gianfar: Factor out RX BDs initialization from gfar_new_rxbdp()
[wandboard.git] / drivers / net / gianfar.c
bloba8436326167364cf5789aaa27e7421546eefc511
1 /*
2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
12 * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13 * Copyright (c) 2007 MontaVista Software, Inc.
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
20 * Gianfar: AKA Lambda Draconis, "Dragon"
21 * RA 11 31 24.2
22 * Dec +69 19 52
23 * V 3.84
24 * B-V +1.62
26 * Theory of operation
28 * The driver is initialized through of_device. Configuration information
29 * is therefore conveyed through an OF-style device tree.
31 * The Gianfar Ethernet Controller uses a ring of buffer
32 * descriptors. The beginning is indicated by a register
33 * pointing to the physical address of the start of the ring.
34 * The end is determined by a "wrap" bit being set in the
35 * last descriptor of the ring.
37 * When a packet is received, the RXF bit in the
38 * IEVENT register is set, triggering an interrupt when the
39 * corresponding bit in the IMASK register is also set (if
40 * interrupt coalescing is active, then the interrupt may not
41 * happen immediately, but will wait until either a set number
42 * of frames or amount of time have passed). In NAPI, the
43 * interrupt handler will signal there is work to be done, and
44 * exit. This method will start at the last known empty
45 * descriptor, and process every subsequent descriptor until there
46 * are none left with data (NAPI will stop after a set number of
47 * packets to give time to other tasks, but will eventually
48 * process all the packets). The data arrives inside a
49 * pre-allocated skb, and so after the skb is passed up to the
50 * stack, a new skb must be allocated, and the address field in
51 * the buffer descriptor must be updated to indicate this new
52 * skb.
54 * When the kernel requests that a packet be transmitted, the
55 * driver starts where it left off last time, and points the
56 * descriptor at the buffer which was passed in. The driver
57 * then informs the DMA engine that there are packets ready to
58 * be transmitted. Once the controller is finished transmitting
59 * the packet, an interrupt may be triggered (under the same
60 * conditions as for reception, but depending on the TXF bit).
61 * The driver then cleans up the buffer.
64 #include <linux/kernel.h>
65 #include <linux/string.h>
66 #include <linux/errno.h>
67 #include <linux/unistd.h>
68 #include <linux/slab.h>
69 #include <linux/interrupt.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/netdevice.h>
73 #include <linux/etherdevice.h>
74 #include <linux/skbuff.h>
75 #include <linux/if_vlan.h>
76 #include <linux/spinlock.h>
77 #include <linux/mm.h>
78 #include <linux/of_mdio.h>
79 #include <linux/of_platform.h>
80 #include <linux/ip.h>
81 #include <linux/tcp.h>
82 #include <linux/udp.h>
83 #include <linux/in.h>
85 #include <asm/io.h>
86 #include <asm/irq.h>
87 #include <asm/uaccess.h>
88 #include <linux/module.h>
89 #include <linux/dma-mapping.h>
90 #include <linux/crc32.h>
91 #include <linux/mii.h>
92 #include <linux/phy.h>
93 #include <linux/phy_fixed.h>
94 #include <linux/of.h>
96 #include "gianfar.h"
97 #include "fsl_pq_mdio.h"
99 #define TX_TIMEOUT (1*HZ)
100 #undef BRIEF_GFAR_ERRORS
101 #undef VERBOSE_GFAR_ERRORS
103 const char gfar_driver_name[] = "Gianfar Ethernet";
104 const char gfar_driver_version[] = "1.3";
106 static int gfar_enet_open(struct net_device *dev);
107 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
108 static void gfar_reset_task(struct work_struct *work);
109 static void gfar_timeout(struct net_device *dev);
110 static int gfar_close(struct net_device *dev);
111 struct sk_buff *gfar_new_skb(struct net_device *dev);
112 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
113 struct sk_buff *skb);
114 static int gfar_set_mac_address(struct net_device *dev);
115 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
116 static irqreturn_t gfar_error(int irq, void *dev_id);
117 static irqreturn_t gfar_transmit(int irq, void *dev_id);
118 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
119 static void adjust_link(struct net_device *dev);
120 static void init_registers(struct net_device *dev);
121 static int init_phy(struct net_device *dev);
122 static int gfar_probe(struct of_device *ofdev,
123 const struct of_device_id *match);
124 static int gfar_remove(struct of_device *ofdev);
125 static void free_skb_resources(struct gfar_private *priv);
126 static void gfar_set_multi(struct net_device *dev);
127 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
128 static void gfar_configure_serdes(struct net_device *dev);
129 static int gfar_poll(struct napi_struct *napi, int budget);
130 #ifdef CONFIG_NET_POLL_CONTROLLER
131 static void gfar_netpoll(struct net_device *dev);
132 #endif
133 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
134 static int gfar_clean_tx_ring(struct net_device *dev);
135 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
136 int amount_pull);
137 static void gfar_vlan_rx_register(struct net_device *netdev,
138 struct vlan_group *grp);
139 void gfar_halt(struct net_device *dev);
140 static void gfar_halt_nodisable(struct net_device *dev);
141 void gfar_start(struct net_device *dev);
142 static void gfar_clear_exact_match(struct net_device *dev);
143 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
144 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
146 MODULE_AUTHOR("Freescale Semiconductor, Inc");
147 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
148 MODULE_LICENSE("GPL");
150 static void gfar_init_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
151 dma_addr_t buf)
153 struct gfar_private *priv = netdev_priv(dev);
154 u32 lstatus;
156 bdp->bufPtr = buf;
158 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
159 if (bdp == priv->rx_bd_base + priv->rx_ring_size - 1)
160 lstatus |= BD_LFLAG(RXBD_WRAP);
162 eieio();
164 bdp->lstatus = lstatus;
167 static int gfar_alloc_skb_resources(struct net_device *ndev)
169 struct txbd8 *txbdp;
170 struct rxbd8 *rxbdp;
171 void *vaddr;
172 int i;
173 struct gfar_private *priv = netdev_priv(ndev);
174 struct device *dev = &priv->ofdev->dev;
176 /* Allocate memory for the buffer descriptors */
177 vaddr = dma_alloc_coherent(dev, sizeof(*txbdp) * priv->tx_ring_size +
178 sizeof(*rxbdp) * priv->rx_ring_size,
179 &priv->tx_bd_dma_base, GFP_KERNEL);
180 if (!vaddr) {
181 if (netif_msg_ifup(priv))
182 pr_err("%s: Could not allocate buffer descriptors!\n",
183 ndev->name);
184 return -ENOMEM;
187 priv->tx_bd_base = vaddr;
189 /* Start the rx descriptor ring where the tx ring leaves off */
190 vaddr = vaddr + sizeof(*txbdp) * priv->tx_ring_size;
191 priv->rx_bd_base = vaddr;
193 /* Setup the skbuff rings */
194 priv->tx_skbuff = kmalloc(sizeof(*priv->tx_skbuff) *
195 priv->tx_ring_size, GFP_KERNEL);
196 if (!priv->tx_skbuff) {
197 if (netif_msg_ifup(priv))
198 pr_err("%s: Could not allocate tx_skbuff\n",
199 ndev->name);
200 goto cleanup;
203 for (i = 0; i < priv->tx_ring_size; i++)
204 priv->tx_skbuff[i] = NULL;
206 priv->rx_skbuff = kmalloc(sizeof(*priv->rx_skbuff) *
207 priv->rx_ring_size, GFP_KERNEL);
208 if (!priv->rx_skbuff) {
209 if (netif_msg_ifup(priv))
210 pr_err("%s: Could not allocate rx_skbuff\n",
211 ndev->name);
212 goto cleanup;
215 for (i = 0; i < priv->rx_ring_size; i++)
216 priv->rx_skbuff[i] = NULL;
218 /* Initialize some variables in our dev structure */
219 priv->num_txbdfree = priv->tx_ring_size;
220 priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
221 priv->cur_rx = priv->rx_bd_base;
222 priv->skb_curtx = priv->skb_dirtytx = 0;
223 priv->skb_currx = 0;
225 /* Initialize Transmit Descriptor Ring */
226 txbdp = priv->tx_bd_base;
227 for (i = 0; i < priv->tx_ring_size; i++) {
228 txbdp->lstatus = 0;
229 txbdp->bufPtr = 0;
230 txbdp++;
233 /* Set the last descriptor in the ring to indicate wrap */
234 txbdp--;
235 txbdp->status |= TXBD_WRAP;
237 rxbdp = priv->rx_bd_base;
238 for (i = 0; i < priv->rx_ring_size; i++) {
239 struct sk_buff *skb;
241 skb = gfar_new_skb(ndev);
242 if (!skb) {
243 pr_err("%s: Can't allocate RX buffers\n", ndev->name);
244 goto cleanup;
247 priv->rx_skbuff[i] = skb;
249 gfar_new_rxbdp(ndev, rxbdp, skb);
251 rxbdp++;
254 return 0;
256 cleanup:
257 free_skb_resources(priv);
258 return -ENOMEM;
261 static void gfar_init_mac(struct net_device *ndev)
263 struct gfar_private *priv = netdev_priv(ndev);
264 struct gfar __iomem *regs = priv->regs;
265 u32 rctrl = 0;
266 u32 tctrl = 0;
267 u32 attrs = 0;
269 /* enet DMA only understands physical addresses */
270 gfar_write(&regs->tbase0, priv->tx_bd_dma_base);
271 gfar_write(&regs->rbase0, priv->tx_bd_dma_base +
272 sizeof(*priv->tx_bd_base) *
273 priv->tx_ring_size);
275 /* Configure the coalescing support */
276 gfar_write(&regs->txic, 0);
277 if (priv->txcoalescing)
278 gfar_write(&regs->txic, priv->txic);
280 gfar_write(&regs->rxic, 0);
281 if (priv->rxcoalescing)
282 gfar_write(&regs->rxic, priv->rxic);
284 if (priv->rx_csum_enable)
285 rctrl |= RCTRL_CHECKSUMMING;
287 if (priv->extended_hash) {
288 rctrl |= RCTRL_EXTHASH;
290 gfar_clear_exact_match(ndev);
291 rctrl |= RCTRL_EMEN;
294 if (priv->padding) {
295 rctrl &= ~RCTRL_PAL_MASK;
296 rctrl |= RCTRL_PADDING(priv->padding);
299 /* keep vlan related bits if it's enabled */
300 if (priv->vlgrp) {
301 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
302 tctrl |= TCTRL_VLINS;
305 /* Init rctrl based on our settings */
306 gfar_write(&regs->rctrl, rctrl);
308 if (ndev->features & NETIF_F_IP_CSUM)
309 tctrl |= TCTRL_INIT_CSUM;
311 gfar_write(&regs->tctrl, tctrl);
313 /* Set the extraction length and index */
314 attrs = ATTRELI_EL(priv->rx_stash_size) |
315 ATTRELI_EI(priv->rx_stash_index);
317 gfar_write(&regs->attreli, attrs);
319 /* Start with defaults, and add stashing or locking
320 * depending on the approprate variables */
321 attrs = ATTR_INIT_SETTINGS;
323 if (priv->bd_stash_en)
324 attrs |= ATTR_BDSTASH;
326 if (priv->rx_stash_size != 0)
327 attrs |= ATTR_BUFSTASH;
329 gfar_write(&regs->attr, attrs);
331 gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
332 gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
333 gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
336 static const struct net_device_ops gfar_netdev_ops = {
337 .ndo_open = gfar_enet_open,
338 .ndo_start_xmit = gfar_start_xmit,
339 .ndo_stop = gfar_close,
340 .ndo_change_mtu = gfar_change_mtu,
341 .ndo_set_multicast_list = gfar_set_multi,
342 .ndo_tx_timeout = gfar_timeout,
343 .ndo_do_ioctl = gfar_ioctl,
344 .ndo_vlan_rx_register = gfar_vlan_rx_register,
345 .ndo_set_mac_address = eth_mac_addr,
346 .ndo_validate_addr = eth_validate_addr,
347 #ifdef CONFIG_NET_POLL_CONTROLLER
348 .ndo_poll_controller = gfar_netpoll,
349 #endif
352 /* Returns 1 if incoming frames use an FCB */
353 static inline int gfar_uses_fcb(struct gfar_private *priv)
355 return priv->vlgrp || priv->rx_csum_enable;
358 static int gfar_of_init(struct net_device *dev)
360 const char *model;
361 const char *ctype;
362 const void *mac_addr;
363 u64 addr, size;
364 int err = 0;
365 struct gfar_private *priv = netdev_priv(dev);
366 struct device_node *np = priv->node;
367 const u32 *stash;
368 const u32 *stash_len;
369 const u32 *stash_idx;
371 if (!np || !of_device_is_available(np))
372 return -ENODEV;
374 /* get a pointer to the register memory */
375 addr = of_translate_address(np, of_get_address(np, 0, &size, NULL));
376 priv->regs = ioremap(addr, size);
378 if (priv->regs == NULL)
379 return -ENOMEM;
381 priv->interruptTransmit = irq_of_parse_and_map(np, 0);
383 model = of_get_property(np, "model", NULL);
385 /* If we aren't the FEC we have multiple interrupts */
386 if (model && strcasecmp(model, "FEC")) {
387 priv->interruptReceive = irq_of_parse_and_map(np, 1);
389 priv->interruptError = irq_of_parse_and_map(np, 2);
391 if (priv->interruptTransmit < 0 ||
392 priv->interruptReceive < 0 ||
393 priv->interruptError < 0) {
394 err = -EINVAL;
395 goto err_out;
399 stash = of_get_property(np, "bd-stash", NULL);
401 if(stash) {
402 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
403 priv->bd_stash_en = 1;
406 stash_len = of_get_property(np, "rx-stash-len", NULL);
408 if (stash_len)
409 priv->rx_stash_size = *stash_len;
411 stash_idx = of_get_property(np, "rx-stash-idx", NULL);
413 if (stash_idx)
414 priv->rx_stash_index = *stash_idx;
416 if (stash_len || stash_idx)
417 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
419 mac_addr = of_get_mac_address(np);
420 if (mac_addr)
421 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
423 if (model && !strcasecmp(model, "TSEC"))
424 priv->device_flags =
425 FSL_GIANFAR_DEV_HAS_GIGABIT |
426 FSL_GIANFAR_DEV_HAS_COALESCE |
427 FSL_GIANFAR_DEV_HAS_RMON |
428 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
429 if (model && !strcasecmp(model, "eTSEC"))
430 priv->device_flags =
431 FSL_GIANFAR_DEV_HAS_GIGABIT |
432 FSL_GIANFAR_DEV_HAS_COALESCE |
433 FSL_GIANFAR_DEV_HAS_RMON |
434 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
435 FSL_GIANFAR_DEV_HAS_PADDING |
436 FSL_GIANFAR_DEV_HAS_CSUM |
437 FSL_GIANFAR_DEV_HAS_VLAN |
438 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
439 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
441 ctype = of_get_property(np, "phy-connection-type", NULL);
443 /* We only care about rgmii-id. The rest are autodetected */
444 if (ctype && !strcmp(ctype, "rgmii-id"))
445 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
446 else
447 priv->interface = PHY_INTERFACE_MODE_MII;
449 if (of_get_property(np, "fsl,magic-packet", NULL))
450 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
452 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
454 /* Find the TBI PHY. If it's not there, we don't support SGMII */
455 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
457 return 0;
459 err_out:
460 iounmap(priv->regs);
461 return err;
464 /* Ioctl MII Interface */
465 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
467 struct gfar_private *priv = netdev_priv(dev);
469 if (!netif_running(dev))
470 return -EINVAL;
472 if (!priv->phydev)
473 return -ENODEV;
475 return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
478 /* Set up the ethernet device structure, private data,
479 * and anything else we need before we start */
480 static int gfar_probe(struct of_device *ofdev,
481 const struct of_device_id *match)
483 u32 tempval;
484 struct net_device *dev = NULL;
485 struct gfar_private *priv = NULL;
486 int err = 0;
487 int len_devname;
489 /* Create an ethernet device instance */
490 dev = alloc_etherdev(sizeof (*priv));
492 if (NULL == dev)
493 return -ENOMEM;
495 priv = netdev_priv(dev);
496 priv->ndev = dev;
497 priv->ofdev = ofdev;
498 priv->node = ofdev->node;
499 SET_NETDEV_DEV(dev, &ofdev->dev);
501 err = gfar_of_init(dev);
503 if (err)
504 goto regs_fail;
506 spin_lock_init(&priv->txlock);
507 spin_lock_init(&priv->rxlock);
508 spin_lock_init(&priv->bflock);
509 INIT_WORK(&priv->reset_task, gfar_reset_task);
511 dev_set_drvdata(&ofdev->dev, priv);
513 /* Stop the DMA engine now, in case it was running before */
514 /* (The firmware could have used it, and left it running). */
515 gfar_halt(dev);
517 /* Reset MAC layer */
518 gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
520 /* We need to delay at least 3 TX clocks */
521 udelay(2);
523 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
524 gfar_write(&priv->regs->maccfg1, tempval);
526 /* Initialize MACCFG2. */
527 gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
529 /* Initialize ECNTRL */
530 gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
532 /* Set the dev->base_addr to the gfar reg region */
533 dev->base_addr = (unsigned long) (priv->regs);
535 SET_NETDEV_DEV(dev, &ofdev->dev);
537 /* Fill in the dev structure */
538 dev->watchdog_timeo = TX_TIMEOUT;
539 netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
540 dev->mtu = 1500;
542 dev->netdev_ops = &gfar_netdev_ops;
543 dev->ethtool_ops = &gfar_ethtool_ops;
545 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
546 priv->rx_csum_enable = 1;
547 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
548 } else
549 priv->rx_csum_enable = 0;
551 priv->vlgrp = NULL;
553 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
554 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
556 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
557 priv->extended_hash = 1;
558 priv->hash_width = 9;
560 priv->hash_regs[0] = &priv->regs->igaddr0;
561 priv->hash_regs[1] = &priv->regs->igaddr1;
562 priv->hash_regs[2] = &priv->regs->igaddr2;
563 priv->hash_regs[3] = &priv->regs->igaddr3;
564 priv->hash_regs[4] = &priv->regs->igaddr4;
565 priv->hash_regs[5] = &priv->regs->igaddr5;
566 priv->hash_regs[6] = &priv->regs->igaddr6;
567 priv->hash_regs[7] = &priv->regs->igaddr7;
568 priv->hash_regs[8] = &priv->regs->gaddr0;
569 priv->hash_regs[9] = &priv->regs->gaddr1;
570 priv->hash_regs[10] = &priv->regs->gaddr2;
571 priv->hash_regs[11] = &priv->regs->gaddr3;
572 priv->hash_regs[12] = &priv->regs->gaddr4;
573 priv->hash_regs[13] = &priv->regs->gaddr5;
574 priv->hash_regs[14] = &priv->regs->gaddr6;
575 priv->hash_regs[15] = &priv->regs->gaddr7;
577 } else {
578 priv->extended_hash = 0;
579 priv->hash_width = 8;
581 priv->hash_regs[0] = &priv->regs->gaddr0;
582 priv->hash_regs[1] = &priv->regs->gaddr1;
583 priv->hash_regs[2] = &priv->regs->gaddr2;
584 priv->hash_regs[3] = &priv->regs->gaddr3;
585 priv->hash_regs[4] = &priv->regs->gaddr4;
586 priv->hash_regs[5] = &priv->regs->gaddr5;
587 priv->hash_regs[6] = &priv->regs->gaddr6;
588 priv->hash_regs[7] = &priv->regs->gaddr7;
591 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
592 priv->padding = DEFAULT_PADDING;
593 else
594 priv->padding = 0;
596 if (dev->features & NETIF_F_IP_CSUM)
597 dev->hard_header_len += GMAC_FCB_LEN;
599 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
600 priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
601 priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
602 priv->num_txbdfree = DEFAULT_TX_RING_SIZE;
604 priv->txcoalescing = DEFAULT_TX_COALESCE;
605 priv->txic = DEFAULT_TXIC;
606 priv->rxcoalescing = DEFAULT_RX_COALESCE;
607 priv->rxic = DEFAULT_RXIC;
609 /* Enable most messages by default */
610 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
612 /* Carrier starts down, phylib will bring it up */
613 netif_carrier_off(dev);
615 err = register_netdev(dev);
617 if (err) {
618 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
619 dev->name);
620 goto register_fail;
623 device_init_wakeup(&dev->dev,
624 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
626 /* fill out IRQ number and name fields */
627 len_devname = strlen(dev->name);
628 strncpy(&priv->int_name_tx[0], dev->name, len_devname);
629 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
630 strncpy(&priv->int_name_tx[len_devname],
631 "_tx", sizeof("_tx") + 1);
633 strncpy(&priv->int_name_rx[0], dev->name, len_devname);
634 strncpy(&priv->int_name_rx[len_devname],
635 "_rx", sizeof("_rx") + 1);
637 strncpy(&priv->int_name_er[0], dev->name, len_devname);
638 strncpy(&priv->int_name_er[len_devname],
639 "_er", sizeof("_er") + 1);
640 } else
641 priv->int_name_tx[len_devname] = '\0';
643 /* Create all the sysfs files */
644 gfar_init_sysfs(dev);
646 /* Print out the device info */
647 printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
649 /* Even more device info helps when determining which kernel */
650 /* provided which set of benchmarks. */
651 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
652 printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
653 dev->name, priv->rx_ring_size, priv->tx_ring_size);
655 return 0;
657 register_fail:
658 iounmap(priv->regs);
659 regs_fail:
660 if (priv->phy_node)
661 of_node_put(priv->phy_node);
662 if (priv->tbi_node)
663 of_node_put(priv->tbi_node);
664 free_netdev(dev);
665 return err;
668 static int gfar_remove(struct of_device *ofdev)
670 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
672 if (priv->phy_node)
673 of_node_put(priv->phy_node);
674 if (priv->tbi_node)
675 of_node_put(priv->tbi_node);
677 dev_set_drvdata(&ofdev->dev, NULL);
679 unregister_netdev(priv->ndev);
680 iounmap(priv->regs);
681 free_netdev(priv->ndev);
683 return 0;
686 #ifdef CONFIG_PM
687 static int gfar_suspend(struct of_device *ofdev, pm_message_t state)
689 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
690 struct net_device *dev = priv->ndev;
691 unsigned long flags;
692 u32 tempval;
694 int magic_packet = priv->wol_en &&
695 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
697 netif_device_detach(dev);
699 if (netif_running(dev)) {
700 spin_lock_irqsave(&priv->txlock, flags);
701 spin_lock(&priv->rxlock);
703 gfar_halt_nodisable(dev);
705 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
706 tempval = gfar_read(&priv->regs->maccfg1);
708 tempval &= ~MACCFG1_TX_EN;
710 if (!magic_packet)
711 tempval &= ~MACCFG1_RX_EN;
713 gfar_write(&priv->regs->maccfg1, tempval);
715 spin_unlock(&priv->rxlock);
716 spin_unlock_irqrestore(&priv->txlock, flags);
718 napi_disable(&priv->napi);
720 if (magic_packet) {
721 /* Enable interrupt on Magic Packet */
722 gfar_write(&priv->regs->imask, IMASK_MAG);
724 /* Enable Magic Packet mode */
725 tempval = gfar_read(&priv->regs->maccfg2);
726 tempval |= MACCFG2_MPEN;
727 gfar_write(&priv->regs->maccfg2, tempval);
728 } else {
729 phy_stop(priv->phydev);
733 return 0;
736 static int gfar_resume(struct of_device *ofdev)
738 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
739 struct net_device *dev = priv->ndev;
740 unsigned long flags;
741 u32 tempval;
742 int magic_packet = priv->wol_en &&
743 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
745 if (!netif_running(dev)) {
746 netif_device_attach(dev);
747 return 0;
750 if (!magic_packet && priv->phydev)
751 phy_start(priv->phydev);
753 /* Disable Magic Packet mode, in case something
754 * else woke us up.
757 spin_lock_irqsave(&priv->txlock, flags);
758 spin_lock(&priv->rxlock);
760 tempval = gfar_read(&priv->regs->maccfg2);
761 tempval &= ~MACCFG2_MPEN;
762 gfar_write(&priv->regs->maccfg2, tempval);
764 gfar_start(dev);
766 spin_unlock(&priv->rxlock);
767 spin_unlock_irqrestore(&priv->txlock, flags);
769 netif_device_attach(dev);
771 napi_enable(&priv->napi);
773 return 0;
775 #else
776 #define gfar_suspend NULL
777 #define gfar_resume NULL
778 #endif
780 /* Reads the controller's registers to determine what interface
781 * connects it to the PHY.
783 static phy_interface_t gfar_get_interface(struct net_device *dev)
785 struct gfar_private *priv = netdev_priv(dev);
786 u32 ecntrl = gfar_read(&priv->regs->ecntrl);
788 if (ecntrl & ECNTRL_SGMII_MODE)
789 return PHY_INTERFACE_MODE_SGMII;
791 if (ecntrl & ECNTRL_TBI_MODE) {
792 if (ecntrl & ECNTRL_REDUCED_MODE)
793 return PHY_INTERFACE_MODE_RTBI;
794 else
795 return PHY_INTERFACE_MODE_TBI;
798 if (ecntrl & ECNTRL_REDUCED_MODE) {
799 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
800 return PHY_INTERFACE_MODE_RMII;
801 else {
802 phy_interface_t interface = priv->interface;
805 * This isn't autodetected right now, so it must
806 * be set by the device tree or platform code.
808 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
809 return PHY_INTERFACE_MODE_RGMII_ID;
811 return PHY_INTERFACE_MODE_RGMII;
815 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
816 return PHY_INTERFACE_MODE_GMII;
818 return PHY_INTERFACE_MODE_MII;
822 /* Initializes driver's PHY state, and attaches to the PHY.
823 * Returns 0 on success.
825 static int init_phy(struct net_device *dev)
827 struct gfar_private *priv = netdev_priv(dev);
828 uint gigabit_support =
829 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
830 SUPPORTED_1000baseT_Full : 0;
831 phy_interface_t interface;
833 priv->oldlink = 0;
834 priv->oldspeed = 0;
835 priv->oldduplex = -1;
837 interface = gfar_get_interface(dev);
839 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
840 interface);
841 if (!priv->phydev)
842 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
843 interface);
844 if (!priv->phydev) {
845 dev_err(&dev->dev, "could not attach to PHY\n");
846 return -ENODEV;
849 if (interface == PHY_INTERFACE_MODE_SGMII)
850 gfar_configure_serdes(dev);
852 /* Remove any features not supported by the controller */
853 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
854 priv->phydev->advertising = priv->phydev->supported;
856 return 0;
860 * Initialize TBI PHY interface for communicating with the
861 * SERDES lynx PHY on the chip. We communicate with this PHY
862 * through the MDIO bus on each controller, treating it as a
863 * "normal" PHY at the address found in the TBIPA register. We assume
864 * that the TBIPA register is valid. Either the MDIO bus code will set
865 * it to a value that doesn't conflict with other PHYs on the bus, or the
866 * value doesn't matter, as there are no other PHYs on the bus.
868 static void gfar_configure_serdes(struct net_device *dev)
870 struct gfar_private *priv = netdev_priv(dev);
871 struct phy_device *tbiphy;
873 if (!priv->tbi_node) {
874 dev_warn(&dev->dev, "error: SGMII mode requires that the "
875 "device tree specify a tbi-handle\n");
876 return;
879 tbiphy = of_phy_find_device(priv->tbi_node);
880 if (!tbiphy) {
881 dev_err(&dev->dev, "error: Could not get TBI device\n");
882 return;
886 * If the link is already up, we must already be ok, and don't need to
887 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
888 * everything for us? Resetting it takes the link down and requires
889 * several seconds for it to come back.
891 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
892 return;
894 /* Single clk mode, mii mode off(for serdes communication) */
895 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
897 phy_write(tbiphy, MII_ADVERTISE,
898 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
899 ADVERTISE_1000XPSE_ASYM);
901 phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
902 BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
905 static void init_registers(struct net_device *dev)
907 struct gfar_private *priv = netdev_priv(dev);
909 /* Clear IEVENT */
910 gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
912 /* Initialize IMASK */
913 gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
915 /* Init hash registers to zero */
916 gfar_write(&priv->regs->igaddr0, 0);
917 gfar_write(&priv->regs->igaddr1, 0);
918 gfar_write(&priv->regs->igaddr2, 0);
919 gfar_write(&priv->regs->igaddr3, 0);
920 gfar_write(&priv->regs->igaddr4, 0);
921 gfar_write(&priv->regs->igaddr5, 0);
922 gfar_write(&priv->regs->igaddr6, 0);
923 gfar_write(&priv->regs->igaddr7, 0);
925 gfar_write(&priv->regs->gaddr0, 0);
926 gfar_write(&priv->regs->gaddr1, 0);
927 gfar_write(&priv->regs->gaddr2, 0);
928 gfar_write(&priv->regs->gaddr3, 0);
929 gfar_write(&priv->regs->gaddr4, 0);
930 gfar_write(&priv->regs->gaddr5, 0);
931 gfar_write(&priv->regs->gaddr6, 0);
932 gfar_write(&priv->regs->gaddr7, 0);
934 /* Zero out the rmon mib registers if it has them */
935 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
936 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
938 /* Mask off the CAM interrupts */
939 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
940 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
943 /* Initialize the max receive buffer length */
944 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
946 /* Initialize the Minimum Frame Length Register */
947 gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
951 /* Halt the receive and transmit queues */
952 static void gfar_halt_nodisable(struct net_device *dev)
954 struct gfar_private *priv = netdev_priv(dev);
955 struct gfar __iomem *regs = priv->regs;
956 u32 tempval;
958 /* Mask all interrupts */
959 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
961 /* Clear all interrupts */
962 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
964 /* Stop the DMA, and wait for it to stop */
965 tempval = gfar_read(&priv->regs->dmactrl);
966 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
967 != (DMACTRL_GRS | DMACTRL_GTS)) {
968 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
969 gfar_write(&priv->regs->dmactrl, tempval);
971 while (!(gfar_read(&priv->regs->ievent) &
972 (IEVENT_GRSC | IEVENT_GTSC)))
973 cpu_relax();
977 /* Halt the receive and transmit queues */
978 void gfar_halt(struct net_device *dev)
980 struct gfar_private *priv = netdev_priv(dev);
981 struct gfar __iomem *regs = priv->regs;
982 u32 tempval;
984 gfar_halt_nodisable(dev);
986 /* Disable Rx and Tx */
987 tempval = gfar_read(&regs->maccfg1);
988 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
989 gfar_write(&regs->maccfg1, tempval);
992 void stop_gfar(struct net_device *dev)
994 struct gfar_private *priv = netdev_priv(dev);
995 unsigned long flags;
997 phy_stop(priv->phydev);
999 /* Lock it down */
1000 spin_lock_irqsave(&priv->txlock, flags);
1001 spin_lock(&priv->rxlock);
1003 gfar_halt(dev);
1005 spin_unlock(&priv->rxlock);
1006 spin_unlock_irqrestore(&priv->txlock, flags);
1008 /* Free the IRQs */
1009 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1010 free_irq(priv->interruptError, dev);
1011 free_irq(priv->interruptTransmit, dev);
1012 free_irq(priv->interruptReceive, dev);
1013 } else {
1014 free_irq(priv->interruptTransmit, dev);
1017 free_skb_resources(priv);
1020 /* If there are any tx skbs or rx skbs still around, free them.
1021 * Then free tx_skbuff and rx_skbuff */
1022 static void free_skb_resources(struct gfar_private *priv)
1024 struct device *dev = &priv->ofdev->dev;
1025 struct rxbd8 *rxbdp;
1026 struct txbd8 *txbdp;
1027 int i, j;
1029 /* Go through all the buffer descriptors and free their data buffers */
1030 txbdp = priv->tx_bd_base;
1032 if (!priv->tx_skbuff)
1033 goto skip_tx_skbuff;
1035 for (i = 0; i < priv->tx_ring_size; i++) {
1036 if (!priv->tx_skbuff[i])
1037 continue;
1039 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1040 txbdp->length, DMA_TO_DEVICE);
1041 txbdp->lstatus = 0;
1042 for (j = 0; j < skb_shinfo(priv->tx_skbuff[i])->nr_frags; j++) {
1043 txbdp++;
1044 dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1045 txbdp->length, DMA_TO_DEVICE);
1047 txbdp++;
1048 dev_kfree_skb_any(priv->tx_skbuff[i]);
1049 priv->tx_skbuff[i] = NULL;
1052 kfree(priv->tx_skbuff);
1053 skip_tx_skbuff:
1055 rxbdp = priv->rx_bd_base;
1057 if (!priv->rx_skbuff)
1058 goto skip_rx_skbuff;
1060 for (i = 0; i < priv->rx_ring_size; i++) {
1061 if (priv->rx_skbuff[i]) {
1062 dma_unmap_single(&priv->ofdev->dev, rxbdp->bufPtr,
1063 priv->rx_buffer_size,
1064 DMA_FROM_DEVICE);
1065 dev_kfree_skb_any(priv->rx_skbuff[i]);
1066 priv->rx_skbuff[i] = NULL;
1069 rxbdp->lstatus = 0;
1070 rxbdp->bufPtr = 0;
1071 rxbdp++;
1074 kfree(priv->rx_skbuff);
1075 skip_rx_skbuff:
1077 dma_free_coherent(dev, sizeof(*txbdp) * priv->tx_ring_size +
1078 sizeof(*rxbdp) * priv->rx_ring_size,
1079 priv->tx_bd_base, priv->tx_bd_dma_base);
1082 void gfar_start(struct net_device *dev)
1084 struct gfar_private *priv = netdev_priv(dev);
1085 struct gfar __iomem *regs = priv->regs;
1086 u32 tempval;
1088 /* Enable Rx and Tx in MACCFG1 */
1089 tempval = gfar_read(&regs->maccfg1);
1090 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1091 gfar_write(&regs->maccfg1, tempval);
1093 /* Initialize DMACTRL to have WWR and WOP */
1094 tempval = gfar_read(&priv->regs->dmactrl);
1095 tempval |= DMACTRL_INIT_SETTINGS;
1096 gfar_write(&priv->regs->dmactrl, tempval);
1098 /* Make sure we aren't stopped */
1099 tempval = gfar_read(&priv->regs->dmactrl);
1100 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1101 gfar_write(&priv->regs->dmactrl, tempval);
1103 /* Clear THLT/RHLT, so that the DMA starts polling now */
1104 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
1105 gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
1107 /* Unmask the interrupts we look for */
1108 gfar_write(&regs->imask, IMASK_DEFAULT);
1110 dev->trans_start = jiffies;
1113 /* Bring the controller up and running */
1114 int startup_gfar(struct net_device *ndev)
1116 struct gfar_private *priv = netdev_priv(ndev);
1117 struct gfar __iomem *regs = priv->regs;
1118 int err;
1120 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1122 err = gfar_alloc_skb_resources(ndev);
1123 if (err)
1124 return err;
1126 gfar_init_mac(ndev);
1128 /* If the device has multiple interrupts, register for
1129 * them. Otherwise, only register for the one */
1130 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1131 /* Install our interrupt handlers for Error,
1132 * Transmit, and Receive */
1133 err = request_irq(priv->interruptError, gfar_error, 0,
1134 priv->int_name_er, ndev);
1135 if (err) {
1136 if (netif_msg_intr(priv))
1137 pr_err("%s: Can't get IRQ %d\n", ndev->name,
1138 priv->interruptError);
1139 goto err_irq_fail;
1142 err = request_irq(priv->interruptTransmit, gfar_transmit, 0,
1143 priv->int_name_tx, ndev);
1144 if (err) {
1145 if (netif_msg_intr(priv))
1146 pr_err("%s: Can't get IRQ %d\n", ndev->name,
1147 priv->interruptTransmit);
1148 goto tx_irq_fail;
1151 err = request_irq(priv->interruptReceive, gfar_receive, 0,
1152 priv->int_name_rx, ndev);
1153 if (err) {
1154 if (netif_msg_intr(priv))
1155 pr_err("%s: Can't get IRQ %d (receive0)\n",
1156 ndev->name, priv->interruptReceive);
1157 goto rx_irq_fail;
1159 } else {
1160 err = request_irq(priv->interruptTransmit, gfar_interrupt,
1161 0, priv->int_name_tx, ndev);
1162 if (err) {
1163 if (netif_msg_intr(priv))
1164 pr_err("%s: Can't get IRQ %d\n", ndev->name,
1165 priv->interruptTransmit);
1166 goto err_irq_fail;
1170 /* Start the controller */
1171 gfar_start(ndev);
1173 phy_start(priv->phydev);
1175 return 0;
1177 rx_irq_fail:
1178 free_irq(priv->interruptTransmit, ndev);
1179 tx_irq_fail:
1180 free_irq(priv->interruptError, ndev);
1181 err_irq_fail:
1182 free_skb_resources(priv);
1183 return err;
1186 /* Called when something needs to use the ethernet device */
1187 /* Returns 0 for success. */
1188 static int gfar_enet_open(struct net_device *dev)
1190 struct gfar_private *priv = netdev_priv(dev);
1191 int err;
1193 napi_enable(&priv->napi);
1195 skb_queue_head_init(&priv->rx_recycle);
1197 /* Initialize a bunch of registers */
1198 init_registers(dev);
1200 gfar_set_mac_address(dev);
1202 err = init_phy(dev);
1204 if(err) {
1205 napi_disable(&priv->napi);
1206 return err;
1209 err = startup_gfar(dev);
1210 if (err) {
1211 napi_disable(&priv->napi);
1212 return err;
1215 netif_start_queue(dev);
1217 device_set_wakeup_enable(&dev->dev, priv->wol_en);
1219 return err;
1222 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1224 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1226 memset(fcb, 0, GMAC_FCB_LEN);
1228 return fcb;
1231 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1233 u8 flags = 0;
1235 /* If we're here, it's a IP packet with a TCP or UDP
1236 * payload. We set it to checksum, using a pseudo-header
1237 * we provide
1239 flags = TXFCB_DEFAULT;
1241 /* Tell the controller what the protocol is */
1242 /* And provide the already calculated phcs */
1243 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1244 flags |= TXFCB_UDP;
1245 fcb->phcs = udp_hdr(skb)->check;
1246 } else
1247 fcb->phcs = tcp_hdr(skb)->check;
1249 /* l3os is the distance between the start of the
1250 * frame (skb->data) and the start of the IP hdr.
1251 * l4os is the distance between the start of the
1252 * l3 hdr and the l4 hdr */
1253 fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1254 fcb->l4os = skb_network_header_len(skb);
1256 fcb->flags = flags;
1259 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1261 fcb->flags |= TXFCB_VLN;
1262 fcb->vlctl = vlan_tx_tag_get(skb);
1265 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1266 struct txbd8 *base, int ring_size)
1268 struct txbd8 *new_bd = bdp + stride;
1270 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1273 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1274 int ring_size)
1276 return skip_txbd(bdp, 1, base, ring_size);
1279 /* This is called by the kernel when a frame is ready for transmission. */
1280 /* It is pointed to by the dev->hard_start_xmit function pointer */
1281 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1283 struct gfar_private *priv = netdev_priv(dev);
1284 struct txfcb *fcb = NULL;
1285 struct txbd8 *txbdp, *txbdp_start, *base;
1286 u32 lstatus;
1287 int i;
1288 u32 bufaddr;
1289 unsigned long flags;
1290 unsigned int nr_frags, length;
1292 base = priv->tx_bd_base;
1294 /* make space for additional header when fcb is needed */
1295 if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
1296 (priv->vlgrp && vlan_tx_tag_present(skb))) &&
1297 (skb_headroom(skb) < GMAC_FCB_LEN)) {
1298 struct sk_buff *skb_new;
1300 skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
1301 if (!skb_new) {
1302 dev->stats.tx_errors++;
1303 kfree_skb(skb);
1304 return NETDEV_TX_OK;
1306 kfree_skb(skb);
1307 skb = skb_new;
1310 /* total number of fragments in the SKB */
1311 nr_frags = skb_shinfo(skb)->nr_frags;
1313 spin_lock_irqsave(&priv->txlock, flags);
1315 /* check if there is space to queue this packet */
1316 if ((nr_frags+1) > priv->num_txbdfree) {
1317 /* no space, stop the queue */
1318 netif_stop_queue(dev);
1319 dev->stats.tx_fifo_errors++;
1320 spin_unlock_irqrestore(&priv->txlock, flags);
1321 return NETDEV_TX_BUSY;
1324 /* Update transmit stats */
1325 dev->stats.tx_bytes += skb->len;
1327 txbdp = txbdp_start = priv->cur_tx;
1329 if (nr_frags == 0) {
1330 lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1331 } else {
1332 /* Place the fragment addresses and lengths into the TxBDs */
1333 for (i = 0; i < nr_frags; i++) {
1334 /* Point at the next BD, wrapping as needed */
1335 txbdp = next_txbd(txbdp, base, priv->tx_ring_size);
1337 length = skb_shinfo(skb)->frags[i].size;
1339 lstatus = txbdp->lstatus | length |
1340 BD_LFLAG(TXBD_READY);
1342 /* Handle the last BD specially */
1343 if (i == nr_frags - 1)
1344 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1346 bufaddr = dma_map_page(&priv->ofdev->dev,
1347 skb_shinfo(skb)->frags[i].page,
1348 skb_shinfo(skb)->frags[i].page_offset,
1349 length,
1350 DMA_TO_DEVICE);
1352 /* set the TxBD length and buffer pointer */
1353 txbdp->bufPtr = bufaddr;
1354 txbdp->lstatus = lstatus;
1357 lstatus = txbdp_start->lstatus;
1360 /* Set up checksumming */
1361 if (CHECKSUM_PARTIAL == skb->ip_summed) {
1362 fcb = gfar_add_fcb(skb);
1363 lstatus |= BD_LFLAG(TXBD_TOE);
1364 gfar_tx_checksum(skb, fcb);
1367 if (priv->vlgrp && vlan_tx_tag_present(skb)) {
1368 if (unlikely(NULL == fcb)) {
1369 fcb = gfar_add_fcb(skb);
1370 lstatus |= BD_LFLAG(TXBD_TOE);
1373 gfar_tx_vlan(skb, fcb);
1376 /* setup the TxBD length and buffer pointer for the first BD */
1377 priv->tx_skbuff[priv->skb_curtx] = skb;
1378 txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
1379 skb_headlen(skb), DMA_TO_DEVICE);
1381 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1384 * The powerpc-specific eieio() is used, as wmb() has too strong
1385 * semantics (it requires synchronization between cacheable and
1386 * uncacheable mappings, which eieio doesn't provide and which we
1387 * don't need), thus requiring a more expensive sync instruction. At
1388 * some point, the set of architecture-independent barrier functions
1389 * should be expanded to include weaker barriers.
1391 eieio();
1393 txbdp_start->lstatus = lstatus;
1395 /* Update the current skb pointer to the next entry we will use
1396 * (wrapping if necessary) */
1397 priv->skb_curtx = (priv->skb_curtx + 1) &
1398 TX_RING_MOD_MASK(priv->tx_ring_size);
1400 priv->cur_tx = next_txbd(txbdp, base, priv->tx_ring_size);
1402 /* reduce TxBD free count */
1403 priv->num_txbdfree -= (nr_frags + 1);
1405 dev->trans_start = jiffies;
1407 /* If the next BD still needs to be cleaned up, then the bds
1408 are full. We need to tell the kernel to stop sending us stuff. */
1409 if (!priv->num_txbdfree) {
1410 netif_stop_queue(dev);
1412 dev->stats.tx_fifo_errors++;
1415 /* Tell the DMA to go go go */
1416 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1418 /* Unlock priv */
1419 spin_unlock_irqrestore(&priv->txlock, flags);
1421 return NETDEV_TX_OK;
1424 /* Stops the kernel queue, and halts the controller */
1425 static int gfar_close(struct net_device *dev)
1427 struct gfar_private *priv = netdev_priv(dev);
1429 napi_disable(&priv->napi);
1431 skb_queue_purge(&priv->rx_recycle);
1432 cancel_work_sync(&priv->reset_task);
1433 stop_gfar(dev);
1435 /* Disconnect from the PHY */
1436 phy_disconnect(priv->phydev);
1437 priv->phydev = NULL;
1439 netif_stop_queue(dev);
1441 return 0;
1444 /* Changes the mac address if the controller is not running. */
1445 static int gfar_set_mac_address(struct net_device *dev)
1447 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1449 return 0;
1453 /* Enables and disables VLAN insertion/extraction */
1454 static void gfar_vlan_rx_register(struct net_device *dev,
1455 struct vlan_group *grp)
1457 struct gfar_private *priv = netdev_priv(dev);
1458 unsigned long flags;
1459 u32 tempval;
1461 spin_lock_irqsave(&priv->rxlock, flags);
1463 priv->vlgrp = grp;
1465 if (grp) {
1466 /* Enable VLAN tag insertion */
1467 tempval = gfar_read(&priv->regs->tctrl);
1468 tempval |= TCTRL_VLINS;
1470 gfar_write(&priv->regs->tctrl, tempval);
1472 /* Enable VLAN tag extraction */
1473 tempval = gfar_read(&priv->regs->rctrl);
1474 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
1475 gfar_write(&priv->regs->rctrl, tempval);
1476 } else {
1477 /* Disable VLAN tag insertion */
1478 tempval = gfar_read(&priv->regs->tctrl);
1479 tempval &= ~TCTRL_VLINS;
1480 gfar_write(&priv->regs->tctrl, tempval);
1482 /* Disable VLAN tag extraction */
1483 tempval = gfar_read(&priv->regs->rctrl);
1484 tempval &= ~RCTRL_VLEX;
1485 /* If parse is no longer required, then disable parser */
1486 if (tempval & RCTRL_REQ_PARSER)
1487 tempval |= RCTRL_PRSDEP_INIT;
1488 else
1489 tempval &= ~RCTRL_PRSDEP_INIT;
1490 gfar_write(&priv->regs->rctrl, tempval);
1493 gfar_change_mtu(dev, dev->mtu);
1495 spin_unlock_irqrestore(&priv->rxlock, flags);
1498 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1500 int tempsize, tempval;
1501 struct gfar_private *priv = netdev_priv(dev);
1502 int oldsize = priv->rx_buffer_size;
1503 int frame_size = new_mtu + ETH_HLEN;
1505 if (priv->vlgrp)
1506 frame_size += VLAN_HLEN;
1508 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1509 if (netif_msg_drv(priv))
1510 printk(KERN_ERR "%s: Invalid MTU setting\n",
1511 dev->name);
1512 return -EINVAL;
1515 if (gfar_uses_fcb(priv))
1516 frame_size += GMAC_FCB_LEN;
1518 frame_size += priv->padding;
1520 tempsize =
1521 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1522 INCREMENTAL_BUFFER_SIZE;
1524 /* Only stop and start the controller if it isn't already
1525 * stopped, and we changed something */
1526 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1527 stop_gfar(dev);
1529 priv->rx_buffer_size = tempsize;
1531 dev->mtu = new_mtu;
1533 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1534 gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1536 /* If the mtu is larger than the max size for standard
1537 * ethernet frames (ie, a jumbo frame), then set maccfg2
1538 * to allow huge frames, and to check the length */
1539 tempval = gfar_read(&priv->regs->maccfg2);
1541 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1542 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1543 else
1544 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1546 gfar_write(&priv->regs->maccfg2, tempval);
1548 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1549 startup_gfar(dev);
1551 return 0;
1554 /* gfar_reset_task gets scheduled when a packet has not been
1555 * transmitted after a set amount of time.
1556 * For now, assume that clearing out all the structures, and
1557 * starting over will fix the problem.
1559 static void gfar_reset_task(struct work_struct *work)
1561 struct gfar_private *priv = container_of(work, struct gfar_private,
1562 reset_task);
1563 struct net_device *dev = priv->ndev;
1565 if (dev->flags & IFF_UP) {
1566 netif_stop_queue(dev);
1567 stop_gfar(dev);
1568 startup_gfar(dev);
1569 netif_start_queue(dev);
1572 netif_tx_schedule_all(dev);
1575 static void gfar_timeout(struct net_device *dev)
1577 struct gfar_private *priv = netdev_priv(dev);
1579 dev->stats.tx_errors++;
1580 schedule_work(&priv->reset_task);
1583 /* Interrupt Handler for Transmit complete */
1584 static int gfar_clean_tx_ring(struct net_device *dev)
1586 struct gfar_private *priv = netdev_priv(dev);
1587 struct txbd8 *bdp;
1588 struct txbd8 *lbdp = NULL;
1589 struct txbd8 *base = priv->tx_bd_base;
1590 struct sk_buff *skb;
1591 int skb_dirtytx;
1592 int tx_ring_size = priv->tx_ring_size;
1593 int frags = 0;
1594 int i;
1595 int howmany = 0;
1596 u32 lstatus;
1598 bdp = priv->dirty_tx;
1599 skb_dirtytx = priv->skb_dirtytx;
1601 while ((skb = priv->tx_skbuff[skb_dirtytx])) {
1602 frags = skb_shinfo(skb)->nr_frags;
1603 lbdp = skip_txbd(bdp, frags, base, tx_ring_size);
1605 lstatus = lbdp->lstatus;
1607 /* Only clean completed frames */
1608 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
1609 (lstatus & BD_LENGTH_MASK))
1610 break;
1612 dma_unmap_single(&priv->ofdev->dev,
1613 bdp->bufPtr,
1614 bdp->length,
1615 DMA_TO_DEVICE);
1617 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1618 bdp = next_txbd(bdp, base, tx_ring_size);
1620 for (i = 0; i < frags; i++) {
1621 dma_unmap_page(&priv->ofdev->dev,
1622 bdp->bufPtr,
1623 bdp->length,
1624 DMA_TO_DEVICE);
1625 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1626 bdp = next_txbd(bdp, base, tx_ring_size);
1630 * If there's room in the queue (limit it to rx_buffer_size)
1631 * we add this skb back into the pool, if it's the right size
1633 if (skb_queue_len(&priv->rx_recycle) < priv->rx_ring_size &&
1634 skb_recycle_check(skb, priv->rx_buffer_size +
1635 RXBUF_ALIGNMENT))
1636 __skb_queue_head(&priv->rx_recycle, skb);
1637 else
1638 dev_kfree_skb_any(skb);
1640 priv->tx_skbuff[skb_dirtytx] = NULL;
1642 skb_dirtytx = (skb_dirtytx + 1) &
1643 TX_RING_MOD_MASK(tx_ring_size);
1645 howmany++;
1646 priv->num_txbdfree += frags + 1;
1649 /* If we freed a buffer, we can restart transmission, if necessary */
1650 if (netif_queue_stopped(dev) && priv->num_txbdfree)
1651 netif_wake_queue(dev);
1653 /* Update dirty indicators */
1654 priv->skb_dirtytx = skb_dirtytx;
1655 priv->dirty_tx = bdp;
1657 dev->stats.tx_packets += howmany;
1659 return howmany;
1662 static void gfar_schedule_cleanup(struct net_device *dev)
1664 struct gfar_private *priv = netdev_priv(dev);
1665 unsigned long flags;
1667 spin_lock_irqsave(&priv->txlock, flags);
1668 spin_lock(&priv->rxlock);
1670 if (napi_schedule_prep(&priv->napi)) {
1671 gfar_write(&priv->regs->imask, IMASK_RTX_DISABLED);
1672 __napi_schedule(&priv->napi);
1673 } else {
1675 * Clear IEVENT, so interrupts aren't called again
1676 * because of the packets that have already arrived.
1678 gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1681 spin_unlock(&priv->rxlock);
1682 spin_unlock_irqrestore(&priv->txlock, flags);
1685 /* Interrupt Handler for Transmit complete */
1686 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1688 gfar_schedule_cleanup((struct net_device *)dev_id);
1689 return IRQ_HANDLED;
1692 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
1693 struct sk_buff *skb)
1695 struct gfar_private *priv = netdev_priv(dev);
1696 dma_addr_t buf;
1698 buf = dma_map_single(&priv->ofdev->dev, skb->data,
1699 priv->rx_buffer_size, DMA_FROM_DEVICE);
1700 gfar_init_rxbdp(dev, bdp, buf);
1704 struct sk_buff * gfar_new_skb(struct net_device *dev)
1706 unsigned int alignamount;
1707 struct gfar_private *priv = netdev_priv(dev);
1708 struct sk_buff *skb = NULL;
1710 skb = __skb_dequeue(&priv->rx_recycle);
1711 if (!skb)
1712 skb = netdev_alloc_skb(dev,
1713 priv->rx_buffer_size + RXBUF_ALIGNMENT);
1715 if (!skb)
1716 return NULL;
1718 alignamount = RXBUF_ALIGNMENT -
1719 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
1721 /* We need the data buffer to be aligned properly. We will reserve
1722 * as many bytes as needed to align the data properly
1724 skb_reserve(skb, alignamount);
1726 return skb;
1729 static inline void count_errors(unsigned short status, struct net_device *dev)
1731 struct gfar_private *priv = netdev_priv(dev);
1732 struct net_device_stats *stats = &dev->stats;
1733 struct gfar_extra_stats *estats = &priv->extra_stats;
1735 /* If the packet was truncated, none of the other errors
1736 * matter */
1737 if (status & RXBD_TRUNCATED) {
1738 stats->rx_length_errors++;
1740 estats->rx_trunc++;
1742 return;
1744 /* Count the errors, if there were any */
1745 if (status & (RXBD_LARGE | RXBD_SHORT)) {
1746 stats->rx_length_errors++;
1748 if (status & RXBD_LARGE)
1749 estats->rx_large++;
1750 else
1751 estats->rx_short++;
1753 if (status & RXBD_NONOCTET) {
1754 stats->rx_frame_errors++;
1755 estats->rx_nonoctet++;
1757 if (status & RXBD_CRCERR) {
1758 estats->rx_crcerr++;
1759 stats->rx_crc_errors++;
1761 if (status & RXBD_OVERRUN) {
1762 estats->rx_overrun++;
1763 stats->rx_crc_errors++;
1767 irqreturn_t gfar_receive(int irq, void *dev_id)
1769 gfar_schedule_cleanup((struct net_device *)dev_id);
1770 return IRQ_HANDLED;
1773 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1775 /* If valid headers were found, and valid sums
1776 * were verified, then we tell the kernel that no
1777 * checksumming is necessary. Otherwise, it is */
1778 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1779 skb->ip_summed = CHECKSUM_UNNECESSARY;
1780 else
1781 skb->ip_summed = CHECKSUM_NONE;
1785 /* gfar_process_frame() -- handle one incoming packet if skb
1786 * isn't NULL. */
1787 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1788 int amount_pull)
1790 struct gfar_private *priv = netdev_priv(dev);
1791 struct rxfcb *fcb = NULL;
1793 int ret;
1795 /* fcb is at the beginning if exists */
1796 fcb = (struct rxfcb *)skb->data;
1798 /* Remove the FCB from the skb */
1799 /* Remove the padded bytes, if there are any */
1800 if (amount_pull)
1801 skb_pull(skb, amount_pull);
1803 if (priv->rx_csum_enable)
1804 gfar_rx_checksum(skb, fcb);
1806 /* Tell the skb what kind of packet this is */
1807 skb->protocol = eth_type_trans(skb, dev);
1809 /* Send the packet up the stack */
1810 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1811 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
1812 else
1813 ret = netif_receive_skb(skb);
1815 if (NET_RX_DROP == ret)
1816 priv->extra_stats.kernel_dropped++;
1818 return 0;
1821 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1822 * until the budget/quota has been reached. Returns the number
1823 * of frames handled
1825 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1827 struct rxbd8 *bdp, *base;
1828 struct sk_buff *skb;
1829 int pkt_len;
1830 int amount_pull;
1831 int howmany = 0;
1832 struct gfar_private *priv = netdev_priv(dev);
1834 /* Get the first full descriptor */
1835 bdp = priv->cur_rx;
1836 base = priv->rx_bd_base;
1838 amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0) +
1839 priv->padding;
1841 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1842 struct sk_buff *newskb;
1843 rmb();
1845 /* Add another skb for the future */
1846 newskb = gfar_new_skb(dev);
1848 skb = priv->rx_skbuff[priv->skb_currx];
1850 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
1851 priv->rx_buffer_size, DMA_FROM_DEVICE);
1853 /* We drop the frame if we failed to allocate a new buffer */
1854 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
1855 bdp->status & RXBD_ERR)) {
1856 count_errors(bdp->status, dev);
1858 if (unlikely(!newskb))
1859 newskb = skb;
1860 else if (skb) {
1862 * We need to reset ->data to what it
1863 * was before gfar_new_skb() re-aligned
1864 * it to an RXBUF_ALIGNMENT boundary
1865 * before we put the skb back on the
1866 * recycle list.
1868 skb->data = skb->head + NET_SKB_PAD;
1869 __skb_queue_head(&priv->rx_recycle, skb);
1871 } else {
1872 /* Increment the number of packets */
1873 dev->stats.rx_packets++;
1874 howmany++;
1876 if (likely(skb)) {
1877 pkt_len = bdp->length - ETH_FCS_LEN;
1878 /* Remove the FCS from the packet length */
1879 skb_put(skb, pkt_len);
1880 dev->stats.rx_bytes += pkt_len;
1882 if (in_irq() || irqs_disabled())
1883 printk("Interrupt problem!\n");
1884 gfar_process_frame(dev, skb, amount_pull);
1886 } else {
1887 if (netif_msg_rx_err(priv))
1888 printk(KERN_WARNING
1889 "%s: Missing skb!\n", dev->name);
1890 dev->stats.rx_dropped++;
1891 priv->extra_stats.rx_skbmissing++;
1896 priv->rx_skbuff[priv->skb_currx] = newskb;
1898 /* Setup the new bdp */
1899 gfar_new_rxbdp(dev, bdp, newskb);
1901 /* Update to the next pointer */
1902 bdp = next_bd(bdp, base, priv->rx_ring_size);
1904 /* update to point at the next skb */
1905 priv->skb_currx =
1906 (priv->skb_currx + 1) &
1907 RX_RING_MOD_MASK(priv->rx_ring_size);
1910 /* Update the current rxbd pointer to be the next one */
1911 priv->cur_rx = bdp;
1913 return howmany;
1916 static int gfar_poll(struct napi_struct *napi, int budget)
1918 struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
1919 struct net_device *dev = priv->ndev;
1920 int tx_cleaned = 0;
1921 int rx_cleaned = 0;
1922 unsigned long flags;
1924 /* Clear IEVENT, so interrupts aren't called again
1925 * because of the packets that have already arrived */
1926 gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1928 /* If we fail to get the lock, don't bother with the TX BDs */
1929 if (spin_trylock_irqsave(&priv->txlock, flags)) {
1930 tx_cleaned = gfar_clean_tx_ring(dev);
1931 spin_unlock_irqrestore(&priv->txlock, flags);
1934 rx_cleaned = gfar_clean_rx_ring(dev, budget);
1936 if (tx_cleaned)
1937 return budget;
1939 if (rx_cleaned < budget) {
1940 napi_complete(napi);
1942 /* Clear the halt bit in RSTAT */
1943 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1945 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1947 /* If we are coalescing interrupts, update the timer */
1948 /* Otherwise, clear it */
1949 if (likely(priv->rxcoalescing)) {
1950 gfar_write(&priv->regs->rxic, 0);
1951 gfar_write(&priv->regs->rxic, priv->rxic);
1953 if (likely(priv->txcoalescing)) {
1954 gfar_write(&priv->regs->txic, 0);
1955 gfar_write(&priv->regs->txic, priv->txic);
1959 return rx_cleaned;
1962 #ifdef CONFIG_NET_POLL_CONTROLLER
1964 * Polling 'interrupt' - used by things like netconsole to send skbs
1965 * without having to re-enable interrupts. It's not called while
1966 * the interrupt routine is executing.
1968 static void gfar_netpoll(struct net_device *dev)
1970 struct gfar_private *priv = netdev_priv(dev);
1972 /* If the device has multiple interrupts, run tx/rx */
1973 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1974 disable_irq(priv->interruptTransmit);
1975 disable_irq(priv->interruptReceive);
1976 disable_irq(priv->interruptError);
1977 gfar_interrupt(priv->interruptTransmit, dev);
1978 enable_irq(priv->interruptError);
1979 enable_irq(priv->interruptReceive);
1980 enable_irq(priv->interruptTransmit);
1981 } else {
1982 disable_irq(priv->interruptTransmit);
1983 gfar_interrupt(priv->interruptTransmit, dev);
1984 enable_irq(priv->interruptTransmit);
1987 #endif
1989 /* The interrupt handler for devices with one interrupt */
1990 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1992 struct net_device *dev = dev_id;
1993 struct gfar_private *priv = netdev_priv(dev);
1995 /* Save ievent for future reference */
1996 u32 events = gfar_read(&priv->regs->ievent);
1998 /* Check for reception */
1999 if (events & IEVENT_RX_MASK)
2000 gfar_receive(irq, dev_id);
2002 /* Check for transmit completion */
2003 if (events & IEVENT_TX_MASK)
2004 gfar_transmit(irq, dev_id);
2006 /* Check for errors */
2007 if (events & IEVENT_ERR_MASK)
2008 gfar_error(irq, dev_id);
2010 return IRQ_HANDLED;
2013 /* Called every time the controller might need to be made
2014 * aware of new link state. The PHY code conveys this
2015 * information through variables in the phydev structure, and this
2016 * function converts those variables into the appropriate
2017 * register values, and can bring down the device if needed.
2019 static void adjust_link(struct net_device *dev)
2021 struct gfar_private *priv = netdev_priv(dev);
2022 struct gfar __iomem *regs = priv->regs;
2023 unsigned long flags;
2024 struct phy_device *phydev = priv->phydev;
2025 int new_state = 0;
2027 spin_lock_irqsave(&priv->txlock, flags);
2028 if (phydev->link) {
2029 u32 tempval = gfar_read(&regs->maccfg2);
2030 u32 ecntrl = gfar_read(&regs->ecntrl);
2032 /* Now we make sure that we can be in full duplex mode.
2033 * If not, we operate in half-duplex mode. */
2034 if (phydev->duplex != priv->oldduplex) {
2035 new_state = 1;
2036 if (!(phydev->duplex))
2037 tempval &= ~(MACCFG2_FULL_DUPLEX);
2038 else
2039 tempval |= MACCFG2_FULL_DUPLEX;
2041 priv->oldduplex = phydev->duplex;
2044 if (phydev->speed != priv->oldspeed) {
2045 new_state = 1;
2046 switch (phydev->speed) {
2047 case 1000:
2048 tempval =
2049 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2051 ecntrl &= ~(ECNTRL_R100);
2052 break;
2053 case 100:
2054 case 10:
2055 tempval =
2056 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2058 /* Reduced mode distinguishes
2059 * between 10 and 100 */
2060 if (phydev->speed == SPEED_100)
2061 ecntrl |= ECNTRL_R100;
2062 else
2063 ecntrl &= ~(ECNTRL_R100);
2064 break;
2065 default:
2066 if (netif_msg_link(priv))
2067 printk(KERN_WARNING
2068 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
2069 dev->name, phydev->speed);
2070 break;
2073 priv->oldspeed = phydev->speed;
2076 gfar_write(&regs->maccfg2, tempval);
2077 gfar_write(&regs->ecntrl, ecntrl);
2079 if (!priv->oldlink) {
2080 new_state = 1;
2081 priv->oldlink = 1;
2083 } else if (priv->oldlink) {
2084 new_state = 1;
2085 priv->oldlink = 0;
2086 priv->oldspeed = 0;
2087 priv->oldduplex = -1;
2090 if (new_state && netif_msg_link(priv))
2091 phy_print_status(phydev);
2093 spin_unlock_irqrestore(&priv->txlock, flags);
2096 /* Update the hash table based on the current list of multicast
2097 * addresses we subscribe to. Also, change the promiscuity of
2098 * the device based on the flags (this function is called
2099 * whenever dev->flags is changed */
2100 static void gfar_set_multi(struct net_device *dev)
2102 struct dev_mc_list *mc_ptr;
2103 struct gfar_private *priv = netdev_priv(dev);
2104 struct gfar __iomem *regs = priv->regs;
2105 u32 tempval;
2107 if(dev->flags & IFF_PROMISC) {
2108 /* Set RCTRL to PROM */
2109 tempval = gfar_read(&regs->rctrl);
2110 tempval |= RCTRL_PROM;
2111 gfar_write(&regs->rctrl, tempval);
2112 } else {
2113 /* Set RCTRL to not PROM */
2114 tempval = gfar_read(&regs->rctrl);
2115 tempval &= ~(RCTRL_PROM);
2116 gfar_write(&regs->rctrl, tempval);
2119 if(dev->flags & IFF_ALLMULTI) {
2120 /* Set the hash to rx all multicast frames */
2121 gfar_write(&regs->igaddr0, 0xffffffff);
2122 gfar_write(&regs->igaddr1, 0xffffffff);
2123 gfar_write(&regs->igaddr2, 0xffffffff);
2124 gfar_write(&regs->igaddr3, 0xffffffff);
2125 gfar_write(&regs->igaddr4, 0xffffffff);
2126 gfar_write(&regs->igaddr5, 0xffffffff);
2127 gfar_write(&regs->igaddr6, 0xffffffff);
2128 gfar_write(&regs->igaddr7, 0xffffffff);
2129 gfar_write(&regs->gaddr0, 0xffffffff);
2130 gfar_write(&regs->gaddr1, 0xffffffff);
2131 gfar_write(&regs->gaddr2, 0xffffffff);
2132 gfar_write(&regs->gaddr3, 0xffffffff);
2133 gfar_write(&regs->gaddr4, 0xffffffff);
2134 gfar_write(&regs->gaddr5, 0xffffffff);
2135 gfar_write(&regs->gaddr6, 0xffffffff);
2136 gfar_write(&regs->gaddr7, 0xffffffff);
2137 } else {
2138 int em_num;
2139 int idx;
2141 /* zero out the hash */
2142 gfar_write(&regs->igaddr0, 0x0);
2143 gfar_write(&regs->igaddr1, 0x0);
2144 gfar_write(&regs->igaddr2, 0x0);
2145 gfar_write(&regs->igaddr3, 0x0);
2146 gfar_write(&regs->igaddr4, 0x0);
2147 gfar_write(&regs->igaddr5, 0x0);
2148 gfar_write(&regs->igaddr6, 0x0);
2149 gfar_write(&regs->igaddr7, 0x0);
2150 gfar_write(&regs->gaddr0, 0x0);
2151 gfar_write(&regs->gaddr1, 0x0);
2152 gfar_write(&regs->gaddr2, 0x0);
2153 gfar_write(&regs->gaddr3, 0x0);
2154 gfar_write(&regs->gaddr4, 0x0);
2155 gfar_write(&regs->gaddr5, 0x0);
2156 gfar_write(&regs->gaddr6, 0x0);
2157 gfar_write(&regs->gaddr7, 0x0);
2159 /* If we have extended hash tables, we need to
2160 * clear the exact match registers to prepare for
2161 * setting them */
2162 if (priv->extended_hash) {
2163 em_num = GFAR_EM_NUM + 1;
2164 gfar_clear_exact_match(dev);
2165 idx = 1;
2166 } else {
2167 idx = 0;
2168 em_num = 0;
2171 if(dev->mc_count == 0)
2172 return;
2174 /* Parse the list, and set the appropriate bits */
2175 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
2176 if (idx < em_num) {
2177 gfar_set_mac_for_addr(dev, idx,
2178 mc_ptr->dmi_addr);
2179 idx++;
2180 } else
2181 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
2185 return;
2189 /* Clears each of the exact match registers to zero, so they
2190 * don't interfere with normal reception */
2191 static void gfar_clear_exact_match(struct net_device *dev)
2193 int idx;
2194 u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
2196 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
2197 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
2200 /* Set the appropriate hash bit for the given addr */
2201 /* The algorithm works like so:
2202 * 1) Take the Destination Address (ie the multicast address), and
2203 * do a CRC on it (little endian), and reverse the bits of the
2204 * result.
2205 * 2) Use the 8 most significant bits as a hash into a 256-entry
2206 * table. The table is controlled through 8 32-bit registers:
2207 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
2208 * gaddr7. This means that the 3 most significant bits in the
2209 * hash index which gaddr register to use, and the 5 other bits
2210 * indicate which bit (assuming an IBM numbering scheme, which
2211 * for PowerPC (tm) is usually the case) in the register holds
2212 * the entry. */
2213 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
2215 u32 tempval;
2216 struct gfar_private *priv = netdev_priv(dev);
2217 u32 result = ether_crc(MAC_ADDR_LEN, addr);
2218 int width = priv->hash_width;
2219 u8 whichbit = (result >> (32 - width)) & 0x1f;
2220 u8 whichreg = result >> (32 - width + 5);
2221 u32 value = (1 << (31-whichbit));
2223 tempval = gfar_read(priv->hash_regs[whichreg]);
2224 tempval |= value;
2225 gfar_write(priv->hash_regs[whichreg], tempval);
2227 return;
2231 /* There are multiple MAC Address register pairs on some controllers
2232 * This function sets the numth pair to a given address
2234 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
2236 struct gfar_private *priv = netdev_priv(dev);
2237 int idx;
2238 char tmpbuf[MAC_ADDR_LEN];
2239 u32 tempval;
2240 u32 __iomem *macptr = &priv->regs->macstnaddr1;
2242 macptr += num*2;
2244 /* Now copy it into the mac registers backwards, cuz */
2245 /* little endian is silly */
2246 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
2247 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
2249 gfar_write(macptr, *((u32 *) (tmpbuf)));
2251 tempval = *((u32 *) (tmpbuf + 4));
2253 gfar_write(macptr+1, tempval);
2256 /* GFAR error interrupt handler */
2257 static irqreturn_t gfar_error(int irq, void *dev_id)
2259 struct net_device *dev = dev_id;
2260 struct gfar_private *priv = netdev_priv(dev);
2262 /* Save ievent for future reference */
2263 u32 events = gfar_read(&priv->regs->ievent);
2265 /* Clear IEVENT */
2266 gfar_write(&priv->regs->ievent, events & IEVENT_ERR_MASK);
2268 /* Magic Packet is not an error. */
2269 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2270 (events & IEVENT_MAG))
2271 events &= ~IEVENT_MAG;
2273 /* Hmm... */
2274 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2275 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2276 dev->name, events, gfar_read(&priv->regs->imask));
2278 /* Update the error counters */
2279 if (events & IEVENT_TXE) {
2280 dev->stats.tx_errors++;
2282 if (events & IEVENT_LC)
2283 dev->stats.tx_window_errors++;
2284 if (events & IEVENT_CRL)
2285 dev->stats.tx_aborted_errors++;
2286 if (events & IEVENT_XFUN) {
2287 if (netif_msg_tx_err(priv))
2288 printk(KERN_DEBUG "%s: TX FIFO underrun, "
2289 "packet dropped.\n", dev->name);
2290 dev->stats.tx_dropped++;
2291 priv->extra_stats.tx_underrun++;
2293 /* Reactivate the Tx Queues */
2294 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
2296 if (netif_msg_tx_err(priv))
2297 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
2299 if (events & IEVENT_BSY) {
2300 dev->stats.rx_errors++;
2301 priv->extra_stats.rx_bsy++;
2303 gfar_receive(irq, dev_id);
2305 if (netif_msg_rx_err(priv))
2306 printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
2307 dev->name, gfar_read(&priv->regs->rstat));
2309 if (events & IEVENT_BABR) {
2310 dev->stats.rx_errors++;
2311 priv->extra_stats.rx_babr++;
2313 if (netif_msg_rx_err(priv))
2314 printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
2316 if (events & IEVENT_EBERR) {
2317 priv->extra_stats.eberr++;
2318 if (netif_msg_rx_err(priv))
2319 printk(KERN_DEBUG "%s: bus error\n", dev->name);
2321 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
2322 printk(KERN_DEBUG "%s: control frame\n", dev->name);
2324 if (events & IEVENT_BABT) {
2325 priv->extra_stats.tx_babt++;
2326 if (netif_msg_tx_err(priv))
2327 printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
2329 return IRQ_HANDLED;
2332 /* work with hotplug and coldplug */
2333 MODULE_ALIAS("platform:fsl-gianfar");
2335 static struct of_device_id gfar_match[] =
2338 .type = "network",
2339 .compatible = "gianfar",
2344 /* Structure for a device driver */
2345 static struct of_platform_driver gfar_driver = {
2346 .name = "fsl-gianfar",
2347 .match_table = gfar_match,
2349 .probe = gfar_probe,
2350 .remove = gfar_remove,
2351 .suspend = gfar_suspend,
2352 .resume = gfar_resume,
2355 static int __init gfar_init(void)
2357 return of_register_platform_driver(&gfar_driver);
2360 static void __exit gfar_exit(void)
2362 of_unregister_platform_driver(&gfar_driver);
2365 module_init(gfar_init);
2366 module_exit(gfar_exit);