2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
10 * Maintainer: Kumar Gala
12 * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13 * Copyright (c) 2007 MontaVista Software, Inc.
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
20 * Gianfar: AKA Lambda Draconis, "Dragon"
28 * The driver is initialized through of_device. Configuration information
29 * is therefore conveyed through an OF-style device tree.
31 * The Gianfar Ethernet Controller uses a ring of buffer
32 * descriptors. The beginning is indicated by a register
33 * pointing to the physical address of the start of the ring.
34 * The end is determined by a "wrap" bit being set in the
35 * last descriptor of the ring.
37 * When a packet is received, the RXF bit in the
38 * IEVENT register is set, triggering an interrupt when the
39 * corresponding bit in the IMASK register is also set (if
40 * interrupt coalescing is active, then the interrupt may not
41 * happen immediately, but will wait until either a set number
42 * of frames or amount of time have passed). In NAPI, the
43 * interrupt handler will signal there is work to be done, and
44 * exit. This method will start at the last known empty
45 * descriptor, and process every subsequent descriptor until there
46 * are none left with data (NAPI will stop after a set number of
47 * packets to give time to other tasks, but will eventually
48 * process all the packets). The data arrives inside a
49 * pre-allocated skb, and so after the skb is passed up to the
50 * stack, a new skb must be allocated, and the address field in
51 * the buffer descriptor must be updated to indicate this new
54 * When the kernel requests that a packet be transmitted, the
55 * driver starts where it left off last time, and points the
56 * descriptor at the buffer which was passed in. The driver
57 * then informs the DMA engine that there are packets ready to
58 * be transmitted. Once the controller is finished transmitting
59 * the packet, an interrupt may be triggered (under the same
60 * conditions as for reception, but depending on the TXF bit).
61 * The driver then cleans up the buffer.
64 #include <linux/kernel.h>
65 #include <linux/string.h>
66 #include <linux/errno.h>
67 #include <linux/unistd.h>
68 #include <linux/slab.h>
69 #include <linux/interrupt.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/netdevice.h>
73 #include <linux/etherdevice.h>
74 #include <linux/skbuff.h>
75 #include <linux/if_vlan.h>
76 #include <linux/spinlock.h>
78 #include <linux/of_mdio.h>
79 #include <linux/of_platform.h>
81 #include <linux/tcp.h>
82 #include <linux/udp.h>
87 #include <asm/uaccess.h>
88 #include <linux/module.h>
89 #include <linux/dma-mapping.h>
90 #include <linux/crc32.h>
91 #include <linux/mii.h>
92 #include <linux/phy.h>
93 #include <linux/phy_fixed.h>
97 #include "fsl_pq_mdio.h"
99 #define TX_TIMEOUT (1*HZ)
100 #undef BRIEF_GFAR_ERRORS
101 #undef VERBOSE_GFAR_ERRORS
103 const char gfar_driver_name
[] = "Gianfar Ethernet";
104 const char gfar_driver_version
[] = "1.3";
106 static int gfar_enet_open(struct net_device
*dev
);
107 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
108 static void gfar_reset_task(struct work_struct
*work
);
109 static void gfar_timeout(struct net_device
*dev
);
110 static int gfar_close(struct net_device
*dev
);
111 struct sk_buff
*gfar_new_skb(struct net_device
*dev
);
112 static void gfar_new_rxbdp(struct net_device
*dev
, struct rxbd8
*bdp
,
113 struct sk_buff
*skb
);
114 static int gfar_set_mac_address(struct net_device
*dev
);
115 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
);
116 static irqreturn_t
gfar_error(int irq
, void *dev_id
);
117 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
);
118 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
);
119 static void adjust_link(struct net_device
*dev
);
120 static void init_registers(struct net_device
*dev
);
121 static int init_phy(struct net_device
*dev
);
122 static int gfar_probe(struct of_device
*ofdev
,
123 const struct of_device_id
*match
);
124 static int gfar_remove(struct of_device
*ofdev
);
125 static void free_skb_resources(struct gfar_private
*priv
);
126 static void gfar_set_multi(struct net_device
*dev
);
127 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
);
128 static void gfar_configure_serdes(struct net_device
*dev
);
129 static int gfar_poll(struct napi_struct
*napi
, int budget
);
130 #ifdef CONFIG_NET_POLL_CONTROLLER
131 static void gfar_netpoll(struct net_device
*dev
);
133 int gfar_clean_rx_ring(struct net_device
*dev
, int rx_work_limit
);
134 static int gfar_clean_tx_ring(struct net_device
*dev
);
135 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
137 static void gfar_vlan_rx_register(struct net_device
*netdev
,
138 struct vlan_group
*grp
);
139 void gfar_halt(struct net_device
*dev
);
140 static void gfar_halt_nodisable(struct net_device
*dev
);
141 void gfar_start(struct net_device
*dev
);
142 static void gfar_clear_exact_match(struct net_device
*dev
);
143 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
, u8
*addr
);
144 static int gfar_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
146 MODULE_AUTHOR("Freescale Semiconductor, Inc");
147 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
148 MODULE_LICENSE("GPL");
150 static void gfar_init_rxbdp(struct net_device
*dev
, struct rxbd8
*bdp
,
153 struct gfar_private
*priv
= netdev_priv(dev
);
158 lstatus
= BD_LFLAG(RXBD_EMPTY
| RXBD_INTERRUPT
);
159 if (bdp
== priv
->rx_bd_base
+ priv
->rx_ring_size
- 1)
160 lstatus
|= BD_LFLAG(RXBD_WRAP
);
164 bdp
->lstatus
= lstatus
;
167 static int gfar_alloc_skb_resources(struct net_device
*ndev
)
173 struct gfar_private
*priv
= netdev_priv(ndev
);
174 struct device
*dev
= &priv
->ofdev
->dev
;
176 /* Allocate memory for the buffer descriptors */
177 vaddr
= dma_alloc_coherent(dev
, sizeof(*txbdp
) * priv
->tx_ring_size
+
178 sizeof(*rxbdp
) * priv
->rx_ring_size
,
179 &priv
->tx_bd_dma_base
, GFP_KERNEL
);
181 if (netif_msg_ifup(priv
))
182 pr_err("%s: Could not allocate buffer descriptors!\n",
187 priv
->tx_bd_base
= vaddr
;
189 /* Start the rx descriptor ring where the tx ring leaves off */
190 vaddr
= vaddr
+ sizeof(*txbdp
) * priv
->tx_ring_size
;
191 priv
->rx_bd_base
= vaddr
;
193 /* Setup the skbuff rings */
194 priv
->tx_skbuff
= kmalloc(sizeof(*priv
->tx_skbuff
) *
195 priv
->tx_ring_size
, GFP_KERNEL
);
196 if (!priv
->tx_skbuff
) {
197 if (netif_msg_ifup(priv
))
198 pr_err("%s: Could not allocate tx_skbuff\n",
203 for (i
= 0; i
< priv
->tx_ring_size
; i
++)
204 priv
->tx_skbuff
[i
] = NULL
;
206 priv
->rx_skbuff
= kmalloc(sizeof(*priv
->rx_skbuff
) *
207 priv
->rx_ring_size
, GFP_KERNEL
);
208 if (!priv
->rx_skbuff
) {
209 if (netif_msg_ifup(priv
))
210 pr_err("%s: Could not allocate rx_skbuff\n",
215 for (i
= 0; i
< priv
->rx_ring_size
; i
++)
216 priv
->rx_skbuff
[i
] = NULL
;
218 /* Initialize some variables in our dev structure */
219 priv
->num_txbdfree
= priv
->tx_ring_size
;
220 priv
->dirty_tx
= priv
->cur_tx
= priv
->tx_bd_base
;
221 priv
->cur_rx
= priv
->rx_bd_base
;
222 priv
->skb_curtx
= priv
->skb_dirtytx
= 0;
225 /* Initialize Transmit Descriptor Ring */
226 txbdp
= priv
->tx_bd_base
;
227 for (i
= 0; i
< priv
->tx_ring_size
; i
++) {
233 /* Set the last descriptor in the ring to indicate wrap */
235 txbdp
->status
|= TXBD_WRAP
;
237 rxbdp
= priv
->rx_bd_base
;
238 for (i
= 0; i
< priv
->rx_ring_size
; i
++) {
241 skb
= gfar_new_skb(ndev
);
243 pr_err("%s: Can't allocate RX buffers\n", ndev
->name
);
247 priv
->rx_skbuff
[i
] = skb
;
249 gfar_new_rxbdp(ndev
, rxbdp
, skb
);
257 free_skb_resources(priv
);
261 static void gfar_init_mac(struct net_device
*ndev
)
263 struct gfar_private
*priv
= netdev_priv(ndev
);
264 struct gfar __iomem
*regs
= priv
->regs
;
269 /* enet DMA only understands physical addresses */
270 gfar_write(®s
->tbase0
, priv
->tx_bd_dma_base
);
271 gfar_write(®s
->rbase0
, priv
->tx_bd_dma_base
+
272 sizeof(*priv
->tx_bd_base
) *
275 /* Configure the coalescing support */
276 gfar_write(®s
->txic
, 0);
277 if (priv
->txcoalescing
)
278 gfar_write(®s
->txic
, priv
->txic
);
280 gfar_write(®s
->rxic
, 0);
281 if (priv
->rxcoalescing
)
282 gfar_write(®s
->rxic
, priv
->rxic
);
284 if (priv
->rx_csum_enable
)
285 rctrl
|= RCTRL_CHECKSUMMING
;
287 if (priv
->extended_hash
) {
288 rctrl
|= RCTRL_EXTHASH
;
290 gfar_clear_exact_match(ndev
);
295 rctrl
&= ~RCTRL_PAL_MASK
;
296 rctrl
|= RCTRL_PADDING(priv
->padding
);
299 /* keep vlan related bits if it's enabled */
301 rctrl
|= RCTRL_VLEX
| RCTRL_PRSDEP_INIT
;
302 tctrl
|= TCTRL_VLINS
;
305 /* Init rctrl based on our settings */
306 gfar_write(®s
->rctrl
, rctrl
);
308 if (ndev
->features
& NETIF_F_IP_CSUM
)
309 tctrl
|= TCTRL_INIT_CSUM
;
311 gfar_write(®s
->tctrl
, tctrl
);
313 /* Set the extraction length and index */
314 attrs
= ATTRELI_EL(priv
->rx_stash_size
) |
315 ATTRELI_EI(priv
->rx_stash_index
);
317 gfar_write(®s
->attreli
, attrs
);
319 /* Start with defaults, and add stashing or locking
320 * depending on the approprate variables */
321 attrs
= ATTR_INIT_SETTINGS
;
323 if (priv
->bd_stash_en
)
324 attrs
|= ATTR_BDSTASH
;
326 if (priv
->rx_stash_size
!= 0)
327 attrs
|= ATTR_BUFSTASH
;
329 gfar_write(®s
->attr
, attrs
);
331 gfar_write(®s
->fifo_tx_thr
, priv
->fifo_threshold
);
332 gfar_write(®s
->fifo_tx_starve
, priv
->fifo_starve
);
333 gfar_write(®s
->fifo_tx_starve_shutoff
, priv
->fifo_starve_off
);
336 static const struct net_device_ops gfar_netdev_ops
= {
337 .ndo_open
= gfar_enet_open
,
338 .ndo_start_xmit
= gfar_start_xmit
,
339 .ndo_stop
= gfar_close
,
340 .ndo_change_mtu
= gfar_change_mtu
,
341 .ndo_set_multicast_list
= gfar_set_multi
,
342 .ndo_tx_timeout
= gfar_timeout
,
343 .ndo_do_ioctl
= gfar_ioctl
,
344 .ndo_vlan_rx_register
= gfar_vlan_rx_register
,
345 .ndo_set_mac_address
= eth_mac_addr
,
346 .ndo_validate_addr
= eth_validate_addr
,
347 #ifdef CONFIG_NET_POLL_CONTROLLER
348 .ndo_poll_controller
= gfar_netpoll
,
352 /* Returns 1 if incoming frames use an FCB */
353 static inline int gfar_uses_fcb(struct gfar_private
*priv
)
355 return priv
->vlgrp
|| priv
->rx_csum_enable
;
358 static int gfar_of_init(struct net_device
*dev
)
362 const void *mac_addr
;
365 struct gfar_private
*priv
= netdev_priv(dev
);
366 struct device_node
*np
= priv
->node
;
368 const u32
*stash_len
;
369 const u32
*stash_idx
;
371 if (!np
|| !of_device_is_available(np
))
374 /* get a pointer to the register memory */
375 addr
= of_translate_address(np
, of_get_address(np
, 0, &size
, NULL
));
376 priv
->regs
= ioremap(addr
, size
);
378 if (priv
->regs
== NULL
)
381 priv
->interruptTransmit
= irq_of_parse_and_map(np
, 0);
383 model
= of_get_property(np
, "model", NULL
);
385 /* If we aren't the FEC we have multiple interrupts */
386 if (model
&& strcasecmp(model
, "FEC")) {
387 priv
->interruptReceive
= irq_of_parse_and_map(np
, 1);
389 priv
->interruptError
= irq_of_parse_and_map(np
, 2);
391 if (priv
->interruptTransmit
< 0 ||
392 priv
->interruptReceive
< 0 ||
393 priv
->interruptError
< 0) {
399 stash
= of_get_property(np
, "bd-stash", NULL
);
402 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_BD_STASHING
;
403 priv
->bd_stash_en
= 1;
406 stash_len
= of_get_property(np
, "rx-stash-len", NULL
);
409 priv
->rx_stash_size
= *stash_len
;
411 stash_idx
= of_get_property(np
, "rx-stash-idx", NULL
);
414 priv
->rx_stash_index
= *stash_idx
;
416 if (stash_len
|| stash_idx
)
417 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_BUF_STASHING
;
419 mac_addr
= of_get_mac_address(np
);
421 memcpy(dev
->dev_addr
, mac_addr
, MAC_ADDR_LEN
);
423 if (model
&& !strcasecmp(model
, "TSEC"))
425 FSL_GIANFAR_DEV_HAS_GIGABIT
|
426 FSL_GIANFAR_DEV_HAS_COALESCE
|
427 FSL_GIANFAR_DEV_HAS_RMON
|
428 FSL_GIANFAR_DEV_HAS_MULTI_INTR
;
429 if (model
&& !strcasecmp(model
, "eTSEC"))
431 FSL_GIANFAR_DEV_HAS_GIGABIT
|
432 FSL_GIANFAR_DEV_HAS_COALESCE
|
433 FSL_GIANFAR_DEV_HAS_RMON
|
434 FSL_GIANFAR_DEV_HAS_MULTI_INTR
|
435 FSL_GIANFAR_DEV_HAS_PADDING
|
436 FSL_GIANFAR_DEV_HAS_CSUM
|
437 FSL_GIANFAR_DEV_HAS_VLAN
|
438 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
|
439 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
;
441 ctype
= of_get_property(np
, "phy-connection-type", NULL
);
443 /* We only care about rgmii-id. The rest are autodetected */
444 if (ctype
&& !strcmp(ctype
, "rgmii-id"))
445 priv
->interface
= PHY_INTERFACE_MODE_RGMII_ID
;
447 priv
->interface
= PHY_INTERFACE_MODE_MII
;
449 if (of_get_property(np
, "fsl,magic-packet", NULL
))
450 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
;
452 priv
->phy_node
= of_parse_phandle(np
, "phy-handle", 0);
454 /* Find the TBI PHY. If it's not there, we don't support SGMII */
455 priv
->tbi_node
= of_parse_phandle(np
, "tbi-handle", 0);
464 /* Ioctl MII Interface */
465 static int gfar_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
467 struct gfar_private
*priv
= netdev_priv(dev
);
469 if (!netif_running(dev
))
475 return phy_mii_ioctl(priv
->phydev
, if_mii(rq
), cmd
);
478 /* Set up the ethernet device structure, private data,
479 * and anything else we need before we start */
480 static int gfar_probe(struct of_device
*ofdev
,
481 const struct of_device_id
*match
)
484 struct net_device
*dev
= NULL
;
485 struct gfar_private
*priv
= NULL
;
489 /* Create an ethernet device instance */
490 dev
= alloc_etherdev(sizeof (*priv
));
495 priv
= netdev_priv(dev
);
498 priv
->node
= ofdev
->node
;
499 SET_NETDEV_DEV(dev
, &ofdev
->dev
);
501 err
= gfar_of_init(dev
);
506 spin_lock_init(&priv
->txlock
);
507 spin_lock_init(&priv
->rxlock
);
508 spin_lock_init(&priv
->bflock
);
509 INIT_WORK(&priv
->reset_task
, gfar_reset_task
);
511 dev_set_drvdata(&ofdev
->dev
, priv
);
513 /* Stop the DMA engine now, in case it was running before */
514 /* (The firmware could have used it, and left it running). */
517 /* Reset MAC layer */
518 gfar_write(&priv
->regs
->maccfg1
, MACCFG1_SOFT_RESET
);
520 /* We need to delay at least 3 TX clocks */
523 tempval
= (MACCFG1_TX_FLOW
| MACCFG1_RX_FLOW
);
524 gfar_write(&priv
->regs
->maccfg1
, tempval
);
526 /* Initialize MACCFG2. */
527 gfar_write(&priv
->regs
->maccfg2
, MACCFG2_INIT_SETTINGS
);
529 /* Initialize ECNTRL */
530 gfar_write(&priv
->regs
->ecntrl
, ECNTRL_INIT_SETTINGS
);
532 /* Set the dev->base_addr to the gfar reg region */
533 dev
->base_addr
= (unsigned long) (priv
->regs
);
535 SET_NETDEV_DEV(dev
, &ofdev
->dev
);
537 /* Fill in the dev structure */
538 dev
->watchdog_timeo
= TX_TIMEOUT
;
539 netif_napi_add(dev
, &priv
->napi
, gfar_poll
, GFAR_DEV_WEIGHT
);
542 dev
->netdev_ops
= &gfar_netdev_ops
;
543 dev
->ethtool_ops
= &gfar_ethtool_ops
;
545 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_CSUM
) {
546 priv
->rx_csum_enable
= 1;
547 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
| NETIF_F_HIGHDMA
;
549 priv
->rx_csum_enable
= 0;
553 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_VLAN
)
554 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
556 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
) {
557 priv
->extended_hash
= 1;
558 priv
->hash_width
= 9;
560 priv
->hash_regs
[0] = &priv
->regs
->igaddr0
;
561 priv
->hash_regs
[1] = &priv
->regs
->igaddr1
;
562 priv
->hash_regs
[2] = &priv
->regs
->igaddr2
;
563 priv
->hash_regs
[3] = &priv
->regs
->igaddr3
;
564 priv
->hash_regs
[4] = &priv
->regs
->igaddr4
;
565 priv
->hash_regs
[5] = &priv
->regs
->igaddr5
;
566 priv
->hash_regs
[6] = &priv
->regs
->igaddr6
;
567 priv
->hash_regs
[7] = &priv
->regs
->igaddr7
;
568 priv
->hash_regs
[8] = &priv
->regs
->gaddr0
;
569 priv
->hash_regs
[9] = &priv
->regs
->gaddr1
;
570 priv
->hash_regs
[10] = &priv
->regs
->gaddr2
;
571 priv
->hash_regs
[11] = &priv
->regs
->gaddr3
;
572 priv
->hash_regs
[12] = &priv
->regs
->gaddr4
;
573 priv
->hash_regs
[13] = &priv
->regs
->gaddr5
;
574 priv
->hash_regs
[14] = &priv
->regs
->gaddr6
;
575 priv
->hash_regs
[15] = &priv
->regs
->gaddr7
;
578 priv
->extended_hash
= 0;
579 priv
->hash_width
= 8;
581 priv
->hash_regs
[0] = &priv
->regs
->gaddr0
;
582 priv
->hash_regs
[1] = &priv
->regs
->gaddr1
;
583 priv
->hash_regs
[2] = &priv
->regs
->gaddr2
;
584 priv
->hash_regs
[3] = &priv
->regs
->gaddr3
;
585 priv
->hash_regs
[4] = &priv
->regs
->gaddr4
;
586 priv
->hash_regs
[5] = &priv
->regs
->gaddr5
;
587 priv
->hash_regs
[6] = &priv
->regs
->gaddr6
;
588 priv
->hash_regs
[7] = &priv
->regs
->gaddr7
;
591 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_PADDING
)
592 priv
->padding
= DEFAULT_PADDING
;
596 if (dev
->features
& NETIF_F_IP_CSUM
)
597 dev
->hard_header_len
+= GMAC_FCB_LEN
;
599 priv
->rx_buffer_size
= DEFAULT_RX_BUFFER_SIZE
;
600 priv
->tx_ring_size
= DEFAULT_TX_RING_SIZE
;
601 priv
->rx_ring_size
= DEFAULT_RX_RING_SIZE
;
602 priv
->num_txbdfree
= DEFAULT_TX_RING_SIZE
;
604 priv
->txcoalescing
= DEFAULT_TX_COALESCE
;
605 priv
->txic
= DEFAULT_TXIC
;
606 priv
->rxcoalescing
= DEFAULT_RX_COALESCE
;
607 priv
->rxic
= DEFAULT_RXIC
;
609 /* Enable most messages by default */
610 priv
->msg_enable
= (NETIF_MSG_IFUP
<< 1 ) - 1;
612 /* Carrier starts down, phylib will bring it up */
613 netif_carrier_off(dev
);
615 err
= register_netdev(dev
);
618 printk(KERN_ERR
"%s: Cannot register net device, aborting.\n",
623 device_init_wakeup(&dev
->dev
,
624 priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
626 /* fill out IRQ number and name fields */
627 len_devname
= strlen(dev
->name
);
628 strncpy(&priv
->int_name_tx
[0], dev
->name
, len_devname
);
629 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
630 strncpy(&priv
->int_name_tx
[len_devname
],
631 "_tx", sizeof("_tx") + 1);
633 strncpy(&priv
->int_name_rx
[0], dev
->name
, len_devname
);
634 strncpy(&priv
->int_name_rx
[len_devname
],
635 "_rx", sizeof("_rx") + 1);
637 strncpy(&priv
->int_name_er
[0], dev
->name
, len_devname
);
638 strncpy(&priv
->int_name_er
[len_devname
],
639 "_er", sizeof("_er") + 1);
641 priv
->int_name_tx
[len_devname
] = '\0';
643 /* Create all the sysfs files */
644 gfar_init_sysfs(dev
);
646 /* Print out the device info */
647 printk(KERN_INFO DEVICE_NAME
"%pM\n", dev
->name
, dev
->dev_addr
);
649 /* Even more device info helps when determining which kernel */
650 /* provided which set of benchmarks. */
651 printk(KERN_INFO
"%s: Running with NAPI enabled\n", dev
->name
);
652 printk(KERN_INFO
"%s: %d/%d RX/TX BD ring size\n",
653 dev
->name
, priv
->rx_ring_size
, priv
->tx_ring_size
);
661 of_node_put(priv
->phy_node
);
663 of_node_put(priv
->tbi_node
);
668 static int gfar_remove(struct of_device
*ofdev
)
670 struct gfar_private
*priv
= dev_get_drvdata(&ofdev
->dev
);
673 of_node_put(priv
->phy_node
);
675 of_node_put(priv
->tbi_node
);
677 dev_set_drvdata(&ofdev
->dev
, NULL
);
679 unregister_netdev(priv
->ndev
);
681 free_netdev(priv
->ndev
);
687 static int gfar_suspend(struct of_device
*ofdev
, pm_message_t state
)
689 struct gfar_private
*priv
= dev_get_drvdata(&ofdev
->dev
);
690 struct net_device
*dev
= priv
->ndev
;
694 int magic_packet
= priv
->wol_en
&&
695 (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
697 netif_device_detach(dev
);
699 if (netif_running(dev
)) {
700 spin_lock_irqsave(&priv
->txlock
, flags
);
701 spin_lock(&priv
->rxlock
);
703 gfar_halt_nodisable(dev
);
705 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
706 tempval
= gfar_read(&priv
->regs
->maccfg1
);
708 tempval
&= ~MACCFG1_TX_EN
;
711 tempval
&= ~MACCFG1_RX_EN
;
713 gfar_write(&priv
->regs
->maccfg1
, tempval
);
715 spin_unlock(&priv
->rxlock
);
716 spin_unlock_irqrestore(&priv
->txlock
, flags
);
718 napi_disable(&priv
->napi
);
721 /* Enable interrupt on Magic Packet */
722 gfar_write(&priv
->regs
->imask
, IMASK_MAG
);
724 /* Enable Magic Packet mode */
725 tempval
= gfar_read(&priv
->regs
->maccfg2
);
726 tempval
|= MACCFG2_MPEN
;
727 gfar_write(&priv
->regs
->maccfg2
, tempval
);
729 phy_stop(priv
->phydev
);
736 static int gfar_resume(struct of_device
*ofdev
)
738 struct gfar_private
*priv
= dev_get_drvdata(&ofdev
->dev
);
739 struct net_device
*dev
= priv
->ndev
;
742 int magic_packet
= priv
->wol_en
&&
743 (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
745 if (!netif_running(dev
)) {
746 netif_device_attach(dev
);
750 if (!magic_packet
&& priv
->phydev
)
751 phy_start(priv
->phydev
);
753 /* Disable Magic Packet mode, in case something
757 spin_lock_irqsave(&priv
->txlock
, flags
);
758 spin_lock(&priv
->rxlock
);
760 tempval
= gfar_read(&priv
->regs
->maccfg2
);
761 tempval
&= ~MACCFG2_MPEN
;
762 gfar_write(&priv
->regs
->maccfg2
, tempval
);
766 spin_unlock(&priv
->rxlock
);
767 spin_unlock_irqrestore(&priv
->txlock
, flags
);
769 netif_device_attach(dev
);
771 napi_enable(&priv
->napi
);
776 #define gfar_suspend NULL
777 #define gfar_resume NULL
780 /* Reads the controller's registers to determine what interface
781 * connects it to the PHY.
783 static phy_interface_t
gfar_get_interface(struct net_device
*dev
)
785 struct gfar_private
*priv
= netdev_priv(dev
);
786 u32 ecntrl
= gfar_read(&priv
->regs
->ecntrl
);
788 if (ecntrl
& ECNTRL_SGMII_MODE
)
789 return PHY_INTERFACE_MODE_SGMII
;
791 if (ecntrl
& ECNTRL_TBI_MODE
) {
792 if (ecntrl
& ECNTRL_REDUCED_MODE
)
793 return PHY_INTERFACE_MODE_RTBI
;
795 return PHY_INTERFACE_MODE_TBI
;
798 if (ecntrl
& ECNTRL_REDUCED_MODE
) {
799 if (ecntrl
& ECNTRL_REDUCED_MII_MODE
)
800 return PHY_INTERFACE_MODE_RMII
;
802 phy_interface_t interface
= priv
->interface
;
805 * This isn't autodetected right now, so it must
806 * be set by the device tree or platform code.
808 if (interface
== PHY_INTERFACE_MODE_RGMII_ID
)
809 return PHY_INTERFACE_MODE_RGMII_ID
;
811 return PHY_INTERFACE_MODE_RGMII
;
815 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
)
816 return PHY_INTERFACE_MODE_GMII
;
818 return PHY_INTERFACE_MODE_MII
;
822 /* Initializes driver's PHY state, and attaches to the PHY.
823 * Returns 0 on success.
825 static int init_phy(struct net_device
*dev
)
827 struct gfar_private
*priv
= netdev_priv(dev
);
828 uint gigabit_support
=
829 priv
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
?
830 SUPPORTED_1000baseT_Full
: 0;
831 phy_interface_t interface
;
835 priv
->oldduplex
= -1;
837 interface
= gfar_get_interface(dev
);
839 priv
->phydev
= of_phy_connect(dev
, priv
->phy_node
, &adjust_link
, 0,
842 priv
->phydev
= of_phy_connect_fixed_link(dev
, &adjust_link
,
845 dev_err(&dev
->dev
, "could not attach to PHY\n");
849 if (interface
== PHY_INTERFACE_MODE_SGMII
)
850 gfar_configure_serdes(dev
);
852 /* Remove any features not supported by the controller */
853 priv
->phydev
->supported
&= (GFAR_SUPPORTED
| gigabit_support
);
854 priv
->phydev
->advertising
= priv
->phydev
->supported
;
860 * Initialize TBI PHY interface for communicating with the
861 * SERDES lynx PHY on the chip. We communicate with this PHY
862 * through the MDIO bus on each controller, treating it as a
863 * "normal" PHY at the address found in the TBIPA register. We assume
864 * that the TBIPA register is valid. Either the MDIO bus code will set
865 * it to a value that doesn't conflict with other PHYs on the bus, or the
866 * value doesn't matter, as there are no other PHYs on the bus.
868 static void gfar_configure_serdes(struct net_device
*dev
)
870 struct gfar_private
*priv
= netdev_priv(dev
);
871 struct phy_device
*tbiphy
;
873 if (!priv
->tbi_node
) {
874 dev_warn(&dev
->dev
, "error: SGMII mode requires that the "
875 "device tree specify a tbi-handle\n");
879 tbiphy
= of_phy_find_device(priv
->tbi_node
);
881 dev_err(&dev
->dev
, "error: Could not get TBI device\n");
886 * If the link is already up, we must already be ok, and don't need to
887 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
888 * everything for us? Resetting it takes the link down and requires
889 * several seconds for it to come back.
891 if (phy_read(tbiphy
, MII_BMSR
) & BMSR_LSTATUS
)
894 /* Single clk mode, mii mode off(for serdes communication) */
895 phy_write(tbiphy
, MII_TBICON
, TBICON_CLK_SELECT
);
897 phy_write(tbiphy
, MII_ADVERTISE
,
898 ADVERTISE_1000XFULL
| ADVERTISE_1000XPAUSE
|
899 ADVERTISE_1000XPSE_ASYM
);
901 phy_write(tbiphy
, MII_BMCR
, BMCR_ANENABLE
|
902 BMCR_ANRESTART
| BMCR_FULLDPLX
| BMCR_SPEED1000
);
905 static void init_registers(struct net_device
*dev
)
907 struct gfar_private
*priv
= netdev_priv(dev
);
910 gfar_write(&priv
->regs
->ievent
, IEVENT_INIT_CLEAR
);
912 /* Initialize IMASK */
913 gfar_write(&priv
->regs
->imask
, IMASK_INIT_CLEAR
);
915 /* Init hash registers to zero */
916 gfar_write(&priv
->regs
->igaddr0
, 0);
917 gfar_write(&priv
->regs
->igaddr1
, 0);
918 gfar_write(&priv
->regs
->igaddr2
, 0);
919 gfar_write(&priv
->regs
->igaddr3
, 0);
920 gfar_write(&priv
->regs
->igaddr4
, 0);
921 gfar_write(&priv
->regs
->igaddr5
, 0);
922 gfar_write(&priv
->regs
->igaddr6
, 0);
923 gfar_write(&priv
->regs
->igaddr7
, 0);
925 gfar_write(&priv
->regs
->gaddr0
, 0);
926 gfar_write(&priv
->regs
->gaddr1
, 0);
927 gfar_write(&priv
->regs
->gaddr2
, 0);
928 gfar_write(&priv
->regs
->gaddr3
, 0);
929 gfar_write(&priv
->regs
->gaddr4
, 0);
930 gfar_write(&priv
->regs
->gaddr5
, 0);
931 gfar_write(&priv
->regs
->gaddr6
, 0);
932 gfar_write(&priv
->regs
->gaddr7
, 0);
934 /* Zero out the rmon mib registers if it has them */
935 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_RMON
) {
936 memset_io(&(priv
->regs
->rmon
), 0, sizeof (struct rmon_mib
));
938 /* Mask off the CAM interrupts */
939 gfar_write(&priv
->regs
->rmon
.cam1
, 0xffffffff);
940 gfar_write(&priv
->regs
->rmon
.cam2
, 0xffffffff);
943 /* Initialize the max receive buffer length */
944 gfar_write(&priv
->regs
->mrblr
, priv
->rx_buffer_size
);
946 /* Initialize the Minimum Frame Length Register */
947 gfar_write(&priv
->regs
->minflr
, MINFLR_INIT_SETTINGS
);
951 /* Halt the receive and transmit queues */
952 static void gfar_halt_nodisable(struct net_device
*dev
)
954 struct gfar_private
*priv
= netdev_priv(dev
);
955 struct gfar __iomem
*regs
= priv
->regs
;
958 /* Mask all interrupts */
959 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
961 /* Clear all interrupts */
962 gfar_write(®s
->ievent
, IEVENT_INIT_CLEAR
);
964 /* Stop the DMA, and wait for it to stop */
965 tempval
= gfar_read(&priv
->regs
->dmactrl
);
966 if ((tempval
& (DMACTRL_GRS
| DMACTRL_GTS
))
967 != (DMACTRL_GRS
| DMACTRL_GTS
)) {
968 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
969 gfar_write(&priv
->regs
->dmactrl
, tempval
);
971 while (!(gfar_read(&priv
->regs
->ievent
) &
972 (IEVENT_GRSC
| IEVENT_GTSC
)))
977 /* Halt the receive and transmit queues */
978 void gfar_halt(struct net_device
*dev
)
980 struct gfar_private
*priv
= netdev_priv(dev
);
981 struct gfar __iomem
*regs
= priv
->regs
;
984 gfar_halt_nodisable(dev
);
986 /* Disable Rx and Tx */
987 tempval
= gfar_read(®s
->maccfg1
);
988 tempval
&= ~(MACCFG1_RX_EN
| MACCFG1_TX_EN
);
989 gfar_write(®s
->maccfg1
, tempval
);
992 void stop_gfar(struct net_device
*dev
)
994 struct gfar_private
*priv
= netdev_priv(dev
);
997 phy_stop(priv
->phydev
);
1000 spin_lock_irqsave(&priv
->txlock
, flags
);
1001 spin_lock(&priv
->rxlock
);
1005 spin_unlock(&priv
->rxlock
);
1006 spin_unlock_irqrestore(&priv
->txlock
, flags
);
1009 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1010 free_irq(priv
->interruptError
, dev
);
1011 free_irq(priv
->interruptTransmit
, dev
);
1012 free_irq(priv
->interruptReceive
, dev
);
1014 free_irq(priv
->interruptTransmit
, dev
);
1017 free_skb_resources(priv
);
1020 /* If there are any tx skbs or rx skbs still around, free them.
1021 * Then free tx_skbuff and rx_skbuff */
1022 static void free_skb_resources(struct gfar_private
*priv
)
1024 struct device
*dev
= &priv
->ofdev
->dev
;
1025 struct rxbd8
*rxbdp
;
1026 struct txbd8
*txbdp
;
1029 /* Go through all the buffer descriptors and free their data buffers */
1030 txbdp
= priv
->tx_bd_base
;
1032 if (!priv
->tx_skbuff
)
1033 goto skip_tx_skbuff
;
1035 for (i
= 0; i
< priv
->tx_ring_size
; i
++) {
1036 if (!priv
->tx_skbuff
[i
])
1039 dma_unmap_single(&priv
->ofdev
->dev
, txbdp
->bufPtr
,
1040 txbdp
->length
, DMA_TO_DEVICE
);
1042 for (j
= 0; j
< skb_shinfo(priv
->tx_skbuff
[i
])->nr_frags
; j
++) {
1044 dma_unmap_page(&priv
->ofdev
->dev
, txbdp
->bufPtr
,
1045 txbdp
->length
, DMA_TO_DEVICE
);
1048 dev_kfree_skb_any(priv
->tx_skbuff
[i
]);
1049 priv
->tx_skbuff
[i
] = NULL
;
1052 kfree(priv
->tx_skbuff
);
1055 rxbdp
= priv
->rx_bd_base
;
1057 if (!priv
->rx_skbuff
)
1058 goto skip_rx_skbuff
;
1060 for (i
= 0; i
< priv
->rx_ring_size
; i
++) {
1061 if (priv
->rx_skbuff
[i
]) {
1062 dma_unmap_single(&priv
->ofdev
->dev
, rxbdp
->bufPtr
,
1063 priv
->rx_buffer_size
,
1065 dev_kfree_skb_any(priv
->rx_skbuff
[i
]);
1066 priv
->rx_skbuff
[i
] = NULL
;
1074 kfree(priv
->rx_skbuff
);
1077 dma_free_coherent(dev
, sizeof(*txbdp
) * priv
->tx_ring_size
+
1078 sizeof(*rxbdp
) * priv
->rx_ring_size
,
1079 priv
->tx_bd_base
, priv
->tx_bd_dma_base
);
1082 void gfar_start(struct net_device
*dev
)
1084 struct gfar_private
*priv
= netdev_priv(dev
);
1085 struct gfar __iomem
*regs
= priv
->regs
;
1088 /* Enable Rx and Tx in MACCFG1 */
1089 tempval
= gfar_read(®s
->maccfg1
);
1090 tempval
|= (MACCFG1_RX_EN
| MACCFG1_TX_EN
);
1091 gfar_write(®s
->maccfg1
, tempval
);
1093 /* Initialize DMACTRL to have WWR and WOP */
1094 tempval
= gfar_read(&priv
->regs
->dmactrl
);
1095 tempval
|= DMACTRL_INIT_SETTINGS
;
1096 gfar_write(&priv
->regs
->dmactrl
, tempval
);
1098 /* Make sure we aren't stopped */
1099 tempval
= gfar_read(&priv
->regs
->dmactrl
);
1100 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
1101 gfar_write(&priv
->regs
->dmactrl
, tempval
);
1103 /* Clear THLT/RHLT, so that the DMA starts polling now */
1104 gfar_write(®s
->tstat
, TSTAT_CLEAR_THALT
);
1105 gfar_write(®s
->rstat
, RSTAT_CLEAR_RHALT
);
1107 /* Unmask the interrupts we look for */
1108 gfar_write(®s
->imask
, IMASK_DEFAULT
);
1110 dev
->trans_start
= jiffies
;
1113 /* Bring the controller up and running */
1114 int startup_gfar(struct net_device
*ndev
)
1116 struct gfar_private
*priv
= netdev_priv(ndev
);
1117 struct gfar __iomem
*regs
= priv
->regs
;
1120 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
1122 err
= gfar_alloc_skb_resources(ndev
);
1126 gfar_init_mac(ndev
);
1128 /* If the device has multiple interrupts, register for
1129 * them. Otherwise, only register for the one */
1130 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1131 /* Install our interrupt handlers for Error,
1132 * Transmit, and Receive */
1133 err
= request_irq(priv
->interruptError
, gfar_error
, 0,
1134 priv
->int_name_er
, ndev
);
1136 if (netif_msg_intr(priv
))
1137 pr_err("%s: Can't get IRQ %d\n", ndev
->name
,
1138 priv
->interruptError
);
1142 err
= request_irq(priv
->interruptTransmit
, gfar_transmit
, 0,
1143 priv
->int_name_tx
, ndev
);
1145 if (netif_msg_intr(priv
))
1146 pr_err("%s: Can't get IRQ %d\n", ndev
->name
,
1147 priv
->interruptTransmit
);
1151 err
= request_irq(priv
->interruptReceive
, gfar_receive
, 0,
1152 priv
->int_name_rx
, ndev
);
1154 if (netif_msg_intr(priv
))
1155 pr_err("%s: Can't get IRQ %d (receive0)\n",
1156 ndev
->name
, priv
->interruptReceive
);
1160 err
= request_irq(priv
->interruptTransmit
, gfar_interrupt
,
1161 0, priv
->int_name_tx
, ndev
);
1163 if (netif_msg_intr(priv
))
1164 pr_err("%s: Can't get IRQ %d\n", ndev
->name
,
1165 priv
->interruptTransmit
);
1170 /* Start the controller */
1173 phy_start(priv
->phydev
);
1178 free_irq(priv
->interruptTransmit
, ndev
);
1180 free_irq(priv
->interruptError
, ndev
);
1182 free_skb_resources(priv
);
1186 /* Called when something needs to use the ethernet device */
1187 /* Returns 0 for success. */
1188 static int gfar_enet_open(struct net_device
*dev
)
1190 struct gfar_private
*priv
= netdev_priv(dev
);
1193 napi_enable(&priv
->napi
);
1195 skb_queue_head_init(&priv
->rx_recycle
);
1197 /* Initialize a bunch of registers */
1198 init_registers(dev
);
1200 gfar_set_mac_address(dev
);
1202 err
= init_phy(dev
);
1205 napi_disable(&priv
->napi
);
1209 err
= startup_gfar(dev
);
1211 napi_disable(&priv
->napi
);
1215 netif_start_queue(dev
);
1217 device_set_wakeup_enable(&dev
->dev
, priv
->wol_en
);
1222 static inline struct txfcb
*gfar_add_fcb(struct sk_buff
*skb
)
1224 struct txfcb
*fcb
= (struct txfcb
*)skb_push(skb
, GMAC_FCB_LEN
);
1226 memset(fcb
, 0, GMAC_FCB_LEN
);
1231 static inline void gfar_tx_checksum(struct sk_buff
*skb
, struct txfcb
*fcb
)
1235 /* If we're here, it's a IP packet with a TCP or UDP
1236 * payload. We set it to checksum, using a pseudo-header
1239 flags
= TXFCB_DEFAULT
;
1241 /* Tell the controller what the protocol is */
1242 /* And provide the already calculated phcs */
1243 if (ip_hdr(skb
)->protocol
== IPPROTO_UDP
) {
1245 fcb
->phcs
= udp_hdr(skb
)->check
;
1247 fcb
->phcs
= tcp_hdr(skb
)->check
;
1249 /* l3os is the distance between the start of the
1250 * frame (skb->data) and the start of the IP hdr.
1251 * l4os is the distance between the start of the
1252 * l3 hdr and the l4 hdr */
1253 fcb
->l3os
= (u16
)(skb_network_offset(skb
) - GMAC_FCB_LEN
);
1254 fcb
->l4os
= skb_network_header_len(skb
);
1259 void inline gfar_tx_vlan(struct sk_buff
*skb
, struct txfcb
*fcb
)
1261 fcb
->flags
|= TXFCB_VLN
;
1262 fcb
->vlctl
= vlan_tx_tag_get(skb
);
1265 static inline struct txbd8
*skip_txbd(struct txbd8
*bdp
, int stride
,
1266 struct txbd8
*base
, int ring_size
)
1268 struct txbd8
*new_bd
= bdp
+ stride
;
1270 return (new_bd
>= (base
+ ring_size
)) ? (new_bd
- ring_size
) : new_bd
;
1273 static inline struct txbd8
*next_txbd(struct txbd8
*bdp
, struct txbd8
*base
,
1276 return skip_txbd(bdp
, 1, base
, ring_size
);
1279 /* This is called by the kernel when a frame is ready for transmission. */
1280 /* It is pointed to by the dev->hard_start_xmit function pointer */
1281 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1283 struct gfar_private
*priv
= netdev_priv(dev
);
1284 struct txfcb
*fcb
= NULL
;
1285 struct txbd8
*txbdp
, *txbdp_start
, *base
;
1289 unsigned long flags
;
1290 unsigned int nr_frags
, length
;
1292 base
= priv
->tx_bd_base
;
1294 /* make space for additional header when fcb is needed */
1295 if (((skb
->ip_summed
== CHECKSUM_PARTIAL
) ||
1296 (priv
->vlgrp
&& vlan_tx_tag_present(skb
))) &&
1297 (skb_headroom(skb
) < GMAC_FCB_LEN
)) {
1298 struct sk_buff
*skb_new
;
1300 skb_new
= skb_realloc_headroom(skb
, GMAC_FCB_LEN
);
1302 dev
->stats
.tx_errors
++;
1304 return NETDEV_TX_OK
;
1310 /* total number of fragments in the SKB */
1311 nr_frags
= skb_shinfo(skb
)->nr_frags
;
1313 spin_lock_irqsave(&priv
->txlock
, flags
);
1315 /* check if there is space to queue this packet */
1316 if ((nr_frags
+1) > priv
->num_txbdfree
) {
1317 /* no space, stop the queue */
1318 netif_stop_queue(dev
);
1319 dev
->stats
.tx_fifo_errors
++;
1320 spin_unlock_irqrestore(&priv
->txlock
, flags
);
1321 return NETDEV_TX_BUSY
;
1324 /* Update transmit stats */
1325 dev
->stats
.tx_bytes
+= skb
->len
;
1327 txbdp
= txbdp_start
= priv
->cur_tx
;
1329 if (nr_frags
== 0) {
1330 lstatus
= txbdp
->lstatus
| BD_LFLAG(TXBD_LAST
| TXBD_INTERRUPT
);
1332 /* Place the fragment addresses and lengths into the TxBDs */
1333 for (i
= 0; i
< nr_frags
; i
++) {
1334 /* Point at the next BD, wrapping as needed */
1335 txbdp
= next_txbd(txbdp
, base
, priv
->tx_ring_size
);
1337 length
= skb_shinfo(skb
)->frags
[i
].size
;
1339 lstatus
= txbdp
->lstatus
| length
|
1340 BD_LFLAG(TXBD_READY
);
1342 /* Handle the last BD specially */
1343 if (i
== nr_frags
- 1)
1344 lstatus
|= BD_LFLAG(TXBD_LAST
| TXBD_INTERRUPT
);
1346 bufaddr
= dma_map_page(&priv
->ofdev
->dev
,
1347 skb_shinfo(skb
)->frags
[i
].page
,
1348 skb_shinfo(skb
)->frags
[i
].page_offset
,
1352 /* set the TxBD length and buffer pointer */
1353 txbdp
->bufPtr
= bufaddr
;
1354 txbdp
->lstatus
= lstatus
;
1357 lstatus
= txbdp_start
->lstatus
;
1360 /* Set up checksumming */
1361 if (CHECKSUM_PARTIAL
== skb
->ip_summed
) {
1362 fcb
= gfar_add_fcb(skb
);
1363 lstatus
|= BD_LFLAG(TXBD_TOE
);
1364 gfar_tx_checksum(skb
, fcb
);
1367 if (priv
->vlgrp
&& vlan_tx_tag_present(skb
)) {
1368 if (unlikely(NULL
== fcb
)) {
1369 fcb
= gfar_add_fcb(skb
);
1370 lstatus
|= BD_LFLAG(TXBD_TOE
);
1373 gfar_tx_vlan(skb
, fcb
);
1376 /* setup the TxBD length and buffer pointer for the first BD */
1377 priv
->tx_skbuff
[priv
->skb_curtx
] = skb
;
1378 txbdp_start
->bufPtr
= dma_map_single(&priv
->ofdev
->dev
, skb
->data
,
1379 skb_headlen(skb
), DMA_TO_DEVICE
);
1381 lstatus
|= BD_LFLAG(TXBD_CRC
| TXBD_READY
) | skb_headlen(skb
);
1384 * The powerpc-specific eieio() is used, as wmb() has too strong
1385 * semantics (it requires synchronization between cacheable and
1386 * uncacheable mappings, which eieio doesn't provide and which we
1387 * don't need), thus requiring a more expensive sync instruction. At
1388 * some point, the set of architecture-independent barrier functions
1389 * should be expanded to include weaker barriers.
1393 txbdp_start
->lstatus
= lstatus
;
1395 /* Update the current skb pointer to the next entry we will use
1396 * (wrapping if necessary) */
1397 priv
->skb_curtx
= (priv
->skb_curtx
+ 1) &
1398 TX_RING_MOD_MASK(priv
->tx_ring_size
);
1400 priv
->cur_tx
= next_txbd(txbdp
, base
, priv
->tx_ring_size
);
1402 /* reduce TxBD free count */
1403 priv
->num_txbdfree
-= (nr_frags
+ 1);
1405 dev
->trans_start
= jiffies
;
1407 /* If the next BD still needs to be cleaned up, then the bds
1408 are full. We need to tell the kernel to stop sending us stuff. */
1409 if (!priv
->num_txbdfree
) {
1410 netif_stop_queue(dev
);
1412 dev
->stats
.tx_fifo_errors
++;
1415 /* Tell the DMA to go go go */
1416 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
1419 spin_unlock_irqrestore(&priv
->txlock
, flags
);
1421 return NETDEV_TX_OK
;
1424 /* Stops the kernel queue, and halts the controller */
1425 static int gfar_close(struct net_device
*dev
)
1427 struct gfar_private
*priv
= netdev_priv(dev
);
1429 napi_disable(&priv
->napi
);
1431 skb_queue_purge(&priv
->rx_recycle
);
1432 cancel_work_sync(&priv
->reset_task
);
1435 /* Disconnect from the PHY */
1436 phy_disconnect(priv
->phydev
);
1437 priv
->phydev
= NULL
;
1439 netif_stop_queue(dev
);
1444 /* Changes the mac address if the controller is not running. */
1445 static int gfar_set_mac_address(struct net_device
*dev
)
1447 gfar_set_mac_for_addr(dev
, 0, dev
->dev_addr
);
1453 /* Enables and disables VLAN insertion/extraction */
1454 static void gfar_vlan_rx_register(struct net_device
*dev
,
1455 struct vlan_group
*grp
)
1457 struct gfar_private
*priv
= netdev_priv(dev
);
1458 unsigned long flags
;
1461 spin_lock_irqsave(&priv
->rxlock
, flags
);
1466 /* Enable VLAN tag insertion */
1467 tempval
= gfar_read(&priv
->regs
->tctrl
);
1468 tempval
|= TCTRL_VLINS
;
1470 gfar_write(&priv
->regs
->tctrl
, tempval
);
1472 /* Enable VLAN tag extraction */
1473 tempval
= gfar_read(&priv
->regs
->rctrl
);
1474 tempval
|= (RCTRL_VLEX
| RCTRL_PRSDEP_INIT
);
1475 gfar_write(&priv
->regs
->rctrl
, tempval
);
1477 /* Disable VLAN tag insertion */
1478 tempval
= gfar_read(&priv
->regs
->tctrl
);
1479 tempval
&= ~TCTRL_VLINS
;
1480 gfar_write(&priv
->regs
->tctrl
, tempval
);
1482 /* Disable VLAN tag extraction */
1483 tempval
= gfar_read(&priv
->regs
->rctrl
);
1484 tempval
&= ~RCTRL_VLEX
;
1485 /* If parse is no longer required, then disable parser */
1486 if (tempval
& RCTRL_REQ_PARSER
)
1487 tempval
|= RCTRL_PRSDEP_INIT
;
1489 tempval
&= ~RCTRL_PRSDEP_INIT
;
1490 gfar_write(&priv
->regs
->rctrl
, tempval
);
1493 gfar_change_mtu(dev
, dev
->mtu
);
1495 spin_unlock_irqrestore(&priv
->rxlock
, flags
);
1498 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
)
1500 int tempsize
, tempval
;
1501 struct gfar_private
*priv
= netdev_priv(dev
);
1502 int oldsize
= priv
->rx_buffer_size
;
1503 int frame_size
= new_mtu
+ ETH_HLEN
;
1506 frame_size
+= VLAN_HLEN
;
1508 if ((frame_size
< 64) || (frame_size
> JUMBO_FRAME_SIZE
)) {
1509 if (netif_msg_drv(priv
))
1510 printk(KERN_ERR
"%s: Invalid MTU setting\n",
1515 if (gfar_uses_fcb(priv
))
1516 frame_size
+= GMAC_FCB_LEN
;
1518 frame_size
+= priv
->padding
;
1521 (frame_size
& ~(INCREMENTAL_BUFFER_SIZE
- 1)) +
1522 INCREMENTAL_BUFFER_SIZE
;
1524 /* Only stop and start the controller if it isn't already
1525 * stopped, and we changed something */
1526 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
1529 priv
->rx_buffer_size
= tempsize
;
1533 gfar_write(&priv
->regs
->mrblr
, priv
->rx_buffer_size
);
1534 gfar_write(&priv
->regs
->maxfrm
, priv
->rx_buffer_size
);
1536 /* If the mtu is larger than the max size for standard
1537 * ethernet frames (ie, a jumbo frame), then set maccfg2
1538 * to allow huge frames, and to check the length */
1539 tempval
= gfar_read(&priv
->regs
->maccfg2
);
1541 if (priv
->rx_buffer_size
> DEFAULT_RX_BUFFER_SIZE
)
1542 tempval
|= (MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
1544 tempval
&= ~(MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
1546 gfar_write(&priv
->regs
->maccfg2
, tempval
);
1548 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
1554 /* gfar_reset_task gets scheduled when a packet has not been
1555 * transmitted after a set amount of time.
1556 * For now, assume that clearing out all the structures, and
1557 * starting over will fix the problem.
1559 static void gfar_reset_task(struct work_struct
*work
)
1561 struct gfar_private
*priv
= container_of(work
, struct gfar_private
,
1563 struct net_device
*dev
= priv
->ndev
;
1565 if (dev
->flags
& IFF_UP
) {
1566 netif_stop_queue(dev
);
1569 netif_start_queue(dev
);
1572 netif_tx_schedule_all(dev
);
1575 static void gfar_timeout(struct net_device
*dev
)
1577 struct gfar_private
*priv
= netdev_priv(dev
);
1579 dev
->stats
.tx_errors
++;
1580 schedule_work(&priv
->reset_task
);
1583 /* Interrupt Handler for Transmit complete */
1584 static int gfar_clean_tx_ring(struct net_device
*dev
)
1586 struct gfar_private
*priv
= netdev_priv(dev
);
1588 struct txbd8
*lbdp
= NULL
;
1589 struct txbd8
*base
= priv
->tx_bd_base
;
1590 struct sk_buff
*skb
;
1592 int tx_ring_size
= priv
->tx_ring_size
;
1598 bdp
= priv
->dirty_tx
;
1599 skb_dirtytx
= priv
->skb_dirtytx
;
1601 while ((skb
= priv
->tx_skbuff
[skb_dirtytx
])) {
1602 frags
= skb_shinfo(skb
)->nr_frags
;
1603 lbdp
= skip_txbd(bdp
, frags
, base
, tx_ring_size
);
1605 lstatus
= lbdp
->lstatus
;
1607 /* Only clean completed frames */
1608 if ((lstatus
& BD_LFLAG(TXBD_READY
)) &&
1609 (lstatus
& BD_LENGTH_MASK
))
1612 dma_unmap_single(&priv
->ofdev
->dev
,
1617 bdp
->lstatus
&= BD_LFLAG(TXBD_WRAP
);
1618 bdp
= next_txbd(bdp
, base
, tx_ring_size
);
1620 for (i
= 0; i
< frags
; i
++) {
1621 dma_unmap_page(&priv
->ofdev
->dev
,
1625 bdp
->lstatus
&= BD_LFLAG(TXBD_WRAP
);
1626 bdp
= next_txbd(bdp
, base
, tx_ring_size
);
1630 * If there's room in the queue (limit it to rx_buffer_size)
1631 * we add this skb back into the pool, if it's the right size
1633 if (skb_queue_len(&priv
->rx_recycle
) < priv
->rx_ring_size
&&
1634 skb_recycle_check(skb
, priv
->rx_buffer_size
+
1636 __skb_queue_head(&priv
->rx_recycle
, skb
);
1638 dev_kfree_skb_any(skb
);
1640 priv
->tx_skbuff
[skb_dirtytx
] = NULL
;
1642 skb_dirtytx
= (skb_dirtytx
+ 1) &
1643 TX_RING_MOD_MASK(tx_ring_size
);
1646 priv
->num_txbdfree
+= frags
+ 1;
1649 /* If we freed a buffer, we can restart transmission, if necessary */
1650 if (netif_queue_stopped(dev
) && priv
->num_txbdfree
)
1651 netif_wake_queue(dev
);
1653 /* Update dirty indicators */
1654 priv
->skb_dirtytx
= skb_dirtytx
;
1655 priv
->dirty_tx
= bdp
;
1657 dev
->stats
.tx_packets
+= howmany
;
1662 static void gfar_schedule_cleanup(struct net_device
*dev
)
1664 struct gfar_private
*priv
= netdev_priv(dev
);
1665 unsigned long flags
;
1667 spin_lock_irqsave(&priv
->txlock
, flags
);
1668 spin_lock(&priv
->rxlock
);
1670 if (napi_schedule_prep(&priv
->napi
)) {
1671 gfar_write(&priv
->regs
->imask
, IMASK_RTX_DISABLED
);
1672 __napi_schedule(&priv
->napi
);
1675 * Clear IEVENT, so interrupts aren't called again
1676 * because of the packets that have already arrived.
1678 gfar_write(&priv
->regs
->ievent
, IEVENT_RTX_MASK
);
1681 spin_unlock(&priv
->rxlock
);
1682 spin_unlock_irqrestore(&priv
->txlock
, flags
);
1685 /* Interrupt Handler for Transmit complete */
1686 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
)
1688 gfar_schedule_cleanup((struct net_device
*)dev_id
);
1692 static void gfar_new_rxbdp(struct net_device
*dev
, struct rxbd8
*bdp
,
1693 struct sk_buff
*skb
)
1695 struct gfar_private
*priv
= netdev_priv(dev
);
1698 buf
= dma_map_single(&priv
->ofdev
->dev
, skb
->data
,
1699 priv
->rx_buffer_size
, DMA_FROM_DEVICE
);
1700 gfar_init_rxbdp(dev
, bdp
, buf
);
1704 struct sk_buff
* gfar_new_skb(struct net_device
*dev
)
1706 unsigned int alignamount
;
1707 struct gfar_private
*priv
= netdev_priv(dev
);
1708 struct sk_buff
*skb
= NULL
;
1710 skb
= __skb_dequeue(&priv
->rx_recycle
);
1712 skb
= netdev_alloc_skb(dev
,
1713 priv
->rx_buffer_size
+ RXBUF_ALIGNMENT
);
1718 alignamount
= RXBUF_ALIGNMENT
-
1719 (((unsigned long) skb
->data
) & (RXBUF_ALIGNMENT
- 1));
1721 /* We need the data buffer to be aligned properly. We will reserve
1722 * as many bytes as needed to align the data properly
1724 skb_reserve(skb
, alignamount
);
1729 static inline void count_errors(unsigned short status
, struct net_device
*dev
)
1731 struct gfar_private
*priv
= netdev_priv(dev
);
1732 struct net_device_stats
*stats
= &dev
->stats
;
1733 struct gfar_extra_stats
*estats
= &priv
->extra_stats
;
1735 /* If the packet was truncated, none of the other errors
1737 if (status
& RXBD_TRUNCATED
) {
1738 stats
->rx_length_errors
++;
1744 /* Count the errors, if there were any */
1745 if (status
& (RXBD_LARGE
| RXBD_SHORT
)) {
1746 stats
->rx_length_errors
++;
1748 if (status
& RXBD_LARGE
)
1753 if (status
& RXBD_NONOCTET
) {
1754 stats
->rx_frame_errors
++;
1755 estats
->rx_nonoctet
++;
1757 if (status
& RXBD_CRCERR
) {
1758 estats
->rx_crcerr
++;
1759 stats
->rx_crc_errors
++;
1761 if (status
& RXBD_OVERRUN
) {
1762 estats
->rx_overrun
++;
1763 stats
->rx_crc_errors
++;
1767 irqreturn_t
gfar_receive(int irq
, void *dev_id
)
1769 gfar_schedule_cleanup((struct net_device
*)dev_id
);
1773 static inline void gfar_rx_checksum(struct sk_buff
*skb
, struct rxfcb
*fcb
)
1775 /* If valid headers were found, and valid sums
1776 * were verified, then we tell the kernel that no
1777 * checksumming is necessary. Otherwise, it is */
1778 if ((fcb
->flags
& RXFCB_CSUM_MASK
) == (RXFCB_CIP
| RXFCB_CTU
))
1779 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1781 skb
->ip_summed
= CHECKSUM_NONE
;
1785 /* gfar_process_frame() -- handle one incoming packet if skb
1787 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
1790 struct gfar_private
*priv
= netdev_priv(dev
);
1791 struct rxfcb
*fcb
= NULL
;
1795 /* fcb is at the beginning if exists */
1796 fcb
= (struct rxfcb
*)skb
->data
;
1798 /* Remove the FCB from the skb */
1799 /* Remove the padded bytes, if there are any */
1801 skb_pull(skb
, amount_pull
);
1803 if (priv
->rx_csum_enable
)
1804 gfar_rx_checksum(skb
, fcb
);
1806 /* Tell the skb what kind of packet this is */
1807 skb
->protocol
= eth_type_trans(skb
, dev
);
1809 /* Send the packet up the stack */
1810 if (unlikely(priv
->vlgrp
&& (fcb
->flags
& RXFCB_VLN
)))
1811 ret
= vlan_hwaccel_receive_skb(skb
, priv
->vlgrp
, fcb
->vlctl
);
1813 ret
= netif_receive_skb(skb
);
1815 if (NET_RX_DROP
== ret
)
1816 priv
->extra_stats
.kernel_dropped
++;
1821 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1822 * until the budget/quota has been reached. Returns the number
1825 int gfar_clean_rx_ring(struct net_device
*dev
, int rx_work_limit
)
1827 struct rxbd8
*bdp
, *base
;
1828 struct sk_buff
*skb
;
1832 struct gfar_private
*priv
= netdev_priv(dev
);
1834 /* Get the first full descriptor */
1836 base
= priv
->rx_bd_base
;
1838 amount_pull
= (gfar_uses_fcb(priv
) ? GMAC_FCB_LEN
: 0) +
1841 while (!((bdp
->status
& RXBD_EMPTY
) || (--rx_work_limit
< 0))) {
1842 struct sk_buff
*newskb
;
1845 /* Add another skb for the future */
1846 newskb
= gfar_new_skb(dev
);
1848 skb
= priv
->rx_skbuff
[priv
->skb_currx
];
1850 dma_unmap_single(&priv
->ofdev
->dev
, bdp
->bufPtr
,
1851 priv
->rx_buffer_size
, DMA_FROM_DEVICE
);
1853 /* We drop the frame if we failed to allocate a new buffer */
1854 if (unlikely(!newskb
|| !(bdp
->status
& RXBD_LAST
) ||
1855 bdp
->status
& RXBD_ERR
)) {
1856 count_errors(bdp
->status
, dev
);
1858 if (unlikely(!newskb
))
1862 * We need to reset ->data to what it
1863 * was before gfar_new_skb() re-aligned
1864 * it to an RXBUF_ALIGNMENT boundary
1865 * before we put the skb back on the
1868 skb
->data
= skb
->head
+ NET_SKB_PAD
;
1869 __skb_queue_head(&priv
->rx_recycle
, skb
);
1872 /* Increment the number of packets */
1873 dev
->stats
.rx_packets
++;
1877 pkt_len
= bdp
->length
- ETH_FCS_LEN
;
1878 /* Remove the FCS from the packet length */
1879 skb_put(skb
, pkt_len
);
1880 dev
->stats
.rx_bytes
+= pkt_len
;
1882 if (in_irq() || irqs_disabled())
1883 printk("Interrupt problem!\n");
1884 gfar_process_frame(dev
, skb
, amount_pull
);
1887 if (netif_msg_rx_err(priv
))
1889 "%s: Missing skb!\n", dev
->name
);
1890 dev
->stats
.rx_dropped
++;
1891 priv
->extra_stats
.rx_skbmissing
++;
1896 priv
->rx_skbuff
[priv
->skb_currx
] = newskb
;
1898 /* Setup the new bdp */
1899 gfar_new_rxbdp(dev
, bdp
, newskb
);
1901 /* Update to the next pointer */
1902 bdp
= next_bd(bdp
, base
, priv
->rx_ring_size
);
1904 /* update to point at the next skb */
1906 (priv
->skb_currx
+ 1) &
1907 RX_RING_MOD_MASK(priv
->rx_ring_size
);
1910 /* Update the current rxbd pointer to be the next one */
1916 static int gfar_poll(struct napi_struct
*napi
, int budget
)
1918 struct gfar_private
*priv
= container_of(napi
, struct gfar_private
, napi
);
1919 struct net_device
*dev
= priv
->ndev
;
1922 unsigned long flags
;
1924 /* Clear IEVENT, so interrupts aren't called again
1925 * because of the packets that have already arrived */
1926 gfar_write(&priv
->regs
->ievent
, IEVENT_RTX_MASK
);
1928 /* If we fail to get the lock, don't bother with the TX BDs */
1929 if (spin_trylock_irqsave(&priv
->txlock
, flags
)) {
1930 tx_cleaned
= gfar_clean_tx_ring(dev
);
1931 spin_unlock_irqrestore(&priv
->txlock
, flags
);
1934 rx_cleaned
= gfar_clean_rx_ring(dev
, budget
);
1939 if (rx_cleaned
< budget
) {
1940 napi_complete(napi
);
1942 /* Clear the halt bit in RSTAT */
1943 gfar_write(&priv
->regs
->rstat
, RSTAT_CLEAR_RHALT
);
1945 gfar_write(&priv
->regs
->imask
, IMASK_DEFAULT
);
1947 /* If we are coalescing interrupts, update the timer */
1948 /* Otherwise, clear it */
1949 if (likely(priv
->rxcoalescing
)) {
1950 gfar_write(&priv
->regs
->rxic
, 0);
1951 gfar_write(&priv
->regs
->rxic
, priv
->rxic
);
1953 if (likely(priv
->txcoalescing
)) {
1954 gfar_write(&priv
->regs
->txic
, 0);
1955 gfar_write(&priv
->regs
->txic
, priv
->txic
);
1962 #ifdef CONFIG_NET_POLL_CONTROLLER
1964 * Polling 'interrupt' - used by things like netconsole to send skbs
1965 * without having to re-enable interrupts. It's not called while
1966 * the interrupt routine is executing.
1968 static void gfar_netpoll(struct net_device
*dev
)
1970 struct gfar_private
*priv
= netdev_priv(dev
);
1972 /* If the device has multiple interrupts, run tx/rx */
1973 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1974 disable_irq(priv
->interruptTransmit
);
1975 disable_irq(priv
->interruptReceive
);
1976 disable_irq(priv
->interruptError
);
1977 gfar_interrupt(priv
->interruptTransmit
, dev
);
1978 enable_irq(priv
->interruptError
);
1979 enable_irq(priv
->interruptReceive
);
1980 enable_irq(priv
->interruptTransmit
);
1982 disable_irq(priv
->interruptTransmit
);
1983 gfar_interrupt(priv
->interruptTransmit
, dev
);
1984 enable_irq(priv
->interruptTransmit
);
1989 /* The interrupt handler for devices with one interrupt */
1990 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
)
1992 struct net_device
*dev
= dev_id
;
1993 struct gfar_private
*priv
= netdev_priv(dev
);
1995 /* Save ievent for future reference */
1996 u32 events
= gfar_read(&priv
->regs
->ievent
);
1998 /* Check for reception */
1999 if (events
& IEVENT_RX_MASK
)
2000 gfar_receive(irq
, dev_id
);
2002 /* Check for transmit completion */
2003 if (events
& IEVENT_TX_MASK
)
2004 gfar_transmit(irq
, dev_id
);
2006 /* Check for errors */
2007 if (events
& IEVENT_ERR_MASK
)
2008 gfar_error(irq
, dev_id
);
2013 /* Called every time the controller might need to be made
2014 * aware of new link state. The PHY code conveys this
2015 * information through variables in the phydev structure, and this
2016 * function converts those variables into the appropriate
2017 * register values, and can bring down the device if needed.
2019 static void adjust_link(struct net_device
*dev
)
2021 struct gfar_private
*priv
= netdev_priv(dev
);
2022 struct gfar __iomem
*regs
= priv
->regs
;
2023 unsigned long flags
;
2024 struct phy_device
*phydev
= priv
->phydev
;
2027 spin_lock_irqsave(&priv
->txlock
, flags
);
2029 u32 tempval
= gfar_read(®s
->maccfg2
);
2030 u32 ecntrl
= gfar_read(®s
->ecntrl
);
2032 /* Now we make sure that we can be in full duplex mode.
2033 * If not, we operate in half-duplex mode. */
2034 if (phydev
->duplex
!= priv
->oldduplex
) {
2036 if (!(phydev
->duplex
))
2037 tempval
&= ~(MACCFG2_FULL_DUPLEX
);
2039 tempval
|= MACCFG2_FULL_DUPLEX
;
2041 priv
->oldduplex
= phydev
->duplex
;
2044 if (phydev
->speed
!= priv
->oldspeed
) {
2046 switch (phydev
->speed
) {
2049 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_GMII
);
2051 ecntrl
&= ~(ECNTRL_R100
);
2056 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_MII
);
2058 /* Reduced mode distinguishes
2059 * between 10 and 100 */
2060 if (phydev
->speed
== SPEED_100
)
2061 ecntrl
|= ECNTRL_R100
;
2063 ecntrl
&= ~(ECNTRL_R100
);
2066 if (netif_msg_link(priv
))
2068 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
2069 dev
->name
, phydev
->speed
);
2073 priv
->oldspeed
= phydev
->speed
;
2076 gfar_write(®s
->maccfg2
, tempval
);
2077 gfar_write(®s
->ecntrl
, ecntrl
);
2079 if (!priv
->oldlink
) {
2083 } else if (priv
->oldlink
) {
2087 priv
->oldduplex
= -1;
2090 if (new_state
&& netif_msg_link(priv
))
2091 phy_print_status(phydev
);
2093 spin_unlock_irqrestore(&priv
->txlock
, flags
);
2096 /* Update the hash table based on the current list of multicast
2097 * addresses we subscribe to. Also, change the promiscuity of
2098 * the device based on the flags (this function is called
2099 * whenever dev->flags is changed */
2100 static void gfar_set_multi(struct net_device
*dev
)
2102 struct dev_mc_list
*mc_ptr
;
2103 struct gfar_private
*priv
= netdev_priv(dev
);
2104 struct gfar __iomem
*regs
= priv
->regs
;
2107 if(dev
->flags
& IFF_PROMISC
) {
2108 /* Set RCTRL to PROM */
2109 tempval
= gfar_read(®s
->rctrl
);
2110 tempval
|= RCTRL_PROM
;
2111 gfar_write(®s
->rctrl
, tempval
);
2113 /* Set RCTRL to not PROM */
2114 tempval
= gfar_read(®s
->rctrl
);
2115 tempval
&= ~(RCTRL_PROM
);
2116 gfar_write(®s
->rctrl
, tempval
);
2119 if(dev
->flags
& IFF_ALLMULTI
) {
2120 /* Set the hash to rx all multicast frames */
2121 gfar_write(®s
->igaddr0
, 0xffffffff);
2122 gfar_write(®s
->igaddr1
, 0xffffffff);
2123 gfar_write(®s
->igaddr2
, 0xffffffff);
2124 gfar_write(®s
->igaddr3
, 0xffffffff);
2125 gfar_write(®s
->igaddr4
, 0xffffffff);
2126 gfar_write(®s
->igaddr5
, 0xffffffff);
2127 gfar_write(®s
->igaddr6
, 0xffffffff);
2128 gfar_write(®s
->igaddr7
, 0xffffffff);
2129 gfar_write(®s
->gaddr0
, 0xffffffff);
2130 gfar_write(®s
->gaddr1
, 0xffffffff);
2131 gfar_write(®s
->gaddr2
, 0xffffffff);
2132 gfar_write(®s
->gaddr3
, 0xffffffff);
2133 gfar_write(®s
->gaddr4
, 0xffffffff);
2134 gfar_write(®s
->gaddr5
, 0xffffffff);
2135 gfar_write(®s
->gaddr6
, 0xffffffff);
2136 gfar_write(®s
->gaddr7
, 0xffffffff);
2141 /* zero out the hash */
2142 gfar_write(®s
->igaddr0
, 0x0);
2143 gfar_write(®s
->igaddr1
, 0x0);
2144 gfar_write(®s
->igaddr2
, 0x0);
2145 gfar_write(®s
->igaddr3
, 0x0);
2146 gfar_write(®s
->igaddr4
, 0x0);
2147 gfar_write(®s
->igaddr5
, 0x0);
2148 gfar_write(®s
->igaddr6
, 0x0);
2149 gfar_write(®s
->igaddr7
, 0x0);
2150 gfar_write(®s
->gaddr0
, 0x0);
2151 gfar_write(®s
->gaddr1
, 0x0);
2152 gfar_write(®s
->gaddr2
, 0x0);
2153 gfar_write(®s
->gaddr3
, 0x0);
2154 gfar_write(®s
->gaddr4
, 0x0);
2155 gfar_write(®s
->gaddr5
, 0x0);
2156 gfar_write(®s
->gaddr6
, 0x0);
2157 gfar_write(®s
->gaddr7
, 0x0);
2159 /* If we have extended hash tables, we need to
2160 * clear the exact match registers to prepare for
2162 if (priv
->extended_hash
) {
2163 em_num
= GFAR_EM_NUM
+ 1;
2164 gfar_clear_exact_match(dev
);
2171 if(dev
->mc_count
== 0)
2174 /* Parse the list, and set the appropriate bits */
2175 for(mc_ptr
= dev
->mc_list
; mc_ptr
; mc_ptr
= mc_ptr
->next
) {
2177 gfar_set_mac_for_addr(dev
, idx
,
2181 gfar_set_hash_for_addr(dev
, mc_ptr
->dmi_addr
);
2189 /* Clears each of the exact match registers to zero, so they
2190 * don't interfere with normal reception */
2191 static void gfar_clear_exact_match(struct net_device
*dev
)
2194 u8 zero_arr
[MAC_ADDR_LEN
] = {0,0,0,0,0,0};
2196 for(idx
= 1;idx
< GFAR_EM_NUM
+ 1;idx
++)
2197 gfar_set_mac_for_addr(dev
, idx
, (u8
*)zero_arr
);
2200 /* Set the appropriate hash bit for the given addr */
2201 /* The algorithm works like so:
2202 * 1) Take the Destination Address (ie the multicast address), and
2203 * do a CRC on it (little endian), and reverse the bits of the
2205 * 2) Use the 8 most significant bits as a hash into a 256-entry
2206 * table. The table is controlled through 8 32-bit registers:
2207 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
2208 * gaddr7. This means that the 3 most significant bits in the
2209 * hash index which gaddr register to use, and the 5 other bits
2210 * indicate which bit (assuming an IBM numbering scheme, which
2211 * for PowerPC (tm) is usually the case) in the register holds
2213 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
)
2216 struct gfar_private
*priv
= netdev_priv(dev
);
2217 u32 result
= ether_crc(MAC_ADDR_LEN
, addr
);
2218 int width
= priv
->hash_width
;
2219 u8 whichbit
= (result
>> (32 - width
)) & 0x1f;
2220 u8 whichreg
= result
>> (32 - width
+ 5);
2221 u32 value
= (1 << (31-whichbit
));
2223 tempval
= gfar_read(priv
->hash_regs
[whichreg
]);
2225 gfar_write(priv
->hash_regs
[whichreg
], tempval
);
2231 /* There are multiple MAC Address register pairs on some controllers
2232 * This function sets the numth pair to a given address
2234 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
, u8
*addr
)
2236 struct gfar_private
*priv
= netdev_priv(dev
);
2238 char tmpbuf
[MAC_ADDR_LEN
];
2240 u32 __iomem
*macptr
= &priv
->regs
->macstnaddr1
;
2244 /* Now copy it into the mac registers backwards, cuz */
2245 /* little endian is silly */
2246 for (idx
= 0; idx
< MAC_ADDR_LEN
; idx
++)
2247 tmpbuf
[MAC_ADDR_LEN
- 1 - idx
] = addr
[idx
];
2249 gfar_write(macptr
, *((u32
*) (tmpbuf
)));
2251 tempval
= *((u32
*) (tmpbuf
+ 4));
2253 gfar_write(macptr
+1, tempval
);
2256 /* GFAR error interrupt handler */
2257 static irqreturn_t
gfar_error(int irq
, void *dev_id
)
2259 struct net_device
*dev
= dev_id
;
2260 struct gfar_private
*priv
= netdev_priv(dev
);
2262 /* Save ievent for future reference */
2263 u32 events
= gfar_read(&priv
->regs
->ievent
);
2266 gfar_write(&priv
->regs
->ievent
, events
& IEVENT_ERR_MASK
);
2268 /* Magic Packet is not an error. */
2269 if ((priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
) &&
2270 (events
& IEVENT_MAG
))
2271 events
&= ~IEVENT_MAG
;
2274 if (netif_msg_rx_err(priv
) || netif_msg_tx_err(priv
))
2275 printk(KERN_DEBUG
"%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2276 dev
->name
, events
, gfar_read(&priv
->regs
->imask
));
2278 /* Update the error counters */
2279 if (events
& IEVENT_TXE
) {
2280 dev
->stats
.tx_errors
++;
2282 if (events
& IEVENT_LC
)
2283 dev
->stats
.tx_window_errors
++;
2284 if (events
& IEVENT_CRL
)
2285 dev
->stats
.tx_aborted_errors
++;
2286 if (events
& IEVENT_XFUN
) {
2287 if (netif_msg_tx_err(priv
))
2288 printk(KERN_DEBUG
"%s: TX FIFO underrun, "
2289 "packet dropped.\n", dev
->name
);
2290 dev
->stats
.tx_dropped
++;
2291 priv
->extra_stats
.tx_underrun
++;
2293 /* Reactivate the Tx Queues */
2294 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
2296 if (netif_msg_tx_err(priv
))
2297 printk(KERN_DEBUG
"%s: Transmit Error\n", dev
->name
);
2299 if (events
& IEVENT_BSY
) {
2300 dev
->stats
.rx_errors
++;
2301 priv
->extra_stats
.rx_bsy
++;
2303 gfar_receive(irq
, dev_id
);
2305 if (netif_msg_rx_err(priv
))
2306 printk(KERN_DEBUG
"%s: busy error (rstat: %x)\n",
2307 dev
->name
, gfar_read(&priv
->regs
->rstat
));
2309 if (events
& IEVENT_BABR
) {
2310 dev
->stats
.rx_errors
++;
2311 priv
->extra_stats
.rx_babr
++;
2313 if (netif_msg_rx_err(priv
))
2314 printk(KERN_DEBUG
"%s: babbling RX error\n", dev
->name
);
2316 if (events
& IEVENT_EBERR
) {
2317 priv
->extra_stats
.eberr
++;
2318 if (netif_msg_rx_err(priv
))
2319 printk(KERN_DEBUG
"%s: bus error\n", dev
->name
);
2321 if ((events
& IEVENT_RXC
) && netif_msg_rx_status(priv
))
2322 printk(KERN_DEBUG
"%s: control frame\n", dev
->name
);
2324 if (events
& IEVENT_BABT
) {
2325 priv
->extra_stats
.tx_babt
++;
2326 if (netif_msg_tx_err(priv
))
2327 printk(KERN_DEBUG
"%s: babbling TX error\n", dev
->name
);
2332 /* work with hotplug and coldplug */
2333 MODULE_ALIAS("platform:fsl-gianfar");
2335 static struct of_device_id gfar_match
[] =
2339 .compatible
= "gianfar",
2344 /* Structure for a device driver */
2345 static struct of_platform_driver gfar_driver
= {
2346 .name
= "fsl-gianfar",
2347 .match_table
= gfar_match
,
2349 .probe
= gfar_probe
,
2350 .remove
= gfar_remove
,
2351 .suspend
= gfar_suspend
,
2352 .resume
= gfar_resume
,
2355 static int __init
gfar_init(void)
2357 return of_register_platform_driver(&gfar_driver
);
2360 static void __exit
gfar_exit(void)
2362 of_unregister_platform_driver(&gfar_driver
);
2365 module_init(gfar_init
);
2366 module_exit(gfar_exit
);