2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_output.c,v 1.146 2002/02/01 22:01:04 davem Exp $
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
24 * Changes: Pedro Roque : Retransmit queue handled by TCP.
25 * : Fragmentation on mtu decrease
26 * : Segment collapse on retransmit
29 * Linus Torvalds : send_delayed_ack
30 * David S. Miller : Charge memory using the right skb
31 * during syn/ack processing.
32 * David S. Miller : Output engine completely rewritten.
33 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
34 * Cacophonix Gaul : draft-minshall-nagle-01
35 * J Hadi Salim : ECN support
41 #include <linux/compiler.h>
42 #include <linux/module.h>
43 #include <linux/smp_lock.h>
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse
= 1;
48 /* This limits the percentage of the congestion window which we
49 * will allow a single TSO frame to consume. Building TSO frames
50 * which are too large can cause TCP streams to be bursty.
52 int sysctl_tcp_tso_win_divisor
= 8;
54 static inline void update_send_head(struct sock
*sk
, struct tcp_sock
*tp
,
57 sk
->sk_send_head
= skb
->next
;
58 if (sk
->sk_send_head
== (struct sk_buff
*)&sk
->sk_write_queue
)
59 sk
->sk_send_head
= NULL
;
60 tp
->snd_nxt
= TCP_SKB_CB(skb
)->end_seq
;
61 tcp_packets_out_inc(sk
, tp
, skb
);
64 /* SND.NXT, if window was not shrunk.
65 * If window has been shrunk, what should we make? It is not clear at all.
66 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
67 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
68 * invalid. OK, let's make this for now:
70 static inline __u32
tcp_acceptable_seq(struct sock
*sk
, struct tcp_sock
*tp
)
72 if (!before(tp
->snd_una
+tp
->snd_wnd
, tp
->snd_nxt
))
75 return tp
->snd_una
+tp
->snd_wnd
;
78 /* Calculate mss to advertise in SYN segment.
79 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
81 * 1. It is independent of path mtu.
82 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
83 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
84 * attached devices, because some buggy hosts are confused by
86 * 4. We do not make 3, we advertise MSS, calculated from first
87 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
88 * This may be overridden via information stored in routing table.
89 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
90 * probably even Jumbo".
92 static __u16
tcp_advertise_mss(struct sock
*sk
)
94 struct tcp_sock
*tp
= tcp_sk(sk
);
95 struct dst_entry
*dst
= __sk_dst_get(sk
);
98 if (dst
&& dst_metric(dst
, RTAX_ADVMSS
) < mss
) {
99 mss
= dst_metric(dst
, RTAX_ADVMSS
);
106 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
107 * This is the first part of cwnd validation mechanism. */
108 static void tcp_cwnd_restart(struct tcp_sock
*tp
, struct dst_entry
*dst
)
110 s32 delta
= tcp_time_stamp
- tp
->lsndtime
;
111 u32 restart_cwnd
= tcp_init_cwnd(tp
, dst
);
112 u32 cwnd
= tp
->snd_cwnd
;
114 if (tcp_is_vegas(tp
))
115 tcp_vegas_enable(tp
);
117 tp
->snd_ssthresh
= tcp_current_ssthresh(tp
);
118 restart_cwnd
= min(restart_cwnd
, cwnd
);
120 while ((delta
-= tp
->rto
) > 0 && cwnd
> restart_cwnd
)
122 tp
->snd_cwnd
= max(cwnd
, restart_cwnd
);
123 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
124 tp
->snd_cwnd_used
= 0;
127 static inline void tcp_event_data_sent(struct tcp_sock
*tp
,
128 struct sk_buff
*skb
, struct sock
*sk
)
130 u32 now
= tcp_time_stamp
;
132 if (!tp
->packets_out
&& (s32
)(now
- tp
->lsndtime
) > tp
->rto
)
133 tcp_cwnd_restart(tp
, __sk_dst_get(sk
));
137 /* If it is a reply for ato after last received
138 * packet, enter pingpong mode.
140 if ((u32
)(now
- tp
->ack
.lrcvtime
) < tp
->ack
.ato
)
141 tp
->ack
.pingpong
= 1;
144 static __inline__
void tcp_event_ack_sent(struct sock
*sk
)
146 struct tcp_sock
*tp
= tcp_sk(sk
);
148 tcp_dec_quickack_mode(tp
);
149 tcp_clear_xmit_timer(sk
, TCP_TIME_DACK
);
152 /* Determine a window scaling and initial window to offer.
153 * Based on the assumption that the given amount of space
154 * will be offered. Store the results in the tp structure.
155 * NOTE: for smooth operation initial space offering should
156 * be a multiple of mss if possible. We assume here that mss >= 1.
157 * This MUST be enforced by all callers.
159 void tcp_select_initial_window(int __space
, __u32 mss
,
160 __u32
*rcv_wnd
, __u32
*window_clamp
,
161 int wscale_ok
, __u8
*rcv_wscale
)
163 unsigned int space
= (__space
< 0 ? 0 : __space
);
165 /* If no clamp set the clamp to the max possible scaled window */
166 if (*window_clamp
== 0)
167 (*window_clamp
) = (65535 << 14);
168 space
= min(*window_clamp
, space
);
170 /* Quantize space offering to a multiple of mss if possible. */
172 space
= (space
/ mss
) * mss
;
174 /* NOTE: offering an initial window larger than 32767
175 * will break some buggy TCP stacks. We try to be nice.
176 * If we are not window scaling, then this truncates
177 * our initial window offering to 32k. There should also
178 * be a sysctl option to stop being nice.
180 (*rcv_wnd
) = min(space
, MAX_TCP_WINDOW
);
183 /* Set window scaling on max possible window
184 * See RFC1323 for an explanation of the limit to 14
186 space
= max_t(u32
, sysctl_tcp_rmem
[2], sysctl_rmem_max
);
187 while (space
> 65535 && (*rcv_wscale
) < 14) {
193 /* Set initial window to value enough for senders,
194 * following RFC1414. Senders, not following this RFC,
195 * will be satisfied with 2.
197 if (mss
> (1<<*rcv_wscale
)) {
203 if (*rcv_wnd
> init_cwnd
*mss
)
204 *rcv_wnd
= init_cwnd
*mss
;
207 /* Set the clamp no higher than max representable value */
208 (*window_clamp
) = min(65535U << (*rcv_wscale
), *window_clamp
);
211 /* Chose a new window to advertise, update state in tcp_sock for the
212 * socket, and return result with RFC1323 scaling applied. The return
213 * value can be stuffed directly into th->window for an outgoing
216 static __inline__ u16
tcp_select_window(struct sock
*sk
)
218 struct tcp_sock
*tp
= tcp_sk(sk
);
219 u32 cur_win
= tcp_receive_window(tp
);
220 u32 new_win
= __tcp_select_window(sk
);
222 /* Never shrink the offered window */
223 if(new_win
< cur_win
) {
224 /* Danger Will Robinson!
225 * Don't update rcv_wup/rcv_wnd here or else
226 * we will not be able to advertise a zero
227 * window in time. --DaveM
229 * Relax Will Robinson.
233 tp
->rcv_wnd
= new_win
;
234 tp
->rcv_wup
= tp
->rcv_nxt
;
236 /* Make sure we do not exceed the maximum possible
239 if (!tp
->rx_opt
.rcv_wscale
)
240 new_win
= min(new_win
, MAX_TCP_WINDOW
);
242 new_win
= min(new_win
, (65535U << tp
->rx_opt
.rcv_wscale
));
244 /* RFC1323 scaling applied */
245 new_win
>>= tp
->rx_opt
.rcv_wscale
;
247 /* If we advertise zero window, disable fast path. */
255 /* This routine actually transmits TCP packets queued in by
256 * tcp_do_sendmsg(). This is used by both the initial
257 * transmission and possible later retransmissions.
258 * All SKB's seen here are completely headerless. It is our
259 * job to build the TCP header, and pass the packet down to
260 * IP so it can do the same plus pass the packet off to the
263 * We are working here with either a clone of the original
264 * SKB, or a fresh unique copy made by the retransmit engine.
266 static int tcp_transmit_skb(struct sock
*sk
, struct sk_buff
*skb
)
269 struct inet_sock
*inet
= inet_sk(sk
);
270 struct tcp_sock
*tp
= tcp_sk(sk
);
271 struct tcp_skb_cb
*tcb
= TCP_SKB_CB(skb
);
272 int tcp_header_size
= tp
->tcp_header_len
;
277 BUG_ON(!tcp_skb_pcount(skb
));
279 #define SYSCTL_FLAG_TSTAMPS 0x1
280 #define SYSCTL_FLAG_WSCALE 0x2
281 #define SYSCTL_FLAG_SACK 0x4
284 if (tcb
->flags
& TCPCB_FLAG_SYN
) {
285 tcp_header_size
= sizeof(struct tcphdr
) + TCPOLEN_MSS
;
286 if(sysctl_tcp_timestamps
) {
287 tcp_header_size
+= TCPOLEN_TSTAMP_ALIGNED
;
288 sysctl_flags
|= SYSCTL_FLAG_TSTAMPS
;
290 if(sysctl_tcp_window_scaling
) {
291 tcp_header_size
+= TCPOLEN_WSCALE_ALIGNED
;
292 sysctl_flags
|= SYSCTL_FLAG_WSCALE
;
294 if(sysctl_tcp_sack
) {
295 sysctl_flags
|= SYSCTL_FLAG_SACK
;
296 if(!(sysctl_flags
& SYSCTL_FLAG_TSTAMPS
))
297 tcp_header_size
+= TCPOLEN_SACKPERM_ALIGNED
;
299 } else if (tp
->rx_opt
.eff_sacks
) {
300 /* A SACK is 2 pad bytes, a 2 byte header, plus
301 * 2 32-bit sequence numbers for each SACK block.
303 tcp_header_size
+= (TCPOLEN_SACK_BASE_ALIGNED
+
304 (tp
->rx_opt
.eff_sacks
* TCPOLEN_SACK_PERBLOCK
));
308 * If the connection is idle and we are restarting,
309 * then we don't want to do any Vegas calculations
310 * until we get fresh RTT samples. So when we
311 * restart, we reset our Vegas state to a clean
312 * slate. After we get acks for this flight of
313 * packets, _then_ we can make Vegas calculations
316 if (tcp_is_vegas(tp
) && tcp_packets_in_flight(tp
) == 0)
317 tcp_vegas_enable(tp
);
319 th
= (struct tcphdr
*) skb_push(skb
, tcp_header_size
);
321 skb_set_owner_w(skb
, sk
);
323 /* Build TCP header and checksum it. */
324 th
->source
= inet
->sport
;
325 th
->dest
= inet
->dport
;
326 th
->seq
= htonl(tcb
->seq
);
327 th
->ack_seq
= htonl(tp
->rcv_nxt
);
328 *(((__u16
*)th
) + 6) = htons(((tcp_header_size
>> 2) << 12) | tcb
->flags
);
329 if (tcb
->flags
& TCPCB_FLAG_SYN
) {
330 /* RFC1323: The window in SYN & SYN/ACK segments
333 th
->window
= htons(tp
->rcv_wnd
);
335 th
->window
= htons(tcp_select_window(sk
));
341 between(tp
->snd_up
, tcb
->seq
+1, tcb
->seq
+0xFFFF)) {
342 th
->urg_ptr
= htons(tp
->snd_up
-tcb
->seq
);
346 if (tcb
->flags
& TCPCB_FLAG_SYN
) {
347 tcp_syn_build_options((__u32
*)(th
+ 1),
348 tcp_advertise_mss(sk
),
349 (sysctl_flags
& SYSCTL_FLAG_TSTAMPS
),
350 (sysctl_flags
& SYSCTL_FLAG_SACK
),
351 (sysctl_flags
& SYSCTL_FLAG_WSCALE
),
352 tp
->rx_opt
.rcv_wscale
,
354 tp
->rx_opt
.ts_recent
);
356 tcp_build_and_update_options((__u32
*)(th
+ 1),
359 TCP_ECN_send(sk
, tp
, skb
, tcp_header_size
);
361 tp
->af_specific
->send_check(sk
, th
, skb
->len
, skb
);
363 if (tcb
->flags
& TCPCB_FLAG_ACK
)
364 tcp_event_ack_sent(sk
);
366 if (skb
->len
!= tcp_header_size
)
367 tcp_event_data_sent(tp
, skb
, sk
);
369 TCP_INC_STATS(TCP_MIB_OUTSEGS
);
371 err
= tp
->af_specific
->queue_xmit(skb
, 0);
377 /* NET_XMIT_CN is special. It does not guarantee,
378 * that this packet is lost. It tells that device
379 * is about to start to drop packets or already
380 * drops some packets of the same priority and
381 * invokes us to send less aggressively.
383 return err
== NET_XMIT_CN
? 0 : err
;
386 #undef SYSCTL_FLAG_TSTAMPS
387 #undef SYSCTL_FLAG_WSCALE
388 #undef SYSCTL_FLAG_SACK
392 /* This routine just queue's the buffer
394 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
395 * otherwise socket can stall.
397 static void tcp_queue_skb(struct sock
*sk
, struct sk_buff
*skb
)
399 struct tcp_sock
*tp
= tcp_sk(sk
);
401 /* Advance write_seq and place onto the write_queue. */
402 tp
->write_seq
= TCP_SKB_CB(skb
)->end_seq
;
403 skb_header_release(skb
);
404 __skb_queue_tail(&sk
->sk_write_queue
, skb
);
405 sk_charge_skb(sk
, skb
);
407 /* Queue it, remembering where we must start sending. */
408 if (sk
->sk_send_head
== NULL
)
409 sk
->sk_send_head
= skb
;
412 static inline void tcp_tso_set_push(struct sk_buff
*skb
)
414 /* Force push to be on for any TSO frames to workaround
415 * problems with busted implementations like Mac OS-X that
416 * hold off socket receive wakeups until push is seen.
418 if (tcp_skb_pcount(skb
) > 1)
419 TCP_SKB_CB(skb
)->flags
|= TCPCB_FLAG_PSH
;
422 /* Send _single_ skb sitting at the send head. This function requires
423 * true push pending frames to setup probe timer etc.
425 void tcp_push_one(struct sock
*sk
, unsigned cur_mss
)
427 struct tcp_sock
*tp
= tcp_sk(sk
);
428 struct sk_buff
*skb
= sk
->sk_send_head
;
430 if (tcp_snd_test(sk
, skb
, cur_mss
, TCP_NAGLE_PUSH
)) {
431 /* Send it out now. */
432 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
433 tcp_tso_set_push(skb
);
434 if (!tcp_transmit_skb(sk
, skb_clone(skb
, sk
->sk_allocation
))) {
435 sk
->sk_send_head
= NULL
;
436 tp
->snd_nxt
= TCP_SKB_CB(skb
)->end_seq
;
437 tcp_packets_out_inc(sk
, tp
, skb
);
443 void tcp_set_skb_tso_segs(struct sock
*sk
, struct sk_buff
*skb
)
445 struct tcp_sock
*tp
= tcp_sk(sk
);
447 if (skb
->len
<= tp
->mss_cache_std
||
448 !(sk
->sk_route_caps
& NETIF_F_TSO
)) {
449 /* Avoid the costly divide in the normal
452 skb_shinfo(skb
)->tso_segs
= 1;
453 skb_shinfo(skb
)->tso_size
= 0;
457 factor
= skb
->len
+ (tp
->mss_cache_std
- 1);
458 factor
/= tp
->mss_cache_std
;
459 skb_shinfo(skb
)->tso_segs
= factor
;
460 skb_shinfo(skb
)->tso_size
= tp
->mss_cache_std
;
464 /* Function to create two new TCP segments. Shrinks the given segment
465 * to the specified size and appends a new segment with the rest of the
466 * packet to the list. This won't be called frequently, I hope.
467 * Remember, these are still headerless SKBs at this point.
469 static int tcp_fragment(struct sock
*sk
, struct sk_buff
*skb
, u32 len
)
471 struct tcp_sock
*tp
= tcp_sk(sk
);
472 struct sk_buff
*buff
;
476 nsize
= skb_headlen(skb
) - len
;
480 if (skb_cloned(skb
) &&
481 skb_is_nonlinear(skb
) &&
482 pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))
485 /* Get a new skb... force flag on. */
486 buff
= sk_stream_alloc_skb(sk
, nsize
, GFP_ATOMIC
);
488 return -ENOMEM
; /* We'll just try again later. */
489 sk_charge_skb(sk
, buff
);
491 /* Correct the sequence numbers. */
492 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
493 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
494 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
496 /* PSH and FIN should only be set in the second packet. */
497 flags
= TCP_SKB_CB(skb
)->flags
;
498 TCP_SKB_CB(skb
)->flags
= flags
& ~(TCPCB_FLAG_FIN
|TCPCB_FLAG_PSH
);
499 TCP_SKB_CB(buff
)->flags
= flags
;
500 TCP_SKB_CB(buff
)->sacked
=
501 (TCP_SKB_CB(skb
)->sacked
&
502 (TCPCB_LOST
| TCPCB_EVER_RETRANS
| TCPCB_AT_TAIL
));
503 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_AT_TAIL
;
505 if (!skb_shinfo(skb
)->nr_frags
&& skb
->ip_summed
!= CHECKSUM_HW
) {
506 /* Copy and checksum data tail into the new buffer. */
507 buff
->csum
= csum_partial_copy_nocheck(skb
->data
+ len
, skb_put(buff
, nsize
),
512 skb
->csum
= csum_block_sub(skb
->csum
, buff
->csum
, len
);
514 skb
->ip_summed
= CHECKSUM_HW
;
515 skb_split(skb
, buff
, len
);
518 buff
->ip_summed
= skb
->ip_summed
;
520 /* Looks stupid, but our code really uses when of
521 * skbs, which it never sent before. --ANK
523 TCP_SKB_CB(buff
)->when
= TCP_SKB_CB(skb
)->when
;
525 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_LOST
) {
526 tp
->lost_out
-= tcp_skb_pcount(skb
);
527 tp
->left_out
-= tcp_skb_pcount(skb
);
530 /* Fix up tso_factor for both original and new SKB. */
531 tcp_set_skb_tso_segs(sk
, skb
);
532 tcp_set_skb_tso_segs(sk
, buff
);
534 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_LOST
) {
535 tp
->lost_out
+= tcp_skb_pcount(skb
);
536 tp
->left_out
+= tcp_skb_pcount(skb
);
539 if (TCP_SKB_CB(buff
)->sacked
&TCPCB_LOST
) {
540 tp
->lost_out
+= tcp_skb_pcount(buff
);
541 tp
->left_out
+= tcp_skb_pcount(buff
);
544 /* Link BUFF into the send queue. */
545 __skb_append(skb
, buff
);
550 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
551 * eventually). The difference is that pulled data not copied, but
552 * immediately discarded.
554 static unsigned char *__pskb_trim_head(struct sk_buff
*skb
, int len
)
560 for (i
=0; i
<skb_shinfo(skb
)->nr_frags
; i
++) {
561 if (skb_shinfo(skb
)->frags
[i
].size
<= eat
) {
562 put_page(skb_shinfo(skb
)->frags
[i
].page
);
563 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
565 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
567 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
568 skb_shinfo(skb
)->frags
[k
].size
-= eat
;
574 skb_shinfo(skb
)->nr_frags
= k
;
576 skb
->tail
= skb
->data
;
577 skb
->data_len
-= len
;
578 skb
->len
= skb
->data_len
;
582 int tcp_trim_head(struct sock
*sk
, struct sk_buff
*skb
, u32 len
)
584 if (skb_cloned(skb
) &&
585 pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))
588 if (len
<= skb_headlen(skb
)) {
589 __skb_pull(skb
, len
);
591 if (__pskb_trim_head(skb
, len
-skb_headlen(skb
)) == NULL
)
595 TCP_SKB_CB(skb
)->seq
+= len
;
596 skb
->ip_summed
= CHECKSUM_HW
;
598 skb
->truesize
-= len
;
599 sk
->sk_wmem_queued
-= len
;
600 sk
->sk_forward_alloc
+= len
;
601 sock_set_flag(sk
, SOCK_QUEUE_SHRUNK
);
603 /* Any change of skb->len requires recalculation of tso
606 if (tcp_skb_pcount(skb
) > 1)
607 tcp_set_skb_tso_segs(sk
, skb
);
612 /* This function synchronize snd mss to current pmtu/exthdr set.
614 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
615 for TCP options, but includes only bare TCP header.
617 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
618 It is minumum of user_mss and mss received with SYN.
619 It also does not include TCP options.
621 tp->pmtu_cookie is last pmtu, seen by this function.
623 tp->mss_cache is current effective sending mss, including
624 all tcp options except for SACKs. It is evaluated,
625 taking into account current pmtu, but never exceeds
626 tp->rx_opt.mss_clamp.
628 NOTE1. rfc1122 clearly states that advertised MSS
629 DOES NOT include either tcp or ip options.
631 NOTE2. tp->pmtu_cookie and tp->mss_cache are READ ONLY outside
632 this function. --ANK (980731)
635 unsigned int tcp_sync_mss(struct sock
*sk
, u32 pmtu
)
637 struct tcp_sock
*tp
= tcp_sk(sk
);
640 /* Calculate base mss without TCP options:
641 It is MMS_S - sizeof(tcphdr) of rfc1122
643 mss_now
= pmtu
- tp
->af_specific
->net_header_len
- sizeof(struct tcphdr
);
645 /* Clamp it (mss_clamp does not include tcp options) */
646 if (mss_now
> tp
->rx_opt
.mss_clamp
)
647 mss_now
= tp
->rx_opt
.mss_clamp
;
649 /* Now subtract optional transport overhead */
650 mss_now
-= tp
->ext_header_len
;
652 /* Then reserve room for full set of TCP options and 8 bytes of data */
656 /* Now subtract TCP options size, not including SACKs */
657 mss_now
-= tp
->tcp_header_len
- sizeof(struct tcphdr
);
659 /* Bound mss with half of window */
660 if (tp
->max_window
&& mss_now
> (tp
->max_window
>>1))
661 mss_now
= max((tp
->max_window
>>1), 68U - tp
->tcp_header_len
);
663 /* And store cached results */
664 tp
->pmtu_cookie
= pmtu
;
665 tp
->mss_cache
= tp
->mss_cache_std
= mss_now
;
670 /* Compute the current effective MSS, taking SACKs and IP options,
671 * and even PMTU discovery events into account.
673 * LARGESEND note: !urg_mode is overkill, only frames up to snd_up
674 * cannot be large. However, taking into account rare use of URG, this
678 unsigned int tcp_current_mss(struct sock
*sk
, int large
)
680 struct tcp_sock
*tp
= tcp_sk(sk
);
681 struct dst_entry
*dst
= __sk_dst_get(sk
);
682 unsigned int do_large
, mss_now
;
684 mss_now
= tp
->mss_cache_std
;
686 u32 mtu
= dst_mtu(dst
);
687 if (mtu
!= tp
->pmtu_cookie
)
688 mss_now
= tcp_sync_mss(sk
, mtu
);
692 (sk
->sk_route_caps
& NETIF_F_TSO
) &&
696 unsigned int large_mss
, factor
, limit
;
698 large_mss
= 65535 - tp
->af_specific
->net_header_len
-
699 tp
->ext_header_len
- tp
->tcp_header_len
;
701 if (tp
->max_window
&& large_mss
> (tp
->max_window
>>1))
702 large_mss
= max((tp
->max_window
>>1),
703 68U - tp
->tcp_header_len
);
705 factor
= large_mss
/ mss_now
;
707 /* Always keep large mss multiple of real mss, but
708 * do not exceed 1/tso_win_divisor of the congestion window
709 * so we can keep the ACK clock ticking and minimize
712 limit
= tp
->snd_cwnd
;
713 if (sysctl_tcp_tso_win_divisor
)
714 limit
/= sysctl_tcp_tso_win_divisor
;
715 limit
= max(1U, limit
);
719 tp
->mss_cache
= mss_now
* factor
;
721 mss_now
= tp
->mss_cache
;
724 if (tp
->rx_opt
.eff_sacks
)
725 mss_now
-= (TCPOLEN_SACK_BASE_ALIGNED
+
726 (tp
->rx_opt
.eff_sacks
* TCPOLEN_SACK_PERBLOCK
));
730 /* This routine writes packets to the network. It advances the
731 * send_head. This happens as incoming acks open up the remote
734 * Returns 1, if no segments are in flight and we have queued segments, but
735 * cannot send anything now because of SWS or another problem.
737 int tcp_write_xmit(struct sock
*sk
, int nonagle
)
739 struct tcp_sock
*tp
= tcp_sk(sk
);
740 unsigned int mss_now
;
742 /* If we are closed, the bytes will have to remain here.
743 * In time closedown will finish, we empty the write queue and all
746 if (sk
->sk_state
!= TCP_CLOSE
) {
750 /* Account for SACKS, we may need to fragment due to this.
751 * It is just like the real MSS changing on us midstream.
752 * We also handle things correctly when the user adds some
753 * IP options mid-stream. Silly to do, but cover it.
755 mss_now
= tcp_current_mss(sk
, 1);
757 while ((skb
= sk
->sk_send_head
) &&
758 tcp_snd_test(sk
, skb
, mss_now
,
759 tcp_skb_is_last(sk
, skb
) ? nonagle
:
761 if (skb
->len
> mss_now
) {
762 if (tcp_fragment(sk
, skb
, mss_now
))
766 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
767 tcp_tso_set_push(skb
);
768 if (tcp_transmit_skb(sk
, skb_clone(skb
, GFP_ATOMIC
)))
771 /* Advance the send_head. This one is sent out.
772 * This call will increment packets_out.
774 update_send_head(sk
, tp
, skb
);
776 tcp_minshall_update(tp
, mss_now
, skb
);
781 tcp_cwnd_validate(sk
, tp
);
785 return !tp
->packets_out
&& sk
->sk_send_head
;
790 /* This function returns the amount that we can raise the
791 * usable window based on the following constraints
793 * 1. The window can never be shrunk once it is offered (RFC 793)
794 * 2. We limit memory per socket
797 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
798 * RECV.NEXT + RCV.WIN fixed until:
799 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
801 * i.e. don't raise the right edge of the window until you can raise
802 * it at least MSS bytes.
804 * Unfortunately, the recommended algorithm breaks header prediction,
805 * since header prediction assumes th->window stays fixed.
807 * Strictly speaking, keeping th->window fixed violates the receiver
808 * side SWS prevention criteria. The problem is that under this rule
809 * a stream of single byte packets will cause the right side of the
810 * window to always advance by a single byte.
812 * Of course, if the sender implements sender side SWS prevention
813 * then this will not be a problem.
815 * BSD seems to make the following compromise:
817 * If the free space is less than the 1/4 of the maximum
818 * space available and the free space is less than 1/2 mss,
819 * then set the window to 0.
820 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
821 * Otherwise, just prevent the window from shrinking
822 * and from being larger than the largest representable value.
824 * This prevents incremental opening of the window in the regime
825 * where TCP is limited by the speed of the reader side taking
826 * data out of the TCP receive queue. It does nothing about
827 * those cases where the window is constrained on the sender side
828 * because the pipeline is full.
830 * BSD also seems to "accidentally" limit itself to windows that are a
831 * multiple of MSS, at least until the free space gets quite small.
832 * This would appear to be a side effect of the mbuf implementation.
833 * Combining these two algorithms results in the observed behavior
834 * of having a fixed window size at almost all times.
836 * Below we obtain similar behavior by forcing the offered window to
837 * a multiple of the mss when it is feasible to do so.
839 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
840 * Regular options like TIMESTAMP are taken into account.
842 u32
__tcp_select_window(struct sock
*sk
)
844 struct tcp_sock
*tp
= tcp_sk(sk
);
845 /* MSS for the peer's data. Previous verions used mss_clamp
846 * here. I don't know if the value based on our guesses
847 * of peer's MSS is better for the performance. It's more correct
848 * but may be worse for the performance because of rcv_mss
849 * fluctuations. --SAW 1998/11/1
851 int mss
= tp
->ack
.rcv_mss
;
852 int free_space
= tcp_space(sk
);
853 int full_space
= min_t(int, tp
->window_clamp
, tcp_full_space(sk
));
856 if (mss
> full_space
)
859 if (free_space
< full_space
/2) {
862 if (tcp_memory_pressure
)
863 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U*tp
->advmss
);
865 if (free_space
< mss
)
869 if (free_space
> tp
->rcv_ssthresh
)
870 free_space
= tp
->rcv_ssthresh
;
872 /* Don't do rounding if we are using window scaling, since the
873 * scaled window will not line up with the MSS boundary anyway.
875 window
= tp
->rcv_wnd
;
876 if (tp
->rx_opt
.rcv_wscale
) {
879 /* Advertise enough space so that it won't get scaled away.
880 * Import case: prevent zero window announcement if
881 * 1<<rcv_wscale > mss.
883 if (((window
>> tp
->rx_opt
.rcv_wscale
) << tp
->rx_opt
.rcv_wscale
) != window
)
884 window
= (((window
>> tp
->rx_opt
.rcv_wscale
) + 1)
885 << tp
->rx_opt
.rcv_wscale
);
887 /* Get the largest window that is a nice multiple of mss.
888 * Window clamp already applied above.
889 * If our current window offering is within 1 mss of the
890 * free space we just keep it. This prevents the divide
891 * and multiply from happening most of the time.
892 * We also don't do any window rounding when the free space
895 if (window
<= free_space
- mss
|| window
> free_space
)
896 window
= (free_space
/mss
)*mss
;
902 /* Attempt to collapse two adjacent SKB's during retransmission. */
903 static void tcp_retrans_try_collapse(struct sock
*sk
, struct sk_buff
*skb
, int mss_now
)
905 struct tcp_sock
*tp
= tcp_sk(sk
);
906 struct sk_buff
*next_skb
= skb
->next
;
908 /* The first test we must make is that neither of these two
909 * SKB's are still referenced by someone else.
911 if (!skb_cloned(skb
) && !skb_cloned(next_skb
)) {
912 int skb_size
= skb
->len
, next_skb_size
= next_skb
->len
;
913 u16 flags
= TCP_SKB_CB(skb
)->flags
;
915 /* Also punt if next skb has been SACK'd. */
916 if(TCP_SKB_CB(next_skb
)->sacked
& TCPCB_SACKED_ACKED
)
919 /* Next skb is out of window. */
920 if (after(TCP_SKB_CB(next_skb
)->end_seq
, tp
->snd_una
+tp
->snd_wnd
))
923 /* Punt if not enough space exists in the first SKB for
924 * the data in the second, or the total combined payload
925 * would exceed the MSS.
927 if ((next_skb_size
> skb_tailroom(skb
)) ||
928 ((skb_size
+ next_skb_size
) > mss_now
))
931 BUG_ON(tcp_skb_pcount(skb
) != 1 ||
932 tcp_skb_pcount(next_skb
) != 1);
934 /* Ok. We will be able to collapse the packet. */
935 __skb_unlink(next_skb
, next_skb
->list
);
937 memcpy(skb_put(skb
, next_skb_size
), next_skb
->data
, next_skb_size
);
939 if (next_skb
->ip_summed
== CHECKSUM_HW
)
940 skb
->ip_summed
= CHECKSUM_HW
;
942 if (skb
->ip_summed
!= CHECKSUM_HW
)
943 skb
->csum
= csum_block_add(skb
->csum
, next_skb
->csum
, skb_size
);
945 /* Update sequence range on original skb. */
946 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(next_skb
)->end_seq
;
948 /* Merge over control information. */
949 flags
|= TCP_SKB_CB(next_skb
)->flags
; /* This moves PSH/FIN etc. over */
950 TCP_SKB_CB(skb
)->flags
= flags
;
952 /* All done, get rid of second SKB and account for it so
953 * packet counting does not break.
955 TCP_SKB_CB(skb
)->sacked
|= TCP_SKB_CB(next_skb
)->sacked
&(TCPCB_EVER_RETRANS
|TCPCB_AT_TAIL
);
956 if (TCP_SKB_CB(next_skb
)->sacked
&TCPCB_SACKED_RETRANS
)
957 tp
->retrans_out
-= tcp_skb_pcount(next_skb
);
958 if (TCP_SKB_CB(next_skb
)->sacked
&TCPCB_LOST
) {
959 tp
->lost_out
-= tcp_skb_pcount(next_skb
);
960 tp
->left_out
-= tcp_skb_pcount(next_skb
);
962 /* Reno case is special. Sigh... */
963 if (!tp
->rx_opt
.sack_ok
&& tp
->sacked_out
) {
964 tcp_dec_pcount_approx(&tp
->sacked_out
, next_skb
);
965 tp
->left_out
-= tcp_skb_pcount(next_skb
);
968 /* Not quite right: it can be > snd.fack, but
969 * it is better to underestimate fackets.
971 tcp_dec_pcount_approx(&tp
->fackets_out
, next_skb
);
972 tcp_packets_out_dec(tp
, next_skb
);
973 sk_stream_free_skb(sk
, next_skb
);
977 /* Do a simple retransmit without using the backoff mechanisms in
978 * tcp_timer. This is used for path mtu discovery.
979 * The socket is already locked here.
981 void tcp_simple_retransmit(struct sock
*sk
)
983 struct tcp_sock
*tp
= tcp_sk(sk
);
985 unsigned int mss
= tcp_current_mss(sk
, 0);
988 sk_stream_for_retrans_queue(skb
, sk
) {
989 if (skb
->len
> mss
&&
990 !(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
)) {
991 if (TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_RETRANS
) {
992 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
993 tp
->retrans_out
-= tcp_skb_pcount(skb
);
995 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_LOST
)) {
996 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
997 tp
->lost_out
+= tcp_skb_pcount(skb
);
1006 tcp_sync_left_out(tp
);
1008 /* Don't muck with the congestion window here.
1009 * Reason is that we do not increase amount of _data_
1010 * in network, but units changed and effective
1011 * cwnd/ssthresh really reduced now.
1013 if (tp
->ca_state
!= TCP_CA_Loss
) {
1014 tp
->high_seq
= tp
->snd_nxt
;
1015 tp
->snd_ssthresh
= tcp_current_ssthresh(tp
);
1016 tp
->prior_ssthresh
= 0;
1017 tp
->undo_marker
= 0;
1018 tcp_set_ca_state(tp
, TCP_CA_Loss
);
1020 tcp_xmit_retransmit_queue(sk
);
1023 /* This retransmits one SKB. Policy decisions and retransmit queue
1024 * state updates are done by the caller. Returns non-zero if an
1025 * error occurred which prevented the send.
1027 int tcp_retransmit_skb(struct sock
*sk
, struct sk_buff
*skb
)
1029 struct tcp_sock
*tp
= tcp_sk(sk
);
1030 unsigned int cur_mss
= tcp_current_mss(sk
, 0);
1033 /* Do not sent more than we queued. 1/4 is reserved for possible
1034 * copying overhead: frgagmentation, tunneling, mangling etc.
1036 if (atomic_read(&sk
->sk_wmem_alloc
) >
1037 min(sk
->sk_wmem_queued
+ (sk
->sk_wmem_queued
>> 2), sk
->sk_sndbuf
))
1040 if (before(TCP_SKB_CB(skb
)->seq
, tp
->snd_una
)) {
1041 if (before(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1044 if (sk
->sk_route_caps
& NETIF_F_TSO
) {
1045 sk
->sk_route_caps
&= ~NETIF_F_TSO
;
1046 sock_set_flag(sk
, SOCK_NO_LARGESEND
);
1047 tp
->mss_cache
= tp
->mss_cache_std
;
1050 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
1054 /* If receiver has shrunk his window, and skb is out of
1055 * new window, do not retransmit it. The exception is the
1056 * case, when window is shrunk to zero. In this case
1057 * our retransmit serves as a zero window probe.
1059 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->snd_una
+tp
->snd_wnd
)
1060 && TCP_SKB_CB(skb
)->seq
!= tp
->snd_una
)
1063 if (skb
->len
> cur_mss
) {
1064 int old_factor
= tcp_skb_pcount(skb
);
1067 if (tcp_fragment(sk
, skb
, cur_mss
))
1068 return -ENOMEM
; /* We'll try again later. */
1070 /* New SKB created, account for it. */
1071 new_factor
= tcp_skb_pcount(skb
);
1072 tp
->packets_out
-= old_factor
- new_factor
;
1073 tp
->packets_out
+= tcp_skb_pcount(skb
->next
);
1076 /* Collapse two adjacent packets if worthwhile and we can. */
1077 if(!(TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_SYN
) &&
1078 (skb
->len
< (cur_mss
>> 1)) &&
1079 (skb
->next
!= sk
->sk_send_head
) &&
1080 (skb
->next
!= (struct sk_buff
*)&sk
->sk_write_queue
) &&
1081 (skb_shinfo(skb
)->nr_frags
== 0 && skb_shinfo(skb
->next
)->nr_frags
== 0) &&
1082 (tcp_skb_pcount(skb
) == 1 && tcp_skb_pcount(skb
->next
) == 1) &&
1083 (sysctl_tcp_retrans_collapse
!= 0))
1084 tcp_retrans_try_collapse(sk
, skb
, cur_mss
);
1086 if(tp
->af_specific
->rebuild_header(sk
))
1087 return -EHOSTUNREACH
; /* Routing failure or similar. */
1089 /* Some Solaris stacks overoptimize and ignore the FIN on a
1090 * retransmit when old data is attached. So strip it off
1091 * since it is cheap to do so and saves bytes on the network.
1094 (TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_FIN
) &&
1095 tp
->snd_una
== (TCP_SKB_CB(skb
)->end_seq
- 1)) {
1096 if (!pskb_trim(skb
, 0)) {
1097 TCP_SKB_CB(skb
)->seq
= TCP_SKB_CB(skb
)->end_seq
- 1;
1098 skb_shinfo(skb
)->tso_segs
= 1;
1099 skb_shinfo(skb
)->tso_size
= 0;
1100 skb
->ip_summed
= CHECKSUM_NONE
;
1105 /* Make a copy, if the first transmission SKB clone we made
1106 * is still in somebody's hands, else make a clone.
1108 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
1109 tcp_tso_set_push(skb
);
1111 err
= tcp_transmit_skb(sk
, (skb_cloned(skb
) ?
1112 pskb_copy(skb
, GFP_ATOMIC
):
1113 skb_clone(skb
, GFP_ATOMIC
)));
1116 /* Update global TCP statistics. */
1117 TCP_INC_STATS(TCP_MIB_RETRANSSEGS
);
1119 tp
->total_retrans
++;
1121 #if FASTRETRANS_DEBUG > 0
1122 if (TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_RETRANS
) {
1123 if (net_ratelimit())
1124 printk(KERN_DEBUG
"retrans_out leaked.\n");
1127 TCP_SKB_CB(skb
)->sacked
|= TCPCB_RETRANS
;
1128 tp
->retrans_out
+= tcp_skb_pcount(skb
);
1130 /* Save stamp of the first retransmit. */
1131 if (!tp
->retrans_stamp
)
1132 tp
->retrans_stamp
= TCP_SKB_CB(skb
)->when
;
1136 /* snd_nxt is stored to detect loss of retransmitted segment,
1137 * see tcp_input.c tcp_sacktag_write_queue().
1139 TCP_SKB_CB(skb
)->ack_seq
= tp
->snd_nxt
;
1144 /* This gets called after a retransmit timeout, and the initially
1145 * retransmitted data is acknowledged. It tries to continue
1146 * resending the rest of the retransmit queue, until either
1147 * we've sent it all or the congestion window limit is reached.
1148 * If doing SACK, the first ACK which comes back for a timeout
1149 * based retransmit packet might feed us FACK information again.
1150 * If so, we use it to avoid unnecessarily retransmissions.
1152 void tcp_xmit_retransmit_queue(struct sock
*sk
)
1154 struct tcp_sock
*tp
= tcp_sk(sk
);
1155 struct sk_buff
*skb
;
1156 int packet_cnt
= tp
->lost_out
;
1158 /* First pass: retransmit lost packets. */
1160 sk_stream_for_retrans_queue(skb
, sk
) {
1161 __u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
1163 /* Assume this retransmit will generate
1164 * only one packet for congestion window
1165 * calculation purposes. This works because
1166 * tcp_retransmit_skb() will chop up the
1167 * packet to be MSS sized and all the
1168 * packet counting works out.
1170 if (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
)
1173 if (sacked
&TCPCB_LOST
) {
1174 if (!(sacked
&(TCPCB_SACKED_ACKED
|TCPCB_SACKED_RETRANS
))) {
1175 if (tcp_retransmit_skb(sk
, skb
))
1177 if (tp
->ca_state
!= TCP_CA_Loss
)
1178 NET_INC_STATS_BH(LINUX_MIB_TCPFASTRETRANS
);
1180 NET_INC_STATS_BH(LINUX_MIB_TCPSLOWSTARTRETRANS
);
1183 skb_peek(&sk
->sk_write_queue
))
1184 tcp_reset_xmit_timer(sk
, TCP_TIME_RETRANS
, tp
->rto
);
1187 packet_cnt
-= tcp_skb_pcount(skb
);
1188 if (packet_cnt
<= 0)
1194 /* OK, demanded retransmission is finished. */
1196 /* Forward retransmissions are possible only during Recovery. */
1197 if (tp
->ca_state
!= TCP_CA_Recovery
)
1200 /* No forward retransmissions in Reno are possible. */
1201 if (!tp
->rx_opt
.sack_ok
)
1204 /* Yeah, we have to make difficult choice between forward transmission
1205 * and retransmission... Both ways have their merits...
1207 * For now we do not retransmit anything, while we have some new
1211 if (tcp_may_send_now(sk
, tp
))
1216 sk_stream_for_retrans_queue(skb
, sk
) {
1217 /* Similar to the retransmit loop above we
1218 * can pretend that the retransmitted SKB
1219 * we send out here will be composed of one
1220 * real MSS sized packet because tcp_retransmit_skb()
1221 * will fragment it if necessary.
1223 if (++packet_cnt
> tp
->fackets_out
)
1226 if (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
)
1229 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
)
1232 /* Ok, retransmit it. */
1233 if (tcp_retransmit_skb(sk
, skb
))
1236 if (skb
== skb_peek(&sk
->sk_write_queue
))
1237 tcp_reset_xmit_timer(sk
, TCP_TIME_RETRANS
, tp
->rto
);
1239 NET_INC_STATS_BH(LINUX_MIB_TCPFORWARDRETRANS
);
1244 /* Send a fin. The caller locks the socket for us. This cannot be
1245 * allowed to fail queueing a FIN frame under any circumstances.
1247 void tcp_send_fin(struct sock
*sk
)
1249 struct tcp_sock
*tp
= tcp_sk(sk
);
1250 struct sk_buff
*skb
= skb_peek_tail(&sk
->sk_write_queue
);
1253 /* Optimization, tack on the FIN if we have a queue of
1254 * unsent frames. But be careful about outgoing SACKS
1257 mss_now
= tcp_current_mss(sk
, 1);
1259 if (sk
->sk_send_head
!= NULL
) {
1260 TCP_SKB_CB(skb
)->flags
|= TCPCB_FLAG_FIN
;
1261 TCP_SKB_CB(skb
)->end_seq
++;
1264 /* Socket is locked, keep trying until memory is available. */
1266 skb
= alloc_skb(MAX_TCP_HEADER
, GFP_KERNEL
);
1272 /* Reserve space for headers and prepare control bits. */
1273 skb_reserve(skb
, MAX_TCP_HEADER
);
1275 TCP_SKB_CB(skb
)->flags
= (TCPCB_FLAG_ACK
| TCPCB_FLAG_FIN
);
1276 TCP_SKB_CB(skb
)->sacked
= 0;
1277 skb_shinfo(skb
)->tso_segs
= 1;
1278 skb_shinfo(skb
)->tso_size
= 0;
1280 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
1281 TCP_SKB_CB(skb
)->seq
= tp
->write_seq
;
1282 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ 1;
1283 tcp_queue_skb(sk
, skb
);
1285 __tcp_push_pending_frames(sk
, tp
, mss_now
, TCP_NAGLE_OFF
);
1288 /* We get here when a process closes a file descriptor (either due to
1289 * an explicit close() or as a byproduct of exit()'ing) and there
1290 * was unread data in the receive queue. This behavior is recommended
1291 * by draft-ietf-tcpimpl-prob-03.txt section 3.10. -DaveM
1293 void tcp_send_active_reset(struct sock
*sk
, int priority
)
1295 struct tcp_sock
*tp
= tcp_sk(sk
);
1296 struct sk_buff
*skb
;
1298 /* NOTE: No TCP options attached and we never retransmit this. */
1299 skb
= alloc_skb(MAX_TCP_HEADER
, priority
);
1301 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED
);
1305 /* Reserve space for headers and prepare control bits. */
1306 skb_reserve(skb
, MAX_TCP_HEADER
);
1308 TCP_SKB_CB(skb
)->flags
= (TCPCB_FLAG_ACK
| TCPCB_FLAG_RST
);
1309 TCP_SKB_CB(skb
)->sacked
= 0;
1310 skb_shinfo(skb
)->tso_segs
= 1;
1311 skb_shinfo(skb
)->tso_size
= 0;
1314 TCP_SKB_CB(skb
)->seq
= tcp_acceptable_seq(sk
, tp
);
1315 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(skb
)->seq
;
1316 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
1317 if (tcp_transmit_skb(sk
, skb
))
1318 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED
);
1321 /* WARNING: This routine must only be called when we have already sent
1322 * a SYN packet that crossed the incoming SYN that caused this routine
1323 * to get called. If this assumption fails then the initial rcv_wnd
1324 * and rcv_wscale values will not be correct.
1326 int tcp_send_synack(struct sock
*sk
)
1328 struct sk_buff
* skb
;
1330 skb
= skb_peek(&sk
->sk_write_queue
);
1331 if (skb
== NULL
|| !(TCP_SKB_CB(skb
)->flags
&TCPCB_FLAG_SYN
)) {
1332 printk(KERN_DEBUG
"tcp_send_synack: wrong queue state\n");
1335 if (!(TCP_SKB_CB(skb
)->flags
&TCPCB_FLAG_ACK
)) {
1336 if (skb_cloned(skb
)) {
1337 struct sk_buff
*nskb
= skb_copy(skb
, GFP_ATOMIC
);
1340 __skb_unlink(skb
, &sk
->sk_write_queue
);
1341 skb_header_release(nskb
);
1342 __skb_queue_head(&sk
->sk_write_queue
, nskb
);
1343 sk_stream_free_skb(sk
, skb
);
1344 sk_charge_skb(sk
, nskb
);
1348 TCP_SKB_CB(skb
)->flags
|= TCPCB_FLAG_ACK
;
1349 TCP_ECN_send_synack(tcp_sk(sk
), skb
);
1351 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
1352 return tcp_transmit_skb(sk
, skb_clone(skb
, GFP_ATOMIC
));
1356 * Prepare a SYN-ACK.
1358 struct sk_buff
* tcp_make_synack(struct sock
*sk
, struct dst_entry
*dst
,
1359 struct open_request
*req
)
1361 struct tcp_sock
*tp
= tcp_sk(sk
);
1363 int tcp_header_size
;
1364 struct sk_buff
*skb
;
1366 skb
= sock_wmalloc(sk
, MAX_TCP_HEADER
+ 15, 1, GFP_ATOMIC
);
1370 /* Reserve space for headers. */
1371 skb_reserve(skb
, MAX_TCP_HEADER
);
1373 skb
->dst
= dst_clone(dst
);
1375 tcp_header_size
= (sizeof(struct tcphdr
) + TCPOLEN_MSS
+
1376 (req
->tstamp_ok
? TCPOLEN_TSTAMP_ALIGNED
: 0) +
1377 (req
->wscale_ok
? TCPOLEN_WSCALE_ALIGNED
: 0) +
1378 /* SACK_PERM is in the place of NOP NOP of TS */
1379 ((req
->sack_ok
&& !req
->tstamp_ok
) ? TCPOLEN_SACKPERM_ALIGNED
: 0));
1380 skb
->h
.th
= th
= (struct tcphdr
*) skb_push(skb
, tcp_header_size
);
1382 memset(th
, 0, sizeof(struct tcphdr
));
1385 if (dst
->dev
->features
&NETIF_F_TSO
)
1387 TCP_ECN_make_synack(req
, th
);
1388 th
->source
= inet_sk(sk
)->sport
;
1389 th
->dest
= req
->rmt_port
;
1390 TCP_SKB_CB(skb
)->seq
= req
->snt_isn
;
1391 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ 1;
1392 TCP_SKB_CB(skb
)->sacked
= 0;
1393 skb_shinfo(skb
)->tso_segs
= 1;
1394 skb_shinfo(skb
)->tso_size
= 0;
1395 th
->seq
= htonl(TCP_SKB_CB(skb
)->seq
);
1396 th
->ack_seq
= htonl(req
->rcv_isn
+ 1);
1397 if (req
->rcv_wnd
== 0) { /* ignored for retransmitted syns */
1399 /* Set this up on the first call only */
1400 req
->window_clamp
= tp
->window_clamp
? : dst_metric(dst
, RTAX_WINDOW
);
1401 /* tcp_full_space because it is guaranteed to be the first packet */
1402 tcp_select_initial_window(tcp_full_space(sk
),
1403 dst_metric(dst
, RTAX_ADVMSS
) - (req
->tstamp_ok
? TCPOLEN_TSTAMP_ALIGNED
: 0),
1408 req
->rcv_wscale
= rcv_wscale
;
1411 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
1412 th
->window
= htons(req
->rcv_wnd
);
1414 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
1415 tcp_syn_build_options((__u32
*)(th
+ 1), dst_metric(dst
, RTAX_ADVMSS
), req
->tstamp_ok
,
1416 req
->sack_ok
, req
->wscale_ok
, req
->rcv_wscale
,
1417 TCP_SKB_CB(skb
)->when
,
1421 th
->doff
= (tcp_header_size
>> 2);
1422 TCP_INC_STATS(TCP_MIB_OUTSEGS
);
1427 * Do all connect socket setups that can be done AF independent.
1429 static inline void tcp_connect_init(struct sock
*sk
)
1431 struct dst_entry
*dst
= __sk_dst_get(sk
);
1432 struct tcp_sock
*tp
= tcp_sk(sk
);
1435 /* We'll fix this up when we get a response from the other end.
1436 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
1438 tp
->tcp_header_len
= sizeof(struct tcphdr
) +
1439 (sysctl_tcp_timestamps
? TCPOLEN_TSTAMP_ALIGNED
: 0);
1441 /* If user gave his TCP_MAXSEG, record it to clamp */
1442 if (tp
->rx_opt
.user_mss
)
1443 tp
->rx_opt
.mss_clamp
= tp
->rx_opt
.user_mss
;
1445 tcp_sync_mss(sk
, dst_mtu(dst
));
1447 if (!tp
->window_clamp
)
1448 tp
->window_clamp
= dst_metric(dst
, RTAX_WINDOW
);
1449 tp
->advmss
= dst_metric(dst
, RTAX_ADVMSS
);
1450 tcp_initialize_rcv_mss(sk
);
1453 tcp_select_initial_window(tcp_full_space(sk
),
1454 tp
->advmss
- (tp
->rx_opt
.ts_recent_stamp
? tp
->tcp_header_len
- sizeof(struct tcphdr
) : 0),
1457 sysctl_tcp_window_scaling
,
1460 tp
->rx_opt
.rcv_wscale
= rcv_wscale
;
1461 tp
->rcv_ssthresh
= tp
->rcv_wnd
;
1464 sock_reset_flag(sk
, SOCK_DONE
);
1466 tcp_init_wl(tp
, tp
->write_seq
, 0);
1467 tp
->snd_una
= tp
->write_seq
;
1468 tp
->snd_sml
= tp
->write_seq
;
1473 tp
->rto
= TCP_TIMEOUT_INIT
;
1474 tp
->retransmits
= 0;
1475 tcp_clear_retrans(tp
);
1479 * Build a SYN and send it off.
1481 int tcp_connect(struct sock
*sk
)
1483 struct tcp_sock
*tp
= tcp_sk(sk
);
1484 struct sk_buff
*buff
;
1486 tcp_connect_init(sk
);
1488 buff
= alloc_skb(MAX_TCP_HEADER
+ 15, sk
->sk_allocation
);
1489 if (unlikely(buff
== NULL
))
1492 /* Reserve space for headers. */
1493 skb_reserve(buff
, MAX_TCP_HEADER
);
1495 TCP_SKB_CB(buff
)->flags
= TCPCB_FLAG_SYN
;
1496 TCP_ECN_send_syn(sk
, tp
, buff
);
1497 TCP_SKB_CB(buff
)->sacked
= 0;
1498 skb_shinfo(buff
)->tso_segs
= 1;
1499 skb_shinfo(buff
)->tso_size
= 0;
1501 TCP_SKB_CB(buff
)->seq
= tp
->write_seq
++;
1502 TCP_SKB_CB(buff
)->end_seq
= tp
->write_seq
;
1503 tp
->snd_nxt
= tp
->write_seq
;
1504 tp
->pushed_seq
= tp
->write_seq
;
1508 TCP_SKB_CB(buff
)->when
= tcp_time_stamp
;
1509 tp
->retrans_stamp
= TCP_SKB_CB(buff
)->when
;
1510 skb_header_release(buff
);
1511 __skb_queue_tail(&sk
->sk_write_queue
, buff
);
1512 sk_charge_skb(sk
, buff
);
1513 tp
->packets_out
+= tcp_skb_pcount(buff
);
1514 tcp_transmit_skb(sk
, skb_clone(buff
, GFP_KERNEL
));
1515 TCP_INC_STATS(TCP_MIB_ACTIVEOPENS
);
1517 /* Timer for repeating the SYN until an answer. */
1518 tcp_reset_xmit_timer(sk
, TCP_TIME_RETRANS
, tp
->rto
);
1522 /* Send out a delayed ack, the caller does the policy checking
1523 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
1526 void tcp_send_delayed_ack(struct sock
*sk
)
1528 struct tcp_sock
*tp
= tcp_sk(sk
);
1529 int ato
= tp
->ack
.ato
;
1530 unsigned long timeout
;
1532 if (ato
> TCP_DELACK_MIN
) {
1535 if (tp
->ack
.pingpong
|| (tp
->ack
.pending
&TCP_ACK_PUSHED
))
1536 max_ato
= TCP_DELACK_MAX
;
1538 /* Slow path, intersegment interval is "high". */
1540 /* If some rtt estimate is known, use it to bound delayed ack.
1541 * Do not use tp->rto here, use results of rtt measurements
1545 int rtt
= max(tp
->srtt
>>3, TCP_DELACK_MIN
);
1551 ato
= min(ato
, max_ato
);
1554 /* Stay within the limit we were given */
1555 timeout
= jiffies
+ ato
;
1557 /* Use new timeout only if there wasn't a older one earlier. */
1558 if (tp
->ack
.pending
&TCP_ACK_TIMER
) {
1559 /* If delack timer was blocked or is about to expire,
1562 if (tp
->ack
.blocked
|| time_before_eq(tp
->ack
.timeout
, jiffies
+(ato
>>2))) {
1567 if (!time_before(timeout
, tp
->ack
.timeout
))
1568 timeout
= tp
->ack
.timeout
;
1570 tp
->ack
.pending
|= TCP_ACK_SCHED
|TCP_ACK_TIMER
;
1571 tp
->ack
.timeout
= timeout
;
1572 sk_reset_timer(sk
, &tp
->delack_timer
, timeout
);
1575 /* This routine sends an ack and also updates the window. */
1576 void tcp_send_ack(struct sock
*sk
)
1578 /* If we have been reset, we may not send again. */
1579 if (sk
->sk_state
!= TCP_CLOSE
) {
1580 struct tcp_sock
*tp
= tcp_sk(sk
);
1581 struct sk_buff
*buff
;
1583 /* We are not putting this on the write queue, so
1584 * tcp_transmit_skb() will set the ownership to this
1587 buff
= alloc_skb(MAX_TCP_HEADER
, GFP_ATOMIC
);
1589 tcp_schedule_ack(tp
);
1590 tp
->ack
.ato
= TCP_ATO_MIN
;
1591 tcp_reset_xmit_timer(sk
, TCP_TIME_DACK
, TCP_DELACK_MAX
);
1595 /* Reserve space for headers and prepare control bits. */
1596 skb_reserve(buff
, MAX_TCP_HEADER
);
1598 TCP_SKB_CB(buff
)->flags
= TCPCB_FLAG_ACK
;
1599 TCP_SKB_CB(buff
)->sacked
= 0;
1600 skb_shinfo(buff
)->tso_segs
= 1;
1601 skb_shinfo(buff
)->tso_size
= 0;
1603 /* Send it off, this clears delayed acks for us. */
1604 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(buff
)->end_seq
= tcp_acceptable_seq(sk
, tp
);
1605 TCP_SKB_CB(buff
)->when
= tcp_time_stamp
;
1606 tcp_transmit_skb(sk
, buff
);
1610 /* This routine sends a packet with an out of date sequence
1611 * number. It assumes the other end will try to ack it.
1613 * Question: what should we make while urgent mode?
1614 * 4.4BSD forces sending single byte of data. We cannot send
1615 * out of window data, because we have SND.NXT==SND.MAX...
1617 * Current solution: to send TWO zero-length segments in urgent mode:
1618 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
1619 * out-of-date with SND.UNA-1 to probe window.
1621 static int tcp_xmit_probe_skb(struct sock
*sk
, int urgent
)
1623 struct tcp_sock
*tp
= tcp_sk(sk
);
1624 struct sk_buff
*skb
;
1626 /* We don't queue it, tcp_transmit_skb() sets ownership. */
1627 skb
= alloc_skb(MAX_TCP_HEADER
, GFP_ATOMIC
);
1631 /* Reserve space for headers and set control bits. */
1632 skb_reserve(skb
, MAX_TCP_HEADER
);
1634 TCP_SKB_CB(skb
)->flags
= TCPCB_FLAG_ACK
;
1635 TCP_SKB_CB(skb
)->sacked
= urgent
;
1636 skb_shinfo(skb
)->tso_segs
= 1;
1637 skb_shinfo(skb
)->tso_size
= 0;
1639 /* Use a previous sequence. This should cause the other
1640 * end to send an ack. Don't queue or clone SKB, just
1643 TCP_SKB_CB(skb
)->seq
= urgent
? tp
->snd_una
: tp
->snd_una
- 1;
1644 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(skb
)->seq
;
1645 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
1646 return tcp_transmit_skb(sk
, skb
);
1649 int tcp_write_wakeup(struct sock
*sk
)
1651 if (sk
->sk_state
!= TCP_CLOSE
) {
1652 struct tcp_sock
*tp
= tcp_sk(sk
);
1653 struct sk_buff
*skb
;
1655 if ((skb
= sk
->sk_send_head
) != NULL
&&
1656 before(TCP_SKB_CB(skb
)->seq
, tp
->snd_una
+tp
->snd_wnd
)) {
1658 unsigned int mss
= tcp_current_mss(sk
, 0);
1659 unsigned int seg_size
= tp
->snd_una
+tp
->snd_wnd
-TCP_SKB_CB(skb
)->seq
;
1661 if (before(tp
->pushed_seq
, TCP_SKB_CB(skb
)->end_seq
))
1662 tp
->pushed_seq
= TCP_SKB_CB(skb
)->end_seq
;
1664 /* We are probing the opening of a window
1665 * but the window size is != 0
1666 * must have been a result SWS avoidance ( sender )
1668 if (seg_size
< TCP_SKB_CB(skb
)->end_seq
- TCP_SKB_CB(skb
)->seq
||
1670 seg_size
= min(seg_size
, mss
);
1671 TCP_SKB_CB(skb
)->flags
|= TCPCB_FLAG_PSH
;
1672 if (tcp_fragment(sk
, skb
, seg_size
))
1674 /* SWS override triggered forced fragmentation.
1675 * Disable TSO, the connection is too sick. */
1676 if (sk
->sk_route_caps
& NETIF_F_TSO
) {
1677 sock_set_flag(sk
, SOCK_NO_LARGESEND
);
1678 sk
->sk_route_caps
&= ~NETIF_F_TSO
;
1679 tp
->mss_cache
= tp
->mss_cache_std
;
1681 } else if (!tcp_skb_pcount(skb
))
1682 tcp_set_skb_tso_segs(sk
, skb
);
1684 TCP_SKB_CB(skb
)->flags
|= TCPCB_FLAG_PSH
;
1685 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
1686 tcp_tso_set_push(skb
);
1687 err
= tcp_transmit_skb(sk
, skb_clone(skb
, GFP_ATOMIC
));
1689 update_send_head(sk
, tp
, skb
);
1694 between(tp
->snd_up
, tp
->snd_una
+1, tp
->snd_una
+0xFFFF))
1695 tcp_xmit_probe_skb(sk
, TCPCB_URG
);
1696 return tcp_xmit_probe_skb(sk
, 0);
1702 /* A window probe timeout has occurred. If window is not closed send
1703 * a partial packet else a zero probe.
1705 void tcp_send_probe0(struct sock
*sk
)
1707 struct tcp_sock
*tp
= tcp_sk(sk
);
1710 err
= tcp_write_wakeup(sk
);
1712 if (tp
->packets_out
|| !sk
->sk_send_head
) {
1713 /* Cancel probe timer, if it is not required. */
1720 if (tp
->backoff
< sysctl_tcp_retries2
)
1723 tcp_reset_xmit_timer (sk
, TCP_TIME_PROBE0
,
1724 min(tp
->rto
<< tp
->backoff
, TCP_RTO_MAX
));
1726 /* If packet was not sent due to local congestion,
1727 * do not backoff and do not remember probes_out.
1728 * Let local senders to fight for local resources.
1730 * Use accumulated backoff yet.
1732 if (!tp
->probes_out
)
1734 tcp_reset_xmit_timer (sk
, TCP_TIME_PROBE0
,
1735 min(tp
->rto
<< tp
->backoff
, TCP_RESOURCE_PROBE_INTERVAL
));
1739 EXPORT_SYMBOL(tcp_connect
);
1740 EXPORT_SYMBOL(tcp_make_synack
);
1741 EXPORT_SYMBOL(tcp_simple_retransmit
);
1742 EXPORT_SYMBOL(tcp_sync_mss
);