checksumming, set for all. */
5692 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5693 !(all & NETIF_F_GEN_CSUM)) {
5694 all &= ~NETIF_F_ALL_CSUM;
5695 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5698 /* If one device supports hw checksumming, set for all. */
5699 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5700 all &= ~NETIF_F_ALL_CSUM;
5701 all |= NETIF_F_HW_CSUM;
5705 one |= NETIF_F_ALL_CSUM;
5707 one |= all & NETIF_F_ONE_FOR_ALL;
5708 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5709 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5711 return all;
5713 EXPORT_SYMBOL(netdev_increment_features);
5715 static struct hlist_head *netdev_create_hash(void)
5717 int i;
5718 struct hlist_head *hash;
5720 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5721 if (hash != NULL)
5722 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5723 INIT_HLIST_HEAD(&hash[i]);
5725 return hash;
5728 /* Initialize per network namespace state */
5729 static int __net_init netdev_init(struct net *net)
5731 INIT_LIST_HEAD(&net->dev_base_head);
5733 net->dev_name_head = netdev_create_hash();
5734 if (net->dev_name_head == NULL)
5735 goto err_name;
5737 net->dev_index_head = netdev_create_hash();
5738 if (net->dev_index_head == NULL)
5739 goto err_idx;
5741 return 0;
5743 err_idx:
5744 kfree(net->dev_name_head);
5745 err_name:
5746 return -ENOMEM;
5750 * netdev_drivername - network driver for the device
5751 * @dev: network device
5752 * @buffer: buffer for resulting name
5753 * @len: size of buffer
5755 * Determine network driver for device.
5757 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5759 const struct device_driver *driver;
5760 const struct device *parent;
5762 if (len <= 0 || !buffer)
5763 return buffer;
5764 buffer[0] = 0;
5766 parent = dev->dev.parent;
5768 if (!parent)
5769 return buffer;
5771 driver = parent->driver;
5772 if (driver && driver->name)
5773 strlcpy(buffer, driver->name, len);
5774 return buffer;
5777 static void __net_exit netdev_exit(struct net *net)
5779 kfree(net->dev_name_head);
5780 kfree(net->dev_index_head);
5783 static struct pernet_operations __net_initdata netdev_net_ops = {
5784 .init = netdev_init,
5785 .exit = netdev_exit,
5788 static void __net_exit default_device_exit(struct net *net)
5790 struct net_device *dev, *aux;
5792 * Push all migratable network devices back to the
5793 * initial network namespace
5795 rtnl_lock();
5796 for_each_netdev_safe(net, dev, aux) {
5797 int err;
5798 char fb_name[IFNAMSIZ];
5800 /* Ignore unmoveable devices (i.e. loopback) */
5801 if (dev->features & NETIF_F_NETNS_LOCAL)
5802 continue;
5804 /* Leave virtual devices for the generic cleanup */
5805 if (dev->rtnl_link_ops)
5806 continue;
5808 /* Push remaing network devices to init_net */
5809 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5810 err = dev_change_net_namespace(dev, &init_net, fb_name);
5811 if (err) {
5812 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5813 __func__, dev->name, err);
5814 BUG();
5817 rtnl_unlock();
5820 static void __net_exit default_device_exit_batch(struct list_head *net_list)
5822 /* At exit all network devices most be removed from a network
5823 * namespace. Do this in the reverse order of registeration.
5824 * Do this across as many network namespaces as possible to
5825 * improve batching efficiency.
5827 struct net_device *dev;
5828 struct net *net;
5829 LIST_HEAD(dev_kill_list);
5831 rtnl_lock();
5832 list_for_each_entry(net, net_list, exit_list) {
5833 for_each_netdev_reverse(net, dev) {
5834 if (dev->rtnl_link_ops)
5835 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5836 else
5837 unregister_netdevice_queue(dev, &dev_kill_list);
5840 unregister_netdevice_many(&dev_kill_list);
5841 list_del(&dev_kill_list);
5842 rtnl_unlock();
5845 static struct pernet_operations __net_initdata default_device_ops = {
5846 .exit = default_device_exit,
5847 .exit_batch = default_device_exit_batch,
5851 * Initialize the DEV module. At boot time this walks the device list and
5852 * unhooks any devices that fail to initialise (normally hardware not
5853 * present) and leaves us with a valid list of present and active devices.
5858 * This is called single threaded during boot, so no need
5859 * to take the rtnl semaphore.
5861 static int __init net_dev_init(void)
5863 int i, rc = -ENOMEM;
5865 BUG_ON(!dev_boot_phase);
5867 if (dev_proc_init())
5868 goto out;
5870 if (netdev_kobject_init())
5871 goto out;
5873 INIT_LIST_HEAD(&ptype_all);
5874 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5875 INIT_LIST_HEAD(&ptype_base[i]);
5877 if (register_pernet_subsys(&netdev_net_ops))
5878 goto out;
5881 * Initialise the packet receive queues.
5884 for_each_possible_cpu(i) {
5885 struct softnet_data *queue;
5887 queue = &per_cpu(softnet_data, i);
5888 skb_queue_head_init(&queue->input_pkt_queue);
5889 queue->completion_queue = NULL;
5890 INIT_LIST_HEAD(&queue->poll_list);
5892 queue->backlog.poll = process_backlog;
5893 queue->backlog.weight = weight_p;
5894 queue->backlog.gro_list = NULL;
5895 queue->backlog.gro_count = 0;
5898 dev_boot_phase = 0;
5900 /* The loopback device is special if any other network devices
5901 * is present in a network namespace the loopback device must
5902 * be present. Since we now dynamically allocate and free the
5903 * loopback device ensure this invariant is maintained by
5904 * keeping the loopback device as the first device on the
5905 * list of network devices. Ensuring the loopback devices
5906 * is the first device that appears and the last network device
5907 * that disappears.
5909 if (register_pernet_device(&loopback_net_ops))
5910 goto out;
5912 if (register_pernet_device(&default_device_ops))
5913 goto out;
5915 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5916 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5918 hotcpu_notifier(dev_cpu_callback, 0);
5919 dst_init();
5920 dev_mcast_init();
5921 rc = 0;
5922 out:
5923 return rc;
5926 subsys_initcall(net_dev_init);
5928 static int __init initialize_hashrnd(void)
5930 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
5931 return 0;
5934 late_initcall_sync(initialize_hashrnd);