4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
71 #include <asm/irq_regs.h>
74 * Scheduler clock - returns current time in nanosec units.
75 * This is default implementation.
76 * Architectures and sub-architectures can override this.
78 unsigned long long __attribute__((weak
)) sched_clock(void)
80 return (unsigned long long)jiffies
* (NSEC_PER_SEC
/ HZ
);
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
119 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
120 * Since cpu_power is a 'constant', we can use a reciprocal divide.
122 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
124 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
128 * Each time a sched group cpu_power is changed,
129 * we must compute its reciprocal value
131 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
133 sg
->__cpu_power
+= val
;
134 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
138 static inline int rt_policy(int policy
)
140 if (unlikely(policy
== SCHED_FIFO
) || unlikely(policy
== SCHED_RR
))
145 static inline int task_has_rt_policy(struct task_struct
*p
)
147 return rt_policy(p
->policy
);
151 * This is the priority-queue data structure of the RT scheduling class:
153 struct rt_prio_array
{
154 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
155 struct list_head queue
[MAX_RT_PRIO
];
158 #ifdef CONFIG_GROUP_SCHED
160 #include <linux/cgroup.h>
164 static LIST_HEAD(task_groups
);
166 /* task group related information */
168 #ifdef CONFIG_CGROUP_SCHED
169 struct cgroup_subsys_state css
;
172 #ifdef CONFIG_FAIR_GROUP_SCHED
173 /* schedulable entities of this group on each cpu */
174 struct sched_entity
**se
;
175 /* runqueue "owned" by this group on each cpu */
176 struct cfs_rq
**cfs_rq
;
177 unsigned long shares
;
180 #ifdef CONFIG_RT_GROUP_SCHED
181 struct sched_rt_entity
**rt_se
;
182 struct rt_rq
**rt_rq
;
188 struct list_head list
;
191 #ifdef CONFIG_FAIR_GROUP_SCHED
192 /* Default task group's sched entity on each cpu */
193 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
194 /* Default task group's cfs_rq on each cpu */
195 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
197 static struct sched_entity
*init_sched_entity_p
[NR_CPUS
];
198 static struct cfs_rq
*init_cfs_rq_p
[NR_CPUS
];
201 #ifdef CONFIG_RT_GROUP_SCHED
202 static DEFINE_PER_CPU(struct sched_rt_entity
, init_sched_rt_entity
);
203 static DEFINE_PER_CPU(struct rt_rq
, init_rt_rq
) ____cacheline_aligned_in_smp
;
205 static struct sched_rt_entity
*init_sched_rt_entity_p
[NR_CPUS
];
206 static struct rt_rq
*init_rt_rq_p
[NR_CPUS
];
209 /* task_group_lock serializes add/remove of task groups and also changes to
210 * a task group's cpu shares.
212 static DEFINE_SPINLOCK(task_group_lock
);
214 /* doms_cur_mutex serializes access to doms_cur[] array */
215 static DEFINE_MUTEX(doms_cur_mutex
);
217 #ifdef CONFIG_FAIR_GROUP_SCHED
218 #ifdef CONFIG_USER_SCHED
219 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
221 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
224 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
227 /* Default task group.
228 * Every task in system belong to this group at bootup.
230 struct task_group init_task_group
= {
231 #ifdef CONFIG_FAIR_GROUP_SCHED
232 .se
= init_sched_entity_p
,
233 .cfs_rq
= init_cfs_rq_p
,
236 #ifdef CONFIG_RT_GROUP_SCHED
237 .rt_se
= init_sched_rt_entity_p
,
238 .rt_rq
= init_rt_rq_p
,
242 /* return group to which a task belongs */
243 static inline struct task_group
*task_group(struct task_struct
*p
)
245 struct task_group
*tg
;
247 #ifdef CONFIG_USER_SCHED
249 #elif defined(CONFIG_CGROUP_SCHED)
250 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
251 struct task_group
, css
);
253 tg
= &init_task_group
;
258 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
259 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
261 #ifdef CONFIG_FAIR_GROUP_SCHED
262 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
263 p
->se
.parent
= task_group(p
)->se
[cpu
];
266 #ifdef CONFIG_RT_GROUP_SCHED
267 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
268 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
272 static inline void lock_doms_cur(void)
274 mutex_lock(&doms_cur_mutex
);
277 static inline void unlock_doms_cur(void)
279 mutex_unlock(&doms_cur_mutex
);
284 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
285 static inline void lock_doms_cur(void) { }
286 static inline void unlock_doms_cur(void) { }
288 #endif /* CONFIG_GROUP_SCHED */
290 /* CFS-related fields in a runqueue */
292 struct load_weight load
;
293 unsigned long nr_running
;
298 struct rb_root tasks_timeline
;
299 struct rb_node
*rb_leftmost
;
300 struct rb_node
*rb_load_balance_curr
;
301 /* 'curr' points to currently running entity on this cfs_rq.
302 * It is set to NULL otherwise (i.e when none are currently running).
304 struct sched_entity
*curr
, *next
;
306 unsigned long nr_spread_over
;
308 #ifdef CONFIG_FAIR_GROUP_SCHED
309 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
312 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
313 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
314 * (like users, containers etc.)
316 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
317 * list is used during load balance.
319 struct list_head leaf_cfs_rq_list
;
320 struct task_group
*tg
; /* group that "owns" this runqueue */
324 /* Real-Time classes' related field in a runqueue: */
326 struct rt_prio_array active
;
327 unsigned long rt_nr_running
;
328 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
329 int highest_prio
; /* highest queued rt task prio */
332 unsigned long rt_nr_migratory
;
338 #ifdef CONFIG_RT_GROUP_SCHED
339 unsigned long rt_nr_boosted
;
342 struct list_head leaf_rt_rq_list
;
343 struct task_group
*tg
;
344 struct sched_rt_entity
*rt_se
;
351 * We add the notion of a root-domain which will be used to define per-domain
352 * variables. Each exclusive cpuset essentially defines an island domain by
353 * fully partitioning the member cpus from any other cpuset. Whenever a new
354 * exclusive cpuset is created, we also create and attach a new root-domain
364 * The "RT overload" flag: it gets set if a CPU has more than
365 * one runnable RT task.
372 * By default the system creates a single root-domain with all cpus as
373 * members (mimicking the global state we have today).
375 static struct root_domain def_root_domain
;
380 * This is the main, per-CPU runqueue data structure.
382 * Locking rule: those places that want to lock multiple runqueues
383 * (such as the load balancing or the thread migration code), lock
384 * acquire operations must be ordered by ascending &runqueue.
391 * nr_running and cpu_load should be in the same cacheline because
392 * remote CPUs use both these fields when doing load calculation.
394 unsigned long nr_running
;
395 #define CPU_LOAD_IDX_MAX 5
396 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
397 unsigned char idle_at_tick
;
399 unsigned char in_nohz_recently
;
401 /* capture load from *all* tasks on this cpu: */
402 struct load_weight load
;
403 unsigned long nr_load_updates
;
408 u64 rt_period_expire
;
411 #ifdef CONFIG_FAIR_GROUP_SCHED
412 /* list of leaf cfs_rq on this cpu: */
413 struct list_head leaf_cfs_rq_list
;
415 #ifdef CONFIG_RT_GROUP_SCHED
416 struct list_head leaf_rt_rq_list
;
420 * This is part of a global counter where only the total sum
421 * over all CPUs matters. A task can increase this counter on
422 * one CPU and if it got migrated afterwards it may decrease
423 * it on another CPU. Always updated under the runqueue lock:
425 unsigned long nr_uninterruptible
;
427 struct task_struct
*curr
, *idle
;
428 unsigned long next_balance
;
429 struct mm_struct
*prev_mm
;
431 u64 clock
, prev_clock_raw
;
434 unsigned int clock_warps
, clock_overflows
, clock_underflows
;
436 unsigned int clock_deep_idle_events
;
442 struct root_domain
*rd
;
443 struct sched_domain
*sd
;
445 /* For active balancing */
448 /* cpu of this runqueue: */
451 struct task_struct
*migration_thread
;
452 struct list_head migration_queue
;
455 #ifdef CONFIG_SCHED_HRTICK
456 unsigned long hrtick_flags
;
457 ktime_t hrtick_expire
;
458 struct hrtimer hrtick_timer
;
461 #ifdef CONFIG_SCHEDSTATS
463 struct sched_info rq_sched_info
;
465 /* sys_sched_yield() stats */
466 unsigned int yld_exp_empty
;
467 unsigned int yld_act_empty
;
468 unsigned int yld_both_empty
;
469 unsigned int yld_count
;
471 /* schedule() stats */
472 unsigned int sched_switch
;
473 unsigned int sched_count
;
474 unsigned int sched_goidle
;
476 /* try_to_wake_up() stats */
477 unsigned int ttwu_count
;
478 unsigned int ttwu_local
;
481 unsigned int bkl_count
;
483 struct lock_class_key rq_lock_key
;
486 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
488 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
)
490 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
);
493 static inline int cpu_of(struct rq
*rq
)
503 * Update the per-runqueue clock, as finegrained as the platform can give
504 * us, but without assuming monotonicity, etc.:
506 static void __update_rq_clock(struct rq
*rq
)
508 u64 prev_raw
= rq
->prev_clock_raw
;
509 u64 now
= sched_clock();
510 s64 delta
= now
- prev_raw
;
511 u64 clock
= rq
->clock
;
513 #ifdef CONFIG_SCHED_DEBUG
514 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
517 * Protect against sched_clock() occasionally going backwards:
519 if (unlikely(delta
< 0)) {
524 * Catch too large forward jumps too:
526 if (unlikely(clock
+ delta
> rq
->tick_timestamp
+ TICK_NSEC
)) {
527 if (clock
< rq
->tick_timestamp
+ TICK_NSEC
)
528 clock
= rq
->tick_timestamp
+ TICK_NSEC
;
531 rq
->clock_overflows
++;
533 if (unlikely(delta
> rq
->clock_max_delta
))
534 rq
->clock_max_delta
= delta
;
539 rq
->prev_clock_raw
= now
;
543 static void update_rq_clock(struct rq
*rq
)
545 if (likely(smp_processor_id() == cpu_of(rq
)))
546 __update_rq_clock(rq
);
550 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
551 * See detach_destroy_domains: synchronize_sched for details.
553 * The domain tree of any CPU may only be accessed from within
554 * preempt-disabled sections.
556 #define for_each_domain(cpu, __sd) \
557 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
559 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
560 #define this_rq() (&__get_cpu_var(runqueues))
561 #define task_rq(p) cpu_rq(task_cpu(p))
562 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
564 unsigned long rt_needs_cpu(int cpu
)
566 struct rq
*rq
= cpu_rq(cpu
);
569 if (!rq
->rt_throttled
)
572 if (rq
->clock
> rq
->rt_period_expire
)
575 delta
= rq
->rt_period_expire
- rq
->clock
;
576 do_div(delta
, NSEC_PER_SEC
/ HZ
);
578 return (unsigned long)delta
;
582 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
584 #ifdef CONFIG_SCHED_DEBUG
585 # define const_debug __read_mostly
587 # define const_debug static const
591 * Debugging: various feature bits
594 SCHED_FEAT_NEW_FAIR_SLEEPERS
= 1,
595 SCHED_FEAT_WAKEUP_PREEMPT
= 2,
596 SCHED_FEAT_START_DEBIT
= 4,
597 SCHED_FEAT_HRTICK
= 8,
598 SCHED_FEAT_DOUBLE_TICK
= 16,
601 const_debug
unsigned int sysctl_sched_features
=
602 SCHED_FEAT_NEW_FAIR_SLEEPERS
* 1 |
603 SCHED_FEAT_WAKEUP_PREEMPT
* 1 |
604 SCHED_FEAT_START_DEBIT
* 1 |
605 SCHED_FEAT_HRTICK
* 1 |
606 SCHED_FEAT_DOUBLE_TICK
* 0;
608 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
611 * Number of tasks to iterate in a single balance run.
612 * Limited because this is done with IRQs disabled.
614 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
617 * period over which we measure -rt task cpu usage in us.
620 unsigned int sysctl_sched_rt_period
= 1000000;
622 static __read_mostly
int scheduler_running
;
625 * part of the period that we allow rt tasks to run in us.
628 int sysctl_sched_rt_runtime
= 950000;
631 * single value that denotes runtime == period, ie unlimited time.
633 #define RUNTIME_INF ((u64)~0ULL)
636 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
637 * clock constructed from sched_clock():
639 unsigned long long cpu_clock(int cpu
)
641 unsigned long long now
;
646 * Only call sched_clock() if the scheduler has already been
647 * initialized (some code might call cpu_clock() very early):
649 if (unlikely(!scheduler_running
))
652 local_irq_save(flags
);
656 local_irq_restore(flags
);
660 EXPORT_SYMBOL_GPL(cpu_clock
);
662 #ifndef prepare_arch_switch
663 # define prepare_arch_switch(next) do { } while (0)
665 #ifndef finish_arch_switch
666 # define finish_arch_switch(prev) do { } while (0)
669 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
671 return rq
->curr
== p
;
674 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
675 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
677 return task_current(rq
, p
);
680 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
684 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
686 #ifdef CONFIG_DEBUG_SPINLOCK
687 /* this is a valid case when another task releases the spinlock */
688 rq
->lock
.owner
= current
;
691 * If we are tracking spinlock dependencies then we have to
692 * fix up the runqueue lock - which gets 'carried over' from
695 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
697 spin_unlock_irq(&rq
->lock
);
700 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
701 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
706 return task_current(rq
, p
);
710 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
714 * We can optimise this out completely for !SMP, because the
715 * SMP rebalancing from interrupt is the only thing that cares
720 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
721 spin_unlock_irq(&rq
->lock
);
723 spin_unlock(&rq
->lock
);
727 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
731 * After ->oncpu is cleared, the task can be moved to a different CPU.
732 * We must ensure this doesn't happen until the switch is completely
738 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
742 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
745 * __task_rq_lock - lock the runqueue a given task resides on.
746 * Must be called interrupts disabled.
748 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
752 struct rq
*rq
= task_rq(p
);
753 spin_lock(&rq
->lock
);
754 if (likely(rq
== task_rq(p
)))
756 spin_unlock(&rq
->lock
);
761 * task_rq_lock - lock the runqueue a given task resides on and disable
762 * interrupts. Note the ordering: we can safely lookup the task_rq without
763 * explicitly disabling preemption.
765 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
771 local_irq_save(*flags
);
773 spin_lock(&rq
->lock
);
774 if (likely(rq
== task_rq(p
)))
776 spin_unlock_irqrestore(&rq
->lock
, *flags
);
780 static void __task_rq_unlock(struct rq
*rq
)
783 spin_unlock(&rq
->lock
);
786 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
789 spin_unlock_irqrestore(&rq
->lock
, *flags
);
793 * this_rq_lock - lock this runqueue and disable interrupts.
795 static struct rq
*this_rq_lock(void)
802 spin_lock(&rq
->lock
);
808 * We are going deep-idle (irqs are disabled):
810 void sched_clock_idle_sleep_event(void)
812 struct rq
*rq
= cpu_rq(smp_processor_id());
814 spin_lock(&rq
->lock
);
815 __update_rq_clock(rq
);
816 spin_unlock(&rq
->lock
);
817 rq
->clock_deep_idle_events
++;
819 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event
);
822 * We just idled delta nanoseconds (called with irqs disabled):
824 void sched_clock_idle_wakeup_event(u64 delta_ns
)
826 struct rq
*rq
= cpu_rq(smp_processor_id());
827 u64 now
= sched_clock();
829 rq
->idle_clock
+= delta_ns
;
831 * Override the previous timestamp and ignore all
832 * sched_clock() deltas that occured while we idled,
833 * and use the PM-provided delta_ns to advance the
836 spin_lock(&rq
->lock
);
837 rq
->prev_clock_raw
= now
;
838 rq
->clock
+= delta_ns
;
839 spin_unlock(&rq
->lock
);
840 touch_softlockup_watchdog();
842 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event
);
844 static void __resched_task(struct task_struct
*p
, int tif_bit
);
846 static inline void resched_task(struct task_struct
*p
)
848 __resched_task(p
, TIF_NEED_RESCHED
);
851 #ifdef CONFIG_SCHED_HRTICK
853 * Use HR-timers to deliver accurate preemption points.
855 * Its all a bit involved since we cannot program an hrt while holding the
856 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
859 * When we get rescheduled we reprogram the hrtick_timer outside of the
862 static inline void resched_hrt(struct task_struct
*p
)
864 __resched_task(p
, TIF_HRTICK_RESCHED
);
867 static inline void resched_rq(struct rq
*rq
)
871 spin_lock_irqsave(&rq
->lock
, flags
);
872 resched_task(rq
->curr
);
873 spin_unlock_irqrestore(&rq
->lock
, flags
);
877 HRTICK_SET
, /* re-programm hrtick_timer */
878 HRTICK_RESET
, /* not a new slice */
883 * - enabled by features
884 * - hrtimer is actually high res
886 static inline int hrtick_enabled(struct rq
*rq
)
888 if (!sched_feat(HRTICK
))
890 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
894 * Called to set the hrtick timer state.
896 * called with rq->lock held and irqs disabled
898 static void hrtick_start(struct rq
*rq
, u64 delay
, int reset
)
900 assert_spin_locked(&rq
->lock
);
903 * preempt at: now + delay
906 ktime_add_ns(rq
->hrtick_timer
.base
->get_time(), delay
);
908 * indicate we need to program the timer
910 __set_bit(HRTICK_SET
, &rq
->hrtick_flags
);
912 __set_bit(HRTICK_RESET
, &rq
->hrtick_flags
);
915 * New slices are called from the schedule path and don't need a
919 resched_hrt(rq
->curr
);
922 static void hrtick_clear(struct rq
*rq
)
924 if (hrtimer_active(&rq
->hrtick_timer
))
925 hrtimer_cancel(&rq
->hrtick_timer
);
929 * Update the timer from the possible pending state.
931 static void hrtick_set(struct rq
*rq
)
937 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
939 spin_lock_irqsave(&rq
->lock
, flags
);
940 set
= __test_and_clear_bit(HRTICK_SET
, &rq
->hrtick_flags
);
941 reset
= __test_and_clear_bit(HRTICK_RESET
, &rq
->hrtick_flags
);
942 time
= rq
->hrtick_expire
;
943 clear_thread_flag(TIF_HRTICK_RESCHED
);
944 spin_unlock_irqrestore(&rq
->lock
, flags
);
947 hrtimer_start(&rq
->hrtick_timer
, time
, HRTIMER_MODE_ABS
);
948 if (reset
&& !hrtimer_active(&rq
->hrtick_timer
))
955 * High-resolution timer tick.
956 * Runs from hardirq context with interrupts disabled.
958 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
960 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
962 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
964 spin_lock(&rq
->lock
);
965 __update_rq_clock(rq
);
966 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
967 spin_unlock(&rq
->lock
);
969 return HRTIMER_NORESTART
;
972 static inline void init_rq_hrtick(struct rq
*rq
)
974 rq
->hrtick_flags
= 0;
975 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
976 rq
->hrtick_timer
.function
= hrtick
;
977 rq
->hrtick_timer
.cb_mode
= HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
;
980 void hrtick_resched(void)
985 if (!test_thread_flag(TIF_HRTICK_RESCHED
))
988 local_irq_save(flags
);
989 rq
= cpu_rq(smp_processor_id());
991 local_irq_restore(flags
);
994 static inline void hrtick_clear(struct rq
*rq
)
998 static inline void hrtick_set(struct rq
*rq
)
1002 static inline void init_rq_hrtick(struct rq
*rq
)
1006 void hrtick_resched(void)
1012 * resched_task - mark a task 'to be rescheduled now'.
1014 * On UP this means the setting of the need_resched flag, on SMP it
1015 * might also involve a cross-CPU call to trigger the scheduler on
1020 #ifndef tsk_is_polling
1021 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1024 static void __resched_task(struct task_struct
*p
, int tif_bit
)
1028 assert_spin_locked(&task_rq(p
)->lock
);
1030 if (unlikely(test_tsk_thread_flag(p
, tif_bit
)))
1033 set_tsk_thread_flag(p
, tif_bit
);
1036 if (cpu
== smp_processor_id())
1039 /* NEED_RESCHED must be visible before we test polling */
1041 if (!tsk_is_polling(p
))
1042 smp_send_reschedule(cpu
);
1045 static void resched_cpu(int cpu
)
1047 struct rq
*rq
= cpu_rq(cpu
);
1048 unsigned long flags
;
1050 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
1052 resched_task(cpu_curr(cpu
));
1053 spin_unlock_irqrestore(&rq
->lock
, flags
);
1058 * When add_timer_on() enqueues a timer into the timer wheel of an
1059 * idle CPU then this timer might expire before the next timer event
1060 * which is scheduled to wake up that CPU. In case of a completely
1061 * idle system the next event might even be infinite time into the
1062 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1063 * leaves the inner idle loop so the newly added timer is taken into
1064 * account when the CPU goes back to idle and evaluates the timer
1065 * wheel for the next timer event.
1067 void wake_up_idle_cpu(int cpu
)
1069 struct rq
*rq
= cpu_rq(cpu
);
1071 if (cpu
== smp_processor_id())
1075 * This is safe, as this function is called with the timer
1076 * wheel base lock of (cpu) held. When the CPU is on the way
1077 * to idle and has not yet set rq->curr to idle then it will
1078 * be serialized on the timer wheel base lock and take the new
1079 * timer into account automatically.
1081 if (rq
->curr
!= rq
->idle
)
1085 * We can set TIF_RESCHED on the idle task of the other CPU
1086 * lockless. The worst case is that the other CPU runs the
1087 * idle task through an additional NOOP schedule()
1089 set_tsk_thread_flag(rq
->idle
, TIF_NEED_RESCHED
);
1091 /* NEED_RESCHED must be visible before we test polling */
1093 if (!tsk_is_polling(rq
->idle
))
1094 smp_send_reschedule(cpu
);
1099 static void __resched_task(struct task_struct
*p
, int tif_bit
)
1101 assert_spin_locked(&task_rq(p
)->lock
);
1102 set_tsk_thread_flag(p
, tif_bit
);
1106 #if BITS_PER_LONG == 32
1107 # define WMULT_CONST (~0UL)
1109 # define WMULT_CONST (1UL << 32)
1112 #define WMULT_SHIFT 32
1115 * Shift right and round:
1117 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1119 static unsigned long
1120 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1121 struct load_weight
*lw
)
1125 if (unlikely(!lw
->inv_weight
))
1126 lw
->inv_weight
= (WMULT_CONST
-lw
->weight
/2) / (lw
->weight
+1);
1128 tmp
= (u64
)delta_exec
* weight
;
1130 * Check whether we'd overflow the 64-bit multiplication:
1132 if (unlikely(tmp
> WMULT_CONST
))
1133 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1136 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1138 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1141 static inline unsigned long
1142 calc_delta_fair(unsigned long delta_exec
, struct load_weight
*lw
)
1144 return calc_delta_mine(delta_exec
, NICE_0_LOAD
, lw
);
1147 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1153 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1160 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1161 * of tasks with abnormal "nice" values across CPUs the contribution that
1162 * each task makes to its run queue's load is weighted according to its
1163 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1164 * scaled version of the new time slice allocation that they receive on time
1168 #define WEIGHT_IDLEPRIO 2
1169 #define WMULT_IDLEPRIO (1 << 31)
1172 * Nice levels are multiplicative, with a gentle 10% change for every
1173 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1174 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1175 * that remained on nice 0.
1177 * The "10% effect" is relative and cumulative: from _any_ nice level,
1178 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1179 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1180 * If a task goes up by ~10% and another task goes down by ~10% then
1181 * the relative distance between them is ~25%.)
1183 static const int prio_to_weight
[40] = {
1184 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1185 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1186 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1187 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1188 /* 0 */ 1024, 820, 655, 526, 423,
1189 /* 5 */ 335, 272, 215, 172, 137,
1190 /* 10 */ 110, 87, 70, 56, 45,
1191 /* 15 */ 36, 29, 23, 18, 15,
1195 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1197 * In cases where the weight does not change often, we can use the
1198 * precalculated inverse to speed up arithmetics by turning divisions
1199 * into multiplications:
1201 static const u32 prio_to_wmult
[40] = {
1202 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1203 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1204 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1205 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1206 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1207 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1208 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1209 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1212 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
1215 * runqueue iterator, to support SMP load-balancing between different
1216 * scheduling classes, without having to expose their internal data
1217 * structures to the load-balancing proper:
1219 struct rq_iterator
{
1221 struct task_struct
*(*start
)(void *);
1222 struct task_struct
*(*next
)(void *);
1226 static unsigned long
1227 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1228 unsigned long max_load_move
, struct sched_domain
*sd
,
1229 enum cpu_idle_type idle
, int *all_pinned
,
1230 int *this_best_prio
, struct rq_iterator
*iterator
);
1233 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1234 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1235 struct rq_iterator
*iterator
);
1238 #ifdef CONFIG_CGROUP_CPUACCT
1239 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1241 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1245 static unsigned long source_load(int cpu
, int type
);
1246 static unsigned long target_load(int cpu
, int type
);
1247 static unsigned long cpu_avg_load_per_task(int cpu
);
1248 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1249 #endif /* CONFIG_SMP */
1251 #include "sched_stats.h"
1252 #include "sched_idletask.c"
1253 #include "sched_fair.c"
1254 #include "sched_rt.c"
1255 #ifdef CONFIG_SCHED_DEBUG
1256 # include "sched_debug.c"
1259 #define sched_class_highest (&rt_sched_class)
1261 static inline void inc_load(struct rq
*rq
, const struct task_struct
*p
)
1263 update_load_add(&rq
->load
, p
->se
.load
.weight
);
1266 static inline void dec_load(struct rq
*rq
, const struct task_struct
*p
)
1268 update_load_sub(&rq
->load
, p
->se
.load
.weight
);
1271 static void inc_nr_running(struct task_struct
*p
, struct rq
*rq
)
1277 static void dec_nr_running(struct task_struct
*p
, struct rq
*rq
)
1283 static void set_load_weight(struct task_struct
*p
)
1285 if (task_has_rt_policy(p
)) {
1286 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1287 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1292 * SCHED_IDLE tasks get minimal weight:
1294 if (p
->policy
== SCHED_IDLE
) {
1295 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1296 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1300 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1301 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1304 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1306 sched_info_queued(p
);
1307 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
1311 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1313 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1318 * __normal_prio - return the priority that is based on the static prio
1320 static inline int __normal_prio(struct task_struct
*p
)
1322 return p
->static_prio
;
1326 * Calculate the expected normal priority: i.e. priority
1327 * without taking RT-inheritance into account. Might be
1328 * boosted by interactivity modifiers. Changes upon fork,
1329 * setprio syscalls, and whenever the interactivity
1330 * estimator recalculates.
1332 static inline int normal_prio(struct task_struct
*p
)
1336 if (task_has_rt_policy(p
))
1337 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1339 prio
= __normal_prio(p
);
1344 * Calculate the current priority, i.e. the priority
1345 * taken into account by the scheduler. This value might
1346 * be boosted by RT tasks, or might be boosted by
1347 * interactivity modifiers. Will be RT if the task got
1348 * RT-boosted. If not then it returns p->normal_prio.
1350 static int effective_prio(struct task_struct
*p
)
1352 p
->normal_prio
= normal_prio(p
);
1354 * If we are RT tasks or we were boosted to RT priority,
1355 * keep the priority unchanged. Otherwise, update priority
1356 * to the normal priority:
1358 if (!rt_prio(p
->prio
))
1359 return p
->normal_prio
;
1364 * activate_task - move a task to the runqueue.
1366 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1368 if (task_contributes_to_load(p
))
1369 rq
->nr_uninterruptible
--;
1371 enqueue_task(rq
, p
, wakeup
);
1372 inc_nr_running(p
, rq
);
1376 * deactivate_task - remove a task from the runqueue.
1378 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1380 if (task_contributes_to_load(p
))
1381 rq
->nr_uninterruptible
++;
1383 dequeue_task(rq
, p
, sleep
);
1384 dec_nr_running(p
, rq
);
1388 * task_curr - is this task currently executing on a CPU?
1389 * @p: the task in question.
1391 inline int task_curr(const struct task_struct
*p
)
1393 return cpu_curr(task_cpu(p
)) == p
;
1396 /* Used instead of source_load when we know the type == 0 */
1397 unsigned long weighted_cpuload(const int cpu
)
1399 return cpu_rq(cpu
)->load
.weight
;
1402 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1404 set_task_rq(p
, cpu
);
1407 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1408 * successfuly executed on another CPU. We must ensure that updates of
1409 * per-task data have been completed by this moment.
1412 task_thread_info(p
)->cpu
= cpu
;
1416 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1417 const struct sched_class
*prev_class
,
1418 int oldprio
, int running
)
1420 if (prev_class
!= p
->sched_class
) {
1421 if (prev_class
->switched_from
)
1422 prev_class
->switched_from(rq
, p
, running
);
1423 p
->sched_class
->switched_to(rq
, p
, running
);
1425 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
1431 * Is this task likely cache-hot:
1434 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1439 * Buddy candidates are cache hot:
1441 if (&p
->se
== cfs_rq_of(&p
->se
)->next
)
1444 if (p
->sched_class
!= &fair_sched_class
)
1447 if (sysctl_sched_migration_cost
== -1)
1449 if (sysctl_sched_migration_cost
== 0)
1452 delta
= now
- p
->se
.exec_start
;
1454 return delta
< (s64
)sysctl_sched_migration_cost
;
1458 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1460 int old_cpu
= task_cpu(p
);
1461 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1462 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
1463 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
1466 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1468 #ifdef CONFIG_SCHEDSTATS
1469 if (p
->se
.wait_start
)
1470 p
->se
.wait_start
-= clock_offset
;
1471 if (p
->se
.sleep_start
)
1472 p
->se
.sleep_start
-= clock_offset
;
1473 if (p
->se
.block_start
)
1474 p
->se
.block_start
-= clock_offset
;
1475 if (old_cpu
!= new_cpu
) {
1476 schedstat_inc(p
, se
.nr_migrations
);
1477 if (task_hot(p
, old_rq
->clock
, NULL
))
1478 schedstat_inc(p
, se
.nr_forced2_migrations
);
1481 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
1482 new_cfsrq
->min_vruntime
;
1484 __set_task_cpu(p
, new_cpu
);
1487 struct migration_req
{
1488 struct list_head list
;
1490 struct task_struct
*task
;
1493 struct completion done
;
1497 * The task's runqueue lock must be held.
1498 * Returns true if you have to wait for migration thread.
1501 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1503 struct rq
*rq
= task_rq(p
);
1506 * If the task is not on a runqueue (and not running), then
1507 * it is sufficient to simply update the task's cpu field.
1509 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1510 set_task_cpu(p
, dest_cpu
);
1514 init_completion(&req
->done
);
1516 req
->dest_cpu
= dest_cpu
;
1517 list_add(&req
->list
, &rq
->migration_queue
);
1523 * wait_task_inactive - wait for a thread to unschedule.
1525 * The caller must ensure that the task *will* unschedule sometime soon,
1526 * else this function might spin for a *long* time. This function can't
1527 * be called with interrupts off, or it may introduce deadlock with
1528 * smp_call_function() if an IPI is sent by the same process we are
1529 * waiting to become inactive.
1531 void wait_task_inactive(struct task_struct
*p
)
1533 unsigned long flags
;
1539 * We do the initial early heuristics without holding
1540 * any task-queue locks at all. We'll only try to get
1541 * the runqueue lock when things look like they will
1547 * If the task is actively running on another CPU
1548 * still, just relax and busy-wait without holding
1551 * NOTE! Since we don't hold any locks, it's not
1552 * even sure that "rq" stays as the right runqueue!
1553 * But we don't care, since "task_running()" will
1554 * return false if the runqueue has changed and p
1555 * is actually now running somewhere else!
1557 while (task_running(rq
, p
))
1561 * Ok, time to look more closely! We need the rq
1562 * lock now, to be *sure*. If we're wrong, we'll
1563 * just go back and repeat.
1565 rq
= task_rq_lock(p
, &flags
);
1566 running
= task_running(rq
, p
);
1567 on_rq
= p
->se
.on_rq
;
1568 task_rq_unlock(rq
, &flags
);
1571 * Was it really running after all now that we
1572 * checked with the proper locks actually held?
1574 * Oops. Go back and try again..
1576 if (unlikely(running
)) {
1582 * It's not enough that it's not actively running,
1583 * it must be off the runqueue _entirely_, and not
1586 * So if it wa still runnable (but just not actively
1587 * running right now), it's preempted, and we should
1588 * yield - it could be a while.
1590 if (unlikely(on_rq
)) {
1591 schedule_timeout_uninterruptible(1);
1596 * Ahh, all good. It wasn't running, and it wasn't
1597 * runnable, which means that it will never become
1598 * running in the future either. We're all done!
1605 * kick_process - kick a running thread to enter/exit the kernel
1606 * @p: the to-be-kicked thread
1608 * Cause a process which is running on another CPU to enter
1609 * kernel-mode, without any delay. (to get signals handled.)
1611 * NOTE: this function doesnt have to take the runqueue lock,
1612 * because all it wants to ensure is that the remote task enters
1613 * the kernel. If the IPI races and the task has been migrated
1614 * to another CPU then no harm is done and the purpose has been
1617 void kick_process(struct task_struct
*p
)
1623 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1624 smp_send_reschedule(cpu
);
1629 * Return a low guess at the load of a migration-source cpu weighted
1630 * according to the scheduling class and "nice" value.
1632 * We want to under-estimate the load of migration sources, to
1633 * balance conservatively.
1635 static unsigned long source_load(int cpu
, int type
)
1637 struct rq
*rq
= cpu_rq(cpu
);
1638 unsigned long total
= weighted_cpuload(cpu
);
1643 return min(rq
->cpu_load
[type
-1], total
);
1647 * Return a high guess at the load of a migration-target cpu weighted
1648 * according to the scheduling class and "nice" value.
1650 static unsigned long target_load(int cpu
, int type
)
1652 struct rq
*rq
= cpu_rq(cpu
);
1653 unsigned long total
= weighted_cpuload(cpu
);
1658 return max(rq
->cpu_load
[type
-1], total
);
1662 * Return the average load per task on the cpu's run queue
1664 static unsigned long cpu_avg_load_per_task(int cpu
)
1666 struct rq
*rq
= cpu_rq(cpu
);
1667 unsigned long total
= weighted_cpuload(cpu
);
1668 unsigned long n
= rq
->nr_running
;
1670 return n
? total
/ n
: SCHED_LOAD_SCALE
;
1674 * find_idlest_group finds and returns the least busy CPU group within the
1677 static struct sched_group
*
1678 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
1680 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1681 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1682 int load_idx
= sd
->forkexec_idx
;
1683 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1686 unsigned long load
, avg_load
;
1690 /* Skip over this group if it has no CPUs allowed */
1691 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
1694 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1696 /* Tally up the load of all CPUs in the group */
1699 for_each_cpu_mask(i
, group
->cpumask
) {
1700 /* Bias balancing toward cpus of our domain */
1702 load
= source_load(i
, load_idx
);
1704 load
= target_load(i
, load_idx
);
1709 /* Adjust by relative CPU power of the group */
1710 avg_load
= sg_div_cpu_power(group
,
1711 avg_load
* SCHED_LOAD_SCALE
);
1714 this_load
= avg_load
;
1716 } else if (avg_load
< min_load
) {
1717 min_load
= avg_load
;
1720 } while (group
= group
->next
, group
!= sd
->groups
);
1722 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1728 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1731 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1734 unsigned long load
, min_load
= ULONG_MAX
;
1738 /* Traverse only the allowed CPUs */
1739 cpus_and(tmp
, group
->cpumask
, p
->cpus_allowed
);
1741 for_each_cpu_mask(i
, tmp
) {
1742 load
= weighted_cpuload(i
);
1744 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1754 * sched_balance_self: balance the current task (running on cpu) in domains
1755 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1758 * Balance, ie. select the least loaded group.
1760 * Returns the target CPU number, or the same CPU if no balancing is needed.
1762 * preempt must be disabled.
1764 static int sched_balance_self(int cpu
, int flag
)
1766 struct task_struct
*t
= current
;
1767 struct sched_domain
*tmp
, *sd
= NULL
;
1769 for_each_domain(cpu
, tmp
) {
1771 * If power savings logic is enabled for a domain, stop there.
1773 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1775 if (tmp
->flags
& flag
)
1781 struct sched_group
*group
;
1782 int new_cpu
, weight
;
1784 if (!(sd
->flags
& flag
)) {
1790 group
= find_idlest_group(sd
, t
, cpu
);
1796 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
1797 if (new_cpu
== -1 || new_cpu
== cpu
) {
1798 /* Now try balancing at a lower domain level of cpu */
1803 /* Now try balancing at a lower domain level of new_cpu */
1806 weight
= cpus_weight(span
);
1807 for_each_domain(cpu
, tmp
) {
1808 if (weight
<= cpus_weight(tmp
->span
))
1810 if (tmp
->flags
& flag
)
1813 /* while loop will break here if sd == NULL */
1819 #endif /* CONFIG_SMP */
1822 * try_to_wake_up - wake up a thread
1823 * @p: the to-be-woken-up thread
1824 * @state: the mask of task states that can be woken
1825 * @sync: do a synchronous wakeup?
1827 * Put it on the run-queue if it's not already there. The "current"
1828 * thread is always on the run-queue (except when the actual
1829 * re-schedule is in progress), and as such you're allowed to do
1830 * the simpler "current->state = TASK_RUNNING" to mark yourself
1831 * runnable without the overhead of this.
1833 * returns failure only if the task is already active.
1835 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
1837 int cpu
, orig_cpu
, this_cpu
, success
= 0;
1838 unsigned long flags
;
1843 rq
= task_rq_lock(p
, &flags
);
1844 old_state
= p
->state
;
1845 if (!(old_state
& state
))
1853 this_cpu
= smp_processor_id();
1856 if (unlikely(task_running(rq
, p
)))
1859 cpu
= p
->sched_class
->select_task_rq(p
, sync
);
1860 if (cpu
!= orig_cpu
) {
1861 set_task_cpu(p
, cpu
);
1862 task_rq_unlock(rq
, &flags
);
1863 /* might preempt at this point */
1864 rq
= task_rq_lock(p
, &flags
);
1865 old_state
= p
->state
;
1866 if (!(old_state
& state
))
1871 this_cpu
= smp_processor_id();
1875 #ifdef CONFIG_SCHEDSTATS
1876 schedstat_inc(rq
, ttwu_count
);
1877 if (cpu
== this_cpu
)
1878 schedstat_inc(rq
, ttwu_local
);
1880 struct sched_domain
*sd
;
1881 for_each_domain(this_cpu
, sd
) {
1882 if (cpu_isset(cpu
, sd
->span
)) {
1883 schedstat_inc(sd
, ttwu_wake_remote
);
1891 #endif /* CONFIG_SMP */
1892 schedstat_inc(p
, se
.nr_wakeups
);
1894 schedstat_inc(p
, se
.nr_wakeups_sync
);
1895 if (orig_cpu
!= cpu
)
1896 schedstat_inc(p
, se
.nr_wakeups_migrate
);
1897 if (cpu
== this_cpu
)
1898 schedstat_inc(p
, se
.nr_wakeups_local
);
1900 schedstat_inc(p
, se
.nr_wakeups_remote
);
1901 update_rq_clock(rq
);
1902 activate_task(rq
, p
, 1);
1906 check_preempt_curr(rq
, p
);
1908 p
->state
= TASK_RUNNING
;
1910 if (p
->sched_class
->task_wake_up
)
1911 p
->sched_class
->task_wake_up(rq
, p
);
1914 task_rq_unlock(rq
, &flags
);
1919 int wake_up_process(struct task_struct
*p
)
1921 return try_to_wake_up(p
, TASK_ALL
, 0);
1923 EXPORT_SYMBOL(wake_up_process
);
1925 int wake_up_state(struct task_struct
*p
, unsigned int state
)
1927 return try_to_wake_up(p
, state
, 0);
1931 * Perform scheduler related setup for a newly forked process p.
1932 * p is forked by current.
1934 * __sched_fork() is basic setup used by init_idle() too:
1936 static void __sched_fork(struct task_struct
*p
)
1938 p
->se
.exec_start
= 0;
1939 p
->se
.sum_exec_runtime
= 0;
1940 p
->se
.prev_sum_exec_runtime
= 0;
1941 p
->se
.last_wakeup
= 0;
1942 p
->se
.avg_overlap
= 0;
1944 #ifdef CONFIG_SCHEDSTATS
1945 p
->se
.wait_start
= 0;
1946 p
->se
.sum_sleep_runtime
= 0;
1947 p
->se
.sleep_start
= 0;
1948 p
->se
.block_start
= 0;
1949 p
->se
.sleep_max
= 0;
1950 p
->se
.block_max
= 0;
1952 p
->se
.slice_max
= 0;
1956 INIT_LIST_HEAD(&p
->rt
.run_list
);
1959 #ifdef CONFIG_PREEMPT_NOTIFIERS
1960 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
1964 * We mark the process as running here, but have not actually
1965 * inserted it onto the runqueue yet. This guarantees that
1966 * nobody will actually run it, and a signal or other external
1967 * event cannot wake it up and insert it on the runqueue either.
1969 p
->state
= TASK_RUNNING
;
1973 * fork()/clone()-time setup:
1975 void sched_fork(struct task_struct
*p
, int clone_flags
)
1977 int cpu
= get_cpu();
1982 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
1984 set_task_cpu(p
, cpu
);
1987 * Make sure we do not leak PI boosting priority to the child:
1989 p
->prio
= current
->normal_prio
;
1990 if (!rt_prio(p
->prio
))
1991 p
->sched_class
= &fair_sched_class
;
1993 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1994 if (likely(sched_info_on()))
1995 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1997 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2000 #ifdef CONFIG_PREEMPT
2001 /* Want to start with kernel preemption disabled. */
2002 task_thread_info(p
)->preempt_count
= 1;
2008 * wake_up_new_task - wake up a newly created task for the first time.
2010 * This function will do some initial scheduler statistics housekeeping
2011 * that must be done for every newly created context, then puts the task
2012 * on the runqueue and wakes it.
2014 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2016 unsigned long flags
;
2019 rq
= task_rq_lock(p
, &flags
);
2020 BUG_ON(p
->state
!= TASK_RUNNING
);
2021 update_rq_clock(rq
);
2023 p
->prio
= effective_prio(p
);
2025 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
2026 activate_task(rq
, p
, 0);
2029 * Let the scheduling class do new task startup
2030 * management (if any):
2032 p
->sched_class
->task_new(rq
, p
);
2033 inc_nr_running(p
, rq
);
2035 check_preempt_curr(rq
, p
);
2037 if (p
->sched_class
->task_wake_up
)
2038 p
->sched_class
->task_wake_up(rq
, p
);
2040 task_rq_unlock(rq
, &flags
);
2043 #ifdef CONFIG_PREEMPT_NOTIFIERS
2046 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2047 * @notifier: notifier struct to register
2049 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2051 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2053 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2056 * preempt_notifier_unregister - no longer interested in preemption notifications
2057 * @notifier: notifier struct to unregister
2059 * This is safe to call from within a preemption notifier.
2061 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2063 hlist_del(¬ifier
->link
);
2065 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2067 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2069 struct preempt_notifier
*notifier
;
2070 struct hlist_node
*node
;
2072 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2073 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2077 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2078 struct task_struct
*next
)
2080 struct preempt_notifier
*notifier
;
2081 struct hlist_node
*node
;
2083 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2084 notifier
->ops
->sched_out(notifier
, next
);
2089 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2094 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2095 struct task_struct
*next
)
2102 * prepare_task_switch - prepare to switch tasks
2103 * @rq: the runqueue preparing to switch
2104 * @prev: the current task that is being switched out
2105 * @next: the task we are going to switch to.
2107 * This is called with the rq lock held and interrupts off. It must
2108 * be paired with a subsequent finish_task_switch after the context
2111 * prepare_task_switch sets up locking and calls architecture specific
2115 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2116 struct task_struct
*next
)
2118 fire_sched_out_preempt_notifiers(prev
, next
);
2119 prepare_lock_switch(rq
, next
);
2120 prepare_arch_switch(next
);
2124 * finish_task_switch - clean up after a task-switch
2125 * @rq: runqueue associated with task-switch
2126 * @prev: the thread we just switched away from.
2128 * finish_task_switch must be called after the context switch, paired
2129 * with a prepare_task_switch call before the context switch.
2130 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2131 * and do any other architecture-specific cleanup actions.
2133 * Note that we may have delayed dropping an mm in context_switch(). If
2134 * so, we finish that here outside of the runqueue lock. (Doing it
2135 * with the lock held can cause deadlocks; see schedule() for
2138 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2139 __releases(rq
->lock
)
2141 struct mm_struct
*mm
= rq
->prev_mm
;
2147 * A task struct has one reference for the use as "current".
2148 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2149 * schedule one last time. The schedule call will never return, and
2150 * the scheduled task must drop that reference.
2151 * The test for TASK_DEAD must occur while the runqueue locks are
2152 * still held, otherwise prev could be scheduled on another cpu, die
2153 * there before we look at prev->state, and then the reference would
2155 * Manfred Spraul <manfred@colorfullife.com>
2157 prev_state
= prev
->state
;
2158 finish_arch_switch(prev
);
2159 finish_lock_switch(rq
, prev
);
2161 if (current
->sched_class
->post_schedule
)
2162 current
->sched_class
->post_schedule(rq
);
2165 fire_sched_in_preempt_notifiers(current
);
2168 if (unlikely(prev_state
== TASK_DEAD
)) {
2170 * Remove function-return probe instances associated with this
2171 * task and put them back on the free list.
2173 kprobe_flush_task(prev
);
2174 put_task_struct(prev
);
2179 * schedule_tail - first thing a freshly forked thread must call.
2180 * @prev: the thread we just switched away from.
2182 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2183 __releases(rq
->lock
)
2185 struct rq
*rq
= this_rq();
2187 finish_task_switch(rq
, prev
);
2188 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2189 /* In this case, finish_task_switch does not reenable preemption */
2192 if (current
->set_child_tid
)
2193 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2197 * context_switch - switch to the new MM and the new
2198 * thread's register state.
2201 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2202 struct task_struct
*next
)
2204 struct mm_struct
*mm
, *oldmm
;
2206 prepare_task_switch(rq
, prev
, next
);
2208 oldmm
= prev
->active_mm
;
2210 * For paravirt, this is coupled with an exit in switch_to to
2211 * combine the page table reload and the switch backend into
2214 arch_enter_lazy_cpu_mode();
2216 if (unlikely(!mm
)) {
2217 next
->active_mm
= oldmm
;
2218 atomic_inc(&oldmm
->mm_count
);
2219 enter_lazy_tlb(oldmm
, next
);
2221 switch_mm(oldmm
, mm
, next
);
2223 if (unlikely(!prev
->mm
)) {
2224 prev
->active_mm
= NULL
;
2225 rq
->prev_mm
= oldmm
;
2228 * Since the runqueue lock will be released by the next
2229 * task (which is an invalid locking op but in the case
2230 * of the scheduler it's an obvious special-case), so we
2231 * do an early lockdep release here:
2233 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2234 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2237 /* Here we just switch the register state and the stack. */
2238 switch_to(prev
, next
, prev
);
2242 * this_rq must be evaluated again because prev may have moved
2243 * CPUs since it called schedule(), thus the 'rq' on its stack
2244 * frame will be invalid.
2246 finish_task_switch(this_rq(), prev
);
2250 * nr_running, nr_uninterruptible and nr_context_switches:
2252 * externally visible scheduler statistics: current number of runnable
2253 * threads, current number of uninterruptible-sleeping threads, total
2254 * number of context switches performed since bootup.
2256 unsigned long nr_running(void)
2258 unsigned long i
, sum
= 0;
2260 for_each_online_cpu(i
)
2261 sum
+= cpu_rq(i
)->nr_running
;
2266 unsigned long nr_uninterruptible(void)
2268 unsigned long i
, sum
= 0;
2270 for_each_possible_cpu(i
)
2271 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2274 * Since we read the counters lockless, it might be slightly
2275 * inaccurate. Do not allow it to go below zero though:
2277 if (unlikely((long)sum
< 0))
2283 unsigned long long nr_context_switches(void)
2286 unsigned long long sum
= 0;
2288 for_each_possible_cpu(i
)
2289 sum
+= cpu_rq(i
)->nr_switches
;
2294 unsigned long nr_iowait(void)
2296 unsigned long i
, sum
= 0;
2298 for_each_possible_cpu(i
)
2299 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2304 unsigned long nr_active(void)
2306 unsigned long i
, running
= 0, uninterruptible
= 0;
2308 for_each_online_cpu(i
) {
2309 running
+= cpu_rq(i
)->nr_running
;
2310 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
2313 if (unlikely((long)uninterruptible
< 0))
2314 uninterruptible
= 0;
2316 return running
+ uninterruptible
;
2320 * Update rq->cpu_load[] statistics. This function is usually called every
2321 * scheduler tick (TICK_NSEC).
2323 static void update_cpu_load(struct rq
*this_rq
)
2325 unsigned long this_load
= this_rq
->load
.weight
;
2328 this_rq
->nr_load_updates
++;
2330 /* Update our load: */
2331 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2332 unsigned long old_load
, new_load
;
2334 /* scale is effectively 1 << i now, and >> i divides by scale */
2336 old_load
= this_rq
->cpu_load
[i
];
2337 new_load
= this_load
;
2339 * Round up the averaging division if load is increasing. This
2340 * prevents us from getting stuck on 9 if the load is 10, for
2343 if (new_load
> old_load
)
2344 new_load
+= scale
-1;
2345 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2352 * double_rq_lock - safely lock two runqueues
2354 * Note this does not disable interrupts like task_rq_lock,
2355 * you need to do so manually before calling.
2357 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2358 __acquires(rq1
->lock
)
2359 __acquires(rq2
->lock
)
2361 BUG_ON(!irqs_disabled());
2363 spin_lock(&rq1
->lock
);
2364 __acquire(rq2
->lock
); /* Fake it out ;) */
2367 spin_lock(&rq1
->lock
);
2368 spin_lock(&rq2
->lock
);
2370 spin_lock(&rq2
->lock
);
2371 spin_lock(&rq1
->lock
);
2374 update_rq_clock(rq1
);
2375 update_rq_clock(rq2
);
2379 * double_rq_unlock - safely unlock two runqueues
2381 * Note this does not restore interrupts like task_rq_unlock,
2382 * you need to do so manually after calling.
2384 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2385 __releases(rq1
->lock
)
2386 __releases(rq2
->lock
)
2388 spin_unlock(&rq1
->lock
);
2390 spin_unlock(&rq2
->lock
);
2392 __release(rq2
->lock
);
2396 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2398 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2399 __releases(this_rq
->lock
)
2400 __acquires(busiest
->lock
)
2401 __acquires(this_rq
->lock
)
2405 if (unlikely(!irqs_disabled())) {
2406 /* printk() doesn't work good under rq->lock */
2407 spin_unlock(&this_rq
->lock
);
2410 if (unlikely(!spin_trylock(&busiest
->lock
))) {
2411 if (busiest
< this_rq
) {
2412 spin_unlock(&this_rq
->lock
);
2413 spin_lock(&busiest
->lock
);
2414 spin_lock(&this_rq
->lock
);
2417 spin_lock(&busiest
->lock
);
2423 * If dest_cpu is allowed for this process, migrate the task to it.
2424 * This is accomplished by forcing the cpu_allowed mask to only
2425 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2426 * the cpu_allowed mask is restored.
2428 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2430 struct migration_req req
;
2431 unsigned long flags
;
2434 rq
= task_rq_lock(p
, &flags
);
2435 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
2436 || unlikely(cpu_is_offline(dest_cpu
)))
2439 /* force the process onto the specified CPU */
2440 if (migrate_task(p
, dest_cpu
, &req
)) {
2441 /* Need to wait for migration thread (might exit: take ref). */
2442 struct task_struct
*mt
= rq
->migration_thread
;
2444 get_task_struct(mt
);
2445 task_rq_unlock(rq
, &flags
);
2446 wake_up_process(mt
);
2447 put_task_struct(mt
);
2448 wait_for_completion(&req
.done
);
2453 task_rq_unlock(rq
, &flags
);
2457 * sched_exec - execve() is a valuable balancing opportunity, because at
2458 * this point the task has the smallest effective memory and cache footprint.
2460 void sched_exec(void)
2462 int new_cpu
, this_cpu
= get_cpu();
2463 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2465 if (new_cpu
!= this_cpu
)
2466 sched_migrate_task(current
, new_cpu
);
2470 * pull_task - move a task from a remote runqueue to the local runqueue.
2471 * Both runqueues must be locked.
2473 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2474 struct rq
*this_rq
, int this_cpu
)
2476 deactivate_task(src_rq
, p
, 0);
2477 set_task_cpu(p
, this_cpu
);
2478 activate_task(this_rq
, p
, 0);
2480 * Note that idle threads have a prio of MAX_PRIO, for this test
2481 * to be always true for them.
2483 check_preempt_curr(this_rq
, p
);
2487 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2490 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2491 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2495 * We do not migrate tasks that are:
2496 * 1) running (obviously), or
2497 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2498 * 3) are cache-hot on their current CPU.
2500 if (!cpu_isset(this_cpu
, p
->cpus_allowed
)) {
2501 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
2506 if (task_running(rq
, p
)) {
2507 schedstat_inc(p
, se
.nr_failed_migrations_running
);
2512 * Aggressive migration if:
2513 * 1) task is cache cold, or
2514 * 2) too many balance attempts have failed.
2517 if (!task_hot(p
, rq
->clock
, sd
) ||
2518 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
2519 #ifdef CONFIG_SCHEDSTATS
2520 if (task_hot(p
, rq
->clock
, sd
)) {
2521 schedstat_inc(sd
, lb_hot_gained
[idle
]);
2522 schedstat_inc(p
, se
.nr_forced_migrations
);
2528 if (task_hot(p
, rq
->clock
, sd
)) {
2529 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
2535 static unsigned long
2536 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2537 unsigned long max_load_move
, struct sched_domain
*sd
,
2538 enum cpu_idle_type idle
, int *all_pinned
,
2539 int *this_best_prio
, struct rq_iterator
*iterator
)
2541 int loops
= 0, pulled
= 0, pinned
= 0, skip_for_load
;
2542 struct task_struct
*p
;
2543 long rem_load_move
= max_load_move
;
2545 if (max_load_move
== 0)
2551 * Start the load-balancing iterator:
2553 p
= iterator
->start(iterator
->arg
);
2555 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
2558 * To help distribute high priority tasks across CPUs we don't
2559 * skip a task if it will be the highest priority task (i.e. smallest
2560 * prio value) on its new queue regardless of its load weight
2562 skip_for_load
= (p
->se
.load
.weight
>> 1) > rem_load_move
+
2563 SCHED_LOAD_SCALE_FUZZ
;
2564 if ((skip_for_load
&& p
->prio
>= *this_best_prio
) ||
2565 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2566 p
= iterator
->next(iterator
->arg
);
2570 pull_task(busiest
, p
, this_rq
, this_cpu
);
2572 rem_load_move
-= p
->se
.load
.weight
;
2575 * We only want to steal up to the prescribed amount of weighted load.
2577 if (rem_load_move
> 0) {
2578 if (p
->prio
< *this_best_prio
)
2579 *this_best_prio
= p
->prio
;
2580 p
= iterator
->next(iterator
->arg
);
2585 * Right now, this is one of only two places pull_task() is called,
2586 * so we can safely collect pull_task() stats here rather than
2587 * inside pull_task().
2589 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2592 *all_pinned
= pinned
;
2594 return max_load_move
- rem_load_move
;
2598 * move_tasks tries to move up to max_load_move weighted load from busiest to
2599 * this_rq, as part of a balancing operation within domain "sd".
2600 * Returns 1 if successful and 0 otherwise.
2602 * Called with both runqueues locked.
2604 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2605 unsigned long max_load_move
,
2606 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2609 const struct sched_class
*class = sched_class_highest
;
2610 unsigned long total_load_moved
= 0;
2611 int this_best_prio
= this_rq
->curr
->prio
;
2615 class->load_balance(this_rq
, this_cpu
, busiest
,
2616 max_load_move
- total_load_moved
,
2617 sd
, idle
, all_pinned
, &this_best_prio
);
2618 class = class->next
;
2619 } while (class && max_load_move
> total_load_moved
);
2621 return total_load_moved
> 0;
2625 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2626 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2627 struct rq_iterator
*iterator
)
2629 struct task_struct
*p
= iterator
->start(iterator
->arg
);
2633 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2634 pull_task(busiest
, p
, this_rq
, this_cpu
);
2636 * Right now, this is only the second place pull_task()
2637 * is called, so we can safely collect pull_task()
2638 * stats here rather than inside pull_task().
2640 schedstat_inc(sd
, lb_gained
[idle
]);
2644 p
= iterator
->next(iterator
->arg
);
2651 * move_one_task tries to move exactly one task from busiest to this_rq, as
2652 * part of active balancing operations within "domain".
2653 * Returns 1 if successful and 0 otherwise.
2655 * Called with both runqueues locked.
2657 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2658 struct sched_domain
*sd
, enum cpu_idle_type idle
)
2660 const struct sched_class
*class;
2662 for (class = sched_class_highest
; class; class = class->next
)
2663 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
2670 * find_busiest_group finds and returns the busiest CPU group within the
2671 * domain. It calculates and returns the amount of weighted load which
2672 * should be moved to restore balance via the imbalance parameter.
2674 static struct sched_group
*
2675 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
2676 unsigned long *imbalance
, enum cpu_idle_type idle
,
2677 int *sd_idle
, cpumask_t
*cpus
, int *balance
)
2679 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2680 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
2681 unsigned long max_pull
;
2682 unsigned long busiest_load_per_task
, busiest_nr_running
;
2683 unsigned long this_load_per_task
, this_nr_running
;
2684 int load_idx
, group_imb
= 0;
2685 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2686 int power_savings_balance
= 1;
2687 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
2688 unsigned long min_nr_running
= ULONG_MAX
;
2689 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
2692 max_load
= this_load
= total_load
= total_pwr
= 0;
2693 busiest_load_per_task
= busiest_nr_running
= 0;
2694 this_load_per_task
= this_nr_running
= 0;
2695 if (idle
== CPU_NOT_IDLE
)
2696 load_idx
= sd
->busy_idx
;
2697 else if (idle
== CPU_NEWLY_IDLE
)
2698 load_idx
= sd
->newidle_idx
;
2700 load_idx
= sd
->idle_idx
;
2703 unsigned long load
, group_capacity
, max_cpu_load
, min_cpu_load
;
2706 int __group_imb
= 0;
2707 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
2708 unsigned long sum_nr_running
, sum_weighted_load
;
2710 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2713 balance_cpu
= first_cpu(group
->cpumask
);
2715 /* Tally up the load of all CPUs in the group */
2716 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
2718 min_cpu_load
= ~0UL;
2720 for_each_cpu_mask(i
, group
->cpumask
) {
2723 if (!cpu_isset(i
, *cpus
))
2728 if (*sd_idle
&& rq
->nr_running
)
2731 /* Bias balancing toward cpus of our domain */
2733 if (idle_cpu(i
) && !first_idle_cpu
) {
2738 load
= target_load(i
, load_idx
);
2740 load
= source_load(i
, load_idx
);
2741 if (load
> max_cpu_load
)
2742 max_cpu_load
= load
;
2743 if (min_cpu_load
> load
)
2744 min_cpu_load
= load
;
2748 sum_nr_running
+= rq
->nr_running
;
2749 sum_weighted_load
+= weighted_cpuload(i
);
2753 * First idle cpu or the first cpu(busiest) in this sched group
2754 * is eligible for doing load balancing at this and above
2755 * domains. In the newly idle case, we will allow all the cpu's
2756 * to do the newly idle load balance.
2758 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
2759 balance_cpu
!= this_cpu
&& balance
) {
2764 total_load
+= avg_load
;
2765 total_pwr
+= group
->__cpu_power
;
2767 /* Adjust by relative CPU power of the group */
2768 avg_load
= sg_div_cpu_power(group
,
2769 avg_load
* SCHED_LOAD_SCALE
);
2771 if ((max_cpu_load
- min_cpu_load
) > SCHED_LOAD_SCALE
)
2774 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
2777 this_load
= avg_load
;
2779 this_nr_running
= sum_nr_running
;
2780 this_load_per_task
= sum_weighted_load
;
2781 } else if (avg_load
> max_load
&&
2782 (sum_nr_running
> group_capacity
|| __group_imb
)) {
2783 max_load
= avg_load
;
2785 busiest_nr_running
= sum_nr_running
;
2786 busiest_load_per_task
= sum_weighted_load
;
2787 group_imb
= __group_imb
;
2790 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2792 * Busy processors will not participate in power savings
2795 if (idle
== CPU_NOT_IDLE
||
2796 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2800 * If the local group is idle or completely loaded
2801 * no need to do power savings balance at this domain
2803 if (local_group
&& (this_nr_running
>= group_capacity
||
2805 power_savings_balance
= 0;
2808 * If a group is already running at full capacity or idle,
2809 * don't include that group in power savings calculations
2811 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
2816 * Calculate the group which has the least non-idle load.
2817 * This is the group from where we need to pick up the load
2820 if ((sum_nr_running
< min_nr_running
) ||
2821 (sum_nr_running
== min_nr_running
&&
2822 first_cpu(group
->cpumask
) <
2823 first_cpu(group_min
->cpumask
))) {
2825 min_nr_running
= sum_nr_running
;
2826 min_load_per_task
= sum_weighted_load
/
2831 * Calculate the group which is almost near its
2832 * capacity but still has some space to pick up some load
2833 * from other group and save more power
2835 if (sum_nr_running
<= group_capacity
- 1) {
2836 if (sum_nr_running
> leader_nr_running
||
2837 (sum_nr_running
== leader_nr_running
&&
2838 first_cpu(group
->cpumask
) >
2839 first_cpu(group_leader
->cpumask
))) {
2840 group_leader
= group
;
2841 leader_nr_running
= sum_nr_running
;
2846 group
= group
->next
;
2847 } while (group
!= sd
->groups
);
2849 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
2852 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
2854 if (this_load
>= avg_load
||
2855 100*max_load
<= sd
->imbalance_pct
*this_load
)
2858 busiest_load_per_task
/= busiest_nr_running
;
2860 busiest_load_per_task
= min(busiest_load_per_task
, avg_load
);
2863 * We're trying to get all the cpus to the average_load, so we don't
2864 * want to push ourselves above the average load, nor do we wish to
2865 * reduce the max loaded cpu below the average load, as either of these
2866 * actions would just result in more rebalancing later, and ping-pong
2867 * tasks around. Thus we look for the minimum possible imbalance.
2868 * Negative imbalances (*we* are more loaded than anyone else) will
2869 * be counted as no imbalance for these purposes -- we can't fix that
2870 * by pulling tasks to us. Be careful of negative numbers as they'll
2871 * appear as very large values with unsigned longs.
2873 if (max_load
<= busiest_load_per_task
)
2877 * In the presence of smp nice balancing, certain scenarios can have
2878 * max load less than avg load(as we skip the groups at or below
2879 * its cpu_power, while calculating max_load..)
2881 if (max_load
< avg_load
) {
2883 goto small_imbalance
;
2886 /* Don't want to pull so many tasks that a group would go idle */
2887 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
2889 /* How much load to actually move to equalise the imbalance */
2890 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
2891 (avg_load
- this_load
) * this->__cpu_power
)
2895 * if *imbalance is less than the average load per runnable task
2896 * there is no gaurantee that any tasks will be moved so we'll have
2897 * a think about bumping its value to force at least one task to be
2900 if (*imbalance
< busiest_load_per_task
) {
2901 unsigned long tmp
, pwr_now
, pwr_move
;
2905 pwr_move
= pwr_now
= 0;
2907 if (this_nr_running
) {
2908 this_load_per_task
/= this_nr_running
;
2909 if (busiest_load_per_task
> this_load_per_task
)
2912 this_load_per_task
= SCHED_LOAD_SCALE
;
2914 if (max_load
- this_load
+ SCHED_LOAD_SCALE_FUZZ
>=
2915 busiest_load_per_task
* imbn
) {
2916 *imbalance
= busiest_load_per_task
;
2921 * OK, we don't have enough imbalance to justify moving tasks,
2922 * however we may be able to increase total CPU power used by
2926 pwr_now
+= busiest
->__cpu_power
*
2927 min(busiest_load_per_task
, max_load
);
2928 pwr_now
+= this->__cpu_power
*
2929 min(this_load_per_task
, this_load
);
2930 pwr_now
/= SCHED_LOAD_SCALE
;
2932 /* Amount of load we'd subtract */
2933 tmp
= sg_div_cpu_power(busiest
,
2934 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2936 pwr_move
+= busiest
->__cpu_power
*
2937 min(busiest_load_per_task
, max_load
- tmp
);
2939 /* Amount of load we'd add */
2940 if (max_load
* busiest
->__cpu_power
<
2941 busiest_load_per_task
* SCHED_LOAD_SCALE
)
2942 tmp
= sg_div_cpu_power(this,
2943 max_load
* busiest
->__cpu_power
);
2945 tmp
= sg_div_cpu_power(this,
2946 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2947 pwr_move
+= this->__cpu_power
*
2948 min(this_load_per_task
, this_load
+ tmp
);
2949 pwr_move
/= SCHED_LOAD_SCALE
;
2951 /* Move if we gain throughput */
2952 if (pwr_move
> pwr_now
)
2953 *imbalance
= busiest_load_per_task
;
2959 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2960 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2963 if (this == group_leader
&& group_leader
!= group_min
) {
2964 *imbalance
= min_load_per_task
;
2974 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2977 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
2978 unsigned long imbalance
, cpumask_t
*cpus
)
2980 struct rq
*busiest
= NULL
, *rq
;
2981 unsigned long max_load
= 0;
2984 for_each_cpu_mask(i
, group
->cpumask
) {
2987 if (!cpu_isset(i
, *cpus
))
2991 wl
= weighted_cpuload(i
);
2993 if (rq
->nr_running
== 1 && wl
> imbalance
)
2996 if (wl
> max_load
) {
3006 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3007 * so long as it is large enough.
3009 #define MAX_PINNED_INTERVAL 512
3012 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3013 * tasks if there is an imbalance.
3015 static int load_balance(int this_cpu
, struct rq
*this_rq
,
3016 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3019 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
3020 struct sched_group
*group
;
3021 unsigned long imbalance
;
3023 cpumask_t cpus
= CPU_MASK_ALL
;
3024 unsigned long flags
;
3027 * When power savings policy is enabled for the parent domain, idle
3028 * sibling can pick up load irrespective of busy siblings. In this case,
3029 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3030 * portraying it as CPU_NOT_IDLE.
3032 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3033 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3036 schedstat_inc(sd
, lb_count
[idle
]);
3039 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
3046 schedstat_inc(sd
, lb_nobusyg
[idle
]);
3050 busiest
= find_busiest_queue(group
, idle
, imbalance
, &cpus
);
3052 schedstat_inc(sd
, lb_nobusyq
[idle
]);
3056 BUG_ON(busiest
== this_rq
);
3058 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
3061 if (busiest
->nr_running
> 1) {
3063 * Attempt to move tasks. If find_busiest_group has found
3064 * an imbalance but busiest->nr_running <= 1, the group is
3065 * still unbalanced. ld_moved simply stays zero, so it is
3066 * correctly treated as an imbalance.
3068 local_irq_save(flags
);
3069 double_rq_lock(this_rq
, busiest
);
3070 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3071 imbalance
, sd
, idle
, &all_pinned
);
3072 double_rq_unlock(this_rq
, busiest
);
3073 local_irq_restore(flags
);
3076 * some other cpu did the load balance for us.
3078 if (ld_moved
&& this_cpu
!= smp_processor_id())
3079 resched_cpu(this_cpu
);
3081 /* All tasks on this runqueue were pinned by CPU affinity */
3082 if (unlikely(all_pinned
)) {
3083 cpu_clear(cpu_of(busiest
), cpus
);
3084 if (!cpus_empty(cpus
))
3091 schedstat_inc(sd
, lb_failed
[idle
]);
3092 sd
->nr_balance_failed
++;
3094 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
3096 spin_lock_irqsave(&busiest
->lock
, flags
);
3098 /* don't kick the migration_thread, if the curr
3099 * task on busiest cpu can't be moved to this_cpu
3101 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
3102 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3104 goto out_one_pinned
;
3107 if (!busiest
->active_balance
) {
3108 busiest
->active_balance
= 1;
3109 busiest
->push_cpu
= this_cpu
;
3112 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3114 wake_up_process(busiest
->migration_thread
);
3117 * We've kicked active balancing, reset the failure
3120 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
3123 sd
->nr_balance_failed
= 0;
3125 if (likely(!active_balance
)) {
3126 /* We were unbalanced, so reset the balancing interval */
3127 sd
->balance_interval
= sd
->min_interval
;
3130 * If we've begun active balancing, start to back off. This
3131 * case may not be covered by the all_pinned logic if there
3132 * is only 1 task on the busy runqueue (because we don't call
3135 if (sd
->balance_interval
< sd
->max_interval
)
3136 sd
->balance_interval
*= 2;
3139 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3140 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3145 schedstat_inc(sd
, lb_balanced
[idle
]);
3147 sd
->nr_balance_failed
= 0;
3150 /* tune up the balancing interval */
3151 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
3152 (sd
->balance_interval
< sd
->max_interval
))
3153 sd
->balance_interval
*= 2;
3155 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3156 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3162 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3163 * tasks if there is an imbalance.
3165 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3166 * this_rq is locked.
3169 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
3171 struct sched_group
*group
;
3172 struct rq
*busiest
= NULL
;
3173 unsigned long imbalance
;
3177 cpumask_t cpus
= CPU_MASK_ALL
;
3180 * When power savings policy is enabled for the parent domain, idle
3181 * sibling can pick up load irrespective of busy siblings. In this case,
3182 * let the state of idle sibling percolate up as IDLE, instead of
3183 * portraying it as CPU_NOT_IDLE.
3185 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
3186 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3189 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
3191 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
3192 &sd_idle
, &cpus
, NULL
);
3194 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
3198 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
,
3201 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
3205 BUG_ON(busiest
== this_rq
);
3207 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
3210 if (busiest
->nr_running
> 1) {
3211 /* Attempt to move tasks */
3212 double_lock_balance(this_rq
, busiest
);
3213 /* this_rq->clock is already updated */
3214 update_rq_clock(busiest
);
3215 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3216 imbalance
, sd
, CPU_NEWLY_IDLE
,
3218 spin_unlock(&busiest
->lock
);
3220 if (unlikely(all_pinned
)) {
3221 cpu_clear(cpu_of(busiest
), cpus
);
3222 if (!cpus_empty(cpus
))
3228 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
3229 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3230 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3233 sd
->nr_balance_failed
= 0;
3238 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
3239 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3240 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3242 sd
->nr_balance_failed
= 0;
3248 * idle_balance is called by schedule() if this_cpu is about to become
3249 * idle. Attempts to pull tasks from other CPUs.
3251 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
3253 struct sched_domain
*sd
;
3254 int pulled_task
= -1;
3255 unsigned long next_balance
= jiffies
+ HZ
;
3257 for_each_domain(this_cpu
, sd
) {
3258 unsigned long interval
;
3260 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3263 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
3264 /* If we've pulled tasks over stop searching: */
3265 pulled_task
= load_balance_newidle(this_cpu
,
3268 interval
= msecs_to_jiffies(sd
->balance_interval
);
3269 if (time_after(next_balance
, sd
->last_balance
+ interval
))
3270 next_balance
= sd
->last_balance
+ interval
;
3274 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
3276 * We are going idle. next_balance may be set based on
3277 * a busy processor. So reset next_balance.
3279 this_rq
->next_balance
= next_balance
;
3284 * active_load_balance is run by migration threads. It pushes running tasks
3285 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3286 * running on each physical CPU where possible, and avoids physical /
3287 * logical imbalances.
3289 * Called with busiest_rq locked.
3291 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
3293 int target_cpu
= busiest_rq
->push_cpu
;
3294 struct sched_domain
*sd
;
3295 struct rq
*target_rq
;
3297 /* Is there any task to move? */
3298 if (busiest_rq
->nr_running
<= 1)
3301 target_rq
= cpu_rq(target_cpu
);
3304 * This condition is "impossible", if it occurs
3305 * we need to fix it. Originally reported by
3306 * Bjorn Helgaas on a 128-cpu setup.
3308 BUG_ON(busiest_rq
== target_rq
);
3310 /* move a task from busiest_rq to target_rq */
3311 double_lock_balance(busiest_rq
, target_rq
);
3312 update_rq_clock(busiest_rq
);
3313 update_rq_clock(target_rq
);
3315 /* Search for an sd spanning us and the target CPU. */
3316 for_each_domain(target_cpu
, sd
) {
3317 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
3318 cpu_isset(busiest_cpu
, sd
->span
))
3323 schedstat_inc(sd
, alb_count
);
3325 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
3327 schedstat_inc(sd
, alb_pushed
);
3329 schedstat_inc(sd
, alb_failed
);
3331 spin_unlock(&target_rq
->lock
);
3336 atomic_t load_balancer
;
3338 } nohz ____cacheline_aligned
= {
3339 .load_balancer
= ATOMIC_INIT(-1),
3340 .cpu_mask
= CPU_MASK_NONE
,
3344 * This routine will try to nominate the ilb (idle load balancing)
3345 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3346 * load balancing on behalf of all those cpus. If all the cpus in the system
3347 * go into this tickless mode, then there will be no ilb owner (as there is
3348 * no need for one) and all the cpus will sleep till the next wakeup event
3351 * For the ilb owner, tick is not stopped. And this tick will be used
3352 * for idle load balancing. ilb owner will still be part of
3355 * While stopping the tick, this cpu will become the ilb owner if there
3356 * is no other owner. And will be the owner till that cpu becomes busy
3357 * or if all cpus in the system stop their ticks at which point
3358 * there is no need for ilb owner.
3360 * When the ilb owner becomes busy, it nominates another owner, during the
3361 * next busy scheduler_tick()
3363 int select_nohz_load_balancer(int stop_tick
)
3365 int cpu
= smp_processor_id();
3368 cpu_set(cpu
, nohz
.cpu_mask
);
3369 cpu_rq(cpu
)->in_nohz_recently
= 1;
3372 * If we are going offline and still the leader, give up!
3374 if (cpu_is_offline(cpu
) &&
3375 atomic_read(&nohz
.load_balancer
) == cpu
) {
3376 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3381 /* time for ilb owner also to sleep */
3382 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3383 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3384 atomic_set(&nohz
.load_balancer
, -1);
3388 if (atomic_read(&nohz
.load_balancer
) == -1) {
3389 /* make me the ilb owner */
3390 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
3392 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
3395 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
3398 cpu_clear(cpu
, nohz
.cpu_mask
);
3400 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3401 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3408 static DEFINE_SPINLOCK(balancing
);
3411 * It checks each scheduling domain to see if it is due to be balanced,
3412 * and initiates a balancing operation if so.
3414 * Balancing parameters are set up in arch_init_sched_domains.
3416 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3419 struct rq
*rq
= cpu_rq(cpu
);
3420 unsigned long interval
;
3421 struct sched_domain
*sd
;
3422 /* Earliest time when we have to do rebalance again */
3423 unsigned long next_balance
= jiffies
+ 60*HZ
;
3424 int update_next_balance
= 0;
3426 for_each_domain(cpu
, sd
) {
3427 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3430 interval
= sd
->balance_interval
;
3431 if (idle
!= CPU_IDLE
)
3432 interval
*= sd
->busy_factor
;
3434 /* scale ms to jiffies */
3435 interval
= msecs_to_jiffies(interval
);
3436 if (unlikely(!interval
))
3438 if (interval
> HZ
*NR_CPUS
/10)
3439 interval
= HZ
*NR_CPUS
/10;
3442 if (sd
->flags
& SD_SERIALIZE
) {
3443 if (!spin_trylock(&balancing
))
3447 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3448 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
3450 * We've pulled tasks over so either we're no
3451 * longer idle, or one of our SMT siblings is
3454 idle
= CPU_NOT_IDLE
;
3456 sd
->last_balance
= jiffies
;
3458 if (sd
->flags
& SD_SERIALIZE
)
3459 spin_unlock(&balancing
);
3461 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3462 next_balance
= sd
->last_balance
+ interval
;
3463 update_next_balance
= 1;
3467 * Stop the load balance at this level. There is another
3468 * CPU in our sched group which is doing load balancing more
3476 * next_balance will be updated only when there is a need.
3477 * When the cpu is attached to null domain for ex, it will not be
3480 if (likely(update_next_balance
))
3481 rq
->next_balance
= next_balance
;
3485 * run_rebalance_domains is triggered when needed from the scheduler tick.
3486 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3487 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3489 static void run_rebalance_domains(struct softirq_action
*h
)
3491 int this_cpu
= smp_processor_id();
3492 struct rq
*this_rq
= cpu_rq(this_cpu
);
3493 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
3494 CPU_IDLE
: CPU_NOT_IDLE
;
3496 rebalance_domains(this_cpu
, idle
);
3500 * If this cpu is the owner for idle load balancing, then do the
3501 * balancing on behalf of the other idle cpus whose ticks are
3504 if (this_rq
->idle_at_tick
&&
3505 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
3506 cpumask_t cpus
= nohz
.cpu_mask
;
3510 cpu_clear(this_cpu
, cpus
);
3511 for_each_cpu_mask(balance_cpu
, cpus
) {
3513 * If this cpu gets work to do, stop the load balancing
3514 * work being done for other cpus. Next load
3515 * balancing owner will pick it up.
3520 rebalance_domains(balance_cpu
, CPU_IDLE
);
3522 rq
= cpu_rq(balance_cpu
);
3523 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3524 this_rq
->next_balance
= rq
->next_balance
;
3531 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3533 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3534 * idle load balancing owner or decide to stop the periodic load balancing,
3535 * if the whole system is idle.
3537 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
3541 * If we were in the nohz mode recently and busy at the current
3542 * scheduler tick, then check if we need to nominate new idle
3545 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
3546 rq
->in_nohz_recently
= 0;
3548 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
3549 cpu_clear(cpu
, nohz
.cpu_mask
);
3550 atomic_set(&nohz
.load_balancer
, -1);
3553 if (atomic_read(&nohz
.load_balancer
) == -1) {
3555 * simple selection for now: Nominate the
3556 * first cpu in the nohz list to be the next
3559 * TBD: Traverse the sched domains and nominate
3560 * the nearest cpu in the nohz.cpu_mask.
3562 int ilb
= first_cpu(nohz
.cpu_mask
);
3570 * If this cpu is idle and doing idle load balancing for all the
3571 * cpus with ticks stopped, is it time for that to stop?
3573 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
3574 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3580 * If this cpu is idle and the idle load balancing is done by
3581 * someone else, then no need raise the SCHED_SOFTIRQ
3583 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
3584 cpu_isset(cpu
, nohz
.cpu_mask
))
3587 if (time_after_eq(jiffies
, rq
->next_balance
))
3588 raise_softirq(SCHED_SOFTIRQ
);
3591 #else /* CONFIG_SMP */
3594 * on UP we do not need to balance between CPUs:
3596 static inline void idle_balance(int cpu
, struct rq
*rq
)
3602 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3604 EXPORT_PER_CPU_SYMBOL(kstat
);
3607 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3608 * that have not yet been banked in case the task is currently running.
3610 unsigned long long task_sched_runtime(struct task_struct
*p
)
3612 unsigned long flags
;
3616 rq
= task_rq_lock(p
, &flags
);
3617 ns
= p
->se
.sum_exec_runtime
;
3618 if (task_current(rq
, p
)) {
3619 update_rq_clock(rq
);
3620 delta_exec
= rq
->clock
- p
->se
.exec_start
;
3621 if ((s64
)delta_exec
> 0)
3624 task_rq_unlock(rq
, &flags
);
3630 * Account user cpu time to a process.
3631 * @p: the process that the cpu time gets accounted to
3632 * @cputime: the cpu time spent in user space since the last update
3634 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
3636 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3639 p
->utime
= cputime_add(p
->utime
, cputime
);
3641 /* Add user time to cpustat. */
3642 tmp
= cputime_to_cputime64(cputime
);
3643 if (TASK_NICE(p
) > 0)
3644 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3646 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3650 * Account guest cpu time to a process.
3651 * @p: the process that the cpu time gets accounted to
3652 * @cputime: the cpu time spent in virtual machine since the last update
3654 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
)
3657 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3659 tmp
= cputime_to_cputime64(cputime
);
3661 p
->utime
= cputime_add(p
->utime
, cputime
);
3662 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3664 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3665 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3669 * Account scaled user cpu time to a process.
3670 * @p: the process that the cpu time gets accounted to
3671 * @cputime: the cpu time spent in user space since the last update
3673 void account_user_time_scaled(struct task_struct
*p
, cputime_t cputime
)
3675 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime
);
3679 * Account system cpu time to a process.
3680 * @p: the process that the cpu time gets accounted to
3681 * @hardirq_offset: the offset to subtract from hardirq_count()
3682 * @cputime: the cpu time spent in kernel space since the last update
3684 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3687 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3688 struct rq
*rq
= this_rq();
3691 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0))
3692 return account_guest_time(p
, cputime
);
3694 p
->stime
= cputime_add(p
->stime
, cputime
);
3696 /* Add system time to cpustat. */
3697 tmp
= cputime_to_cputime64(cputime
);
3698 if (hardirq_count() - hardirq_offset
)
3699 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3700 else if (softirq_count())
3701 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3702 else if (p
!= rq
->idle
)
3703 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3704 else if (atomic_read(&rq
->nr_iowait
) > 0)
3705 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3707 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3708 /* Account for system time used */
3709 acct_update_integrals(p
);
3713 * Account scaled system cpu time to a process.
3714 * @p: the process that the cpu time gets accounted to
3715 * @hardirq_offset: the offset to subtract from hardirq_count()
3716 * @cputime: the cpu time spent in kernel space since the last update
3718 void account_system_time_scaled(struct task_struct
*p
, cputime_t cputime
)
3720 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime
);
3724 * Account for involuntary wait time.
3725 * @p: the process from which the cpu time has been stolen
3726 * @steal: the cpu time spent in involuntary wait
3728 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
3730 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3731 cputime64_t tmp
= cputime_to_cputime64(steal
);
3732 struct rq
*rq
= this_rq();
3734 if (p
== rq
->idle
) {
3735 p
->stime
= cputime_add(p
->stime
, steal
);
3736 if (atomic_read(&rq
->nr_iowait
) > 0)
3737 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3739 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3741 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
3745 * This function gets called by the timer code, with HZ frequency.
3746 * We call it with interrupts disabled.
3748 * It also gets called by the fork code, when changing the parent's
3751 void scheduler_tick(void)
3753 int cpu
= smp_processor_id();
3754 struct rq
*rq
= cpu_rq(cpu
);
3755 struct task_struct
*curr
= rq
->curr
;
3756 u64 next_tick
= rq
->tick_timestamp
+ TICK_NSEC
;
3758 spin_lock(&rq
->lock
);
3759 __update_rq_clock(rq
);
3761 * Let rq->clock advance by at least TICK_NSEC:
3763 if (unlikely(rq
->clock
< next_tick
)) {
3764 rq
->clock
= next_tick
;
3765 rq
->clock_underflows
++;
3767 rq
->tick_timestamp
= rq
->clock
;
3768 update_cpu_load(rq
);
3769 curr
->sched_class
->task_tick(rq
, curr
, 0);
3770 update_sched_rt_period(rq
);
3771 spin_unlock(&rq
->lock
);
3774 rq
->idle_at_tick
= idle_cpu(cpu
);
3775 trigger_load_balance(rq
, cpu
);
3779 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3781 void __kprobes
add_preempt_count(int val
)
3786 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3788 preempt_count() += val
;
3790 * Spinlock count overflowing soon?
3792 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3795 EXPORT_SYMBOL(add_preempt_count
);
3797 void __kprobes
sub_preempt_count(int val
)
3802 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3805 * Is the spinlock portion underflowing?
3807 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3808 !(preempt_count() & PREEMPT_MASK
)))
3811 preempt_count() -= val
;
3813 EXPORT_SYMBOL(sub_preempt_count
);
3818 * Print scheduling while atomic bug:
3820 static noinline
void __schedule_bug(struct task_struct
*prev
)
3822 struct pt_regs
*regs
= get_irq_regs();
3824 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
3825 prev
->comm
, prev
->pid
, preempt_count());
3827 debug_show_held_locks(prev
);
3828 if (irqs_disabled())
3829 print_irqtrace_events(prev
);
3838 * Various schedule()-time debugging checks and statistics:
3840 static inline void schedule_debug(struct task_struct
*prev
)
3843 * Test if we are atomic. Since do_exit() needs to call into
3844 * schedule() atomically, we ignore that path for now.
3845 * Otherwise, whine if we are scheduling when we should not be.
3847 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev
->exit_state
))
3848 __schedule_bug(prev
);
3850 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3852 schedstat_inc(this_rq(), sched_count
);
3853 #ifdef CONFIG_SCHEDSTATS
3854 if (unlikely(prev
->lock_depth
>= 0)) {
3855 schedstat_inc(this_rq(), bkl_count
);
3856 schedstat_inc(prev
, sched_info
.bkl_count
);
3862 * Pick up the highest-prio task:
3864 static inline struct task_struct
*
3865 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
3867 const struct sched_class
*class;
3868 struct task_struct
*p
;
3871 * Optimization: we know that if all tasks are in
3872 * the fair class we can call that function directly:
3874 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3875 p
= fair_sched_class
.pick_next_task(rq
);
3880 class = sched_class_highest
;
3882 p
= class->pick_next_task(rq
);
3886 * Will never be NULL as the idle class always
3887 * returns a non-NULL p:
3889 class = class->next
;
3894 * schedule() is the main scheduler function.
3896 asmlinkage
void __sched
schedule(void)
3898 struct task_struct
*prev
, *next
;
3899 unsigned long *switch_count
;
3905 cpu
= smp_processor_id();
3909 switch_count
= &prev
->nivcsw
;
3911 release_kernel_lock(prev
);
3912 need_resched_nonpreemptible
:
3914 schedule_debug(prev
);
3919 * Do the rq-clock update outside the rq lock:
3921 local_irq_disable();
3922 __update_rq_clock(rq
);
3923 spin_lock(&rq
->lock
);
3924 clear_tsk_need_resched(prev
);
3926 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3927 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
3928 signal_pending(prev
))) {
3929 prev
->state
= TASK_RUNNING
;
3931 deactivate_task(rq
, prev
, 1);
3933 switch_count
= &prev
->nvcsw
;
3937 if (prev
->sched_class
->pre_schedule
)
3938 prev
->sched_class
->pre_schedule(rq
, prev
);
3941 if (unlikely(!rq
->nr_running
))
3942 idle_balance(cpu
, rq
);
3944 prev
->sched_class
->put_prev_task(rq
, prev
);
3945 next
= pick_next_task(rq
, prev
);
3947 sched_info_switch(prev
, next
);
3949 if (likely(prev
!= next
)) {
3954 context_switch(rq
, prev
, next
); /* unlocks the rq */
3956 * the context switch might have flipped the stack from under
3957 * us, hence refresh the local variables.
3959 cpu
= smp_processor_id();
3962 spin_unlock_irq(&rq
->lock
);
3966 if (unlikely(reacquire_kernel_lock(current
) < 0))
3967 goto need_resched_nonpreemptible
;
3969 preempt_enable_no_resched();
3970 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3973 EXPORT_SYMBOL(schedule
);
3975 #ifdef CONFIG_PREEMPT
3977 * this is the entry point to schedule() from in-kernel preemption
3978 * off of preempt_enable. Kernel preemptions off return from interrupt
3979 * occur there and call schedule directly.
3981 asmlinkage
void __sched
preempt_schedule(void)
3983 struct thread_info
*ti
= current_thread_info();
3984 struct task_struct
*task
= current
;
3985 int saved_lock_depth
;
3988 * If there is a non-zero preempt_count or interrupts are disabled,
3989 * we do not want to preempt the current task. Just return..
3991 if (likely(ti
->preempt_count
|| irqs_disabled()))
3995 add_preempt_count(PREEMPT_ACTIVE
);
3998 * We keep the big kernel semaphore locked, but we
3999 * clear ->lock_depth so that schedule() doesnt
4000 * auto-release the semaphore:
4002 saved_lock_depth
= task
->lock_depth
;
4003 task
->lock_depth
= -1;
4005 task
->lock_depth
= saved_lock_depth
;
4006 sub_preempt_count(PREEMPT_ACTIVE
);
4009 * Check again in case we missed a preemption opportunity
4010 * between schedule and now.
4013 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4015 EXPORT_SYMBOL(preempt_schedule
);
4018 * this is the entry point to schedule() from kernel preemption
4019 * off of irq context.
4020 * Note, that this is called and return with irqs disabled. This will
4021 * protect us against recursive calling from irq.
4023 asmlinkage
void __sched
preempt_schedule_irq(void)
4025 struct thread_info
*ti
= current_thread_info();
4026 struct task_struct
*task
= current
;
4027 int saved_lock_depth
;
4029 /* Catch callers which need to be fixed */
4030 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4033 add_preempt_count(PREEMPT_ACTIVE
);
4036 * We keep the big kernel semaphore locked, but we
4037 * clear ->lock_depth so that schedule() doesnt
4038 * auto-release the semaphore:
4040 saved_lock_depth
= task
->lock_depth
;
4041 task
->lock_depth
= -1;
4044 local_irq_disable();
4045 task
->lock_depth
= saved_lock_depth
;
4046 sub_preempt_count(PREEMPT_ACTIVE
);
4049 * Check again in case we missed a preemption opportunity
4050 * between schedule and now.
4053 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4056 #endif /* CONFIG_PREEMPT */
4058 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
4061 return try_to_wake_up(curr
->private, mode
, sync
);
4063 EXPORT_SYMBOL(default_wake_function
);
4066 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4067 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4068 * number) then we wake all the non-exclusive tasks and one exclusive task.
4070 * There are circumstances in which we can try to wake a task which has already
4071 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4072 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4074 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4075 int nr_exclusive
, int sync
, void *key
)
4077 wait_queue_t
*curr
, *next
;
4079 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4080 unsigned flags
= curr
->flags
;
4082 if (curr
->func(curr
, mode
, sync
, key
) &&
4083 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4089 * __wake_up - wake up threads blocked on a waitqueue.
4091 * @mode: which threads
4092 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4093 * @key: is directly passed to the wakeup function
4095 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4096 int nr_exclusive
, void *key
)
4098 unsigned long flags
;
4100 spin_lock_irqsave(&q
->lock
, flags
);
4101 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4102 spin_unlock_irqrestore(&q
->lock
, flags
);
4104 EXPORT_SYMBOL(__wake_up
);
4107 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4109 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4111 __wake_up_common(q
, mode
, 1, 0, NULL
);
4115 * __wake_up_sync - wake up threads blocked on a waitqueue.
4117 * @mode: which threads
4118 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4120 * The sync wakeup differs that the waker knows that it will schedule
4121 * away soon, so while the target thread will be woken up, it will not
4122 * be migrated to another CPU - ie. the two threads are 'synchronized'
4123 * with each other. This can prevent needless bouncing between CPUs.
4125 * On UP it can prevent extra preemption.
4128 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4130 unsigned long flags
;
4136 if (unlikely(!nr_exclusive
))
4139 spin_lock_irqsave(&q
->lock
, flags
);
4140 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
4141 spin_unlock_irqrestore(&q
->lock
, flags
);
4143 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4145 void complete(struct completion
*x
)
4147 unsigned long flags
;
4149 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4151 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4152 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4154 EXPORT_SYMBOL(complete
);
4156 void complete_all(struct completion
*x
)
4158 unsigned long flags
;
4160 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4161 x
->done
+= UINT_MAX
/2;
4162 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4163 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4165 EXPORT_SYMBOL(complete_all
);
4167 static inline long __sched
4168 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4171 DECLARE_WAITQUEUE(wait
, current
);
4173 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
4174 __add_wait_queue_tail(&x
->wait
, &wait
);
4176 if ((state
== TASK_INTERRUPTIBLE
&&
4177 signal_pending(current
)) ||
4178 (state
== TASK_KILLABLE
&&
4179 fatal_signal_pending(current
))) {
4180 __remove_wait_queue(&x
->wait
, &wait
);
4181 return -ERESTARTSYS
;
4183 __set_current_state(state
);
4184 spin_unlock_irq(&x
->wait
.lock
);
4185 timeout
= schedule_timeout(timeout
);
4186 spin_lock_irq(&x
->wait
.lock
);
4188 __remove_wait_queue(&x
->wait
, &wait
);
4192 __remove_wait_queue(&x
->wait
, &wait
);
4199 wait_for_common(struct completion
*x
, long timeout
, int state
)
4203 spin_lock_irq(&x
->wait
.lock
);
4204 timeout
= do_wait_for_common(x
, timeout
, state
);
4205 spin_unlock_irq(&x
->wait
.lock
);
4209 void __sched
wait_for_completion(struct completion
*x
)
4211 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4213 EXPORT_SYMBOL(wait_for_completion
);
4215 unsigned long __sched
4216 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4218 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4220 EXPORT_SYMBOL(wait_for_completion_timeout
);
4222 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4224 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4225 if (t
== -ERESTARTSYS
)
4229 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4231 unsigned long __sched
4232 wait_for_completion_interruptible_timeout(struct completion
*x
,
4233 unsigned long timeout
)
4235 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4237 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4239 int __sched
wait_for_completion_killable(struct completion
*x
)
4241 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4242 if (t
== -ERESTARTSYS
)
4246 EXPORT_SYMBOL(wait_for_completion_killable
);
4249 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4251 unsigned long flags
;
4254 init_waitqueue_entry(&wait
, current
);
4256 __set_current_state(state
);
4258 spin_lock_irqsave(&q
->lock
, flags
);
4259 __add_wait_queue(q
, &wait
);
4260 spin_unlock(&q
->lock
);
4261 timeout
= schedule_timeout(timeout
);
4262 spin_lock_irq(&q
->lock
);
4263 __remove_wait_queue(q
, &wait
);
4264 spin_unlock_irqrestore(&q
->lock
, flags
);
4269 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4271 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4273 EXPORT_SYMBOL(interruptible_sleep_on
);
4276 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4278 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4280 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4282 void __sched
sleep_on(wait_queue_head_t
*q
)
4284 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4286 EXPORT_SYMBOL(sleep_on
);
4288 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4290 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4292 EXPORT_SYMBOL(sleep_on_timeout
);
4294 #ifdef CONFIG_RT_MUTEXES
4297 * rt_mutex_setprio - set the current priority of a task
4299 * @prio: prio value (kernel-internal form)
4301 * This function changes the 'effective' priority of a task. It does
4302 * not touch ->normal_prio like __setscheduler().
4304 * Used by the rt_mutex code to implement priority inheritance logic.
4306 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4308 unsigned long flags
;
4309 int oldprio
, on_rq
, running
;
4311 const struct sched_class
*prev_class
= p
->sched_class
;
4313 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4315 rq
= task_rq_lock(p
, &flags
);
4316 update_rq_clock(rq
);
4319 on_rq
= p
->se
.on_rq
;
4320 running
= task_current(rq
, p
);
4322 dequeue_task(rq
, p
, 0);
4324 p
->sched_class
->put_prev_task(rq
, p
);
4327 p
->sched_class
= &rt_sched_class
;
4329 p
->sched_class
= &fair_sched_class
;
4334 p
->sched_class
->set_curr_task(rq
);
4336 enqueue_task(rq
, p
, 0);
4338 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4340 task_rq_unlock(rq
, &flags
);
4345 void set_user_nice(struct task_struct
*p
, long nice
)
4347 int old_prio
, delta
, on_rq
;
4348 unsigned long flags
;
4351 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4354 * We have to be careful, if called from sys_setpriority(),
4355 * the task might be in the middle of scheduling on another CPU.
4357 rq
= task_rq_lock(p
, &flags
);
4358 update_rq_clock(rq
);
4360 * The RT priorities are set via sched_setscheduler(), but we still
4361 * allow the 'normal' nice value to be set - but as expected
4362 * it wont have any effect on scheduling until the task is
4363 * SCHED_FIFO/SCHED_RR:
4365 if (task_has_rt_policy(p
)) {
4366 p
->static_prio
= NICE_TO_PRIO(nice
);
4369 on_rq
= p
->se
.on_rq
;
4371 dequeue_task(rq
, p
, 0);
4375 p
->static_prio
= NICE_TO_PRIO(nice
);
4378 p
->prio
= effective_prio(p
);
4379 delta
= p
->prio
- old_prio
;
4382 enqueue_task(rq
, p
, 0);
4385 * If the task increased its priority or is running and
4386 * lowered its priority, then reschedule its CPU:
4388 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4389 resched_task(rq
->curr
);
4392 task_rq_unlock(rq
, &flags
);
4394 EXPORT_SYMBOL(set_user_nice
);
4397 * can_nice - check if a task can reduce its nice value
4401 int can_nice(const struct task_struct
*p
, const int nice
)
4403 /* convert nice value [19,-20] to rlimit style value [1,40] */
4404 int nice_rlim
= 20 - nice
;
4406 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
4407 capable(CAP_SYS_NICE
));
4410 #ifdef __ARCH_WANT_SYS_NICE
4413 * sys_nice - change the priority of the current process.
4414 * @increment: priority increment
4416 * sys_setpriority is a more generic, but much slower function that
4417 * does similar things.
4419 asmlinkage
long sys_nice(int increment
)
4424 * Setpriority might change our priority at the same moment.
4425 * We don't have to worry. Conceptually one call occurs first
4426 * and we have a single winner.
4428 if (increment
< -40)
4433 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
4439 if (increment
< 0 && !can_nice(current
, nice
))
4442 retval
= security_task_setnice(current
, nice
);
4446 set_user_nice(current
, nice
);
4453 * task_prio - return the priority value of a given task.
4454 * @p: the task in question.
4456 * This is the priority value as seen by users in /proc.
4457 * RT tasks are offset by -200. Normal tasks are centered
4458 * around 0, value goes from -16 to +15.
4460 int task_prio(const struct task_struct
*p
)
4462 return p
->prio
- MAX_RT_PRIO
;
4466 * task_nice - return the nice value of a given task.
4467 * @p: the task in question.
4469 int task_nice(const struct task_struct
*p
)
4471 return TASK_NICE(p
);
4473 EXPORT_SYMBOL(task_nice
);
4476 * idle_cpu - is a given cpu idle currently?
4477 * @cpu: the processor in question.
4479 int idle_cpu(int cpu
)
4481 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4485 * idle_task - return the idle task for a given cpu.
4486 * @cpu: the processor in question.
4488 struct task_struct
*idle_task(int cpu
)
4490 return cpu_rq(cpu
)->idle
;
4494 * find_process_by_pid - find a process with a matching PID value.
4495 * @pid: the pid in question.
4497 static struct task_struct
*find_process_by_pid(pid_t pid
)
4499 return pid
? find_task_by_vpid(pid
) : current
;
4502 /* Actually do priority change: must hold rq lock. */
4504 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4506 BUG_ON(p
->se
.on_rq
);
4509 switch (p
->policy
) {
4513 p
->sched_class
= &fair_sched_class
;
4517 p
->sched_class
= &rt_sched_class
;
4521 p
->rt_priority
= prio
;
4522 p
->normal_prio
= normal_prio(p
);
4523 /* we are holding p->pi_lock already */
4524 p
->prio
= rt_mutex_getprio(p
);
4529 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4530 * @p: the task in question.
4531 * @policy: new policy.
4532 * @param: structure containing the new RT priority.
4534 * NOTE that the task may be already dead.
4536 int sched_setscheduler(struct task_struct
*p
, int policy
,
4537 struct sched_param
*param
)
4539 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4540 unsigned long flags
;
4541 const struct sched_class
*prev_class
= p
->sched_class
;
4544 /* may grab non-irq protected spin_locks */
4545 BUG_ON(in_interrupt());
4547 /* double check policy once rq lock held */
4549 policy
= oldpolicy
= p
->policy
;
4550 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4551 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4552 policy
!= SCHED_IDLE
)
4555 * Valid priorities for SCHED_FIFO and SCHED_RR are
4556 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4557 * SCHED_BATCH and SCHED_IDLE is 0.
4559 if (param
->sched_priority
< 0 ||
4560 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4561 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4563 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4567 * Allow unprivileged RT tasks to decrease priority:
4569 if (!capable(CAP_SYS_NICE
)) {
4570 if (rt_policy(policy
)) {
4571 unsigned long rlim_rtprio
;
4573 if (!lock_task_sighand(p
, &flags
))
4575 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
4576 unlock_task_sighand(p
, &flags
);
4578 /* can't set/change the rt policy */
4579 if (policy
!= p
->policy
&& !rlim_rtprio
)
4582 /* can't increase priority */
4583 if (param
->sched_priority
> p
->rt_priority
&&
4584 param
->sched_priority
> rlim_rtprio
)
4588 * Like positive nice levels, dont allow tasks to
4589 * move out of SCHED_IDLE either:
4591 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4594 /* can't change other user's priorities */
4595 if ((current
->euid
!= p
->euid
) &&
4596 (current
->euid
!= p
->uid
))
4600 #ifdef CONFIG_RT_GROUP_SCHED
4602 * Do not allow realtime tasks into groups that have no runtime
4605 if (rt_policy(policy
) && task_group(p
)->rt_runtime
== 0)
4609 retval
= security_task_setscheduler(p
, policy
, param
);
4613 * make sure no PI-waiters arrive (or leave) while we are
4614 * changing the priority of the task:
4616 spin_lock_irqsave(&p
->pi_lock
, flags
);
4618 * To be able to change p->policy safely, the apropriate
4619 * runqueue lock must be held.
4621 rq
= __task_rq_lock(p
);
4622 /* recheck policy now with rq lock held */
4623 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4624 policy
= oldpolicy
= -1;
4625 __task_rq_unlock(rq
);
4626 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4629 update_rq_clock(rq
);
4630 on_rq
= p
->se
.on_rq
;
4631 running
= task_current(rq
, p
);
4633 deactivate_task(rq
, p
, 0);
4635 p
->sched_class
->put_prev_task(rq
, p
);
4638 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4641 p
->sched_class
->set_curr_task(rq
);
4643 activate_task(rq
, p
, 0);
4645 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4647 __task_rq_unlock(rq
);
4648 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4650 rt_mutex_adjust_pi(p
);
4654 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4657 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4659 struct sched_param lparam
;
4660 struct task_struct
*p
;
4663 if (!param
|| pid
< 0)
4665 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4670 p
= find_process_by_pid(pid
);
4672 retval
= sched_setscheduler(p
, policy
, &lparam
);
4679 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4680 * @pid: the pid in question.
4681 * @policy: new policy.
4682 * @param: structure containing the new RT priority.
4685 sys_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4687 /* negative values for policy are not valid */
4691 return do_sched_setscheduler(pid
, policy
, param
);
4695 * sys_sched_setparam - set/change the RT priority of a thread
4696 * @pid: the pid in question.
4697 * @param: structure containing the new RT priority.
4699 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
4701 return do_sched_setscheduler(pid
, -1, param
);
4705 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4706 * @pid: the pid in question.
4708 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
4710 struct task_struct
*p
;
4717 read_lock(&tasklist_lock
);
4718 p
= find_process_by_pid(pid
);
4720 retval
= security_task_getscheduler(p
);
4724 read_unlock(&tasklist_lock
);
4729 * sys_sched_getscheduler - get the RT priority of a thread
4730 * @pid: the pid in question.
4731 * @param: structure containing the RT priority.
4733 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
4735 struct sched_param lp
;
4736 struct task_struct
*p
;
4739 if (!param
|| pid
< 0)
4742 read_lock(&tasklist_lock
);
4743 p
= find_process_by_pid(pid
);
4748 retval
= security_task_getscheduler(p
);
4752 lp
.sched_priority
= p
->rt_priority
;
4753 read_unlock(&tasklist_lock
);
4756 * This one might sleep, we cannot do it with a spinlock held ...
4758 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4763 read_unlock(&tasklist_lock
);
4767 long sched_setaffinity(pid_t pid
, cpumask_t new_mask
)
4769 cpumask_t cpus_allowed
;
4770 struct task_struct
*p
;
4774 read_lock(&tasklist_lock
);
4776 p
= find_process_by_pid(pid
);
4778 read_unlock(&tasklist_lock
);
4784 * It is not safe to call set_cpus_allowed with the
4785 * tasklist_lock held. We will bump the task_struct's
4786 * usage count and then drop tasklist_lock.
4789 read_unlock(&tasklist_lock
);
4792 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
4793 !capable(CAP_SYS_NICE
))
4796 retval
= security_task_setscheduler(p
, 0, NULL
);
4800 cpus_allowed
= cpuset_cpus_allowed(p
);
4801 cpus_and(new_mask
, new_mask
, cpus_allowed
);
4803 retval
= set_cpus_allowed(p
, new_mask
);
4806 cpus_allowed
= cpuset_cpus_allowed(p
);
4807 if (!cpus_subset(new_mask
, cpus_allowed
)) {
4809 * We must have raced with a concurrent cpuset
4810 * update. Just reset the cpus_allowed to the
4811 * cpuset's cpus_allowed
4813 new_mask
= cpus_allowed
;
4823 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4824 cpumask_t
*new_mask
)
4826 if (len
< sizeof(cpumask_t
)) {
4827 memset(new_mask
, 0, sizeof(cpumask_t
));
4828 } else if (len
> sizeof(cpumask_t
)) {
4829 len
= sizeof(cpumask_t
);
4831 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4835 * sys_sched_setaffinity - set the cpu affinity of a process
4836 * @pid: pid of the process
4837 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4838 * @user_mask_ptr: user-space pointer to the new cpu mask
4840 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
4841 unsigned long __user
*user_mask_ptr
)
4846 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
4850 return sched_setaffinity(pid
, new_mask
);
4854 * Represents all cpu's present in the system
4855 * In systems capable of hotplug, this map could dynamically grow
4856 * as new cpu's are detected in the system via any platform specific
4857 * method, such as ACPI for e.g.
4860 cpumask_t cpu_present_map __read_mostly
;
4861 EXPORT_SYMBOL(cpu_present_map
);
4864 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
4865 EXPORT_SYMBOL(cpu_online_map
);
4867 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
4868 EXPORT_SYMBOL(cpu_possible_map
);
4871 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
4873 struct task_struct
*p
;
4877 read_lock(&tasklist_lock
);
4880 p
= find_process_by_pid(pid
);
4884 retval
= security_task_getscheduler(p
);
4888 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
4891 read_unlock(&tasklist_lock
);
4898 * sys_sched_getaffinity - get the cpu affinity of a process
4899 * @pid: pid of the process
4900 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4901 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4903 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
4904 unsigned long __user
*user_mask_ptr
)
4909 if (len
< sizeof(cpumask_t
))
4912 ret
= sched_getaffinity(pid
, &mask
);
4916 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
4919 return sizeof(cpumask_t
);
4923 * sys_sched_yield - yield the current processor to other threads.
4925 * This function yields the current CPU to other tasks. If there are no
4926 * other threads running on this CPU then this function will return.
4928 asmlinkage
long sys_sched_yield(void)
4930 struct rq
*rq
= this_rq_lock();
4932 schedstat_inc(rq
, yld_count
);
4933 current
->sched_class
->yield_task(rq
);
4936 * Since we are going to call schedule() anyway, there's
4937 * no need to preempt or enable interrupts:
4939 __release(rq
->lock
);
4940 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4941 _raw_spin_unlock(&rq
->lock
);
4942 preempt_enable_no_resched();
4949 static void __cond_resched(void)
4951 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4952 __might_sleep(__FILE__
, __LINE__
);
4955 * The BKS might be reacquired before we have dropped
4956 * PREEMPT_ACTIVE, which could trigger a second
4957 * cond_resched() call.
4960 add_preempt_count(PREEMPT_ACTIVE
);
4962 sub_preempt_count(PREEMPT_ACTIVE
);
4963 } while (need_resched());
4966 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
4967 int __sched
_cond_resched(void)
4969 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
4970 system_state
== SYSTEM_RUNNING
) {
4976 EXPORT_SYMBOL(_cond_resched
);
4980 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4981 * call schedule, and on return reacquire the lock.
4983 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4984 * operations here to prevent schedule() from being called twice (once via
4985 * spin_unlock(), once by hand).
4987 int cond_resched_lock(spinlock_t
*lock
)
4989 int resched
= need_resched() && system_state
== SYSTEM_RUNNING
;
4992 if (spin_needbreak(lock
) || resched
) {
4994 if (resched
&& need_resched())
5003 EXPORT_SYMBOL(cond_resched_lock
);
5005 int __sched
cond_resched_softirq(void)
5007 BUG_ON(!in_softirq());
5009 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
5017 EXPORT_SYMBOL(cond_resched_softirq
);
5020 * yield - yield the current processor to other threads.
5022 * This is a shortcut for kernel-space yielding - it marks the
5023 * thread runnable and calls sys_sched_yield().
5025 void __sched
yield(void)
5027 set_current_state(TASK_RUNNING
);
5030 EXPORT_SYMBOL(yield
);
5033 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5034 * that process accounting knows that this is a task in IO wait state.
5036 * But don't do that if it is a deliberate, throttling IO wait (this task
5037 * has set its backing_dev_info: the queue against which it should throttle)
5039 void __sched
io_schedule(void)
5041 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5043 delayacct_blkio_start();
5044 atomic_inc(&rq
->nr_iowait
);
5046 atomic_dec(&rq
->nr_iowait
);
5047 delayacct_blkio_end();
5049 EXPORT_SYMBOL(io_schedule
);
5051 long __sched
io_schedule_timeout(long timeout
)
5053 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5056 delayacct_blkio_start();
5057 atomic_inc(&rq
->nr_iowait
);
5058 ret
= schedule_timeout(timeout
);
5059 atomic_dec(&rq
->nr_iowait
);
5060 delayacct_blkio_end();
5065 * sys_sched_get_priority_max - return maximum RT priority.
5066 * @policy: scheduling class.
5068 * this syscall returns the maximum rt_priority that can be used
5069 * by a given scheduling class.
5071 asmlinkage
long sys_sched_get_priority_max(int policy
)
5078 ret
= MAX_USER_RT_PRIO
-1;
5090 * sys_sched_get_priority_min - return minimum RT priority.
5091 * @policy: scheduling class.
5093 * this syscall returns the minimum rt_priority that can be used
5094 * by a given scheduling class.
5096 asmlinkage
long sys_sched_get_priority_min(int policy
)
5114 * sys_sched_rr_get_interval - return the default timeslice of a process.
5115 * @pid: pid of the process.
5116 * @interval: userspace pointer to the timeslice value.
5118 * this syscall writes the default timeslice value of a given process
5119 * into the user-space timespec buffer. A value of '0' means infinity.
5122 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
5124 struct task_struct
*p
;
5125 unsigned int time_slice
;
5133 read_lock(&tasklist_lock
);
5134 p
= find_process_by_pid(pid
);
5138 retval
= security_task_getscheduler(p
);
5143 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5144 * tasks that are on an otherwise idle runqueue:
5147 if (p
->policy
== SCHED_RR
) {
5148 time_slice
= DEF_TIMESLICE
;
5149 } else if (p
->policy
!= SCHED_FIFO
) {
5150 struct sched_entity
*se
= &p
->se
;
5151 unsigned long flags
;
5154 rq
= task_rq_lock(p
, &flags
);
5155 if (rq
->cfs
.load
.weight
)
5156 time_slice
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
5157 task_rq_unlock(rq
, &flags
);
5159 read_unlock(&tasklist_lock
);
5160 jiffies_to_timespec(time_slice
, &t
);
5161 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5165 read_unlock(&tasklist_lock
);
5169 static const char stat_nam
[] = "RSDTtZX";
5171 void sched_show_task(struct task_struct
*p
)
5173 unsigned long free
= 0;
5176 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5177 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
5178 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5179 #if BITS_PER_LONG == 32
5180 if (state
== TASK_RUNNING
)
5181 printk(KERN_CONT
" running ");
5183 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5185 if (state
== TASK_RUNNING
)
5186 printk(KERN_CONT
" running task ");
5188 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5190 #ifdef CONFIG_DEBUG_STACK_USAGE
5192 unsigned long *n
= end_of_stack(p
);
5195 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
5198 printk(KERN_CONT
"%5lu %5d %6d\n", free
,
5199 task_pid_nr(p
), task_pid_nr(p
->real_parent
));
5201 show_stack(p
, NULL
);
5204 void show_state_filter(unsigned long state_filter
)
5206 struct task_struct
*g
, *p
;
5208 #if BITS_PER_LONG == 32
5210 " task PC stack pid father\n");
5213 " task PC stack pid father\n");
5215 read_lock(&tasklist_lock
);
5216 do_each_thread(g
, p
) {
5218 * reset the NMI-timeout, listing all files on a slow
5219 * console might take alot of time:
5221 touch_nmi_watchdog();
5222 if (!state_filter
|| (p
->state
& state_filter
))
5224 } while_each_thread(g
, p
);
5226 touch_all_softlockup_watchdogs();
5228 #ifdef CONFIG_SCHED_DEBUG
5229 sysrq_sched_debug_show();
5231 read_unlock(&tasklist_lock
);
5233 * Only show locks if all tasks are dumped:
5235 if (state_filter
== -1)
5236 debug_show_all_locks();
5239 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5241 idle
->sched_class
= &idle_sched_class
;
5245 * init_idle - set up an idle thread for a given CPU
5246 * @idle: task in question
5247 * @cpu: cpu the idle task belongs to
5249 * NOTE: this function does not set the idle thread's NEED_RESCHED
5250 * flag, to make booting more robust.
5252 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5254 struct rq
*rq
= cpu_rq(cpu
);
5255 unsigned long flags
;
5258 idle
->se
.exec_start
= sched_clock();
5260 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
5261 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
5262 __set_task_cpu(idle
, cpu
);
5264 spin_lock_irqsave(&rq
->lock
, flags
);
5265 rq
->curr
= rq
->idle
= idle
;
5266 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5269 spin_unlock_irqrestore(&rq
->lock
, flags
);
5271 /* Set the preempt count _outside_ the spinlocks! */
5272 task_thread_info(idle
)->preempt_count
= 0;
5275 * The idle tasks have their own, simple scheduling class:
5277 idle
->sched_class
= &idle_sched_class
;
5281 * In a system that switches off the HZ timer nohz_cpu_mask
5282 * indicates which cpus entered this state. This is used
5283 * in the rcu update to wait only for active cpus. For system
5284 * which do not switch off the HZ timer nohz_cpu_mask should
5285 * always be CPU_MASK_NONE.
5287 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
5290 * Increase the granularity value when there are more CPUs,
5291 * because with more CPUs the 'effective latency' as visible
5292 * to users decreases. But the relationship is not linear,
5293 * so pick a second-best guess by going with the log2 of the
5296 * This idea comes from the SD scheduler of Con Kolivas:
5298 static inline void sched_init_granularity(void)
5300 unsigned int factor
= 1 + ilog2(num_online_cpus());
5301 const unsigned long limit
= 200000000;
5303 sysctl_sched_min_granularity
*= factor
;
5304 if (sysctl_sched_min_granularity
> limit
)
5305 sysctl_sched_min_granularity
= limit
;
5307 sysctl_sched_latency
*= factor
;
5308 if (sysctl_sched_latency
> limit
)
5309 sysctl_sched_latency
= limit
;
5311 sysctl_sched_wakeup_granularity
*= factor
;
5312 sysctl_sched_batch_wakeup_granularity
*= factor
;
5317 * This is how migration works:
5319 * 1) we queue a struct migration_req structure in the source CPU's
5320 * runqueue and wake up that CPU's migration thread.
5321 * 2) we down() the locked semaphore => thread blocks.
5322 * 3) migration thread wakes up (implicitly it forces the migrated
5323 * thread off the CPU)
5324 * 4) it gets the migration request and checks whether the migrated
5325 * task is still in the wrong runqueue.
5326 * 5) if it's in the wrong runqueue then the migration thread removes
5327 * it and puts it into the right queue.
5328 * 6) migration thread up()s the semaphore.
5329 * 7) we wake up and the migration is done.
5333 * Change a given task's CPU affinity. Migrate the thread to a
5334 * proper CPU and schedule it away if the CPU it's executing on
5335 * is removed from the allowed bitmask.
5337 * NOTE: the caller must have a valid reference to the task, the
5338 * task must not exit() & deallocate itself prematurely. The
5339 * call is not atomic; no spinlocks may be held.
5341 int set_cpus_allowed(struct task_struct
*p
, cpumask_t new_mask
)
5343 struct migration_req req
;
5344 unsigned long flags
;
5348 rq
= task_rq_lock(p
, &flags
);
5349 if (!cpus_intersects(new_mask
, cpu_online_map
)) {
5354 if (p
->sched_class
->set_cpus_allowed
)
5355 p
->sched_class
->set_cpus_allowed(p
, &new_mask
);
5357 p
->cpus_allowed
= new_mask
;
5358 p
->rt
.nr_cpus_allowed
= cpus_weight(new_mask
);
5361 /* Can the task run on the task's current CPU? If so, we're done */
5362 if (cpu_isset(task_cpu(p
), new_mask
))
5365 if (migrate_task(p
, any_online_cpu(new_mask
), &req
)) {
5366 /* Need help from migration thread: drop lock and wait. */
5367 task_rq_unlock(rq
, &flags
);
5368 wake_up_process(rq
->migration_thread
);
5369 wait_for_completion(&req
.done
);
5370 tlb_migrate_finish(p
->mm
);
5374 task_rq_unlock(rq
, &flags
);
5378 EXPORT_SYMBOL_GPL(set_cpus_allowed
);
5381 * Move (not current) task off this cpu, onto dest cpu. We're doing
5382 * this because either it can't run here any more (set_cpus_allowed()
5383 * away from this CPU, or CPU going down), or because we're
5384 * attempting to rebalance this task on exec (sched_exec).
5386 * So we race with normal scheduler movements, but that's OK, as long
5387 * as the task is no longer on this CPU.
5389 * Returns non-zero if task was successfully migrated.
5391 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5393 struct rq
*rq_dest
, *rq_src
;
5396 if (unlikely(cpu_is_offline(dest_cpu
)))
5399 rq_src
= cpu_rq(src_cpu
);
5400 rq_dest
= cpu_rq(dest_cpu
);
5402 double_rq_lock(rq_src
, rq_dest
);
5403 /* Already moved. */
5404 if (task_cpu(p
) != src_cpu
)
5406 /* Affinity changed (again). */
5407 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
5410 on_rq
= p
->se
.on_rq
;
5412 deactivate_task(rq_src
, p
, 0);
5414 set_task_cpu(p
, dest_cpu
);
5416 activate_task(rq_dest
, p
, 0);
5417 check_preempt_curr(rq_dest
, p
);
5421 double_rq_unlock(rq_src
, rq_dest
);
5426 * migration_thread - this is a highprio system thread that performs
5427 * thread migration by bumping thread off CPU then 'pushing' onto
5430 static int migration_thread(void *data
)
5432 int cpu
= (long)data
;
5436 BUG_ON(rq
->migration_thread
!= current
);
5438 set_current_state(TASK_INTERRUPTIBLE
);
5439 while (!kthread_should_stop()) {
5440 struct migration_req
*req
;
5441 struct list_head
*head
;
5443 spin_lock_irq(&rq
->lock
);
5445 if (cpu_is_offline(cpu
)) {
5446 spin_unlock_irq(&rq
->lock
);
5450 if (rq
->active_balance
) {
5451 active_load_balance(rq
, cpu
);
5452 rq
->active_balance
= 0;
5455 head
= &rq
->migration_queue
;
5457 if (list_empty(head
)) {
5458 spin_unlock_irq(&rq
->lock
);
5460 set_current_state(TASK_INTERRUPTIBLE
);
5463 req
= list_entry(head
->next
, struct migration_req
, list
);
5464 list_del_init(head
->next
);
5466 spin_unlock(&rq
->lock
);
5467 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
5470 complete(&req
->done
);
5472 __set_current_state(TASK_RUNNING
);
5476 /* Wait for kthread_stop */
5477 set_current_state(TASK_INTERRUPTIBLE
);
5478 while (!kthread_should_stop()) {
5480 set_current_state(TASK_INTERRUPTIBLE
);
5482 __set_current_state(TASK_RUNNING
);
5486 #ifdef CONFIG_HOTPLUG_CPU
5488 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5492 local_irq_disable();
5493 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
5499 * Figure out where task on dead CPU should go, use force if necessary.
5500 * NOTE: interrupts should be disabled by the caller
5502 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5504 unsigned long flags
;
5511 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
5512 cpus_and(mask
, mask
, p
->cpus_allowed
);
5513 dest_cpu
= any_online_cpu(mask
);
5515 /* On any allowed CPU? */
5516 if (dest_cpu
== NR_CPUS
)
5517 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5519 /* No more Mr. Nice Guy. */
5520 if (dest_cpu
== NR_CPUS
) {
5521 cpumask_t cpus_allowed
= cpuset_cpus_allowed_locked(p
);
5523 * Try to stay on the same cpuset, where the
5524 * current cpuset may be a subset of all cpus.
5525 * The cpuset_cpus_allowed_locked() variant of
5526 * cpuset_cpus_allowed() will not block. It must be
5527 * called within calls to cpuset_lock/cpuset_unlock.
5529 rq
= task_rq_lock(p
, &flags
);
5530 p
->cpus_allowed
= cpus_allowed
;
5531 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5532 task_rq_unlock(rq
, &flags
);
5535 * Don't tell them about moving exiting tasks or
5536 * kernel threads (both mm NULL), since they never
5539 if (p
->mm
&& printk_ratelimit()) {
5540 printk(KERN_INFO
"process %d (%s) no "
5541 "longer affine to cpu%d\n",
5542 task_pid_nr(p
), p
->comm
, dead_cpu
);
5545 } while (!__migrate_task_irq(p
, dead_cpu
, dest_cpu
));
5549 * While a dead CPU has no uninterruptible tasks queued at this point,
5550 * it might still have a nonzero ->nr_uninterruptible counter, because
5551 * for performance reasons the counter is not stricly tracking tasks to
5552 * their home CPUs. So we just add the counter to another CPU's counter,
5553 * to keep the global sum constant after CPU-down:
5555 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5557 struct rq
*rq_dest
= cpu_rq(any_online_cpu(CPU_MASK_ALL
));
5558 unsigned long flags
;
5560 local_irq_save(flags
);
5561 double_rq_lock(rq_src
, rq_dest
);
5562 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5563 rq_src
->nr_uninterruptible
= 0;
5564 double_rq_unlock(rq_src
, rq_dest
);
5565 local_irq_restore(flags
);
5568 /* Run through task list and migrate tasks from the dead cpu. */
5569 static void migrate_live_tasks(int src_cpu
)
5571 struct task_struct
*p
, *t
;
5573 read_lock(&tasklist_lock
);
5575 do_each_thread(t
, p
) {
5579 if (task_cpu(p
) == src_cpu
)
5580 move_task_off_dead_cpu(src_cpu
, p
);
5581 } while_each_thread(t
, p
);
5583 read_unlock(&tasklist_lock
);
5587 * Schedules idle task to be the next runnable task on current CPU.
5588 * It does so by boosting its priority to highest possible.
5589 * Used by CPU offline code.
5591 void sched_idle_next(void)
5593 int this_cpu
= smp_processor_id();
5594 struct rq
*rq
= cpu_rq(this_cpu
);
5595 struct task_struct
*p
= rq
->idle
;
5596 unsigned long flags
;
5598 /* cpu has to be offline */
5599 BUG_ON(cpu_online(this_cpu
));
5602 * Strictly not necessary since rest of the CPUs are stopped by now
5603 * and interrupts disabled on the current cpu.
5605 spin_lock_irqsave(&rq
->lock
, flags
);
5607 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5609 update_rq_clock(rq
);
5610 activate_task(rq
, p
, 0);
5612 spin_unlock_irqrestore(&rq
->lock
, flags
);
5616 * Ensures that the idle task is using init_mm right before its cpu goes
5619 void idle_task_exit(void)
5621 struct mm_struct
*mm
= current
->active_mm
;
5623 BUG_ON(cpu_online(smp_processor_id()));
5626 switch_mm(mm
, &init_mm
, current
);
5630 /* called under rq->lock with disabled interrupts */
5631 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5633 struct rq
*rq
= cpu_rq(dead_cpu
);
5635 /* Must be exiting, otherwise would be on tasklist. */
5636 BUG_ON(!p
->exit_state
);
5638 /* Cannot have done final schedule yet: would have vanished. */
5639 BUG_ON(p
->state
== TASK_DEAD
);
5644 * Drop lock around migration; if someone else moves it,
5645 * that's OK. No task can be added to this CPU, so iteration is
5648 spin_unlock_irq(&rq
->lock
);
5649 move_task_off_dead_cpu(dead_cpu
, p
);
5650 spin_lock_irq(&rq
->lock
);
5655 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5656 static void migrate_dead_tasks(unsigned int dead_cpu
)
5658 struct rq
*rq
= cpu_rq(dead_cpu
);
5659 struct task_struct
*next
;
5662 if (!rq
->nr_running
)
5664 update_rq_clock(rq
);
5665 next
= pick_next_task(rq
, rq
->curr
);
5668 migrate_dead(dead_cpu
, next
);
5672 #endif /* CONFIG_HOTPLUG_CPU */
5674 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5676 static struct ctl_table sd_ctl_dir
[] = {
5678 .procname
= "sched_domain",
5684 static struct ctl_table sd_ctl_root
[] = {
5686 .ctl_name
= CTL_KERN
,
5687 .procname
= "kernel",
5689 .child
= sd_ctl_dir
,
5694 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5696 struct ctl_table
*entry
=
5697 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
5702 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
5704 struct ctl_table
*entry
;
5707 * In the intermediate directories, both the child directory and
5708 * procname are dynamically allocated and could fail but the mode
5709 * will always be set. In the lowest directory the names are
5710 * static strings and all have proc handlers.
5712 for (entry
= *tablep
; entry
->mode
; entry
++) {
5714 sd_free_ctl_entry(&entry
->child
);
5715 if (entry
->proc_handler
== NULL
)
5716 kfree(entry
->procname
);
5724 set_table_entry(struct ctl_table
*entry
,
5725 const char *procname
, void *data
, int maxlen
,
5726 mode_t mode
, proc_handler
*proc_handler
)
5728 entry
->procname
= procname
;
5730 entry
->maxlen
= maxlen
;
5732 entry
->proc_handler
= proc_handler
;
5735 static struct ctl_table
*
5736 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5738 struct ctl_table
*table
= sd_alloc_ctl_entry(12);
5743 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5744 sizeof(long), 0644, proc_doulongvec_minmax
);
5745 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5746 sizeof(long), 0644, proc_doulongvec_minmax
);
5747 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5748 sizeof(int), 0644, proc_dointvec_minmax
);
5749 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5750 sizeof(int), 0644, proc_dointvec_minmax
);
5751 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5752 sizeof(int), 0644, proc_dointvec_minmax
);
5753 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5754 sizeof(int), 0644, proc_dointvec_minmax
);
5755 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5756 sizeof(int), 0644, proc_dointvec_minmax
);
5757 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5758 sizeof(int), 0644, proc_dointvec_minmax
);
5759 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5760 sizeof(int), 0644, proc_dointvec_minmax
);
5761 set_table_entry(&table
[9], "cache_nice_tries",
5762 &sd
->cache_nice_tries
,
5763 sizeof(int), 0644, proc_dointvec_minmax
);
5764 set_table_entry(&table
[10], "flags", &sd
->flags
,
5765 sizeof(int), 0644, proc_dointvec_minmax
);
5766 /* &table[11] is terminator */
5771 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5773 struct ctl_table
*entry
, *table
;
5774 struct sched_domain
*sd
;
5775 int domain_num
= 0, i
;
5778 for_each_domain(cpu
, sd
)
5780 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5785 for_each_domain(cpu
, sd
) {
5786 snprintf(buf
, 32, "domain%d", i
);
5787 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5789 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5796 static struct ctl_table_header
*sd_sysctl_header
;
5797 static void register_sched_domain_sysctl(void)
5799 int i
, cpu_num
= num_online_cpus();
5800 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5803 WARN_ON(sd_ctl_dir
[0].child
);
5804 sd_ctl_dir
[0].child
= entry
;
5809 for_each_online_cpu(i
) {
5810 snprintf(buf
, 32, "cpu%d", i
);
5811 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5813 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5817 WARN_ON(sd_sysctl_header
);
5818 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5821 /* may be called multiple times per register */
5822 static void unregister_sched_domain_sysctl(void)
5824 if (sd_sysctl_header
)
5825 unregister_sysctl_table(sd_sysctl_header
);
5826 sd_sysctl_header
= NULL
;
5827 if (sd_ctl_dir
[0].child
)
5828 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
5831 static void register_sched_domain_sysctl(void)
5834 static void unregister_sched_domain_sysctl(void)
5840 * migration_call - callback that gets triggered when a CPU is added.
5841 * Here we can start up the necessary migration thread for the new CPU.
5843 static int __cpuinit
5844 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5846 struct task_struct
*p
;
5847 int cpu
= (long)hcpu
;
5848 unsigned long flags
;
5853 case CPU_UP_PREPARE
:
5854 case CPU_UP_PREPARE_FROZEN
:
5855 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
5858 kthread_bind(p
, cpu
);
5859 /* Must be high prio: stop_machine expects to yield to it. */
5860 rq
= task_rq_lock(p
, &flags
);
5861 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5862 task_rq_unlock(rq
, &flags
);
5863 cpu_rq(cpu
)->migration_thread
= p
;
5867 case CPU_ONLINE_FROZEN
:
5868 /* Strictly unnecessary, as first user will wake it. */
5869 wake_up_process(cpu_rq(cpu
)->migration_thread
);
5871 /* Update our root-domain */
5873 spin_lock_irqsave(&rq
->lock
, flags
);
5875 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
5876 cpu_set(cpu
, rq
->rd
->online
);
5878 spin_unlock_irqrestore(&rq
->lock
, flags
);
5881 #ifdef CONFIG_HOTPLUG_CPU
5882 case CPU_UP_CANCELED
:
5883 case CPU_UP_CANCELED_FROZEN
:
5884 if (!cpu_rq(cpu
)->migration_thread
)
5886 /* Unbind it from offline cpu so it can run. Fall thru. */
5887 kthread_bind(cpu_rq(cpu
)->migration_thread
,
5888 any_online_cpu(cpu_online_map
));
5889 kthread_stop(cpu_rq(cpu
)->migration_thread
);
5890 cpu_rq(cpu
)->migration_thread
= NULL
;
5894 case CPU_DEAD_FROZEN
:
5895 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5896 migrate_live_tasks(cpu
);
5898 kthread_stop(rq
->migration_thread
);
5899 rq
->migration_thread
= NULL
;
5900 /* Idle task back to normal (off runqueue, low prio) */
5901 spin_lock_irq(&rq
->lock
);
5902 update_rq_clock(rq
);
5903 deactivate_task(rq
, rq
->idle
, 0);
5904 rq
->idle
->static_prio
= MAX_PRIO
;
5905 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
5906 rq
->idle
->sched_class
= &idle_sched_class
;
5907 migrate_dead_tasks(cpu
);
5908 spin_unlock_irq(&rq
->lock
);
5910 migrate_nr_uninterruptible(rq
);
5911 BUG_ON(rq
->nr_running
!= 0);
5914 * No need to migrate the tasks: it was best-effort if
5915 * they didn't take sched_hotcpu_mutex. Just wake up
5918 spin_lock_irq(&rq
->lock
);
5919 while (!list_empty(&rq
->migration_queue
)) {
5920 struct migration_req
*req
;
5922 req
= list_entry(rq
->migration_queue
.next
,
5923 struct migration_req
, list
);
5924 list_del_init(&req
->list
);
5925 complete(&req
->done
);
5927 spin_unlock_irq(&rq
->lock
);
5931 case CPU_DYING_FROZEN
:
5932 /* Update our root-domain */
5934 spin_lock_irqsave(&rq
->lock
, flags
);
5936 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
5937 cpu_clear(cpu
, rq
->rd
->online
);
5939 spin_unlock_irqrestore(&rq
->lock
, flags
);
5946 /* Register at highest priority so that task migration (migrate_all_tasks)
5947 * happens before everything else.
5949 static struct notifier_block __cpuinitdata migration_notifier
= {
5950 .notifier_call
= migration_call
,
5954 void __init
migration_init(void)
5956 void *cpu
= (void *)(long)smp_processor_id();
5959 /* Start one for the boot CPU: */
5960 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5961 BUG_ON(err
== NOTIFY_BAD
);
5962 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5963 register_cpu_notifier(&migration_notifier
);
5969 /* Number of possible processor ids */
5970 int nr_cpu_ids __read_mostly
= NR_CPUS
;
5971 EXPORT_SYMBOL(nr_cpu_ids
);
5973 #ifdef CONFIG_SCHED_DEBUG
5975 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
)
5977 struct sched_group
*group
= sd
->groups
;
5978 cpumask_t groupmask
;
5981 cpumask_scnprintf(str
, NR_CPUS
, sd
->span
);
5982 cpus_clear(groupmask
);
5984 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
5986 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5987 printk("does not load-balance\n");
5989 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5994 printk(KERN_CONT
"span %s\n", str
);
5996 if (!cpu_isset(cpu
, sd
->span
)) {
5997 printk(KERN_ERR
"ERROR: domain->span does not contain "
6000 if (!cpu_isset(cpu
, group
->cpumask
)) {
6001 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6005 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6009 printk(KERN_ERR
"ERROR: group is NULL\n");
6013 if (!group
->__cpu_power
) {
6014 printk(KERN_CONT
"\n");
6015 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6020 if (!cpus_weight(group
->cpumask
)) {
6021 printk(KERN_CONT
"\n");
6022 printk(KERN_ERR
"ERROR: empty group\n");
6026 if (cpus_intersects(groupmask
, group
->cpumask
)) {
6027 printk(KERN_CONT
"\n");
6028 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6032 cpus_or(groupmask
, groupmask
, group
->cpumask
);
6034 cpumask_scnprintf(str
, NR_CPUS
, group
->cpumask
);
6035 printk(KERN_CONT
" %s", str
);
6037 group
= group
->next
;
6038 } while (group
!= sd
->groups
);
6039 printk(KERN_CONT
"\n");
6041 if (!cpus_equal(sd
->span
, groupmask
))
6042 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6044 if (sd
->parent
&& !cpus_subset(groupmask
, sd
->parent
->span
))
6045 printk(KERN_ERR
"ERROR: parent span is not a superset "
6046 "of domain->span\n");
6050 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6055 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6059 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6062 if (sched_domain_debug_one(sd
, cpu
, level
))
6071 # define sched_domain_debug(sd, cpu) do { } while (0)
6074 static int sd_degenerate(struct sched_domain
*sd
)
6076 if (cpus_weight(sd
->span
) == 1)
6079 /* Following flags need at least 2 groups */
6080 if (sd
->flags
& (SD_LOAD_BALANCE
|
6081 SD_BALANCE_NEWIDLE
|
6085 SD_SHARE_PKG_RESOURCES
)) {
6086 if (sd
->groups
!= sd
->groups
->next
)
6090 /* Following flags don't use groups */
6091 if (sd
->flags
& (SD_WAKE_IDLE
|
6100 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6102 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6104 if (sd_degenerate(parent
))
6107 if (!cpus_equal(sd
->span
, parent
->span
))
6110 /* Does parent contain flags not in child? */
6111 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6112 if (cflags
& SD_WAKE_AFFINE
)
6113 pflags
&= ~SD_WAKE_BALANCE
;
6114 /* Flags needing groups don't count if only 1 group in parent */
6115 if (parent
->groups
== parent
->groups
->next
) {
6116 pflags
&= ~(SD_LOAD_BALANCE
|
6117 SD_BALANCE_NEWIDLE
|
6121 SD_SHARE_PKG_RESOURCES
);
6123 if (~cflags
& pflags
)
6129 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6131 unsigned long flags
;
6132 const struct sched_class
*class;
6134 spin_lock_irqsave(&rq
->lock
, flags
);
6137 struct root_domain
*old_rd
= rq
->rd
;
6139 for (class = sched_class_highest
; class; class = class->next
) {
6140 if (class->leave_domain
)
6141 class->leave_domain(rq
);
6144 cpu_clear(rq
->cpu
, old_rd
->span
);
6145 cpu_clear(rq
->cpu
, old_rd
->online
);
6147 if (atomic_dec_and_test(&old_rd
->refcount
))
6151 atomic_inc(&rd
->refcount
);
6154 cpu_set(rq
->cpu
, rd
->span
);
6155 if (cpu_isset(rq
->cpu
, cpu_online_map
))
6156 cpu_set(rq
->cpu
, rd
->online
);
6158 for (class = sched_class_highest
; class; class = class->next
) {
6159 if (class->join_domain
)
6160 class->join_domain(rq
);
6163 spin_unlock_irqrestore(&rq
->lock
, flags
);
6166 static void init_rootdomain(struct root_domain
*rd
)
6168 memset(rd
, 0, sizeof(*rd
));
6170 cpus_clear(rd
->span
);
6171 cpus_clear(rd
->online
);
6174 static void init_defrootdomain(void)
6176 init_rootdomain(&def_root_domain
);
6177 atomic_set(&def_root_domain
.refcount
, 1);
6180 static struct root_domain
*alloc_rootdomain(void)
6182 struct root_domain
*rd
;
6184 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6188 init_rootdomain(rd
);
6194 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6195 * hold the hotplug lock.
6198 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6200 struct rq
*rq
= cpu_rq(cpu
);
6201 struct sched_domain
*tmp
;
6203 /* Remove the sched domains which do not contribute to scheduling. */
6204 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
6205 struct sched_domain
*parent
= tmp
->parent
;
6208 if (sd_parent_degenerate(tmp
, parent
)) {
6209 tmp
->parent
= parent
->parent
;
6211 parent
->parent
->child
= tmp
;
6215 if (sd
&& sd_degenerate(sd
)) {
6221 sched_domain_debug(sd
, cpu
);
6223 rq_attach_root(rq
, rd
);
6224 rcu_assign_pointer(rq
->sd
, sd
);
6227 /* cpus with isolated domains */
6228 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
6230 /* Setup the mask of cpus configured for isolated domains */
6231 static int __init
isolated_cpu_setup(char *str
)
6233 int ints
[NR_CPUS
], i
;
6235 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
6236 cpus_clear(cpu_isolated_map
);
6237 for (i
= 1; i
<= ints
[0]; i
++)
6238 if (ints
[i
] < NR_CPUS
)
6239 cpu_set(ints
[i
], cpu_isolated_map
);
6243 __setup("isolcpus=", isolated_cpu_setup
);
6246 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6247 * to a function which identifies what group(along with sched group) a CPU
6248 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6249 * (due to the fact that we keep track of groups covered with a cpumask_t).
6251 * init_sched_build_groups will build a circular linked list of the groups
6252 * covered by the given span, and will set each group's ->cpumask correctly,
6253 * and ->cpu_power to 0.
6256 init_sched_build_groups(cpumask_t span
, const cpumask_t
*cpu_map
,
6257 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
6258 struct sched_group
**sg
))
6260 struct sched_group
*first
= NULL
, *last
= NULL
;
6261 cpumask_t covered
= CPU_MASK_NONE
;
6264 for_each_cpu_mask(i
, span
) {
6265 struct sched_group
*sg
;
6266 int group
= group_fn(i
, cpu_map
, &sg
);
6269 if (cpu_isset(i
, covered
))
6272 sg
->cpumask
= CPU_MASK_NONE
;
6273 sg
->__cpu_power
= 0;
6275 for_each_cpu_mask(j
, span
) {
6276 if (group_fn(j
, cpu_map
, NULL
) != group
)
6279 cpu_set(j
, covered
);
6280 cpu_set(j
, sg
->cpumask
);
6291 #define SD_NODES_PER_DOMAIN 16
6296 * find_next_best_node - find the next node to include in a sched_domain
6297 * @node: node whose sched_domain we're building
6298 * @used_nodes: nodes already in the sched_domain
6300 * Find the next node to include in a given scheduling domain. Simply
6301 * finds the closest node not already in the @used_nodes map.
6303 * Should use nodemask_t.
6305 static int find_next_best_node(int node
, unsigned long *used_nodes
)
6307 int i
, n
, val
, min_val
, best_node
= 0;
6311 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6312 /* Start at @node */
6313 n
= (node
+ i
) % MAX_NUMNODES
;
6315 if (!nr_cpus_node(n
))
6318 /* Skip already used nodes */
6319 if (test_bit(n
, used_nodes
))
6322 /* Simple min distance search */
6323 val
= node_distance(node
, n
);
6325 if (val
< min_val
) {
6331 set_bit(best_node
, used_nodes
);
6336 * sched_domain_node_span - get a cpumask for a node's sched_domain
6337 * @node: node whose cpumask we're constructing
6338 * @size: number of nodes to include in this span
6340 * Given a node, construct a good cpumask for its sched_domain to span. It
6341 * should be one that prevents unnecessary balancing, but also spreads tasks
6344 static cpumask_t
sched_domain_node_span(int node
)
6346 DECLARE_BITMAP(used_nodes
, MAX_NUMNODES
);
6347 cpumask_t span
, nodemask
;
6351 bitmap_zero(used_nodes
, MAX_NUMNODES
);
6353 nodemask
= node_to_cpumask(node
);
6354 cpus_or(span
, span
, nodemask
);
6355 set_bit(node
, used_nodes
);
6357 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
6358 int next_node
= find_next_best_node(node
, used_nodes
);
6360 nodemask
= node_to_cpumask(next_node
);
6361 cpus_or(span
, span
, nodemask
);
6368 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
6371 * SMT sched-domains:
6373 #ifdef CONFIG_SCHED_SMT
6374 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
6375 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
6378 cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6381 *sg
= &per_cpu(sched_group_cpus
, cpu
);
6387 * multi-core sched-domains:
6389 #ifdef CONFIG_SCHED_MC
6390 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
6391 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
6394 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6396 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6399 cpumask_t mask
= per_cpu(cpu_sibling_map
, cpu
);
6400 cpus_and(mask
, mask
, *cpu_map
);
6401 group
= first_cpu(mask
);
6403 *sg
= &per_cpu(sched_group_core
, group
);
6406 #elif defined(CONFIG_SCHED_MC)
6408 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6411 *sg
= &per_cpu(sched_group_core
, cpu
);
6416 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
6417 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
6420 cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6423 #ifdef CONFIG_SCHED_MC
6424 cpumask_t mask
= cpu_coregroup_map(cpu
);
6425 cpus_and(mask
, mask
, *cpu_map
);
6426 group
= first_cpu(mask
);
6427 #elif defined(CONFIG_SCHED_SMT)
6428 cpumask_t mask
= per_cpu(cpu_sibling_map
, cpu
);
6429 cpus_and(mask
, mask
, *cpu_map
);
6430 group
= first_cpu(mask
);
6435 *sg
= &per_cpu(sched_group_phys
, group
);
6441 * The init_sched_build_groups can't handle what we want to do with node
6442 * groups, so roll our own. Now each node has its own list of groups which
6443 * gets dynamically allocated.
6445 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
6446 static struct sched_group
**sched_group_nodes_bycpu
[NR_CPUS
];
6448 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
6449 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
6451 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
6452 struct sched_group
**sg
)
6454 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(cpu
));
6457 cpus_and(nodemask
, nodemask
, *cpu_map
);
6458 group
= first_cpu(nodemask
);
6461 *sg
= &per_cpu(sched_group_allnodes
, group
);
6465 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
6467 struct sched_group
*sg
= group_head
;
6473 for_each_cpu_mask(j
, sg
->cpumask
) {
6474 struct sched_domain
*sd
;
6476 sd
= &per_cpu(phys_domains
, j
);
6477 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
6479 * Only add "power" once for each
6485 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
6488 } while (sg
!= group_head
);
6493 /* Free memory allocated for various sched_group structures */
6494 static void free_sched_groups(const cpumask_t
*cpu_map
)
6498 for_each_cpu_mask(cpu
, *cpu_map
) {
6499 struct sched_group
**sched_group_nodes
6500 = sched_group_nodes_bycpu
[cpu
];
6502 if (!sched_group_nodes
)
6505 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6506 cpumask_t nodemask
= node_to_cpumask(i
);
6507 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
6509 cpus_and(nodemask
, nodemask
, *cpu_map
);
6510 if (cpus_empty(nodemask
))
6520 if (oldsg
!= sched_group_nodes
[i
])
6523 kfree(sched_group_nodes
);
6524 sched_group_nodes_bycpu
[cpu
] = NULL
;
6528 static void free_sched_groups(const cpumask_t
*cpu_map
)
6534 * Initialize sched groups cpu_power.
6536 * cpu_power indicates the capacity of sched group, which is used while
6537 * distributing the load between different sched groups in a sched domain.
6538 * Typically cpu_power for all the groups in a sched domain will be same unless
6539 * there are asymmetries in the topology. If there are asymmetries, group
6540 * having more cpu_power will pickup more load compared to the group having
6543 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6544 * the maximum number of tasks a group can handle in the presence of other idle
6545 * or lightly loaded groups in the same sched domain.
6547 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
6549 struct sched_domain
*child
;
6550 struct sched_group
*group
;
6552 WARN_ON(!sd
|| !sd
->groups
);
6554 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
6559 sd
->groups
->__cpu_power
= 0;
6562 * For perf policy, if the groups in child domain share resources
6563 * (for example cores sharing some portions of the cache hierarchy
6564 * or SMT), then set this domain groups cpu_power such that each group
6565 * can handle only one task, when there are other idle groups in the
6566 * same sched domain.
6568 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
6570 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
6571 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
6576 * add cpu_power of each child group to this groups cpu_power
6578 group
= child
->groups
;
6580 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
6581 group
= group
->next
;
6582 } while (group
!= child
->groups
);
6586 * Build sched domains for a given set of cpus and attach the sched domains
6587 * to the individual cpus
6589 static int build_sched_domains(const cpumask_t
*cpu_map
)
6592 struct root_domain
*rd
;
6594 struct sched_group
**sched_group_nodes
= NULL
;
6595 int sd_allnodes
= 0;
6598 * Allocate the per-node list of sched groups
6600 sched_group_nodes
= kcalloc(MAX_NUMNODES
, sizeof(struct sched_group
*),
6602 if (!sched_group_nodes
) {
6603 printk(KERN_WARNING
"Can not alloc sched group node list\n");
6606 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
6609 rd
= alloc_rootdomain();
6611 printk(KERN_WARNING
"Cannot alloc root domain\n");
6616 * Set up domains for cpus specified by the cpu_map.
6618 for_each_cpu_mask(i
, *cpu_map
) {
6619 struct sched_domain
*sd
= NULL
, *p
;
6620 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(i
));
6622 cpus_and(nodemask
, nodemask
, *cpu_map
);
6625 if (cpus_weight(*cpu_map
) >
6626 SD_NODES_PER_DOMAIN
*cpus_weight(nodemask
)) {
6627 sd
= &per_cpu(allnodes_domains
, i
);
6628 *sd
= SD_ALLNODES_INIT
;
6629 sd
->span
= *cpu_map
;
6630 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
);
6636 sd
= &per_cpu(node_domains
, i
);
6638 sd
->span
= sched_domain_node_span(cpu_to_node(i
));
6642 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6646 sd
= &per_cpu(phys_domains
, i
);
6648 sd
->span
= nodemask
;
6652 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
);
6654 #ifdef CONFIG_SCHED_MC
6656 sd
= &per_cpu(core_domains
, i
);
6658 sd
->span
= cpu_coregroup_map(i
);
6659 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6662 cpu_to_core_group(i
, cpu_map
, &sd
->groups
);
6665 #ifdef CONFIG_SCHED_SMT
6667 sd
= &per_cpu(cpu_domains
, i
);
6668 *sd
= SD_SIBLING_INIT
;
6669 sd
->span
= per_cpu(cpu_sibling_map
, i
);
6670 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6673 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
);
6677 #ifdef CONFIG_SCHED_SMT
6678 /* Set up CPU (sibling) groups */
6679 for_each_cpu_mask(i
, *cpu_map
) {
6680 cpumask_t this_sibling_map
= per_cpu(cpu_sibling_map
, i
);
6681 cpus_and(this_sibling_map
, this_sibling_map
, *cpu_map
);
6682 if (i
!= first_cpu(this_sibling_map
))
6685 init_sched_build_groups(this_sibling_map
, cpu_map
,
6690 #ifdef CONFIG_SCHED_MC
6691 /* Set up multi-core groups */
6692 for_each_cpu_mask(i
, *cpu_map
) {
6693 cpumask_t this_core_map
= cpu_coregroup_map(i
);
6694 cpus_and(this_core_map
, this_core_map
, *cpu_map
);
6695 if (i
!= first_cpu(this_core_map
))
6697 init_sched_build_groups(this_core_map
, cpu_map
,
6698 &cpu_to_core_group
);
6702 /* Set up physical groups */
6703 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6704 cpumask_t nodemask
= node_to_cpumask(i
);
6706 cpus_and(nodemask
, nodemask
, *cpu_map
);
6707 if (cpus_empty(nodemask
))
6710 init_sched_build_groups(nodemask
, cpu_map
, &cpu_to_phys_group
);
6714 /* Set up node groups */
6716 init_sched_build_groups(*cpu_map
, cpu_map
,
6717 &cpu_to_allnodes_group
);
6719 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6720 /* Set up node groups */
6721 struct sched_group
*sg
, *prev
;
6722 cpumask_t nodemask
= node_to_cpumask(i
);
6723 cpumask_t domainspan
;
6724 cpumask_t covered
= CPU_MASK_NONE
;
6727 cpus_and(nodemask
, nodemask
, *cpu_map
);
6728 if (cpus_empty(nodemask
)) {
6729 sched_group_nodes
[i
] = NULL
;
6733 domainspan
= sched_domain_node_span(i
);
6734 cpus_and(domainspan
, domainspan
, *cpu_map
);
6736 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
6738 printk(KERN_WARNING
"Can not alloc domain group for "
6742 sched_group_nodes
[i
] = sg
;
6743 for_each_cpu_mask(j
, nodemask
) {
6744 struct sched_domain
*sd
;
6746 sd
= &per_cpu(node_domains
, j
);
6749 sg
->__cpu_power
= 0;
6750 sg
->cpumask
= nodemask
;
6752 cpus_or(covered
, covered
, nodemask
);
6755 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
6756 cpumask_t tmp
, notcovered
;
6757 int n
= (i
+ j
) % MAX_NUMNODES
;
6759 cpus_complement(notcovered
, covered
);
6760 cpus_and(tmp
, notcovered
, *cpu_map
);
6761 cpus_and(tmp
, tmp
, domainspan
);
6762 if (cpus_empty(tmp
))
6765 nodemask
= node_to_cpumask(n
);
6766 cpus_and(tmp
, tmp
, nodemask
);
6767 if (cpus_empty(tmp
))
6770 sg
= kmalloc_node(sizeof(struct sched_group
),
6774 "Can not alloc domain group for node %d\n", j
);
6777 sg
->__cpu_power
= 0;
6779 sg
->next
= prev
->next
;
6780 cpus_or(covered
, covered
, tmp
);
6787 /* Calculate CPU power for physical packages and nodes */
6788 #ifdef CONFIG_SCHED_SMT
6789 for_each_cpu_mask(i
, *cpu_map
) {
6790 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
6792 init_sched_groups_power(i
, sd
);
6795 #ifdef CONFIG_SCHED_MC
6796 for_each_cpu_mask(i
, *cpu_map
) {
6797 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
6799 init_sched_groups_power(i
, sd
);
6803 for_each_cpu_mask(i
, *cpu_map
) {
6804 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
6806 init_sched_groups_power(i
, sd
);
6810 for (i
= 0; i
< MAX_NUMNODES
; i
++)
6811 init_numa_sched_groups_power(sched_group_nodes
[i
]);
6814 struct sched_group
*sg
;
6816 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
);
6817 init_numa_sched_groups_power(sg
);
6821 /* Attach the domains */
6822 for_each_cpu_mask(i
, *cpu_map
) {
6823 struct sched_domain
*sd
;
6824 #ifdef CONFIG_SCHED_SMT
6825 sd
= &per_cpu(cpu_domains
, i
);
6826 #elif defined(CONFIG_SCHED_MC)
6827 sd
= &per_cpu(core_domains
, i
);
6829 sd
= &per_cpu(phys_domains
, i
);
6831 cpu_attach_domain(sd
, rd
, i
);
6838 free_sched_groups(cpu_map
);
6843 static cpumask_t
*doms_cur
; /* current sched domains */
6844 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
6847 * Special case: If a kmalloc of a doms_cur partition (array of
6848 * cpumask_t) fails, then fallback to a single sched domain,
6849 * as determined by the single cpumask_t fallback_doms.
6851 static cpumask_t fallback_doms
;
6853 void __attribute__((weak
)) arch_update_cpu_topology(void)
6858 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6859 * For now this just excludes isolated cpus, but could be used to
6860 * exclude other special cases in the future.
6862 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
6866 arch_update_cpu_topology();
6868 doms_cur
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
6870 doms_cur
= &fallback_doms
;
6871 cpus_andnot(*doms_cur
, *cpu_map
, cpu_isolated_map
);
6872 err
= build_sched_domains(doms_cur
);
6873 register_sched_domain_sysctl();
6878 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
)
6880 free_sched_groups(cpu_map
);
6884 * Detach sched domains from a group of cpus specified in cpu_map
6885 * These cpus will now be attached to the NULL domain
6887 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
6891 unregister_sched_domain_sysctl();
6893 for_each_cpu_mask(i
, *cpu_map
)
6894 cpu_attach_domain(NULL
, &def_root_domain
, i
);
6895 synchronize_sched();
6896 arch_destroy_sched_domains(cpu_map
);
6900 * Partition sched domains as specified by the 'ndoms_new'
6901 * cpumasks in the array doms_new[] of cpumasks. This compares
6902 * doms_new[] to the current sched domain partitioning, doms_cur[].
6903 * It destroys each deleted domain and builds each new domain.
6905 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6906 * The masks don't intersect (don't overlap.) We should setup one
6907 * sched domain for each mask. CPUs not in any of the cpumasks will
6908 * not be load balanced. If the same cpumask appears both in the
6909 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6912 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6913 * ownership of it and will kfree it when done with it. If the caller
6914 * failed the kmalloc call, then it can pass in doms_new == NULL,
6915 * and partition_sched_domains() will fallback to the single partition
6918 * Call with hotplug lock held
6920 void partition_sched_domains(int ndoms_new
, cpumask_t
*doms_new
)
6926 /* always unregister in case we don't destroy any domains */
6927 unregister_sched_domain_sysctl();
6929 if (doms_new
== NULL
) {
6931 doms_new
= &fallback_doms
;
6932 cpus_andnot(doms_new
[0], cpu_online_map
, cpu_isolated_map
);
6935 /* Destroy deleted domains */
6936 for (i
= 0; i
< ndoms_cur
; i
++) {
6937 for (j
= 0; j
< ndoms_new
; j
++) {
6938 if (cpus_equal(doms_cur
[i
], doms_new
[j
]))
6941 /* no match - a current sched domain not in new doms_new[] */
6942 detach_destroy_domains(doms_cur
+ i
);
6947 /* Build new domains */
6948 for (i
= 0; i
< ndoms_new
; i
++) {
6949 for (j
= 0; j
< ndoms_cur
; j
++) {
6950 if (cpus_equal(doms_new
[i
], doms_cur
[j
]))
6953 /* no match - add a new doms_new */
6954 build_sched_domains(doms_new
+ i
);
6959 /* Remember the new sched domains */
6960 if (doms_cur
!= &fallback_doms
)
6962 doms_cur
= doms_new
;
6963 ndoms_cur
= ndoms_new
;
6965 register_sched_domain_sysctl();
6970 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6971 int arch_reinit_sched_domains(void)
6976 detach_destroy_domains(&cpu_online_map
);
6977 err
= arch_init_sched_domains(&cpu_online_map
);
6983 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
6987 if (buf
[0] != '0' && buf
[0] != '1')
6991 sched_smt_power_savings
= (buf
[0] == '1');
6993 sched_mc_power_savings
= (buf
[0] == '1');
6995 ret
= arch_reinit_sched_domains();
6997 return ret
? ret
: count
;
7000 #ifdef CONFIG_SCHED_MC
7001 static ssize_t
sched_mc_power_savings_show(struct sys_device
*dev
, char *page
)
7003 return sprintf(page
, "%u\n", sched_mc_power_savings
);
7005 static ssize_t
sched_mc_power_savings_store(struct sys_device
*dev
,
7006 const char *buf
, size_t count
)
7008 return sched_power_savings_store(buf
, count
, 0);
7010 static SYSDEV_ATTR(sched_mc_power_savings
, 0644, sched_mc_power_savings_show
,
7011 sched_mc_power_savings_store
);
7014 #ifdef CONFIG_SCHED_SMT
7015 static ssize_t
sched_smt_power_savings_show(struct sys_device
*dev
, char *page
)
7017 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7019 static ssize_t
sched_smt_power_savings_store(struct sys_device
*dev
,
7020 const char *buf
, size_t count
)
7022 return sched_power_savings_store(buf
, count
, 1);
7024 static SYSDEV_ATTR(sched_smt_power_savings
, 0644, sched_smt_power_savings_show
,
7025 sched_smt_power_savings_store
);
7028 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7032 #ifdef CONFIG_SCHED_SMT
7034 err
= sysfs_create_file(&cls
->kset
.kobj
,
7035 &attr_sched_smt_power_savings
.attr
);
7037 #ifdef CONFIG_SCHED_MC
7038 if (!err
&& mc_capable())
7039 err
= sysfs_create_file(&cls
->kset
.kobj
,
7040 &attr_sched_mc_power_savings
.attr
);
7047 * Force a reinitialization of the sched domains hierarchy. The domains
7048 * and groups cannot be updated in place without racing with the balancing
7049 * code, so we temporarily attach all running cpus to the NULL domain
7050 * which will prevent rebalancing while the sched domains are recalculated.
7052 static int update_sched_domains(struct notifier_block
*nfb
,
7053 unsigned long action
, void *hcpu
)
7056 case CPU_UP_PREPARE
:
7057 case CPU_UP_PREPARE_FROZEN
:
7058 case CPU_DOWN_PREPARE
:
7059 case CPU_DOWN_PREPARE_FROZEN
:
7060 detach_destroy_domains(&cpu_online_map
);
7063 case CPU_UP_CANCELED
:
7064 case CPU_UP_CANCELED_FROZEN
:
7065 case CPU_DOWN_FAILED
:
7066 case CPU_DOWN_FAILED_FROZEN
:
7068 case CPU_ONLINE_FROZEN
:
7070 case CPU_DEAD_FROZEN
:
7072 * Fall through and re-initialise the domains.
7079 /* The hotplug lock is already held by cpu_up/cpu_down */
7080 arch_init_sched_domains(&cpu_online_map
);
7085 void __init
sched_init_smp(void)
7087 cpumask_t non_isolated_cpus
;
7090 arch_init_sched_domains(&cpu_online_map
);
7091 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
7092 if (cpus_empty(non_isolated_cpus
))
7093 cpu_set(smp_processor_id(), non_isolated_cpus
);
7095 /* XXX: Theoretical race here - CPU may be hotplugged now */
7096 hotcpu_notifier(update_sched_domains
, 0);
7098 /* Move init over to a non-isolated CPU */
7099 if (set_cpus_allowed(current
, non_isolated_cpus
) < 0)
7101 sched_init_granularity();
7104 void __init
sched_init_smp(void)
7106 sched_init_granularity();
7108 #endif /* CONFIG_SMP */
7110 int in_sched_functions(unsigned long addr
)
7112 return in_lock_functions(addr
) ||
7113 (addr
>= (unsigned long)__sched_text_start
7114 && addr
< (unsigned long)__sched_text_end
);
7117 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
7119 cfs_rq
->tasks_timeline
= RB_ROOT
;
7120 #ifdef CONFIG_FAIR_GROUP_SCHED
7123 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
7126 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
7128 struct rt_prio_array
*array
;
7131 array
= &rt_rq
->active
;
7132 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
7133 INIT_LIST_HEAD(array
->queue
+ i
);
7134 __clear_bit(i
, array
->bitmap
);
7136 /* delimiter for bitsearch: */
7137 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
7139 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7140 rt_rq
->highest_prio
= MAX_RT_PRIO
;
7143 rt_rq
->rt_nr_migratory
= 0;
7144 rt_rq
->overloaded
= 0;
7148 rt_rq
->rt_throttled
= 0;
7150 #ifdef CONFIG_RT_GROUP_SCHED
7151 rt_rq
->rt_nr_boosted
= 0;
7156 #ifdef CONFIG_FAIR_GROUP_SCHED
7157 static void init_tg_cfs_entry(struct rq
*rq
, struct task_group
*tg
,
7158 struct cfs_rq
*cfs_rq
, struct sched_entity
*se
,
7161 tg
->cfs_rq
[cpu
] = cfs_rq
;
7162 init_cfs_rq(cfs_rq
, rq
);
7165 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
7168 se
->cfs_rq
= &rq
->cfs
;
7170 se
->load
.weight
= tg
->shares
;
7171 se
->load
.inv_weight
= div64_64(1ULL<<32, se
->load
.weight
);
7176 #ifdef CONFIG_RT_GROUP_SCHED
7177 static void init_tg_rt_entry(struct rq
*rq
, struct task_group
*tg
,
7178 struct rt_rq
*rt_rq
, struct sched_rt_entity
*rt_se
,
7181 tg
->rt_rq
[cpu
] = rt_rq
;
7182 init_rt_rq(rt_rq
, rq
);
7184 rt_rq
->rt_se
= rt_se
;
7186 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
7188 tg
->rt_se
[cpu
] = rt_se
;
7189 rt_se
->rt_rq
= &rq
->rt
;
7190 rt_se
->my_q
= rt_rq
;
7191 rt_se
->parent
= NULL
;
7192 INIT_LIST_HEAD(&rt_se
->run_list
);
7196 void __init
sched_init(void)
7198 int highest_cpu
= 0;
7202 init_defrootdomain();
7205 #ifdef CONFIG_GROUP_SCHED
7206 list_add(&init_task_group
.list
, &task_groups
);
7209 for_each_possible_cpu(i
) {
7213 spin_lock_init(&rq
->lock
);
7214 lockdep_set_class(&rq
->lock
, &rq
->rq_lock_key
);
7217 init_cfs_rq(&rq
->cfs
, rq
);
7218 init_rt_rq(&rq
->rt
, rq
);
7219 #ifdef CONFIG_FAIR_GROUP_SCHED
7220 init_task_group
.shares
= init_task_group_load
;
7221 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
7222 init_tg_cfs_entry(rq
, &init_task_group
,
7223 &per_cpu(init_cfs_rq
, i
),
7224 &per_cpu(init_sched_entity
, i
), i
, 1);
7227 #ifdef CONFIG_RT_GROUP_SCHED
7228 init_task_group
.rt_runtime
=
7229 sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
7230 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
7231 init_tg_rt_entry(rq
, &init_task_group
,
7232 &per_cpu(init_rt_rq
, i
),
7233 &per_cpu(init_sched_rt_entity
, i
), i
, 1);
7235 rq
->rt_period_expire
= 0;
7236 rq
->rt_throttled
= 0;
7238 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
7239 rq
->cpu_load
[j
] = 0;
7243 rq
->active_balance
= 0;
7244 rq
->next_balance
= jiffies
;
7247 rq
->migration_thread
= NULL
;
7248 INIT_LIST_HEAD(&rq
->migration_queue
);
7249 rq_attach_root(rq
, &def_root_domain
);
7252 atomic_set(&rq
->nr_iowait
, 0);
7256 set_load_weight(&init_task
);
7258 #ifdef CONFIG_PREEMPT_NOTIFIERS
7259 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
7263 nr_cpu_ids
= highest_cpu
+ 1;
7264 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
, NULL
);
7267 #ifdef CONFIG_RT_MUTEXES
7268 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
7272 * The boot idle thread does lazy MMU switching as well:
7274 atomic_inc(&init_mm
.mm_count
);
7275 enter_lazy_tlb(&init_mm
, current
);
7278 * Make us the idle thread. Technically, schedule() should not be
7279 * called from this thread, however somewhere below it might be,
7280 * but because we are the idle thread, we just pick up running again
7281 * when this runqueue becomes "idle".
7283 init_idle(current
, smp_processor_id());
7285 * During early bootup we pretend to be a normal task:
7287 current
->sched_class
= &fair_sched_class
;
7289 scheduler_running
= 1;
7292 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7293 void __might_sleep(char *file
, int line
)
7296 static unsigned long prev_jiffy
; /* ratelimiting */
7298 if ((in_atomic() || irqs_disabled()) &&
7299 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
7300 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
7302 prev_jiffy
= jiffies
;
7303 printk(KERN_ERR
"BUG: sleeping function called from invalid"
7304 " context at %s:%d\n", file
, line
);
7305 printk("in_atomic():%d, irqs_disabled():%d\n",
7306 in_atomic(), irqs_disabled());
7307 debug_show_held_locks(current
);
7308 if (irqs_disabled())
7309 print_irqtrace_events(current
);
7314 EXPORT_SYMBOL(__might_sleep
);
7317 #ifdef CONFIG_MAGIC_SYSRQ
7318 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
7321 update_rq_clock(rq
);
7322 on_rq
= p
->se
.on_rq
;
7324 deactivate_task(rq
, p
, 0);
7325 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
7327 activate_task(rq
, p
, 0);
7328 resched_task(rq
->curr
);
7332 void normalize_rt_tasks(void)
7334 struct task_struct
*g
, *p
;
7335 unsigned long flags
;
7338 read_lock_irqsave(&tasklist_lock
, flags
);
7339 do_each_thread(g
, p
) {
7341 * Only normalize user tasks:
7346 p
->se
.exec_start
= 0;
7347 #ifdef CONFIG_SCHEDSTATS
7348 p
->se
.wait_start
= 0;
7349 p
->se
.sleep_start
= 0;
7350 p
->se
.block_start
= 0;
7352 task_rq(p
)->clock
= 0;
7356 * Renice negative nice level userspace
7359 if (TASK_NICE(p
) < 0 && p
->mm
)
7360 set_user_nice(p
, 0);
7364 spin_lock(&p
->pi_lock
);
7365 rq
= __task_rq_lock(p
);
7367 normalize_task(rq
, p
);
7369 __task_rq_unlock(rq
);
7370 spin_unlock(&p
->pi_lock
);
7371 } while_each_thread(g
, p
);
7373 read_unlock_irqrestore(&tasklist_lock
, flags
);
7376 #endif /* CONFIG_MAGIC_SYSRQ */
7380 * These functions are only useful for the IA64 MCA handling.
7382 * They can only be called when the whole system has been
7383 * stopped - every CPU needs to be quiescent, and no scheduling
7384 * activity can take place. Using them for anything else would
7385 * be a serious bug, and as a result, they aren't even visible
7386 * under any other configuration.
7390 * curr_task - return the current task for a given cpu.
7391 * @cpu: the processor in question.
7393 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7395 struct task_struct
*curr_task(int cpu
)
7397 return cpu_curr(cpu
);
7401 * set_curr_task - set the current task for a given cpu.
7402 * @cpu: the processor in question.
7403 * @p: the task pointer to set.
7405 * Description: This function must only be used when non-maskable interrupts
7406 * are serviced on a separate stack. It allows the architecture to switch the
7407 * notion of the current task on a cpu in a non-blocking manner. This function
7408 * must be called with all CPU's synchronized, and interrupts disabled, the
7409 * and caller must save the original value of the current task (see
7410 * curr_task() above) and restore that value before reenabling interrupts and
7411 * re-starting the system.
7413 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7415 void set_curr_task(int cpu
, struct task_struct
*p
)
7422 #ifdef CONFIG_GROUP_SCHED
7424 #ifdef CONFIG_FAIR_GROUP_SCHED
7425 static void free_fair_sched_group(struct task_group
*tg
)
7429 for_each_possible_cpu(i
) {
7431 kfree(tg
->cfs_rq
[i
]);
7440 static int alloc_fair_sched_group(struct task_group
*tg
)
7442 struct cfs_rq
*cfs_rq
;
7443 struct sched_entity
*se
;
7447 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * NR_CPUS
, GFP_KERNEL
);
7450 tg
->se
= kzalloc(sizeof(se
) * NR_CPUS
, GFP_KERNEL
);
7454 tg
->shares
= NICE_0_LOAD
;
7456 for_each_possible_cpu(i
) {
7459 cfs_rq
= kmalloc_node(sizeof(struct cfs_rq
),
7460 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
7464 se
= kmalloc_node(sizeof(struct sched_entity
),
7465 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
7469 init_tg_cfs_entry(rq
, tg
, cfs_rq
, se
, i
, 0);
7478 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
7480 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
7481 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
7484 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
7486 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
7489 static inline void free_fair_sched_group(struct task_group
*tg
)
7493 static inline int alloc_fair_sched_group(struct task_group
*tg
)
7498 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
7502 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
7507 #ifdef CONFIG_RT_GROUP_SCHED
7508 static void free_rt_sched_group(struct task_group
*tg
)
7512 for_each_possible_cpu(i
) {
7514 kfree(tg
->rt_rq
[i
]);
7516 kfree(tg
->rt_se
[i
]);
7523 static int alloc_rt_sched_group(struct task_group
*tg
)
7525 struct rt_rq
*rt_rq
;
7526 struct sched_rt_entity
*rt_se
;
7530 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * NR_CPUS
, GFP_KERNEL
);
7533 tg
->rt_se
= kzalloc(sizeof(rt_se
) * NR_CPUS
, GFP_KERNEL
);
7539 for_each_possible_cpu(i
) {
7542 rt_rq
= kmalloc_node(sizeof(struct rt_rq
),
7543 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
7547 rt_se
= kmalloc_node(sizeof(struct sched_rt_entity
),
7548 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
7552 init_tg_rt_entry(rq
, tg
, rt_rq
, rt_se
, i
, 0);
7561 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
7563 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
7564 &cpu_rq(cpu
)->leaf_rt_rq_list
);
7567 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
7569 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
7572 static inline void free_rt_sched_group(struct task_group
*tg
)
7576 static inline int alloc_rt_sched_group(struct task_group
*tg
)
7581 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
7585 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
7590 static void free_sched_group(struct task_group
*tg
)
7592 free_fair_sched_group(tg
);
7593 free_rt_sched_group(tg
);
7597 /* allocate runqueue etc for a new task group */
7598 struct task_group
*sched_create_group(void)
7600 struct task_group
*tg
;
7601 unsigned long flags
;
7604 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
7606 return ERR_PTR(-ENOMEM
);
7608 if (!alloc_fair_sched_group(tg
))
7611 if (!alloc_rt_sched_group(tg
))
7614 spin_lock_irqsave(&task_group_lock
, flags
);
7615 for_each_possible_cpu(i
) {
7616 register_fair_sched_group(tg
, i
);
7617 register_rt_sched_group(tg
, i
);
7619 list_add_rcu(&tg
->list
, &task_groups
);
7620 spin_unlock_irqrestore(&task_group_lock
, flags
);
7625 free_sched_group(tg
);
7626 return ERR_PTR(-ENOMEM
);
7629 /* rcu callback to free various structures associated with a task group */
7630 static void free_sched_group_rcu(struct rcu_head
*rhp
)
7632 /* now it should be safe to free those cfs_rqs */
7633 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
7636 /* Destroy runqueue etc associated with a task group */
7637 void sched_destroy_group(struct task_group
*tg
)
7639 unsigned long flags
;
7642 spin_lock_irqsave(&task_group_lock
, flags
);
7643 for_each_possible_cpu(i
) {
7644 unregister_fair_sched_group(tg
, i
);
7645 unregister_rt_sched_group(tg
, i
);
7647 list_del_rcu(&tg
->list
);
7648 spin_unlock_irqrestore(&task_group_lock
, flags
);
7650 /* wait for possible concurrent references to cfs_rqs complete */
7651 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
7654 /* change task's runqueue when it moves between groups.
7655 * The caller of this function should have put the task in its new group
7656 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7657 * reflect its new group.
7659 void sched_move_task(struct task_struct
*tsk
)
7662 unsigned long flags
;
7665 rq
= task_rq_lock(tsk
, &flags
);
7667 update_rq_clock(rq
);
7669 running
= task_current(rq
, tsk
);
7670 on_rq
= tsk
->se
.on_rq
;
7673 dequeue_task(rq
, tsk
, 0);
7674 if (unlikely(running
))
7675 tsk
->sched_class
->put_prev_task(rq
, tsk
);
7677 set_task_rq(tsk
, task_cpu(tsk
));
7679 #ifdef CONFIG_FAIR_GROUP_SCHED
7680 if (tsk
->sched_class
->moved_group
)
7681 tsk
->sched_class
->moved_group(tsk
);
7684 if (unlikely(running
))
7685 tsk
->sched_class
->set_curr_task(rq
);
7687 enqueue_task(rq
, tsk
, 0);
7689 task_rq_unlock(rq
, &flags
);
7692 #ifdef CONFIG_FAIR_GROUP_SCHED
7693 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
7695 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
7696 struct rq
*rq
= cfs_rq
->rq
;
7699 spin_lock_irq(&rq
->lock
);
7703 dequeue_entity(cfs_rq
, se
, 0);
7705 se
->load
.weight
= shares
;
7706 se
->load
.inv_weight
= div64_64((1ULL<<32), shares
);
7709 enqueue_entity(cfs_rq
, se
, 0);
7711 spin_unlock_irq(&rq
->lock
);
7714 static DEFINE_MUTEX(shares_mutex
);
7716 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
7719 unsigned long flags
;
7722 * A weight of 0 or 1 can cause arithmetics problems.
7723 * (The default weight is 1024 - so there's no practical
7724 * limitation from this.)
7729 mutex_lock(&shares_mutex
);
7730 if (tg
->shares
== shares
)
7733 spin_lock_irqsave(&task_group_lock
, flags
);
7734 for_each_possible_cpu(i
)
7735 unregister_fair_sched_group(tg
, i
);
7736 spin_unlock_irqrestore(&task_group_lock
, flags
);
7738 /* wait for any ongoing reference to this group to finish */
7739 synchronize_sched();
7742 * Now we are free to modify the group's share on each cpu
7743 * w/o tripping rebalance_share or load_balance_fair.
7745 tg
->shares
= shares
;
7746 for_each_possible_cpu(i
)
7747 set_se_shares(tg
->se
[i
], shares
);
7750 * Enable load balance activity on this group, by inserting it back on
7751 * each cpu's rq->leaf_cfs_rq_list.
7753 spin_lock_irqsave(&task_group_lock
, flags
);
7754 for_each_possible_cpu(i
)
7755 register_fair_sched_group(tg
, i
);
7756 spin_unlock_irqrestore(&task_group_lock
, flags
);
7758 mutex_unlock(&shares_mutex
);
7762 unsigned long sched_group_shares(struct task_group
*tg
)
7768 #ifdef CONFIG_RT_GROUP_SCHED
7770 * Ensure that the real time constraints are schedulable.
7772 static DEFINE_MUTEX(rt_constraints_mutex
);
7774 static unsigned long to_ratio(u64 period
, u64 runtime
)
7776 if (runtime
== RUNTIME_INF
)
7779 return div64_64(runtime
<< 16, period
);
7782 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
7784 struct task_group
*tgi
;
7785 unsigned long total
= 0;
7786 unsigned long global_ratio
=
7787 to_ratio(sysctl_sched_rt_period
,
7788 sysctl_sched_rt_runtime
< 0 ?
7789 RUNTIME_INF
: sysctl_sched_rt_runtime
);
7792 list_for_each_entry_rcu(tgi
, &task_groups
, list
) {
7796 total
+= to_ratio(period
, tgi
->rt_runtime
);
7800 return total
+ to_ratio(period
, runtime
) < global_ratio
;
7803 /* Must be called with tasklist_lock held */
7804 static inline int tg_has_rt_tasks(struct task_group
*tg
)
7806 struct task_struct
*g
, *p
;
7807 do_each_thread(g
, p
) {
7808 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
7810 } while_each_thread(g
, p
);
7814 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
7816 u64 rt_runtime
, rt_period
;
7819 rt_period
= (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
7820 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
7821 if (rt_runtime_us
== -1)
7822 rt_runtime
= RUNTIME_INF
;
7824 mutex_lock(&rt_constraints_mutex
);
7825 read_lock(&tasklist_lock
);
7826 if (rt_runtime_us
== 0 && tg_has_rt_tasks(tg
)) {
7830 if (!__rt_schedulable(tg
, rt_period
, rt_runtime
)) {
7834 tg
->rt_runtime
= rt_runtime
;
7836 read_unlock(&tasklist_lock
);
7837 mutex_unlock(&rt_constraints_mutex
);
7842 long sched_group_rt_runtime(struct task_group
*tg
)
7846 if (tg
->rt_runtime
== RUNTIME_INF
)
7849 rt_runtime_us
= tg
->rt_runtime
;
7850 do_div(rt_runtime_us
, NSEC_PER_USEC
);
7851 return rt_runtime_us
;
7854 #endif /* CONFIG_GROUP_SCHED */
7856 #ifdef CONFIG_CGROUP_SCHED
7858 /* return corresponding task_group object of a cgroup */
7859 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
7861 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
7862 struct task_group
, css
);
7865 static struct cgroup_subsys_state
*
7866 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
7868 struct task_group
*tg
;
7870 if (!cgrp
->parent
) {
7871 /* This is early initialization for the top cgroup */
7872 init_task_group
.css
.cgroup
= cgrp
;
7873 return &init_task_group
.css
;
7876 /* we support only 1-level deep hierarchical scheduler atm */
7877 if (cgrp
->parent
->parent
)
7878 return ERR_PTR(-EINVAL
);
7880 tg
= sched_create_group();
7882 return ERR_PTR(-ENOMEM
);
7884 /* Bind the cgroup to task_group object we just created */
7885 tg
->css
.cgroup
= cgrp
;
7891 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
7893 struct task_group
*tg
= cgroup_tg(cgrp
);
7895 sched_destroy_group(tg
);
7899 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
7900 struct task_struct
*tsk
)
7902 #ifdef CONFIG_RT_GROUP_SCHED
7903 /* Don't accept realtime tasks when there is no way for them to run */
7904 if (rt_task(tsk
) && cgroup_tg(cgrp
)->rt_runtime
== 0)
7907 /* We don't support RT-tasks being in separate groups */
7908 if (tsk
->sched_class
!= &fair_sched_class
)
7916 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
7917 struct cgroup
*old_cont
, struct task_struct
*tsk
)
7919 sched_move_task(tsk
);
7922 #ifdef CONFIG_FAIR_GROUP_SCHED
7923 static int cpu_shares_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
7926 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
7929 static u64
cpu_shares_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
7931 struct task_group
*tg
= cgroup_tg(cgrp
);
7933 return (u64
) tg
->shares
;
7937 #ifdef CONFIG_RT_GROUP_SCHED
7938 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
7940 const char __user
*userbuf
,
7941 size_t nbytes
, loff_t
*unused_ppos
)
7950 if (nbytes
>= sizeof(buffer
))
7952 if (copy_from_user(buffer
, userbuf
, nbytes
))
7955 buffer
[nbytes
] = 0; /* nul-terminate */
7957 /* strip newline if necessary */
7958 if (nbytes
&& (buffer
[nbytes
-1] == '\n'))
7959 buffer
[nbytes
-1] = 0;
7960 val
= simple_strtoll(buffer
, &end
, 0);
7964 /* Pass to subsystem */
7965 retval
= sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
7971 static ssize_t
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
,
7973 char __user
*buf
, size_t nbytes
,
7977 long val
= sched_group_rt_runtime(cgroup_tg(cgrp
));
7978 int len
= sprintf(tmp
, "%ld\n", val
);
7980 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
7984 static struct cftype cpu_files
[] = {
7985 #ifdef CONFIG_FAIR_GROUP_SCHED
7988 .read_uint
= cpu_shares_read_uint
,
7989 .write_uint
= cpu_shares_write_uint
,
7992 #ifdef CONFIG_RT_GROUP_SCHED
7994 .name
= "rt_runtime_us",
7995 .read
= cpu_rt_runtime_read
,
7996 .write
= cpu_rt_runtime_write
,
8001 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8003 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
8006 struct cgroup_subsys cpu_cgroup_subsys
= {
8008 .create
= cpu_cgroup_create
,
8009 .destroy
= cpu_cgroup_destroy
,
8010 .can_attach
= cpu_cgroup_can_attach
,
8011 .attach
= cpu_cgroup_attach
,
8012 .populate
= cpu_cgroup_populate
,
8013 .subsys_id
= cpu_cgroup_subsys_id
,
8017 #endif /* CONFIG_CGROUP_SCHED */
8019 #ifdef CONFIG_CGROUP_CPUACCT
8022 * CPU accounting code for task groups.
8024 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8025 * (balbir@in.ibm.com).
8028 /* track cpu usage of a group of tasks */
8030 struct cgroup_subsys_state css
;
8031 /* cpuusage holds pointer to a u64-type object on every cpu */
8035 struct cgroup_subsys cpuacct_subsys
;
8037 /* return cpu accounting group corresponding to this container */
8038 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cont
)
8040 return container_of(cgroup_subsys_state(cont
, cpuacct_subsys_id
),
8041 struct cpuacct
, css
);
8044 /* return cpu accounting group to which this task belongs */
8045 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
8047 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
8048 struct cpuacct
, css
);
8051 /* create a new cpu accounting group */
8052 static struct cgroup_subsys_state
*cpuacct_create(
8053 struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8055 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
8058 return ERR_PTR(-ENOMEM
);
8060 ca
->cpuusage
= alloc_percpu(u64
);
8061 if (!ca
->cpuusage
) {
8063 return ERR_PTR(-ENOMEM
);
8069 /* destroy an existing cpu accounting group */
8071 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8073 struct cpuacct
*ca
= cgroup_ca(cont
);
8075 free_percpu(ca
->cpuusage
);
8079 /* return total cpu usage (in nanoseconds) of a group */
8080 static u64
cpuusage_read(struct cgroup
*cont
, struct cftype
*cft
)
8082 struct cpuacct
*ca
= cgroup_ca(cont
);
8083 u64 totalcpuusage
= 0;
8086 for_each_possible_cpu(i
) {
8087 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, i
);
8090 * Take rq->lock to make 64-bit addition safe on 32-bit
8093 spin_lock_irq(&cpu_rq(i
)->lock
);
8094 totalcpuusage
+= *cpuusage
;
8095 spin_unlock_irq(&cpu_rq(i
)->lock
);
8098 return totalcpuusage
;
8101 static struct cftype files
[] = {
8104 .read_uint
= cpuusage_read
,
8108 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8110 return cgroup_add_files(cont
, ss
, files
, ARRAY_SIZE(files
));
8114 * charge this task's execution time to its accounting group.
8116 * called with rq->lock held.
8118 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
8122 if (!cpuacct_subsys
.active
)
8127 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, task_cpu(tsk
));
8129 *cpuusage
+= cputime
;
8133 struct cgroup_subsys cpuacct_subsys
= {
8135 .create
= cpuacct_create
,
8136 .destroy
= cpuacct_destroy
,
8137 .populate
= cpuacct_populate
,
8138 .subsys_id
= cpuacct_subsys_id
,
8140 #endif /* CONFIG_CGROUP_CPUACCT */