4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
77 #include <asm/irq_regs.h>
79 #include "sched_cpupri.h"
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h>
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103 * Helpers for converting nanosecond timing to jiffy resolution
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
111 * These are the 'tuning knobs' of the scheduler:
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
116 #define DEF_TIMESLICE (100 * HZ / 1000)
119 * single value that denotes runtime == period, ie unlimited time.
121 #define RUNTIME_INF ((u64)~0ULL)
123 static inline int rt_policy(int policy
)
125 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
130 static inline int task_has_rt_policy(struct task_struct
*p
)
132 return rt_policy(p
->policy
);
136 * This is the priority-queue data structure of the RT scheduling class:
138 struct rt_prio_array
{
139 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
140 struct list_head queue
[MAX_RT_PRIO
];
143 struct rt_bandwidth
{
144 /* nests inside the rq lock: */
145 raw_spinlock_t rt_runtime_lock
;
148 struct hrtimer rt_period_timer
;
151 static struct rt_bandwidth def_rt_bandwidth
;
153 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
155 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
157 struct rt_bandwidth
*rt_b
=
158 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
164 now
= hrtimer_cb_get_time(timer
);
165 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
170 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
173 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
177 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
179 rt_b
->rt_period
= ns_to_ktime(period
);
180 rt_b
->rt_runtime
= runtime
;
182 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
184 hrtimer_init(&rt_b
->rt_period_timer
,
185 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
186 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
189 static inline int rt_bandwidth_enabled(void)
191 return sysctl_sched_rt_runtime
>= 0;
194 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
198 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
201 if (hrtimer_active(&rt_b
->rt_period_timer
))
204 raw_spin_lock(&rt_b
->rt_runtime_lock
);
209 if (hrtimer_active(&rt_b
->rt_period_timer
))
212 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
213 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
215 soft
= hrtimer_get_softexpires(&rt_b
->rt_period_timer
);
216 hard
= hrtimer_get_expires(&rt_b
->rt_period_timer
);
217 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
218 __hrtimer_start_range_ns(&rt_b
->rt_period_timer
, soft
, delta
,
219 HRTIMER_MODE_ABS_PINNED
, 0);
221 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
224 #ifdef CONFIG_RT_GROUP_SCHED
225 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
227 hrtimer_cancel(&rt_b
->rt_period_timer
);
232 * sched_domains_mutex serializes calls to arch_init_sched_domains,
233 * detach_destroy_domains and partition_sched_domains.
235 static DEFINE_MUTEX(sched_domains_mutex
);
237 #ifdef CONFIG_CGROUP_SCHED
239 #include <linux/cgroup.h>
243 static LIST_HEAD(task_groups
);
245 /* task group related information */
247 struct cgroup_subsys_state css
;
249 #ifdef CONFIG_FAIR_GROUP_SCHED
250 /* schedulable entities of this group on each cpu */
251 struct sched_entity
**se
;
252 /* runqueue "owned" by this group on each cpu */
253 struct cfs_rq
**cfs_rq
;
254 unsigned long shares
;
257 #ifdef CONFIG_RT_GROUP_SCHED
258 struct sched_rt_entity
**rt_se
;
259 struct rt_rq
**rt_rq
;
261 struct rt_bandwidth rt_bandwidth
;
265 struct list_head list
;
267 struct task_group
*parent
;
268 struct list_head siblings
;
269 struct list_head children
;
272 #define root_task_group init_task_group
274 /* task_group_lock serializes add/remove of task groups and also changes to
275 * a task group's cpu shares.
277 static DEFINE_SPINLOCK(task_group_lock
);
279 #ifdef CONFIG_FAIR_GROUP_SCHED
282 static int root_task_group_empty(void)
284 return list_empty(&root_task_group
.children
);
288 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
299 #define MAX_SHARES (1UL << 18)
301 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
304 /* Default task group.
305 * Every task in system belong to this group at bootup.
307 struct task_group init_task_group
;
309 /* return group to which a task belongs */
310 static inline struct task_group
*task_group(struct task_struct
*p
)
312 struct task_group
*tg
;
314 #ifdef CONFIG_CGROUP_SCHED
315 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
316 struct task_group
, css
);
318 tg
= &init_task_group
;
323 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
324 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
327 * Strictly speaking this rcu_read_lock() is not needed since the
328 * task_group is tied to the cgroup, which in turn can never go away
329 * as long as there are tasks attached to it.
331 * However since task_group() uses task_subsys_state() which is an
332 * rcu_dereference() user, this quiets CONFIG_PROVE_RCU.
335 #ifdef CONFIG_FAIR_GROUP_SCHED
336 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
337 p
->se
.parent
= task_group(p
)->se
[cpu
];
340 #ifdef CONFIG_RT_GROUP_SCHED
341 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
342 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
349 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
350 static inline struct task_group
*task_group(struct task_struct
*p
)
355 #endif /* CONFIG_CGROUP_SCHED */
357 /* CFS-related fields in a runqueue */
359 struct load_weight load
;
360 unsigned long nr_running
;
365 struct rb_root tasks_timeline
;
366 struct rb_node
*rb_leftmost
;
368 struct list_head tasks
;
369 struct list_head
*balance_iterator
;
372 * 'curr' points to currently running entity on this cfs_rq.
373 * It is set to NULL otherwise (i.e when none are currently running).
375 struct sched_entity
*curr
, *next
, *last
;
377 unsigned int nr_spread_over
;
379 #ifdef CONFIG_FAIR_GROUP_SCHED
380 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
383 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
384 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
385 * (like users, containers etc.)
387 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
388 * list is used during load balance.
390 struct list_head leaf_cfs_rq_list
;
391 struct task_group
*tg
; /* group that "owns" this runqueue */
395 * the part of load.weight contributed by tasks
397 unsigned long task_weight
;
400 * h_load = weight * f(tg)
402 * Where f(tg) is the recursive weight fraction assigned to
405 unsigned long h_load
;
408 * this cpu's part of tg->shares
410 unsigned long shares
;
413 * load.weight at the time we set shares
415 unsigned long rq_weight
;
420 /* Real-Time classes' related field in a runqueue: */
422 struct rt_prio_array active
;
423 unsigned long rt_nr_running
;
424 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
426 int curr
; /* highest queued rt task prio */
428 int next
; /* next highest */
433 unsigned long rt_nr_migratory
;
434 unsigned long rt_nr_total
;
436 struct plist_head pushable_tasks
;
441 /* Nests inside the rq lock: */
442 raw_spinlock_t rt_runtime_lock
;
444 #ifdef CONFIG_RT_GROUP_SCHED
445 unsigned long rt_nr_boosted
;
448 struct list_head leaf_rt_rq_list
;
449 struct task_group
*tg
;
456 * We add the notion of a root-domain which will be used to define per-domain
457 * variables. Each exclusive cpuset essentially defines an island domain by
458 * fully partitioning the member cpus from any other cpuset. Whenever a new
459 * exclusive cpuset is created, we also create and attach a new root-domain
466 cpumask_var_t online
;
469 * The "RT overload" flag: it gets set if a CPU has more than
470 * one runnable RT task.
472 cpumask_var_t rto_mask
;
475 struct cpupri cpupri
;
480 * By default the system creates a single root-domain with all cpus as
481 * members (mimicking the global state we have today).
483 static struct root_domain def_root_domain
;
488 * This is the main, per-CPU runqueue data structure.
490 * Locking rule: those places that want to lock multiple runqueues
491 * (such as the load balancing or the thread migration code), lock
492 * acquire operations must be ordered by ascending &runqueue.
499 * nr_running and cpu_load should be in the same cacheline because
500 * remote CPUs use both these fields when doing load calculation.
502 unsigned long nr_running
;
503 #define CPU_LOAD_IDX_MAX 5
504 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
507 unsigned char in_nohz_recently
;
509 unsigned int skip_clock_update
;
511 /* capture load from *all* tasks on this cpu: */
512 struct load_weight load
;
513 unsigned long nr_load_updates
;
519 #ifdef CONFIG_FAIR_GROUP_SCHED
520 /* list of leaf cfs_rq on this cpu: */
521 struct list_head leaf_cfs_rq_list
;
523 #ifdef CONFIG_RT_GROUP_SCHED
524 struct list_head leaf_rt_rq_list
;
528 * This is part of a global counter where only the total sum
529 * over all CPUs matters. A task can increase this counter on
530 * one CPU and if it got migrated afterwards it may decrease
531 * it on another CPU. Always updated under the runqueue lock:
533 unsigned long nr_uninterruptible
;
535 struct task_struct
*curr
, *idle
;
536 unsigned long next_balance
;
537 struct mm_struct
*prev_mm
;
544 struct root_domain
*rd
;
545 struct sched_domain
*sd
;
547 unsigned char idle_at_tick
;
548 /* For active balancing */
552 struct cpu_stop_work active_balance_work
;
553 /* cpu of this runqueue: */
557 unsigned long avg_load_per_task
;
565 /* calc_load related fields */
566 unsigned long calc_load_update
;
567 long calc_load_active
;
569 #ifdef CONFIG_SCHED_HRTICK
571 int hrtick_csd_pending
;
572 struct call_single_data hrtick_csd
;
574 struct hrtimer hrtick_timer
;
577 #ifdef CONFIG_SCHEDSTATS
579 struct sched_info rq_sched_info
;
580 unsigned long long rq_cpu_time
;
581 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
583 /* sys_sched_yield() stats */
584 unsigned int yld_count
;
586 /* schedule() stats */
587 unsigned int sched_switch
;
588 unsigned int sched_count
;
589 unsigned int sched_goidle
;
591 /* try_to_wake_up() stats */
592 unsigned int ttwu_count
;
593 unsigned int ttwu_local
;
596 unsigned int bkl_count
;
600 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
603 void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
605 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
608 * A queue event has occurred, and we're going to schedule. In
609 * this case, we can save a useless back to back clock update.
611 if (test_tsk_need_resched(p
))
612 rq
->skip_clock_update
= 1;
615 static inline int cpu_of(struct rq
*rq
)
624 #define rcu_dereference_check_sched_domain(p) \
625 rcu_dereference_check((p), \
626 rcu_read_lock_sched_held() || \
627 lockdep_is_held(&sched_domains_mutex))
630 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
631 * See detach_destroy_domains: synchronize_sched for details.
633 * The domain tree of any CPU may only be accessed from within
634 * preempt-disabled sections.
636 #define for_each_domain(cpu, __sd) \
637 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
639 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
640 #define this_rq() (&__get_cpu_var(runqueues))
641 #define task_rq(p) cpu_rq(task_cpu(p))
642 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
643 #define raw_rq() (&__raw_get_cpu_var(runqueues))
645 inline void update_rq_clock(struct rq
*rq
)
647 if (!rq
->skip_clock_update
)
648 rq
->clock
= sched_clock_cpu(cpu_of(rq
));
652 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
654 #ifdef CONFIG_SCHED_DEBUG
655 # define const_debug __read_mostly
657 # define const_debug static const
662 * @cpu: the processor in question.
664 * Returns true if the current cpu runqueue is locked.
665 * This interface allows printk to be called with the runqueue lock
666 * held and know whether or not it is OK to wake up the klogd.
668 int runqueue_is_locked(int cpu
)
670 return raw_spin_is_locked(&cpu_rq(cpu
)->lock
);
674 * Debugging: various feature bits
677 #define SCHED_FEAT(name, enabled) \
678 __SCHED_FEAT_##name ,
681 #include "sched_features.h"
686 #define SCHED_FEAT(name, enabled) \
687 (1UL << __SCHED_FEAT_##name) * enabled |
689 const_debug
unsigned int sysctl_sched_features
=
690 #include "sched_features.h"
695 #ifdef CONFIG_SCHED_DEBUG
696 #define SCHED_FEAT(name, enabled) \
699 static __read_mostly
char *sched_feat_names
[] = {
700 #include "sched_features.h"
706 static int sched_feat_show(struct seq_file
*m
, void *v
)
710 for (i
= 0; sched_feat_names
[i
]; i
++) {
711 if (!(sysctl_sched_features
& (1UL << i
)))
713 seq_printf(m
, "%s ", sched_feat_names
[i
]);
721 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
722 size_t cnt
, loff_t
*ppos
)
732 if (copy_from_user(&buf
, ubuf
, cnt
))
737 if (strncmp(buf
, "NO_", 3) == 0) {
742 for (i
= 0; sched_feat_names
[i
]; i
++) {
743 int len
= strlen(sched_feat_names
[i
]);
745 if (strncmp(cmp
, sched_feat_names
[i
], len
) == 0) {
747 sysctl_sched_features
&= ~(1UL << i
);
749 sysctl_sched_features
|= (1UL << i
);
754 if (!sched_feat_names
[i
])
762 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
764 return single_open(filp
, sched_feat_show
, NULL
);
767 static const struct file_operations sched_feat_fops
= {
768 .open
= sched_feat_open
,
769 .write
= sched_feat_write
,
772 .release
= single_release
,
775 static __init
int sched_init_debug(void)
777 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
782 late_initcall(sched_init_debug
);
786 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
789 * Number of tasks to iterate in a single balance run.
790 * Limited because this is done with IRQs disabled.
792 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
795 * ratelimit for updating the group shares.
798 unsigned int sysctl_sched_shares_ratelimit
= 250000;
799 unsigned int normalized_sysctl_sched_shares_ratelimit
= 250000;
802 * Inject some fuzzyness into changing the per-cpu group shares
803 * this avoids remote rq-locks at the expense of fairness.
806 unsigned int sysctl_sched_shares_thresh
= 4;
809 * period over which we average the RT time consumption, measured
814 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
817 * period over which we measure -rt task cpu usage in us.
820 unsigned int sysctl_sched_rt_period
= 1000000;
822 static __read_mostly
int scheduler_running
;
825 * part of the period that we allow rt tasks to run in us.
828 int sysctl_sched_rt_runtime
= 950000;
830 static inline u64
global_rt_period(void)
832 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
835 static inline u64
global_rt_runtime(void)
837 if (sysctl_sched_rt_runtime
< 0)
840 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
843 #ifndef prepare_arch_switch
844 # define prepare_arch_switch(next) do { } while (0)
846 #ifndef finish_arch_switch
847 # define finish_arch_switch(prev) do { } while (0)
850 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
852 return rq
->curr
== p
;
855 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
856 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
858 return task_current(rq
, p
);
861 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
865 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
867 #ifdef CONFIG_DEBUG_SPINLOCK
868 /* this is a valid case when another task releases the spinlock */
869 rq
->lock
.owner
= current
;
872 * If we are tracking spinlock dependencies then we have to
873 * fix up the runqueue lock - which gets 'carried over' from
876 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
878 raw_spin_unlock_irq(&rq
->lock
);
881 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
882 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
887 return task_current(rq
, p
);
891 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
895 * We can optimise this out completely for !SMP, because the
896 * SMP rebalancing from interrupt is the only thing that cares
901 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
902 raw_spin_unlock_irq(&rq
->lock
);
904 raw_spin_unlock(&rq
->lock
);
908 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
912 * After ->oncpu is cleared, the task can be moved to a different CPU.
913 * We must ensure this doesn't happen until the switch is completely
919 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
923 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
926 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
929 static inline int task_is_waking(struct task_struct
*p
)
931 return unlikely(p
->state
== TASK_WAKING
);
935 * __task_rq_lock - lock the runqueue a given task resides on.
936 * Must be called interrupts disabled.
938 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
945 raw_spin_lock(&rq
->lock
);
946 if (likely(rq
== task_rq(p
)))
948 raw_spin_unlock(&rq
->lock
);
953 * task_rq_lock - lock the runqueue a given task resides on and disable
954 * interrupts. Note the ordering: we can safely lookup the task_rq without
955 * explicitly disabling preemption.
957 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
963 local_irq_save(*flags
);
965 raw_spin_lock(&rq
->lock
);
966 if (likely(rq
== task_rq(p
)))
968 raw_spin_unlock_irqrestore(&rq
->lock
, *flags
);
972 static void __task_rq_unlock(struct rq
*rq
)
975 raw_spin_unlock(&rq
->lock
);
978 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
981 raw_spin_unlock_irqrestore(&rq
->lock
, *flags
);
985 * this_rq_lock - lock this runqueue and disable interrupts.
987 static struct rq
*this_rq_lock(void)
994 raw_spin_lock(&rq
->lock
);
999 #ifdef CONFIG_SCHED_HRTICK
1001 * Use HR-timers to deliver accurate preemption points.
1003 * Its all a bit involved since we cannot program an hrt while holding the
1004 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1007 * When we get rescheduled we reprogram the hrtick_timer outside of the
1013 * - enabled by features
1014 * - hrtimer is actually high res
1016 static inline int hrtick_enabled(struct rq
*rq
)
1018 if (!sched_feat(HRTICK
))
1020 if (!cpu_active(cpu_of(rq
)))
1022 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1025 static void hrtick_clear(struct rq
*rq
)
1027 if (hrtimer_active(&rq
->hrtick_timer
))
1028 hrtimer_cancel(&rq
->hrtick_timer
);
1032 * High-resolution timer tick.
1033 * Runs from hardirq context with interrupts disabled.
1035 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1037 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1039 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1041 raw_spin_lock(&rq
->lock
);
1042 update_rq_clock(rq
);
1043 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1044 raw_spin_unlock(&rq
->lock
);
1046 return HRTIMER_NORESTART
;
1051 * called from hardirq (IPI) context
1053 static void __hrtick_start(void *arg
)
1055 struct rq
*rq
= arg
;
1057 raw_spin_lock(&rq
->lock
);
1058 hrtimer_restart(&rq
->hrtick_timer
);
1059 rq
->hrtick_csd_pending
= 0;
1060 raw_spin_unlock(&rq
->lock
);
1064 * Called to set the hrtick timer state.
1066 * called with rq->lock held and irqs disabled
1068 static void hrtick_start(struct rq
*rq
, u64 delay
)
1070 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1071 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1073 hrtimer_set_expires(timer
, time
);
1075 if (rq
== this_rq()) {
1076 hrtimer_restart(timer
);
1077 } else if (!rq
->hrtick_csd_pending
) {
1078 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
1079 rq
->hrtick_csd_pending
= 1;
1084 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1086 int cpu
= (int)(long)hcpu
;
1089 case CPU_UP_CANCELED
:
1090 case CPU_UP_CANCELED_FROZEN
:
1091 case CPU_DOWN_PREPARE
:
1092 case CPU_DOWN_PREPARE_FROZEN
:
1094 case CPU_DEAD_FROZEN
:
1095 hrtick_clear(cpu_rq(cpu
));
1102 static __init
void init_hrtick(void)
1104 hotcpu_notifier(hotplug_hrtick
, 0);
1108 * Called to set the hrtick timer state.
1110 * called with rq->lock held and irqs disabled
1112 static void hrtick_start(struct rq
*rq
, u64 delay
)
1114 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
1115 HRTIMER_MODE_REL_PINNED
, 0);
1118 static inline void init_hrtick(void)
1121 #endif /* CONFIG_SMP */
1123 static void init_rq_hrtick(struct rq
*rq
)
1126 rq
->hrtick_csd_pending
= 0;
1128 rq
->hrtick_csd
.flags
= 0;
1129 rq
->hrtick_csd
.func
= __hrtick_start
;
1130 rq
->hrtick_csd
.info
= rq
;
1133 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1134 rq
->hrtick_timer
.function
= hrtick
;
1136 #else /* CONFIG_SCHED_HRTICK */
1137 static inline void hrtick_clear(struct rq
*rq
)
1141 static inline void init_rq_hrtick(struct rq
*rq
)
1145 static inline void init_hrtick(void)
1148 #endif /* CONFIG_SCHED_HRTICK */
1151 * resched_task - mark a task 'to be rescheduled now'.
1153 * On UP this means the setting of the need_resched flag, on SMP it
1154 * might also involve a cross-CPU call to trigger the scheduler on
1159 #ifndef tsk_is_polling
1160 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1163 static void resched_task(struct task_struct
*p
)
1167 assert_raw_spin_locked(&task_rq(p
)->lock
);
1169 if (test_tsk_need_resched(p
))
1172 set_tsk_need_resched(p
);
1175 if (cpu
== smp_processor_id())
1178 /* NEED_RESCHED must be visible before we test polling */
1180 if (!tsk_is_polling(p
))
1181 smp_send_reschedule(cpu
);
1184 static void resched_cpu(int cpu
)
1186 struct rq
*rq
= cpu_rq(cpu
);
1187 unsigned long flags
;
1189 if (!raw_spin_trylock_irqsave(&rq
->lock
, flags
))
1191 resched_task(cpu_curr(cpu
));
1192 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1197 * When add_timer_on() enqueues a timer into the timer wheel of an
1198 * idle CPU then this timer might expire before the next timer event
1199 * which is scheduled to wake up that CPU. In case of a completely
1200 * idle system the next event might even be infinite time into the
1201 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1202 * leaves the inner idle loop so the newly added timer is taken into
1203 * account when the CPU goes back to idle and evaluates the timer
1204 * wheel for the next timer event.
1206 void wake_up_idle_cpu(int cpu
)
1208 struct rq
*rq
= cpu_rq(cpu
);
1210 if (cpu
== smp_processor_id())
1214 * This is safe, as this function is called with the timer
1215 * wheel base lock of (cpu) held. When the CPU is on the way
1216 * to idle and has not yet set rq->curr to idle then it will
1217 * be serialized on the timer wheel base lock and take the new
1218 * timer into account automatically.
1220 if (rq
->curr
!= rq
->idle
)
1224 * We can set TIF_RESCHED on the idle task of the other CPU
1225 * lockless. The worst case is that the other CPU runs the
1226 * idle task through an additional NOOP schedule()
1228 set_tsk_need_resched(rq
->idle
);
1230 /* NEED_RESCHED must be visible before we test polling */
1232 if (!tsk_is_polling(rq
->idle
))
1233 smp_send_reschedule(cpu
);
1236 int nohz_ratelimit(int cpu
)
1238 struct rq
*rq
= cpu_rq(cpu
);
1239 u64 diff
= rq
->clock
- rq
->nohz_stamp
;
1241 rq
->nohz_stamp
= rq
->clock
;
1243 return diff
< (NSEC_PER_SEC
/ HZ
) >> 1;
1246 #endif /* CONFIG_NO_HZ */
1248 static u64
sched_avg_period(void)
1250 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1253 static void sched_avg_update(struct rq
*rq
)
1255 s64 period
= sched_avg_period();
1257 while ((s64
)(rq
->clock
- rq
->age_stamp
) > period
) {
1258 rq
->age_stamp
+= period
;
1263 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1265 rq
->rt_avg
+= rt_delta
;
1266 sched_avg_update(rq
);
1269 #else /* !CONFIG_SMP */
1270 static void resched_task(struct task_struct
*p
)
1272 assert_raw_spin_locked(&task_rq(p
)->lock
);
1273 set_tsk_need_resched(p
);
1276 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1279 #endif /* CONFIG_SMP */
1281 #if BITS_PER_LONG == 32
1282 # define WMULT_CONST (~0UL)
1284 # define WMULT_CONST (1UL << 32)
1287 #define WMULT_SHIFT 32
1290 * Shift right and round:
1292 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1295 * delta *= weight / lw
1297 static unsigned long
1298 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1299 struct load_weight
*lw
)
1303 if (!lw
->inv_weight
) {
1304 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1307 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1311 tmp
= (u64
)delta_exec
* weight
;
1313 * Check whether we'd overflow the 64-bit multiplication:
1315 if (unlikely(tmp
> WMULT_CONST
))
1316 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1319 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1321 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1324 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1330 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1337 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1338 * of tasks with abnormal "nice" values across CPUs the contribution that
1339 * each task makes to its run queue's load is weighted according to its
1340 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1341 * scaled version of the new time slice allocation that they receive on time
1345 #define WEIGHT_IDLEPRIO 3
1346 #define WMULT_IDLEPRIO 1431655765
1349 * Nice levels are multiplicative, with a gentle 10% change for every
1350 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1351 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1352 * that remained on nice 0.
1354 * The "10% effect" is relative and cumulative: from _any_ nice level,
1355 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1356 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1357 * If a task goes up by ~10% and another task goes down by ~10% then
1358 * the relative distance between them is ~25%.)
1360 static const int prio_to_weight
[40] = {
1361 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1362 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1363 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1364 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1365 /* 0 */ 1024, 820, 655, 526, 423,
1366 /* 5 */ 335, 272, 215, 172, 137,
1367 /* 10 */ 110, 87, 70, 56, 45,
1368 /* 15 */ 36, 29, 23, 18, 15,
1372 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1374 * In cases where the weight does not change often, we can use the
1375 * precalculated inverse to speed up arithmetics by turning divisions
1376 * into multiplications:
1378 static const u32 prio_to_wmult
[40] = {
1379 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1380 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1381 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1382 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1383 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1384 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1385 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1386 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1389 /* Time spent by the tasks of the cpu accounting group executing in ... */
1390 enum cpuacct_stat_index
{
1391 CPUACCT_STAT_USER
, /* ... user mode */
1392 CPUACCT_STAT_SYSTEM
, /* ... kernel mode */
1394 CPUACCT_STAT_NSTATS
,
1397 #ifdef CONFIG_CGROUP_CPUACCT
1398 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1399 static void cpuacct_update_stats(struct task_struct
*tsk
,
1400 enum cpuacct_stat_index idx
, cputime_t val
);
1402 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1403 static inline void cpuacct_update_stats(struct task_struct
*tsk
,
1404 enum cpuacct_stat_index idx
, cputime_t val
) {}
1407 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1409 update_load_add(&rq
->load
, load
);
1412 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1414 update_load_sub(&rq
->load
, load
);
1417 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1418 typedef int (*tg_visitor
)(struct task_group
*, void *);
1421 * Iterate the full tree, calling @down when first entering a node and @up when
1422 * leaving it for the final time.
1424 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1426 struct task_group
*parent
, *child
;
1430 parent
= &root_task_group
;
1432 ret
= (*down
)(parent
, data
);
1435 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1442 ret
= (*up
)(parent
, data
);
1447 parent
= parent
->parent
;
1456 static int tg_nop(struct task_group
*tg
, void *data
)
1463 /* Used instead of source_load when we know the type == 0 */
1464 static unsigned long weighted_cpuload(const int cpu
)
1466 return cpu_rq(cpu
)->load
.weight
;
1470 * Return a low guess at the load of a migration-source cpu weighted
1471 * according to the scheduling class and "nice" value.
1473 * We want to under-estimate the load of migration sources, to
1474 * balance conservatively.
1476 static unsigned long source_load(int cpu
, int type
)
1478 struct rq
*rq
= cpu_rq(cpu
);
1479 unsigned long total
= weighted_cpuload(cpu
);
1481 if (type
== 0 || !sched_feat(LB_BIAS
))
1484 return min(rq
->cpu_load
[type
-1], total
);
1488 * Return a high guess at the load of a migration-target cpu weighted
1489 * according to the scheduling class and "nice" value.
1491 static unsigned long target_load(int cpu
, int type
)
1493 struct rq
*rq
= cpu_rq(cpu
);
1494 unsigned long total
= weighted_cpuload(cpu
);
1496 if (type
== 0 || !sched_feat(LB_BIAS
))
1499 return max(rq
->cpu_load
[type
-1], total
);
1502 static struct sched_group
*group_of(int cpu
)
1504 struct sched_domain
*sd
= rcu_dereference_sched(cpu_rq(cpu
)->sd
);
1512 static unsigned long power_of(int cpu
)
1514 struct sched_group
*group
= group_of(cpu
);
1517 return SCHED_LOAD_SCALE
;
1519 return group
->cpu_power
;
1522 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1524 static unsigned long cpu_avg_load_per_task(int cpu
)
1526 struct rq
*rq
= cpu_rq(cpu
);
1527 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1530 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1532 rq
->avg_load_per_task
= 0;
1534 return rq
->avg_load_per_task
;
1537 #ifdef CONFIG_FAIR_GROUP_SCHED
1539 static __read_mostly
unsigned long __percpu
*update_shares_data
;
1541 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1544 * Calculate and set the cpu's group shares.
1546 static void update_group_shares_cpu(struct task_group
*tg
, int cpu
,
1547 unsigned long sd_shares
,
1548 unsigned long sd_rq_weight
,
1549 unsigned long *usd_rq_weight
)
1551 unsigned long shares
, rq_weight
;
1554 rq_weight
= usd_rq_weight
[cpu
];
1557 rq_weight
= NICE_0_LOAD
;
1561 * \Sum_j shares_j * rq_weight_i
1562 * shares_i = -----------------------------
1563 * \Sum_j rq_weight_j
1565 shares
= (sd_shares
* rq_weight
) / sd_rq_weight
;
1566 shares
= clamp_t(unsigned long, shares
, MIN_SHARES
, MAX_SHARES
);
1568 if (abs(shares
- tg
->se
[cpu
]->load
.weight
) >
1569 sysctl_sched_shares_thresh
) {
1570 struct rq
*rq
= cpu_rq(cpu
);
1571 unsigned long flags
;
1573 raw_spin_lock_irqsave(&rq
->lock
, flags
);
1574 tg
->cfs_rq
[cpu
]->rq_weight
= boost
? 0 : rq_weight
;
1575 tg
->cfs_rq
[cpu
]->shares
= boost
? 0 : shares
;
1576 __set_se_shares(tg
->se
[cpu
], shares
);
1577 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1582 * Re-compute the task group their per cpu shares over the given domain.
1583 * This needs to be done in a bottom-up fashion because the rq weight of a
1584 * parent group depends on the shares of its child groups.
1586 static int tg_shares_up(struct task_group
*tg
, void *data
)
1588 unsigned long weight
, rq_weight
= 0, sum_weight
= 0, shares
= 0;
1589 unsigned long *usd_rq_weight
;
1590 struct sched_domain
*sd
= data
;
1591 unsigned long flags
;
1597 local_irq_save(flags
);
1598 usd_rq_weight
= per_cpu_ptr(update_shares_data
, smp_processor_id());
1600 for_each_cpu(i
, sched_domain_span(sd
)) {
1601 weight
= tg
->cfs_rq
[i
]->load
.weight
;
1602 usd_rq_weight
[i
] = weight
;
1604 rq_weight
+= weight
;
1606 * If there are currently no tasks on the cpu pretend there
1607 * is one of average load so that when a new task gets to
1608 * run here it will not get delayed by group starvation.
1611 weight
= NICE_0_LOAD
;
1613 sum_weight
+= weight
;
1614 shares
+= tg
->cfs_rq
[i
]->shares
;
1618 rq_weight
= sum_weight
;
1620 if ((!shares
&& rq_weight
) || shares
> tg
->shares
)
1621 shares
= tg
->shares
;
1623 if (!sd
->parent
|| !(sd
->parent
->flags
& SD_LOAD_BALANCE
))
1624 shares
= tg
->shares
;
1626 for_each_cpu(i
, sched_domain_span(sd
))
1627 update_group_shares_cpu(tg
, i
, shares
, rq_weight
, usd_rq_weight
);
1629 local_irq_restore(flags
);
1635 * Compute the cpu's hierarchical load factor for each task group.
1636 * This needs to be done in a top-down fashion because the load of a child
1637 * group is a fraction of its parents load.
1639 static int tg_load_down(struct task_group
*tg
, void *data
)
1642 long cpu
= (long)data
;
1645 load
= cpu_rq(cpu
)->load
.weight
;
1647 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1648 load
*= tg
->cfs_rq
[cpu
]->shares
;
1649 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1652 tg
->cfs_rq
[cpu
]->h_load
= load
;
1657 static void update_shares(struct sched_domain
*sd
)
1662 if (root_task_group_empty())
1665 now
= cpu_clock(raw_smp_processor_id());
1666 elapsed
= now
- sd
->last_update
;
1668 if (elapsed
>= (s64
)(u64
)sysctl_sched_shares_ratelimit
) {
1669 sd
->last_update
= now
;
1670 walk_tg_tree(tg_nop
, tg_shares_up
, sd
);
1674 static void update_h_load(long cpu
)
1676 if (root_task_group_empty())
1679 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1684 static inline void update_shares(struct sched_domain
*sd
)
1690 #ifdef CONFIG_PREEMPT
1692 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1695 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1696 * way at the expense of forcing extra atomic operations in all
1697 * invocations. This assures that the double_lock is acquired using the
1698 * same underlying policy as the spinlock_t on this architecture, which
1699 * reduces latency compared to the unfair variant below. However, it
1700 * also adds more overhead and therefore may reduce throughput.
1702 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1703 __releases(this_rq
->lock
)
1704 __acquires(busiest
->lock
)
1705 __acquires(this_rq
->lock
)
1707 raw_spin_unlock(&this_rq
->lock
);
1708 double_rq_lock(this_rq
, busiest
);
1715 * Unfair double_lock_balance: Optimizes throughput at the expense of
1716 * latency by eliminating extra atomic operations when the locks are
1717 * already in proper order on entry. This favors lower cpu-ids and will
1718 * grant the double lock to lower cpus over higher ids under contention,
1719 * regardless of entry order into the function.
1721 static int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1722 __releases(this_rq
->lock
)
1723 __acquires(busiest
->lock
)
1724 __acquires(this_rq
->lock
)
1728 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
1729 if (busiest
< this_rq
) {
1730 raw_spin_unlock(&this_rq
->lock
);
1731 raw_spin_lock(&busiest
->lock
);
1732 raw_spin_lock_nested(&this_rq
->lock
,
1733 SINGLE_DEPTH_NESTING
);
1736 raw_spin_lock_nested(&busiest
->lock
,
1737 SINGLE_DEPTH_NESTING
);
1742 #endif /* CONFIG_PREEMPT */
1745 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1747 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1749 if (unlikely(!irqs_disabled())) {
1750 /* printk() doesn't work good under rq->lock */
1751 raw_spin_unlock(&this_rq
->lock
);
1755 return _double_lock_balance(this_rq
, busiest
);
1758 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1759 __releases(busiest
->lock
)
1761 raw_spin_unlock(&busiest
->lock
);
1762 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1766 * double_rq_lock - safely lock two runqueues
1768 * Note this does not disable interrupts like task_rq_lock,
1769 * you need to do so manually before calling.
1771 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1772 __acquires(rq1
->lock
)
1773 __acquires(rq2
->lock
)
1775 BUG_ON(!irqs_disabled());
1777 raw_spin_lock(&rq1
->lock
);
1778 __acquire(rq2
->lock
); /* Fake it out ;) */
1781 raw_spin_lock(&rq1
->lock
);
1782 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
1784 raw_spin_lock(&rq2
->lock
);
1785 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
1791 * double_rq_unlock - safely unlock two runqueues
1793 * Note this does not restore interrupts like task_rq_unlock,
1794 * you need to do so manually after calling.
1796 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1797 __releases(rq1
->lock
)
1798 __releases(rq2
->lock
)
1800 raw_spin_unlock(&rq1
->lock
);
1802 raw_spin_unlock(&rq2
->lock
);
1804 __release(rq2
->lock
);
1809 #ifdef CONFIG_FAIR_GROUP_SCHED
1810 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1813 cfs_rq
->shares
= shares
;
1818 static void calc_load_account_idle(struct rq
*this_rq
);
1819 static void update_sysctl(void);
1820 static int get_update_sysctl_factor(void);
1822 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1824 set_task_rq(p
, cpu
);
1827 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1828 * successfuly executed on another CPU. We must ensure that updates of
1829 * per-task data have been completed by this moment.
1832 task_thread_info(p
)->cpu
= cpu
;
1836 static const struct sched_class rt_sched_class
;
1838 #define sched_class_highest (&rt_sched_class)
1839 #define for_each_class(class) \
1840 for (class = sched_class_highest; class; class = class->next)
1842 #include "sched_stats.h"
1844 static void inc_nr_running(struct rq
*rq
)
1849 static void dec_nr_running(struct rq
*rq
)
1854 static void set_load_weight(struct task_struct
*p
)
1856 if (task_has_rt_policy(p
)) {
1857 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1858 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1863 * SCHED_IDLE tasks get minimal weight:
1865 if (p
->policy
== SCHED_IDLE
) {
1866 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1867 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1871 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1872 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1875 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1877 update_rq_clock(rq
);
1878 sched_info_queued(p
);
1879 p
->sched_class
->enqueue_task(rq
, p
, flags
);
1883 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1885 update_rq_clock(rq
);
1886 sched_info_dequeued(p
);
1887 p
->sched_class
->dequeue_task(rq
, p
, flags
);
1892 * activate_task - move a task to the runqueue.
1894 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1896 if (task_contributes_to_load(p
))
1897 rq
->nr_uninterruptible
--;
1899 enqueue_task(rq
, p
, flags
);
1904 * deactivate_task - remove a task from the runqueue.
1906 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1908 if (task_contributes_to_load(p
))
1909 rq
->nr_uninterruptible
++;
1911 dequeue_task(rq
, p
, flags
);
1915 #include "sched_idletask.c"
1916 #include "sched_fair.c"
1917 #include "sched_rt.c"
1918 #ifdef CONFIG_SCHED_DEBUG
1919 # include "sched_debug.c"
1923 * __normal_prio - return the priority that is based on the static prio
1925 static inline int __normal_prio(struct task_struct
*p
)
1927 return p
->static_prio
;
1931 * Calculate the expected normal priority: i.e. priority
1932 * without taking RT-inheritance into account. Might be
1933 * boosted by interactivity modifiers. Changes upon fork,
1934 * setprio syscalls, and whenever the interactivity
1935 * estimator recalculates.
1937 static inline int normal_prio(struct task_struct
*p
)
1941 if (task_has_rt_policy(p
))
1942 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1944 prio
= __normal_prio(p
);
1949 * Calculate the current priority, i.e. the priority
1950 * taken into account by the scheduler. This value might
1951 * be boosted by RT tasks, or might be boosted by
1952 * interactivity modifiers. Will be RT if the task got
1953 * RT-boosted. If not then it returns p->normal_prio.
1955 static int effective_prio(struct task_struct
*p
)
1957 p
->normal_prio
= normal_prio(p
);
1959 * If we are RT tasks or we were boosted to RT priority,
1960 * keep the priority unchanged. Otherwise, update priority
1961 * to the normal priority:
1963 if (!rt_prio(p
->prio
))
1964 return p
->normal_prio
;
1969 * task_curr - is this task currently executing on a CPU?
1970 * @p: the task in question.
1972 inline int task_curr(const struct task_struct
*p
)
1974 return cpu_curr(task_cpu(p
)) == p
;
1977 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1978 const struct sched_class
*prev_class
,
1979 int oldprio
, int running
)
1981 if (prev_class
!= p
->sched_class
) {
1982 if (prev_class
->switched_from
)
1983 prev_class
->switched_from(rq
, p
, running
);
1984 p
->sched_class
->switched_to(rq
, p
, running
);
1986 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
1991 * Is this task likely cache-hot:
1994 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1998 if (p
->sched_class
!= &fair_sched_class
)
2002 * Buddy candidates are cache hot:
2004 if (sched_feat(CACHE_HOT_BUDDY
) && this_rq()->nr_running
&&
2005 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
2006 &p
->se
== cfs_rq_of(&p
->se
)->last
))
2009 if (sysctl_sched_migration_cost
== -1)
2011 if (sysctl_sched_migration_cost
== 0)
2014 delta
= now
- p
->se
.exec_start
;
2016 return delta
< (s64
)sysctl_sched_migration_cost
;
2019 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
2021 #ifdef CONFIG_SCHED_DEBUG
2023 * We should never call set_task_cpu() on a blocked task,
2024 * ttwu() will sort out the placement.
2026 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
2027 !(task_thread_info(p
)->preempt_count
& PREEMPT_ACTIVE
));
2030 trace_sched_migrate_task(p
, new_cpu
);
2032 if (task_cpu(p
) != new_cpu
) {
2033 p
->se
.nr_migrations
++;
2034 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS
, 1, 1, NULL
, 0);
2037 __set_task_cpu(p
, new_cpu
);
2040 struct migration_arg
{
2041 struct task_struct
*task
;
2045 static int migration_cpu_stop(void *data
);
2048 * The task's runqueue lock must be held.
2049 * Returns true if you have to wait for migration thread.
2051 static bool migrate_task(struct task_struct
*p
, int dest_cpu
)
2053 struct rq
*rq
= task_rq(p
);
2056 * If the task is not on a runqueue (and not running), then
2057 * the next wake-up will properly place the task.
2059 return p
->se
.on_rq
|| task_running(rq
, p
);
2063 * wait_task_inactive - wait for a thread to unschedule.
2065 * If @match_state is nonzero, it's the @p->state value just checked and
2066 * not expected to change. If it changes, i.e. @p might have woken up,
2067 * then return zero. When we succeed in waiting for @p to be off its CPU,
2068 * we return a positive number (its total switch count). If a second call
2069 * a short while later returns the same number, the caller can be sure that
2070 * @p has remained unscheduled the whole time.
2072 * The caller must ensure that the task *will* unschedule sometime soon,
2073 * else this function might spin for a *long* time. This function can't
2074 * be called with interrupts off, or it may introduce deadlock with
2075 * smp_call_function() if an IPI is sent by the same process we are
2076 * waiting to become inactive.
2078 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
2080 unsigned long flags
;
2087 * We do the initial early heuristics without holding
2088 * any task-queue locks at all. We'll only try to get
2089 * the runqueue lock when things look like they will
2095 * If the task is actively running on another CPU
2096 * still, just relax and busy-wait without holding
2099 * NOTE! Since we don't hold any locks, it's not
2100 * even sure that "rq" stays as the right runqueue!
2101 * But we don't care, since "task_running()" will
2102 * return false if the runqueue has changed and p
2103 * is actually now running somewhere else!
2105 while (task_running(rq
, p
)) {
2106 if (match_state
&& unlikely(p
->state
!= match_state
))
2112 * Ok, time to look more closely! We need the rq
2113 * lock now, to be *sure*. If we're wrong, we'll
2114 * just go back and repeat.
2116 rq
= task_rq_lock(p
, &flags
);
2117 trace_sched_wait_task(p
);
2118 running
= task_running(rq
, p
);
2119 on_rq
= p
->se
.on_rq
;
2121 if (!match_state
|| p
->state
== match_state
)
2122 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2123 task_rq_unlock(rq
, &flags
);
2126 * If it changed from the expected state, bail out now.
2128 if (unlikely(!ncsw
))
2132 * Was it really running after all now that we
2133 * checked with the proper locks actually held?
2135 * Oops. Go back and try again..
2137 if (unlikely(running
)) {
2143 * It's not enough that it's not actively running,
2144 * it must be off the runqueue _entirely_, and not
2147 * So if it was still runnable (but just not actively
2148 * running right now), it's preempted, and we should
2149 * yield - it could be a while.
2151 if (unlikely(on_rq
)) {
2152 schedule_timeout_uninterruptible(1);
2157 * Ahh, all good. It wasn't running, and it wasn't
2158 * runnable, which means that it will never become
2159 * running in the future either. We're all done!
2168 * kick_process - kick a running thread to enter/exit the kernel
2169 * @p: the to-be-kicked thread
2171 * Cause a process which is running on another CPU to enter
2172 * kernel-mode, without any delay. (to get signals handled.)
2174 * NOTE: this function doesnt have to take the runqueue lock,
2175 * because all it wants to ensure is that the remote task enters
2176 * the kernel. If the IPI races and the task has been migrated
2177 * to another CPU then no harm is done and the purpose has been
2180 void kick_process(struct task_struct
*p
)
2186 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2187 smp_send_reschedule(cpu
);
2190 EXPORT_SYMBOL_GPL(kick_process
);
2191 #endif /* CONFIG_SMP */
2194 * task_oncpu_function_call - call a function on the cpu on which a task runs
2195 * @p: the task to evaluate
2196 * @func: the function to be called
2197 * @info: the function call argument
2199 * Calls the function @func when the task is currently running. This might
2200 * be on the current CPU, which just calls the function directly
2202 void task_oncpu_function_call(struct task_struct
*p
,
2203 void (*func
) (void *info
), void *info
)
2210 smp_call_function_single(cpu
, func
, info
, 1);
2216 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2218 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
2221 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(cpu
));
2223 /* Look for allowed, online CPU in same node. */
2224 for_each_cpu_and(dest_cpu
, nodemask
, cpu_active_mask
)
2225 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
2228 /* Any allowed, online CPU? */
2229 dest_cpu
= cpumask_any_and(&p
->cpus_allowed
, cpu_active_mask
);
2230 if (dest_cpu
< nr_cpu_ids
)
2233 /* No more Mr. Nice Guy. */
2234 if (unlikely(dest_cpu
>= nr_cpu_ids
)) {
2235 dest_cpu
= cpuset_cpus_allowed_fallback(p
);
2237 * Don't tell them about moving exiting tasks or
2238 * kernel threads (both mm NULL), since they never
2241 if (p
->mm
&& printk_ratelimit()) {
2242 printk(KERN_INFO
"process %d (%s) no "
2243 "longer affine to cpu%d\n",
2244 task_pid_nr(p
), p
->comm
, cpu
);
2252 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2255 int select_task_rq(struct rq
*rq
, struct task_struct
*p
, int sd_flags
, int wake_flags
)
2257 int cpu
= p
->sched_class
->select_task_rq(rq
, p
, sd_flags
, wake_flags
);
2260 * In order not to call set_task_cpu() on a blocking task we need
2261 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2264 * Since this is common to all placement strategies, this lives here.
2266 * [ this allows ->select_task() to simply return task_cpu(p) and
2267 * not worry about this generic constraint ]
2269 if (unlikely(!cpumask_test_cpu(cpu
, &p
->cpus_allowed
) ||
2271 cpu
= select_fallback_rq(task_cpu(p
), p
);
2276 static void update_avg(u64
*avg
, u64 sample
)
2278 s64 diff
= sample
- *avg
;
2284 * try_to_wake_up - wake up a thread
2285 * @p: the to-be-woken-up thread
2286 * @state: the mask of task states that can be woken
2287 * @sync: do a synchronous wakeup?
2289 * Put it on the run-queue if it's not already there. The "current"
2290 * thread is always on the run-queue (except when the actual
2291 * re-schedule is in progress), and as such you're allowed to do
2292 * the simpler "current->state = TASK_RUNNING" to mark yourself
2293 * runnable without the overhead of this.
2295 * returns failure only if the task is already active.
2297 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
,
2300 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2301 unsigned long flags
;
2302 unsigned long en_flags
= ENQUEUE_WAKEUP
;
2305 this_cpu
= get_cpu();
2308 rq
= task_rq_lock(p
, &flags
);
2309 if (!(p
->state
& state
))
2319 if (unlikely(task_running(rq
, p
)))
2323 * In order to handle concurrent wakeups and release the rq->lock
2324 * we put the task in TASK_WAKING state.
2326 * First fix up the nr_uninterruptible count:
2328 if (task_contributes_to_load(p
)) {
2329 if (likely(cpu_online(orig_cpu
)))
2330 rq
->nr_uninterruptible
--;
2332 this_rq()->nr_uninterruptible
--;
2334 p
->state
= TASK_WAKING
;
2336 if (p
->sched_class
->task_waking
) {
2337 p
->sched_class
->task_waking(rq
, p
);
2338 en_flags
|= ENQUEUE_WAKING
;
2341 cpu
= select_task_rq(rq
, p
, SD_BALANCE_WAKE
, wake_flags
);
2342 if (cpu
!= orig_cpu
)
2343 set_task_cpu(p
, cpu
);
2344 __task_rq_unlock(rq
);
2347 raw_spin_lock(&rq
->lock
);
2350 * We migrated the task without holding either rq->lock, however
2351 * since the task is not on the task list itself, nobody else
2352 * will try and migrate the task, hence the rq should match the
2353 * cpu we just moved it to.
2355 WARN_ON(task_cpu(p
) != cpu
);
2356 WARN_ON(p
->state
!= TASK_WAKING
);
2358 #ifdef CONFIG_SCHEDSTATS
2359 schedstat_inc(rq
, ttwu_count
);
2360 if (cpu
== this_cpu
)
2361 schedstat_inc(rq
, ttwu_local
);
2363 struct sched_domain
*sd
;
2364 for_each_domain(this_cpu
, sd
) {
2365 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2366 schedstat_inc(sd
, ttwu_wake_remote
);
2371 #endif /* CONFIG_SCHEDSTATS */
2374 #endif /* CONFIG_SMP */
2375 schedstat_inc(p
, se
.statistics
.nr_wakeups
);
2376 if (wake_flags
& WF_SYNC
)
2377 schedstat_inc(p
, se
.statistics
.nr_wakeups_sync
);
2378 if (orig_cpu
!= cpu
)
2379 schedstat_inc(p
, se
.statistics
.nr_wakeups_migrate
);
2380 if (cpu
== this_cpu
)
2381 schedstat_inc(p
, se
.statistics
.nr_wakeups_local
);
2383 schedstat_inc(p
, se
.statistics
.nr_wakeups_remote
);
2384 activate_task(rq
, p
, en_flags
);
2388 trace_sched_wakeup(p
, success
);
2389 check_preempt_curr(rq
, p
, wake_flags
);
2391 p
->state
= TASK_RUNNING
;
2393 if (p
->sched_class
->task_woken
)
2394 p
->sched_class
->task_woken(rq
, p
);
2396 if (unlikely(rq
->idle_stamp
)) {
2397 u64 delta
= rq
->clock
- rq
->idle_stamp
;
2398 u64 max
= 2*sysctl_sched_migration_cost
;
2403 update_avg(&rq
->avg_idle
, delta
);
2408 task_rq_unlock(rq
, &flags
);
2415 * wake_up_process - Wake up a specific process
2416 * @p: The process to be woken up.
2418 * Attempt to wake up the nominated process and move it to the set of runnable
2419 * processes. Returns 1 if the process was woken up, 0 if it was already
2422 * It may be assumed that this function implies a write memory barrier before
2423 * changing the task state if and only if any tasks are woken up.
2425 int wake_up_process(struct task_struct
*p
)
2427 return try_to_wake_up(p
, TASK_ALL
, 0);
2429 EXPORT_SYMBOL(wake_up_process
);
2431 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2433 return try_to_wake_up(p
, state
, 0);
2437 * Perform scheduler related setup for a newly forked process p.
2438 * p is forked by current.
2440 * __sched_fork() is basic setup used by init_idle() too:
2442 static void __sched_fork(struct task_struct
*p
)
2444 p
->se
.exec_start
= 0;
2445 p
->se
.sum_exec_runtime
= 0;
2446 p
->se
.prev_sum_exec_runtime
= 0;
2447 p
->se
.nr_migrations
= 0;
2449 #ifdef CONFIG_SCHEDSTATS
2450 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
2453 INIT_LIST_HEAD(&p
->rt
.run_list
);
2455 INIT_LIST_HEAD(&p
->se
.group_node
);
2457 #ifdef CONFIG_PREEMPT_NOTIFIERS
2458 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2463 * fork()/clone()-time setup:
2465 void sched_fork(struct task_struct
*p
, int clone_flags
)
2467 int cpu
= get_cpu();
2471 * We mark the process as running here. This guarantees that
2472 * nobody will actually run it, and a signal or other external
2473 * event cannot wake it up and insert it on the runqueue either.
2475 p
->state
= TASK_RUNNING
;
2478 * Revert to default priority/policy on fork if requested.
2480 if (unlikely(p
->sched_reset_on_fork
)) {
2481 if (p
->policy
== SCHED_FIFO
|| p
->policy
== SCHED_RR
) {
2482 p
->policy
= SCHED_NORMAL
;
2483 p
->normal_prio
= p
->static_prio
;
2486 if (PRIO_TO_NICE(p
->static_prio
) < 0) {
2487 p
->static_prio
= NICE_TO_PRIO(0);
2488 p
->normal_prio
= p
->static_prio
;
2493 * We don't need the reset flag anymore after the fork. It has
2494 * fulfilled its duty:
2496 p
->sched_reset_on_fork
= 0;
2500 * Make sure we do not leak PI boosting priority to the child.
2502 p
->prio
= current
->normal_prio
;
2504 if (!rt_prio(p
->prio
))
2505 p
->sched_class
= &fair_sched_class
;
2507 if (p
->sched_class
->task_fork
)
2508 p
->sched_class
->task_fork(p
);
2510 set_task_cpu(p
, cpu
);
2512 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2513 if (likely(sched_info_on()))
2514 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2516 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2519 #ifdef CONFIG_PREEMPT
2520 /* Want to start with kernel preemption disabled. */
2521 task_thread_info(p
)->preempt_count
= 1;
2523 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2529 * wake_up_new_task - wake up a newly created task for the first time.
2531 * This function will do some initial scheduler statistics housekeeping
2532 * that must be done for every newly created context, then puts the task
2533 * on the runqueue and wakes it.
2535 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2537 unsigned long flags
;
2539 int cpu __maybe_unused
= get_cpu();
2542 rq
= task_rq_lock(p
, &flags
);
2543 p
->state
= TASK_WAKING
;
2546 * Fork balancing, do it here and not earlier because:
2547 * - cpus_allowed can change in the fork path
2548 * - any previously selected cpu might disappear through hotplug
2550 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2551 * without people poking at ->cpus_allowed.
2553 cpu
= select_task_rq(rq
, p
, SD_BALANCE_FORK
, 0);
2554 set_task_cpu(p
, cpu
);
2556 p
->state
= TASK_RUNNING
;
2557 task_rq_unlock(rq
, &flags
);
2560 rq
= task_rq_lock(p
, &flags
);
2561 activate_task(rq
, p
, 0);
2562 trace_sched_wakeup_new(p
, 1);
2563 check_preempt_curr(rq
, p
, WF_FORK
);
2565 if (p
->sched_class
->task_woken
)
2566 p
->sched_class
->task_woken(rq
, p
);
2568 task_rq_unlock(rq
, &flags
);
2572 #ifdef CONFIG_PREEMPT_NOTIFIERS
2575 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2576 * @notifier: notifier struct to register
2578 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2580 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2582 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2585 * preempt_notifier_unregister - no longer interested in preemption notifications
2586 * @notifier: notifier struct to unregister
2588 * This is safe to call from within a preemption notifier.
2590 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2592 hlist_del(¬ifier
->link
);
2594 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2596 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2598 struct preempt_notifier
*notifier
;
2599 struct hlist_node
*node
;
2601 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2602 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2606 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2607 struct task_struct
*next
)
2609 struct preempt_notifier
*notifier
;
2610 struct hlist_node
*node
;
2612 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2613 notifier
->ops
->sched_out(notifier
, next
);
2616 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2618 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2623 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2624 struct task_struct
*next
)
2628 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2631 * prepare_task_switch - prepare to switch tasks
2632 * @rq: the runqueue preparing to switch
2633 * @prev: the current task that is being switched out
2634 * @next: the task we are going to switch to.
2636 * This is called with the rq lock held and interrupts off. It must
2637 * be paired with a subsequent finish_task_switch after the context
2640 * prepare_task_switch sets up locking and calls architecture specific
2644 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2645 struct task_struct
*next
)
2647 fire_sched_out_preempt_notifiers(prev
, next
);
2648 prepare_lock_switch(rq
, next
);
2649 prepare_arch_switch(next
);
2653 * finish_task_switch - clean up after a task-switch
2654 * @rq: runqueue associated with task-switch
2655 * @prev: the thread we just switched away from.
2657 * finish_task_switch must be called after the context switch, paired
2658 * with a prepare_task_switch call before the context switch.
2659 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2660 * and do any other architecture-specific cleanup actions.
2662 * Note that we may have delayed dropping an mm in context_switch(). If
2663 * so, we finish that here outside of the runqueue lock. (Doing it
2664 * with the lock held can cause deadlocks; see schedule() for
2667 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2668 __releases(rq
->lock
)
2670 struct mm_struct
*mm
= rq
->prev_mm
;
2676 * A task struct has one reference for the use as "current".
2677 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2678 * schedule one last time. The schedule call will never return, and
2679 * the scheduled task must drop that reference.
2680 * The test for TASK_DEAD must occur while the runqueue locks are
2681 * still held, otherwise prev could be scheduled on another cpu, die
2682 * there before we look at prev->state, and then the reference would
2684 * Manfred Spraul <manfred@colorfullife.com>
2686 prev_state
= prev
->state
;
2687 finish_arch_switch(prev
);
2688 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2689 local_irq_disable();
2690 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2691 perf_event_task_sched_in(current
);
2692 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2694 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2695 finish_lock_switch(rq
, prev
);
2697 fire_sched_in_preempt_notifiers(current
);
2700 if (unlikely(prev_state
== TASK_DEAD
)) {
2702 * Remove function-return probe instances associated with this
2703 * task and put them back on the free list.
2705 kprobe_flush_task(prev
);
2706 put_task_struct(prev
);
2712 /* assumes rq->lock is held */
2713 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*prev
)
2715 if (prev
->sched_class
->pre_schedule
)
2716 prev
->sched_class
->pre_schedule(rq
, prev
);
2719 /* rq->lock is NOT held, but preemption is disabled */
2720 static inline void post_schedule(struct rq
*rq
)
2722 if (rq
->post_schedule
) {
2723 unsigned long flags
;
2725 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2726 if (rq
->curr
->sched_class
->post_schedule
)
2727 rq
->curr
->sched_class
->post_schedule(rq
);
2728 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2730 rq
->post_schedule
= 0;
2736 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*p
)
2740 static inline void post_schedule(struct rq
*rq
)
2747 * schedule_tail - first thing a freshly forked thread must call.
2748 * @prev: the thread we just switched away from.
2750 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2751 __releases(rq
->lock
)
2753 struct rq
*rq
= this_rq();
2755 finish_task_switch(rq
, prev
);
2758 * FIXME: do we need to worry about rq being invalidated by the
2763 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2764 /* In this case, finish_task_switch does not reenable preemption */
2767 if (current
->set_child_tid
)
2768 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2772 * context_switch - switch to the new MM and the new
2773 * thread's register state.
2776 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2777 struct task_struct
*next
)
2779 struct mm_struct
*mm
, *oldmm
;
2781 prepare_task_switch(rq
, prev
, next
);
2782 trace_sched_switch(prev
, next
);
2784 oldmm
= prev
->active_mm
;
2786 * For paravirt, this is coupled with an exit in switch_to to
2787 * combine the page table reload and the switch backend into
2790 arch_start_context_switch(prev
);
2793 next
->active_mm
= oldmm
;
2794 atomic_inc(&oldmm
->mm_count
);
2795 enter_lazy_tlb(oldmm
, next
);
2797 switch_mm(oldmm
, mm
, next
);
2799 if (likely(!prev
->mm
)) {
2800 prev
->active_mm
= NULL
;
2801 rq
->prev_mm
= oldmm
;
2804 * Since the runqueue lock will be released by the next
2805 * task (which is an invalid locking op but in the case
2806 * of the scheduler it's an obvious special-case), so we
2807 * do an early lockdep release here:
2809 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2810 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2813 /* Here we just switch the register state and the stack. */
2814 switch_to(prev
, next
, prev
);
2818 * this_rq must be evaluated again because prev may have moved
2819 * CPUs since it called schedule(), thus the 'rq' on its stack
2820 * frame will be invalid.
2822 finish_task_switch(this_rq(), prev
);
2826 * nr_running, nr_uninterruptible and nr_context_switches:
2828 * externally visible scheduler statistics: current number of runnable
2829 * threads, current number of uninterruptible-sleeping threads, total
2830 * number of context switches performed since bootup.
2832 unsigned long nr_running(void)
2834 unsigned long i
, sum
= 0;
2836 for_each_online_cpu(i
)
2837 sum
+= cpu_rq(i
)->nr_running
;
2842 unsigned long nr_uninterruptible(void)
2844 unsigned long i
, sum
= 0;
2846 for_each_possible_cpu(i
)
2847 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2850 * Since we read the counters lockless, it might be slightly
2851 * inaccurate. Do not allow it to go below zero though:
2853 if (unlikely((long)sum
< 0))
2859 unsigned long long nr_context_switches(void)
2862 unsigned long long sum
= 0;
2864 for_each_possible_cpu(i
)
2865 sum
+= cpu_rq(i
)->nr_switches
;
2870 unsigned long nr_iowait(void)
2872 unsigned long i
, sum
= 0;
2874 for_each_possible_cpu(i
)
2875 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2880 unsigned long nr_iowait_cpu(void)
2882 struct rq
*this = this_rq();
2883 return atomic_read(&this->nr_iowait
);
2886 unsigned long this_cpu_load(void)
2888 struct rq
*this = this_rq();
2889 return this->cpu_load
[0];
2893 /* Variables and functions for calc_load */
2894 static atomic_long_t calc_load_tasks
;
2895 static unsigned long calc_load_update
;
2896 unsigned long avenrun
[3];
2897 EXPORT_SYMBOL(avenrun
);
2899 static long calc_load_fold_active(struct rq
*this_rq
)
2901 long nr_active
, delta
= 0;
2903 nr_active
= this_rq
->nr_running
;
2904 nr_active
+= (long) this_rq
->nr_uninterruptible
;
2906 if (nr_active
!= this_rq
->calc_load_active
) {
2907 delta
= nr_active
- this_rq
->calc_load_active
;
2908 this_rq
->calc_load_active
= nr_active
;
2916 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2918 * When making the ILB scale, we should try to pull this in as well.
2920 static atomic_long_t calc_load_tasks_idle
;
2922 static void calc_load_account_idle(struct rq
*this_rq
)
2926 delta
= calc_load_fold_active(this_rq
);
2928 atomic_long_add(delta
, &calc_load_tasks_idle
);
2931 static long calc_load_fold_idle(void)
2936 * Its got a race, we don't care...
2938 if (atomic_long_read(&calc_load_tasks_idle
))
2939 delta
= atomic_long_xchg(&calc_load_tasks_idle
, 0);
2944 static void calc_load_account_idle(struct rq
*this_rq
)
2948 static inline long calc_load_fold_idle(void)
2955 * get_avenrun - get the load average array
2956 * @loads: pointer to dest load array
2957 * @offset: offset to add
2958 * @shift: shift count to shift the result left
2960 * These values are estimates at best, so no need for locking.
2962 void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
)
2964 loads
[0] = (avenrun
[0] + offset
) << shift
;
2965 loads
[1] = (avenrun
[1] + offset
) << shift
;
2966 loads
[2] = (avenrun
[2] + offset
) << shift
;
2969 static unsigned long
2970 calc_load(unsigned long load
, unsigned long exp
, unsigned long active
)
2973 load
+= active
* (FIXED_1
- exp
);
2974 return load
>> FSHIFT
;
2978 * calc_load - update the avenrun load estimates 10 ticks after the
2979 * CPUs have updated calc_load_tasks.
2981 void calc_global_load(void)
2983 unsigned long upd
= calc_load_update
+ 10;
2986 if (time_before(jiffies
, upd
))
2989 active
= atomic_long_read(&calc_load_tasks
);
2990 active
= active
> 0 ? active
* FIXED_1
: 0;
2992 avenrun
[0] = calc_load(avenrun
[0], EXP_1
, active
);
2993 avenrun
[1] = calc_load(avenrun
[1], EXP_5
, active
);
2994 avenrun
[2] = calc_load(avenrun
[2], EXP_15
, active
);
2996 calc_load_update
+= LOAD_FREQ
;
3000 * Called from update_cpu_load() to periodically update this CPU's
3003 static void calc_load_account_active(struct rq
*this_rq
)
3007 if (time_before(jiffies
, this_rq
->calc_load_update
))
3010 delta
= calc_load_fold_active(this_rq
);
3011 delta
+= calc_load_fold_idle();
3013 atomic_long_add(delta
, &calc_load_tasks
);
3015 this_rq
->calc_load_update
+= LOAD_FREQ
;
3019 * Update rq->cpu_load[] statistics. This function is usually called every
3020 * scheduler tick (TICK_NSEC).
3022 static void update_cpu_load(struct rq
*this_rq
)
3024 unsigned long this_load
= this_rq
->load
.weight
;
3027 this_rq
->nr_load_updates
++;
3029 /* Update our load: */
3030 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
3031 unsigned long old_load
, new_load
;
3033 /* scale is effectively 1 << i now, and >> i divides by scale */
3035 old_load
= this_rq
->cpu_load
[i
];
3036 new_load
= this_load
;
3038 * Round up the averaging division if load is increasing. This
3039 * prevents us from getting stuck on 9 if the load is 10, for
3042 if (new_load
> old_load
)
3043 new_load
+= scale
-1;
3044 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
3047 calc_load_account_active(this_rq
);
3053 * sched_exec - execve() is a valuable balancing opportunity, because at
3054 * this point the task has the smallest effective memory and cache footprint.
3056 void sched_exec(void)
3058 struct task_struct
*p
= current
;
3059 unsigned long flags
;
3063 rq
= task_rq_lock(p
, &flags
);
3064 dest_cpu
= p
->sched_class
->select_task_rq(rq
, p
, SD_BALANCE_EXEC
, 0);
3065 if (dest_cpu
== smp_processor_id())
3069 * select_task_rq() can race against ->cpus_allowed
3071 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
) &&
3072 likely(cpu_active(dest_cpu
)) && migrate_task(p
, dest_cpu
)) {
3073 struct migration_arg arg
= { p
, dest_cpu
};
3075 task_rq_unlock(rq
, &flags
);
3076 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
3080 task_rq_unlock(rq
, &flags
);
3085 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3087 EXPORT_PER_CPU_SYMBOL(kstat
);
3090 * Return any ns on the sched_clock that have not yet been accounted in
3091 * @p in case that task is currently running.
3093 * Called with task_rq_lock() held on @rq.
3095 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
3099 if (task_current(rq
, p
)) {
3100 update_rq_clock(rq
);
3101 ns
= rq
->clock
- p
->se
.exec_start
;
3109 unsigned long long task_delta_exec(struct task_struct
*p
)
3111 unsigned long flags
;
3115 rq
= task_rq_lock(p
, &flags
);
3116 ns
= do_task_delta_exec(p
, rq
);
3117 task_rq_unlock(rq
, &flags
);
3123 * Return accounted runtime for the task.
3124 * In case the task is currently running, return the runtime plus current's
3125 * pending runtime that have not been accounted yet.
3127 unsigned long long task_sched_runtime(struct task_struct
*p
)
3129 unsigned long flags
;
3133 rq
= task_rq_lock(p
, &flags
);
3134 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3135 task_rq_unlock(rq
, &flags
);
3141 * Return sum_exec_runtime for the thread group.
3142 * In case the task is currently running, return the sum plus current's
3143 * pending runtime that have not been accounted yet.
3145 * Note that the thread group might have other running tasks as well,
3146 * so the return value not includes other pending runtime that other
3147 * running tasks might have.
3149 unsigned long long thread_group_sched_runtime(struct task_struct
*p
)
3151 struct task_cputime totals
;
3152 unsigned long flags
;
3156 rq
= task_rq_lock(p
, &flags
);
3157 thread_group_cputime(p
, &totals
);
3158 ns
= totals
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3159 task_rq_unlock(rq
, &flags
);
3165 * Account user cpu time to a process.
3166 * @p: the process that the cpu time gets accounted to
3167 * @cputime: the cpu time spent in user space since the last update
3168 * @cputime_scaled: cputime scaled by cpu frequency
3170 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
3171 cputime_t cputime_scaled
)
3173 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3176 /* Add user time to process. */
3177 p
->utime
= cputime_add(p
->utime
, cputime
);
3178 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3179 account_group_user_time(p
, cputime
);
3181 /* Add user time to cpustat. */
3182 tmp
= cputime_to_cputime64(cputime
);
3183 if (TASK_NICE(p
) > 0)
3184 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3186 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3188 cpuacct_update_stats(p
, CPUACCT_STAT_USER
, cputime
);
3189 /* Account for user time used */
3190 acct_update_integrals(p
);
3194 * Account guest cpu time to a process.
3195 * @p: the process that the cpu time gets accounted to
3196 * @cputime: the cpu time spent in virtual machine since the last update
3197 * @cputime_scaled: cputime scaled by cpu frequency
3199 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
3200 cputime_t cputime_scaled
)
3203 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3205 tmp
= cputime_to_cputime64(cputime
);
3207 /* Add guest time to process. */
3208 p
->utime
= cputime_add(p
->utime
, cputime
);
3209 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3210 account_group_user_time(p
, cputime
);
3211 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3213 /* Add guest time to cpustat. */
3214 if (TASK_NICE(p
) > 0) {
3215 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3216 cpustat
->guest_nice
= cputime64_add(cpustat
->guest_nice
, tmp
);
3218 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3219 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3224 * Account system cpu time to a process.
3225 * @p: the process that the cpu time gets accounted to
3226 * @hardirq_offset: the offset to subtract from hardirq_count()
3227 * @cputime: the cpu time spent in kernel space since the last update
3228 * @cputime_scaled: cputime scaled by cpu frequency
3230 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3231 cputime_t cputime
, cputime_t cputime_scaled
)
3233 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3236 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
3237 account_guest_time(p
, cputime
, cputime_scaled
);
3241 /* Add system time to process. */
3242 p
->stime
= cputime_add(p
->stime
, cputime
);
3243 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
3244 account_group_system_time(p
, cputime
);
3246 /* Add system time to cpustat. */
3247 tmp
= cputime_to_cputime64(cputime
);
3248 if (hardirq_count() - hardirq_offset
)
3249 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3250 else if (softirq_count())
3251 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3253 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3255 cpuacct_update_stats(p
, CPUACCT_STAT_SYSTEM
, cputime
);
3257 /* Account for system time used */
3258 acct_update_integrals(p
);
3262 * Account for involuntary wait time.
3263 * @steal: the cpu time spent in involuntary wait
3265 void account_steal_time(cputime_t cputime
)
3267 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3268 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3270 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
3274 * Account for idle time.
3275 * @cputime: the cpu time spent in idle wait
3277 void account_idle_time(cputime_t cputime
)
3279 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3280 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3281 struct rq
*rq
= this_rq();
3283 if (atomic_read(&rq
->nr_iowait
) > 0)
3284 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
3286 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
3289 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3292 * Account a single tick of cpu time.
3293 * @p: the process that the cpu time gets accounted to
3294 * @user_tick: indicates if the tick is a user or a system tick
3296 void account_process_tick(struct task_struct
*p
, int user_tick
)
3298 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
3299 struct rq
*rq
= this_rq();
3302 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
3303 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
3304 account_system_time(p
, HARDIRQ_OFFSET
, cputime_one_jiffy
,
3307 account_idle_time(cputime_one_jiffy
);
3311 * Account multiple ticks of steal time.
3312 * @p: the process from which the cpu time has been stolen
3313 * @ticks: number of stolen ticks
3315 void account_steal_ticks(unsigned long ticks
)
3317 account_steal_time(jiffies_to_cputime(ticks
));
3321 * Account multiple ticks of idle time.
3322 * @ticks: number of stolen ticks
3324 void account_idle_ticks(unsigned long ticks
)
3326 account_idle_time(jiffies_to_cputime(ticks
));
3332 * Use precise platform statistics if available:
3334 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3335 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3341 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3343 struct task_cputime cputime
;
3345 thread_group_cputime(p
, &cputime
);
3347 *ut
= cputime
.utime
;
3348 *st
= cputime
.stime
;
3352 #ifndef nsecs_to_cputime
3353 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3356 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3358 cputime_t rtime
, utime
= p
->utime
, total
= cputime_add(utime
, p
->stime
);
3361 * Use CFS's precise accounting:
3363 rtime
= nsecs_to_cputime(p
->se
.sum_exec_runtime
);
3368 temp
= (u64
)(rtime
* utime
);
3369 do_div(temp
, total
);
3370 utime
= (cputime_t
)temp
;
3375 * Compare with previous values, to keep monotonicity:
3377 p
->prev_utime
= max(p
->prev_utime
, utime
);
3378 p
->prev_stime
= max(p
->prev_stime
, cputime_sub(rtime
, p
->prev_utime
));
3380 *ut
= p
->prev_utime
;
3381 *st
= p
->prev_stime
;
3385 * Must be called with siglock held.
3387 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3389 struct signal_struct
*sig
= p
->signal
;
3390 struct task_cputime cputime
;
3391 cputime_t rtime
, utime
, total
;
3393 thread_group_cputime(p
, &cputime
);
3395 total
= cputime_add(cputime
.utime
, cputime
.stime
);
3396 rtime
= nsecs_to_cputime(cputime
.sum_exec_runtime
);
3401 temp
= (u64
)(rtime
* cputime
.utime
);
3402 do_div(temp
, total
);
3403 utime
= (cputime_t
)temp
;
3407 sig
->prev_utime
= max(sig
->prev_utime
, utime
);
3408 sig
->prev_stime
= max(sig
->prev_stime
,
3409 cputime_sub(rtime
, sig
->prev_utime
));
3411 *ut
= sig
->prev_utime
;
3412 *st
= sig
->prev_stime
;
3417 * This function gets called by the timer code, with HZ frequency.
3418 * We call it with interrupts disabled.
3420 * It also gets called by the fork code, when changing the parent's
3423 void scheduler_tick(void)
3425 int cpu
= smp_processor_id();
3426 struct rq
*rq
= cpu_rq(cpu
);
3427 struct task_struct
*curr
= rq
->curr
;
3431 raw_spin_lock(&rq
->lock
);
3432 update_rq_clock(rq
);
3433 update_cpu_load(rq
);
3434 curr
->sched_class
->task_tick(rq
, curr
, 0);
3435 raw_spin_unlock(&rq
->lock
);
3437 perf_event_task_tick(curr
);
3440 rq
->idle_at_tick
= idle_cpu(cpu
);
3441 trigger_load_balance(rq
, cpu
);
3445 notrace
unsigned long get_parent_ip(unsigned long addr
)
3447 if (in_lock_functions(addr
)) {
3448 addr
= CALLER_ADDR2
;
3449 if (in_lock_functions(addr
))
3450 addr
= CALLER_ADDR3
;
3455 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3456 defined(CONFIG_PREEMPT_TRACER))
3458 void __kprobes
add_preempt_count(int val
)
3460 #ifdef CONFIG_DEBUG_PREEMPT
3464 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3467 preempt_count() += val
;
3468 #ifdef CONFIG_DEBUG_PREEMPT
3470 * Spinlock count overflowing soon?
3472 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3475 if (preempt_count() == val
)
3476 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
3478 EXPORT_SYMBOL(add_preempt_count
);
3480 void __kprobes
sub_preempt_count(int val
)
3482 #ifdef CONFIG_DEBUG_PREEMPT
3486 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3489 * Is the spinlock portion underflowing?
3491 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3492 !(preempt_count() & PREEMPT_MASK
)))
3496 if (preempt_count() == val
)
3497 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
3498 preempt_count() -= val
;
3500 EXPORT_SYMBOL(sub_preempt_count
);
3505 * Print scheduling while atomic bug:
3507 static noinline
void __schedule_bug(struct task_struct
*prev
)
3509 struct pt_regs
*regs
= get_irq_regs();
3511 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
3512 prev
->comm
, prev
->pid
, preempt_count());
3514 debug_show_held_locks(prev
);
3516 if (irqs_disabled())
3517 print_irqtrace_events(prev
);
3526 * Various schedule()-time debugging checks and statistics:
3528 static inline void schedule_debug(struct task_struct
*prev
)
3531 * Test if we are atomic. Since do_exit() needs to call into
3532 * schedule() atomically, we ignore that path for now.
3533 * Otherwise, whine if we are scheduling when we should not be.
3535 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
3536 __schedule_bug(prev
);
3538 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3540 schedstat_inc(this_rq(), sched_count
);
3541 #ifdef CONFIG_SCHEDSTATS
3542 if (unlikely(prev
->lock_depth
>= 0)) {
3543 schedstat_inc(this_rq(), bkl_count
);
3544 schedstat_inc(prev
, sched_info
.bkl_count
);
3549 static void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
3552 update_rq_clock(rq
);
3553 rq
->skip_clock_update
= 0;
3554 prev
->sched_class
->put_prev_task(rq
, prev
);
3558 * Pick up the highest-prio task:
3560 static inline struct task_struct
*
3561 pick_next_task(struct rq
*rq
)
3563 const struct sched_class
*class;
3564 struct task_struct
*p
;
3567 * Optimization: we know that if all tasks are in
3568 * the fair class we can call that function directly:
3570 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3571 p
= fair_sched_class
.pick_next_task(rq
);
3576 class = sched_class_highest
;
3578 p
= class->pick_next_task(rq
);
3582 * Will never be NULL as the idle class always
3583 * returns a non-NULL p:
3585 class = class->next
;
3590 * schedule() is the main scheduler function.
3592 asmlinkage
void __sched
schedule(void)
3594 struct task_struct
*prev
, *next
;
3595 unsigned long *switch_count
;
3601 cpu
= smp_processor_id();
3603 rcu_note_context_switch(cpu
);
3605 switch_count
= &prev
->nivcsw
;
3607 release_kernel_lock(prev
);
3608 need_resched_nonpreemptible
:
3610 schedule_debug(prev
);
3612 if (sched_feat(HRTICK
))
3615 raw_spin_lock_irq(&rq
->lock
);
3616 clear_tsk_need_resched(prev
);
3618 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3619 if (unlikely(signal_pending_state(prev
->state
, prev
)))
3620 prev
->state
= TASK_RUNNING
;
3622 deactivate_task(rq
, prev
, DEQUEUE_SLEEP
);
3623 switch_count
= &prev
->nvcsw
;
3626 pre_schedule(rq
, prev
);
3628 if (unlikely(!rq
->nr_running
))
3629 idle_balance(cpu
, rq
);
3631 put_prev_task(rq
, prev
);
3632 next
= pick_next_task(rq
);
3634 if (likely(prev
!= next
)) {
3635 sched_info_switch(prev
, next
);
3636 perf_event_task_sched_out(prev
, next
);
3642 context_switch(rq
, prev
, next
); /* unlocks the rq */
3644 * the context switch might have flipped the stack from under
3645 * us, hence refresh the local variables.
3647 cpu
= smp_processor_id();
3650 raw_spin_unlock_irq(&rq
->lock
);
3654 if (unlikely(reacquire_kernel_lock(current
) < 0)) {
3656 switch_count
= &prev
->nivcsw
;
3657 goto need_resched_nonpreemptible
;
3660 preempt_enable_no_resched();
3664 EXPORT_SYMBOL(schedule
);
3666 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3668 * Look out! "owner" is an entirely speculative pointer
3669 * access and not reliable.
3671 int mutex_spin_on_owner(struct mutex
*lock
, struct thread_info
*owner
)
3676 if (!sched_feat(OWNER_SPIN
))
3679 #ifdef CONFIG_DEBUG_PAGEALLOC
3681 * Need to access the cpu field knowing that
3682 * DEBUG_PAGEALLOC could have unmapped it if
3683 * the mutex owner just released it and exited.
3685 if (probe_kernel_address(&owner
->cpu
, cpu
))
3692 * Even if the access succeeded (likely case),
3693 * the cpu field may no longer be valid.
3695 if (cpu
>= nr_cpumask_bits
)
3699 * We need to validate that we can do a
3700 * get_cpu() and that we have the percpu area.
3702 if (!cpu_online(cpu
))
3709 * Owner changed, break to re-assess state.
3711 if (lock
->owner
!= owner
)
3715 * Is that owner really running on that cpu?
3717 if (task_thread_info(rq
->curr
) != owner
|| need_resched())
3727 #ifdef CONFIG_PREEMPT
3729 * this is the entry point to schedule() from in-kernel preemption
3730 * off of preempt_enable. Kernel preemptions off return from interrupt
3731 * occur there and call schedule directly.
3733 asmlinkage
void __sched
preempt_schedule(void)
3735 struct thread_info
*ti
= current_thread_info();
3738 * If there is a non-zero preempt_count or interrupts are disabled,
3739 * we do not want to preempt the current task. Just return..
3741 if (likely(ti
->preempt_count
|| irqs_disabled()))
3745 add_preempt_count(PREEMPT_ACTIVE
);
3747 sub_preempt_count(PREEMPT_ACTIVE
);
3750 * Check again in case we missed a preemption opportunity
3751 * between schedule and now.
3754 } while (need_resched());
3756 EXPORT_SYMBOL(preempt_schedule
);
3759 * this is the entry point to schedule() from kernel preemption
3760 * off of irq context.
3761 * Note, that this is called and return with irqs disabled. This will
3762 * protect us against recursive calling from irq.
3764 asmlinkage
void __sched
preempt_schedule_irq(void)
3766 struct thread_info
*ti
= current_thread_info();
3768 /* Catch callers which need to be fixed */
3769 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3772 add_preempt_count(PREEMPT_ACTIVE
);
3775 local_irq_disable();
3776 sub_preempt_count(PREEMPT_ACTIVE
);
3779 * Check again in case we missed a preemption opportunity
3780 * between schedule and now.
3783 } while (need_resched());
3786 #endif /* CONFIG_PREEMPT */
3788 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
3791 return try_to_wake_up(curr
->private, mode
, wake_flags
);
3793 EXPORT_SYMBOL(default_wake_function
);
3796 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3797 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3798 * number) then we wake all the non-exclusive tasks and one exclusive task.
3800 * There are circumstances in which we can try to wake a task which has already
3801 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3802 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3804 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3805 int nr_exclusive
, int wake_flags
, void *key
)
3807 wait_queue_t
*curr
, *next
;
3809 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
3810 unsigned flags
= curr
->flags
;
3812 if (curr
->func(curr
, mode
, wake_flags
, key
) &&
3813 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
3819 * __wake_up - wake up threads blocked on a waitqueue.
3821 * @mode: which threads
3822 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3823 * @key: is directly passed to the wakeup function
3825 * It may be assumed that this function implies a write memory barrier before
3826 * changing the task state if and only if any tasks are woken up.
3828 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3829 int nr_exclusive
, void *key
)
3831 unsigned long flags
;
3833 spin_lock_irqsave(&q
->lock
, flags
);
3834 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3835 spin_unlock_irqrestore(&q
->lock
, flags
);
3837 EXPORT_SYMBOL(__wake_up
);
3840 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3842 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3844 __wake_up_common(q
, mode
, 1, 0, NULL
);
3846 EXPORT_SYMBOL_GPL(__wake_up_locked
);
3848 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
3850 __wake_up_common(q
, mode
, 1, 0, key
);
3854 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3856 * @mode: which threads
3857 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3858 * @key: opaque value to be passed to wakeup targets
3860 * The sync wakeup differs that the waker knows that it will schedule
3861 * away soon, so while the target thread will be woken up, it will not
3862 * be migrated to another CPU - ie. the two threads are 'synchronized'
3863 * with each other. This can prevent needless bouncing between CPUs.
3865 * On UP it can prevent extra preemption.
3867 * It may be assumed that this function implies a write memory barrier before
3868 * changing the task state if and only if any tasks are woken up.
3870 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
3871 int nr_exclusive
, void *key
)
3873 unsigned long flags
;
3874 int wake_flags
= WF_SYNC
;
3879 if (unlikely(!nr_exclusive
))
3882 spin_lock_irqsave(&q
->lock
, flags
);
3883 __wake_up_common(q
, mode
, nr_exclusive
, wake_flags
, key
);
3884 spin_unlock_irqrestore(&q
->lock
, flags
);
3886 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
3889 * __wake_up_sync - see __wake_up_sync_key()
3891 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3893 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
3895 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3898 * complete: - signals a single thread waiting on this completion
3899 * @x: holds the state of this particular completion
3901 * This will wake up a single thread waiting on this completion. Threads will be
3902 * awakened in the same order in which they were queued.
3904 * See also complete_all(), wait_for_completion() and related routines.
3906 * It may be assumed that this function implies a write memory barrier before
3907 * changing the task state if and only if any tasks are woken up.
3909 void complete(struct completion
*x
)
3911 unsigned long flags
;
3913 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3915 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
3916 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3918 EXPORT_SYMBOL(complete
);
3921 * complete_all: - signals all threads waiting on this completion
3922 * @x: holds the state of this particular completion
3924 * This will wake up all threads waiting on this particular completion event.
3926 * It may be assumed that this function implies a write memory barrier before
3927 * changing the task state if and only if any tasks are woken up.
3929 void complete_all(struct completion
*x
)
3931 unsigned long flags
;
3933 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3934 x
->done
+= UINT_MAX
/2;
3935 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
3936 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3938 EXPORT_SYMBOL(complete_all
);
3940 static inline long __sched
3941 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
3944 DECLARE_WAITQUEUE(wait
, current
);
3946 __add_wait_queue_tail_exclusive(&x
->wait
, &wait
);
3948 if (signal_pending_state(state
, current
)) {
3949 timeout
= -ERESTARTSYS
;
3952 __set_current_state(state
);
3953 spin_unlock_irq(&x
->wait
.lock
);
3954 timeout
= schedule_timeout(timeout
);
3955 spin_lock_irq(&x
->wait
.lock
);
3956 } while (!x
->done
&& timeout
);
3957 __remove_wait_queue(&x
->wait
, &wait
);
3962 return timeout
?: 1;
3966 wait_for_common(struct completion
*x
, long timeout
, int state
)
3970 spin_lock_irq(&x
->wait
.lock
);
3971 timeout
= do_wait_for_common(x
, timeout
, state
);
3972 spin_unlock_irq(&x
->wait
.lock
);
3977 * wait_for_completion: - waits for completion of a task
3978 * @x: holds the state of this particular completion
3980 * This waits to be signaled for completion of a specific task. It is NOT
3981 * interruptible and there is no timeout.
3983 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3984 * and interrupt capability. Also see complete().
3986 void __sched
wait_for_completion(struct completion
*x
)
3988 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
3990 EXPORT_SYMBOL(wait_for_completion
);
3993 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3994 * @x: holds the state of this particular completion
3995 * @timeout: timeout value in jiffies
3997 * This waits for either a completion of a specific task to be signaled or for a
3998 * specified timeout to expire. The timeout is in jiffies. It is not
4001 unsigned long __sched
4002 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4004 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4006 EXPORT_SYMBOL(wait_for_completion_timeout
);
4009 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4010 * @x: holds the state of this particular completion
4012 * This waits for completion of a specific task to be signaled. It is
4015 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4017 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4018 if (t
== -ERESTARTSYS
)
4022 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4025 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4026 * @x: holds the state of this particular completion
4027 * @timeout: timeout value in jiffies
4029 * This waits for either a completion of a specific task to be signaled or for a
4030 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4032 unsigned long __sched
4033 wait_for_completion_interruptible_timeout(struct completion
*x
,
4034 unsigned long timeout
)
4036 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4038 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4041 * wait_for_completion_killable: - waits for completion of a task (killable)
4042 * @x: holds the state of this particular completion
4044 * This waits to be signaled for completion of a specific task. It can be
4045 * interrupted by a kill signal.
4047 int __sched
wait_for_completion_killable(struct completion
*x
)
4049 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4050 if (t
== -ERESTARTSYS
)
4054 EXPORT_SYMBOL(wait_for_completion_killable
);
4057 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4058 * @x: holds the state of this particular completion
4059 * @timeout: timeout value in jiffies
4061 * This waits for either a completion of a specific task to be
4062 * signaled or for a specified timeout to expire. It can be
4063 * interrupted by a kill signal. The timeout is in jiffies.
4065 unsigned long __sched
4066 wait_for_completion_killable_timeout(struct completion
*x
,
4067 unsigned long timeout
)
4069 return wait_for_common(x
, timeout
, TASK_KILLABLE
);
4071 EXPORT_SYMBOL(wait_for_completion_killable_timeout
);
4074 * try_wait_for_completion - try to decrement a completion without blocking
4075 * @x: completion structure
4077 * Returns: 0 if a decrement cannot be done without blocking
4078 * 1 if a decrement succeeded.
4080 * If a completion is being used as a counting completion,
4081 * attempt to decrement the counter without blocking. This
4082 * enables us to avoid waiting if the resource the completion
4083 * is protecting is not available.
4085 bool try_wait_for_completion(struct completion
*x
)
4087 unsigned long flags
;
4090 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4095 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4098 EXPORT_SYMBOL(try_wait_for_completion
);
4101 * completion_done - Test to see if a completion has any waiters
4102 * @x: completion structure
4104 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4105 * 1 if there are no waiters.
4108 bool completion_done(struct completion
*x
)
4110 unsigned long flags
;
4113 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4116 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4119 EXPORT_SYMBOL(completion_done
);
4122 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4124 unsigned long flags
;
4127 init_waitqueue_entry(&wait
, current
);
4129 __set_current_state(state
);
4131 spin_lock_irqsave(&q
->lock
, flags
);
4132 __add_wait_queue(q
, &wait
);
4133 spin_unlock(&q
->lock
);
4134 timeout
= schedule_timeout(timeout
);
4135 spin_lock_irq(&q
->lock
);
4136 __remove_wait_queue(q
, &wait
);
4137 spin_unlock_irqrestore(&q
->lock
, flags
);
4142 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4144 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4146 EXPORT_SYMBOL(interruptible_sleep_on
);
4149 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4151 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4153 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4155 void __sched
sleep_on(wait_queue_head_t
*q
)
4157 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4159 EXPORT_SYMBOL(sleep_on
);
4161 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4163 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4165 EXPORT_SYMBOL(sleep_on_timeout
);
4167 #ifdef CONFIG_RT_MUTEXES
4170 * rt_mutex_setprio - set the current priority of a task
4172 * @prio: prio value (kernel-internal form)
4174 * This function changes the 'effective' priority of a task. It does
4175 * not touch ->normal_prio like __setscheduler().
4177 * Used by the rt_mutex code to implement priority inheritance logic.
4179 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4181 unsigned long flags
;
4182 int oldprio
, on_rq
, running
;
4184 const struct sched_class
*prev_class
;
4186 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4188 rq
= task_rq_lock(p
, &flags
);
4191 prev_class
= p
->sched_class
;
4192 on_rq
= p
->se
.on_rq
;
4193 running
= task_current(rq
, p
);
4195 dequeue_task(rq
, p
, 0);
4197 p
->sched_class
->put_prev_task(rq
, p
);
4200 p
->sched_class
= &rt_sched_class
;
4202 p
->sched_class
= &fair_sched_class
;
4207 p
->sched_class
->set_curr_task(rq
);
4209 enqueue_task(rq
, p
, oldprio
< prio
? ENQUEUE_HEAD
: 0);
4211 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4213 task_rq_unlock(rq
, &flags
);
4218 void set_user_nice(struct task_struct
*p
, long nice
)
4220 int old_prio
, delta
, on_rq
;
4221 unsigned long flags
;
4224 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4227 * We have to be careful, if called from sys_setpriority(),
4228 * the task might be in the middle of scheduling on another CPU.
4230 rq
= task_rq_lock(p
, &flags
);
4232 * The RT priorities are set via sched_setscheduler(), but we still
4233 * allow the 'normal' nice value to be set - but as expected
4234 * it wont have any effect on scheduling until the task is
4235 * SCHED_FIFO/SCHED_RR:
4237 if (task_has_rt_policy(p
)) {
4238 p
->static_prio
= NICE_TO_PRIO(nice
);
4241 on_rq
= p
->se
.on_rq
;
4243 dequeue_task(rq
, p
, 0);
4245 p
->static_prio
= NICE_TO_PRIO(nice
);
4248 p
->prio
= effective_prio(p
);
4249 delta
= p
->prio
- old_prio
;
4252 enqueue_task(rq
, p
, 0);
4254 * If the task increased its priority or is running and
4255 * lowered its priority, then reschedule its CPU:
4257 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4258 resched_task(rq
->curr
);
4261 task_rq_unlock(rq
, &flags
);
4263 EXPORT_SYMBOL(set_user_nice
);
4266 * can_nice - check if a task can reduce its nice value
4270 int can_nice(const struct task_struct
*p
, const int nice
)
4272 /* convert nice value [19,-20] to rlimit style value [1,40] */
4273 int nice_rlim
= 20 - nice
;
4275 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
4276 capable(CAP_SYS_NICE
));
4279 #ifdef __ARCH_WANT_SYS_NICE
4282 * sys_nice - change the priority of the current process.
4283 * @increment: priority increment
4285 * sys_setpriority is a more generic, but much slower function that
4286 * does similar things.
4288 SYSCALL_DEFINE1(nice
, int, increment
)
4293 * Setpriority might change our priority at the same moment.
4294 * We don't have to worry. Conceptually one call occurs first
4295 * and we have a single winner.
4297 if (increment
< -40)
4302 nice
= TASK_NICE(current
) + increment
;
4308 if (increment
< 0 && !can_nice(current
, nice
))
4311 retval
= security_task_setnice(current
, nice
);
4315 set_user_nice(current
, nice
);
4322 * task_prio - return the priority value of a given task.
4323 * @p: the task in question.
4325 * This is the priority value as seen by users in /proc.
4326 * RT tasks are offset by -200. Normal tasks are centered
4327 * around 0, value goes from -16 to +15.
4329 int task_prio(const struct task_struct
*p
)
4331 return p
->prio
- MAX_RT_PRIO
;
4335 * task_nice - return the nice value of a given task.
4336 * @p: the task in question.
4338 int task_nice(const struct task_struct
*p
)
4340 return TASK_NICE(p
);
4342 EXPORT_SYMBOL(task_nice
);
4345 * idle_cpu - is a given cpu idle currently?
4346 * @cpu: the processor in question.
4348 int idle_cpu(int cpu
)
4350 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4354 * idle_task - return the idle task for a given cpu.
4355 * @cpu: the processor in question.
4357 struct task_struct
*idle_task(int cpu
)
4359 return cpu_rq(cpu
)->idle
;
4363 * find_process_by_pid - find a process with a matching PID value.
4364 * @pid: the pid in question.
4366 static struct task_struct
*find_process_by_pid(pid_t pid
)
4368 return pid
? find_task_by_vpid(pid
) : current
;
4371 /* Actually do priority change: must hold rq lock. */
4373 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4375 BUG_ON(p
->se
.on_rq
);
4378 p
->rt_priority
= prio
;
4379 p
->normal_prio
= normal_prio(p
);
4380 /* we are holding p->pi_lock already */
4381 p
->prio
= rt_mutex_getprio(p
);
4382 if (rt_prio(p
->prio
))
4383 p
->sched_class
= &rt_sched_class
;
4385 p
->sched_class
= &fair_sched_class
;
4390 * check the target process has a UID that matches the current process's
4392 static bool check_same_owner(struct task_struct
*p
)
4394 const struct cred
*cred
= current_cred(), *pcred
;
4398 pcred
= __task_cred(p
);
4399 match
= (cred
->euid
== pcred
->euid
||
4400 cred
->euid
== pcred
->uid
);
4405 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
4406 struct sched_param
*param
, bool user
)
4408 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4409 unsigned long flags
;
4410 const struct sched_class
*prev_class
;
4414 /* may grab non-irq protected spin_locks */
4415 BUG_ON(in_interrupt());
4417 /* double check policy once rq lock held */
4419 reset_on_fork
= p
->sched_reset_on_fork
;
4420 policy
= oldpolicy
= p
->policy
;
4422 reset_on_fork
= !!(policy
& SCHED_RESET_ON_FORK
);
4423 policy
&= ~SCHED_RESET_ON_FORK
;
4425 if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4426 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4427 policy
!= SCHED_IDLE
)
4432 * Valid priorities for SCHED_FIFO and SCHED_RR are
4433 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4434 * SCHED_BATCH and SCHED_IDLE is 0.
4436 if (param
->sched_priority
< 0 ||
4437 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4438 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4440 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4444 * Allow unprivileged RT tasks to decrease priority:
4446 if (user
&& !capable(CAP_SYS_NICE
)) {
4447 if (rt_policy(policy
)) {
4448 unsigned long rlim_rtprio
;
4450 if (!lock_task_sighand(p
, &flags
))
4452 rlim_rtprio
= task_rlimit(p
, RLIMIT_RTPRIO
);
4453 unlock_task_sighand(p
, &flags
);
4455 /* can't set/change the rt policy */
4456 if (policy
!= p
->policy
&& !rlim_rtprio
)
4459 /* can't increase priority */
4460 if (param
->sched_priority
> p
->rt_priority
&&
4461 param
->sched_priority
> rlim_rtprio
)
4465 * Like positive nice levels, dont allow tasks to
4466 * move out of SCHED_IDLE either:
4468 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4471 /* can't change other user's priorities */
4472 if (!check_same_owner(p
))
4475 /* Normal users shall not reset the sched_reset_on_fork flag */
4476 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
4481 #ifdef CONFIG_RT_GROUP_SCHED
4483 * Do not allow realtime tasks into groups that have no runtime
4486 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
4487 task_group(p
)->rt_bandwidth
.rt_runtime
== 0)
4491 retval
= security_task_setscheduler(p
, policy
, param
);
4497 * make sure no PI-waiters arrive (or leave) while we are
4498 * changing the priority of the task:
4500 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
4502 * To be able to change p->policy safely, the apropriate
4503 * runqueue lock must be held.
4505 rq
= __task_rq_lock(p
);
4506 /* recheck policy now with rq lock held */
4507 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4508 policy
= oldpolicy
= -1;
4509 __task_rq_unlock(rq
);
4510 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4513 on_rq
= p
->se
.on_rq
;
4514 running
= task_current(rq
, p
);
4516 deactivate_task(rq
, p
, 0);
4518 p
->sched_class
->put_prev_task(rq
, p
);
4520 p
->sched_reset_on_fork
= reset_on_fork
;
4523 prev_class
= p
->sched_class
;
4524 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4527 p
->sched_class
->set_curr_task(rq
);
4529 activate_task(rq
, p
, 0);
4531 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4533 __task_rq_unlock(rq
);
4534 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4536 rt_mutex_adjust_pi(p
);
4542 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4543 * @p: the task in question.
4544 * @policy: new policy.
4545 * @param: structure containing the new RT priority.
4547 * NOTE that the task may be already dead.
4549 int sched_setscheduler(struct task_struct
*p
, int policy
,
4550 struct sched_param
*param
)
4552 return __sched_setscheduler(p
, policy
, param
, true);
4554 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4557 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4558 * @p: the task in question.
4559 * @policy: new policy.
4560 * @param: structure containing the new RT priority.
4562 * Just like sched_setscheduler, only don't bother checking if the
4563 * current context has permission. For example, this is needed in
4564 * stop_machine(): we create temporary high priority worker threads,
4565 * but our caller might not have that capability.
4567 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
4568 struct sched_param
*param
)
4570 return __sched_setscheduler(p
, policy
, param
, false);
4574 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4576 struct sched_param lparam
;
4577 struct task_struct
*p
;
4580 if (!param
|| pid
< 0)
4582 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4587 p
= find_process_by_pid(pid
);
4589 retval
= sched_setscheduler(p
, policy
, &lparam
);
4596 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4597 * @pid: the pid in question.
4598 * @policy: new policy.
4599 * @param: structure containing the new RT priority.
4601 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
4602 struct sched_param __user
*, param
)
4604 /* negative values for policy are not valid */
4608 return do_sched_setscheduler(pid
, policy
, param
);
4612 * sys_sched_setparam - set/change the RT priority of a thread
4613 * @pid: the pid in question.
4614 * @param: structure containing the new RT priority.
4616 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4618 return do_sched_setscheduler(pid
, -1, param
);
4622 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4623 * @pid: the pid in question.
4625 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
4627 struct task_struct
*p
;
4635 p
= find_process_by_pid(pid
);
4637 retval
= security_task_getscheduler(p
);
4640 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
4647 * sys_sched_getparam - get the RT priority of a thread
4648 * @pid: the pid in question.
4649 * @param: structure containing the RT priority.
4651 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4653 struct sched_param lp
;
4654 struct task_struct
*p
;
4657 if (!param
|| pid
< 0)
4661 p
= find_process_by_pid(pid
);
4666 retval
= security_task_getscheduler(p
);
4670 lp
.sched_priority
= p
->rt_priority
;
4674 * This one might sleep, we cannot do it with a spinlock held ...
4676 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4685 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
4687 cpumask_var_t cpus_allowed
, new_mask
;
4688 struct task_struct
*p
;
4694 p
= find_process_by_pid(pid
);
4701 /* Prevent p going away */
4705 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
4709 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
4711 goto out_free_cpus_allowed
;
4714 if (!check_same_owner(p
) && !capable(CAP_SYS_NICE
))
4717 retval
= security_task_setscheduler(p
, 0, NULL
);
4721 cpuset_cpus_allowed(p
, cpus_allowed
);
4722 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
4724 retval
= set_cpus_allowed_ptr(p
, new_mask
);
4727 cpuset_cpus_allowed(p
, cpus_allowed
);
4728 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
4730 * We must have raced with a concurrent cpuset
4731 * update. Just reset the cpus_allowed to the
4732 * cpuset's cpus_allowed
4734 cpumask_copy(new_mask
, cpus_allowed
);
4739 free_cpumask_var(new_mask
);
4740 out_free_cpus_allowed
:
4741 free_cpumask_var(cpus_allowed
);
4748 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4749 struct cpumask
*new_mask
)
4751 if (len
< cpumask_size())
4752 cpumask_clear(new_mask
);
4753 else if (len
> cpumask_size())
4754 len
= cpumask_size();
4756 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4760 * sys_sched_setaffinity - set the cpu affinity of a process
4761 * @pid: pid of the process
4762 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4763 * @user_mask_ptr: user-space pointer to the new cpu mask
4765 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
4766 unsigned long __user
*, user_mask_ptr
)
4768 cpumask_var_t new_mask
;
4771 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
4774 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
4776 retval
= sched_setaffinity(pid
, new_mask
);
4777 free_cpumask_var(new_mask
);
4781 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
4783 struct task_struct
*p
;
4784 unsigned long flags
;
4792 p
= find_process_by_pid(pid
);
4796 retval
= security_task_getscheduler(p
);
4800 rq
= task_rq_lock(p
, &flags
);
4801 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
4802 task_rq_unlock(rq
, &flags
);
4812 * sys_sched_getaffinity - get the cpu affinity of a process
4813 * @pid: pid of the process
4814 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4815 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4817 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
4818 unsigned long __user
*, user_mask_ptr
)
4823 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
4825 if (len
& (sizeof(unsigned long)-1))
4828 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
4831 ret
= sched_getaffinity(pid
, mask
);
4833 size_t retlen
= min_t(size_t, len
, cpumask_size());
4835 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
4840 free_cpumask_var(mask
);
4846 * sys_sched_yield - yield the current processor to other threads.
4848 * This function yields the current CPU to other tasks. If there are no
4849 * other threads running on this CPU then this function will return.
4851 SYSCALL_DEFINE0(sched_yield
)
4853 struct rq
*rq
= this_rq_lock();
4855 schedstat_inc(rq
, yld_count
);
4856 current
->sched_class
->yield_task(rq
);
4859 * Since we are going to call schedule() anyway, there's
4860 * no need to preempt or enable interrupts:
4862 __release(rq
->lock
);
4863 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4864 do_raw_spin_unlock(&rq
->lock
);
4865 preempt_enable_no_resched();
4872 static inline int should_resched(void)
4874 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE
);
4877 static void __cond_resched(void)
4879 add_preempt_count(PREEMPT_ACTIVE
);
4881 sub_preempt_count(PREEMPT_ACTIVE
);
4884 int __sched
_cond_resched(void)
4886 if (should_resched()) {
4892 EXPORT_SYMBOL(_cond_resched
);
4895 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4896 * call schedule, and on return reacquire the lock.
4898 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4899 * operations here to prevent schedule() from being called twice (once via
4900 * spin_unlock(), once by hand).
4902 int __cond_resched_lock(spinlock_t
*lock
)
4904 int resched
= should_resched();
4907 lockdep_assert_held(lock
);
4909 if (spin_needbreak(lock
) || resched
) {
4920 EXPORT_SYMBOL(__cond_resched_lock
);
4922 int __sched
__cond_resched_softirq(void)
4924 BUG_ON(!in_softirq());
4926 if (should_resched()) {
4934 EXPORT_SYMBOL(__cond_resched_softirq
);
4937 * yield - yield the current processor to other threads.
4939 * This is a shortcut for kernel-space yielding - it marks the
4940 * thread runnable and calls sys_sched_yield().
4942 void __sched
yield(void)
4944 set_current_state(TASK_RUNNING
);
4947 EXPORT_SYMBOL(yield
);
4950 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4951 * that process accounting knows that this is a task in IO wait state.
4953 void __sched
io_schedule(void)
4955 struct rq
*rq
= raw_rq();
4957 delayacct_blkio_start();
4958 atomic_inc(&rq
->nr_iowait
);
4959 current
->in_iowait
= 1;
4961 current
->in_iowait
= 0;
4962 atomic_dec(&rq
->nr_iowait
);
4963 delayacct_blkio_end();
4965 EXPORT_SYMBOL(io_schedule
);
4967 long __sched
io_schedule_timeout(long timeout
)
4969 struct rq
*rq
= raw_rq();
4972 delayacct_blkio_start();
4973 atomic_inc(&rq
->nr_iowait
);
4974 current
->in_iowait
= 1;
4975 ret
= schedule_timeout(timeout
);
4976 current
->in_iowait
= 0;
4977 atomic_dec(&rq
->nr_iowait
);
4978 delayacct_blkio_end();
4983 * sys_sched_get_priority_max - return maximum RT priority.
4984 * @policy: scheduling class.
4986 * this syscall returns the maximum rt_priority that can be used
4987 * by a given scheduling class.
4989 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
4996 ret
= MAX_USER_RT_PRIO
-1;
5008 * sys_sched_get_priority_min - return minimum RT priority.
5009 * @policy: scheduling class.
5011 * this syscall returns the minimum rt_priority that can be used
5012 * by a given scheduling class.
5014 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
5032 * sys_sched_rr_get_interval - return the default timeslice of a process.
5033 * @pid: pid of the process.
5034 * @interval: userspace pointer to the timeslice value.
5036 * this syscall writes the default timeslice value of a given process
5037 * into the user-space timespec buffer. A value of '0' means infinity.
5039 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
5040 struct timespec __user
*, interval
)
5042 struct task_struct
*p
;
5043 unsigned int time_slice
;
5044 unsigned long flags
;
5054 p
= find_process_by_pid(pid
);
5058 retval
= security_task_getscheduler(p
);
5062 rq
= task_rq_lock(p
, &flags
);
5063 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
5064 task_rq_unlock(rq
, &flags
);
5067 jiffies_to_timespec(time_slice
, &t
);
5068 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5076 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
5078 void sched_show_task(struct task_struct
*p
)
5080 unsigned long free
= 0;
5083 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5084 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
5085 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5086 #if BITS_PER_LONG == 32
5087 if (state
== TASK_RUNNING
)
5088 printk(KERN_CONT
" running ");
5090 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5092 if (state
== TASK_RUNNING
)
5093 printk(KERN_CONT
" running task ");
5095 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5097 #ifdef CONFIG_DEBUG_STACK_USAGE
5098 free
= stack_not_used(p
);
5100 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
5101 task_pid_nr(p
), task_pid_nr(p
->real_parent
),
5102 (unsigned long)task_thread_info(p
)->flags
);
5104 show_stack(p
, NULL
);
5107 void show_state_filter(unsigned long state_filter
)
5109 struct task_struct
*g
, *p
;
5111 #if BITS_PER_LONG == 32
5113 " task PC stack pid father\n");
5116 " task PC stack pid father\n");
5118 read_lock(&tasklist_lock
);
5119 do_each_thread(g
, p
) {
5121 * reset the NMI-timeout, listing all files on a slow
5122 * console might take alot of time:
5124 touch_nmi_watchdog();
5125 if (!state_filter
|| (p
->state
& state_filter
))
5127 } while_each_thread(g
, p
);
5129 touch_all_softlockup_watchdogs();
5131 #ifdef CONFIG_SCHED_DEBUG
5132 sysrq_sched_debug_show();
5134 read_unlock(&tasklist_lock
);
5136 * Only show locks if all tasks are dumped:
5139 debug_show_all_locks();
5142 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5144 idle
->sched_class
= &idle_sched_class
;
5148 * init_idle - set up an idle thread for a given CPU
5149 * @idle: task in question
5150 * @cpu: cpu the idle task belongs to
5152 * NOTE: this function does not set the idle thread's NEED_RESCHED
5153 * flag, to make booting more robust.
5155 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5157 struct rq
*rq
= cpu_rq(cpu
);
5158 unsigned long flags
;
5160 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5163 idle
->state
= TASK_RUNNING
;
5164 idle
->se
.exec_start
= sched_clock();
5166 cpumask_copy(&idle
->cpus_allowed
, cpumask_of(cpu
));
5167 __set_task_cpu(idle
, cpu
);
5169 rq
->curr
= rq
->idle
= idle
;
5170 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5173 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5175 /* Set the preempt count _outside_ the spinlocks! */
5176 #if defined(CONFIG_PREEMPT)
5177 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
5179 task_thread_info(idle
)->preempt_count
= 0;
5182 * The idle tasks have their own, simple scheduling class:
5184 idle
->sched_class
= &idle_sched_class
;
5185 ftrace_graph_init_task(idle
);
5189 * In a system that switches off the HZ timer nohz_cpu_mask
5190 * indicates which cpus entered this state. This is used
5191 * in the rcu update to wait only for active cpus. For system
5192 * which do not switch off the HZ timer nohz_cpu_mask should
5193 * always be CPU_BITS_NONE.
5195 cpumask_var_t nohz_cpu_mask
;
5198 * Increase the granularity value when there are more CPUs,
5199 * because with more CPUs the 'effective latency' as visible
5200 * to users decreases. But the relationship is not linear,
5201 * so pick a second-best guess by going with the log2 of the
5204 * This idea comes from the SD scheduler of Con Kolivas:
5206 static int get_update_sysctl_factor(void)
5208 unsigned int cpus
= min_t(int, num_online_cpus(), 8);
5209 unsigned int factor
;
5211 switch (sysctl_sched_tunable_scaling
) {
5212 case SCHED_TUNABLESCALING_NONE
:
5215 case SCHED_TUNABLESCALING_LINEAR
:
5218 case SCHED_TUNABLESCALING_LOG
:
5220 factor
= 1 + ilog2(cpus
);
5227 static void update_sysctl(void)
5229 unsigned int factor
= get_update_sysctl_factor();
5231 #define SET_SYSCTL(name) \
5232 (sysctl_##name = (factor) * normalized_sysctl_##name)
5233 SET_SYSCTL(sched_min_granularity
);
5234 SET_SYSCTL(sched_latency
);
5235 SET_SYSCTL(sched_wakeup_granularity
);
5236 SET_SYSCTL(sched_shares_ratelimit
);
5240 static inline void sched_init_granularity(void)
5247 * This is how migration works:
5249 * 1) we invoke migration_cpu_stop() on the target CPU using
5251 * 2) stopper starts to run (implicitly forcing the migrated thread
5253 * 3) it checks whether the migrated task is still in the wrong runqueue.
5254 * 4) if it's in the wrong runqueue then the migration thread removes
5255 * it and puts it into the right queue.
5256 * 5) stopper completes and stop_one_cpu() returns and the migration
5261 * Change a given task's CPU affinity. Migrate the thread to a
5262 * proper CPU and schedule it away if the CPU it's executing on
5263 * is removed from the allowed bitmask.
5265 * NOTE: the caller must have a valid reference to the task, the
5266 * task must not exit() & deallocate itself prematurely. The
5267 * call is not atomic; no spinlocks may be held.
5269 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
5271 unsigned long flags
;
5273 unsigned int dest_cpu
;
5277 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5278 * drop the rq->lock and still rely on ->cpus_allowed.
5281 while (task_is_waking(p
))
5283 rq
= task_rq_lock(p
, &flags
);
5284 if (task_is_waking(p
)) {
5285 task_rq_unlock(rq
, &flags
);
5289 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
5294 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
5295 !cpumask_equal(&p
->cpus_allowed
, new_mask
))) {
5300 if (p
->sched_class
->set_cpus_allowed
)
5301 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
5303 cpumask_copy(&p
->cpus_allowed
, new_mask
);
5304 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
5307 /* Can the task run on the task's current CPU? If so, we're done */
5308 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
5311 dest_cpu
= cpumask_any_and(cpu_active_mask
, new_mask
);
5312 if (migrate_task(p
, dest_cpu
)) {
5313 struct migration_arg arg
= { p
, dest_cpu
};
5314 /* Need help from migration thread: drop lock and wait. */
5315 task_rq_unlock(rq
, &flags
);
5316 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
5317 tlb_migrate_finish(p
->mm
);
5321 task_rq_unlock(rq
, &flags
);
5325 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
5328 * Move (not current) task off this cpu, onto dest cpu. We're doing
5329 * this because either it can't run here any more (set_cpus_allowed()
5330 * away from this CPU, or CPU going down), or because we're
5331 * attempting to rebalance this task on exec (sched_exec).
5333 * So we race with normal scheduler movements, but that's OK, as long
5334 * as the task is no longer on this CPU.
5336 * Returns non-zero if task was successfully migrated.
5338 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5340 struct rq
*rq_dest
, *rq_src
;
5343 if (unlikely(!cpu_active(dest_cpu
)))
5346 rq_src
= cpu_rq(src_cpu
);
5347 rq_dest
= cpu_rq(dest_cpu
);
5349 double_rq_lock(rq_src
, rq_dest
);
5350 /* Already moved. */
5351 if (task_cpu(p
) != src_cpu
)
5353 /* Affinity changed (again). */
5354 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
5358 * If we're not on a rq, the next wake-up will ensure we're
5362 deactivate_task(rq_src
, p
, 0);
5363 set_task_cpu(p
, dest_cpu
);
5364 activate_task(rq_dest
, p
, 0);
5365 check_preempt_curr(rq_dest
, p
, 0);
5370 double_rq_unlock(rq_src
, rq_dest
);
5375 * migration_cpu_stop - this will be executed by a highprio stopper thread
5376 * and performs thread migration by bumping thread off CPU then
5377 * 'pushing' onto another runqueue.
5379 static int migration_cpu_stop(void *data
)
5381 struct migration_arg
*arg
= data
;
5384 * The original target cpu might have gone down and we might
5385 * be on another cpu but it doesn't matter.
5387 local_irq_disable();
5388 __migrate_task(arg
->task
, raw_smp_processor_id(), arg
->dest_cpu
);
5393 #ifdef CONFIG_HOTPLUG_CPU
5395 * Figure out where task on dead CPU should go, use force if necessary.
5397 void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5399 struct rq
*rq
= cpu_rq(dead_cpu
);
5400 int needs_cpu
, uninitialized_var(dest_cpu
);
5401 unsigned long flags
;
5403 local_irq_save(flags
);
5405 raw_spin_lock(&rq
->lock
);
5406 needs_cpu
= (task_cpu(p
) == dead_cpu
) && (p
->state
!= TASK_WAKING
);
5408 dest_cpu
= select_fallback_rq(dead_cpu
, p
);
5409 raw_spin_unlock(&rq
->lock
);
5411 * It can only fail if we race with set_cpus_allowed(),
5412 * in the racer should migrate the task anyway.
5415 __migrate_task(p
, dead_cpu
, dest_cpu
);
5416 local_irq_restore(flags
);
5420 * While a dead CPU has no uninterruptible tasks queued at this point,
5421 * it might still have a nonzero ->nr_uninterruptible counter, because
5422 * for performance reasons the counter is not stricly tracking tasks to
5423 * their home CPUs. So we just add the counter to another CPU's counter,
5424 * to keep the global sum constant after CPU-down:
5426 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5428 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_active_mask
));
5429 unsigned long flags
;
5431 local_irq_save(flags
);
5432 double_rq_lock(rq_src
, rq_dest
);
5433 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5434 rq_src
->nr_uninterruptible
= 0;
5435 double_rq_unlock(rq_src
, rq_dest
);
5436 local_irq_restore(flags
);
5439 /* Run through task list and migrate tasks from the dead cpu. */
5440 static void migrate_live_tasks(int src_cpu
)
5442 struct task_struct
*p
, *t
;
5444 read_lock(&tasklist_lock
);
5446 do_each_thread(t
, p
) {
5450 if (task_cpu(p
) == src_cpu
)
5451 move_task_off_dead_cpu(src_cpu
, p
);
5452 } while_each_thread(t
, p
);
5454 read_unlock(&tasklist_lock
);
5458 * Schedules idle task to be the next runnable task on current CPU.
5459 * It does so by boosting its priority to highest possible.
5460 * Used by CPU offline code.
5462 void sched_idle_next(void)
5464 int this_cpu
= smp_processor_id();
5465 struct rq
*rq
= cpu_rq(this_cpu
);
5466 struct task_struct
*p
= rq
->idle
;
5467 unsigned long flags
;
5469 /* cpu has to be offline */
5470 BUG_ON(cpu_online(this_cpu
));
5473 * Strictly not necessary since rest of the CPUs are stopped by now
5474 * and interrupts disabled on the current cpu.
5476 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5478 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5480 activate_task(rq
, p
, 0);
5482 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5486 * Ensures that the idle task is using init_mm right before its cpu goes
5489 void idle_task_exit(void)
5491 struct mm_struct
*mm
= current
->active_mm
;
5493 BUG_ON(cpu_online(smp_processor_id()));
5496 switch_mm(mm
, &init_mm
, current
);
5500 /* called under rq->lock with disabled interrupts */
5501 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5503 struct rq
*rq
= cpu_rq(dead_cpu
);
5505 /* Must be exiting, otherwise would be on tasklist. */
5506 BUG_ON(!p
->exit_state
);
5508 /* Cannot have done final schedule yet: would have vanished. */
5509 BUG_ON(p
->state
== TASK_DEAD
);
5514 * Drop lock around migration; if someone else moves it,
5515 * that's OK. No task can be added to this CPU, so iteration is
5518 raw_spin_unlock_irq(&rq
->lock
);
5519 move_task_off_dead_cpu(dead_cpu
, p
);
5520 raw_spin_lock_irq(&rq
->lock
);
5525 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5526 static void migrate_dead_tasks(unsigned int dead_cpu
)
5528 struct rq
*rq
= cpu_rq(dead_cpu
);
5529 struct task_struct
*next
;
5532 if (!rq
->nr_running
)
5534 next
= pick_next_task(rq
);
5537 next
->sched_class
->put_prev_task(rq
, next
);
5538 migrate_dead(dead_cpu
, next
);
5544 * remove the tasks which were accounted by rq from calc_load_tasks.
5546 static void calc_global_load_remove(struct rq
*rq
)
5548 atomic_long_sub(rq
->calc_load_active
, &calc_load_tasks
);
5549 rq
->calc_load_active
= 0;
5551 #endif /* CONFIG_HOTPLUG_CPU */
5553 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5555 static struct ctl_table sd_ctl_dir
[] = {
5557 .procname
= "sched_domain",
5563 static struct ctl_table sd_ctl_root
[] = {
5565 .procname
= "kernel",
5567 .child
= sd_ctl_dir
,
5572 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5574 struct ctl_table
*entry
=
5575 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
5580 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
5582 struct ctl_table
*entry
;
5585 * In the intermediate directories, both the child directory and
5586 * procname are dynamically allocated and could fail but the mode
5587 * will always be set. In the lowest directory the names are
5588 * static strings and all have proc handlers.
5590 for (entry
= *tablep
; entry
->mode
; entry
++) {
5592 sd_free_ctl_entry(&entry
->child
);
5593 if (entry
->proc_handler
== NULL
)
5594 kfree(entry
->procname
);
5602 set_table_entry(struct ctl_table
*entry
,
5603 const char *procname
, void *data
, int maxlen
,
5604 mode_t mode
, proc_handler
*proc_handler
)
5606 entry
->procname
= procname
;
5608 entry
->maxlen
= maxlen
;
5610 entry
->proc_handler
= proc_handler
;
5613 static struct ctl_table
*
5614 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5616 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
5621 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5622 sizeof(long), 0644, proc_doulongvec_minmax
);
5623 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5624 sizeof(long), 0644, proc_doulongvec_minmax
);
5625 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5626 sizeof(int), 0644, proc_dointvec_minmax
);
5627 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5628 sizeof(int), 0644, proc_dointvec_minmax
);
5629 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5630 sizeof(int), 0644, proc_dointvec_minmax
);
5631 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5632 sizeof(int), 0644, proc_dointvec_minmax
);
5633 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5634 sizeof(int), 0644, proc_dointvec_minmax
);
5635 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5636 sizeof(int), 0644, proc_dointvec_minmax
);
5637 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5638 sizeof(int), 0644, proc_dointvec_minmax
);
5639 set_table_entry(&table
[9], "cache_nice_tries",
5640 &sd
->cache_nice_tries
,
5641 sizeof(int), 0644, proc_dointvec_minmax
);
5642 set_table_entry(&table
[10], "flags", &sd
->flags
,
5643 sizeof(int), 0644, proc_dointvec_minmax
);
5644 set_table_entry(&table
[11], "name", sd
->name
,
5645 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
5646 /* &table[12] is terminator */
5651 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5653 struct ctl_table
*entry
, *table
;
5654 struct sched_domain
*sd
;
5655 int domain_num
= 0, i
;
5658 for_each_domain(cpu
, sd
)
5660 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5665 for_each_domain(cpu
, sd
) {
5666 snprintf(buf
, 32, "domain%d", i
);
5667 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5669 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5676 static struct ctl_table_header
*sd_sysctl_header
;
5677 static void register_sched_domain_sysctl(void)
5679 int i
, cpu_num
= num_possible_cpus();
5680 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5683 WARN_ON(sd_ctl_dir
[0].child
);
5684 sd_ctl_dir
[0].child
= entry
;
5689 for_each_possible_cpu(i
) {
5690 snprintf(buf
, 32, "cpu%d", i
);
5691 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5693 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5697 WARN_ON(sd_sysctl_header
);
5698 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5701 /* may be called multiple times per register */
5702 static void unregister_sched_domain_sysctl(void)
5704 if (sd_sysctl_header
)
5705 unregister_sysctl_table(sd_sysctl_header
);
5706 sd_sysctl_header
= NULL
;
5707 if (sd_ctl_dir
[0].child
)
5708 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
5711 static void register_sched_domain_sysctl(void)
5714 static void unregister_sched_domain_sysctl(void)
5719 static void set_rq_online(struct rq
*rq
)
5722 const struct sched_class
*class;
5724 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
5727 for_each_class(class) {
5728 if (class->rq_online
)
5729 class->rq_online(rq
);
5734 static void set_rq_offline(struct rq
*rq
)
5737 const struct sched_class
*class;
5739 for_each_class(class) {
5740 if (class->rq_offline
)
5741 class->rq_offline(rq
);
5744 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
5750 * migration_call - callback that gets triggered when a CPU is added.
5751 * Here we can start up the necessary migration thread for the new CPU.
5753 static int __cpuinit
5754 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5756 int cpu
= (long)hcpu
;
5757 unsigned long flags
;
5758 struct rq
*rq
= cpu_rq(cpu
);
5762 case CPU_UP_PREPARE
:
5763 case CPU_UP_PREPARE_FROZEN
:
5764 rq
->calc_load_update
= calc_load_update
;
5768 case CPU_ONLINE_FROZEN
:
5769 /* Update our root-domain */
5770 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5772 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5776 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5779 #ifdef CONFIG_HOTPLUG_CPU
5781 case CPU_DEAD_FROZEN
:
5782 migrate_live_tasks(cpu
);
5783 /* Idle task back to normal (off runqueue, low prio) */
5784 raw_spin_lock_irq(&rq
->lock
);
5785 deactivate_task(rq
, rq
->idle
, 0);
5786 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
5787 rq
->idle
->sched_class
= &idle_sched_class
;
5788 migrate_dead_tasks(cpu
);
5789 raw_spin_unlock_irq(&rq
->lock
);
5790 migrate_nr_uninterruptible(rq
);
5791 BUG_ON(rq
->nr_running
!= 0);
5792 calc_global_load_remove(rq
);
5796 case CPU_DYING_FROZEN
:
5797 /* Update our root-domain */
5798 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5800 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5803 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5811 * Register at high priority so that task migration (migrate_all_tasks)
5812 * happens before everything else. This has to be lower priority than
5813 * the notifier in the perf_event subsystem, though.
5815 static struct notifier_block __cpuinitdata migration_notifier
= {
5816 .notifier_call
= migration_call
,
5820 static int __init
migration_init(void)
5822 void *cpu
= (void *)(long)smp_processor_id();
5825 /* Start one for the boot CPU: */
5826 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5827 BUG_ON(err
== NOTIFY_BAD
);
5828 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5829 register_cpu_notifier(&migration_notifier
);
5833 early_initcall(migration_init
);
5838 #ifdef CONFIG_SCHED_DEBUG
5840 static __read_mostly
int sched_domain_debug_enabled
;
5842 static int __init
sched_domain_debug_setup(char *str
)
5844 sched_domain_debug_enabled
= 1;
5848 early_param("sched_debug", sched_domain_debug_setup
);
5850 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
5851 struct cpumask
*groupmask
)
5853 struct sched_group
*group
= sd
->groups
;
5856 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
5857 cpumask_clear(groupmask
);
5859 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
5861 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5862 printk("does not load-balance\n");
5864 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5869 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
5871 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
5872 printk(KERN_ERR
"ERROR: domain->span does not contain "
5875 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
5876 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5880 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
5884 printk(KERN_ERR
"ERROR: group is NULL\n");
5888 if (!group
->cpu_power
) {
5889 printk(KERN_CONT
"\n");
5890 printk(KERN_ERR
"ERROR: domain->cpu_power not "
5895 if (!cpumask_weight(sched_group_cpus(group
))) {
5896 printk(KERN_CONT
"\n");
5897 printk(KERN_ERR
"ERROR: empty group\n");
5901 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
5902 printk(KERN_CONT
"\n");
5903 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5907 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
5909 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
5911 printk(KERN_CONT
" %s", str
);
5912 if (group
->cpu_power
!= SCHED_LOAD_SCALE
) {
5913 printk(KERN_CONT
" (cpu_power = %d)",
5917 group
= group
->next
;
5918 } while (group
!= sd
->groups
);
5919 printk(KERN_CONT
"\n");
5921 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
5922 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
5925 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
5926 printk(KERN_ERR
"ERROR: parent span is not a superset "
5927 "of domain->span\n");
5931 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
5933 cpumask_var_t groupmask
;
5936 if (!sched_domain_debug_enabled
)
5940 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
5944 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
5946 if (!alloc_cpumask_var(&groupmask
, GFP_KERNEL
)) {
5947 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
5952 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
5959 free_cpumask_var(groupmask
);
5961 #else /* !CONFIG_SCHED_DEBUG */
5962 # define sched_domain_debug(sd, cpu) do { } while (0)
5963 #endif /* CONFIG_SCHED_DEBUG */
5965 static int sd_degenerate(struct sched_domain
*sd
)
5967 if (cpumask_weight(sched_domain_span(sd
)) == 1)
5970 /* Following flags need at least 2 groups */
5971 if (sd
->flags
& (SD_LOAD_BALANCE
|
5972 SD_BALANCE_NEWIDLE
|
5976 SD_SHARE_PKG_RESOURCES
)) {
5977 if (sd
->groups
!= sd
->groups
->next
)
5981 /* Following flags don't use groups */
5982 if (sd
->flags
& (SD_WAKE_AFFINE
))
5989 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
5991 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
5993 if (sd_degenerate(parent
))
5996 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
5999 /* Flags needing groups don't count if only 1 group in parent */
6000 if (parent
->groups
== parent
->groups
->next
) {
6001 pflags
&= ~(SD_LOAD_BALANCE
|
6002 SD_BALANCE_NEWIDLE
|
6006 SD_SHARE_PKG_RESOURCES
);
6007 if (nr_node_ids
== 1)
6008 pflags
&= ~SD_SERIALIZE
;
6010 if (~cflags
& pflags
)
6016 static void free_rootdomain(struct root_domain
*rd
)
6018 synchronize_sched();
6020 cpupri_cleanup(&rd
->cpupri
);
6022 free_cpumask_var(rd
->rto_mask
);
6023 free_cpumask_var(rd
->online
);
6024 free_cpumask_var(rd
->span
);
6028 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6030 struct root_domain
*old_rd
= NULL
;
6031 unsigned long flags
;
6033 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6038 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
6041 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
6044 * If we dont want to free the old_rt yet then
6045 * set old_rd to NULL to skip the freeing later
6048 if (!atomic_dec_and_test(&old_rd
->refcount
))
6052 atomic_inc(&rd
->refcount
);
6055 cpumask_set_cpu(rq
->cpu
, rd
->span
);
6056 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
6059 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6062 free_rootdomain(old_rd
);
6065 static int init_rootdomain(struct root_domain
*rd
, bool bootmem
)
6067 gfp_t gfp
= GFP_KERNEL
;
6069 memset(rd
, 0, sizeof(*rd
));
6074 if (!alloc_cpumask_var(&rd
->span
, gfp
))
6076 if (!alloc_cpumask_var(&rd
->online
, gfp
))
6078 if (!alloc_cpumask_var(&rd
->rto_mask
, gfp
))
6081 if (cpupri_init(&rd
->cpupri
, bootmem
) != 0)
6086 free_cpumask_var(rd
->rto_mask
);
6088 free_cpumask_var(rd
->online
);
6090 free_cpumask_var(rd
->span
);
6095 static void init_defrootdomain(void)
6097 init_rootdomain(&def_root_domain
, true);
6099 atomic_set(&def_root_domain
.refcount
, 1);
6102 static struct root_domain
*alloc_rootdomain(void)
6104 struct root_domain
*rd
;
6106 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6110 if (init_rootdomain(rd
, false) != 0) {
6119 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6120 * hold the hotplug lock.
6123 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6125 struct rq
*rq
= cpu_rq(cpu
);
6126 struct sched_domain
*tmp
;
6128 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
)
6129 tmp
->span_weight
= cpumask_weight(sched_domain_span(tmp
));
6131 /* Remove the sched domains which do not contribute to scheduling. */
6132 for (tmp
= sd
; tmp
; ) {
6133 struct sched_domain
*parent
= tmp
->parent
;
6137 if (sd_parent_degenerate(tmp
, parent
)) {
6138 tmp
->parent
= parent
->parent
;
6140 parent
->parent
->child
= tmp
;
6145 if (sd
&& sd_degenerate(sd
)) {
6151 sched_domain_debug(sd
, cpu
);
6153 rq_attach_root(rq
, rd
);
6154 rcu_assign_pointer(rq
->sd
, sd
);
6157 /* cpus with isolated domains */
6158 static cpumask_var_t cpu_isolated_map
;
6160 /* Setup the mask of cpus configured for isolated domains */
6161 static int __init
isolated_cpu_setup(char *str
)
6163 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
6164 cpulist_parse(str
, cpu_isolated_map
);
6168 __setup("isolcpus=", isolated_cpu_setup
);
6171 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6172 * to a function which identifies what group(along with sched group) a CPU
6173 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6174 * (due to the fact that we keep track of groups covered with a struct cpumask).
6176 * init_sched_build_groups will build a circular linked list of the groups
6177 * covered by the given span, and will set each group's ->cpumask correctly,
6178 * and ->cpu_power to 0.
6181 init_sched_build_groups(const struct cpumask
*span
,
6182 const struct cpumask
*cpu_map
,
6183 int (*group_fn
)(int cpu
, const struct cpumask
*cpu_map
,
6184 struct sched_group
**sg
,
6185 struct cpumask
*tmpmask
),
6186 struct cpumask
*covered
, struct cpumask
*tmpmask
)
6188 struct sched_group
*first
= NULL
, *last
= NULL
;
6191 cpumask_clear(covered
);
6193 for_each_cpu(i
, span
) {
6194 struct sched_group
*sg
;
6195 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
6198 if (cpumask_test_cpu(i
, covered
))
6201 cpumask_clear(sched_group_cpus(sg
));
6204 for_each_cpu(j
, span
) {
6205 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
6208 cpumask_set_cpu(j
, covered
);
6209 cpumask_set_cpu(j
, sched_group_cpus(sg
));
6220 #define SD_NODES_PER_DOMAIN 16
6225 * find_next_best_node - find the next node to include in a sched_domain
6226 * @node: node whose sched_domain we're building
6227 * @used_nodes: nodes already in the sched_domain
6229 * Find the next node to include in a given scheduling domain. Simply
6230 * finds the closest node not already in the @used_nodes map.
6232 * Should use nodemask_t.
6234 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
6236 int i
, n
, val
, min_val
, best_node
= 0;
6240 for (i
= 0; i
< nr_node_ids
; i
++) {
6241 /* Start at @node */
6242 n
= (node
+ i
) % nr_node_ids
;
6244 if (!nr_cpus_node(n
))
6247 /* Skip already used nodes */
6248 if (node_isset(n
, *used_nodes
))
6251 /* Simple min distance search */
6252 val
= node_distance(node
, n
);
6254 if (val
< min_val
) {
6260 node_set(best_node
, *used_nodes
);
6265 * sched_domain_node_span - get a cpumask for a node's sched_domain
6266 * @node: node whose cpumask we're constructing
6267 * @span: resulting cpumask
6269 * Given a node, construct a good cpumask for its sched_domain to span. It
6270 * should be one that prevents unnecessary balancing, but also spreads tasks
6273 static void sched_domain_node_span(int node
, struct cpumask
*span
)
6275 nodemask_t used_nodes
;
6278 cpumask_clear(span
);
6279 nodes_clear(used_nodes
);
6281 cpumask_or(span
, span
, cpumask_of_node(node
));
6282 node_set(node
, used_nodes
);
6284 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
6285 int next_node
= find_next_best_node(node
, &used_nodes
);
6287 cpumask_or(span
, span
, cpumask_of_node(next_node
));
6290 #endif /* CONFIG_NUMA */
6292 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
6295 * The cpus mask in sched_group and sched_domain hangs off the end.
6297 * ( See the the comments in include/linux/sched.h:struct sched_group
6298 * and struct sched_domain. )
6300 struct static_sched_group
{
6301 struct sched_group sg
;
6302 DECLARE_BITMAP(cpus
, CONFIG_NR_CPUS
);
6305 struct static_sched_domain
{
6306 struct sched_domain sd
;
6307 DECLARE_BITMAP(span
, CONFIG_NR_CPUS
);
6313 cpumask_var_t domainspan
;
6314 cpumask_var_t covered
;
6315 cpumask_var_t notcovered
;
6317 cpumask_var_t nodemask
;
6318 cpumask_var_t this_sibling_map
;
6319 cpumask_var_t this_core_map
;
6320 cpumask_var_t send_covered
;
6321 cpumask_var_t tmpmask
;
6322 struct sched_group
**sched_group_nodes
;
6323 struct root_domain
*rd
;
6327 sa_sched_groups
= 0,
6332 sa_this_sibling_map
,
6334 sa_sched_group_nodes
,
6344 * SMT sched-domains:
6346 #ifdef CONFIG_SCHED_SMT
6347 static DEFINE_PER_CPU(struct static_sched_domain
, cpu_domains
);
6348 static DEFINE_PER_CPU(struct static_sched_group
, sched_groups
);
6351 cpu_to_cpu_group(int cpu
, const struct cpumask
*cpu_map
,
6352 struct sched_group
**sg
, struct cpumask
*unused
)
6355 *sg
= &per_cpu(sched_groups
, cpu
).sg
;
6358 #endif /* CONFIG_SCHED_SMT */
6361 * multi-core sched-domains:
6363 #ifdef CONFIG_SCHED_MC
6364 static DEFINE_PER_CPU(struct static_sched_domain
, core_domains
);
6365 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_core
);
6366 #endif /* CONFIG_SCHED_MC */
6368 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6370 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
6371 struct sched_group
**sg
, struct cpumask
*mask
)
6375 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
6376 group
= cpumask_first(mask
);
6378 *sg
= &per_cpu(sched_group_core
, group
).sg
;
6381 #elif defined(CONFIG_SCHED_MC)
6383 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
6384 struct sched_group
**sg
, struct cpumask
*unused
)
6387 *sg
= &per_cpu(sched_group_core
, cpu
).sg
;
6392 static DEFINE_PER_CPU(struct static_sched_domain
, phys_domains
);
6393 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_phys
);
6396 cpu_to_phys_group(int cpu
, const struct cpumask
*cpu_map
,
6397 struct sched_group
**sg
, struct cpumask
*mask
)
6400 #ifdef CONFIG_SCHED_MC
6401 cpumask_and(mask
, cpu_coregroup_mask(cpu
), cpu_map
);
6402 group
= cpumask_first(mask
);
6403 #elif defined(CONFIG_SCHED_SMT)
6404 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
6405 group
= cpumask_first(mask
);
6410 *sg
= &per_cpu(sched_group_phys
, group
).sg
;
6416 * The init_sched_build_groups can't handle what we want to do with node
6417 * groups, so roll our own. Now each node has its own list of groups which
6418 * gets dynamically allocated.
6420 static DEFINE_PER_CPU(struct static_sched_domain
, node_domains
);
6421 static struct sched_group
***sched_group_nodes_bycpu
;
6423 static DEFINE_PER_CPU(struct static_sched_domain
, allnodes_domains
);
6424 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_allnodes
);
6426 static int cpu_to_allnodes_group(int cpu
, const struct cpumask
*cpu_map
,
6427 struct sched_group
**sg
,
6428 struct cpumask
*nodemask
)
6432 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(cpu
)), cpu_map
);
6433 group
= cpumask_first(nodemask
);
6436 *sg
= &per_cpu(sched_group_allnodes
, group
).sg
;
6440 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
6442 struct sched_group
*sg
= group_head
;
6448 for_each_cpu(j
, sched_group_cpus(sg
)) {
6449 struct sched_domain
*sd
;
6451 sd
= &per_cpu(phys_domains
, j
).sd
;
6452 if (j
!= group_first_cpu(sd
->groups
)) {
6454 * Only add "power" once for each
6460 sg
->cpu_power
+= sd
->groups
->cpu_power
;
6463 } while (sg
!= group_head
);
6466 static int build_numa_sched_groups(struct s_data
*d
,
6467 const struct cpumask
*cpu_map
, int num
)
6469 struct sched_domain
*sd
;
6470 struct sched_group
*sg
, *prev
;
6473 cpumask_clear(d
->covered
);
6474 cpumask_and(d
->nodemask
, cpumask_of_node(num
), cpu_map
);
6475 if (cpumask_empty(d
->nodemask
)) {
6476 d
->sched_group_nodes
[num
] = NULL
;
6480 sched_domain_node_span(num
, d
->domainspan
);
6481 cpumask_and(d
->domainspan
, d
->domainspan
, cpu_map
);
6483 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
6486 printk(KERN_WARNING
"Can not alloc domain group for node %d\n",
6490 d
->sched_group_nodes
[num
] = sg
;
6492 for_each_cpu(j
, d
->nodemask
) {
6493 sd
= &per_cpu(node_domains
, j
).sd
;
6498 cpumask_copy(sched_group_cpus(sg
), d
->nodemask
);
6500 cpumask_or(d
->covered
, d
->covered
, d
->nodemask
);
6503 for (j
= 0; j
< nr_node_ids
; j
++) {
6504 n
= (num
+ j
) % nr_node_ids
;
6505 cpumask_complement(d
->notcovered
, d
->covered
);
6506 cpumask_and(d
->tmpmask
, d
->notcovered
, cpu_map
);
6507 cpumask_and(d
->tmpmask
, d
->tmpmask
, d
->domainspan
);
6508 if (cpumask_empty(d
->tmpmask
))
6510 cpumask_and(d
->tmpmask
, d
->tmpmask
, cpumask_of_node(n
));
6511 if (cpumask_empty(d
->tmpmask
))
6513 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
6517 "Can not alloc domain group for node %d\n", j
);
6521 cpumask_copy(sched_group_cpus(sg
), d
->tmpmask
);
6522 sg
->next
= prev
->next
;
6523 cpumask_or(d
->covered
, d
->covered
, d
->tmpmask
);
6530 #endif /* CONFIG_NUMA */
6533 /* Free memory allocated for various sched_group structures */
6534 static void free_sched_groups(const struct cpumask
*cpu_map
,
6535 struct cpumask
*nodemask
)
6539 for_each_cpu(cpu
, cpu_map
) {
6540 struct sched_group
**sched_group_nodes
6541 = sched_group_nodes_bycpu
[cpu
];
6543 if (!sched_group_nodes
)
6546 for (i
= 0; i
< nr_node_ids
; i
++) {
6547 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
6549 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
6550 if (cpumask_empty(nodemask
))
6560 if (oldsg
!= sched_group_nodes
[i
])
6563 kfree(sched_group_nodes
);
6564 sched_group_nodes_bycpu
[cpu
] = NULL
;
6567 #else /* !CONFIG_NUMA */
6568 static void free_sched_groups(const struct cpumask
*cpu_map
,
6569 struct cpumask
*nodemask
)
6572 #endif /* CONFIG_NUMA */
6575 * Initialize sched groups cpu_power.
6577 * cpu_power indicates the capacity of sched group, which is used while
6578 * distributing the load between different sched groups in a sched domain.
6579 * Typically cpu_power for all the groups in a sched domain will be same unless
6580 * there are asymmetries in the topology. If there are asymmetries, group
6581 * having more cpu_power will pickup more load compared to the group having
6584 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
6586 struct sched_domain
*child
;
6587 struct sched_group
*group
;
6591 WARN_ON(!sd
|| !sd
->groups
);
6593 if (cpu
!= group_first_cpu(sd
->groups
))
6598 sd
->groups
->cpu_power
= 0;
6601 power
= SCHED_LOAD_SCALE
;
6602 weight
= cpumask_weight(sched_domain_span(sd
));
6604 * SMT siblings share the power of a single core.
6605 * Usually multiple threads get a better yield out of
6606 * that one core than a single thread would have,
6607 * reflect that in sd->smt_gain.
6609 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
6610 power
*= sd
->smt_gain
;
6612 power
>>= SCHED_LOAD_SHIFT
;
6614 sd
->groups
->cpu_power
+= power
;
6619 * Add cpu_power of each child group to this groups cpu_power.
6621 group
= child
->groups
;
6623 sd
->groups
->cpu_power
+= group
->cpu_power
;
6624 group
= group
->next
;
6625 } while (group
!= child
->groups
);
6629 * Initializers for schedule domains
6630 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6633 #ifdef CONFIG_SCHED_DEBUG
6634 # define SD_INIT_NAME(sd, type) sd->name = #type
6636 # define SD_INIT_NAME(sd, type) do { } while (0)
6639 #define SD_INIT(sd, type) sd_init_##type(sd)
6641 #define SD_INIT_FUNC(type) \
6642 static noinline void sd_init_##type(struct sched_domain *sd) \
6644 memset(sd, 0, sizeof(*sd)); \
6645 *sd = SD_##type##_INIT; \
6646 sd->level = SD_LV_##type; \
6647 SD_INIT_NAME(sd, type); \
6652 SD_INIT_FUNC(ALLNODES
)
6655 #ifdef CONFIG_SCHED_SMT
6656 SD_INIT_FUNC(SIBLING
)
6658 #ifdef CONFIG_SCHED_MC
6662 static int default_relax_domain_level
= -1;
6664 static int __init
setup_relax_domain_level(char *str
)
6668 val
= simple_strtoul(str
, NULL
, 0);
6669 if (val
< SD_LV_MAX
)
6670 default_relax_domain_level
= val
;
6674 __setup("relax_domain_level=", setup_relax_domain_level
);
6676 static void set_domain_attribute(struct sched_domain
*sd
,
6677 struct sched_domain_attr
*attr
)
6681 if (!attr
|| attr
->relax_domain_level
< 0) {
6682 if (default_relax_domain_level
< 0)
6685 request
= default_relax_domain_level
;
6687 request
= attr
->relax_domain_level
;
6688 if (request
< sd
->level
) {
6689 /* turn off idle balance on this domain */
6690 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
6692 /* turn on idle balance on this domain */
6693 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
6697 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
6698 const struct cpumask
*cpu_map
)
6701 case sa_sched_groups
:
6702 free_sched_groups(cpu_map
, d
->tmpmask
); /* fall through */
6703 d
->sched_group_nodes
= NULL
;
6705 free_rootdomain(d
->rd
); /* fall through */
6707 free_cpumask_var(d
->tmpmask
); /* fall through */
6708 case sa_send_covered
:
6709 free_cpumask_var(d
->send_covered
); /* fall through */
6710 case sa_this_core_map
:
6711 free_cpumask_var(d
->this_core_map
); /* fall through */
6712 case sa_this_sibling_map
:
6713 free_cpumask_var(d
->this_sibling_map
); /* fall through */
6715 free_cpumask_var(d
->nodemask
); /* fall through */
6716 case sa_sched_group_nodes
:
6718 kfree(d
->sched_group_nodes
); /* fall through */
6720 free_cpumask_var(d
->notcovered
); /* fall through */
6722 free_cpumask_var(d
->covered
); /* fall through */
6724 free_cpumask_var(d
->domainspan
); /* fall through */
6731 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
6732 const struct cpumask
*cpu_map
)
6735 if (!alloc_cpumask_var(&d
->domainspan
, GFP_KERNEL
))
6737 if (!alloc_cpumask_var(&d
->covered
, GFP_KERNEL
))
6738 return sa_domainspan
;
6739 if (!alloc_cpumask_var(&d
->notcovered
, GFP_KERNEL
))
6741 /* Allocate the per-node list of sched groups */
6742 d
->sched_group_nodes
= kcalloc(nr_node_ids
,
6743 sizeof(struct sched_group
*), GFP_KERNEL
);
6744 if (!d
->sched_group_nodes
) {
6745 printk(KERN_WARNING
"Can not alloc sched group node list\n");
6746 return sa_notcovered
;
6748 sched_group_nodes_bycpu
[cpumask_first(cpu_map
)] = d
->sched_group_nodes
;
6750 if (!alloc_cpumask_var(&d
->nodemask
, GFP_KERNEL
))
6751 return sa_sched_group_nodes
;
6752 if (!alloc_cpumask_var(&d
->this_sibling_map
, GFP_KERNEL
))
6754 if (!alloc_cpumask_var(&d
->this_core_map
, GFP_KERNEL
))
6755 return sa_this_sibling_map
;
6756 if (!alloc_cpumask_var(&d
->send_covered
, GFP_KERNEL
))
6757 return sa_this_core_map
;
6758 if (!alloc_cpumask_var(&d
->tmpmask
, GFP_KERNEL
))
6759 return sa_send_covered
;
6760 d
->rd
= alloc_rootdomain();
6762 printk(KERN_WARNING
"Cannot alloc root domain\n");
6765 return sa_rootdomain
;
6768 static struct sched_domain
*__build_numa_sched_domains(struct s_data
*d
,
6769 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
, int i
)
6771 struct sched_domain
*sd
= NULL
;
6773 struct sched_domain
*parent
;
6776 if (cpumask_weight(cpu_map
) >
6777 SD_NODES_PER_DOMAIN
* cpumask_weight(d
->nodemask
)) {
6778 sd
= &per_cpu(allnodes_domains
, i
).sd
;
6779 SD_INIT(sd
, ALLNODES
);
6780 set_domain_attribute(sd
, attr
);
6781 cpumask_copy(sched_domain_span(sd
), cpu_map
);
6782 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
6787 sd
= &per_cpu(node_domains
, i
).sd
;
6789 set_domain_attribute(sd
, attr
);
6790 sched_domain_node_span(cpu_to_node(i
), sched_domain_span(sd
));
6791 sd
->parent
= parent
;
6794 cpumask_and(sched_domain_span(sd
), sched_domain_span(sd
), cpu_map
);
6799 static struct sched_domain
*__build_cpu_sched_domain(struct s_data
*d
,
6800 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
6801 struct sched_domain
*parent
, int i
)
6803 struct sched_domain
*sd
;
6804 sd
= &per_cpu(phys_domains
, i
).sd
;
6806 set_domain_attribute(sd
, attr
);
6807 cpumask_copy(sched_domain_span(sd
), d
->nodemask
);
6808 sd
->parent
= parent
;
6811 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
6815 static struct sched_domain
*__build_mc_sched_domain(struct s_data
*d
,
6816 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
6817 struct sched_domain
*parent
, int i
)
6819 struct sched_domain
*sd
= parent
;
6820 #ifdef CONFIG_SCHED_MC
6821 sd
= &per_cpu(core_domains
, i
).sd
;
6823 set_domain_attribute(sd
, attr
);
6824 cpumask_and(sched_domain_span(sd
), cpu_map
, cpu_coregroup_mask(i
));
6825 sd
->parent
= parent
;
6827 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
6832 static struct sched_domain
*__build_smt_sched_domain(struct s_data
*d
,
6833 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
6834 struct sched_domain
*parent
, int i
)
6836 struct sched_domain
*sd
= parent
;
6837 #ifdef CONFIG_SCHED_SMT
6838 sd
= &per_cpu(cpu_domains
, i
).sd
;
6839 SD_INIT(sd
, SIBLING
);
6840 set_domain_attribute(sd
, attr
);
6841 cpumask_and(sched_domain_span(sd
), cpu_map
, topology_thread_cpumask(i
));
6842 sd
->parent
= parent
;
6844 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
6849 static void build_sched_groups(struct s_data
*d
, enum sched_domain_level l
,
6850 const struct cpumask
*cpu_map
, int cpu
)
6853 #ifdef CONFIG_SCHED_SMT
6854 case SD_LV_SIBLING
: /* set up CPU (sibling) groups */
6855 cpumask_and(d
->this_sibling_map
, cpu_map
,
6856 topology_thread_cpumask(cpu
));
6857 if (cpu
== cpumask_first(d
->this_sibling_map
))
6858 init_sched_build_groups(d
->this_sibling_map
, cpu_map
,
6860 d
->send_covered
, d
->tmpmask
);
6863 #ifdef CONFIG_SCHED_MC
6864 case SD_LV_MC
: /* set up multi-core groups */
6865 cpumask_and(d
->this_core_map
, cpu_map
, cpu_coregroup_mask(cpu
));
6866 if (cpu
== cpumask_first(d
->this_core_map
))
6867 init_sched_build_groups(d
->this_core_map
, cpu_map
,
6869 d
->send_covered
, d
->tmpmask
);
6872 case SD_LV_CPU
: /* set up physical groups */
6873 cpumask_and(d
->nodemask
, cpumask_of_node(cpu
), cpu_map
);
6874 if (!cpumask_empty(d
->nodemask
))
6875 init_sched_build_groups(d
->nodemask
, cpu_map
,
6877 d
->send_covered
, d
->tmpmask
);
6880 case SD_LV_ALLNODES
:
6881 init_sched_build_groups(cpu_map
, cpu_map
, &cpu_to_allnodes_group
,
6882 d
->send_covered
, d
->tmpmask
);
6891 * Build sched domains for a given set of cpus and attach the sched domains
6892 * to the individual cpus
6894 static int __build_sched_domains(const struct cpumask
*cpu_map
,
6895 struct sched_domain_attr
*attr
)
6897 enum s_alloc alloc_state
= sa_none
;
6899 struct sched_domain
*sd
;
6905 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
6906 if (alloc_state
!= sa_rootdomain
)
6908 alloc_state
= sa_sched_groups
;
6911 * Set up domains for cpus specified by the cpu_map.
6913 for_each_cpu(i
, cpu_map
) {
6914 cpumask_and(d
.nodemask
, cpumask_of_node(cpu_to_node(i
)),
6917 sd
= __build_numa_sched_domains(&d
, cpu_map
, attr
, i
);
6918 sd
= __build_cpu_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
6919 sd
= __build_mc_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
6920 sd
= __build_smt_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
6923 for_each_cpu(i
, cpu_map
) {
6924 build_sched_groups(&d
, SD_LV_SIBLING
, cpu_map
, i
);
6925 build_sched_groups(&d
, SD_LV_MC
, cpu_map
, i
);
6928 /* Set up physical groups */
6929 for (i
= 0; i
< nr_node_ids
; i
++)
6930 build_sched_groups(&d
, SD_LV_CPU
, cpu_map
, i
);
6933 /* Set up node groups */
6935 build_sched_groups(&d
, SD_LV_ALLNODES
, cpu_map
, 0);
6937 for (i
= 0; i
< nr_node_ids
; i
++)
6938 if (build_numa_sched_groups(&d
, cpu_map
, i
))
6942 /* Calculate CPU power for physical packages and nodes */
6943 #ifdef CONFIG_SCHED_SMT
6944 for_each_cpu(i
, cpu_map
) {
6945 sd
= &per_cpu(cpu_domains
, i
).sd
;
6946 init_sched_groups_power(i
, sd
);
6949 #ifdef CONFIG_SCHED_MC
6950 for_each_cpu(i
, cpu_map
) {
6951 sd
= &per_cpu(core_domains
, i
).sd
;
6952 init_sched_groups_power(i
, sd
);
6956 for_each_cpu(i
, cpu_map
) {
6957 sd
= &per_cpu(phys_domains
, i
).sd
;
6958 init_sched_groups_power(i
, sd
);
6962 for (i
= 0; i
< nr_node_ids
; i
++)
6963 init_numa_sched_groups_power(d
.sched_group_nodes
[i
]);
6965 if (d
.sd_allnodes
) {
6966 struct sched_group
*sg
;
6968 cpu_to_allnodes_group(cpumask_first(cpu_map
), cpu_map
, &sg
,
6970 init_numa_sched_groups_power(sg
);
6974 /* Attach the domains */
6975 for_each_cpu(i
, cpu_map
) {
6976 #ifdef CONFIG_SCHED_SMT
6977 sd
= &per_cpu(cpu_domains
, i
).sd
;
6978 #elif defined(CONFIG_SCHED_MC)
6979 sd
= &per_cpu(core_domains
, i
).sd
;
6981 sd
= &per_cpu(phys_domains
, i
).sd
;
6983 cpu_attach_domain(sd
, d
.rd
, i
);
6986 d
.sched_group_nodes
= NULL
; /* don't free this we still need it */
6987 __free_domain_allocs(&d
, sa_tmpmask
, cpu_map
);
6991 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
6995 static int build_sched_domains(const struct cpumask
*cpu_map
)
6997 return __build_sched_domains(cpu_map
, NULL
);
7000 static cpumask_var_t
*doms_cur
; /* current sched domains */
7001 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7002 static struct sched_domain_attr
*dattr_cur
;
7003 /* attribues of custom domains in 'doms_cur' */
7006 * Special case: If a kmalloc of a doms_cur partition (array of
7007 * cpumask) fails, then fallback to a single sched domain,
7008 * as determined by the single cpumask fallback_doms.
7010 static cpumask_var_t fallback_doms
;
7013 * arch_update_cpu_topology lets virtualized architectures update the
7014 * cpu core maps. It is supposed to return 1 if the topology changed
7015 * or 0 if it stayed the same.
7017 int __attribute__((weak
)) arch_update_cpu_topology(void)
7022 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
7025 cpumask_var_t
*doms
;
7027 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
7030 for (i
= 0; i
< ndoms
; i
++) {
7031 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
7032 free_sched_domains(doms
, i
);
7039 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
7042 for (i
= 0; i
< ndoms
; i
++)
7043 free_cpumask_var(doms
[i
]);
7048 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7049 * For now this just excludes isolated cpus, but could be used to
7050 * exclude other special cases in the future.
7052 static int arch_init_sched_domains(const struct cpumask
*cpu_map
)
7056 arch_update_cpu_topology();
7058 doms_cur
= alloc_sched_domains(ndoms_cur
);
7060 doms_cur
= &fallback_doms
;
7061 cpumask_andnot(doms_cur
[0], cpu_map
, cpu_isolated_map
);
7063 err
= build_sched_domains(doms_cur
[0]);
7064 register_sched_domain_sysctl();
7069 static void arch_destroy_sched_domains(const struct cpumask
*cpu_map
,
7070 struct cpumask
*tmpmask
)
7072 free_sched_groups(cpu_map
, tmpmask
);
7076 * Detach sched domains from a group of cpus specified in cpu_map
7077 * These cpus will now be attached to the NULL domain
7079 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
7081 /* Save because hotplug lock held. */
7082 static DECLARE_BITMAP(tmpmask
, CONFIG_NR_CPUS
);
7085 for_each_cpu(i
, cpu_map
)
7086 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7087 synchronize_sched();
7088 arch_destroy_sched_domains(cpu_map
, to_cpumask(tmpmask
));
7091 /* handle null as "default" */
7092 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7093 struct sched_domain_attr
*new, int idx_new
)
7095 struct sched_domain_attr tmp
;
7102 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7103 new ? (new + idx_new
) : &tmp
,
7104 sizeof(struct sched_domain_attr
));
7108 * Partition sched domains as specified by the 'ndoms_new'
7109 * cpumasks in the array doms_new[] of cpumasks. This compares
7110 * doms_new[] to the current sched domain partitioning, doms_cur[].
7111 * It destroys each deleted domain and builds each new domain.
7113 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7114 * The masks don't intersect (don't overlap.) We should setup one
7115 * sched domain for each mask. CPUs not in any of the cpumasks will
7116 * not be load balanced. If the same cpumask appears both in the
7117 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7120 * The passed in 'doms_new' should be allocated using
7121 * alloc_sched_domains. This routine takes ownership of it and will
7122 * free_sched_domains it when done with it. If the caller failed the
7123 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7124 * and partition_sched_domains() will fallback to the single partition
7125 * 'fallback_doms', it also forces the domains to be rebuilt.
7127 * If doms_new == NULL it will be replaced with cpu_online_mask.
7128 * ndoms_new == 0 is a special case for destroying existing domains,
7129 * and it will not create the default domain.
7131 * Call with hotplug lock held
7133 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
7134 struct sched_domain_attr
*dattr_new
)
7139 mutex_lock(&sched_domains_mutex
);
7141 /* always unregister in case we don't destroy any domains */
7142 unregister_sched_domain_sysctl();
7144 /* Let architecture update cpu core mappings. */
7145 new_topology
= arch_update_cpu_topology();
7147 n
= doms_new
? ndoms_new
: 0;
7149 /* Destroy deleted domains */
7150 for (i
= 0; i
< ndoms_cur
; i
++) {
7151 for (j
= 0; j
< n
&& !new_topology
; j
++) {
7152 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
7153 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7156 /* no match - a current sched domain not in new doms_new[] */
7157 detach_destroy_domains(doms_cur
[i
]);
7162 if (doms_new
== NULL
) {
7164 doms_new
= &fallback_doms
;
7165 cpumask_andnot(doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
7166 WARN_ON_ONCE(dattr_new
);
7169 /* Build new domains */
7170 for (i
= 0; i
< ndoms_new
; i
++) {
7171 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
7172 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
7173 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7176 /* no match - add a new doms_new */
7177 __build_sched_domains(doms_new
[i
],
7178 dattr_new
? dattr_new
+ i
: NULL
);
7183 /* Remember the new sched domains */
7184 if (doms_cur
!= &fallback_doms
)
7185 free_sched_domains(doms_cur
, ndoms_cur
);
7186 kfree(dattr_cur
); /* kfree(NULL) is safe */
7187 doms_cur
= doms_new
;
7188 dattr_cur
= dattr_new
;
7189 ndoms_cur
= ndoms_new
;
7191 register_sched_domain_sysctl();
7193 mutex_unlock(&sched_domains_mutex
);
7196 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7197 static void arch_reinit_sched_domains(void)
7201 /* Destroy domains first to force the rebuild */
7202 partition_sched_domains(0, NULL
, NULL
);
7204 rebuild_sched_domains();
7208 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
7210 unsigned int level
= 0;
7212 if (sscanf(buf
, "%u", &level
) != 1)
7216 * level is always be positive so don't check for
7217 * level < POWERSAVINGS_BALANCE_NONE which is 0
7218 * What happens on 0 or 1 byte write,
7219 * need to check for count as well?
7222 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
7226 sched_smt_power_savings
= level
;
7228 sched_mc_power_savings
= level
;
7230 arch_reinit_sched_domains();
7235 #ifdef CONFIG_SCHED_MC
7236 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
7237 struct sysdev_class_attribute
*attr
,
7240 return sprintf(page
, "%u\n", sched_mc_power_savings
);
7242 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
7243 struct sysdev_class_attribute
*attr
,
7244 const char *buf
, size_t count
)
7246 return sched_power_savings_store(buf
, count
, 0);
7248 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
7249 sched_mc_power_savings_show
,
7250 sched_mc_power_savings_store
);
7253 #ifdef CONFIG_SCHED_SMT
7254 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
7255 struct sysdev_class_attribute
*attr
,
7258 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7260 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
7261 struct sysdev_class_attribute
*attr
,
7262 const char *buf
, size_t count
)
7264 return sched_power_savings_store(buf
, count
, 1);
7266 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
7267 sched_smt_power_savings_show
,
7268 sched_smt_power_savings_store
);
7271 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7275 #ifdef CONFIG_SCHED_SMT
7277 err
= sysfs_create_file(&cls
->kset
.kobj
,
7278 &attr_sched_smt_power_savings
.attr
);
7280 #ifdef CONFIG_SCHED_MC
7281 if (!err
&& mc_capable())
7282 err
= sysfs_create_file(&cls
->kset
.kobj
,
7283 &attr_sched_mc_power_savings
.attr
);
7287 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7289 #ifndef CONFIG_CPUSETS
7291 * Add online and remove offline CPUs from the scheduler domains.
7292 * When cpusets are enabled they take over this function.
7294 static int update_sched_domains(struct notifier_block
*nfb
,
7295 unsigned long action
, void *hcpu
)
7299 case CPU_ONLINE_FROZEN
:
7300 case CPU_DOWN_PREPARE
:
7301 case CPU_DOWN_PREPARE_FROZEN
:
7302 case CPU_DOWN_FAILED
:
7303 case CPU_DOWN_FAILED_FROZEN
:
7304 partition_sched_domains(1, NULL
, NULL
);
7313 static int update_runtime(struct notifier_block
*nfb
,
7314 unsigned long action
, void *hcpu
)
7316 int cpu
= (int)(long)hcpu
;
7319 case CPU_DOWN_PREPARE
:
7320 case CPU_DOWN_PREPARE_FROZEN
:
7321 disable_runtime(cpu_rq(cpu
));
7324 case CPU_DOWN_FAILED
:
7325 case CPU_DOWN_FAILED_FROZEN
:
7327 case CPU_ONLINE_FROZEN
:
7328 enable_runtime(cpu_rq(cpu
));
7336 void __init
sched_init_smp(void)
7338 cpumask_var_t non_isolated_cpus
;
7340 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
7341 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
7343 #if defined(CONFIG_NUMA)
7344 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
7346 BUG_ON(sched_group_nodes_bycpu
== NULL
);
7349 mutex_lock(&sched_domains_mutex
);
7350 arch_init_sched_domains(cpu_active_mask
);
7351 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
7352 if (cpumask_empty(non_isolated_cpus
))
7353 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
7354 mutex_unlock(&sched_domains_mutex
);
7357 #ifndef CONFIG_CPUSETS
7358 /* XXX: Theoretical race here - CPU may be hotplugged now */
7359 hotcpu_notifier(update_sched_domains
, 0);
7362 /* RT runtime code needs to handle some hotplug events */
7363 hotcpu_notifier(update_runtime
, 0);
7367 /* Move init over to a non-isolated CPU */
7368 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
7370 sched_init_granularity();
7371 free_cpumask_var(non_isolated_cpus
);
7373 init_sched_rt_class();
7376 void __init
sched_init_smp(void)
7378 sched_init_granularity();
7380 #endif /* CONFIG_SMP */
7382 const_debug
unsigned int sysctl_timer_migration
= 1;
7384 int in_sched_functions(unsigned long addr
)
7386 return in_lock_functions(addr
) ||
7387 (addr
>= (unsigned long)__sched_text_start
7388 && addr
< (unsigned long)__sched_text_end
);
7391 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
7393 cfs_rq
->tasks_timeline
= RB_ROOT
;
7394 INIT_LIST_HEAD(&cfs_rq
->tasks
);
7395 #ifdef CONFIG_FAIR_GROUP_SCHED
7398 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
7401 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
7403 struct rt_prio_array
*array
;
7406 array
= &rt_rq
->active
;
7407 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
7408 INIT_LIST_HEAD(array
->queue
+ i
);
7409 __clear_bit(i
, array
->bitmap
);
7411 /* delimiter for bitsearch: */
7412 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
7414 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7415 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
7417 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
7421 rt_rq
->rt_nr_migratory
= 0;
7422 rt_rq
->overloaded
= 0;
7423 plist_head_init_raw(&rt_rq
->pushable_tasks
, &rq
->lock
);
7427 rt_rq
->rt_throttled
= 0;
7428 rt_rq
->rt_runtime
= 0;
7429 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
7431 #ifdef CONFIG_RT_GROUP_SCHED
7432 rt_rq
->rt_nr_boosted
= 0;
7437 #ifdef CONFIG_FAIR_GROUP_SCHED
7438 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
7439 struct sched_entity
*se
, int cpu
, int add
,
7440 struct sched_entity
*parent
)
7442 struct rq
*rq
= cpu_rq(cpu
);
7443 tg
->cfs_rq
[cpu
] = cfs_rq
;
7444 init_cfs_rq(cfs_rq
, rq
);
7447 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
7450 /* se could be NULL for init_task_group */
7455 se
->cfs_rq
= &rq
->cfs
;
7457 se
->cfs_rq
= parent
->my_q
;
7460 se
->load
.weight
= tg
->shares
;
7461 se
->load
.inv_weight
= 0;
7462 se
->parent
= parent
;
7466 #ifdef CONFIG_RT_GROUP_SCHED
7467 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
7468 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
7469 struct sched_rt_entity
*parent
)
7471 struct rq
*rq
= cpu_rq(cpu
);
7473 tg
->rt_rq
[cpu
] = rt_rq
;
7474 init_rt_rq(rt_rq
, rq
);
7476 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
7478 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
7480 tg
->rt_se
[cpu
] = rt_se
;
7485 rt_se
->rt_rq
= &rq
->rt
;
7487 rt_se
->rt_rq
= parent
->my_q
;
7489 rt_se
->my_q
= rt_rq
;
7490 rt_se
->parent
= parent
;
7491 INIT_LIST_HEAD(&rt_se
->run_list
);
7495 void __init
sched_init(void)
7498 unsigned long alloc_size
= 0, ptr
;
7500 #ifdef CONFIG_FAIR_GROUP_SCHED
7501 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7503 #ifdef CONFIG_RT_GROUP_SCHED
7504 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7506 #ifdef CONFIG_CPUMASK_OFFSTACK
7507 alloc_size
+= num_possible_cpus() * cpumask_size();
7510 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
7512 #ifdef CONFIG_FAIR_GROUP_SCHED
7513 init_task_group
.se
= (struct sched_entity
**)ptr
;
7514 ptr
+= nr_cpu_ids
* sizeof(void **);
7516 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
7517 ptr
+= nr_cpu_ids
* sizeof(void **);
7519 #endif /* CONFIG_FAIR_GROUP_SCHED */
7520 #ifdef CONFIG_RT_GROUP_SCHED
7521 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
7522 ptr
+= nr_cpu_ids
* sizeof(void **);
7524 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
7525 ptr
+= nr_cpu_ids
* sizeof(void **);
7527 #endif /* CONFIG_RT_GROUP_SCHED */
7528 #ifdef CONFIG_CPUMASK_OFFSTACK
7529 for_each_possible_cpu(i
) {
7530 per_cpu(load_balance_tmpmask
, i
) = (void *)ptr
;
7531 ptr
+= cpumask_size();
7533 #endif /* CONFIG_CPUMASK_OFFSTACK */
7537 init_defrootdomain();
7540 init_rt_bandwidth(&def_rt_bandwidth
,
7541 global_rt_period(), global_rt_runtime());
7543 #ifdef CONFIG_RT_GROUP_SCHED
7544 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
7545 global_rt_period(), global_rt_runtime());
7546 #endif /* CONFIG_RT_GROUP_SCHED */
7548 #ifdef CONFIG_CGROUP_SCHED
7549 list_add(&init_task_group
.list
, &task_groups
);
7550 INIT_LIST_HEAD(&init_task_group
.children
);
7552 #endif /* CONFIG_CGROUP_SCHED */
7554 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7555 update_shares_data
= __alloc_percpu(nr_cpu_ids
* sizeof(unsigned long),
7556 __alignof__(unsigned long));
7558 for_each_possible_cpu(i
) {
7562 raw_spin_lock_init(&rq
->lock
);
7564 rq
->calc_load_active
= 0;
7565 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
7566 init_cfs_rq(&rq
->cfs
, rq
);
7567 init_rt_rq(&rq
->rt
, rq
);
7568 #ifdef CONFIG_FAIR_GROUP_SCHED
7569 init_task_group
.shares
= init_task_group_load
;
7570 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
7571 #ifdef CONFIG_CGROUP_SCHED
7573 * How much cpu bandwidth does init_task_group get?
7575 * In case of task-groups formed thr' the cgroup filesystem, it
7576 * gets 100% of the cpu resources in the system. This overall
7577 * system cpu resource is divided among the tasks of
7578 * init_task_group and its child task-groups in a fair manner,
7579 * based on each entity's (task or task-group's) weight
7580 * (se->load.weight).
7582 * In other words, if init_task_group has 10 tasks of weight
7583 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7584 * then A0's share of the cpu resource is:
7586 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7588 * We achieve this by letting init_task_group's tasks sit
7589 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7591 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
7593 #endif /* CONFIG_FAIR_GROUP_SCHED */
7595 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
7596 #ifdef CONFIG_RT_GROUP_SCHED
7597 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
7598 #ifdef CONFIG_CGROUP_SCHED
7599 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
7603 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
7604 rq
->cpu_load
[j
] = 0;
7608 rq
->post_schedule
= 0;
7609 rq
->active_balance
= 0;
7610 rq
->next_balance
= jiffies
;
7615 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
7616 rq_attach_root(rq
, &def_root_domain
);
7619 atomic_set(&rq
->nr_iowait
, 0);
7622 set_load_weight(&init_task
);
7624 #ifdef CONFIG_PREEMPT_NOTIFIERS
7625 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
7629 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
7632 #ifdef CONFIG_RT_MUTEXES
7633 plist_head_init_raw(&init_task
.pi_waiters
, &init_task
.pi_lock
);
7637 * The boot idle thread does lazy MMU switching as well:
7639 atomic_inc(&init_mm
.mm_count
);
7640 enter_lazy_tlb(&init_mm
, current
);
7643 * Make us the idle thread. Technically, schedule() should not be
7644 * called from this thread, however somewhere below it might be,
7645 * but because we are the idle thread, we just pick up running again
7646 * when this runqueue becomes "idle".
7648 init_idle(current
, smp_processor_id());
7650 calc_load_update
= jiffies
+ LOAD_FREQ
;
7653 * During early bootup we pretend to be a normal task:
7655 current
->sched_class
= &fair_sched_class
;
7657 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7658 zalloc_cpumask_var(&nohz_cpu_mask
, GFP_NOWAIT
);
7661 zalloc_cpumask_var(&nohz
.cpu_mask
, GFP_NOWAIT
);
7662 alloc_cpumask_var(&nohz
.ilb_grp_nohz_mask
, GFP_NOWAIT
);
7664 /* May be allocated at isolcpus cmdline parse time */
7665 if (cpu_isolated_map
== NULL
)
7666 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
7671 scheduler_running
= 1;
7674 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7675 static inline int preempt_count_equals(int preempt_offset
)
7677 int nested
= (preempt_count() & ~PREEMPT_ACTIVE
) + rcu_preempt_depth();
7679 return (nested
== PREEMPT_INATOMIC_BASE
+ preempt_offset
);
7682 void __might_sleep(const char *file
, int line
, int preempt_offset
)
7685 static unsigned long prev_jiffy
; /* ratelimiting */
7687 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled()) ||
7688 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
7690 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
7692 prev_jiffy
= jiffies
;
7695 "BUG: sleeping function called from invalid context at %s:%d\n",
7698 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7699 in_atomic(), irqs_disabled(),
7700 current
->pid
, current
->comm
);
7702 debug_show_held_locks(current
);
7703 if (irqs_disabled())
7704 print_irqtrace_events(current
);
7708 EXPORT_SYMBOL(__might_sleep
);
7711 #ifdef CONFIG_MAGIC_SYSRQ
7712 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
7716 on_rq
= p
->se
.on_rq
;
7718 deactivate_task(rq
, p
, 0);
7719 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
7721 activate_task(rq
, p
, 0);
7722 resched_task(rq
->curr
);
7726 void normalize_rt_tasks(void)
7728 struct task_struct
*g
, *p
;
7729 unsigned long flags
;
7732 read_lock_irqsave(&tasklist_lock
, flags
);
7733 do_each_thread(g
, p
) {
7735 * Only normalize user tasks:
7740 p
->se
.exec_start
= 0;
7741 #ifdef CONFIG_SCHEDSTATS
7742 p
->se
.statistics
.wait_start
= 0;
7743 p
->se
.statistics
.sleep_start
= 0;
7744 p
->se
.statistics
.block_start
= 0;
7749 * Renice negative nice level userspace
7752 if (TASK_NICE(p
) < 0 && p
->mm
)
7753 set_user_nice(p
, 0);
7757 raw_spin_lock(&p
->pi_lock
);
7758 rq
= __task_rq_lock(p
);
7760 normalize_task(rq
, p
);
7762 __task_rq_unlock(rq
);
7763 raw_spin_unlock(&p
->pi_lock
);
7764 } while_each_thread(g
, p
);
7766 read_unlock_irqrestore(&tasklist_lock
, flags
);
7769 #endif /* CONFIG_MAGIC_SYSRQ */
7771 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7773 * These functions are only useful for the IA64 MCA handling, or kdb.
7775 * They can only be called when the whole system has been
7776 * stopped - every CPU needs to be quiescent, and no scheduling
7777 * activity can take place. Using them for anything else would
7778 * be a serious bug, and as a result, they aren't even visible
7779 * under any other configuration.
7783 * curr_task - return the current task for a given cpu.
7784 * @cpu: the processor in question.
7786 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7788 struct task_struct
*curr_task(int cpu
)
7790 return cpu_curr(cpu
);
7793 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7797 * set_curr_task - set the current task for a given cpu.
7798 * @cpu: the processor in question.
7799 * @p: the task pointer to set.
7801 * Description: This function must only be used when non-maskable interrupts
7802 * are serviced on a separate stack. It allows the architecture to switch the
7803 * notion of the current task on a cpu in a non-blocking manner. This function
7804 * must be called with all CPU's synchronized, and interrupts disabled, the
7805 * and caller must save the original value of the current task (see
7806 * curr_task() above) and restore that value before reenabling interrupts and
7807 * re-starting the system.
7809 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7811 void set_curr_task(int cpu
, struct task_struct
*p
)
7818 #ifdef CONFIG_FAIR_GROUP_SCHED
7819 static void free_fair_sched_group(struct task_group
*tg
)
7823 for_each_possible_cpu(i
) {
7825 kfree(tg
->cfs_rq
[i
]);
7835 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
7837 struct cfs_rq
*cfs_rq
;
7838 struct sched_entity
*se
;
7842 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
7845 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
7849 tg
->shares
= NICE_0_LOAD
;
7851 for_each_possible_cpu(i
) {
7854 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
7855 GFP_KERNEL
, cpu_to_node(i
));
7859 se
= kzalloc_node(sizeof(struct sched_entity
),
7860 GFP_KERNEL
, cpu_to_node(i
));
7864 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent
->se
[i
]);
7875 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
7877 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
7878 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
7881 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
7883 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
7885 #else /* !CONFG_FAIR_GROUP_SCHED */
7886 static inline void free_fair_sched_group(struct task_group
*tg
)
7891 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
7896 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
7900 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
7903 #endif /* CONFIG_FAIR_GROUP_SCHED */
7905 #ifdef CONFIG_RT_GROUP_SCHED
7906 static void free_rt_sched_group(struct task_group
*tg
)
7910 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
7912 for_each_possible_cpu(i
) {
7914 kfree(tg
->rt_rq
[i
]);
7916 kfree(tg
->rt_se
[i
]);
7924 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
7926 struct rt_rq
*rt_rq
;
7927 struct sched_rt_entity
*rt_se
;
7931 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
7934 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
7938 init_rt_bandwidth(&tg
->rt_bandwidth
,
7939 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
7941 for_each_possible_cpu(i
) {
7944 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
7945 GFP_KERNEL
, cpu_to_node(i
));
7949 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
7950 GFP_KERNEL
, cpu_to_node(i
));
7954 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent
->rt_se
[i
]);
7965 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
7967 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
7968 &cpu_rq(cpu
)->leaf_rt_rq_list
);
7971 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
7973 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
7975 #else /* !CONFIG_RT_GROUP_SCHED */
7976 static inline void free_rt_sched_group(struct task_group
*tg
)
7981 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
7986 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
7990 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
7993 #endif /* CONFIG_RT_GROUP_SCHED */
7995 #ifdef CONFIG_CGROUP_SCHED
7996 static void free_sched_group(struct task_group
*tg
)
7998 free_fair_sched_group(tg
);
7999 free_rt_sched_group(tg
);
8003 /* allocate runqueue etc for a new task group */
8004 struct task_group
*sched_create_group(struct task_group
*parent
)
8006 struct task_group
*tg
;
8007 unsigned long flags
;
8010 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8012 return ERR_PTR(-ENOMEM
);
8014 if (!alloc_fair_sched_group(tg
, parent
))
8017 if (!alloc_rt_sched_group(tg
, parent
))
8020 spin_lock_irqsave(&task_group_lock
, flags
);
8021 for_each_possible_cpu(i
) {
8022 register_fair_sched_group(tg
, i
);
8023 register_rt_sched_group(tg
, i
);
8025 list_add_rcu(&tg
->list
, &task_groups
);
8027 WARN_ON(!parent
); /* root should already exist */
8029 tg
->parent
= parent
;
8030 INIT_LIST_HEAD(&tg
->children
);
8031 list_add_rcu(&tg
->siblings
, &parent
->children
);
8032 spin_unlock_irqrestore(&task_group_lock
, flags
);
8037 free_sched_group(tg
);
8038 return ERR_PTR(-ENOMEM
);
8041 /* rcu callback to free various structures associated with a task group */
8042 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8044 /* now it should be safe to free those cfs_rqs */
8045 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8048 /* Destroy runqueue etc associated with a task group */
8049 void sched_destroy_group(struct task_group
*tg
)
8051 unsigned long flags
;
8054 spin_lock_irqsave(&task_group_lock
, flags
);
8055 for_each_possible_cpu(i
) {
8056 unregister_fair_sched_group(tg
, i
);
8057 unregister_rt_sched_group(tg
, i
);
8059 list_del_rcu(&tg
->list
);
8060 list_del_rcu(&tg
->siblings
);
8061 spin_unlock_irqrestore(&task_group_lock
, flags
);
8063 /* wait for possible concurrent references to cfs_rqs complete */
8064 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8067 /* change task's runqueue when it moves between groups.
8068 * The caller of this function should have put the task in its new group
8069 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8070 * reflect its new group.
8072 void sched_move_task(struct task_struct
*tsk
)
8075 unsigned long flags
;
8078 rq
= task_rq_lock(tsk
, &flags
);
8080 running
= task_current(rq
, tsk
);
8081 on_rq
= tsk
->se
.on_rq
;
8084 dequeue_task(rq
, tsk
, 0);
8085 if (unlikely(running
))
8086 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8088 set_task_rq(tsk
, task_cpu(tsk
));
8090 #ifdef CONFIG_FAIR_GROUP_SCHED
8091 if (tsk
->sched_class
->moved_group
)
8092 tsk
->sched_class
->moved_group(tsk
, on_rq
);
8095 if (unlikely(running
))
8096 tsk
->sched_class
->set_curr_task(rq
);
8098 enqueue_task(rq
, tsk
, 0);
8100 task_rq_unlock(rq
, &flags
);
8102 #endif /* CONFIG_CGROUP_SCHED */
8104 #ifdef CONFIG_FAIR_GROUP_SCHED
8105 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8107 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8112 dequeue_entity(cfs_rq
, se
, 0);
8114 se
->load
.weight
= shares
;
8115 se
->load
.inv_weight
= 0;
8118 enqueue_entity(cfs_rq
, se
, 0);
8121 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8123 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8124 struct rq
*rq
= cfs_rq
->rq
;
8125 unsigned long flags
;
8127 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8128 __set_se_shares(se
, shares
);
8129 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8132 static DEFINE_MUTEX(shares_mutex
);
8134 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8137 unsigned long flags
;
8140 * We can't change the weight of the root cgroup.
8145 if (shares
< MIN_SHARES
)
8146 shares
= MIN_SHARES
;
8147 else if (shares
> MAX_SHARES
)
8148 shares
= MAX_SHARES
;
8150 mutex_lock(&shares_mutex
);
8151 if (tg
->shares
== shares
)
8154 spin_lock_irqsave(&task_group_lock
, flags
);
8155 for_each_possible_cpu(i
)
8156 unregister_fair_sched_group(tg
, i
);
8157 list_del_rcu(&tg
->siblings
);
8158 spin_unlock_irqrestore(&task_group_lock
, flags
);
8160 /* wait for any ongoing reference to this group to finish */
8161 synchronize_sched();
8164 * Now we are free to modify the group's share on each cpu
8165 * w/o tripping rebalance_share or load_balance_fair.
8167 tg
->shares
= shares
;
8168 for_each_possible_cpu(i
) {
8172 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
8173 set_se_shares(tg
->se
[i
], shares
);
8177 * Enable load balance activity on this group, by inserting it back on
8178 * each cpu's rq->leaf_cfs_rq_list.
8180 spin_lock_irqsave(&task_group_lock
, flags
);
8181 for_each_possible_cpu(i
)
8182 register_fair_sched_group(tg
, i
);
8183 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
8184 spin_unlock_irqrestore(&task_group_lock
, flags
);
8186 mutex_unlock(&shares_mutex
);
8190 unsigned long sched_group_shares(struct task_group
*tg
)
8196 #ifdef CONFIG_RT_GROUP_SCHED
8198 * Ensure that the real time constraints are schedulable.
8200 static DEFINE_MUTEX(rt_constraints_mutex
);
8202 static unsigned long to_ratio(u64 period
, u64 runtime
)
8204 if (runtime
== RUNTIME_INF
)
8207 return div64_u64(runtime
<< 20, period
);
8210 /* Must be called with tasklist_lock held */
8211 static inline int tg_has_rt_tasks(struct task_group
*tg
)
8213 struct task_struct
*g
, *p
;
8215 do_each_thread(g
, p
) {
8216 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
8218 } while_each_thread(g
, p
);
8223 struct rt_schedulable_data
{
8224 struct task_group
*tg
;
8229 static int tg_schedulable(struct task_group
*tg
, void *data
)
8231 struct rt_schedulable_data
*d
= data
;
8232 struct task_group
*child
;
8233 unsigned long total
, sum
= 0;
8234 u64 period
, runtime
;
8236 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8237 runtime
= tg
->rt_bandwidth
.rt_runtime
;
8240 period
= d
->rt_period
;
8241 runtime
= d
->rt_runtime
;
8245 * Cannot have more runtime than the period.
8247 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8251 * Ensure we don't starve existing RT tasks.
8253 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
8256 total
= to_ratio(period
, runtime
);
8259 * Nobody can have more than the global setting allows.
8261 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
8265 * The sum of our children's runtime should not exceed our own.
8267 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
8268 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
8269 runtime
= child
->rt_bandwidth
.rt_runtime
;
8271 if (child
== d
->tg
) {
8272 period
= d
->rt_period
;
8273 runtime
= d
->rt_runtime
;
8276 sum
+= to_ratio(period
, runtime
);
8285 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8287 struct rt_schedulable_data data
= {
8289 .rt_period
= period
,
8290 .rt_runtime
= runtime
,
8293 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
8296 static int tg_set_bandwidth(struct task_group
*tg
,
8297 u64 rt_period
, u64 rt_runtime
)
8301 mutex_lock(&rt_constraints_mutex
);
8302 read_lock(&tasklist_lock
);
8303 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
8307 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8308 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
8309 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
8311 for_each_possible_cpu(i
) {
8312 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
8314 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8315 rt_rq
->rt_runtime
= rt_runtime
;
8316 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8318 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8320 read_unlock(&tasklist_lock
);
8321 mutex_unlock(&rt_constraints_mutex
);
8326 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
8328 u64 rt_runtime
, rt_period
;
8330 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8331 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
8332 if (rt_runtime_us
< 0)
8333 rt_runtime
= RUNTIME_INF
;
8335 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8338 long sched_group_rt_runtime(struct task_group
*tg
)
8342 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
8345 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
8346 do_div(rt_runtime_us
, NSEC_PER_USEC
);
8347 return rt_runtime_us
;
8350 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
8352 u64 rt_runtime
, rt_period
;
8354 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
8355 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8360 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8363 long sched_group_rt_period(struct task_group
*tg
)
8367 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8368 do_div(rt_period_us
, NSEC_PER_USEC
);
8369 return rt_period_us
;
8372 static int sched_rt_global_constraints(void)
8374 u64 runtime
, period
;
8377 if (sysctl_sched_rt_period
<= 0)
8380 runtime
= global_rt_runtime();
8381 period
= global_rt_period();
8384 * Sanity check on the sysctl variables.
8386 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8389 mutex_lock(&rt_constraints_mutex
);
8390 read_lock(&tasklist_lock
);
8391 ret
= __rt_schedulable(NULL
, 0, 0);
8392 read_unlock(&tasklist_lock
);
8393 mutex_unlock(&rt_constraints_mutex
);
8398 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
8400 /* Don't accept realtime tasks when there is no way for them to run */
8401 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
8407 #else /* !CONFIG_RT_GROUP_SCHED */
8408 static int sched_rt_global_constraints(void)
8410 unsigned long flags
;
8413 if (sysctl_sched_rt_period
<= 0)
8417 * There's always some RT tasks in the root group
8418 * -- migration, kstopmachine etc..
8420 if (sysctl_sched_rt_runtime
== 0)
8423 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8424 for_each_possible_cpu(i
) {
8425 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
8427 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8428 rt_rq
->rt_runtime
= global_rt_runtime();
8429 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8431 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8435 #endif /* CONFIG_RT_GROUP_SCHED */
8437 int sched_rt_handler(struct ctl_table
*table
, int write
,
8438 void __user
*buffer
, size_t *lenp
,
8442 int old_period
, old_runtime
;
8443 static DEFINE_MUTEX(mutex
);
8446 old_period
= sysctl_sched_rt_period
;
8447 old_runtime
= sysctl_sched_rt_runtime
;
8449 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
8451 if (!ret
&& write
) {
8452 ret
= sched_rt_global_constraints();
8454 sysctl_sched_rt_period
= old_period
;
8455 sysctl_sched_rt_runtime
= old_runtime
;
8457 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
8458 def_rt_bandwidth
.rt_period
=
8459 ns_to_ktime(global_rt_period());
8462 mutex_unlock(&mutex
);
8467 #ifdef CONFIG_CGROUP_SCHED
8469 /* return corresponding task_group object of a cgroup */
8470 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
8472 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
8473 struct task_group
, css
);
8476 static struct cgroup_subsys_state
*
8477 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8479 struct task_group
*tg
, *parent
;
8481 if (!cgrp
->parent
) {
8482 /* This is early initialization for the top cgroup */
8483 return &init_task_group
.css
;
8486 parent
= cgroup_tg(cgrp
->parent
);
8487 tg
= sched_create_group(parent
);
8489 return ERR_PTR(-ENOMEM
);
8495 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8497 struct task_group
*tg
= cgroup_tg(cgrp
);
8499 sched_destroy_group(tg
);
8503 cpu_cgroup_can_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
8505 #ifdef CONFIG_RT_GROUP_SCHED
8506 if (!sched_rt_can_attach(cgroup_tg(cgrp
), tsk
))
8509 /* We don't support RT-tasks being in separate groups */
8510 if (tsk
->sched_class
!= &fair_sched_class
)
8517 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8518 struct task_struct
*tsk
, bool threadgroup
)
8520 int retval
= cpu_cgroup_can_attach_task(cgrp
, tsk
);
8524 struct task_struct
*c
;
8526 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
8527 retval
= cpu_cgroup_can_attach_task(cgrp
, c
);
8539 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8540 struct cgroup
*old_cont
, struct task_struct
*tsk
,
8543 sched_move_task(tsk
);
8545 struct task_struct
*c
;
8547 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
8554 #ifdef CONFIG_FAIR_GROUP_SCHED
8555 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
8558 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
8561 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
8563 struct task_group
*tg
= cgroup_tg(cgrp
);
8565 return (u64
) tg
->shares
;
8567 #endif /* CONFIG_FAIR_GROUP_SCHED */
8569 #ifdef CONFIG_RT_GROUP_SCHED
8570 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
8573 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
8576 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
8578 return sched_group_rt_runtime(cgroup_tg(cgrp
));
8581 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
8584 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
8587 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
8589 return sched_group_rt_period(cgroup_tg(cgrp
));
8591 #endif /* CONFIG_RT_GROUP_SCHED */
8593 static struct cftype cpu_files
[] = {
8594 #ifdef CONFIG_FAIR_GROUP_SCHED
8597 .read_u64
= cpu_shares_read_u64
,
8598 .write_u64
= cpu_shares_write_u64
,
8601 #ifdef CONFIG_RT_GROUP_SCHED
8603 .name
= "rt_runtime_us",
8604 .read_s64
= cpu_rt_runtime_read
,
8605 .write_s64
= cpu_rt_runtime_write
,
8608 .name
= "rt_period_us",
8609 .read_u64
= cpu_rt_period_read_uint
,
8610 .write_u64
= cpu_rt_period_write_uint
,
8615 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8617 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
8620 struct cgroup_subsys cpu_cgroup_subsys
= {
8622 .create
= cpu_cgroup_create
,
8623 .destroy
= cpu_cgroup_destroy
,
8624 .can_attach
= cpu_cgroup_can_attach
,
8625 .attach
= cpu_cgroup_attach
,
8626 .populate
= cpu_cgroup_populate
,
8627 .subsys_id
= cpu_cgroup_subsys_id
,
8631 #endif /* CONFIG_CGROUP_SCHED */
8633 #ifdef CONFIG_CGROUP_CPUACCT
8636 * CPU accounting code for task groups.
8638 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8639 * (balbir@in.ibm.com).
8642 /* track cpu usage of a group of tasks and its child groups */
8644 struct cgroup_subsys_state css
;
8645 /* cpuusage holds pointer to a u64-type object on every cpu */
8646 u64 __percpu
*cpuusage
;
8647 struct percpu_counter cpustat
[CPUACCT_STAT_NSTATS
];
8648 struct cpuacct
*parent
;
8651 struct cgroup_subsys cpuacct_subsys
;
8653 /* return cpu accounting group corresponding to this container */
8654 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
8656 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
8657 struct cpuacct
, css
);
8660 /* return cpu accounting group to which this task belongs */
8661 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
8663 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
8664 struct cpuacct
, css
);
8667 /* create a new cpu accounting group */
8668 static struct cgroup_subsys_state
*cpuacct_create(
8669 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8671 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
8677 ca
->cpuusage
= alloc_percpu(u64
);
8681 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
8682 if (percpu_counter_init(&ca
->cpustat
[i
], 0))
8683 goto out_free_counters
;
8686 ca
->parent
= cgroup_ca(cgrp
->parent
);
8692 percpu_counter_destroy(&ca
->cpustat
[i
]);
8693 free_percpu(ca
->cpuusage
);
8697 return ERR_PTR(-ENOMEM
);
8700 /* destroy an existing cpu accounting group */
8702 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8704 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8707 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
8708 percpu_counter_destroy(&ca
->cpustat
[i
]);
8709 free_percpu(ca
->cpuusage
);
8713 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
8715 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
8718 #ifndef CONFIG_64BIT
8720 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8722 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
8724 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
8732 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
8734 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
8736 #ifndef CONFIG_64BIT
8738 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8740 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
8742 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
8748 /* return total cpu usage (in nanoseconds) of a group */
8749 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
8751 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8752 u64 totalcpuusage
= 0;
8755 for_each_present_cpu(i
)
8756 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
8758 return totalcpuusage
;
8761 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
8764 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8773 for_each_present_cpu(i
)
8774 cpuacct_cpuusage_write(ca
, i
, 0);
8780 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
8783 struct cpuacct
*ca
= cgroup_ca(cgroup
);
8787 for_each_present_cpu(i
) {
8788 percpu
= cpuacct_cpuusage_read(ca
, i
);
8789 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
8791 seq_printf(m
, "\n");
8795 static const char *cpuacct_stat_desc
[] = {
8796 [CPUACCT_STAT_USER
] = "user",
8797 [CPUACCT_STAT_SYSTEM
] = "system",
8800 static int cpuacct_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
8801 struct cgroup_map_cb
*cb
)
8803 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8806 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++) {
8807 s64 val
= percpu_counter_read(&ca
->cpustat
[i
]);
8808 val
= cputime64_to_clock_t(val
);
8809 cb
->fill(cb
, cpuacct_stat_desc
[i
], val
);
8814 static struct cftype files
[] = {
8817 .read_u64
= cpuusage_read
,
8818 .write_u64
= cpuusage_write
,
8821 .name
= "usage_percpu",
8822 .read_seq_string
= cpuacct_percpu_seq_read
,
8826 .read_map
= cpuacct_stats_show
,
8830 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8832 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
8836 * charge this task's execution time to its accounting group.
8838 * called with rq->lock held.
8840 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
8845 if (unlikely(!cpuacct_subsys
.active
))
8848 cpu
= task_cpu(tsk
);
8854 for (; ca
; ca
= ca
->parent
) {
8855 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
8856 *cpuusage
+= cputime
;
8863 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8864 * in cputime_t units. As a result, cpuacct_update_stats calls
8865 * percpu_counter_add with values large enough to always overflow the
8866 * per cpu batch limit causing bad SMP scalability.
8868 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8869 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8870 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8873 #define CPUACCT_BATCH \
8874 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8876 #define CPUACCT_BATCH 0
8880 * Charge the system/user time to the task's accounting group.
8882 static void cpuacct_update_stats(struct task_struct
*tsk
,
8883 enum cpuacct_stat_index idx
, cputime_t val
)
8886 int batch
= CPUACCT_BATCH
;
8888 if (unlikely(!cpuacct_subsys
.active
))
8895 __percpu_counter_add(&ca
->cpustat
[idx
], val
, batch
);
8901 struct cgroup_subsys cpuacct_subsys
= {
8903 .create
= cpuacct_create
,
8904 .destroy
= cpuacct_destroy
,
8905 .populate
= cpuacct_populate
,
8906 .subsys_id
= cpuacct_subsys_id
,
8908 #endif /* CONFIG_CGROUP_CPUACCT */
8912 void synchronize_sched_expedited(void)
8916 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
8918 #else /* #ifndef CONFIG_SMP */
8920 static atomic_t synchronize_sched_expedited_count
= ATOMIC_INIT(0);
8922 static int synchronize_sched_expedited_cpu_stop(void *data
)
8925 * There must be a full memory barrier on each affected CPU
8926 * between the time that try_stop_cpus() is called and the
8927 * time that it returns.
8929 * In the current initial implementation of cpu_stop, the
8930 * above condition is already met when the control reaches
8931 * this point and the following smp_mb() is not strictly
8932 * necessary. Do smp_mb() anyway for documentation and
8933 * robustness against future implementation changes.
8935 smp_mb(); /* See above comment block. */
8940 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
8941 * approach to force grace period to end quickly. This consumes
8942 * significant time on all CPUs, and is thus not recommended for
8943 * any sort of common-case code.
8945 * Note that it is illegal to call this function while holding any
8946 * lock that is acquired by a CPU-hotplug notifier. Failing to
8947 * observe this restriction will result in deadlock.
8949 void synchronize_sched_expedited(void)
8951 int snap
, trycount
= 0;
8953 smp_mb(); /* ensure prior mod happens before capturing snap. */
8954 snap
= atomic_read(&synchronize_sched_expedited_count
) + 1;
8956 while (try_stop_cpus(cpu_online_mask
,
8957 synchronize_sched_expedited_cpu_stop
,
8960 if (trycount
++ < 10)
8961 udelay(trycount
* num_online_cpus());
8963 synchronize_sched();
8966 if (atomic_read(&synchronize_sched_expedited_count
) - snap
> 0) {
8967 smp_mb(); /* ensure test happens before caller kfree */
8972 atomic_inc(&synchronize_sched_expedited_count
);
8973 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
8976 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
8978 #endif /* #else #ifndef CONFIG_SMP */