xen: set max_pfn_mapped to the last pfn mapped
[wandboard.git] / fs / exec.c
blob2fe3f182c555311d54a86a86416a43ffc290f41a
1 /*
2 * linux/fs/exec.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * #!-checking implemented by tytso.
9 */
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/proc_fs.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/syscalls.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 #include <linux/tracehook.h>
54 #include <linux/kmod.h>
55 #include <linux/fsnotify.h>
56 #include <linux/fs_struct.h>
57 #include <linux/pipe_fs_i.h>
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 #include "internal.h"
64 int core_uses_pid;
65 char core_pattern[CORENAME_MAX_SIZE] = "core";
66 unsigned int core_pipe_limit;
67 int suid_dumpable = 0;
69 /* The maximal length of core_pattern is also specified in sysctl.c */
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
74 int __register_binfmt(struct linux_binfmt * fmt, int insert)
76 if (!fmt)
77 return -EINVAL;
78 write_lock(&binfmt_lock);
79 insert ? list_add(&fmt->lh, &formats) :
80 list_add_tail(&fmt->lh, &formats);
81 write_unlock(&binfmt_lock);
82 return 0;
85 EXPORT_SYMBOL(__register_binfmt);
87 void unregister_binfmt(struct linux_binfmt * fmt)
89 write_lock(&binfmt_lock);
90 list_del(&fmt->lh);
91 write_unlock(&binfmt_lock);
94 EXPORT_SYMBOL(unregister_binfmt);
96 static inline void put_binfmt(struct linux_binfmt * fmt)
98 module_put(fmt->module);
102 * Note that a shared library must be both readable and executable due to
103 * security reasons.
105 * Also note that we take the address to load from from the file itself.
107 SYSCALL_DEFINE1(uselib, const char __user *, library)
109 struct file *file;
110 char *tmp = getname(library);
111 int error = PTR_ERR(tmp);
113 if (IS_ERR(tmp))
114 goto out;
116 file = do_filp_open(AT_FDCWD, tmp,
117 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
118 MAY_READ | MAY_EXEC | MAY_OPEN);
119 putname(tmp);
120 error = PTR_ERR(file);
121 if (IS_ERR(file))
122 goto out;
124 error = -EINVAL;
125 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
126 goto exit;
128 error = -EACCES;
129 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
130 goto exit;
132 fsnotify_open(file->f_path.dentry);
134 error = -ENOEXEC;
135 if(file->f_op) {
136 struct linux_binfmt * fmt;
138 read_lock(&binfmt_lock);
139 list_for_each_entry(fmt, &formats, lh) {
140 if (!fmt->load_shlib)
141 continue;
142 if (!try_module_get(fmt->module))
143 continue;
144 read_unlock(&binfmt_lock);
145 error = fmt->load_shlib(file);
146 read_lock(&binfmt_lock);
147 put_binfmt(fmt);
148 if (error != -ENOEXEC)
149 break;
151 read_unlock(&binfmt_lock);
153 exit:
154 fput(file);
155 out:
156 return error;
159 #ifdef CONFIG_MMU
161 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
162 int write)
164 struct page *page;
165 int ret;
167 #ifdef CONFIG_STACK_GROWSUP
168 if (write) {
169 ret = expand_stack_downwards(bprm->vma, pos);
170 if (ret < 0)
171 return NULL;
173 #endif
174 ret = get_user_pages(current, bprm->mm, pos,
175 1, write, 1, &page, NULL);
176 if (ret <= 0)
177 return NULL;
179 if (write) {
180 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
181 struct rlimit *rlim;
184 * We've historically supported up to 32 pages (ARG_MAX)
185 * of argument strings even with small stacks
187 if (size <= ARG_MAX)
188 return page;
191 * Limit to 1/4-th the stack size for the argv+env strings.
192 * This ensures that:
193 * - the remaining binfmt code will not run out of stack space,
194 * - the program will have a reasonable amount of stack left
195 * to work from.
197 rlim = current->signal->rlim;
198 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
199 put_page(page);
200 return NULL;
204 return page;
207 static void put_arg_page(struct page *page)
209 put_page(page);
212 static void free_arg_page(struct linux_binprm *bprm, int i)
216 static void free_arg_pages(struct linux_binprm *bprm)
220 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
221 struct page *page)
223 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
226 static int __bprm_mm_init(struct linux_binprm *bprm)
228 int err;
229 struct vm_area_struct *vma = NULL;
230 struct mm_struct *mm = bprm->mm;
232 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
233 if (!vma)
234 return -ENOMEM;
236 down_write(&mm->mmap_sem);
237 vma->vm_mm = mm;
240 * Place the stack at the largest stack address the architecture
241 * supports. Later, we'll move this to an appropriate place. We don't
242 * use STACK_TOP because that can depend on attributes which aren't
243 * configured yet.
245 vma->vm_end = STACK_TOP_MAX;
246 vma->vm_start = vma->vm_end - PAGE_SIZE;
247 vma->vm_flags = VM_STACK_FLAGS;
248 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
250 err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
251 if (err)
252 goto err;
254 err = insert_vm_struct(mm, vma);
255 if (err)
256 goto err;
258 mm->stack_vm = mm->total_vm = 1;
259 up_write(&mm->mmap_sem);
260 bprm->p = vma->vm_end - sizeof(void *);
261 return 0;
262 err:
263 up_write(&mm->mmap_sem);
264 bprm->vma = NULL;
265 kmem_cache_free(vm_area_cachep, vma);
266 return err;
269 static bool valid_arg_len(struct linux_binprm *bprm, long len)
271 return len <= MAX_ARG_STRLEN;
274 #else
276 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
277 int write)
279 struct page *page;
281 page = bprm->page[pos / PAGE_SIZE];
282 if (!page && write) {
283 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
284 if (!page)
285 return NULL;
286 bprm->page[pos / PAGE_SIZE] = page;
289 return page;
292 static void put_arg_page(struct page *page)
296 static void free_arg_page(struct linux_binprm *bprm, int i)
298 if (bprm->page[i]) {
299 __free_page(bprm->page[i]);
300 bprm->page[i] = NULL;
304 static void free_arg_pages(struct linux_binprm *bprm)
306 int i;
308 for (i = 0; i < MAX_ARG_PAGES; i++)
309 free_arg_page(bprm, i);
312 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
313 struct page *page)
317 static int __bprm_mm_init(struct linux_binprm *bprm)
319 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
320 return 0;
323 static bool valid_arg_len(struct linux_binprm *bprm, long len)
325 return len <= bprm->p;
328 #endif /* CONFIG_MMU */
331 * Create a new mm_struct and populate it with a temporary stack
332 * vm_area_struct. We don't have enough context at this point to set the stack
333 * flags, permissions, and offset, so we use temporary values. We'll update
334 * them later in setup_arg_pages().
336 int bprm_mm_init(struct linux_binprm *bprm)
338 int err;
339 struct mm_struct *mm = NULL;
341 bprm->mm = mm = mm_alloc();
342 err = -ENOMEM;
343 if (!mm)
344 goto err;
346 err = init_new_context(current, mm);
347 if (err)
348 goto err;
350 err = __bprm_mm_init(bprm);
351 if (err)
352 goto err;
354 return 0;
356 err:
357 if (mm) {
358 bprm->mm = NULL;
359 mmdrop(mm);
362 return err;
366 * count() counts the number of strings in array ARGV.
368 static int count(char __user * __user * argv, int max)
370 int i = 0;
372 if (argv != NULL) {
373 for (;;) {
374 char __user * p;
376 if (get_user(p, argv))
377 return -EFAULT;
378 if (!p)
379 break;
380 argv++;
381 if (i++ >= max)
382 return -E2BIG;
384 if (fatal_signal_pending(current))
385 return -ERESTARTNOHAND;
386 cond_resched();
389 return i;
393 * 'copy_strings()' copies argument/environment strings from the old
394 * processes's memory to the new process's stack. The call to get_user_pages()
395 * ensures the destination page is created and not swapped out.
397 static int copy_strings(int argc, char __user * __user * argv,
398 struct linux_binprm *bprm)
400 struct page *kmapped_page = NULL;
401 char *kaddr = NULL;
402 unsigned long kpos = 0;
403 int ret;
405 while (argc-- > 0) {
406 char __user *str;
407 int len;
408 unsigned long pos;
410 if (get_user(str, argv+argc) ||
411 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
412 ret = -EFAULT;
413 goto out;
416 if (!valid_arg_len(bprm, len)) {
417 ret = -E2BIG;
418 goto out;
421 /* We're going to work our way backwords. */
422 pos = bprm->p;
423 str += len;
424 bprm->p -= len;
426 while (len > 0) {
427 int offset, bytes_to_copy;
429 if (fatal_signal_pending(current)) {
430 ret = -ERESTARTNOHAND;
431 goto out;
433 cond_resched();
435 offset = pos % PAGE_SIZE;
436 if (offset == 0)
437 offset = PAGE_SIZE;
439 bytes_to_copy = offset;
440 if (bytes_to_copy > len)
441 bytes_to_copy = len;
443 offset -= bytes_to_copy;
444 pos -= bytes_to_copy;
445 str -= bytes_to_copy;
446 len -= bytes_to_copy;
448 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
449 struct page *page;
451 page = get_arg_page(bprm, pos, 1);
452 if (!page) {
453 ret = -E2BIG;
454 goto out;
457 if (kmapped_page) {
458 flush_kernel_dcache_page(kmapped_page);
459 kunmap(kmapped_page);
460 put_arg_page(kmapped_page);
462 kmapped_page = page;
463 kaddr = kmap(kmapped_page);
464 kpos = pos & PAGE_MASK;
465 flush_arg_page(bprm, kpos, kmapped_page);
467 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
468 ret = -EFAULT;
469 goto out;
473 ret = 0;
474 out:
475 if (kmapped_page) {
476 flush_kernel_dcache_page(kmapped_page);
477 kunmap(kmapped_page);
478 put_arg_page(kmapped_page);
480 return ret;
484 * Like copy_strings, but get argv and its values from kernel memory.
486 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
488 int r;
489 mm_segment_t oldfs = get_fs();
490 set_fs(KERNEL_DS);
491 r = copy_strings(argc, (char __user * __user *)argv, bprm);
492 set_fs(oldfs);
493 return r;
495 EXPORT_SYMBOL(copy_strings_kernel);
497 #ifdef CONFIG_MMU
500 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
501 * the binfmt code determines where the new stack should reside, we shift it to
502 * its final location. The process proceeds as follows:
504 * 1) Use shift to calculate the new vma endpoints.
505 * 2) Extend vma to cover both the old and new ranges. This ensures the
506 * arguments passed to subsequent functions are consistent.
507 * 3) Move vma's page tables to the new range.
508 * 4) Free up any cleared pgd range.
509 * 5) Shrink the vma to cover only the new range.
511 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
513 struct mm_struct *mm = vma->vm_mm;
514 unsigned long old_start = vma->vm_start;
515 unsigned long old_end = vma->vm_end;
516 unsigned long length = old_end - old_start;
517 unsigned long new_start = old_start - shift;
518 unsigned long new_end = old_end - shift;
519 struct mmu_gather *tlb;
521 BUG_ON(new_start > new_end);
524 * ensure there are no vmas between where we want to go
525 * and where we are
527 if (vma != find_vma(mm, new_start))
528 return -EFAULT;
531 * cover the whole range: [new_start, old_end)
533 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
536 * move the page tables downwards, on failure we rely on
537 * process cleanup to remove whatever mess we made.
539 if (length != move_page_tables(vma, old_start,
540 vma, new_start, length))
541 return -ENOMEM;
543 lru_add_drain();
544 tlb = tlb_gather_mmu(mm, 0);
545 if (new_end > old_start) {
547 * when the old and new regions overlap clear from new_end.
549 free_pgd_range(tlb, new_end, old_end, new_end,
550 vma->vm_next ? vma->vm_next->vm_start : 0);
551 } else {
553 * otherwise, clean from old_start; this is done to not touch
554 * the address space in [new_end, old_start) some architectures
555 * have constraints on va-space that make this illegal (IA64) -
556 * for the others its just a little faster.
558 free_pgd_range(tlb, old_start, old_end, new_end,
559 vma->vm_next ? vma->vm_next->vm_start : 0);
561 tlb_finish_mmu(tlb, new_end, old_end);
564 * shrink the vma to just the new range.
566 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
568 return 0;
571 #define EXTRA_STACK_VM_PAGES 20 /* random */
574 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
575 * the stack is optionally relocated, and some extra space is added.
577 int setup_arg_pages(struct linux_binprm *bprm,
578 unsigned long stack_top,
579 int executable_stack)
581 unsigned long ret;
582 unsigned long stack_shift;
583 struct mm_struct *mm = current->mm;
584 struct vm_area_struct *vma = bprm->vma;
585 struct vm_area_struct *prev = NULL;
586 unsigned long vm_flags;
587 unsigned long stack_base;
588 unsigned long stack_size;
589 unsigned long stack_expand;
590 unsigned long rlim_stack;
592 #ifdef CONFIG_STACK_GROWSUP
593 /* Limit stack size to 1GB */
594 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
595 if (stack_base > (1 << 30))
596 stack_base = 1 << 30;
598 /* Make sure we didn't let the argument array grow too large. */
599 if (vma->vm_end - vma->vm_start > stack_base)
600 return -ENOMEM;
602 stack_base = PAGE_ALIGN(stack_top - stack_base);
604 stack_shift = vma->vm_start - stack_base;
605 mm->arg_start = bprm->p - stack_shift;
606 bprm->p = vma->vm_end - stack_shift;
607 #else
608 stack_top = arch_align_stack(stack_top);
609 stack_top = PAGE_ALIGN(stack_top);
611 if (unlikely(stack_top < mmap_min_addr) ||
612 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
613 return -ENOMEM;
615 stack_shift = vma->vm_end - stack_top;
617 bprm->p -= stack_shift;
618 mm->arg_start = bprm->p;
619 #endif
621 if (bprm->loader)
622 bprm->loader -= stack_shift;
623 bprm->exec -= stack_shift;
625 down_write(&mm->mmap_sem);
626 vm_flags = VM_STACK_FLAGS;
629 * Adjust stack execute permissions; explicitly enable for
630 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
631 * (arch default) otherwise.
633 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
634 vm_flags |= VM_EXEC;
635 else if (executable_stack == EXSTACK_DISABLE_X)
636 vm_flags &= ~VM_EXEC;
637 vm_flags |= mm->def_flags;
639 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
640 vm_flags);
641 if (ret)
642 goto out_unlock;
643 BUG_ON(prev != vma);
645 /* Move stack pages down in memory. */
646 if (stack_shift) {
647 ret = shift_arg_pages(vma, stack_shift);
648 if (ret)
649 goto out_unlock;
652 stack_expand = EXTRA_STACK_VM_PAGES * PAGE_SIZE;
653 stack_size = vma->vm_end - vma->vm_start;
655 * Align this down to a page boundary as expand_stack
656 * will align it up.
658 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
659 #ifdef CONFIG_STACK_GROWSUP
660 if (stack_size + stack_expand > rlim_stack)
661 stack_base = vma->vm_start + rlim_stack;
662 else
663 stack_base = vma->vm_end + stack_expand;
664 #else
665 if (stack_size + stack_expand > rlim_stack)
666 stack_base = vma->vm_end - rlim_stack;
667 else
668 stack_base = vma->vm_start - stack_expand;
669 #endif
670 ret = expand_stack(vma, stack_base);
671 if (ret)
672 ret = -EFAULT;
674 out_unlock:
675 up_write(&mm->mmap_sem);
676 return ret;
678 EXPORT_SYMBOL(setup_arg_pages);
680 #endif /* CONFIG_MMU */
682 struct file *open_exec(const char *name)
684 struct file *file;
685 int err;
687 file = do_filp_open(AT_FDCWD, name,
688 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
689 MAY_EXEC | MAY_OPEN);
690 if (IS_ERR(file))
691 goto out;
693 err = -EACCES;
694 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
695 goto exit;
697 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
698 goto exit;
700 fsnotify_open(file->f_path.dentry);
702 err = deny_write_access(file);
703 if (err)
704 goto exit;
706 out:
707 return file;
709 exit:
710 fput(file);
711 return ERR_PTR(err);
713 EXPORT_SYMBOL(open_exec);
715 int kernel_read(struct file *file, loff_t offset,
716 char *addr, unsigned long count)
718 mm_segment_t old_fs;
719 loff_t pos = offset;
720 int result;
722 old_fs = get_fs();
723 set_fs(get_ds());
724 /* The cast to a user pointer is valid due to the set_fs() */
725 result = vfs_read(file, (void __user *)addr, count, &pos);
726 set_fs(old_fs);
727 return result;
730 EXPORT_SYMBOL(kernel_read);
732 static int exec_mmap(struct mm_struct *mm)
734 struct task_struct *tsk;
735 struct mm_struct * old_mm, *active_mm;
737 /* Notify parent that we're no longer interested in the old VM */
738 tsk = current;
739 old_mm = current->mm;
740 mm_release(tsk, old_mm);
742 if (old_mm) {
744 * Make sure that if there is a core dump in progress
745 * for the old mm, we get out and die instead of going
746 * through with the exec. We must hold mmap_sem around
747 * checking core_state and changing tsk->mm.
749 down_read(&old_mm->mmap_sem);
750 if (unlikely(old_mm->core_state)) {
751 up_read(&old_mm->mmap_sem);
752 return -EINTR;
755 task_lock(tsk);
756 active_mm = tsk->active_mm;
757 tsk->mm = mm;
758 tsk->active_mm = mm;
759 activate_mm(active_mm, mm);
760 task_unlock(tsk);
761 arch_pick_mmap_layout(mm);
762 if (old_mm) {
763 up_read(&old_mm->mmap_sem);
764 BUG_ON(active_mm != old_mm);
765 mm_update_next_owner(old_mm);
766 mmput(old_mm);
767 return 0;
769 mmdrop(active_mm);
770 return 0;
774 * This function makes sure the current process has its own signal table,
775 * so that flush_signal_handlers can later reset the handlers without
776 * disturbing other processes. (Other processes might share the signal
777 * table via the CLONE_SIGHAND option to clone().)
779 static int de_thread(struct task_struct *tsk)
781 struct signal_struct *sig = tsk->signal;
782 struct sighand_struct *oldsighand = tsk->sighand;
783 spinlock_t *lock = &oldsighand->siglock;
784 int count;
786 if (thread_group_empty(tsk))
787 goto no_thread_group;
790 * Kill all other threads in the thread group.
792 spin_lock_irq(lock);
793 if (signal_group_exit(sig)) {
795 * Another group action in progress, just
796 * return so that the signal is processed.
798 spin_unlock_irq(lock);
799 return -EAGAIN;
801 sig->group_exit_task = tsk;
802 zap_other_threads(tsk);
804 /* Account for the thread group leader hanging around: */
805 count = thread_group_leader(tsk) ? 1 : 2;
806 sig->notify_count = count;
807 while (atomic_read(&sig->count) > count) {
808 __set_current_state(TASK_UNINTERRUPTIBLE);
809 spin_unlock_irq(lock);
810 schedule();
811 spin_lock_irq(lock);
813 spin_unlock_irq(lock);
816 * At this point all other threads have exited, all we have to
817 * do is to wait for the thread group leader to become inactive,
818 * and to assume its PID:
820 if (!thread_group_leader(tsk)) {
821 struct task_struct *leader = tsk->group_leader;
823 sig->notify_count = -1; /* for exit_notify() */
824 for (;;) {
825 write_lock_irq(&tasklist_lock);
826 if (likely(leader->exit_state))
827 break;
828 __set_current_state(TASK_UNINTERRUPTIBLE);
829 write_unlock_irq(&tasklist_lock);
830 schedule();
834 * The only record we have of the real-time age of a
835 * process, regardless of execs it's done, is start_time.
836 * All the past CPU time is accumulated in signal_struct
837 * from sister threads now dead. But in this non-leader
838 * exec, nothing survives from the original leader thread,
839 * whose birth marks the true age of this process now.
840 * When we take on its identity by switching to its PID, we
841 * also take its birthdate (always earlier than our own).
843 tsk->start_time = leader->start_time;
845 BUG_ON(!same_thread_group(leader, tsk));
846 BUG_ON(has_group_leader_pid(tsk));
848 * An exec() starts a new thread group with the
849 * TGID of the previous thread group. Rehash the
850 * two threads with a switched PID, and release
851 * the former thread group leader:
854 /* Become a process group leader with the old leader's pid.
855 * The old leader becomes a thread of the this thread group.
856 * Note: The old leader also uses this pid until release_task
857 * is called. Odd but simple and correct.
859 detach_pid(tsk, PIDTYPE_PID);
860 tsk->pid = leader->pid;
861 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
862 transfer_pid(leader, tsk, PIDTYPE_PGID);
863 transfer_pid(leader, tsk, PIDTYPE_SID);
865 list_replace_rcu(&leader->tasks, &tsk->tasks);
866 list_replace_init(&leader->sibling, &tsk->sibling);
868 tsk->group_leader = tsk;
869 leader->group_leader = tsk;
871 tsk->exit_signal = SIGCHLD;
873 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
874 leader->exit_state = EXIT_DEAD;
875 write_unlock_irq(&tasklist_lock);
877 release_task(leader);
880 sig->group_exit_task = NULL;
881 sig->notify_count = 0;
883 no_thread_group:
884 if (current->mm)
885 setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
887 exit_itimers(sig);
888 flush_itimer_signals();
890 if (atomic_read(&oldsighand->count) != 1) {
891 struct sighand_struct *newsighand;
893 * This ->sighand is shared with the CLONE_SIGHAND
894 * but not CLONE_THREAD task, switch to the new one.
896 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
897 if (!newsighand)
898 return -ENOMEM;
900 atomic_set(&newsighand->count, 1);
901 memcpy(newsighand->action, oldsighand->action,
902 sizeof(newsighand->action));
904 write_lock_irq(&tasklist_lock);
905 spin_lock(&oldsighand->siglock);
906 rcu_assign_pointer(tsk->sighand, newsighand);
907 spin_unlock(&oldsighand->siglock);
908 write_unlock_irq(&tasklist_lock);
910 __cleanup_sighand(oldsighand);
913 BUG_ON(!thread_group_leader(tsk));
914 return 0;
918 * These functions flushes out all traces of the currently running executable
919 * so that a new one can be started
921 static void flush_old_files(struct files_struct * files)
923 long j = -1;
924 struct fdtable *fdt;
926 spin_lock(&files->file_lock);
927 for (;;) {
928 unsigned long set, i;
930 j++;
931 i = j * __NFDBITS;
932 fdt = files_fdtable(files);
933 if (i >= fdt->max_fds)
934 break;
935 set = fdt->close_on_exec->fds_bits[j];
936 if (!set)
937 continue;
938 fdt->close_on_exec->fds_bits[j] = 0;
939 spin_unlock(&files->file_lock);
940 for ( ; set ; i++,set >>= 1) {
941 if (set & 1) {
942 sys_close(i);
945 spin_lock(&files->file_lock);
948 spin_unlock(&files->file_lock);
951 char *get_task_comm(char *buf, struct task_struct *tsk)
953 /* buf must be at least sizeof(tsk->comm) in size */
954 task_lock(tsk);
955 strncpy(buf, tsk->comm, sizeof(tsk->comm));
956 task_unlock(tsk);
957 return buf;
960 void set_task_comm(struct task_struct *tsk, char *buf)
962 task_lock(tsk);
965 * Threads may access current->comm without holding
966 * the task lock, so write the string carefully.
967 * Readers without a lock may see incomplete new
968 * names but are safe from non-terminating string reads.
970 memset(tsk->comm, 0, TASK_COMM_LEN);
971 wmb();
972 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
973 task_unlock(tsk);
974 perf_event_comm(tsk);
977 int flush_old_exec(struct linux_binprm * bprm)
979 int retval;
982 * Make sure we have a private signal table and that
983 * we are unassociated from the previous thread group.
985 retval = de_thread(current);
986 if (retval)
987 goto out;
989 set_mm_exe_file(bprm->mm, bprm->file);
992 * Release all of the old mmap stuff
994 retval = exec_mmap(bprm->mm);
995 if (retval)
996 goto out;
998 bprm->mm = NULL; /* We're using it now */
1000 current->flags &= ~PF_RANDOMIZE;
1001 flush_thread();
1002 current->personality &= ~bprm->per_clear;
1004 return 0;
1006 out:
1007 return retval;
1009 EXPORT_SYMBOL(flush_old_exec);
1011 void setup_new_exec(struct linux_binprm * bprm)
1013 int i, ch;
1014 char * name;
1015 char tcomm[sizeof(current->comm)];
1017 arch_pick_mmap_layout(current->mm);
1019 /* This is the point of no return */
1020 current->sas_ss_sp = current->sas_ss_size = 0;
1022 if (current_euid() == current_uid() && current_egid() == current_gid())
1023 set_dumpable(current->mm, 1);
1024 else
1025 set_dumpable(current->mm, suid_dumpable);
1027 name = bprm->filename;
1029 /* Copies the binary name from after last slash */
1030 for (i=0; (ch = *(name++)) != '\0';) {
1031 if (ch == '/')
1032 i = 0; /* overwrite what we wrote */
1033 else
1034 if (i < (sizeof(tcomm) - 1))
1035 tcomm[i++] = ch;
1037 tcomm[i] = '\0';
1038 set_task_comm(current, tcomm);
1040 /* Set the new mm task size. We have to do that late because it may
1041 * depend on TIF_32BIT which is only updated in flush_thread() on
1042 * some architectures like powerpc
1044 current->mm->task_size = TASK_SIZE;
1046 /* install the new credentials */
1047 if (bprm->cred->uid != current_euid() ||
1048 bprm->cred->gid != current_egid()) {
1049 current->pdeath_signal = 0;
1050 } else if (file_permission(bprm->file, MAY_READ) ||
1051 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1052 set_dumpable(current->mm, suid_dumpable);
1056 * Flush performance counters when crossing a
1057 * security domain:
1059 if (!get_dumpable(current->mm))
1060 perf_event_exit_task(current);
1062 /* An exec changes our domain. We are no longer part of the thread
1063 group */
1065 current->self_exec_id++;
1067 flush_signal_handlers(current, 0);
1068 flush_old_files(current->files);
1070 EXPORT_SYMBOL(setup_new_exec);
1073 * Prepare credentials and lock ->cred_guard_mutex.
1074 * install_exec_creds() commits the new creds and drops the lock.
1075 * Or, if exec fails before, free_bprm() should release ->cred and
1076 * and unlock.
1078 int prepare_bprm_creds(struct linux_binprm *bprm)
1080 if (mutex_lock_interruptible(&current->cred_guard_mutex))
1081 return -ERESTARTNOINTR;
1083 bprm->cred = prepare_exec_creds();
1084 if (likely(bprm->cred))
1085 return 0;
1087 mutex_unlock(&current->cred_guard_mutex);
1088 return -ENOMEM;
1091 void free_bprm(struct linux_binprm *bprm)
1093 free_arg_pages(bprm);
1094 if (bprm->cred) {
1095 mutex_unlock(&current->cred_guard_mutex);
1096 abort_creds(bprm->cred);
1098 kfree(bprm);
1102 * install the new credentials for this executable
1104 void install_exec_creds(struct linux_binprm *bprm)
1106 security_bprm_committing_creds(bprm);
1108 commit_creds(bprm->cred);
1109 bprm->cred = NULL;
1111 * cred_guard_mutex must be held at least to this point to prevent
1112 * ptrace_attach() from altering our determination of the task's
1113 * credentials; any time after this it may be unlocked.
1115 security_bprm_committed_creds(bprm);
1116 mutex_unlock(&current->cred_guard_mutex);
1118 EXPORT_SYMBOL(install_exec_creds);
1121 * determine how safe it is to execute the proposed program
1122 * - the caller must hold current->cred_guard_mutex to protect against
1123 * PTRACE_ATTACH
1125 int check_unsafe_exec(struct linux_binprm *bprm)
1127 struct task_struct *p = current, *t;
1128 unsigned n_fs;
1129 int res = 0;
1131 bprm->unsafe = tracehook_unsafe_exec(p);
1133 n_fs = 1;
1134 write_lock(&p->fs->lock);
1135 rcu_read_lock();
1136 for (t = next_thread(p); t != p; t = next_thread(t)) {
1137 if (t->fs == p->fs)
1138 n_fs++;
1140 rcu_read_unlock();
1142 if (p->fs->users > n_fs) {
1143 bprm->unsafe |= LSM_UNSAFE_SHARE;
1144 } else {
1145 res = -EAGAIN;
1146 if (!p->fs->in_exec) {
1147 p->fs->in_exec = 1;
1148 res = 1;
1151 write_unlock(&p->fs->lock);
1153 return res;
1157 * Fill the binprm structure from the inode.
1158 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1160 * This may be called multiple times for binary chains (scripts for example).
1162 int prepare_binprm(struct linux_binprm *bprm)
1164 umode_t mode;
1165 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1166 int retval;
1168 mode = inode->i_mode;
1169 if (bprm->file->f_op == NULL)
1170 return -EACCES;
1172 /* clear any previous set[ug]id data from a previous binary */
1173 bprm->cred->euid = current_euid();
1174 bprm->cred->egid = current_egid();
1176 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1177 /* Set-uid? */
1178 if (mode & S_ISUID) {
1179 bprm->per_clear |= PER_CLEAR_ON_SETID;
1180 bprm->cred->euid = inode->i_uid;
1183 /* Set-gid? */
1185 * If setgid is set but no group execute bit then this
1186 * is a candidate for mandatory locking, not a setgid
1187 * executable.
1189 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1190 bprm->per_clear |= PER_CLEAR_ON_SETID;
1191 bprm->cred->egid = inode->i_gid;
1195 /* fill in binprm security blob */
1196 retval = security_bprm_set_creds(bprm);
1197 if (retval)
1198 return retval;
1199 bprm->cred_prepared = 1;
1201 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1202 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1205 EXPORT_SYMBOL(prepare_binprm);
1208 * Arguments are '\0' separated strings found at the location bprm->p
1209 * points to; chop off the first by relocating brpm->p to right after
1210 * the first '\0' encountered.
1212 int remove_arg_zero(struct linux_binprm *bprm)
1214 int ret = 0;
1215 unsigned long offset;
1216 char *kaddr;
1217 struct page *page;
1219 if (!bprm->argc)
1220 return 0;
1222 do {
1223 offset = bprm->p & ~PAGE_MASK;
1224 page = get_arg_page(bprm, bprm->p, 0);
1225 if (!page) {
1226 ret = -EFAULT;
1227 goto out;
1229 kaddr = kmap_atomic(page, KM_USER0);
1231 for (; offset < PAGE_SIZE && kaddr[offset];
1232 offset++, bprm->p++)
1235 kunmap_atomic(kaddr, KM_USER0);
1236 put_arg_page(page);
1238 if (offset == PAGE_SIZE)
1239 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1240 } while (offset == PAGE_SIZE);
1242 bprm->p++;
1243 bprm->argc--;
1244 ret = 0;
1246 out:
1247 return ret;
1249 EXPORT_SYMBOL(remove_arg_zero);
1252 * cycle the list of binary formats handler, until one recognizes the image
1254 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1256 unsigned int depth = bprm->recursion_depth;
1257 int try,retval;
1258 struct linux_binfmt *fmt;
1260 retval = security_bprm_check(bprm);
1261 if (retval)
1262 return retval;
1264 /* kernel module loader fixup */
1265 /* so we don't try to load run modprobe in kernel space. */
1266 set_fs(USER_DS);
1268 retval = audit_bprm(bprm);
1269 if (retval)
1270 return retval;
1272 retval = -ENOENT;
1273 for (try=0; try<2; try++) {
1274 read_lock(&binfmt_lock);
1275 list_for_each_entry(fmt, &formats, lh) {
1276 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1277 if (!fn)
1278 continue;
1279 if (!try_module_get(fmt->module))
1280 continue;
1281 read_unlock(&binfmt_lock);
1282 retval = fn(bprm, regs);
1284 * Restore the depth counter to its starting value
1285 * in this call, so we don't have to rely on every
1286 * load_binary function to restore it on return.
1288 bprm->recursion_depth = depth;
1289 if (retval >= 0) {
1290 if (depth == 0)
1291 tracehook_report_exec(fmt, bprm, regs);
1292 put_binfmt(fmt);
1293 allow_write_access(bprm->file);
1294 if (bprm->file)
1295 fput(bprm->file);
1296 bprm->file = NULL;
1297 current->did_exec = 1;
1298 proc_exec_connector(current);
1299 return retval;
1301 read_lock(&binfmt_lock);
1302 put_binfmt(fmt);
1303 if (retval != -ENOEXEC || bprm->mm == NULL)
1304 break;
1305 if (!bprm->file) {
1306 read_unlock(&binfmt_lock);
1307 return retval;
1310 read_unlock(&binfmt_lock);
1311 if (retval != -ENOEXEC || bprm->mm == NULL) {
1312 break;
1313 #ifdef CONFIG_MODULES
1314 } else {
1315 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1316 if (printable(bprm->buf[0]) &&
1317 printable(bprm->buf[1]) &&
1318 printable(bprm->buf[2]) &&
1319 printable(bprm->buf[3]))
1320 break; /* -ENOEXEC */
1321 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1322 #endif
1325 return retval;
1328 EXPORT_SYMBOL(search_binary_handler);
1331 * sys_execve() executes a new program.
1333 int do_execve(char * filename,
1334 char __user *__user *argv,
1335 char __user *__user *envp,
1336 struct pt_regs * regs)
1338 struct linux_binprm *bprm;
1339 struct file *file;
1340 struct files_struct *displaced;
1341 bool clear_in_exec;
1342 int retval;
1344 retval = unshare_files(&displaced);
1345 if (retval)
1346 goto out_ret;
1348 retval = -ENOMEM;
1349 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1350 if (!bprm)
1351 goto out_files;
1353 retval = prepare_bprm_creds(bprm);
1354 if (retval)
1355 goto out_free;
1357 retval = check_unsafe_exec(bprm);
1358 if (retval < 0)
1359 goto out_free;
1360 clear_in_exec = retval;
1361 current->in_execve = 1;
1363 file = open_exec(filename);
1364 retval = PTR_ERR(file);
1365 if (IS_ERR(file))
1366 goto out_unmark;
1368 sched_exec();
1370 bprm->file = file;
1371 bprm->filename = filename;
1372 bprm->interp = filename;
1374 retval = bprm_mm_init(bprm);
1375 if (retval)
1376 goto out_file;
1378 bprm->argc = count(argv, MAX_ARG_STRINGS);
1379 if ((retval = bprm->argc) < 0)
1380 goto out;
1382 bprm->envc = count(envp, MAX_ARG_STRINGS);
1383 if ((retval = bprm->envc) < 0)
1384 goto out;
1386 retval = prepare_binprm(bprm);
1387 if (retval < 0)
1388 goto out;
1390 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1391 if (retval < 0)
1392 goto out;
1394 bprm->exec = bprm->p;
1395 retval = copy_strings(bprm->envc, envp, bprm);
1396 if (retval < 0)
1397 goto out;
1399 retval = copy_strings(bprm->argc, argv, bprm);
1400 if (retval < 0)
1401 goto out;
1403 current->flags &= ~PF_KTHREAD;
1404 retval = search_binary_handler(bprm,regs);
1405 if (retval < 0)
1406 goto out;
1408 /* execve succeeded */
1409 current->fs->in_exec = 0;
1410 current->in_execve = 0;
1411 acct_update_integrals(current);
1412 free_bprm(bprm);
1413 if (displaced)
1414 put_files_struct(displaced);
1415 return retval;
1417 out:
1418 if (bprm->mm)
1419 mmput (bprm->mm);
1421 out_file:
1422 if (bprm->file) {
1423 allow_write_access(bprm->file);
1424 fput(bprm->file);
1427 out_unmark:
1428 if (clear_in_exec)
1429 current->fs->in_exec = 0;
1430 current->in_execve = 0;
1432 out_free:
1433 free_bprm(bprm);
1435 out_files:
1436 if (displaced)
1437 reset_files_struct(displaced);
1438 out_ret:
1439 return retval;
1442 void set_binfmt(struct linux_binfmt *new)
1444 struct mm_struct *mm = current->mm;
1446 if (mm->binfmt)
1447 module_put(mm->binfmt->module);
1449 mm->binfmt = new;
1450 if (new)
1451 __module_get(new->module);
1454 EXPORT_SYMBOL(set_binfmt);
1456 /* format_corename will inspect the pattern parameter, and output a
1457 * name into corename, which must have space for at least
1458 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1460 static int format_corename(char *corename, long signr)
1462 const struct cred *cred = current_cred();
1463 const char *pat_ptr = core_pattern;
1464 int ispipe = (*pat_ptr == '|');
1465 char *out_ptr = corename;
1466 char *const out_end = corename + CORENAME_MAX_SIZE;
1467 int rc;
1468 int pid_in_pattern = 0;
1470 /* Repeat as long as we have more pattern to process and more output
1471 space */
1472 while (*pat_ptr) {
1473 if (*pat_ptr != '%') {
1474 if (out_ptr == out_end)
1475 goto out;
1476 *out_ptr++ = *pat_ptr++;
1477 } else {
1478 switch (*++pat_ptr) {
1479 case 0:
1480 goto out;
1481 /* Double percent, output one percent */
1482 case '%':
1483 if (out_ptr == out_end)
1484 goto out;
1485 *out_ptr++ = '%';
1486 break;
1487 /* pid */
1488 case 'p':
1489 pid_in_pattern = 1;
1490 rc = snprintf(out_ptr, out_end - out_ptr,
1491 "%d", task_tgid_vnr(current));
1492 if (rc > out_end - out_ptr)
1493 goto out;
1494 out_ptr += rc;
1495 break;
1496 /* uid */
1497 case 'u':
1498 rc = snprintf(out_ptr, out_end - out_ptr,
1499 "%d", cred->uid);
1500 if (rc > out_end - out_ptr)
1501 goto out;
1502 out_ptr += rc;
1503 break;
1504 /* gid */
1505 case 'g':
1506 rc = snprintf(out_ptr, out_end - out_ptr,
1507 "%d", cred->gid);
1508 if (rc > out_end - out_ptr)
1509 goto out;
1510 out_ptr += rc;
1511 break;
1512 /* signal that caused the coredump */
1513 case 's':
1514 rc = snprintf(out_ptr, out_end - out_ptr,
1515 "%ld", signr);
1516 if (rc > out_end - out_ptr)
1517 goto out;
1518 out_ptr += rc;
1519 break;
1520 /* UNIX time of coredump */
1521 case 't': {
1522 struct timeval tv;
1523 do_gettimeofday(&tv);
1524 rc = snprintf(out_ptr, out_end - out_ptr,
1525 "%lu", tv.tv_sec);
1526 if (rc > out_end - out_ptr)
1527 goto out;
1528 out_ptr += rc;
1529 break;
1531 /* hostname */
1532 case 'h':
1533 down_read(&uts_sem);
1534 rc = snprintf(out_ptr, out_end - out_ptr,
1535 "%s", utsname()->nodename);
1536 up_read(&uts_sem);
1537 if (rc > out_end - out_ptr)
1538 goto out;
1539 out_ptr += rc;
1540 break;
1541 /* executable */
1542 case 'e':
1543 rc = snprintf(out_ptr, out_end - out_ptr,
1544 "%s", current->comm);
1545 if (rc > out_end - out_ptr)
1546 goto out;
1547 out_ptr += rc;
1548 break;
1549 /* core limit size */
1550 case 'c':
1551 rc = snprintf(out_ptr, out_end - out_ptr,
1552 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1553 if (rc > out_end - out_ptr)
1554 goto out;
1555 out_ptr += rc;
1556 break;
1557 default:
1558 break;
1560 ++pat_ptr;
1563 /* Backward compatibility with core_uses_pid:
1565 * If core_pattern does not include a %p (as is the default)
1566 * and core_uses_pid is set, then .%pid will be appended to
1567 * the filename. Do not do this for piped commands. */
1568 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1569 rc = snprintf(out_ptr, out_end - out_ptr,
1570 ".%d", task_tgid_vnr(current));
1571 if (rc > out_end - out_ptr)
1572 goto out;
1573 out_ptr += rc;
1575 out:
1576 *out_ptr = 0;
1577 return ispipe;
1580 static int zap_process(struct task_struct *start)
1582 struct task_struct *t;
1583 int nr = 0;
1585 start->signal->flags = SIGNAL_GROUP_EXIT;
1586 start->signal->group_stop_count = 0;
1588 t = start;
1589 do {
1590 if (t != current && t->mm) {
1591 sigaddset(&t->pending.signal, SIGKILL);
1592 signal_wake_up(t, 1);
1593 nr++;
1595 } while_each_thread(start, t);
1597 return nr;
1600 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1601 struct core_state *core_state, int exit_code)
1603 struct task_struct *g, *p;
1604 unsigned long flags;
1605 int nr = -EAGAIN;
1607 spin_lock_irq(&tsk->sighand->siglock);
1608 if (!signal_group_exit(tsk->signal)) {
1609 mm->core_state = core_state;
1610 tsk->signal->group_exit_code = exit_code;
1611 nr = zap_process(tsk);
1613 spin_unlock_irq(&tsk->sighand->siglock);
1614 if (unlikely(nr < 0))
1615 return nr;
1617 if (atomic_read(&mm->mm_users) == nr + 1)
1618 goto done;
1620 * We should find and kill all tasks which use this mm, and we should
1621 * count them correctly into ->nr_threads. We don't take tasklist
1622 * lock, but this is safe wrt:
1624 * fork:
1625 * None of sub-threads can fork after zap_process(leader). All
1626 * processes which were created before this point should be
1627 * visible to zap_threads() because copy_process() adds the new
1628 * process to the tail of init_task.tasks list, and lock/unlock
1629 * of ->siglock provides a memory barrier.
1631 * do_exit:
1632 * The caller holds mm->mmap_sem. This means that the task which
1633 * uses this mm can't pass exit_mm(), so it can't exit or clear
1634 * its ->mm.
1636 * de_thread:
1637 * It does list_replace_rcu(&leader->tasks, &current->tasks),
1638 * we must see either old or new leader, this does not matter.
1639 * However, it can change p->sighand, so lock_task_sighand(p)
1640 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1641 * it can't fail.
1643 * Note also that "g" can be the old leader with ->mm == NULL
1644 * and already unhashed and thus removed from ->thread_group.
1645 * This is OK, __unhash_process()->list_del_rcu() does not
1646 * clear the ->next pointer, we will find the new leader via
1647 * next_thread().
1649 rcu_read_lock();
1650 for_each_process(g) {
1651 if (g == tsk->group_leader)
1652 continue;
1653 if (g->flags & PF_KTHREAD)
1654 continue;
1655 p = g;
1656 do {
1657 if (p->mm) {
1658 if (unlikely(p->mm == mm)) {
1659 lock_task_sighand(p, &flags);
1660 nr += zap_process(p);
1661 unlock_task_sighand(p, &flags);
1663 break;
1665 } while_each_thread(g, p);
1667 rcu_read_unlock();
1668 done:
1669 atomic_set(&core_state->nr_threads, nr);
1670 return nr;
1673 static int coredump_wait(int exit_code, struct core_state *core_state)
1675 struct task_struct *tsk = current;
1676 struct mm_struct *mm = tsk->mm;
1677 struct completion *vfork_done;
1678 int core_waiters;
1680 init_completion(&core_state->startup);
1681 core_state->dumper.task = tsk;
1682 core_state->dumper.next = NULL;
1683 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1684 up_write(&mm->mmap_sem);
1686 if (unlikely(core_waiters < 0))
1687 goto fail;
1690 * Make sure nobody is waiting for us to release the VM,
1691 * otherwise we can deadlock when we wait on each other
1693 vfork_done = tsk->vfork_done;
1694 if (vfork_done) {
1695 tsk->vfork_done = NULL;
1696 complete(vfork_done);
1699 if (core_waiters)
1700 wait_for_completion(&core_state->startup);
1701 fail:
1702 return core_waiters;
1705 static void coredump_finish(struct mm_struct *mm)
1707 struct core_thread *curr, *next;
1708 struct task_struct *task;
1710 next = mm->core_state->dumper.next;
1711 while ((curr = next) != NULL) {
1712 next = curr->next;
1713 task = curr->task;
1715 * see exit_mm(), curr->task must not see
1716 * ->task == NULL before we read ->next.
1718 smp_mb();
1719 curr->task = NULL;
1720 wake_up_process(task);
1723 mm->core_state = NULL;
1727 * set_dumpable converts traditional three-value dumpable to two flags and
1728 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1729 * these bits are not changed atomically. So get_dumpable can observe the
1730 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1731 * return either old dumpable or new one by paying attention to the order of
1732 * modifying the bits.
1734 * dumpable | mm->flags (binary)
1735 * old new | initial interim final
1736 * ---------+-----------------------
1737 * 0 1 | 00 01 01
1738 * 0 2 | 00 10(*) 11
1739 * 1 0 | 01 00 00
1740 * 1 2 | 01 11 11
1741 * 2 0 | 11 10(*) 00
1742 * 2 1 | 11 11 01
1744 * (*) get_dumpable regards interim value of 10 as 11.
1746 void set_dumpable(struct mm_struct *mm, int value)
1748 switch (value) {
1749 case 0:
1750 clear_bit(MMF_DUMPABLE, &mm->flags);
1751 smp_wmb();
1752 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1753 break;
1754 case 1:
1755 set_bit(MMF_DUMPABLE, &mm->flags);
1756 smp_wmb();
1757 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1758 break;
1759 case 2:
1760 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1761 smp_wmb();
1762 set_bit(MMF_DUMPABLE, &mm->flags);
1763 break;
1767 int get_dumpable(struct mm_struct *mm)
1769 int ret;
1771 ret = mm->flags & 0x3;
1772 return (ret >= 2) ? 2 : ret;
1775 static void wait_for_dump_helpers(struct file *file)
1777 struct pipe_inode_info *pipe;
1779 pipe = file->f_path.dentry->d_inode->i_pipe;
1781 pipe_lock(pipe);
1782 pipe->readers++;
1783 pipe->writers--;
1785 while ((pipe->readers > 1) && (!signal_pending(current))) {
1786 wake_up_interruptible_sync(&pipe->wait);
1787 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1788 pipe_wait(pipe);
1791 pipe->readers--;
1792 pipe->writers++;
1793 pipe_unlock(pipe);
1798 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1800 struct core_state core_state;
1801 char corename[CORENAME_MAX_SIZE + 1];
1802 struct mm_struct *mm = current->mm;
1803 struct linux_binfmt * binfmt;
1804 struct inode * inode;
1805 const struct cred *old_cred;
1806 struct cred *cred;
1807 int retval = 0;
1808 int flag = 0;
1809 int ispipe = 0;
1810 char **helper_argv = NULL;
1811 int helper_argc = 0;
1812 int dump_count = 0;
1813 static atomic_t core_dump_count = ATOMIC_INIT(0);
1814 struct coredump_params cprm = {
1815 .signr = signr,
1816 .regs = regs,
1817 .limit = current->signal->rlim[RLIMIT_CORE].rlim_cur,
1820 audit_core_dumps(signr);
1822 binfmt = mm->binfmt;
1823 if (!binfmt || !binfmt->core_dump)
1824 goto fail;
1826 cred = prepare_creds();
1827 if (!cred) {
1828 retval = -ENOMEM;
1829 goto fail;
1832 down_write(&mm->mmap_sem);
1834 * If another thread got here first, or we are not dumpable, bail out.
1836 if (mm->core_state || !get_dumpable(mm)) {
1837 up_write(&mm->mmap_sem);
1838 put_cred(cred);
1839 goto fail;
1843 * We cannot trust fsuid as being the "true" uid of the
1844 * process nor do we know its entire history. We only know it
1845 * was tainted so we dump it as root in mode 2.
1847 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
1848 flag = O_EXCL; /* Stop rewrite attacks */
1849 cred->fsuid = 0; /* Dump root private */
1852 retval = coredump_wait(exit_code, &core_state);
1853 if (retval < 0) {
1854 put_cred(cred);
1855 goto fail;
1858 old_cred = override_creds(cred);
1861 * Clear any false indication of pending signals that might
1862 * be seen by the filesystem code called to write the core file.
1864 clear_thread_flag(TIF_SIGPENDING);
1867 * lock_kernel() because format_corename() is controlled by sysctl, which
1868 * uses lock_kernel()
1870 lock_kernel();
1871 ispipe = format_corename(corename, signr);
1872 unlock_kernel();
1874 if ((!ispipe) && (cprm.limit < binfmt->min_coredump))
1875 goto fail_unlock;
1877 if (ispipe) {
1878 if (cprm.limit == 0) {
1880 * Normally core limits are irrelevant to pipes, since
1881 * we're not writing to the file system, but we use
1882 * cprm.limit of 0 here as a speacial value. Any
1883 * non-zero limit gets set to RLIM_INFINITY below, but
1884 * a limit of 0 skips the dump. This is a consistent
1885 * way to catch recursive crashes. We can still crash
1886 * if the core_pattern binary sets RLIM_CORE = !0
1887 * but it runs as root, and can do lots of stupid things
1888 * Note that we use task_tgid_vnr here to grab the pid
1889 * of the process group leader. That way we get the
1890 * right pid if a thread in a multi-threaded
1891 * core_pattern process dies.
1893 printk(KERN_WARNING
1894 "Process %d(%s) has RLIMIT_CORE set to 0\n",
1895 task_tgid_vnr(current), current->comm);
1896 printk(KERN_WARNING "Aborting core\n");
1897 goto fail_unlock;
1900 dump_count = atomic_inc_return(&core_dump_count);
1901 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
1902 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
1903 task_tgid_vnr(current), current->comm);
1904 printk(KERN_WARNING "Skipping core dump\n");
1905 goto fail_dropcount;
1908 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1909 if (!helper_argv) {
1910 printk(KERN_WARNING "%s failed to allocate memory\n",
1911 __func__);
1912 goto fail_dropcount;
1915 cprm.limit = RLIM_INFINITY;
1917 /* SIGPIPE can happen, but it's just never processed */
1918 if (call_usermodehelper_pipe(helper_argv[0], helper_argv, NULL,
1919 &cprm.file)) {
1920 printk(KERN_INFO "Core dump to %s pipe failed\n",
1921 corename);
1922 goto fail_dropcount;
1924 } else
1925 cprm.file = filp_open(corename,
1926 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1927 0600);
1928 if (IS_ERR(cprm.file))
1929 goto fail_dropcount;
1930 inode = cprm.file->f_path.dentry->d_inode;
1931 if (inode->i_nlink > 1)
1932 goto close_fail; /* multiple links - don't dump */
1933 if (!ispipe && d_unhashed(cprm.file->f_path.dentry))
1934 goto close_fail;
1936 /* AK: actually i see no reason to not allow this for named pipes etc.,
1937 but keep the previous behaviour for now. */
1938 if (!ispipe && !S_ISREG(inode->i_mode))
1939 goto close_fail;
1941 * Dont allow local users get cute and trick others to coredump
1942 * into their pre-created files:
1943 * Note, this is not relevant for pipes
1945 if (!ispipe && (inode->i_uid != current_fsuid()))
1946 goto close_fail;
1947 if (!cprm.file->f_op)
1948 goto close_fail;
1949 if (!cprm.file->f_op->write)
1950 goto close_fail;
1951 if (!ispipe &&
1952 do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file) != 0)
1953 goto close_fail;
1955 retval = binfmt->core_dump(&cprm);
1957 if (retval)
1958 current->signal->group_exit_code |= 0x80;
1959 close_fail:
1960 if (ispipe && core_pipe_limit)
1961 wait_for_dump_helpers(cprm.file);
1962 filp_close(cprm.file, NULL);
1963 fail_dropcount:
1964 if (dump_count)
1965 atomic_dec(&core_dump_count);
1966 fail_unlock:
1967 if (helper_argv)
1968 argv_free(helper_argv);
1970 revert_creds(old_cred);
1971 put_cred(cred);
1972 coredump_finish(mm);
1973 fail:
1974 return;