2 * Implement CPU time clocks for the POSIX clock interface.
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
14 * Called after updating RLIMIT_CPU to run cpu timer and update
15 * tsk->signal->cputime_expires expiration cache if necessary. Needs
16 * siglock protection since other code may update expiration cache as
19 void update_rlimit_cpu(unsigned long rlim_new
)
21 cputime_t cputime
= secs_to_cputime(rlim_new
);
23 spin_lock_irq(¤t
->sighand
->siglock
);
24 set_process_cpu_timer(current
, CPUCLOCK_PROF
, &cputime
, NULL
);
25 spin_unlock_irq(¤t
->sighand
->siglock
);
28 static int check_clock(const clockid_t which_clock
)
31 struct task_struct
*p
;
32 const pid_t pid
= CPUCLOCK_PID(which_clock
);
34 if (CPUCLOCK_WHICH(which_clock
) >= CPUCLOCK_MAX
)
40 read_lock(&tasklist_lock
);
41 p
= find_task_by_vpid(pid
);
42 if (!p
|| !(CPUCLOCK_PERTHREAD(which_clock
) ?
43 same_thread_group(p
, current
) : thread_group_leader(p
))) {
46 read_unlock(&tasklist_lock
);
51 static inline union cpu_time_count
52 timespec_to_sample(const clockid_t which_clock
, const struct timespec
*tp
)
54 union cpu_time_count ret
;
55 ret
.sched
= 0; /* high half always zero when .cpu used */
56 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
57 ret
.sched
= (unsigned long long)tp
->tv_sec
* NSEC_PER_SEC
+ tp
->tv_nsec
;
59 ret
.cpu
= timespec_to_cputime(tp
);
64 static void sample_to_timespec(const clockid_t which_clock
,
65 union cpu_time_count cpu
,
68 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
)
69 *tp
= ns_to_timespec(cpu
.sched
);
71 cputime_to_timespec(cpu
.cpu
, tp
);
74 static inline int cpu_time_before(const clockid_t which_clock
,
75 union cpu_time_count now
,
76 union cpu_time_count then
)
78 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
79 return now
.sched
< then
.sched
;
81 return cputime_lt(now
.cpu
, then
.cpu
);
84 static inline void cpu_time_add(const clockid_t which_clock
,
85 union cpu_time_count
*acc
,
86 union cpu_time_count val
)
88 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
89 acc
->sched
+= val
.sched
;
91 acc
->cpu
= cputime_add(acc
->cpu
, val
.cpu
);
94 static inline union cpu_time_count
cpu_time_sub(const clockid_t which_clock
,
95 union cpu_time_count a
,
96 union cpu_time_count b
)
98 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
101 a
.cpu
= cputime_sub(a
.cpu
, b
.cpu
);
107 * Divide and limit the result to res >= 1
109 * This is necessary to prevent signal delivery starvation, when the result of
110 * the division would be rounded down to 0.
112 static inline cputime_t
cputime_div_non_zero(cputime_t time
, unsigned long div
)
114 cputime_t res
= cputime_div(time
, div
);
116 return max_t(cputime_t
, res
, 1);
120 * Update expiry time from increment, and increase overrun count,
121 * given the current clock sample.
123 static void bump_cpu_timer(struct k_itimer
*timer
,
124 union cpu_time_count now
)
128 if (timer
->it
.cpu
.incr
.sched
== 0)
131 if (CPUCLOCK_WHICH(timer
->it_clock
) == CPUCLOCK_SCHED
) {
132 unsigned long long delta
, incr
;
134 if (now
.sched
< timer
->it
.cpu
.expires
.sched
)
136 incr
= timer
->it
.cpu
.incr
.sched
;
137 delta
= now
.sched
+ incr
- timer
->it
.cpu
.expires
.sched
;
138 /* Don't use (incr*2 < delta), incr*2 might overflow. */
139 for (i
= 0; incr
< delta
- incr
; i
++)
141 for (; i
>= 0; incr
>>= 1, i
--) {
144 timer
->it
.cpu
.expires
.sched
+= incr
;
145 timer
->it_overrun
+= 1 << i
;
149 cputime_t delta
, incr
;
151 if (cputime_lt(now
.cpu
, timer
->it
.cpu
.expires
.cpu
))
153 incr
= timer
->it
.cpu
.incr
.cpu
;
154 delta
= cputime_sub(cputime_add(now
.cpu
, incr
),
155 timer
->it
.cpu
.expires
.cpu
);
156 /* Don't use (incr*2 < delta), incr*2 might overflow. */
157 for (i
= 0; cputime_lt(incr
, cputime_sub(delta
, incr
)); i
++)
158 incr
= cputime_add(incr
, incr
);
159 for (; i
>= 0; incr
= cputime_halve(incr
), i
--) {
160 if (cputime_lt(delta
, incr
))
162 timer
->it
.cpu
.expires
.cpu
=
163 cputime_add(timer
->it
.cpu
.expires
.cpu
, incr
);
164 timer
->it_overrun
+= 1 << i
;
165 delta
= cputime_sub(delta
, incr
);
170 static inline cputime_t
prof_ticks(struct task_struct
*p
)
172 return cputime_add(p
->utime
, p
->stime
);
174 static inline cputime_t
virt_ticks(struct task_struct
*p
)
179 int posix_cpu_clock_getres(const clockid_t which_clock
, struct timespec
*tp
)
181 int error
= check_clock(which_clock
);
184 tp
->tv_nsec
= ((NSEC_PER_SEC
+ HZ
- 1) / HZ
);
185 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
187 * If sched_clock is using a cycle counter, we
188 * don't have any idea of its true resolution
189 * exported, but it is much more than 1s/HZ.
197 int posix_cpu_clock_set(const clockid_t which_clock
, const struct timespec
*tp
)
200 * You can never reset a CPU clock, but we check for other errors
201 * in the call before failing with EPERM.
203 int error
= check_clock(which_clock
);
212 * Sample a per-thread clock for the given task.
214 static int cpu_clock_sample(const clockid_t which_clock
, struct task_struct
*p
,
215 union cpu_time_count
*cpu
)
217 switch (CPUCLOCK_WHICH(which_clock
)) {
221 cpu
->cpu
= prof_ticks(p
);
224 cpu
->cpu
= virt_ticks(p
);
227 cpu
->sched
= task_sched_runtime(p
);
233 void thread_group_cputime(struct task_struct
*tsk
, struct task_cputime
*times
)
235 struct sighand_struct
*sighand
;
236 struct signal_struct
*sig
;
237 struct task_struct
*t
;
239 *times
= INIT_CPUTIME
;
242 sighand
= rcu_dereference(tsk
->sighand
);
250 times
->utime
= cputime_add(times
->utime
, t
->utime
);
251 times
->stime
= cputime_add(times
->stime
, t
->stime
);
252 times
->sum_exec_runtime
+= t
->se
.sum_exec_runtime
;
257 times
->utime
= cputime_add(times
->utime
, sig
->utime
);
258 times
->stime
= cputime_add(times
->stime
, sig
->stime
);
259 times
->sum_exec_runtime
+= sig
->sum_sched_runtime
;
264 static void update_gt_cputime(struct task_cputime
*a
, struct task_cputime
*b
)
266 if (cputime_gt(b
->utime
, a
->utime
))
269 if (cputime_gt(b
->stime
, a
->stime
))
272 if (b
->sum_exec_runtime
> a
->sum_exec_runtime
)
273 a
->sum_exec_runtime
= b
->sum_exec_runtime
;
276 void thread_group_cputimer(struct task_struct
*tsk
, struct task_cputime
*times
)
278 struct thread_group_cputimer
*cputimer
= &tsk
->signal
->cputimer
;
279 struct task_cputime sum
;
282 spin_lock_irqsave(&cputimer
->lock
, flags
);
283 if (!cputimer
->running
) {
284 cputimer
->running
= 1;
286 * The POSIX timer interface allows for absolute time expiry
287 * values through the TIMER_ABSTIME flag, therefore we have
288 * to synchronize the timer to the clock every time we start
291 thread_group_cputime(tsk
, &sum
);
292 update_gt_cputime(&cputimer
->cputime
, &sum
);
294 *times
= cputimer
->cputime
;
295 spin_unlock_irqrestore(&cputimer
->lock
, flags
);
299 * Sample a process (thread group) clock for the given group_leader task.
300 * Must be called with tasklist_lock held for reading.
302 static int cpu_clock_sample_group(const clockid_t which_clock
,
303 struct task_struct
*p
,
304 union cpu_time_count
*cpu
)
306 struct task_cputime cputime
;
308 switch (CPUCLOCK_WHICH(which_clock
)) {
312 thread_group_cputime(p
, &cputime
);
313 cpu
->cpu
= cputime_add(cputime
.utime
, cputime
.stime
);
316 thread_group_cputime(p
, &cputime
);
317 cpu
->cpu
= cputime
.utime
;
320 cpu
->sched
= thread_group_sched_runtime(p
);
327 int posix_cpu_clock_get(const clockid_t which_clock
, struct timespec
*tp
)
329 const pid_t pid
= CPUCLOCK_PID(which_clock
);
331 union cpu_time_count rtn
;
335 * Special case constant value for our own clocks.
336 * We don't have to do any lookup to find ourselves.
338 if (CPUCLOCK_PERTHREAD(which_clock
)) {
340 * Sampling just ourselves we can do with no locking.
342 error
= cpu_clock_sample(which_clock
,
345 read_lock(&tasklist_lock
);
346 error
= cpu_clock_sample_group(which_clock
,
348 read_unlock(&tasklist_lock
);
352 * Find the given PID, and validate that the caller
353 * should be able to see it.
355 struct task_struct
*p
;
357 p
= find_task_by_vpid(pid
);
359 if (CPUCLOCK_PERTHREAD(which_clock
)) {
360 if (same_thread_group(p
, current
)) {
361 error
= cpu_clock_sample(which_clock
,
365 read_lock(&tasklist_lock
);
366 if (thread_group_leader(p
) && p
->sighand
) {
368 cpu_clock_sample_group(which_clock
,
371 read_unlock(&tasklist_lock
);
379 sample_to_timespec(which_clock
, rtn
, tp
);
385 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
386 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
387 * new timer already all-zeros initialized.
389 int posix_cpu_timer_create(struct k_itimer
*new_timer
)
392 const pid_t pid
= CPUCLOCK_PID(new_timer
->it_clock
);
393 struct task_struct
*p
;
395 if (CPUCLOCK_WHICH(new_timer
->it_clock
) >= CPUCLOCK_MAX
)
398 INIT_LIST_HEAD(&new_timer
->it
.cpu
.entry
);
400 read_lock(&tasklist_lock
);
401 if (CPUCLOCK_PERTHREAD(new_timer
->it_clock
)) {
405 p
= find_task_by_vpid(pid
);
406 if (p
&& !same_thread_group(p
, current
))
411 p
= current
->group_leader
;
413 p
= find_task_by_vpid(pid
);
414 if (p
&& !thread_group_leader(p
))
418 new_timer
->it
.cpu
.task
= p
;
424 read_unlock(&tasklist_lock
);
430 * Clean up a CPU-clock timer that is about to be destroyed.
431 * This is called from timer deletion with the timer already locked.
432 * If we return TIMER_RETRY, it's necessary to release the timer's lock
433 * and try again. (This happens when the timer is in the middle of firing.)
435 int posix_cpu_timer_del(struct k_itimer
*timer
)
437 struct task_struct
*p
= timer
->it
.cpu
.task
;
440 if (likely(p
!= NULL
)) {
441 read_lock(&tasklist_lock
);
442 if (unlikely(p
->sighand
== NULL
)) {
444 * We raced with the reaping of the task.
445 * The deletion should have cleared us off the list.
447 BUG_ON(!list_empty(&timer
->it
.cpu
.entry
));
449 spin_lock(&p
->sighand
->siglock
);
450 if (timer
->it
.cpu
.firing
)
453 list_del(&timer
->it
.cpu
.entry
);
454 spin_unlock(&p
->sighand
->siglock
);
456 read_unlock(&tasklist_lock
);
466 * Clean out CPU timers still ticking when a thread exited. The task
467 * pointer is cleared, and the expiry time is replaced with the residual
468 * time for later timer_gettime calls to return.
469 * This must be called with the siglock held.
471 static void cleanup_timers(struct list_head
*head
,
472 cputime_t utime
, cputime_t stime
,
473 unsigned long long sum_exec_runtime
)
475 struct cpu_timer_list
*timer
, *next
;
476 cputime_t ptime
= cputime_add(utime
, stime
);
478 list_for_each_entry_safe(timer
, next
, head
, entry
) {
479 list_del_init(&timer
->entry
);
480 if (cputime_lt(timer
->expires
.cpu
, ptime
)) {
481 timer
->expires
.cpu
= cputime_zero
;
483 timer
->expires
.cpu
= cputime_sub(timer
->expires
.cpu
,
489 list_for_each_entry_safe(timer
, next
, head
, entry
) {
490 list_del_init(&timer
->entry
);
491 if (cputime_lt(timer
->expires
.cpu
, utime
)) {
492 timer
->expires
.cpu
= cputime_zero
;
494 timer
->expires
.cpu
= cputime_sub(timer
->expires
.cpu
,
500 list_for_each_entry_safe(timer
, next
, head
, entry
) {
501 list_del_init(&timer
->entry
);
502 if (timer
->expires
.sched
< sum_exec_runtime
) {
503 timer
->expires
.sched
= 0;
505 timer
->expires
.sched
-= sum_exec_runtime
;
511 * These are both called with the siglock held, when the current thread
512 * is being reaped. When the final (leader) thread in the group is reaped,
513 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
515 void posix_cpu_timers_exit(struct task_struct
*tsk
)
517 cleanup_timers(tsk
->cpu_timers
,
518 tsk
->utime
, tsk
->stime
, tsk
->se
.sum_exec_runtime
);
521 void posix_cpu_timers_exit_group(struct task_struct
*tsk
)
523 struct signal_struct
*const sig
= tsk
->signal
;
525 cleanup_timers(tsk
->signal
->cpu_timers
,
526 cputime_add(tsk
->utime
, sig
->utime
),
527 cputime_add(tsk
->stime
, sig
->stime
),
528 tsk
->se
.sum_exec_runtime
+ sig
->sum_sched_runtime
);
531 static void clear_dead_task(struct k_itimer
*timer
, union cpu_time_count now
)
534 * That's all for this thread or process.
535 * We leave our residual in expires to be reported.
537 put_task_struct(timer
->it
.cpu
.task
);
538 timer
->it
.cpu
.task
= NULL
;
539 timer
->it
.cpu
.expires
= cpu_time_sub(timer
->it_clock
,
540 timer
->it
.cpu
.expires
,
544 static inline int expires_gt(cputime_t expires
, cputime_t new_exp
)
546 return cputime_eq(expires
, cputime_zero
) ||
547 cputime_gt(expires
, new_exp
);
551 * Insert the timer on the appropriate list before any timers that
552 * expire later. This must be called with the tasklist_lock held
553 * for reading, interrupts disabled and p->sighand->siglock taken.
555 static void arm_timer(struct k_itimer
*timer
)
557 struct task_struct
*p
= timer
->it
.cpu
.task
;
558 struct list_head
*head
, *listpos
;
559 struct task_cputime
*cputime_expires
;
560 struct cpu_timer_list
*const nt
= &timer
->it
.cpu
;
561 struct cpu_timer_list
*next
;
563 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
564 head
= p
->cpu_timers
;
565 cputime_expires
= &p
->cputime_expires
;
567 head
= p
->signal
->cpu_timers
;
568 cputime_expires
= &p
->signal
->cputime_expires
;
570 head
+= CPUCLOCK_WHICH(timer
->it_clock
);
573 list_for_each_entry(next
, head
, entry
) {
574 if (cpu_time_before(timer
->it_clock
, nt
->expires
, next
->expires
))
576 listpos
= &next
->entry
;
578 list_add(&nt
->entry
, listpos
);
580 if (listpos
== head
) {
581 union cpu_time_count
*exp
= &nt
->expires
;
584 * We are the new earliest-expiring POSIX 1.b timer, hence
585 * need to update expiration cache. Take into account that
586 * for process timers we share expiration cache with itimers
587 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
590 switch (CPUCLOCK_WHICH(timer
->it_clock
)) {
592 if (expires_gt(cputime_expires
->prof_exp
, exp
->cpu
))
593 cputime_expires
->prof_exp
= exp
->cpu
;
596 if (expires_gt(cputime_expires
->virt_exp
, exp
->cpu
))
597 cputime_expires
->virt_exp
= exp
->cpu
;
600 if (cputime_expires
->sched_exp
== 0 ||
601 cputime_expires
->sched_exp
> exp
->sched
)
602 cputime_expires
->sched_exp
= exp
->sched
;
609 * The timer is locked, fire it and arrange for its reload.
611 static void cpu_timer_fire(struct k_itimer
*timer
)
613 if ((timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
) {
615 * User don't want any signal.
617 timer
->it
.cpu
.expires
.sched
= 0;
618 } else if (unlikely(timer
->sigq
== NULL
)) {
620 * This a special case for clock_nanosleep,
621 * not a normal timer from sys_timer_create.
623 wake_up_process(timer
->it_process
);
624 timer
->it
.cpu
.expires
.sched
= 0;
625 } else if (timer
->it
.cpu
.incr
.sched
== 0) {
627 * One-shot timer. Clear it as soon as it's fired.
629 posix_timer_event(timer
, 0);
630 timer
->it
.cpu
.expires
.sched
= 0;
631 } else if (posix_timer_event(timer
, ++timer
->it_requeue_pending
)) {
633 * The signal did not get queued because the signal
634 * was ignored, so we won't get any callback to
635 * reload the timer. But we need to keep it
636 * ticking in case the signal is deliverable next time.
638 posix_cpu_timer_schedule(timer
);
643 * Sample a process (thread group) timer for the given group_leader task.
644 * Must be called with tasklist_lock held for reading.
646 static int cpu_timer_sample_group(const clockid_t which_clock
,
647 struct task_struct
*p
,
648 union cpu_time_count
*cpu
)
650 struct task_cputime cputime
;
652 thread_group_cputimer(p
, &cputime
);
653 switch (CPUCLOCK_WHICH(which_clock
)) {
657 cpu
->cpu
= cputime_add(cputime
.utime
, cputime
.stime
);
660 cpu
->cpu
= cputime
.utime
;
663 cpu
->sched
= cputime
.sum_exec_runtime
+ task_delta_exec(p
);
670 * Guts of sys_timer_settime for CPU timers.
671 * This is called with the timer locked and interrupts disabled.
672 * If we return TIMER_RETRY, it's necessary to release the timer's lock
673 * and try again. (This happens when the timer is in the middle of firing.)
675 int posix_cpu_timer_set(struct k_itimer
*timer
, int flags
,
676 struct itimerspec
*new, struct itimerspec
*old
)
678 struct task_struct
*p
= timer
->it
.cpu
.task
;
679 union cpu_time_count old_expires
, new_expires
, old_incr
, val
;
682 if (unlikely(p
== NULL
)) {
684 * Timer refers to a dead task's clock.
689 new_expires
= timespec_to_sample(timer
->it_clock
, &new->it_value
);
691 read_lock(&tasklist_lock
);
693 * We need the tasklist_lock to protect against reaping that
694 * clears p->sighand. If p has just been reaped, we can no
695 * longer get any information about it at all.
697 if (unlikely(p
->sighand
== NULL
)) {
698 read_unlock(&tasklist_lock
);
700 timer
->it
.cpu
.task
= NULL
;
705 * Disarm any old timer after extracting its expiry time.
707 BUG_ON(!irqs_disabled());
710 old_incr
= timer
->it
.cpu
.incr
;
711 spin_lock(&p
->sighand
->siglock
);
712 old_expires
= timer
->it
.cpu
.expires
;
713 if (unlikely(timer
->it
.cpu
.firing
)) {
714 timer
->it
.cpu
.firing
= -1;
717 list_del_init(&timer
->it
.cpu
.entry
);
720 * We need to sample the current value to convert the new
721 * value from to relative and absolute, and to convert the
722 * old value from absolute to relative. To set a process
723 * timer, we need a sample to balance the thread expiry
724 * times (in arm_timer). With an absolute time, we must
725 * check if it's already passed. In short, we need a sample.
727 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
728 cpu_clock_sample(timer
->it_clock
, p
, &val
);
730 cpu_timer_sample_group(timer
->it_clock
, p
, &val
);
734 if (old_expires
.sched
== 0) {
735 old
->it_value
.tv_sec
= 0;
736 old
->it_value
.tv_nsec
= 0;
739 * Update the timer in case it has
740 * overrun already. If it has,
741 * we'll report it as having overrun
742 * and with the next reloaded timer
743 * already ticking, though we are
744 * swallowing that pending
745 * notification here to install the
748 bump_cpu_timer(timer
, val
);
749 if (cpu_time_before(timer
->it_clock
, val
,
750 timer
->it
.cpu
.expires
)) {
751 old_expires
= cpu_time_sub(
753 timer
->it
.cpu
.expires
, val
);
754 sample_to_timespec(timer
->it_clock
,
758 old
->it_value
.tv_nsec
= 1;
759 old
->it_value
.tv_sec
= 0;
766 * We are colliding with the timer actually firing.
767 * Punt after filling in the timer's old value, and
768 * disable this firing since we are already reporting
769 * it as an overrun (thanks to bump_cpu_timer above).
771 spin_unlock(&p
->sighand
->siglock
);
772 read_unlock(&tasklist_lock
);
776 if (new_expires
.sched
!= 0 && !(flags
& TIMER_ABSTIME
)) {
777 cpu_time_add(timer
->it_clock
, &new_expires
, val
);
781 * Install the new expiry time (or zero).
782 * For a timer with no notification action, we don't actually
783 * arm the timer (we'll just fake it for timer_gettime).
785 timer
->it
.cpu
.expires
= new_expires
;
786 if (new_expires
.sched
!= 0 &&
787 cpu_time_before(timer
->it_clock
, val
, new_expires
)) {
791 spin_unlock(&p
->sighand
->siglock
);
792 read_unlock(&tasklist_lock
);
795 * Install the new reload setting, and
796 * set up the signal and overrun bookkeeping.
798 timer
->it
.cpu
.incr
= timespec_to_sample(timer
->it_clock
,
802 * This acts as a modification timestamp for the timer,
803 * so any automatic reload attempt will punt on seeing
804 * that we have reset the timer manually.
806 timer
->it_requeue_pending
= (timer
->it_requeue_pending
+ 2) &
808 timer
->it_overrun_last
= 0;
809 timer
->it_overrun
= -1;
811 if (new_expires
.sched
!= 0 &&
812 !cpu_time_before(timer
->it_clock
, val
, new_expires
)) {
814 * The designated time already passed, so we notify
815 * immediately, even if the thread never runs to
816 * accumulate more time on this clock.
818 cpu_timer_fire(timer
);
824 sample_to_timespec(timer
->it_clock
,
825 old_incr
, &old
->it_interval
);
830 void posix_cpu_timer_get(struct k_itimer
*timer
, struct itimerspec
*itp
)
832 union cpu_time_count now
;
833 struct task_struct
*p
= timer
->it
.cpu
.task
;
837 * Easy part: convert the reload time.
839 sample_to_timespec(timer
->it_clock
,
840 timer
->it
.cpu
.incr
, &itp
->it_interval
);
842 if (timer
->it
.cpu
.expires
.sched
== 0) { /* Timer not armed at all. */
843 itp
->it_value
.tv_sec
= itp
->it_value
.tv_nsec
= 0;
847 if (unlikely(p
== NULL
)) {
849 * This task already died and the timer will never fire.
850 * In this case, expires is actually the dead value.
853 sample_to_timespec(timer
->it_clock
, timer
->it
.cpu
.expires
,
859 * Sample the clock to take the difference with the expiry time.
861 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
862 cpu_clock_sample(timer
->it_clock
, p
, &now
);
863 clear_dead
= p
->exit_state
;
865 read_lock(&tasklist_lock
);
866 if (unlikely(p
->sighand
== NULL
)) {
868 * The process has been reaped.
869 * We can't even collect a sample any more.
870 * Call the timer disarmed, nothing else to do.
873 timer
->it
.cpu
.task
= NULL
;
874 timer
->it
.cpu
.expires
.sched
= 0;
875 read_unlock(&tasklist_lock
);
878 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
879 clear_dead
= (unlikely(p
->exit_state
) &&
880 thread_group_empty(p
));
882 read_unlock(&tasklist_lock
);
885 if (unlikely(clear_dead
)) {
887 * We've noticed that the thread is dead, but
888 * not yet reaped. Take this opportunity to
891 clear_dead_task(timer
, now
);
895 if (cpu_time_before(timer
->it_clock
, now
, timer
->it
.cpu
.expires
)) {
896 sample_to_timespec(timer
->it_clock
,
897 cpu_time_sub(timer
->it_clock
,
898 timer
->it
.cpu
.expires
, now
),
902 * The timer should have expired already, but the firing
903 * hasn't taken place yet. Say it's just about to expire.
905 itp
->it_value
.tv_nsec
= 1;
906 itp
->it_value
.tv_sec
= 0;
911 * Check for any per-thread CPU timers that have fired and move them off
912 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
913 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
915 static void check_thread_timers(struct task_struct
*tsk
,
916 struct list_head
*firing
)
919 struct list_head
*timers
= tsk
->cpu_timers
;
920 struct signal_struct
*const sig
= tsk
->signal
;
924 tsk
->cputime_expires
.prof_exp
= cputime_zero
;
925 while (!list_empty(timers
)) {
926 struct cpu_timer_list
*t
= list_first_entry(timers
,
927 struct cpu_timer_list
,
929 if (!--maxfire
|| cputime_lt(prof_ticks(tsk
), t
->expires
.cpu
)) {
930 tsk
->cputime_expires
.prof_exp
= t
->expires
.cpu
;
934 list_move_tail(&t
->entry
, firing
);
939 tsk
->cputime_expires
.virt_exp
= cputime_zero
;
940 while (!list_empty(timers
)) {
941 struct cpu_timer_list
*t
= list_first_entry(timers
,
942 struct cpu_timer_list
,
944 if (!--maxfire
|| cputime_lt(virt_ticks(tsk
), t
->expires
.cpu
)) {
945 tsk
->cputime_expires
.virt_exp
= t
->expires
.cpu
;
949 list_move_tail(&t
->entry
, firing
);
954 tsk
->cputime_expires
.sched_exp
= 0;
955 while (!list_empty(timers
)) {
956 struct cpu_timer_list
*t
= list_first_entry(timers
,
957 struct cpu_timer_list
,
959 if (!--maxfire
|| tsk
->se
.sum_exec_runtime
< t
->expires
.sched
) {
960 tsk
->cputime_expires
.sched_exp
= t
->expires
.sched
;
964 list_move_tail(&t
->entry
, firing
);
968 * Check for the special case thread timers.
970 soft
= ACCESS_ONCE(sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
);
971 if (soft
!= RLIM_INFINITY
) {
973 ACCESS_ONCE(sig
->rlim
[RLIMIT_RTTIME
].rlim_max
);
975 if (hard
!= RLIM_INFINITY
&&
976 tsk
->rt
.timeout
> DIV_ROUND_UP(hard
, USEC_PER_SEC
/HZ
)) {
978 * At the hard limit, we just die.
979 * No need to calculate anything else now.
981 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
984 if (tsk
->rt
.timeout
> DIV_ROUND_UP(soft
, USEC_PER_SEC
/HZ
)) {
986 * At the soft limit, send a SIGXCPU every second.
989 soft
+= USEC_PER_SEC
;
990 sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
= soft
;
993 "RT Watchdog Timeout: %s[%d]\n",
994 tsk
->comm
, task_pid_nr(tsk
));
995 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
1000 static void stop_process_timers(struct signal_struct
*sig
)
1002 struct thread_group_cputimer
*cputimer
= &sig
->cputimer
;
1003 unsigned long flags
;
1005 spin_lock_irqsave(&cputimer
->lock
, flags
);
1006 cputimer
->running
= 0;
1007 spin_unlock_irqrestore(&cputimer
->lock
, flags
);
1010 static u32 onecputick
;
1012 static void check_cpu_itimer(struct task_struct
*tsk
, struct cpu_itimer
*it
,
1013 cputime_t
*expires
, cputime_t cur_time
, int signo
)
1015 if (cputime_eq(it
->expires
, cputime_zero
))
1018 if (cputime_ge(cur_time
, it
->expires
)) {
1019 if (!cputime_eq(it
->incr
, cputime_zero
)) {
1020 it
->expires
= cputime_add(it
->expires
, it
->incr
);
1021 it
->error
+= it
->incr_error
;
1022 if (it
->error
>= onecputick
) {
1023 it
->expires
= cputime_sub(it
->expires
,
1025 it
->error
-= onecputick
;
1028 it
->expires
= cputime_zero
;
1031 trace_itimer_expire(signo
== SIGPROF
?
1032 ITIMER_PROF
: ITIMER_VIRTUAL
,
1033 tsk
->signal
->leader_pid
, cur_time
);
1034 __group_send_sig_info(signo
, SEND_SIG_PRIV
, tsk
);
1037 if (!cputime_eq(it
->expires
, cputime_zero
) &&
1038 (cputime_eq(*expires
, cputime_zero
) ||
1039 cputime_lt(it
->expires
, *expires
))) {
1040 *expires
= it
->expires
;
1045 * task_cputime_zero - Check a task_cputime struct for all zero fields.
1047 * @cputime: The struct to compare.
1049 * Checks @cputime to see if all fields are zero. Returns true if all fields
1050 * are zero, false if any field is nonzero.
1052 static inline int task_cputime_zero(const struct task_cputime
*cputime
)
1054 if (cputime_eq(cputime
->utime
, cputime_zero
) &&
1055 cputime_eq(cputime
->stime
, cputime_zero
) &&
1056 cputime
->sum_exec_runtime
== 0)
1062 * Check for any per-thread CPU timers that have fired and move them
1063 * off the tsk->*_timers list onto the firing list. Per-thread timers
1064 * have already been taken off.
1066 static void check_process_timers(struct task_struct
*tsk
,
1067 struct list_head
*firing
)
1070 struct signal_struct
*const sig
= tsk
->signal
;
1071 cputime_t utime
, ptime
, virt_expires
, prof_expires
;
1072 unsigned long long sum_sched_runtime
, sched_expires
;
1073 struct list_head
*timers
= sig
->cpu_timers
;
1074 struct task_cputime cputime
;
1078 * Collect the current process totals.
1080 thread_group_cputimer(tsk
, &cputime
);
1081 utime
= cputime
.utime
;
1082 ptime
= cputime_add(utime
, cputime
.stime
);
1083 sum_sched_runtime
= cputime
.sum_exec_runtime
;
1085 prof_expires
= cputime_zero
;
1086 while (!list_empty(timers
)) {
1087 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1088 struct cpu_timer_list
,
1090 if (!--maxfire
|| cputime_lt(ptime
, tl
->expires
.cpu
)) {
1091 prof_expires
= tl
->expires
.cpu
;
1095 list_move_tail(&tl
->entry
, firing
);
1100 virt_expires
= cputime_zero
;
1101 while (!list_empty(timers
)) {
1102 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1103 struct cpu_timer_list
,
1105 if (!--maxfire
|| cputime_lt(utime
, tl
->expires
.cpu
)) {
1106 virt_expires
= tl
->expires
.cpu
;
1110 list_move_tail(&tl
->entry
, firing
);
1116 while (!list_empty(timers
)) {
1117 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1118 struct cpu_timer_list
,
1120 if (!--maxfire
|| sum_sched_runtime
< tl
->expires
.sched
) {
1121 sched_expires
= tl
->expires
.sched
;
1125 list_move_tail(&tl
->entry
, firing
);
1129 * Check for the special case process timers.
1131 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_PROF
], &prof_expires
, ptime
,
1133 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_VIRT
], &virt_expires
, utime
,
1135 soft
= ACCESS_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
1136 if (soft
!= RLIM_INFINITY
) {
1137 unsigned long psecs
= cputime_to_secs(ptime
);
1138 unsigned long hard
=
1139 ACCESS_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_max
);
1141 if (psecs
>= hard
) {
1143 * At the hard limit, we just die.
1144 * No need to calculate anything else now.
1146 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
1149 if (psecs
>= soft
) {
1151 * At the soft limit, send a SIGXCPU every second.
1153 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
1156 sig
->rlim
[RLIMIT_CPU
].rlim_cur
= soft
;
1159 x
= secs_to_cputime(soft
);
1160 if (cputime_eq(prof_expires
, cputime_zero
) ||
1161 cputime_lt(x
, prof_expires
)) {
1166 sig
->cputime_expires
.prof_exp
= prof_expires
;
1167 sig
->cputime_expires
.virt_exp
= virt_expires
;
1168 sig
->cputime_expires
.sched_exp
= sched_expires
;
1169 if (task_cputime_zero(&sig
->cputime_expires
))
1170 stop_process_timers(sig
);
1174 * This is called from the signal code (via do_schedule_next_timer)
1175 * when the last timer signal was delivered and we have to reload the timer.
1177 void posix_cpu_timer_schedule(struct k_itimer
*timer
)
1179 struct task_struct
*p
= timer
->it
.cpu
.task
;
1180 union cpu_time_count now
;
1182 if (unlikely(p
== NULL
))
1184 * The task was cleaned up already, no future firings.
1189 * Fetch the current sample and update the timer's expiry time.
1191 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
1192 cpu_clock_sample(timer
->it_clock
, p
, &now
);
1193 bump_cpu_timer(timer
, now
);
1194 if (unlikely(p
->exit_state
)) {
1195 clear_dead_task(timer
, now
);
1198 read_lock(&tasklist_lock
); /* arm_timer needs it. */
1199 spin_lock(&p
->sighand
->siglock
);
1201 read_lock(&tasklist_lock
);
1202 if (unlikely(p
->sighand
== NULL
)) {
1204 * The process has been reaped.
1205 * We can't even collect a sample any more.
1208 timer
->it
.cpu
.task
= p
= NULL
;
1209 timer
->it
.cpu
.expires
.sched
= 0;
1211 } else if (unlikely(p
->exit_state
) && thread_group_empty(p
)) {
1213 * We've noticed that the thread is dead, but
1214 * not yet reaped. Take this opportunity to
1215 * drop our task ref.
1217 clear_dead_task(timer
, now
);
1220 spin_lock(&p
->sighand
->siglock
);
1221 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
1222 bump_cpu_timer(timer
, now
);
1223 /* Leave the tasklist_lock locked for the call below. */
1227 * Now re-arm for the new expiry time.
1229 BUG_ON(!irqs_disabled());
1231 spin_unlock(&p
->sighand
->siglock
);
1234 read_unlock(&tasklist_lock
);
1237 timer
->it_overrun_last
= timer
->it_overrun
;
1238 timer
->it_overrun
= -1;
1239 ++timer
->it_requeue_pending
;
1243 * task_cputime_expired - Compare two task_cputime entities.
1245 * @sample: The task_cputime structure to be checked for expiration.
1246 * @expires: Expiration times, against which @sample will be checked.
1248 * Checks @sample against @expires to see if any field of @sample has expired.
1249 * Returns true if any field of the former is greater than the corresponding
1250 * field of the latter if the latter field is set. Otherwise returns false.
1252 static inline int task_cputime_expired(const struct task_cputime
*sample
,
1253 const struct task_cputime
*expires
)
1255 if (!cputime_eq(expires
->utime
, cputime_zero
) &&
1256 cputime_ge(sample
->utime
, expires
->utime
))
1258 if (!cputime_eq(expires
->stime
, cputime_zero
) &&
1259 cputime_ge(cputime_add(sample
->utime
, sample
->stime
),
1262 if (expires
->sum_exec_runtime
!= 0 &&
1263 sample
->sum_exec_runtime
>= expires
->sum_exec_runtime
)
1269 * fastpath_timer_check - POSIX CPU timers fast path.
1271 * @tsk: The task (thread) being checked.
1273 * Check the task and thread group timers. If both are zero (there are no
1274 * timers set) return false. Otherwise snapshot the task and thread group
1275 * timers and compare them with the corresponding expiration times. Return
1276 * true if a timer has expired, else return false.
1278 static inline int fastpath_timer_check(struct task_struct
*tsk
)
1280 struct signal_struct
*sig
;
1282 /* tsk == current, ensure it is safe to use ->signal/sighand */
1283 if (unlikely(tsk
->exit_state
))
1286 if (!task_cputime_zero(&tsk
->cputime_expires
)) {
1287 struct task_cputime task_sample
= {
1288 .utime
= tsk
->utime
,
1289 .stime
= tsk
->stime
,
1290 .sum_exec_runtime
= tsk
->se
.sum_exec_runtime
1293 if (task_cputime_expired(&task_sample
, &tsk
->cputime_expires
))
1298 if (sig
->cputimer
.running
) {
1299 struct task_cputime group_sample
;
1301 thread_group_cputimer(tsk
, &group_sample
);
1302 if (task_cputime_expired(&group_sample
, &sig
->cputime_expires
))
1310 * This is called from the timer interrupt handler. The irq handler has
1311 * already updated our counts. We need to check if any timers fire now.
1312 * Interrupts are disabled.
1314 void run_posix_cpu_timers(struct task_struct
*tsk
)
1317 struct k_itimer
*timer
, *next
;
1319 BUG_ON(!irqs_disabled());
1322 * The fast path checks that there are no expired thread or thread
1323 * group timers. If that's so, just return.
1325 if (!fastpath_timer_check(tsk
))
1328 spin_lock(&tsk
->sighand
->siglock
);
1330 * Here we take off tsk->signal->cpu_timers[N] and
1331 * tsk->cpu_timers[N] all the timers that are firing, and
1332 * put them on the firing list.
1334 check_thread_timers(tsk
, &firing
);
1336 * If there are any active process wide timers (POSIX 1.b, itimers,
1337 * RLIMIT_CPU) cputimer must be running.
1339 if (tsk
->signal
->cputimer
.running
)
1340 check_process_timers(tsk
, &firing
);
1343 * We must release these locks before taking any timer's lock.
1344 * There is a potential race with timer deletion here, as the
1345 * siglock now protects our private firing list. We have set
1346 * the firing flag in each timer, so that a deletion attempt
1347 * that gets the timer lock before we do will give it up and
1348 * spin until we've taken care of that timer below.
1350 spin_unlock(&tsk
->sighand
->siglock
);
1353 * Now that all the timers on our list have the firing flag,
1354 * noone will touch their list entries but us. We'll take
1355 * each timer's lock before clearing its firing flag, so no
1356 * timer call will interfere.
1358 list_for_each_entry_safe(timer
, next
, &firing
, it
.cpu
.entry
) {
1361 spin_lock(&timer
->it_lock
);
1362 list_del_init(&timer
->it
.cpu
.entry
);
1363 cpu_firing
= timer
->it
.cpu
.firing
;
1364 timer
->it
.cpu
.firing
= 0;
1366 * The firing flag is -1 if we collided with a reset
1367 * of the timer, which already reported this
1368 * almost-firing as an overrun. So don't generate an event.
1370 if (likely(cpu_firing
>= 0))
1371 cpu_timer_fire(timer
);
1372 spin_unlock(&timer
->it_lock
);
1377 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1378 * The tsk->sighand->siglock must be held by the caller.
1380 void set_process_cpu_timer(struct task_struct
*tsk
, unsigned int clock_idx
,
1381 cputime_t
*newval
, cputime_t
*oldval
)
1383 union cpu_time_count now
;
1385 BUG_ON(clock_idx
== CPUCLOCK_SCHED
);
1386 cpu_timer_sample_group(clock_idx
, tsk
, &now
);
1390 * We are setting itimer. The *oldval is absolute and we update
1391 * it to be relative, *newval argument is relative and we update
1392 * it to be absolute.
1394 if (!cputime_eq(*oldval
, cputime_zero
)) {
1395 if (cputime_le(*oldval
, now
.cpu
)) {
1396 /* Just about to fire. */
1397 *oldval
= cputime_one_jiffy
;
1399 *oldval
= cputime_sub(*oldval
, now
.cpu
);
1403 if (cputime_eq(*newval
, cputime_zero
))
1405 *newval
= cputime_add(*newval
, now
.cpu
);
1409 * Update expiration cache if we are the earliest timer, or eventually
1410 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1412 switch (clock_idx
) {
1414 if (expires_gt(tsk
->signal
->cputime_expires
.prof_exp
, *newval
))
1415 tsk
->signal
->cputime_expires
.prof_exp
= *newval
;
1418 if (expires_gt(tsk
->signal
->cputime_expires
.virt_exp
, *newval
))
1419 tsk
->signal
->cputime_expires
.virt_exp
= *newval
;
1424 static int do_cpu_nanosleep(const clockid_t which_clock
, int flags
,
1425 struct timespec
*rqtp
, struct itimerspec
*it
)
1427 struct k_itimer timer
;
1431 * Set up a temporary timer and then wait for it to go off.
1433 memset(&timer
, 0, sizeof timer
);
1434 spin_lock_init(&timer
.it_lock
);
1435 timer
.it_clock
= which_clock
;
1436 timer
.it_overrun
= -1;
1437 error
= posix_cpu_timer_create(&timer
);
1438 timer
.it_process
= current
;
1440 static struct itimerspec zero_it
;
1442 memset(it
, 0, sizeof *it
);
1443 it
->it_value
= *rqtp
;
1445 spin_lock_irq(&timer
.it_lock
);
1446 error
= posix_cpu_timer_set(&timer
, flags
, it
, NULL
);
1448 spin_unlock_irq(&timer
.it_lock
);
1452 while (!signal_pending(current
)) {
1453 if (timer
.it
.cpu
.expires
.sched
== 0) {
1455 * Our timer fired and was reset.
1457 spin_unlock_irq(&timer
.it_lock
);
1462 * Block until cpu_timer_fire (or a signal) wakes us.
1464 __set_current_state(TASK_INTERRUPTIBLE
);
1465 spin_unlock_irq(&timer
.it_lock
);
1467 spin_lock_irq(&timer
.it_lock
);
1471 * We were interrupted by a signal.
1473 sample_to_timespec(which_clock
, timer
.it
.cpu
.expires
, rqtp
);
1474 posix_cpu_timer_set(&timer
, 0, &zero_it
, it
);
1475 spin_unlock_irq(&timer
.it_lock
);
1477 if ((it
->it_value
.tv_sec
| it
->it_value
.tv_nsec
) == 0) {
1479 * It actually did fire already.
1484 error
= -ERESTART_RESTARTBLOCK
;
1490 int posix_cpu_nsleep(const clockid_t which_clock
, int flags
,
1491 struct timespec
*rqtp
, struct timespec __user
*rmtp
)
1493 struct restart_block
*restart_block
=
1494 ¤t_thread_info()->restart_block
;
1495 struct itimerspec it
;
1499 * Diagnose required errors first.
1501 if (CPUCLOCK_PERTHREAD(which_clock
) &&
1502 (CPUCLOCK_PID(which_clock
) == 0 ||
1503 CPUCLOCK_PID(which_clock
) == current
->pid
))
1506 error
= do_cpu_nanosleep(which_clock
, flags
, rqtp
, &it
);
1508 if (error
== -ERESTART_RESTARTBLOCK
) {
1510 if (flags
& TIMER_ABSTIME
)
1511 return -ERESTARTNOHAND
;
1513 * Report back to the user the time still remaining.
1515 if (rmtp
!= NULL
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1518 restart_block
->fn
= posix_cpu_nsleep_restart
;
1519 restart_block
->arg0
= which_clock
;
1520 restart_block
->arg1
= (unsigned long) rmtp
;
1521 restart_block
->arg2
= rqtp
->tv_sec
;
1522 restart_block
->arg3
= rqtp
->tv_nsec
;
1527 long posix_cpu_nsleep_restart(struct restart_block
*restart_block
)
1529 clockid_t which_clock
= restart_block
->arg0
;
1530 struct timespec __user
*rmtp
;
1532 struct itimerspec it
;
1535 rmtp
= (struct timespec __user
*) restart_block
->arg1
;
1536 t
.tv_sec
= restart_block
->arg2
;
1537 t
.tv_nsec
= restart_block
->arg3
;
1539 restart_block
->fn
= do_no_restart_syscall
;
1540 error
= do_cpu_nanosleep(which_clock
, TIMER_ABSTIME
, &t
, &it
);
1542 if (error
== -ERESTART_RESTARTBLOCK
) {
1544 * Report back to the user the time still remaining.
1546 if (rmtp
!= NULL
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1549 restart_block
->fn
= posix_cpu_nsleep_restart
;
1550 restart_block
->arg0
= which_clock
;
1551 restart_block
->arg1
= (unsigned long) rmtp
;
1552 restart_block
->arg2
= t
.tv_sec
;
1553 restart_block
->arg3
= t
.tv_nsec
;
1560 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1561 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1563 static int process_cpu_clock_getres(const clockid_t which_clock
,
1564 struct timespec
*tp
)
1566 return posix_cpu_clock_getres(PROCESS_CLOCK
, tp
);
1568 static int process_cpu_clock_get(const clockid_t which_clock
,
1569 struct timespec
*tp
)
1571 return posix_cpu_clock_get(PROCESS_CLOCK
, tp
);
1573 static int process_cpu_timer_create(struct k_itimer
*timer
)
1575 timer
->it_clock
= PROCESS_CLOCK
;
1576 return posix_cpu_timer_create(timer
);
1578 static int process_cpu_nsleep(const clockid_t which_clock
, int flags
,
1579 struct timespec
*rqtp
,
1580 struct timespec __user
*rmtp
)
1582 return posix_cpu_nsleep(PROCESS_CLOCK
, flags
, rqtp
, rmtp
);
1584 static long process_cpu_nsleep_restart(struct restart_block
*restart_block
)
1588 static int thread_cpu_clock_getres(const clockid_t which_clock
,
1589 struct timespec
*tp
)
1591 return posix_cpu_clock_getres(THREAD_CLOCK
, tp
);
1593 static int thread_cpu_clock_get(const clockid_t which_clock
,
1594 struct timespec
*tp
)
1596 return posix_cpu_clock_get(THREAD_CLOCK
, tp
);
1598 static int thread_cpu_timer_create(struct k_itimer
*timer
)
1600 timer
->it_clock
= THREAD_CLOCK
;
1601 return posix_cpu_timer_create(timer
);
1603 static int thread_cpu_nsleep(const clockid_t which_clock
, int flags
,
1604 struct timespec
*rqtp
, struct timespec __user
*rmtp
)
1608 static long thread_cpu_nsleep_restart(struct restart_block
*restart_block
)
1613 static __init
int init_posix_cpu_timers(void)
1615 struct k_clock process
= {
1616 .clock_getres
= process_cpu_clock_getres
,
1617 .clock_get
= process_cpu_clock_get
,
1618 .clock_set
= do_posix_clock_nosettime
,
1619 .timer_create
= process_cpu_timer_create
,
1620 .nsleep
= process_cpu_nsleep
,
1621 .nsleep_restart
= process_cpu_nsleep_restart
,
1623 struct k_clock thread
= {
1624 .clock_getres
= thread_cpu_clock_getres
,
1625 .clock_get
= thread_cpu_clock_get
,
1626 .clock_set
= do_posix_clock_nosettime
,
1627 .timer_create
= thread_cpu_timer_create
,
1628 .nsleep
= thread_cpu_nsleep
,
1629 .nsleep_restart
= thread_cpu_nsleep_restart
,
1633 register_posix_clock(CLOCK_PROCESS_CPUTIME_ID
, &process
);
1634 register_posix_clock(CLOCK_THREAD_CPUTIME_ID
, &thread
);
1636 cputime_to_timespec(cputime_one_jiffy
, &ts
);
1637 onecputick
= ts
.tv_nsec
;
1638 WARN_ON(ts
.tv_sec
!= 0);
1642 __initcall(init_posix_cpu_timers
);