2 * Architecture-specific setup.
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
8 * 2005-10-07 Keith Owens <kaos@sgi.com>
9 * Add notify_die() hooks.
11 #include <linux/cpu.h>
13 #include <linux/elf.h>
14 #include <linux/errno.h>
15 #include <linux/kallsyms.h>
16 #include <linux/kernel.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/notifier.h>
21 #include <linux/personality.h>
22 #include <linux/sched.h>
23 #include <linux/stddef.h>
24 #include <linux/thread_info.h>
25 #include <linux/unistd.h>
26 #include <linux/efi.h>
27 #include <linux/interrupt.h>
28 #include <linux/delay.h>
29 #include <linux/kdebug.h>
30 #include <linux/utsname.h>
31 #include <linux/tracehook.h>
34 #include <asm/delay.h>
37 #include <asm/kexec.h>
38 #include <asm/pgalloc.h>
39 #include <asm/processor.h>
41 #include <asm/tlbflush.h>
42 #include <asm/uaccess.h>
43 #include <asm/unwind.h>
49 # include <asm/perfmon.h>
54 void (*ia64_mark_idle
)(int);
56 unsigned long boot_option_idle_override
= 0;
57 EXPORT_SYMBOL(boot_option_idle_override
);
58 unsigned long idle_halt
;
59 EXPORT_SYMBOL(idle_halt
);
60 unsigned long idle_nomwait
;
61 EXPORT_SYMBOL(idle_nomwait
);
62 void (*pm_idle
) (void);
63 EXPORT_SYMBOL(pm_idle
);
64 void (*pm_power_off
) (void);
65 EXPORT_SYMBOL(pm_power_off
);
68 ia64_do_show_stack (struct unw_frame_info
*info
, void *arg
)
70 unsigned long ip
, sp
, bsp
;
71 char buf
[128]; /* don't make it so big that it overflows the stack! */
73 printk("\nCall Trace:\n");
75 unw_get_ip(info
, &ip
);
79 unw_get_sp(info
, &sp
);
80 unw_get_bsp(info
, &bsp
);
81 snprintf(buf
, sizeof(buf
),
83 " sp=%016lx bsp=%016lx\n",
85 print_symbol(buf
, ip
);
86 } while (unw_unwind(info
) >= 0);
90 show_stack (struct task_struct
*task
, unsigned long *sp
)
93 unw_init_running(ia64_do_show_stack
, NULL
);
95 struct unw_frame_info info
;
97 unw_init_from_blocked_task(&info
, task
);
98 ia64_do_show_stack(&info
, NULL
);
105 show_stack(NULL
, NULL
);
108 EXPORT_SYMBOL(dump_stack
);
111 show_regs (struct pt_regs
*regs
)
113 unsigned long ip
= regs
->cr_iip
+ ia64_psr(regs
)->ri
;
116 printk("\nPid: %d, CPU %d, comm: %20s\n", task_pid_nr(current
),
117 smp_processor_id(), current
->comm
);
118 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n",
119 regs
->cr_ipsr
, regs
->cr_ifs
, ip
, print_tainted(),
120 init_utsname()->release
);
121 print_symbol("ip is at %s\n", ip
);
122 printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
123 regs
->ar_unat
, regs
->ar_pfs
, regs
->ar_rsc
);
124 printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
125 regs
->ar_rnat
, regs
->ar_bspstore
, regs
->pr
);
126 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
127 regs
->loadrs
, regs
->ar_ccv
, regs
->ar_fpsr
);
128 printk("csd : %016lx ssd : %016lx\n", regs
->ar_csd
, regs
->ar_ssd
);
129 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs
->b0
, regs
->b6
, regs
->b7
);
130 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
131 regs
->f6
.u
.bits
[1], regs
->f6
.u
.bits
[0],
132 regs
->f7
.u
.bits
[1], regs
->f7
.u
.bits
[0]);
133 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
134 regs
->f8
.u
.bits
[1], regs
->f8
.u
.bits
[0],
135 regs
->f9
.u
.bits
[1], regs
->f9
.u
.bits
[0]);
136 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
137 regs
->f10
.u
.bits
[1], regs
->f10
.u
.bits
[0],
138 regs
->f11
.u
.bits
[1], regs
->f11
.u
.bits
[0]);
140 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs
->r1
, regs
->r2
, regs
->r3
);
141 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs
->r8
, regs
->r9
, regs
->r10
);
142 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs
->r11
, regs
->r12
, regs
->r13
);
143 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs
->r14
, regs
->r15
, regs
->r16
);
144 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs
->r17
, regs
->r18
, regs
->r19
);
145 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs
->r20
, regs
->r21
, regs
->r22
);
146 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs
->r23
, regs
->r24
, regs
->r25
);
147 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs
->r26
, regs
->r27
, regs
->r28
);
148 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs
->r29
, regs
->r30
, regs
->r31
);
150 if (user_mode(regs
)) {
151 /* print the stacked registers */
152 unsigned long val
, *bsp
, ndirty
;
153 int i
, sof
, is_nat
= 0;
155 sof
= regs
->cr_ifs
& 0x7f; /* size of frame */
156 ndirty
= (regs
->loadrs
>> 19);
157 bsp
= ia64_rse_skip_regs((unsigned long *) regs
->ar_bspstore
, ndirty
);
158 for (i
= 0; i
< sof
; ++i
) {
159 get_user(val
, (unsigned long __user
*) ia64_rse_skip_regs(bsp
, i
));
160 printk("r%-3u:%c%016lx%s", 32 + i
, is_nat
? '*' : ' ', val
,
161 ((i
== sof
- 1) || (i
% 3) == 2) ? "\n" : " ");
164 show_stack(NULL
, NULL
);
167 /* local support for deprecated console_print */
169 console_print(const char *s
)
171 printk(KERN_EMERG
"%s", s
);
175 do_notify_resume_user(sigset_t
*unused
, struct sigscratch
*scr
, long in_syscall
)
177 if (fsys_mode(current
, &scr
->pt
)) {
179 * defer signal-handling etc. until we return to
182 if (!ia64_psr(&scr
->pt
)->lp
)
183 ia64_psr(&scr
->pt
)->lp
= 1;
187 #ifdef CONFIG_PERFMON
188 if (current
->thread
.pfm_needs_checking
)
190 * Note: pfm_handle_work() allow us to call it with interrupts
191 * disabled, and may enable interrupts within the function.
196 /* deal with pending signal delivery */
197 if (test_thread_flag(TIF_SIGPENDING
)) {
198 local_irq_enable(); /* force interrupt enable */
199 ia64_do_signal(scr
, in_syscall
);
202 if (test_thread_flag(TIF_NOTIFY_RESUME
)) {
203 clear_thread_flag(TIF_NOTIFY_RESUME
);
204 tracehook_notify_resume(&scr
->pt
);
205 if (current
->replacement_session_keyring
)
206 key_replace_session_keyring();
209 /* copy user rbs to kernel rbs */
210 if (unlikely(test_thread_flag(TIF_RESTORE_RSE
))) {
211 local_irq_enable(); /* force interrupt enable */
215 local_irq_disable(); /* force interrupt disable */
218 static int pal_halt
= 1;
219 static int can_do_pal_halt
= 1;
221 static int __init
nohalt_setup(char * str
)
223 pal_halt
= can_do_pal_halt
= 0;
226 __setup("nohalt", nohalt_setup
);
229 update_pal_halt_status(int status
)
231 can_do_pal_halt
= pal_halt
&& status
;
235 * We use this if we don't have any better idle routine..
241 while (!need_resched()) {
242 if (can_do_pal_halt
) {
244 if (!need_resched()) {
253 #ifdef CONFIG_HOTPLUG_CPU
254 /* We don't actually take CPU down, just spin without interrupts. */
255 static inline void play_dead(void)
257 unsigned int this_cpu
= smp_processor_id();
260 __get_cpu_var(cpu_state
) = CPU_DEAD
;
265 ia64_jump_to_sal(&sal_boot_rendez_state
[this_cpu
]);
267 * The above is a point of no-return, the processor is
268 * expected to be in SAL loop now.
273 static inline void play_dead(void)
277 #endif /* CONFIG_HOTPLUG_CPU */
279 static void do_nothing(void *unused
)
284 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
285 * pm_idle and update to new pm_idle value. Required while changing pm_idle
286 * handler on SMP systems.
288 * Caller must have changed pm_idle to the new value before the call. Old
289 * pm_idle value will not be used by any CPU after the return of this function.
291 void cpu_idle_wait(void)
294 /* kick all the CPUs so that they exit out of pm_idle */
295 smp_call_function(do_nothing
, NULL
, 1);
297 EXPORT_SYMBOL_GPL(cpu_idle_wait
);
299 void __attribute__((noreturn
))
302 void (*mark_idle
)(int) = ia64_mark_idle
;
303 int cpu
= smp_processor_id();
305 /* endless idle loop with no priority at all */
307 if (can_do_pal_halt
) {
308 current_thread_info()->status
&= ~TS_POLLING
;
310 * TS_POLLING-cleared state must be visible before we
315 current_thread_info()->status
|= TS_POLLING
;
318 if (!need_resched()) {
337 preempt_enable_no_resched();
341 if (cpu_is_offline(cpu
))
347 ia64_save_extra (struct task_struct
*task
)
349 #ifdef CONFIG_PERFMON
353 if ((task
->thread
.flags
& IA64_THREAD_DBG_VALID
) != 0)
354 ia64_save_debug_regs(&task
->thread
.dbr
[0]);
356 #ifdef CONFIG_PERFMON
357 if ((task
->thread
.flags
& IA64_THREAD_PM_VALID
) != 0)
360 info
= __get_cpu_var(pfm_syst_info
);
361 if (info
& PFM_CPUINFO_SYST_WIDE
)
362 pfm_syst_wide_update_task(task
, info
, 0);
367 ia64_load_extra (struct task_struct
*task
)
369 #ifdef CONFIG_PERFMON
373 if ((task
->thread
.flags
& IA64_THREAD_DBG_VALID
) != 0)
374 ia64_load_debug_regs(&task
->thread
.dbr
[0]);
376 #ifdef CONFIG_PERFMON
377 if ((task
->thread
.flags
& IA64_THREAD_PM_VALID
) != 0)
380 info
= __get_cpu_var(pfm_syst_info
);
381 if (info
& PFM_CPUINFO_SYST_WIDE
)
382 pfm_syst_wide_update_task(task
, info
, 1);
387 * Copy the state of an ia-64 thread.
389 * We get here through the following call chain:
391 * from user-level: from kernel:
393 * <clone syscall> <some kernel call frames>
396 * copy_thread copy_thread
398 * This means that the stack layout is as follows:
400 * +---------------------+ (highest addr)
402 * +---------------------+
403 * | struct switch_stack |
404 * +---------------------+
407 * | | <-- sp (lowest addr)
408 * +---------------------+
410 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
411 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
412 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
413 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
414 * the stack is page aligned and the page size is at least 4KB, this is always the case,
415 * so there is nothing to worry about.
418 copy_thread(unsigned long clone_flags
,
419 unsigned long user_stack_base
, unsigned long user_stack_size
,
420 struct task_struct
*p
, struct pt_regs
*regs
)
422 extern char ia64_ret_from_clone
;
423 struct switch_stack
*child_stack
, *stack
;
424 unsigned long rbs
, child_rbs
, rbs_size
;
425 struct pt_regs
*child_ptregs
;
430 * For SMP idle threads, fork_by_hand() calls do_fork with
437 stack
= ((struct switch_stack
*) regs
) - 1;
439 child_ptregs
= (struct pt_regs
*) ((unsigned long) p
+ IA64_STK_OFFSET
) - 1;
440 child_stack
= (struct switch_stack
*) child_ptregs
- 1;
442 /* copy parent's switch_stack & pt_regs to child: */
443 memcpy(child_stack
, stack
, sizeof(*child_ptregs
) + sizeof(*child_stack
));
445 rbs
= (unsigned long) current
+ IA64_RBS_OFFSET
;
446 child_rbs
= (unsigned long) p
+ IA64_RBS_OFFSET
;
447 rbs_size
= stack
->ar_bspstore
- rbs
;
449 /* copy the parent's register backing store to the child: */
450 memcpy((void *) child_rbs
, (void *) rbs
, rbs_size
);
452 if (likely(user_mode(child_ptregs
))) {
453 if (clone_flags
& CLONE_SETTLS
)
454 child_ptregs
->r13
= regs
->r16
; /* see sys_clone2() in entry.S */
455 if (user_stack_base
) {
456 child_ptregs
->r12
= user_stack_base
+ user_stack_size
- 16;
457 child_ptregs
->ar_bspstore
= user_stack_base
;
458 child_ptregs
->ar_rnat
= 0;
459 child_ptregs
->loadrs
= 0;
463 * Note: we simply preserve the relative position of
464 * the stack pointer here. There is no need to
465 * allocate a scratch area here, since that will have
466 * been taken care of by the caller of sys_clone()
469 child_ptregs
->r12
= (unsigned long) child_ptregs
- 16; /* kernel sp */
470 child_ptregs
->r13
= (unsigned long) p
; /* set `current' pointer */
472 child_stack
->ar_bspstore
= child_rbs
+ rbs_size
;
473 child_stack
->b0
= (unsigned long) &ia64_ret_from_clone
;
475 /* copy parts of thread_struct: */
476 p
->thread
.ksp
= (unsigned long) child_stack
- 16;
478 /* stop some PSR bits from being inherited.
479 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
480 * therefore we must specify them explicitly here and not include them in
481 * IA64_PSR_BITS_TO_CLEAR.
483 child_ptregs
->cr_ipsr
= ((child_ptregs
->cr_ipsr
| IA64_PSR_BITS_TO_SET
)
484 & ~(IA64_PSR_BITS_TO_CLEAR
| IA64_PSR_PP
| IA64_PSR_UP
));
487 * NOTE: The calling convention considers all floating point
488 * registers in the high partition (fph) to be scratch. Since
489 * the only way to get to this point is through a system call,
490 * we know that the values in fph are all dead. Hence, there
491 * is no need to inherit the fph state from the parent to the
492 * child and all we have to do is to make sure that
493 * IA64_THREAD_FPH_VALID is cleared in the child.
495 * XXX We could push this optimization a bit further by
496 * clearing IA64_THREAD_FPH_VALID on ANY system call.
497 * However, it's not clear this is worth doing. Also, it
498 * would be a slight deviation from the normal Linux system
499 * call behavior where scratch registers are preserved across
500 * system calls (unless used by the system call itself).
502 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
503 | IA64_THREAD_PM_VALID)
504 # define THREAD_FLAGS_TO_SET 0
505 p
->thread
.flags
= ((current
->thread
.flags
& ~THREAD_FLAGS_TO_CLEAR
)
506 | THREAD_FLAGS_TO_SET
);
507 ia64_drop_fpu(p
); /* don't pick up stale state from a CPU's fph */
509 #ifdef CONFIG_PERFMON
510 if (current
->thread
.pfm_context
)
511 pfm_inherit(p
, child_ptregs
);
517 do_copy_task_regs (struct task_struct
*task
, struct unw_frame_info
*info
, void *arg
)
519 unsigned long mask
, sp
, nat_bits
= 0, ar_rnat
, urbs_end
, cfm
;
520 unsigned long uninitialized_var(ip
); /* GCC be quiet */
521 elf_greg_t
*dst
= arg
;
526 memset(dst
, 0, sizeof(elf_gregset_t
)); /* don't leak any kernel bits to user-level */
528 if (unw_unwind_to_user(info
) < 0)
531 unw_get_sp(info
, &sp
);
532 pt
= (struct pt_regs
*) (sp
+ 16);
534 urbs_end
= ia64_get_user_rbs_end(task
, pt
, &cfm
);
536 if (ia64_sync_user_rbs(task
, info
->sw
, pt
->ar_bspstore
, urbs_end
) < 0)
539 ia64_peek(task
, info
->sw
, urbs_end
, (long) ia64_rse_rnat_addr((long *) urbs_end
),
545 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
546 * predicate registers (p0-p63)
549 * ar.rsc ar.bsp ar.bspstore ar.rnat
550 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
554 for (i
= 1, mask
= (1UL << i
); i
< 32; ++i
) {
555 unw_get_gr(info
, i
, &dst
[i
], &nat
);
561 unw_get_pr(info
, &dst
[33]);
563 for (i
= 0; i
< 8; ++i
)
564 unw_get_br(info
, i
, &dst
[34 + i
]);
566 unw_get_rp(info
, &ip
);
567 dst
[42] = ip
+ ia64_psr(pt
)->ri
;
569 dst
[44] = pt
->cr_ipsr
& IA64_PSR_UM
;
571 unw_get_ar(info
, UNW_AR_RSC
, &dst
[45]);
573 * For bsp and bspstore, unw_get_ar() would return the kernel
574 * addresses, but we need the user-level addresses instead:
576 dst
[46] = urbs_end
; /* note: by convention PT_AR_BSP points to the end of the urbs! */
577 dst
[47] = pt
->ar_bspstore
;
579 unw_get_ar(info
, UNW_AR_CCV
, &dst
[49]);
580 unw_get_ar(info
, UNW_AR_UNAT
, &dst
[50]);
581 unw_get_ar(info
, UNW_AR_FPSR
, &dst
[51]);
582 dst
[52] = pt
->ar_pfs
; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
583 unw_get_ar(info
, UNW_AR_LC
, &dst
[53]);
584 unw_get_ar(info
, UNW_AR_EC
, &dst
[54]);
585 unw_get_ar(info
, UNW_AR_CSD
, &dst
[55]);
586 unw_get_ar(info
, UNW_AR_SSD
, &dst
[56]);
590 do_dump_task_fpu (struct task_struct
*task
, struct unw_frame_info
*info
, void *arg
)
592 elf_fpreg_t
*dst
= arg
;
595 memset(dst
, 0, sizeof(elf_fpregset_t
)); /* don't leak any "random" bits */
597 if (unw_unwind_to_user(info
) < 0)
600 /* f0 is 0.0, f1 is 1.0 */
602 for (i
= 2; i
< 32; ++i
)
603 unw_get_fr(info
, i
, dst
+ i
);
605 ia64_flush_fph(task
);
606 if ((task
->thread
.flags
& IA64_THREAD_FPH_VALID
) != 0)
607 memcpy(dst
+ 32, task
->thread
.fph
, 96*16);
611 do_copy_regs (struct unw_frame_info
*info
, void *arg
)
613 do_copy_task_regs(current
, info
, arg
);
617 do_dump_fpu (struct unw_frame_info
*info
, void *arg
)
619 do_dump_task_fpu(current
, info
, arg
);
623 ia64_elf_core_copy_regs (struct pt_regs
*pt
, elf_gregset_t dst
)
625 unw_init_running(do_copy_regs
, dst
);
629 dump_fpu (struct pt_regs
*pt
, elf_fpregset_t dst
)
631 unw_init_running(do_dump_fpu
, dst
);
632 return 1; /* f0-f31 are always valid so we always return 1 */
636 sys_execve (char __user
*filename
, char __user
* __user
*argv
, char __user
* __user
*envp
,
637 struct pt_regs
*regs
)
642 fname
= getname(filename
);
643 error
= PTR_ERR(fname
);
646 error
= do_execve(fname
, argv
, envp
, regs
);
653 kernel_thread (int (*fn
)(void *), void *arg
, unsigned long flags
)
655 extern void start_kernel_thread (void);
656 unsigned long *helper_fptr
= (unsigned long *) &start_kernel_thread
;
658 struct switch_stack sw
;
662 memset(®s
, 0, sizeof(regs
));
663 regs
.pt
.cr_iip
= helper_fptr
[0]; /* set entry point (IP) */
664 regs
.pt
.r1
= helper_fptr
[1]; /* set GP */
665 regs
.pt
.r9
= (unsigned long) fn
; /* 1st argument */
666 regs
.pt
.r11
= (unsigned long) arg
; /* 2nd argument */
667 /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
668 regs
.pt
.cr_ipsr
= ia64_getreg(_IA64_REG_PSR
) | IA64_PSR_BN
;
669 regs
.pt
.cr_ifs
= 1UL << 63; /* mark as valid, empty frame */
670 regs
.sw
.ar_fpsr
= regs
.pt
.ar_fpsr
= ia64_getreg(_IA64_REG_AR_FPSR
);
671 regs
.sw
.ar_bspstore
= (unsigned long) current
+ IA64_RBS_OFFSET
;
672 regs
.sw
.pr
= (1 << PRED_KERNEL_STACK
);
673 return do_fork(flags
| CLONE_VM
| CLONE_UNTRACED
, 0, ®s
.pt
, 0, NULL
, NULL
);
675 EXPORT_SYMBOL(kernel_thread
);
677 /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
679 kernel_thread_helper (int (*fn
)(void *), void *arg
)
685 * Flush thread state. This is called when a thread does an execve().
690 /* drop floating-point and debug-register state if it exists: */
691 current
->thread
.flags
&= ~(IA64_THREAD_FPH_VALID
| IA64_THREAD_DBG_VALID
);
692 ia64_drop_fpu(current
);
696 * Clean up state associated with current thread. This is called when
697 * the thread calls exit().
703 ia64_drop_fpu(current
);
704 #ifdef CONFIG_PERFMON
705 /* if needed, stop monitoring and flush state to perfmon context */
706 if (current
->thread
.pfm_context
)
707 pfm_exit_thread(current
);
709 /* free debug register resources */
710 if (current
->thread
.flags
& IA64_THREAD_DBG_VALID
)
711 pfm_release_debug_registers(current
);
716 get_wchan (struct task_struct
*p
)
718 struct unw_frame_info info
;
722 if (!p
|| p
== current
|| p
->state
== TASK_RUNNING
)
726 * Note: p may not be a blocked task (it could be current or
727 * another process running on some other CPU. Rather than
728 * trying to determine if p is really blocked, we just assume
729 * it's blocked and rely on the unwind routines to fail
730 * gracefully if the process wasn't really blocked after all.
733 unw_init_from_blocked_task(&info
, p
);
735 if (p
->state
== TASK_RUNNING
)
737 if (unw_unwind(&info
) < 0)
739 unw_get_ip(&info
, &ip
);
740 if (!in_sched_functions(ip
))
742 } while (count
++ < 16);
749 pal_power_mgmt_info_u_t power_info
[8];
750 unsigned long min_power
;
751 int i
, min_power_state
;
753 if (ia64_pal_halt_info(power_info
) != 0)
757 min_power
= power_info
[0].pal_power_mgmt_info_s
.power_consumption
;
758 for (i
= 1; i
< 8; ++i
)
759 if (power_info
[i
].pal_power_mgmt_info_s
.im
760 && power_info
[i
].pal_power_mgmt_info_s
.power_consumption
< min_power
) {
761 min_power
= power_info
[i
].pal_power_mgmt_info_s
.power_consumption
;
766 ia64_pal_halt(min_power_state
);
769 void machine_shutdown(void)
771 #ifdef CONFIG_HOTPLUG_CPU
774 for_each_online_cpu(cpu
) {
775 if (cpu
!= smp_processor_id())
780 kexec_disable_iosapic();
785 machine_restart (char *restart_cmd
)
787 (void) notify_die(DIE_MACHINE_RESTART
, restart_cmd
, NULL
, 0, 0, 0);
788 (*efi
.reset_system
)(EFI_RESET_WARM
, 0, 0, NULL
);
794 (void) notify_die(DIE_MACHINE_HALT
, "", NULL
, 0, 0, 0);
799 machine_power_off (void)