2 * Functions related to setting various queue properties from drivers
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/jiffies.h>
15 unsigned long blk_max_low_pfn
;
16 EXPORT_SYMBOL(blk_max_low_pfn
);
18 unsigned long blk_max_pfn
;
21 * blk_queue_prep_rq - set a prepare_request function for queue
23 * @pfn: prepare_request function
25 * It's possible for a queue to register a prepare_request callback which
26 * is invoked before the request is handed to the request_fn. The goal of
27 * the function is to prepare a request for I/O, it can be used to build a
28 * cdb from the request data for instance.
31 void blk_queue_prep_rq(struct request_queue
*q
, prep_rq_fn
*pfn
)
35 EXPORT_SYMBOL(blk_queue_prep_rq
);
38 * blk_queue_merge_bvec - set a merge_bvec function for queue
40 * @mbfn: merge_bvec_fn
42 * Usually queues have static limitations on the max sectors or segments that
43 * we can put in a request. Stacking drivers may have some settings that
44 * are dynamic, and thus we have to query the queue whether it is ok to
45 * add a new bio_vec to a bio at a given offset or not. If the block device
46 * has such limitations, it needs to register a merge_bvec_fn to control
47 * the size of bio's sent to it. Note that a block device *must* allow a
48 * single page to be added to an empty bio. The block device driver may want
49 * to use the bio_split() function to deal with these bio's. By default
50 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
53 void blk_queue_merge_bvec(struct request_queue
*q
, merge_bvec_fn
*mbfn
)
55 q
->merge_bvec_fn
= mbfn
;
57 EXPORT_SYMBOL(blk_queue_merge_bvec
);
59 void blk_queue_softirq_done(struct request_queue
*q
, softirq_done_fn
*fn
)
61 q
->softirq_done_fn
= fn
;
63 EXPORT_SYMBOL(blk_queue_softirq_done
);
65 void blk_queue_rq_timeout(struct request_queue
*q
, unsigned int timeout
)
67 q
->rq_timeout
= timeout
;
69 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout
);
71 void blk_queue_rq_timed_out(struct request_queue
*q
, rq_timed_out_fn
*fn
)
73 q
->rq_timed_out_fn
= fn
;
75 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out
);
77 void blk_queue_lld_busy(struct request_queue
*q
, lld_busy_fn
*fn
)
81 EXPORT_SYMBOL_GPL(blk_queue_lld_busy
);
84 * blk_set_default_limits - reset limits to default values
85 * @lim: the queue_limits structure to reset
88 * Returns a queue_limit struct to its default state. Can be used by
89 * stacking drivers like DM that stage table swaps and reuse an
90 * existing device queue.
92 void blk_set_default_limits(struct queue_limits
*lim
)
94 lim
->max_phys_segments
= MAX_PHYS_SEGMENTS
;
95 lim
->max_hw_segments
= MAX_HW_SEGMENTS
;
96 lim
->seg_boundary_mask
= BLK_SEG_BOUNDARY_MASK
;
97 lim
->max_segment_size
= MAX_SEGMENT_SIZE
;
98 lim
->max_sectors
= BLK_DEF_MAX_SECTORS
;
99 lim
->max_hw_sectors
= INT_MAX
;
100 lim
->max_discard_sectors
= 0;
101 lim
->discard_granularity
= 0;
102 lim
->discard_alignment
= 0;
103 lim
->discard_misaligned
= 0;
104 lim
->discard_zeroes_data
= -1;
105 lim
->logical_block_size
= lim
->physical_block_size
= lim
->io_min
= 512;
106 lim
->bounce_pfn
= (unsigned long)(BLK_BOUNCE_ANY
>> PAGE_SHIFT
);
107 lim
->alignment_offset
= 0;
112 EXPORT_SYMBOL(blk_set_default_limits
);
115 * blk_queue_make_request - define an alternate make_request function for a device
116 * @q: the request queue for the device to be affected
117 * @mfn: the alternate make_request function
120 * The normal way for &struct bios to be passed to a device
121 * driver is for them to be collected into requests on a request
122 * queue, and then to allow the device driver to select requests
123 * off that queue when it is ready. This works well for many block
124 * devices. However some block devices (typically virtual devices
125 * such as md or lvm) do not benefit from the processing on the
126 * request queue, and are served best by having the requests passed
127 * directly to them. This can be achieved by providing a function
128 * to blk_queue_make_request().
131 * The driver that does this *must* be able to deal appropriately
132 * with buffers in "highmemory". This can be accomplished by either calling
133 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
134 * blk_queue_bounce() to create a buffer in normal memory.
136 void blk_queue_make_request(struct request_queue
*q
, make_request_fn
*mfn
)
141 q
->nr_requests
= BLKDEV_MAX_RQ
;
143 q
->make_request_fn
= mfn
;
144 blk_queue_dma_alignment(q
, 511);
145 blk_queue_congestion_threshold(q
);
146 q
->nr_batching
= BLK_BATCH_REQ
;
148 q
->unplug_thresh
= 4; /* hmm */
149 q
->unplug_delay
= msecs_to_jiffies(3); /* 3 milliseconds */
150 if (q
->unplug_delay
== 0)
153 q
->unplug_timer
.function
= blk_unplug_timeout
;
154 q
->unplug_timer
.data
= (unsigned long)q
;
156 blk_set_default_limits(&q
->limits
);
157 blk_queue_max_sectors(q
, SAFE_MAX_SECTORS
);
160 * If the caller didn't supply a lock, fall back to our embedded
164 q
->queue_lock
= &q
->__queue_lock
;
167 * by default assume old behaviour and bounce for any highmem page
169 blk_queue_bounce_limit(q
, BLK_BOUNCE_HIGH
);
171 EXPORT_SYMBOL(blk_queue_make_request
);
174 * blk_queue_bounce_limit - set bounce buffer limit for queue
175 * @q: the request queue for the device
176 * @dma_mask: the maximum address the device can handle
179 * Different hardware can have different requirements as to what pages
180 * it can do I/O directly to. A low level driver can call
181 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
182 * buffers for doing I/O to pages residing above @dma_mask.
184 void blk_queue_bounce_limit(struct request_queue
*q
, u64 dma_mask
)
186 unsigned long b_pfn
= dma_mask
>> PAGE_SHIFT
;
189 q
->bounce_gfp
= GFP_NOIO
;
190 #if BITS_PER_LONG == 64
192 * Assume anything <= 4GB can be handled by IOMMU. Actually
193 * some IOMMUs can handle everything, but I don't know of a
194 * way to test this here.
196 if (b_pfn
< (min_t(u64
, 0xffffffffUL
, BLK_BOUNCE_HIGH
) >> PAGE_SHIFT
))
198 q
->limits
.bounce_pfn
= max_low_pfn
;
200 if (b_pfn
< blk_max_low_pfn
)
202 q
->limits
.bounce_pfn
= b_pfn
;
205 init_emergency_isa_pool();
206 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
207 q
->limits
.bounce_pfn
= b_pfn
;
210 EXPORT_SYMBOL(blk_queue_bounce_limit
);
213 * blk_queue_max_sectors - set max sectors for a request for this queue
214 * @q: the request queue for the device
215 * @max_sectors: max sectors in the usual 512b unit
218 * Enables a low level driver to set an upper limit on the size of
221 void blk_queue_max_sectors(struct request_queue
*q
, unsigned int max_sectors
)
223 if ((max_sectors
<< 9) < PAGE_CACHE_SIZE
) {
224 max_sectors
= 1 << (PAGE_CACHE_SHIFT
- 9);
225 printk(KERN_INFO
"%s: set to minimum %d\n",
226 __func__
, max_sectors
);
229 if (BLK_DEF_MAX_SECTORS
> max_sectors
)
230 q
->limits
.max_hw_sectors
= q
->limits
.max_sectors
= max_sectors
;
232 q
->limits
.max_sectors
= BLK_DEF_MAX_SECTORS
;
233 q
->limits
.max_hw_sectors
= max_sectors
;
236 EXPORT_SYMBOL(blk_queue_max_sectors
);
238 void blk_queue_max_hw_sectors(struct request_queue
*q
, unsigned int max_sectors
)
240 if (BLK_DEF_MAX_SECTORS
> max_sectors
)
241 q
->limits
.max_hw_sectors
= BLK_DEF_MAX_SECTORS
;
243 q
->limits
.max_hw_sectors
= max_sectors
;
245 EXPORT_SYMBOL(blk_queue_max_hw_sectors
);
248 * blk_queue_max_discard_sectors - set max sectors for a single discard
249 * @q: the request queue for the device
250 * @max_discard_sectors: maximum number of sectors to discard
252 void blk_queue_max_discard_sectors(struct request_queue
*q
,
253 unsigned int max_discard_sectors
)
255 q
->limits
.max_discard_sectors
= max_discard_sectors
;
257 EXPORT_SYMBOL(blk_queue_max_discard_sectors
);
260 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
261 * @q: the request queue for the device
262 * @max_segments: max number of segments
265 * Enables a low level driver to set an upper limit on the number of
266 * physical data segments in a request. This would be the largest sized
267 * scatter list the driver could handle.
269 void blk_queue_max_phys_segments(struct request_queue
*q
,
270 unsigned short max_segments
)
274 printk(KERN_INFO
"%s: set to minimum %d\n",
275 __func__
, max_segments
);
278 q
->limits
.max_phys_segments
= max_segments
;
280 EXPORT_SYMBOL(blk_queue_max_phys_segments
);
283 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
284 * @q: the request queue for the device
285 * @max_segments: max number of segments
288 * Enables a low level driver to set an upper limit on the number of
289 * hw data segments in a request. This would be the largest number of
290 * address/length pairs the host adapter can actually give at once
293 void blk_queue_max_hw_segments(struct request_queue
*q
,
294 unsigned short max_segments
)
298 printk(KERN_INFO
"%s: set to minimum %d\n",
299 __func__
, max_segments
);
302 q
->limits
.max_hw_segments
= max_segments
;
304 EXPORT_SYMBOL(blk_queue_max_hw_segments
);
307 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
308 * @q: the request queue for the device
309 * @max_size: max size of segment in bytes
312 * Enables a low level driver to set an upper limit on the size of a
315 void blk_queue_max_segment_size(struct request_queue
*q
, unsigned int max_size
)
317 if (max_size
< PAGE_CACHE_SIZE
) {
318 max_size
= PAGE_CACHE_SIZE
;
319 printk(KERN_INFO
"%s: set to minimum %d\n",
323 q
->limits
.max_segment_size
= max_size
;
325 EXPORT_SYMBOL(blk_queue_max_segment_size
);
328 * blk_queue_logical_block_size - set logical block size for the queue
329 * @q: the request queue for the device
330 * @size: the logical block size, in bytes
333 * This should be set to the lowest possible block size that the
334 * storage device can address. The default of 512 covers most
337 void blk_queue_logical_block_size(struct request_queue
*q
, unsigned short size
)
339 q
->limits
.logical_block_size
= size
;
341 if (q
->limits
.physical_block_size
< size
)
342 q
->limits
.physical_block_size
= size
;
344 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
345 q
->limits
.io_min
= q
->limits
.physical_block_size
;
347 EXPORT_SYMBOL(blk_queue_logical_block_size
);
350 * blk_queue_physical_block_size - set physical block size for the queue
351 * @q: the request queue for the device
352 * @size: the physical block size, in bytes
355 * This should be set to the lowest possible sector size that the
356 * hardware can operate on without reverting to read-modify-write
359 void blk_queue_physical_block_size(struct request_queue
*q
, unsigned short size
)
361 q
->limits
.physical_block_size
= size
;
363 if (q
->limits
.physical_block_size
< q
->limits
.logical_block_size
)
364 q
->limits
.physical_block_size
= q
->limits
.logical_block_size
;
366 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
367 q
->limits
.io_min
= q
->limits
.physical_block_size
;
369 EXPORT_SYMBOL(blk_queue_physical_block_size
);
372 * blk_queue_alignment_offset - set physical block alignment offset
373 * @q: the request queue for the device
374 * @offset: alignment offset in bytes
377 * Some devices are naturally misaligned to compensate for things like
378 * the legacy DOS partition table 63-sector offset. Low-level drivers
379 * should call this function for devices whose first sector is not
382 void blk_queue_alignment_offset(struct request_queue
*q
, unsigned int offset
)
384 q
->limits
.alignment_offset
=
385 offset
& (q
->limits
.physical_block_size
- 1);
386 q
->limits
.misaligned
= 0;
388 EXPORT_SYMBOL(blk_queue_alignment_offset
);
391 * blk_limits_io_min - set minimum request size for a device
392 * @limits: the queue limits
393 * @min: smallest I/O size in bytes
396 * Some devices have an internal block size bigger than the reported
397 * hardware sector size. This function can be used to signal the
398 * smallest I/O the device can perform without incurring a performance
401 void blk_limits_io_min(struct queue_limits
*limits
, unsigned int min
)
403 limits
->io_min
= min
;
405 if (limits
->io_min
< limits
->logical_block_size
)
406 limits
->io_min
= limits
->logical_block_size
;
408 if (limits
->io_min
< limits
->physical_block_size
)
409 limits
->io_min
= limits
->physical_block_size
;
411 EXPORT_SYMBOL(blk_limits_io_min
);
414 * blk_queue_io_min - set minimum request size for the queue
415 * @q: the request queue for the device
416 * @min: smallest I/O size in bytes
419 * Storage devices may report a granularity or preferred minimum I/O
420 * size which is the smallest request the device can perform without
421 * incurring a performance penalty. For disk drives this is often the
422 * physical block size. For RAID arrays it is often the stripe chunk
423 * size. A properly aligned multiple of minimum_io_size is the
424 * preferred request size for workloads where a high number of I/O
425 * operations is desired.
427 void blk_queue_io_min(struct request_queue
*q
, unsigned int min
)
429 blk_limits_io_min(&q
->limits
, min
);
431 EXPORT_SYMBOL(blk_queue_io_min
);
434 * blk_limits_io_opt - set optimal request size for a device
435 * @limits: the queue limits
436 * @opt: smallest I/O size in bytes
439 * Storage devices may report an optimal I/O size, which is the
440 * device's preferred unit for sustained I/O. This is rarely reported
441 * for disk drives. For RAID arrays it is usually the stripe width or
442 * the internal track size. A properly aligned multiple of
443 * optimal_io_size is the preferred request size for workloads where
444 * sustained throughput is desired.
446 void blk_limits_io_opt(struct queue_limits
*limits
, unsigned int opt
)
448 limits
->io_opt
= opt
;
450 EXPORT_SYMBOL(blk_limits_io_opt
);
453 * blk_queue_io_opt - set optimal request size for the queue
454 * @q: the request queue for the device
455 * @opt: optimal request size in bytes
458 * Storage devices may report an optimal I/O size, which is the
459 * device's preferred unit for sustained I/O. This is rarely reported
460 * for disk drives. For RAID arrays it is usually the stripe width or
461 * the internal track size. A properly aligned multiple of
462 * optimal_io_size is the preferred request size for workloads where
463 * sustained throughput is desired.
465 void blk_queue_io_opt(struct request_queue
*q
, unsigned int opt
)
467 blk_limits_io_opt(&q
->limits
, opt
);
469 EXPORT_SYMBOL(blk_queue_io_opt
);
472 * Returns the minimum that is _not_ zero, unless both are zero.
474 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
477 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
478 * @t: the stacking driver (top)
479 * @b: the underlying device (bottom)
481 void blk_queue_stack_limits(struct request_queue
*t
, struct request_queue
*b
)
483 blk_stack_limits(&t
->limits
, &b
->limits
, 0);
487 else if (!test_bit(QUEUE_FLAG_CLUSTER
, &b
->queue_flags
)) {
489 spin_lock_irqsave(t
->queue_lock
, flags
);
490 queue_flag_clear(QUEUE_FLAG_CLUSTER
, t
);
491 spin_unlock_irqrestore(t
->queue_lock
, flags
);
494 EXPORT_SYMBOL(blk_queue_stack_limits
);
496 static unsigned int lcm(unsigned int a
, unsigned int b
)
499 return (a
* b
) / gcd(a
, b
);
507 * blk_stack_limits - adjust queue_limits for stacked devices
508 * @t: the stacking driver limits (top device)
509 * @b: the underlying queue limits (bottom, component device)
510 * @offset: offset to beginning of data within component device
513 * This function is used by stacking drivers like MD and DM to ensure
514 * that all component devices have compatible block sizes and
515 * alignments. The stacking driver must provide a queue_limits
516 * struct (top) and then iteratively call the stacking function for
517 * all component (bottom) devices. The stacking function will
518 * attempt to combine the values and ensure proper alignment.
520 * Returns 0 if the top and bottom queue_limits are compatible. The
521 * top device's block sizes and alignment offsets may be adjusted to
522 * ensure alignment with the bottom device. If no compatible sizes
523 * and alignments exist, -1 is returned and the resulting top
524 * queue_limits will have the misaligned flag set to indicate that
525 * the alignment_offset is undefined.
527 int blk_stack_limits(struct queue_limits
*t
, struct queue_limits
*b
,
531 unsigned int top
, bottom
, ret
= 0;
533 t
->max_sectors
= min_not_zero(t
->max_sectors
, b
->max_sectors
);
534 t
->max_hw_sectors
= min_not_zero(t
->max_hw_sectors
, b
->max_hw_sectors
);
535 t
->bounce_pfn
= min_not_zero(t
->bounce_pfn
, b
->bounce_pfn
);
537 t
->seg_boundary_mask
= min_not_zero(t
->seg_boundary_mask
,
538 b
->seg_boundary_mask
);
540 t
->max_phys_segments
= min_not_zero(t
->max_phys_segments
,
541 b
->max_phys_segments
);
543 t
->max_hw_segments
= min_not_zero(t
->max_hw_segments
,
546 t
->max_segment_size
= min_not_zero(t
->max_segment_size
,
547 b
->max_segment_size
);
549 t
->misaligned
|= b
->misaligned
;
551 alignment
= queue_limit_alignment_offset(b
, offset
);
553 /* Bottom device has different alignment. Check that it is
554 * compatible with the current top alignment.
556 if (t
->alignment_offset
!= alignment
) {
558 top
= max(t
->physical_block_size
, t
->io_min
)
559 + t
->alignment_offset
;
560 bottom
= max(b
->physical_block_size
, b
->io_min
) + alignment
;
562 /* Verify that top and bottom intervals line up */
563 if (max(top
, bottom
) & (min(top
, bottom
) - 1)) {
569 t
->logical_block_size
= max(t
->logical_block_size
,
570 b
->logical_block_size
);
572 t
->physical_block_size
= max(t
->physical_block_size
,
573 b
->physical_block_size
);
575 t
->io_min
= max(t
->io_min
, b
->io_min
);
576 t
->io_opt
= lcm(t
->io_opt
, b
->io_opt
);
578 t
->no_cluster
|= b
->no_cluster
;
579 t
->discard_zeroes_data
&= b
->discard_zeroes_data
;
581 /* Physical block size a multiple of the logical block size? */
582 if (t
->physical_block_size
& (t
->logical_block_size
- 1)) {
583 t
->physical_block_size
= t
->logical_block_size
;
588 /* Minimum I/O a multiple of the physical block size? */
589 if (t
->io_min
& (t
->physical_block_size
- 1)) {
590 t
->io_min
= t
->physical_block_size
;
595 /* Optimal I/O a multiple of the physical block size? */
596 if (t
->io_opt
& (t
->physical_block_size
- 1)) {
602 /* Find lowest common alignment_offset */
603 t
->alignment_offset
= lcm(t
->alignment_offset
, alignment
)
604 & (max(t
->physical_block_size
, t
->io_min
) - 1);
606 /* Verify that new alignment_offset is on a logical block boundary */
607 if (t
->alignment_offset
& (t
->logical_block_size
- 1)) {
612 /* Discard alignment and granularity */
613 if (b
->discard_granularity
) {
614 unsigned int granularity
= b
->discard_granularity
;
615 offset
&= granularity
- 1;
617 alignment
= (granularity
+ b
->discard_alignment
- offset
)
620 if (t
->discard_granularity
!= 0 &&
621 t
->discard_alignment
!= alignment
) {
622 top
= t
->discard_granularity
+ t
->discard_alignment
;
623 bottom
= b
->discard_granularity
+ alignment
;
625 /* Verify that top and bottom intervals line up */
626 if (max(top
, bottom
) & (min(top
, bottom
) - 1))
627 t
->discard_misaligned
= 1;
630 t
->max_discard_sectors
= min_not_zero(t
->max_discard_sectors
,
631 b
->max_discard_sectors
);
632 t
->discard_granularity
= max(t
->discard_granularity
,
633 b
->discard_granularity
);
634 t
->discard_alignment
= lcm(t
->discard_alignment
, alignment
) &
635 (t
->discard_granularity
- 1);
640 EXPORT_SYMBOL(blk_stack_limits
);
643 * bdev_stack_limits - adjust queue limits for stacked drivers
644 * @t: the stacking driver limits (top device)
645 * @bdev: the component block_device (bottom)
646 * @start: first data sector within component device
649 * Merges queue limits for a top device and a block_device. Returns
650 * 0 if alignment didn't change. Returns -1 if adding the bottom
651 * device caused misalignment.
653 int bdev_stack_limits(struct queue_limits
*t
, struct block_device
*bdev
,
656 struct request_queue
*bq
= bdev_get_queue(bdev
);
658 start
+= get_start_sect(bdev
);
660 return blk_stack_limits(t
, &bq
->limits
, start
<< 9);
662 EXPORT_SYMBOL(bdev_stack_limits
);
665 * disk_stack_limits - adjust queue limits for stacked drivers
666 * @disk: MD/DM gendisk (top)
667 * @bdev: the underlying block device (bottom)
668 * @offset: offset to beginning of data within component device
671 * Merges the limits for two queues. Returns 0 if alignment
672 * didn't change. Returns -1 if adding the bottom device caused
675 void disk_stack_limits(struct gendisk
*disk
, struct block_device
*bdev
,
678 struct request_queue
*t
= disk
->queue
;
679 struct request_queue
*b
= bdev_get_queue(bdev
);
681 offset
+= get_start_sect(bdev
) << 9;
683 if (blk_stack_limits(&t
->limits
, &b
->limits
, offset
) < 0) {
684 char top
[BDEVNAME_SIZE
], bottom
[BDEVNAME_SIZE
];
686 disk_name(disk
, 0, top
);
687 bdevname(bdev
, bottom
);
689 printk(KERN_NOTICE
"%s: Warning: Device %s is misaligned\n",
695 else if (!test_bit(QUEUE_FLAG_CLUSTER
, &b
->queue_flags
)) {
698 spin_lock_irqsave(t
->queue_lock
, flags
);
699 if (!test_bit(QUEUE_FLAG_CLUSTER
, &b
->queue_flags
))
700 queue_flag_clear(QUEUE_FLAG_CLUSTER
, t
);
701 spin_unlock_irqrestore(t
->queue_lock
, flags
);
704 EXPORT_SYMBOL(disk_stack_limits
);
707 * blk_queue_dma_pad - set pad mask
708 * @q: the request queue for the device
713 * Appending pad buffer to a request modifies the last entry of a
714 * scatter list such that it includes the pad buffer.
716 void blk_queue_dma_pad(struct request_queue
*q
, unsigned int mask
)
718 q
->dma_pad_mask
= mask
;
720 EXPORT_SYMBOL(blk_queue_dma_pad
);
723 * blk_queue_update_dma_pad - update pad mask
724 * @q: the request queue for the device
727 * Update dma pad mask.
729 * Appending pad buffer to a request modifies the last entry of a
730 * scatter list such that it includes the pad buffer.
732 void blk_queue_update_dma_pad(struct request_queue
*q
, unsigned int mask
)
734 if (mask
> q
->dma_pad_mask
)
735 q
->dma_pad_mask
= mask
;
737 EXPORT_SYMBOL(blk_queue_update_dma_pad
);
740 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
741 * @q: the request queue for the device
742 * @dma_drain_needed: fn which returns non-zero if drain is necessary
743 * @buf: physically contiguous buffer
744 * @size: size of the buffer in bytes
746 * Some devices have excess DMA problems and can't simply discard (or
747 * zero fill) the unwanted piece of the transfer. They have to have a
748 * real area of memory to transfer it into. The use case for this is
749 * ATAPI devices in DMA mode. If the packet command causes a transfer
750 * bigger than the transfer size some HBAs will lock up if there
751 * aren't DMA elements to contain the excess transfer. What this API
752 * does is adjust the queue so that the buf is always appended
753 * silently to the scatterlist.
755 * Note: This routine adjusts max_hw_segments to make room for
756 * appending the drain buffer. If you call
757 * blk_queue_max_hw_segments() or blk_queue_max_phys_segments() after
758 * calling this routine, you must set the limit to one fewer than your
759 * device can support otherwise there won't be room for the drain
762 int blk_queue_dma_drain(struct request_queue
*q
,
763 dma_drain_needed_fn
*dma_drain_needed
,
764 void *buf
, unsigned int size
)
766 if (queue_max_hw_segments(q
) < 2 || queue_max_phys_segments(q
) < 2)
768 /* make room for appending the drain */
769 blk_queue_max_hw_segments(q
, queue_max_hw_segments(q
) - 1);
770 blk_queue_max_phys_segments(q
, queue_max_phys_segments(q
) - 1);
771 q
->dma_drain_needed
= dma_drain_needed
;
772 q
->dma_drain_buffer
= buf
;
773 q
->dma_drain_size
= size
;
777 EXPORT_SYMBOL_GPL(blk_queue_dma_drain
);
780 * blk_queue_segment_boundary - set boundary rules for segment merging
781 * @q: the request queue for the device
782 * @mask: the memory boundary mask
784 void blk_queue_segment_boundary(struct request_queue
*q
, unsigned long mask
)
786 if (mask
< PAGE_CACHE_SIZE
- 1) {
787 mask
= PAGE_CACHE_SIZE
- 1;
788 printk(KERN_INFO
"%s: set to minimum %lx\n",
792 q
->limits
.seg_boundary_mask
= mask
;
794 EXPORT_SYMBOL(blk_queue_segment_boundary
);
797 * blk_queue_dma_alignment - set dma length and memory alignment
798 * @q: the request queue for the device
799 * @mask: alignment mask
802 * set required memory and length alignment for direct dma transactions.
803 * this is used when building direct io requests for the queue.
806 void blk_queue_dma_alignment(struct request_queue
*q
, int mask
)
808 q
->dma_alignment
= mask
;
810 EXPORT_SYMBOL(blk_queue_dma_alignment
);
813 * blk_queue_update_dma_alignment - update dma length and memory alignment
814 * @q: the request queue for the device
815 * @mask: alignment mask
818 * update required memory and length alignment for direct dma transactions.
819 * If the requested alignment is larger than the current alignment, then
820 * the current queue alignment is updated to the new value, otherwise it
821 * is left alone. The design of this is to allow multiple objects
822 * (driver, device, transport etc) to set their respective
823 * alignments without having them interfere.
826 void blk_queue_update_dma_alignment(struct request_queue
*q
, int mask
)
828 BUG_ON(mask
> PAGE_SIZE
);
830 if (mask
> q
->dma_alignment
)
831 q
->dma_alignment
= mask
;
833 EXPORT_SYMBOL(blk_queue_update_dma_alignment
);
835 static int __init
blk_settings_init(void)
837 blk_max_low_pfn
= max_low_pfn
- 1;
838 blk_max_pfn
= max_pfn
- 1;
841 subsys_initcall(blk_settings_init
);