4 * Creates entries in /proc/sal for various system features.
6 * Copyright (c) 2003, 2006 Silicon Graphics, Inc. All rights reserved.
7 * Copyright (c) 2003 Hewlett-Packard Co
8 * Bjorn Helgaas <bjorn.helgaas@hp.com>
10 * 10/30/2001 jbarnes@sgi.com copied much of Stephane's palinfo
11 * code to create this file
12 * Oct 23 2003 kaos@sgi.com
13 * Replace IPI with set_cpus_allowed() to read a record from the required cpu.
14 * Redesign salinfo log processing to separate interrupt and user space
16 * Cache the record across multi-block reads from user space.
18 * Delete module_exit and MOD_INC/DEC_COUNT, salinfo cannot be a module.
20 * Jan 28 2004 kaos@sgi.com
21 * Periodically check for outstanding MCA or INIT records.
23 * Dec 5 2004 kaos@sgi.com
24 * Standardize which records are cleared automatically.
26 * Aug 18 2005 kaos@sgi.com
27 * mca.c may not pass a buffer, a NULL buffer just indicates that a new
28 * record is available in SAL.
29 * Replace some NR_CPUS by cpus_online, for hotplug cpu.
31 * Jan 5 2006 kaos@sgi.com
32 * Handle hotplug cpus coming online.
33 * Handle hotplug cpus going offline while they still have outstanding records.
34 * Use the cpu_* macros consistently.
35 * Replace the counting semaphore with a mutex and a test if the cpumask is non-empty.
36 * Modify the locking to make the test for "work to do" an atomic operation.
39 #include <linux/capability.h>
40 #include <linux/cpu.h>
41 #include <linux/types.h>
42 #include <linux/proc_fs.h>
43 #include <linux/module.h>
44 #include <linux/smp.h>
45 #include <linux/timer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/semaphore.h>
50 #include <asm/uaccess.h>
52 MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>");
53 MODULE_DESCRIPTION("/proc interface to IA-64 SAL features");
54 MODULE_LICENSE("GPL");
56 static int salinfo_read(char *page
, char **start
, off_t off
, int count
, int *eof
, void *data
);
59 const char *name
; /* name of the proc entry */
60 unsigned long feature
; /* feature bit */
61 struct proc_dir_entry
*entry
; /* registered entry (removal) */
65 * List {name,feature} pairs for every entry in /proc/sal/<feature>
66 * that this module exports
68 static salinfo_entry_t salinfo_entries
[]={
69 { "bus_lock", IA64_SAL_PLATFORM_FEATURE_BUS_LOCK
, },
70 { "irq_redirection", IA64_SAL_PLATFORM_FEATURE_IRQ_REDIR_HINT
, },
71 { "ipi_redirection", IA64_SAL_PLATFORM_FEATURE_IPI_REDIR_HINT
, },
72 { "itc_drift", IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT
, },
75 #define NR_SALINFO_ENTRIES ARRAY_SIZE(salinfo_entries)
77 static char *salinfo_log_name
[] = {
84 static struct proc_dir_entry
*salinfo_proc_entries
[
85 ARRAY_SIZE(salinfo_entries
) + /* /proc/sal/bus_lock */
86 ARRAY_SIZE(salinfo_log_name
) + /* /proc/sal/{mca,...} */
87 (2 * ARRAY_SIZE(salinfo_log_name
)) + /* /proc/sal/mca/{event,data} */
90 /* Some records we get ourselves, some are accessed as saved data in buffers
91 * that are owned by mca.c.
93 struct salinfo_data_saved
{
100 /* State transitions. Actions are :-
101 * Write "read <cpunum>" to the data file.
102 * Write "clear <cpunum>" to the data file.
103 * Write "oemdata <cpunum> <offset> to the data file.
104 * Read from the data file.
105 * Close the data file.
107 * Start state is NO_DATA.
110 * write "read <cpunum>" -> NO_DATA or LOG_RECORD.
111 * write "clear <cpunum>" -> NO_DATA or LOG_RECORD.
112 * write "oemdata <cpunum> <offset> -> return -EINVAL.
113 * read data -> return EOF.
114 * close -> unchanged. Free record areas.
117 * write "read <cpunum>" -> NO_DATA or LOG_RECORD.
118 * write "clear <cpunum>" -> NO_DATA or LOG_RECORD.
119 * write "oemdata <cpunum> <offset> -> format the oem data, goto OEMDATA.
120 * read data -> return the INIT/MCA/CMC/CPE record.
121 * close -> unchanged. Keep record areas.
124 * write "read <cpunum>" -> NO_DATA or LOG_RECORD.
125 * write "clear <cpunum>" -> NO_DATA or LOG_RECORD.
126 * write "oemdata <cpunum> <offset> -> format the oem data, goto OEMDATA.
127 * read data -> return the formatted oemdata.
128 * close -> unchanged. Keep record areas.
130 * Closing the data file does not change the state. This allows shell scripts
131 * to manipulate salinfo data, each shell redirection opens the file, does one
132 * action then closes it again. The record areas are only freed at close when
133 * the state is NO_DATA.
141 struct salinfo_data
{
142 cpumask_t cpu_event
; /* which cpus have outstanding events */
143 struct semaphore mutex
;
146 u8
*oemdata
; /* decoded oem data */
148 int open
; /* single-open to prevent races */
150 u8 saved_num
; /* using a saved record? */
151 enum salinfo_state state
:8; /* processing state */
153 int cpu_check
; /* next CPU to check */
154 struct salinfo_data_saved data_saved
[5];/* save last 5 records from mca.c, must be < 255 */
157 static struct salinfo_data salinfo_data
[ARRAY_SIZE(salinfo_log_name
)];
159 static DEFINE_SPINLOCK(data_lock
);
160 static DEFINE_SPINLOCK(data_saved_lock
);
162 /** salinfo_platform_oemdata - optional callback to decode oemdata from an error
164 * @sect_header: pointer to the start of the section to decode.
165 * @oemdata: returns vmalloc area containing the decoded output.
166 * @oemdata_size: returns length of decoded output (strlen).
168 * Description: If user space asks for oem data to be decoded by the kernel
169 * and/or prom and the platform has set salinfo_platform_oemdata to the address
170 * of a platform specific routine then call that routine. salinfo_platform_oemdata
171 * vmalloc's and formats its output area, returning the address of the text
172 * and its strlen. Returns 0 for success, -ve for error. The callback is
173 * invoked on the cpu that generated the error record.
175 int (*salinfo_platform_oemdata
)(const u8
*sect_header
, u8
**oemdata
, u64
*oemdata_size
);
177 struct salinfo_platform_oemdata_parms
{
184 /* Kick the mutex that tells user space that there is work to do. Instead of
185 * trying to track the state of the mutex across multiple cpus, in user
186 * context, interrupt context, non-maskable interrupt context and hotplug cpu,
187 * it is far easier just to grab the mutex if it is free then release it.
189 * This routine must be called with data_saved_lock held, to make the down/up
193 salinfo_work_to_do(struct salinfo_data
*data
)
195 (void)(down_trylock(&data
->mutex
) ?: 0);
200 salinfo_platform_oemdata_cpu(void *context
)
202 struct salinfo_platform_oemdata_parms
*parms
= context
;
203 parms
->ret
= salinfo_platform_oemdata(parms
->efi_guid
, parms
->oemdata
, parms
->oemdata_size
);
207 shift1_data_saved (struct salinfo_data
*data
, int shift
)
209 memcpy(data
->data_saved
+shift
, data
->data_saved
+shift
+1,
210 (ARRAY_SIZE(data
->data_saved
) - (shift
+1)) * sizeof(data
->data_saved
[0]));
211 memset(data
->data_saved
+ ARRAY_SIZE(data
->data_saved
) - 1, 0,
212 sizeof(data
->data_saved
[0]));
215 /* This routine is invoked in interrupt context. Note: mca.c enables
216 * interrupts before calling this code for CMC/CPE. MCA and INIT events are
217 * not irq safe, do not call any routines that use spinlocks, they may deadlock.
218 * MCA and INIT records are recorded, a timer event will look for any
219 * outstanding events and wake up the user space code.
221 * The buffer passed from mca.c points to the output from ia64_log_get. This is
222 * a persistent buffer but its contents can change between the interrupt and
223 * when user space processes the record. Save the record id to identify
224 * changes. If the buffer is NULL then just update the bitmap.
227 salinfo_log_wakeup(int type
, u8
*buffer
, u64 size
, int irqsafe
)
229 struct salinfo_data
*data
= salinfo_data
+ type
;
230 struct salinfo_data_saved
*data_saved
;
231 unsigned long flags
= 0;
233 int saved_size
= ARRAY_SIZE(data
->data_saved
);
235 BUG_ON(type
>= ARRAY_SIZE(salinfo_log_name
));
238 spin_lock_irqsave(&data_saved_lock
, flags
);
240 for (i
= 0, data_saved
= data
->data_saved
; i
< saved_size
; ++i
, ++data_saved
) {
241 if (!data_saved
->buffer
)
244 if (i
== saved_size
) {
245 if (!data
->saved_num
) {
246 shift1_data_saved(data
, 0);
247 data_saved
= data
->data_saved
+ saved_size
- 1;
252 data_saved
->cpu
= smp_processor_id();
253 data_saved
->id
= ((sal_log_record_header_t
*)buffer
)->id
;
254 data_saved
->size
= size
;
255 data_saved
->buffer
= buffer
;
258 cpu_set(smp_processor_id(), data
->cpu_event
);
260 salinfo_work_to_do(data
);
261 spin_unlock_irqrestore(&data_saved_lock
, flags
);
265 /* Check for outstanding MCA/INIT records every minute (arbitrary) */
266 #define SALINFO_TIMER_DELAY (60*HZ)
267 static struct timer_list salinfo_timer
;
268 extern void ia64_mlogbuf_dump(void);
271 salinfo_timeout_check(struct salinfo_data
*data
)
276 if (!cpus_empty(data
->cpu_event
)) {
277 spin_lock_irqsave(&data_saved_lock
, flags
);
278 salinfo_work_to_do(data
);
279 spin_unlock_irqrestore(&data_saved_lock
, flags
);
284 salinfo_timeout (unsigned long arg
)
287 salinfo_timeout_check(salinfo_data
+ SAL_INFO_TYPE_MCA
);
288 salinfo_timeout_check(salinfo_data
+ SAL_INFO_TYPE_INIT
);
289 salinfo_timer
.expires
= jiffies
+ SALINFO_TIMER_DELAY
;
290 add_timer(&salinfo_timer
);
294 salinfo_event_open(struct inode
*inode
, struct file
*file
)
296 if (!capable(CAP_SYS_ADMIN
))
302 salinfo_event_read(struct file
*file
, char __user
*buffer
, size_t count
, loff_t
*ppos
)
304 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
305 struct proc_dir_entry
*entry
= PDE(inode
);
306 struct salinfo_data
*data
= entry
->data
;
312 if (cpus_empty(data
->cpu_event
) && down_trylock(&data
->mutex
)) {
313 if (file
->f_flags
& O_NONBLOCK
)
315 if (down_interruptible(&data
->mutex
))
320 for (i
= 0; i
< nr_cpu_ids
; i
++) {
321 if (cpu_isset(n
, data
->cpu_event
)) {
322 if (!cpu_online(n
)) {
323 cpu_clear(n
, data
->cpu_event
);
329 if (++n
== nr_cpu_ids
)
338 /* for next read, start checking at next CPU */
339 data
->cpu_check
= cpu
;
340 if (++data
->cpu_check
== nr_cpu_ids
)
343 snprintf(cmd
, sizeof(cmd
), "read %d\n", cpu
);
348 if (copy_to_user(buffer
, cmd
, size
))
354 static const struct file_operations salinfo_event_fops
= {
355 .open
= salinfo_event_open
,
356 .read
= salinfo_event_read
,
360 salinfo_log_open(struct inode
*inode
, struct file
*file
)
362 struct proc_dir_entry
*entry
= PDE(inode
);
363 struct salinfo_data
*data
= entry
->data
;
365 if (!capable(CAP_SYS_ADMIN
))
368 spin_lock(&data_lock
);
370 spin_unlock(&data_lock
);
374 spin_unlock(&data_lock
);
376 if (data
->state
== STATE_NO_DATA
&&
377 !(data
->log_buffer
= vmalloc(ia64_sal_get_state_info_size(data
->type
)))) {
386 salinfo_log_release(struct inode
*inode
, struct file
*file
)
388 struct proc_dir_entry
*entry
= PDE(inode
);
389 struct salinfo_data
*data
= entry
->data
;
391 if (data
->state
== STATE_NO_DATA
) {
392 vfree(data
->log_buffer
);
393 vfree(data
->oemdata
);
394 data
->log_buffer
= NULL
;
395 data
->oemdata
= NULL
;
397 spin_lock(&data_lock
);
399 spin_unlock(&data_lock
);
404 call_on_cpu(int cpu
, void (*fn
)(void *), void *arg
)
406 cpumask_t save_cpus_allowed
= current
->cpus_allowed
;
407 cpumask_t new_cpus_allowed
= cpumask_of_cpu(cpu
);
408 set_cpus_allowed(current
, new_cpus_allowed
);
410 set_cpus_allowed(current
, save_cpus_allowed
);
414 salinfo_log_read_cpu(void *context
)
416 struct salinfo_data
*data
= context
;
417 sal_log_record_header_t
*rh
;
418 data
->log_size
= ia64_sal_get_state_info(data
->type
, (u64
*) data
->log_buffer
);
419 rh
= (sal_log_record_header_t
*)(data
->log_buffer
);
420 /* Clear corrected errors as they are read from SAL */
421 if (rh
->severity
== sal_log_severity_corrected
)
422 ia64_sal_clear_state_info(data
->type
);
426 salinfo_log_new_read(int cpu
, struct salinfo_data
*data
)
428 struct salinfo_data_saved
*data_saved
;
431 int saved_size
= ARRAY_SIZE(data
->data_saved
);
434 spin_lock_irqsave(&data_saved_lock
, flags
);
436 for (i
= 0, data_saved
= data
->data_saved
; i
< saved_size
; ++i
, ++data_saved
) {
437 if (data_saved
->buffer
&& data_saved
->cpu
== cpu
) {
438 sal_log_record_header_t
*rh
= (sal_log_record_header_t
*)(data_saved
->buffer
);
439 data
->log_size
= data_saved
->size
;
440 memcpy(data
->log_buffer
, rh
, data
->log_size
);
441 barrier(); /* id check must not be moved */
442 if (rh
->id
== data_saved
->id
) {
443 data
->saved_num
= i
+1;
446 /* saved record changed by mca.c since interrupt, discard it */
447 shift1_data_saved(data
, i
);
451 spin_unlock_irqrestore(&data_saved_lock
, flags
);
453 if (!data
->saved_num
)
454 call_on_cpu(cpu
, salinfo_log_read_cpu
, data
);
455 if (!data
->log_size
) {
456 data
->state
= STATE_NO_DATA
;
457 cpu_clear(cpu
, data
->cpu_event
);
459 data
->state
= STATE_LOG_RECORD
;
464 salinfo_log_read(struct file
*file
, char __user
*buffer
, size_t count
, loff_t
*ppos
)
466 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
467 struct proc_dir_entry
*entry
= PDE(inode
);
468 struct salinfo_data
*data
= entry
->data
;
472 if (data
->state
== STATE_LOG_RECORD
) {
473 buf
= data
->log_buffer
;
474 bufsize
= data
->log_size
;
475 } else if (data
->state
== STATE_OEMDATA
) {
477 bufsize
= data
->oemdata_size
;
482 return simple_read_from_buffer(buffer
, count
, ppos
, buf
, bufsize
);
486 salinfo_log_clear_cpu(void *context
)
488 struct salinfo_data
*data
= context
;
489 ia64_sal_clear_state_info(data
->type
);
493 salinfo_log_clear(struct salinfo_data
*data
, int cpu
)
495 sal_log_record_header_t
*rh
;
497 spin_lock_irqsave(&data_saved_lock
, flags
);
498 data
->state
= STATE_NO_DATA
;
499 if (!cpu_isset(cpu
, data
->cpu_event
)) {
500 spin_unlock_irqrestore(&data_saved_lock
, flags
);
503 cpu_clear(cpu
, data
->cpu_event
);
504 if (data
->saved_num
) {
505 shift1_data_saved(data
, data
->saved_num
- 1);
508 spin_unlock_irqrestore(&data_saved_lock
, flags
);
509 rh
= (sal_log_record_header_t
*)(data
->log_buffer
);
510 /* Corrected errors have already been cleared from SAL */
511 if (rh
->severity
!= sal_log_severity_corrected
)
512 call_on_cpu(cpu
, salinfo_log_clear_cpu
, data
);
513 /* clearing a record may make a new record visible */
514 salinfo_log_new_read(cpu
, data
);
515 if (data
->state
== STATE_LOG_RECORD
) {
516 spin_lock_irqsave(&data_saved_lock
, flags
);
517 cpu_set(cpu
, data
->cpu_event
);
518 salinfo_work_to_do(data
);
519 spin_unlock_irqrestore(&data_saved_lock
, flags
);
525 salinfo_log_write(struct file
*file
, const char __user
*buffer
, size_t count
, loff_t
*ppos
)
527 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
528 struct proc_dir_entry
*entry
= PDE(inode
);
529 struct salinfo_data
*data
= entry
->data
;
538 if (copy_from_user(cmd
, buffer
, size
))
541 if (sscanf(cmd
, "read %d", &cpu
) == 1) {
542 salinfo_log_new_read(cpu
, data
);
543 } else if (sscanf(cmd
, "clear %d", &cpu
) == 1) {
545 if ((ret
= salinfo_log_clear(data
, cpu
)))
547 } else if (sscanf(cmd
, "oemdata %d %d", &cpu
, &offset
) == 2) {
548 if (data
->state
!= STATE_LOG_RECORD
&& data
->state
!= STATE_OEMDATA
)
550 if (offset
> data
->log_size
- sizeof(efi_guid_t
))
552 data
->state
= STATE_OEMDATA
;
553 if (salinfo_platform_oemdata
) {
554 struct salinfo_platform_oemdata_parms parms
= {
555 .efi_guid
= data
->log_buffer
+ offset
,
556 .oemdata
= &data
->oemdata
,
557 .oemdata_size
= &data
->oemdata_size
559 call_on_cpu(cpu
, salinfo_platform_oemdata_cpu
, &parms
);
563 data
->oemdata_size
= 0;
570 static const struct file_operations salinfo_data_fops
= {
571 .open
= salinfo_log_open
,
572 .release
= salinfo_log_release
,
573 .read
= salinfo_log_read
,
574 .write
= salinfo_log_write
,
578 salinfo_cpu_callback(struct notifier_block
*nb
, unsigned long action
, void *hcpu
)
580 unsigned int i
, cpu
= (unsigned long)hcpu
;
582 struct salinfo_data
*data
;
585 case CPU_ONLINE_FROZEN
:
586 spin_lock_irqsave(&data_saved_lock
, flags
);
587 for (i
= 0, data
= salinfo_data
;
588 i
< ARRAY_SIZE(salinfo_data
);
590 cpu_set(cpu
, data
->cpu_event
);
591 salinfo_work_to_do(data
);
593 spin_unlock_irqrestore(&data_saved_lock
, flags
);
596 case CPU_DEAD_FROZEN
:
597 spin_lock_irqsave(&data_saved_lock
, flags
);
598 for (i
= 0, data
= salinfo_data
;
599 i
< ARRAY_SIZE(salinfo_data
);
601 struct salinfo_data_saved
*data_saved
;
603 for (j
= ARRAY_SIZE(data
->data_saved
) - 1, data_saved
= data
->data_saved
+ j
;
606 if (data_saved
->buffer
&& data_saved
->cpu
== cpu
) {
607 shift1_data_saved(data
, j
);
610 cpu_clear(cpu
, data
->cpu_event
);
612 spin_unlock_irqrestore(&data_saved_lock
, flags
);
618 static struct notifier_block salinfo_cpu_notifier __cpuinitdata
=
620 .notifier_call
= salinfo_cpu_callback
,
627 struct proc_dir_entry
*salinfo_dir
; /* /proc/sal dir entry */
628 struct proc_dir_entry
**sdir
= salinfo_proc_entries
; /* keeps track of every entry */
629 struct proc_dir_entry
*dir
, *entry
;
630 struct salinfo_data
*data
;
633 salinfo_dir
= proc_mkdir("sal", NULL
);
637 for (i
=0; i
< NR_SALINFO_ENTRIES
; i
++) {
638 /* pass the feature bit in question as misc data */
639 *sdir
++ = create_proc_read_entry (salinfo_entries
[i
].name
, 0, salinfo_dir
,
640 salinfo_read
, (void *)salinfo_entries
[i
].feature
);
643 for (i
= 0; i
< ARRAY_SIZE(salinfo_log_name
); i
++) {
644 data
= salinfo_data
+ i
;
646 init_MUTEX(&data
->mutex
);
647 dir
= proc_mkdir(salinfo_log_name
[i
], salinfo_dir
);
651 entry
= proc_create_data("event", S_IRUSR
, dir
,
652 &salinfo_event_fops
, data
);
657 entry
= proc_create_data("data", S_IRUSR
| S_IWUSR
, dir
,
658 &salinfo_data_fops
, data
);
663 /* we missed any events before now */
664 for_each_online_cpu(j
)
665 cpu_set(j
, data
->cpu_event
);
670 *sdir
++ = salinfo_dir
;
672 init_timer(&salinfo_timer
);
673 salinfo_timer
.expires
= jiffies
+ SALINFO_TIMER_DELAY
;
674 salinfo_timer
.function
= &salinfo_timeout
;
675 add_timer(&salinfo_timer
);
677 register_hotcpu_notifier(&salinfo_cpu_notifier
);
683 * 'data' contains an integer that corresponds to the feature we're
687 salinfo_read(char *page
, char **start
, off_t off
, int count
, int *eof
, void *data
)
691 len
= sprintf(page
, (sal_platform_features
& (unsigned long)data
) ? "1\n" : "0\n");
693 if (len
<= off
+count
) *eof
= 1;
698 if (len
>count
) len
= count
;
704 module_init(salinfo_init
);